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Abstract—This paper proposes an online multi-camera multi-object tracker that only requires monocular detector training,

independent of the multi-camera configurations, allowing seamless extension/deletion of cameras without retraining effort. The

proposed algorithm has a linear complexity in the total number of detections across the cameras, and hence scales gracefully with the

number of cameras. It operates in the 3D world frame, and provides 3D trajectory estimates of the objects. The key innovation is a high

fidelity yet tractable 3D occlusion model, amenable to optimal Bayesian multi-view multi-object filtering, which seamlessly integrates,

into a single Bayesian recursion, the sub-tasks of track management, state estimation, clutter rejection, and occlusion/misdetection

handling. The proposed algorithm is evaluated on the latest WILDTRACKS dataset, and demonstrated to work in very crowded scenes

on a new dataset.

Index Terms—Multi-view, multi-sensor, multi-object visual tracking, occlusion handling, generalized labeled multi-bernoulli

Ç

1 INTRODUCTION

THE interest of visual tracking is to jointly estimate an
unknown time-varying number of object trajectories

from a stream of images [1]. The challenges of visual track-
ing are the random appearance/disappearance of the
objects, false positives/negatives, and data association
uncertainty [2]. Multiple object tracking (MOT) algorithms
can operate online to produce current estimates as data
arrives, or in batch which delay the estimation until further
data is available [3], [4]. In principle, batch algorithms are
more accurate than online as they allow better data integra-
tion into the estimates [2], [5], [6], [7]. Online algorithms,
however, tend to be faster and hence better suited for time-
critical applications [4], [8], [9], [10], [11].

The common sub-tasks, traditionally performed by sepa-
rate modules in a MOT system are track management, state
estimation, clutter rejection, and occlusion/misdetection
handling. Track management involves the initiation, termi-
nation and identification of trajectories of individual objects,
while state estimation is concerned with determining the
state vectors of the trajectories. Problems such as track loss,
track fragmentation and identity switching are caused by
false negatives that can arise from occlusions when objects
of interest are visually blocked from a sensor, or from mis-
detections when the sensor/detector fails to register objects
of interest. On the other hand, false positives can lead to

false tracks and identity switching. Hence, occlusion/mis-
detection handling and clutter rejection are critical for
improving tracking performance.

While occlusion handling is just as challenging compared
with the other sub-tasks, theoretical developments are far
and few [12]. This is due mainly to the complex object-to-
object and object-to-background relationships, as well as
computational tractability because, theoretically, all possi-
ble partitions of the set of objects need to be considered [4].
In a single-view setting, useful a priori information about
the objects of interest are exploited to resolve occlusions [2],
[6], [11], [13]. However, there are fundamental limitations
on what can be achieved with single-view data. In contrast,
a multi-view setting naturally allows exploiting comple-
mentary information from the data to resolve occlusions
since an object occluded in one view may not be occluded
in another [14]. Furthermore, from an information theoretic
standpoint, data from diverse views will reduce the uncer-
tainty on the set of objects of interest, thereby improving
overall tracking performance. Given the proliferation of
cameras in today’s world, it is imperative to develop effec-
tive means for making the best of the information-rich
multi-view data sources, not only for occlusion handling,
but ultimately to achieve better visual tracking.

The perennial challenge in multi-view visual MOT is the
high-dimensional data association problem between the
detections and objects, across different views/cameras [12],
[15]. Two common architectures for multi-view MOT are
shown in Fig. 1. So far the best solutions are batch algorithms
with the architecture in Fig. 1a. These solutions are based on:
generative modeling and dynamic programming [15]; con-
volutional neural network (CNN) multi-camera detection
(MCD), trained on multi-view datasets [16], followed by
trackmanagement [17]; andMCDviamulti-viewCNN train-
ing combined with Conditional Random Fields (CRF) mod-
els to exploit multi-camera geometry (followed by track
management) [18]. These MCD based MOT solutions, which
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produce trajectories on the ground plane, have been shown
to outperform previous works [16], and demonstrated
remarkable performance in crowded scenarios [18]. Note
that such data-centric MCDs require retraining when the
multi-camera system is extended/reconfigured, and that
training/learning is expensive as the input space is very
high-dimensional due to the large number of possible combi-
nations across the cameras [19]. In practice, it is desirable for
a multi-view MOT system to produce trajectories in 3D
world frame, online, and requires no retraining for multi-
camera extension/reconfiguration (including camera fail-
ures) so as to operate uninterrupted.

This paper proposes a model-centric, online multi-view
visual MOT solution that only requires monocular detector
training, independent of the multi-camera configurations, via
the architecture of Fig. 1b. Hence, no retraining of the detec-
tors is needed when the multi-camera system is extended/
reconfigured. More importantly, our algorithm has a linear
complexity in the total number of detections, thereby scales
gracefully with the number of cameras. The algorithm intrin-
sically operates in the 3D world frame by exploiting multi-
camera geometry, allowing it to track people jumping and
falling, suitable for applications such as sports analytics, age
care, school environment monitoring, etc. We validate the
proposed method on the latest WILDTRACKS dataset on
ground plane and show comparable results with Deep-
Occlusion+KSP+ptrack [17]. To evaluate tracking perfor-
mance in the 3Dworld frame, we develop a new dataset with
varying degrees of difficulties on scenarios with very closely
spaced people, with addition/deletion of cameras during
operation, andwith people jumping and falling.

The key innovation is a high fidelity yet tractable 3D
occlusion model, amenable to Bayesian multi-sensor multi-
object filtering [20], which seamlessly integrates, into a sin-
gle Bayesian recursion, the sub-tasks of track management,
state estimation, clutter rejection, and occlusion/misdetec-
tion handling. In the Bayesian paradigm, the multi-object
filtering density captures all information on the set of trajec-
tories in 3D, encapsulated in the observations, as well as
dynamic and observation models. The novel occlusion
model, incorporated in the multi-object measurement likeli-
hood function, enables the MOT Bayesian filter to correctly
maintain occluded tracks that would have otherwise been
incorrectly terminated. The schematic in Fig. 2 shows the
integration of the novel occlusion model into a near-optimal

multi-sensor multi-object Bayes filter known as the Multi-
Sensor Generalized Labeled Multi-Bernoulli (MS-GLMB)
filter [20]. This configuration enables the proposed algo-
rithm, herein referred to as Multi-View GLMB with OCclu-
sion modeling (MV-GLMB-OC), to address occlusions, and
inherits the numerical efficiency of the MS-GLMB filter. In
short, our main technical contributions are:

� A tractable and realistic detection model that accom-
modates 3D occlusion by taking into account the
Lines of Sights (LoSs) of all objects in the scene with
respect to the cameras. In contrast, conventional
detection models either neglect the LoSs of the
objects or are computationally intractable, leading to
poor tracking performance in the presence of occlu-
sions. Our new detection model can be regarded as a
generalization of tractable conventional detection
models;

� The first Bayesian multi-view MOT filter for such
detection model, which resolves occlusion online
and is scalable with the number of sensors. Experi-
ments show better performance than the latest
multi-camera tracking algorithm;

� A new dataset with full 3D annotations (not restricted
to the ground plane), in terms of position and extent in
all 3 x, y, z-coordinates, including sequences that
involve changes in the z-coordinate due to people
jumping and falling. Instead of reporting performance
for the entire scenario duration (as done traditionally),
we also introduce live or online tracking performance
evaluation over time, using the OSPA(2)metric [21], to
characterize the behavior of the algorithm and demon-
strate uninterrupted operation when the multi-camera
system is extended/reconfigured.

The rest of the paper is organized as follows. Section 2
presents the related work. Section 3 formulates the multi-
view MOT problem, including the proposed occlusion/
detection model, and the new tractable filter with occlusion
handling capability via optimal Bayesian estimation. Section 4
presents the implementation of the algorithm. Section 5
shows experimental results and discussions. Finally, some
conclusions are drawn in Section 6.

Fig. 1. Multi-view architectures: (a) Multi-view detection + single-sensor
multi-object tracking [17]; (b) Monocular detection + multi-sensor multi-
object tracking.

Fig. 2. MV-GLMB-OC filter Processing Chain. Monocular detections
from multiple cameras are fed into the filter, which outputs the filtering
density. This output is fed into: the estimator to generate track estimates;
and back into the filter to process detections at the next time. The Occlu-
sion Model (red) is an add-on that takes the filter output and compute
the detection probabilities for the filter on-the-fly.
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2 RELATED WORK

ADeep Convolutional Neural Network trained on large-scale
high-resolution image dataset, with efficient implementations
such as Fast/Faster R-CNN [22], [23], has been shown to
outperform all previous object detectors based on hand-
engineered features, e.g., the Aggregated Channel Features
(ACF) object detector [24]. Faster R-CNN introduces the con-
cept of Region Proposal Network (RPN) and exploits feature
sharing together with efficient multi-scale solution to improve
test-time speed and detection accuracy, achieving real-time
detection at 5 frames-per-second (fps) [23]. Recently, the You
Only Look Once (YOLO) real-time object detector, which
attains 40 fps at mAP of 76.8 percent (resolution of 544x544)
on PASCAL VOC 2007, has gained immense popularity [25].
In contrast to the aforementioned techniques that rely on a
sliding classifier for every image, YOLO’s impressive speed is
achieved by only scanning the image once. Additionally, spa-
tial constraints, introduced to eliminate unlikely bounding
boxes, allow trade-offs between speed and accuracy via a suit-
able score threshold [26]. The YOLO detector can also be exte-
nded to 3D [27]. The main drawback is the inability to detect
small objects due to the imposed spatial constraints [26].

Progress in object detections facilitated the development
of many tracking-by-detection approaches that typically join
the detections together to form consistent trajectories [8],
[28], [29]. Tracking-by-detection can be designed for batch or
online operations. Online algorithms tend to be faster and
better suited for time-critical applications, but may be prone
to irrevocable errors if objects are undetected in several
frames or if detections at different times are incorrectly
joined [2]. Such errors can be reduced by global trajectory
optimization over batches of frames [2], [3], [5], [6], [7]. How-
ever, track loss and fragmentation can still be caused by
occlusion, which is an active area of research in itself [28]. In
single-view/monocular settings, a popular approach to
occlusion handling is to exploit a priori knowledge of the
scene [2], [6], [7]. Deep neural network techniques that lever-
age spatio-temporal information in the images have shown
to performwell in autonomous driving [30], [31].

In a multi-view setting, complementary information
from the data can be exploited to resolve occlusions natu-
rally, since an object occluded in one view may not be
occluded in another view [14]. The hierarchical composition
approach in [3] uses monocular information from multiple
views to construct estimates in the ground plane. However,
this approach is susceptible to reprojection errors and
ignores occlusions [18]. In [32], the author formulates an
occlusion model based on 2D silhouette-based visual angles
from multiple views. Subsequently, a simple approach is to
pre-process images from individual views (e.g., via back-
ground subtraction) from which occupancy (on the ground
plane) can be estimated using Probability of Occupancy
Map (POM) [15]. A more sophisticated approach was pro-
posed in [12], which combines multi-view Bayesian network
modeling of occlusion relationship and homography corre-
spondence, across all views, with height-adaptive projection
(HAP) to obtain final ground plane detections [12]. Stereo-
based MOT approaches have also demonstrated improved
3D object estimation and tracking [33], [34], [35].

So far, the best multi-view tracking solution is based on a
multi-camera detection architecture that uses a CNN to

train multi-view detectors from monocular and multi-view
data [16], together with batch processing to compute global
trajectories on the ground plane [17]. Combined with Con-
ditional Random Field modeling and Mean Field variational
inference, this approach achieves remarkable performance
in crowded scenarios [18]. This approach is more data-
centric than model-centric as the multi-camera detection
relies mostly on training from data. Hence, large training
sets are required, and the learning algorithm tends to be
computationally expensive in exploring tight convergence
levels, especially for high dimensional scenarios (e.g., large
number of cameras) [19]. More examples of deeply learned
multi-view approaches are found in [36], [37]. To the best of
our knowledge, no online MOT algorithm has produced
comparable tracking performance with these data-centric
batch solutions.

In practice, it is desirable to have online algorithms
whose complexity scale linearly with the number of cam-
eras, and do not require multi-view training so that recon-
figuration (including addition and deletion) of cameras can
be performed without interruption to the operation. More-
over, in a multi-view context, it is more prudent to have tra-
jectories in the 3D world frame for applications such as
sports analytics, age care, school environment monitoring,
etc. While there are solutions to online 3D multi-view MOT
with monocular data such as [38], [39], they do not scale
gracefully with the number of cameras. Similar to the men-
tioned batch-processing methods, these solutions are more
data-centric as they rely, respectively, on deep training for
object depth information, and motion learning.

At the other end of the spectrum are the model-centric
approaches that rely largely on physical models of the
dynamics of the objects, the geometry and characteristics of
the sensors/cameras. Such model-based solutions to 3D
online MOT with monocular data, using 2D object detec-
tions, 3D object proposals, and 3D point cloud techniques
were developed, respectively, in [33], [40], [41]. From a
state-space modeling perspective, a natural choice for online
MOT is the multi-object Bayes filter [42]. Since the inception
of the Random Finite Sets (RFS) framework for multi-object
state-space models, a number of multi-objects Bayesian fil-
ters have been developed [43], [44] and applied to visual
MOT problems [4], [10], [45]. The latest is the Generalized
labeled Multi-Bernoulli (GLMB) filter, an analytic solution
to the multi-object Bayes filter that jointly estimates the
number of objects and their trajectories online [46]. The
salient feature of this approach is that it seamlessly integra-
tes track management, state estimation, clutter rejection,
occlusion/misdetection handling and multiple sensor data
into a single recursion [4]. In this article, we use this frame-
work to develop an online 3D multi-view MOT solution
that only requires one-off monocular detector training (or
off-the-shelf monocular detectors), yet is capable of produc-
ing comparable results with the aforementioned data-
centric batch-processing approaches.

In addition to algorithms, datasets for performance eval-
uation are an important aspect of 3D multi-view MOT
research. Existing multi-view datasets include DukeMTMC
[47], PETS 2009 S2.L1 [48], EPFL - Laboratory, Terrace and
Passageway [15], SALSA [49], Campus [3] and EPFL-RLC
[16]. However, in [17] the authors discussed a number of
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their shortcomings and introduced a seven-camera high-
definition (HD) unscripted pedestrian dataset known as
WILDTRACKS to provide a high quality, highly crowded
and cluttered evaluation scenario. It comes with accurate
joint (extrinsic and intrinsic) calibration, and 7 series of 400
annotated frames for detection at a rate of 2 frames per sec-
ond. The annotations of the tracks are given both as loca-
tions on the ground plane and 2D bounding boxes projected
onto each view.

While WILDTRACKS is more extensive than earlier data-
sets, it is still not sufficient for comprehensive 3D MOT per-
formance evaluation. Specifically, for actual 3D MOT
applications where objects may also move vertically (e.g.,
sport analytics, age care, etc.), ground plane annotations are
simply not adequate for evaluating tracking performance in
full 3D, i.e., changes in all 3 x, y, z-coordinates. To enrich
the datasets and to enable performance evaluation in full
3D, we propose the Curtin Multi-Camera (CMC) dataset
that comprises four calibrated cameras, on scenarios of
varying difficulties in crowd density and occlusion, as well
as scenarios with people jumping and falling, all with 3D
centroid-with-extent annotations, along with camera loca-
tions and parameters. Note that in addition to extrinsic and
intrinsic parameters, we also provide the absolute camera
locations needed for testing and evaluation of model-centric
solutions that exploit multi-camera geometry.

3 BAYESIAN FORMULATION

This section formulates the multi-view MOT problem
(Sections 3.1, 3.2, 3.3, and 3.4), including the proposed occlu-
sion/detection model (Section 3.5), and the new tractable fil-
ter with occlusion handling capability (Section 3.6). The
notations used in this paper are tabulated in Table 1.

3.1 Bayes Filter

We first recall the classical Bayesian filter where the state x
of the object, in some finite dimensional state space X, is
modeled as a random vector. The dynamic of the state is
described by a Markov chain with transition density
fþðxþjxÞ, i.e. the probability density of a transition to the
state xþ at the next time given the current state x. Note that
for simplicity we omit the subscript for current time and
use the subscript ‘+’ denotes the next time step. Addition-
ally, the current state x generates an observation z described

by the likelihood function gðzjxÞ, i.e., the probability density
of receiving the observation z given x. All information on
the current the state is encapsulated in the filtering density1

p, which can be propagated to the next time as pþ, via the
celebrated Bayes recursion [50]

pþ xþð Þ / g zþjxþð Þ
Z

fþ xþjxð Þp xð Þdx: (1)

The multi-view MOT Bayes filter used in this work is
conceptually identical to the classical Bayes filter above by
replacing: x and xþ with the sets XX and XXþ; p and pþ with
the multi-object filtering densities pp and ppþ; fþ and g with
the multi-object transition density ffþ and multi-object
observation likelihood gg; zþ with the observation set Zþ;
and the integral with the set integral [43], i.e.,

ppþ XXþð Þ / gg ZþjXXXXþð Þ
Z

ffþ XXþjXXð Þpp XXð ÞdXX: (2)

The sets XX (and XXþ) containing the object states at the cur-
rent (and next) time, is called the current (and next) multi-
object state. Each element of the multi-object state XX is an
ordered pair xx ¼ ðx; ‘Þ, where x 2 X is a state vector, and
‘ , ðt;aÞ is a unique label consisting of the object’s time of
birth t, and an index a to distinguish those born at the same
time [46]. The cardinality (number of elements) of XX and
XXþ may differ due to the appearance and disappearance of
objects from one frame to the next.

Under the Bayesian paradigm, the multi-object state is
modeled as a random finite set, i.e., a finite-set-valued ran-
dom variable, characterized by Mahler’s multi-object den-
sity [43], [44] (equivalent to a probability density [51]). The
multi-object transition density ffþ captures the motions as
well as births and deaths of objects. The multi-object obser-
vation likelihood gg captures the detections, false alarms,
occlusions, and misdetections.

3.2 Motion and Birth/Death Models

An object at time k, represented by a state xx ¼ ðx; ‘Þ, either
survives with probability PSðxxÞ and evolves to state xxþ ¼
ðxþ; ‘þÞ at the next time with transition density

ffS;þðxxþjxxÞ ¼ fS;þðxþjx; ‘Þd‘½‘þ�; (3)

or dies with probability 1� PSðxxÞ [46]. At this next time, an
object with label ‘ is born with probability PB;þð‘Þ, and with
feature-vector x distributed according to a probability den-
sity fB;þð�; ‘Þ. Note that the label of an object remains the
same over time, and hence the trajectory of an object is a
sequence of consecutive states with a common label [46].

Let Bk denote the finite set of all possible labels for objects
born at time k, then the label space for all objects up to time k
is the disjoint union Lk ¼ ]k

t¼0Bt. For simplicity we omit the
time subscript k, and letL xxð Þ denote the label of an x 2x 2X� L.
For any finite X �X �X� L, we define L XXð Þ , L xxð Þ : xx 2 XXf g,
and the distinct label indicator D XXð Þ , d XXj j L XXð Þj j½ �. At any time,
the set XX of (states of) objects in the scene must have distinct
labels, i.e., D XXð Þ ¼ 1. Conditional on the current set of objects,

TABLE 1
Basic Notation

Symbol Description

aT Transpose of vector/matrix a
� Kronecker product (for matrices)
In n-dimensional identity matrix
0n�m n by mzero matrix
diagð�Þ Converts a vector to a diagonal matrix
Xm:n Xm;Xmþ1; . . .; Xn

hf; gi R
fðxÞgðxÞdx

hX
Q

x2X hðxÞwhere h; ¼ 1

dY ½X� Kronecker delta function: 1 ifX ¼ Y , 0 otherwise
1Y ðxÞ Indicator function: 1 if x 2 Y , 0 otherwise
Nð�;m; P Þ Gaussian pdfwith mean m and covariance P

1. The filtering densities are conditioned on the observations, which
have been omitted for notational compactness.
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it is standard practice to assume that objects are born or dis-
placed at the next time, independently of one another. The
expression for the multi-object transition density ffþ is not
needed in thiswork, interested readers are referred to [46].

3.3 Multi-Sensor Observation Model

Suppose that at time k, there are C cameras (sensors), and a
set XX of current objects. Each xx 2 XX is either: detected by
camera c 2 f1:Cg, with probability P

cð Þ
D xx;XX � fxxgð Þ and

generates an observation z cð Þ in the measurement space ZðcÞ

with likelihood g cð Þðz cð ÞjxxÞ; or missed with probability 1�
P

cð Þ
D xx;XX � fxxgð Þ. Note that to account for occlusions (and

uncertainty in the detection process), the probability of
detecting an object xx also depends on the states of other cur-
rent objects XX � fxxg. However, most MOT algorithms
neglect this dependence for computational tractability.

The detection process also generates false positives at
camera c, usually characterized by an intensity function k cð Þ

on ZðcÞ. The standard model is a Poisson distribution, with
mean hk cð Þ; 1i, for the number of false positives, and the false
positives themselves are i.i.d. according to the probability
density k cð Þ=hk cð Þ; 1i [44], [52], [53]. Moreover, conditional on
the set XX of objects, detections are assumed to be indepen-
dent from false positives, and that the set ZðcÞ of detections
and false positives at sensor c, are independent from those
at other sensors.

An association hypothesis (at time k) associating labels
with detections from camera c is a mapping g cð Þ : L!
f�1:jZ cð Þjg, such that no two distinct arguments are mapped to the
same positive value [46]. This property ensures each detection
comes from at most one object. Given an association hypothe-
sis g cð Þ: g cð Þð‘Þ ¼ �1 means object ‘ does not exist; g cð Þð‘Þ ¼ 0
means object ‘ is not detected by camera c; g cð Þð‘Þ > 0means
object ‘ generates detection zgðcÞ ‘ð Þ at camera c; and the set
Lðg cð ÞÞ , f‘ 2 L : g cð Þð‘Þ 	 0g are the live labels of g cð Þ. Under
standard assumptions, the (multi-object) likelihood for cam-
era c is given by the following sum over the space G cð Þ of asso-
ciation hypotheseswith domainL and range f�1:jZ cð Þjg [46]:

ggðcÞðZ cð ÞjXXÞ /
X

g cð Þ2G cð Þ
dLðg cð ÞÞ½L XXð Þ� cðc;g cð ÞÞ

XX�f�g �ð Þ
h iXX

; (4)

where Z cð Þ ¼ fzðcÞ
1:jZ cð Þjg, and

c
ðc;g cð ÞÞ
XX�fxxgxxð Þ¼

1� P
cð Þ

D xx;XX � fxxgð Þ; g cð ÞðLðxxÞÞ¼0
P

cð Þ
D

xx;XX�fxxgð Þg cð ÞðzðcÞ
j

jxxÞ
k cð ÞðzðcÞ

j
Þ

; g cð ÞðLðxxÞÞ¼j> 0

8><>: ; (5)

Note that c
ðc;g cð ÞÞ
XX�fxxg xxð Þ also depends on Z cð Þ, but we omitted it

for clarity. Interested readers are referred to the texts [43],
[44] for the derivation/discussion.

A multi-sensor (association) hypothesis is an array
g , ðg 1ð Þ; . . . ; g Cð ÞÞ of association hypotheses with the same
set of live labels, denoted as LðgÞ. The likelihood that XX
generates the multi-sensor observation Z , ðZ 1:Cð ÞÞ is the
product

QC
c¼1 gg

cð ÞðZ cð ÞjXXÞ, which can be rewritten as [20]

gg ZjXXð Þ /
X
g2G

dLðgÞ½L XXð Þ� cðgÞ
XX�f�g �ð Þ

h iXX
; (6)

where G is the set of all multi-sensor hypotheses,

dLðgÞ½J � ,
YC
c¼1

dLðg cð ÞÞ½J �; (7)

c
ðgÞ
XX�fxxg xxð Þ ,

YC
c¼1

c
ðc;g cð ÞÞ
XX�fxxg xxð Þ: (8)

Remark: The sets of objects, observations, and possi-
bly the number of sensors and their parameters, may
vary with time. However, for clarity we suppressed the
time index.

3.4 Multi-Sensor GLMB Filter

Most of the literature on tracking assumes the probability of
detection P

cð Þ
D xx;XX � fxxgð Þ ¼ P

cð Þ
D xxð Þ, i.e., independent of

XX � fxxg. In this case, the Bayes recursion (2) admits an
analytical solution based on Generalized Labeled Multi-
Bernoulli models.

A GLMB is a multi-object density of the form [46]

pp XXð Þ ¼ D XXð Þ
X
I;�

w I;�ð ÞdI ½L XXð Þ� pð�Þ
h iXX

; (9)

where: I 2 FðLÞ the space of all finite subsets of L; � 2 X the
space of all (multi-sensor) association hypotheses histories
up to the current time, i.e., � , g1:k; each w I;�ð Þ is a non-
negative weight such that

P
I;� w

I;�ð Þ ¼ 1; and each p �ð Þ �; ‘ð Þ is
a probability density on X. For convenience, we represent a
GLMB by its parameter-set

pp , w I;�ð Þ; p �ð Þ
� �

: I; �ð Þ 2 FðLÞ � X
n o

: (10)

Each GLMB component I; �ð Þ can be interpreted as a
hypothesis with probability w I;�ð Þ, and each individual
object ‘ 2 I of this hypothesis has probability density
p �ð Þ �; ‘ð Þ.

A simple multi-object state estimate can be obtained from
a GLMB by first determining: the most probable cardinality
n
 from the cardinality distribution [46]

ProbðjXXj ¼ nÞ ¼
X
I;�

dn½jIj�wðI;�Þ; (11)

and then the hypothesis ðI
; �
Þ with highest weight
such that jI
j ¼ n
. The current state estimate for each
object ‘ 2 I
 can be computed from pð�


Þð�; ‘Þ, e.g., the
mode or mean. Alternatively, the entire trajectory of
object ‘ 2 I
 can be estimated using the forward-back-
ward algorithm, starting from its current filtering density
pð�


Þð�; ‘Þ and propagating backward to its time of birth
[20], [54].

Under the Bayes recursion (2), and the standard multi-
object model (i.e., with no occlusions, P

cð Þ
D xx;XX � fxxgð Þ ¼

P
cð Þ

D xxð Þ), the multi-object filtering density at any time is a
GLMB [46]. Moreover, if (10) is the current GLMB filtering
density, then the next GLMB filtering density

ppþ ¼ w
Iþ;�þð Þ
þ ; p

�þð Þ
þ

� �
: Iþ; �þð Þ 2 FðLþÞ � Xþ

n o
; (12)
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can be computed via theMS-GLMB recursion [20]

ppþ ¼ V pp;PD;þ
� �

; (13)

where PD;þ , ðP ð1Þ
D;þ; . . . ; P

ðCÞ
D;þÞ. The actual mathematical

expressions for the recursion operator V : pp 7! ppþare not
critical for our arguments, and hence omitted from this sec-
tion. Nonetheless, for completeness the definition ofV is pro-
vided in Appendix 7.1, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPAMI.2020.3034435. Note that V also
depends on the measurement Zþ, and model parameters for
birth ðPB;þ; fB;þÞ, death/survival PS , motion ffS;þ, false
alarms kþ , ðk 1ð Þ

þ ; . . . ; k
Cð Þ
þ Þ; and detection gþ , ðg 1ð Þ

þ ; . . . ; g
Cð Þ
þ Þ

(described in Section 3.3). However, for our purpose it suffi-

ces to show the dependence on detection probabilities.
While the MS-GLMB filter can applied directly to multi-

view MOT, a detection probability (of an object xx) that does
not depend on other objects, i.e., XX � fxxg, is unable to cap-
ture the effect of occlusions. On the other hand, accounting
for occlusions with P

cð Þ
D xx;XX � fxxgð Þ that actually depends

onXX � fxxg, results in filtering densities that are not GLMBs.
One example is the merged-measurement model [55], which
involves summing over all partitions of the set XX, making it
intractable [55]. Although the resulting filtering density can
be approximated by a GLMB, this solution is still computa-
tionally demanding and not suitable for large number of
objects [55]. In what follows, we propose a new detection
model that addresses occlusions and permits efficient
multi-view MOT implementations.

3.5 Detection Model With Occlusion

For tracking in 3D, we consider the state xx ¼ ðx; ‘Þ, where

x ¼ ðxðpÞ; _xðpÞ; xðsÞÞ; (14)

xðpÞ is the object’s position (centroid) in 3D Cartesian coordi-
nates; _xðpÞ is its velocity; and xðsÞ is its shape parameter. The
region in R3 occupied by an object with labeled state xx is
denoted by RðxxÞ.

Consider camera c and the setXX of current objects. In this
work, an object ðx; ‘Þ2XX is regarded as occluded from cam-
era c when its position xðpÞ is not in the line of sight (LoS) of
the camera, i.e., xðpÞ is in the shadow regions of the other
objects in XX. Assuming straight LoSs, the shadow region of
an object with labeled state xx0, relative to camera c (see
Fig. 3), is given by

SðcÞðxx0Þ ¼ y 2 R3 : ðuðcÞ; yÞ \Rðxx0Þ 6¼ ;
n o

; (15)

where ðuðcÞ; yÞ , f�yþ ð1� �ÞuðcÞ : � 2 ½0; 1�g is the line seg-
ment joining the position uðcÞ of camera c and y. Note that
for an ellipsoidal region Rðx0x0Þ, the indicator function
1SðcÞðxx0Þð�Þ of its shadow region can be computed in closed
form (see Section 4.1).

To incorporate the effect of occlusions into the detection
model, the probability that xx 2 XX be detected by camera c
should be close to zero when it is occluded from camera c.
This can be accomplished by extending the standard detec-
tion probability so that: when xx is in the LoS of camera c,
its detection probability is P

ðcÞ
D ðxxÞ; and when occluded

by the other objects its detection probability scales down
to bP

ðcÞ
D ðxxÞ, where b is a small positive number. More

explicitly,

P
ðcÞ
D ðxx;XX� fxxgÞ
¼ P

ðcÞ
D ðxxÞ

�
Mðxx;XX� fxxgÞ þ b

�
1�Mðxx;XX� fxxgÞ��; (16)

where

Mðxx;XX� fxxgÞ ¼
Y

xx02X2X�fxxg
1� 1SðcÞðxx0ÞðxxÞ
� �

: (17)

Conditional on detection, xx is observed at camera c as a
bounding box zðcÞ , ðzðcÞp ; zðcÞe Þ, where zðcÞp is the center, and
zðcÞe is the extent, parameterized by the logarithms of the
width (x-axis) and height (y-axis), in image coordinates. The
observed zðcÞ is a noisy version of the box FðcÞðxxÞ bounding
the image of RðxxÞ in the camera’s image plane, under the
projection of the camera matrix P

ðcÞ
3�4. This matrix projects

homogeneous points in the world coordinate frame to
homogeneous points in the image plane of camera c, and
can be obtained by standard calibration techniques (see [56]
for details). Note that for an ellipsoidal region RðxxÞ, the
axis-aligned FðcÞðxxÞ on the image plane can be computed
analytically (see Section 4.1). This observation process can
be modeled by the likelihood

gðcÞðzðcÞjxxÞ ¼

N zðcÞ;FðcÞðxxÞ þ 02�1

�yðcÞe =2

� �
; diag

yðcÞp

yðcÞe

" # ! !
;

(18)

where yðcÞp and yðcÞe are respectively the vector of noise var-
iances for the center and the extent (in logarithm) of the
box. This Gaussian model of the logarithms of the width
and height is equivalent to modeling the actual width and
height as log-normals, which ensures that they are non-
negative. Note that these log-normals have mean 1, and var-

iances e
y
ðcÞ
e;1 � 1 and e

y
ðcÞ
e;2 � 1, where y

ðcÞ
e;1 and y

ðcÞ
e;2 are the two

components of yðcÞe . This means the observed width and
height are randomly scaled versions of their nominal val-
ues, with an expected scaling factor of 1.

Fig. 3. The shadow region (in yellow) of object with labeled state xx0, rela-
tive to camera c.
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3.6 Multi-View GLMB Filtering With Occlusions

This subsection presents a tractable GLMB approximation
to the multi-view Bayes filter to address occlusions. The
proposed filter (with the new detection model to account
for occlusion) is referred to as Multi-View GLMB with
occlusion modeling.

Given the current GLMB filtering density (10), the pre-
dicted density

R
ffþ XXþjXXð Þpp XXð ÞdXX in the Bayes recursion (2)

is also a GLMB [46], which we denote by

bppþ XXþð Þ ¼ D XXþð Þ
X
Iþ;�

w
Iþ;�ð Þ
þ dIþ½L XXþð Þ� pð�Þþ

h iXXþ
; (19)

where Iþ 2 FðLþÞ. Multiplying (19) by the likelihood (8)
yields the next (unnormalized) multi-object density

ppþðXXþÞ / DðXXþÞ
X

Iþ;�;gþ
dLðgþÞ½L XXþð Þ�w Iþ;�ð Þ

þ

� dIþ½L XXþð Þ� pð�;gþÞ
XXþ�f�gð�Þ

h iXXþ
;

(20)

where

p
ð�;gþÞ
XXþ�fxxþgðxxþÞ ¼ p

ð�Þ
þ xxþð ÞcðgþÞ

XXþ�fxxþg xxþð Þ: (21)

As previously alluded to, the multi-object density (20) is not

a GLMB because p
ð�;gþÞ
XXþ�fxxþg depends on XXþ � fxxþg. Nonethe-

less, a good GLMB approximation of (20) can be obtained

by approximating p
ð�;gþÞ
XXþ�fxxþg with a density that is indepen-

dent ofXXþ � fxxþg.
Note that c

ðgþÞ
XXþ�fxxþg is the only factor of p

ð�;gþÞ
XXþ�fxxþg, which

depends on XXþ � fxxþg (see (21)). Further inspection of (5)

and (8) reveals that the detection probability functions

P
ðcÞ
D;þð�;XXþ � fxxþgÞ, c2f1:Cg are the only constituent terms

that depend on XXþ � fxxþg. Moreover, it follows from (16)

that P
ðcÞ
D;þðxxþ;XXþ � fxxþgÞ only takes on two values, depend-

ing on whether xxþ falls in the shadow region of XXþ � fxxþg
w.r.t. camera c. Assuming the positions of the elements of

XXþ � fxxþg are concentrated around their predicted values

according to the prediction densities p
ð�Þ
þ �; ‘ð Þ; ‘ 2

LðXXþ � fxxþgÞ, we can approximate P
ðcÞ
D;þð�;XXþ � fxxþgÞ by

replacing the set XXþ� fxxþg with its predicted value. Noting

that the term dIþ½L XXþð Þ� in (20) implies LðXXþÞ ¼ Iþ, the pre-
diction ofXXþ � fxxþg is

XX
ð�;IþÞ
þ ¼ fðxð�;‘Þ

þ ; ‘Þ : ‘ 2 Iþ � LðxxþÞg; (22)

where x
ð�;‘Þ
þ denotes an estimate (e.g., mean, mode) from the

density p
ð�Þ
þ �; ‘ð Þ, which is either the birth density fB;þð�; ‘Þ if

‘ 2 Bþ or
R
fS;þð�jx; ‘Þpð�Þ x; ‘ð Þdx if ‘ =2 Bþ [46].

The above approximation translates to

p
ð�;gþÞ
XXþ�fxxþg � p

ð�;gþÞ
XX

ð�;IþÞ
þ

; (23)

which is independent of XXþ� fxxþg, thereby turning (20)
into a GLMB. Moreover, the computation of this GLMB
approximation to (20) only differs from the MS-GLMB
recursion (13) in the detection probabilities

P
ð�;IþÞ
D;þ ð‘Þ, P

ð1Þ
D;þððx̂þ;‘Þ;XXð�;IþÞ

þ Þ;. . . ;P ðCÞ
D;þððx̂þ;‘Þ;XXð�;IþÞ

þ Þ
� �

; (24)

where ‘ ¼ LðxxþÞ, and x̂þ denotes an estimate (e.g., mean,
mode) from the density p

ð�Þ
þ �; ‘ð Þ. Specifically, the GLMB

approximation of the multi-object filtering density can be
propagated by the MS-GLMB recursion

ppþ¼V pp;fP ð�;IþÞ
D;þ ð‘Þ :‘2 Iþ; �; Iþð Þ2X�FðLþÞg

� �
: (25)

The integration of the proposed occlusion model (via the
detection probabilities) into the MS-GLMB filter is shown in
Fig. 2. The implementation of this so-called MV-GLMB-OC
filter is discussed in the next section.

4 IMPLEMENTATION

This section describe the implementation of the proposed
filter for ellipsoidal objects. Section 4.1 provides mathemati-
cal representations for the objects and the multi-object
model parameters. Propagation of the MV-GLMB-OC filter-
ing density is then described in Section 4.2.

4.1 Object Representation and Model Parameters

Each object is represented by an axis-aligned ellipsoid. For
an object with labeled state xx ¼ ðx; ‘Þ, the position xðpÞ is the
centroid, and the shape parameter xðsÞ is a vector containing
the logarithms of the half-lengths of the ellipsoid’s principal
axes. Further, the time-evolution of the state vector x is
modeled by a linear Gaussian transition density

fS;þðxþjx; ‘Þ ¼ N xþ; Fxþ 06�1

�yðsÞ=2

� �
;Q

� 	
; (26)

where

T is the sampling period, yðpÞ and yðsÞ are, respectively, 3D
vectors of noise variances for the components of the cen-
troid and shape parameter (in logarithm) of the ellipsoid.
This transition density describes a nearly constant velocity
model for the centroid and a Gaussian random-walk for the
shape parameter. Gaussianity of the logarithms of the half-
lengths is equivalent to modeling the half-lengths as log-
normals, which ensure that they are non-negative. Note that
these log-normals have mean 1, and variances ey

ðsÞ
i � 1, i ¼

1; 2; 3, where y
ðsÞ
i is the ith components of yðsÞ. Hence, the

observed half-lengths are randomly scaled versions of their
nominal values, with an expected scaling factor of 1.

Empirically, objects that are in the scene for a long time,
are more likely to remain in the scene, unless they are close
to the borders (exit regions). This can be modeled via the
following object survival probability [4]:
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PSðx; ‘Þ ¼ bðxÞ
1þ expð�tðk� ‘½1; 0�T ÞÞ ; (29)

where bðxÞ is the the scene mask (chosen to be close to one
in the middle of the scene, and close to zero in the desig-
nated exit regions and beyond) as depicted in Fig. 4a, and t

is the control parameter of the sigmoid function that is
dependent on the duration (age) of the track k� ‘½1; 0�T as
depicted in Fig. 4b.

The detection probability (16) and (17) can be computed
in closed form when the objects extents are ellipsoids. As
alluded to in Section 3.5, the shadow region indicator func-
tion 1SðcÞðyyÞð�Þ used for checking whether an object is in the
shadow region of the object yy, can be determined analyti-
cally. Suppose that RðyyÞ in (15) is a quadric, then it inter-

sects the line ðuðcÞ; xðpÞÞ (between uðcÞ and xðpÞ) if the roots of
a certain quadratic equation are real [57]. Consequently, for
an axis-aligned ellipsoidal object representation, the
shadow region indicator function is given by

1SðcÞðyyÞðxxÞ ¼ 1; BðcÞ
xx;yy

� �
2 � 4AðcÞ

xx;yyCðcÞyy 	 0

0; otherwise

(
; (30)

where

AðcÞ
xx;yy ¼ ðxðpÞ � uðcÞÞT diagðyðsÞÞ

� ��2
ðxðpÞ � uðcÞÞ; (31)

BðcÞ
xx;yy ¼ ðxðpÞ � uðcÞÞT 2 diagðyðsÞÞ

� ��2
uðcÞ þ dyy

� �
; (32)

CðcÞyy ¼ ðuðcÞÞT diagðyðsÞÞ
� ��2

uðcÞ þ dyy

� �
þ Eyy; (33)

dyy ¼ �2
yðpÞ

ðyðsÞ � yðsÞÞ ; Eyy ¼ yðpÞ=yðsÞ


 

2

2
�1; (34)

and uðcÞ is the position of camera c, with multiplication/
division of two vectors of the same dimension to be under-
stood as point-wise multiplication/division.

In addition, using quadric projection [58, pp. 201], the
relationship between the estimated bounding box FðcÞðxxÞ
and measured bounding box zðcÞ captured in the measure-
ment likelihood (18), has the following closed form

FðcÞðxxÞ , ZðPðcÞðxxÞÞ; (35)

where

n ¼ ðrTQD�1QT r� qÞ0:5; (38)

Q is a matrix containing the eigenvectors of A, and D is a
diagonal matrix of the eigenvalues of A. Given the camera
matrices P

ð1Þ
3�4; . . . ; P

ðCÞ
3�4, PðcÞð�Þ is a matrix-to-matrix projec-

tion that transforms the quadric into a conic on each image
of camera c [58, pp. 201]. Zð�Þ is a matrix-to-vector transfor-
mation that transforms the conic into a 4D bounding box (in
the same format as zðcÞ). The illustration of the overall trans-
formation (35) is depicted in Fig. 5.

The Poisson false alarms intensity for camera c is
kðcÞ , �cUð�Þ, where �c is the false-positive (clutter) rate, and
Uð�Þ is a uniform distribution on the measurement space
ZðcÞ. In many visual tracking cases, this value can either be
estimated offline or manually tuned. The false alarm inten-
sity can be estimated by the Cardinalized Probability
Hypothesis Density (CPHD) clutter estimator [59]. In this
work, we bootstrap the CPHD clutter intensity estimator
output to the tracker [60].

4.2 MV-GLMB-OC Filter Implementation

The number of components of the GLMB filtering density
grows super-exponentially over time. To maintain tractabil-
ity in GLMB filter implementations, truncating insignificant
components has been proven to minimize the L1 approxima-
tion error [20]. This truncation strategy can be formulated as
an NP-hard multi-dimensional assignment problem [20].
Nonetheless, it can be solved by exploiting certain structural
properties, and suitable adaptation of 2D assignment solu-
tions such asMurty’s or Auction [20].

The MV-GLMB-OC recursion described in Section 3.6,
can be directly implemented with separate prediction and
update, i.e. by computing a truncated version of the predic-
tion (19) and the corresponding detection probabilities
fP ð�;IþÞ

D;þ ð‘Þ :‘2 Iþ; �; Iþð Þ2X�FðLþÞg, then using this to
compute a truncated version of the update (25). This strat-
egy requires keeping a significant portion of the predicted
components that would end up as updated components
with negligible weights, thereby wasting computations in
solving a large number of 2D assignment problems. Thus,
this approach is inefficient and becomes infeasible for sys-
tems with many sensors [20].

In this work, we exploit an efficient GLMB truncation
strategy that has a linear complexity in the sum of the meas-
urements across all sensors [20]. This approach bypasses
the prediction truncation, and returns the significant com-
ponents of the next GLMB filtering density (25) by sampling
from a discrete probability distribution proportional to the
weights of the components [20]. This means GLMB compo-
nents with higher weights are more likely to be selected
than those with lower weights. For the MV-GLMB-OC

Fig. 4. Illustration of the survival probability model: (a) The scene mask
bðxÞ; (b) The control parameter t of the sigmoid function.
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recursion, this discrete probability distribution sð�;PD;þÞ of
the GLMB components, is determined by the detection
probabilities PD;þ, fP ð�;IþÞ

D;þ ð‘Þ :‘ 2 Iþ; �; Iþð Þ 2 X�FðLþÞg
(and other multi-object system parameters, which are sup-
pressed for clarity) [20]. However, since truncation of the
prediction (19) has been bypassed, the predicted compo-
nents fð�; IþÞ 2 X�FðLþÞg and their corresponding detec-
tion probabilities are not available. Nonetheless, importance
sampling can be used to generate weighted samples
of sð�;PD;þÞ by sampling from sð�; bPD;þÞ, wherebPD;þ , fP ð�;I]BþÞ

D;þ ð‘Þ :‘ 2 I ] Bþ; �; Ið Þ 2 X�FðLÞg, and then
re-weight the resulting samples accordingly [50]. Note that
the detection probabilities bPD;þ can be readily computed
from the components of the (truncated) current GLMB fil-
tering density fðw I;�ð Þ; p �ð ÞÞ :ðI; �Þ 2 FðLÞ�Xg. Moreover,

P
ð�;I]BþÞ
D;þ � P

ð�;IþÞ
D;þ , for any Iþ
I ] Bþ, it follows from [61]

that sð�; bPD;þÞ is more diffused than sð�;PD;þÞ, i.e., the sup-
port of sð�; bPD;þÞ contains the support of sð�;PD;þÞ.

The MS-GLMB and MV-GLMB-OC recursions are pre-
sented in Algorithms 1 and 2 respectively. Observe that the
main difference is the additional computation of the detec-
tion probabilities prior to and re-weighting after the Gibbs
sampling step in the MV-GLMB-OC filter.

In this work, the object’s birth density fB;þð�; ‘Þ, single-
object transition (26) and likelihood (18) are all Gaussians.
Standard Kalman prediction and Unscented Kalman update
are used to evaluate the single-object filtering density p

ð�þÞ
þ ,

which results in a Gaussian.

Algorithm 1.MS-GLMB Filter [20]

Global Input: PB;þð‘Þ; fB;þð�; ‘Þ
� �� �

‘2Bþ ; ffS;þ �j�ð Þ; PSð�Þ
Global Input: k; PD; g
Input: pp , w I;�ð Þ; p �ð Þ� �

: I; �ð Þ 2 FðLÞ � X
� �

Output: ppþ , w
Iþ;�þð Þ
þ ; p

�þð Þ
þ

� �
: Iþ; �þð Þ 2 FðLþÞ � Xþ

n o
for I; �ð Þ 2 FðLÞ � X
Construct stationary distribution from inputs
Run Gibbs sampler to obtain samplesgþ [20, Algorithm 3]
Use samples gþ to compute ppþ

end for
Extract labeled state estimates

Algorithm 2.MV-GLMB-OC Filter

Global Input: PB;þð‘Þ; fB;þð�; ‘Þ
� �� �

‘2Bþ ; ffS;þ �j�ð Þ; PSð�Þ
Global Input: k; PD; g
Input: pp , w I;�ð Þ; p �ð Þ� �

: I; �ð Þ 2 FðLÞ � X
� �

Output: ppþ , w
Iþ;�þð Þ
þ ; p

�þð Þ
þ

� �
: Iþ; �þð Þ 2 FðLþÞ � Xþ

n o
for I; �ð Þ 2 FðLÞ � X
Compute occlusion�based probability of detection

fP ð�;I]BþÞ
D;þ ð‘Þ : ‘ 2 I ] Bþg via (24)

Construct stationary distribution from inputs and

fP ð�;I]BþÞ
D;þ ð‘Þ : ‘ 2 I ] Bþg

Run Gibbs sampler to obtain samplesgþ [20, Algorithm 3]
Update occlusion�based probability of detection
fP ð�;LðgþÞÞ

D;þ ð‘Þ : ‘ 2 LðgþÞg, via (24)
Use samples gþ, fP ð�;LðgþÞÞ

D;þ ð‘Þ : ‘ 2 LðgþÞg to compute ppþ
end for
Extract labeled state estimates

5 EXPERIMENTS

This section demonstrates the three main advantages of the
proposed MV-GLMB-OC approach. The first is the capabil-
ity to produce 3D object trajectories using independent
monocular detections from multiple views, where each
object is represented as a 3D ellipsoid of unknown location
and extent (Section 5.2). The second is the amenability for
uninterrupted/seamless operation in the event that cameras
are added, removed or repositioned on the fly (Section 5.3).
The third is the flexibility of not confining objects to the
ground plane, which is demonstrated by tracking people
jumping and falling (Section 5.4). The effectiveness of
the proposed occlusion model is also studied, by comparing
the tracking performance of the MV-GLMB-OC against that
of the standard MS-GLMB filter.

We first focus our demonstrations on the latest WILD-
TRACKS dataset,2 which involves seven-cameras at
1920 � 1080 resolution with overlapping views. The WILD-
TRACKS dataset is also supplied with calibrated intrinsic
and extrinsic camera parameters, along with 3D ground
plane annotations although these are restricted to the
ground plane. WILDTRACKS was initially introduced to

Fig. 5. The projections PðcÞ of two quadrics (in cyan and pink) onto two image views ðc ¼ 1; 3Þ result in 2D conics. The transformation Z yields the cor-
responding estimated bounding boxes (in cyan and pink). The estimated bounding box and the measured bounding box (in red) from monocular
detector formulate the measurement likelihood (18).

2. https://www.epfl.ch/labs/cvlab/data/data-wildtrack/
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address various perceived shortcomings in older multi-
view datasets, the arguments for which were originally pre-
sented in [17] and are summarized as follows. The
DukeMTMC dataset [47] is essentially non-overlapping in
views and is now no longer available. The PETS 2009 S2.L1
dataset [48] has supposed inconsistencies when projecting
3D points across the views. The EPFL, SALSA and Campus
datasets [3], [15], [49] involve a relatively small number of
people, and are relatively sparse in terms of person density,
but do not provide 3D annotations. In addition, the EPFL-
RLC dataset [16] only provides annotations for a small sub-
set of the last 300 of 8,000 frames. For the same reasons that
the authors of WILDTRACKS were motivated to introduce
their new dataset, the older multi-view datasets superseded
by WILDTRACKS are not suitable for evaluating the MV-
GLMB-OC filter in the 3D world frame.

In the context of demonstrating the MV-GLMB-OC
approach however, the WILDTRACKS dataset is not suit-
able for evaluating tracking performance in full 3D, i.e.,
changes in all 3 x, y, z-coordinates. While WILDTRACKS
provides 3D annotations, these are restricted to the ground
plane. Moreover the annotations are for centroids only, and
do not capture the extent (in terms of length, width and
height) of objects in the world coordinates. In our perfor-
mance comparisons, the outputs of the proposed MV-
GLMB-OC filter on WILDTRACKS are limited to the esti-
mated centroids projected onto the ground plane . To dem-
onstrate the full capabilities of MV-GLMB-OC, it is critical
to have annotations of the 3D centroids and their 3D extent,
along with the ground truths for each of the camera loca-
tions. Consequently we introduce a new Curtin Multi-
Camera (CMC) dataset which meets these requirements.

The new CMC dataset is a four-camera 1920x1024 resolu-
tion dataset recorded at 4fps in a room with dimensions
7.67m x 3.41m x 2.7m. The CMC dataset has 5 different
sequences with varying levels of person density and occlu-
sion: CMC1 has a maximum of 3 people and virtually no
occlusion; CMC2 has a maximum of 10 people with some
occlusion; CMC3 has a maximum of 15 people with signifi-
cant occlusion; while CMC4 and CMC5 involve people
jumping and falling with a maximum of 3 and 7 people
respectively. CMC1 and CMC4 have low person density
and are intended for basic testing, while CMC2, CMC3 and
CMC5 have higher person density and significant visual
occlusions across multiple overlapping cameras, and are
intended to highlight performance differences. The conven-
tion for the world coordinate frame is illustrated in Fig. 6.
The origin is at the lower corner and the ground plane cor-
responds to the x-y plane i.e. z = 0. In every sequence, each
person enters the tracking area at ð2:03m; 0:71mÞ with an
average height of 1:7m. The dataset is also supplied with
camera locations and parameters, along with annotations
for 3D centroid and extent. The 2D monocular annotation
for bounding boxes is carried out with the MATLAB Image
Labeler Tool, and the world coordinates are obtained by
averaging the homographic projection of the feet coordi-
nates from each view. The actual height and width of each
person is used for the annotation.

A common setting for object survival and detection
model parameters is used in both evaluations on the WILD-
TRACKS and CMC datasets. Specifically: the survival

probability PSðxxÞ given by (29), is parameterized by the con-
trol parameter t = 0.5 and the scene mask bð�Þ with a margin
of 0.3m inside the border of the tracking area; the detection
probability, given in Section 3.5 is parameterized by
P

ðcÞ
D ðxxÞ ¼ 0:9 and b ¼ 0:1. For all cameras, the observed

bounding box model is described in (18), with position
noise parameterized by yðcÞp ¼ ½400; 400�T , and the extent
noise parameterized by yðcÞe ¼ ½0:01; 0:0025�T (on the loga-
rithms of the half-lengths of the principal axes).

5.1 Performance Evaluation Criteria

5.1.1 Standard Evaluation on 3D Position Estimates

The performance of various combinations of detectors and
trackers are evaluated using the CLEAR MOT devkit pro-
vided in [62]. For computing CLEAR MOT, we adhere to
the convention of using the euclidean distance (L2-norm) on
the estimated 3D centroid with a threshold of 1m.

For MOT, the following performance indicators are
reported: Multiple Object Tracking Accuracy (MOTA) which
penalizes normalized false negatives (FNs), false positives
(FPs) and identity switches (IDs) between consecutive frames;
Multiple Object Tracking Precision (MOTP) which accounts
for the overall dissimilarity between all true positives and the
corresponding ground truth objects [63]; Mostly Tracked
(MT), Partially Tracked (PT),Mostly Lost (MT)which indicate
how much of the trajectory is retained or lost by the tracker;
Fragmentations (FM) which account for interrupted tracks
based on ground truth trajectories; Identity Precision (IDP),
Identity Recall (IDR) and F1 score (IDF1) which are analogous
to the standard precision, standard recall and F1 score with
identifications (tracks) [47]. For reference, we also provide
performance indicators on the bounding box detections,
where we set the threshold at 0.5 and report: Multiple Object
Detection Accuracy (MODA) which accounts for misdetec-
tions and false alarms; Multiple Object Detection Precision
(MODP) which accounts for the spatial overlap information
between the bounding boxes; precision which is the measure
of exactness; and recallwhich is themeasure of quality.

We note that CLEAR MOT is traditionally calculated
over the entire scenario window, and thus the tracking per-
formance is reported after the entire data stream has been
processed. To evaluate the live or online tracking perfor-
mance over time, we employ the Optimal Sub-Pattern
Assignment (OSPA(2)) distance between two sets of tracks

Fig. 6. Layout for CMC dataset: The blue line denotes the boundary of
the tracking area. The yellow boxes denote the coordinates of the
boundary in (x,y,z) axes. The 4 cameras are positioned (in sequence) at
the top 4 corners of the room.
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[21]. This distance is based on the OSPA metric that cap-
tures both localization and cardinality errors between two
finite sets of a metric space with a suitable base-distance
between objects (e.g., the euclidean distance) [64]. The
OSPA(2) metric is defined as the OSPA distance between
two sets of tracks over a time window. Details for OSPA
and OSPA(2) metrics are given in Appendix 7.2, available in
the online supplemental material. By design, OSPA(2) cap-
tures both localization and cardinality errors between the
set of true and estimated tracks, and penalizes switched
tracks or label changes [21]. The resultant metric carries the
interpretation of a time-averaged per-track error. In our
evaluation of the position estimate in real world coordi-
nates, we use a 3D euclidean base-distance for OSPA(2) with
order parameter 1 and cutoff parameter 1m. Performance
evaluation for live or online tracking is given by plotting the
error over a sliding window of length Lw ¼ 10 frames, while
overall performance is captured in a single number by cal-
culating the error over the entire scenario window.

5.1.2 GIoU Based Evaluation on 3D Position

With Extent

As the proposed MV-GLMB-OC filter outputs 3D estimates
of the object centroid and extent, we extend the performance
evaluations to capture the joint error in the centroid and
extent. This is achieved by employing an alternative base-dis-
tance between two objects, in this case a 3D generalized inter-
section over union (GIoU), which extends the commonly
used IoU to non-overlapping bounding boxes [65]. The
details for the IoU and GIoU metrics are given in Appendix
7.3, available in the online supplemental material. It is impor-
tant to note that if there is no overlap between the ground
truth and estimated shape, the IoU distance is zero regardless
of their separation, whereas the GIoU distance captures the
extent of the error while retaining the metric property [65].
We present evaluations of the estimated centroid with extent
for CLEAR MOT (using a GIoU base-distance with a thresh-
old of 0.5) and OSPA(2) metric with GIoU base-distance (and
with unit order and cut-off parameters). We refer the reader
to [66] for the rationale and discussions on the use of
OSPA(2)-GIoU for performance evaluation.

5.2 WILDTRACKS Dataset

We test MV-GLMB-OC against the latest multi-camera
detector (Deep-Occlusion) [18] coupled with the k-shortest-
path (KSP) algorithm [5] and ptrack as shown in [17]
(Deep-Occlusion+KSP+ptrack). KSP is an optimization

algorithm that finds the most likely sequence of ground plane
occupancies (trajectories) given by the multi-camera detector,
and ptrack described in [67] improves and smooths over tracks
by learning motion patterns. As a baseline comparison, we
employ the Deep-Occlusion multi-camera detector combined
with single-view GLMB (Deep-Occlusion+GLMB). Since
WILDTRACKS provides annotations in real-world coordi-
nates but restricted to the ground plane, tracking is performed
in real-world coordinates but also restricted to the ground
plane. To further explore the performance of MV-GLMB-OC,
we also run experiments using monocular detections from
each of the cameras. For the detectors, we use the monocular
backbone of the Deep-Occlusion detector i.e., VGG16-net
trained using Faster-RCNN [23], and separately with the
newer YOLOv3 [68], to produce separate monocular detec-
tions for input to MV-GLMB-OC. Since WILDTRACKS does
not supply the camera positions required for our proposed
occlusion model, we reconstruct the camera positions from
the given camera parameters.Wenote that KSP and/or ptrack
is an offline or batch method, while GLMB is online or recur-
sive, and provides estimates on the fly.

5.2.1 Model Parameters

The birth density is adaptive/measurement-driven (see
Section F in [69]) with PB;þð‘Þ ¼ 0:001 and fB;þðx; ‘Þ ¼
N ðx;mð‘Þ

B;þ; 0:1
2I9Þ where m

ð‘Þ
B;þ is obtained via clustering (e.g.,

k-means). The single-object transition is as described in (26)
with position noise and extent (in logarithm) noise parameter-
ized by

yðpÞ ¼ ½0:0016; 0:0016; 0:0016�T ;
yðsÞ ¼ ½0:0036; 0:0036; 0:0004�T :

5.2.2 Discussion

Table 2 shows the CLEARMOT andOSPA(2) benchmarks for
MV-GLMB-OC (with occlusion modeling) and MS-GLMB
(without occlusion modeling) with two different detectors
YOLOv3 and Faster-RCNN(VGG16). Results for Deep-
Occlusion+KSP+ptrack being the reference, are reproduced
directly from the original paper [17]. The results indicate that
the two trackers based on multi-camera detections, i.e.,
Deep-Occlusion+KSP+ptrack and Deep-Occlusion+GLMB,
have very similar tracking performance in terms of MOTA/
MOTP and OSPA(2). Importantly, closer examination of the
tracking results based on multiple monocular detections
indicates that performance is significantly improved with

TABLE 2
WILDTRACKS Performance Benchmarks for 3D Position Estimates (restricted to the ground plane)

Detector and Tracker IDF1 " IDP " IDR " MT " PT # ML # FP # FN # IDs # FM # MOTA " MOTP " OSPAð2Þ #
YOLOv3+MV-GLMB-OC 74.3% 85.0% 75.9% 136 111 37 424 1333 104 86 69.7% 73.2% 0.69m
YOLOv3+MS-GLMB 74.2% 79.0% 69.9% 116 85 83 841 1951 139 105 61.9% 68.3% 0.81m
Faster-RCNN(VGG16)+MV-GLMB-OC 76.5% 84.5% 70.0% 119 118 47 545 1621 104 81 65.3% 71.9% 0.72m
Faster-RCNN(VGG16)+MS-GLMB 75.5% 76.8% 74.3% 98 104 82 1114 1716 179 116 61.5% 65.8% 0.88m
Deep-Occlusion+GLMB 72.5% 82.7% 72.2% 160 86 39 960 990 107 64 70.1% 63.1% 0.73m
Deep-Occlusion+KSP+ptrack 78.4% 84.4% 73.1% 72 74 25 2007 5830 103 95 72.2% 60.3% 0.75m

CLEAR MOT scores and OSPA(2) distance are calculated on standard position estimates (" means higher is better while # means lower is better).
Three different detectors are considered -Deep-Occlusion (multiocular), Faster-RCNN(VGG16)(monocular) and YOLOv3 (monocular). Three types
of trackers are considered -KSP+ptrack or GLMB (single-sensor), MV-GLMB-OC (multi-view with occlusion model) and MS-GLMB (multi-sensor
without occlusion model).
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the addition of the occlusion model. This can be seen from
the relative changes in the MOTA/MOTP and OSPA(2). Sev-
eral observations can also be drawn from comparing the
multi-camera detector with batch processing method (Deep-
Occlusion+KSP+ptrack), and the related monocular detector
with online processing (Faster-RCNN(VGG16)+MV-GLMB-
OC). While the MOTP improves due to the use of multiple
monocular detectors, the MOTA degrades due to the use of
an online method which is unable to correct past estimates.
This is corroborated by the overall OSPA(2) value which
improves slightly from Deep-Occlusion+KSP+ptrack to
Faster-RCNN(VGG16)+MV-GLMB-OC. Surprisingly, the
results based on YOLOv3 are better across the board than
that for Faster-RCNN(VGG16), even though YOLOv3 is
more efficient than Faster-RCNN(VGG16). For reference, the
CLEAR evaluations for the detectors used in the experiment
are presented in Appendix 7.4, available in the online sup-
plemental material, from which it is noted that the monocu-
lar detections are generally much poorer than the multi-
camera detections due to severe occlusions.

5.3 CMC1, CMC2 and CMC3

This subsection focuses on scenarios with people walking in
order of increasing difficulty, i.e., CMC1-CMC3. Similar to
the WILDTRACKS evaluation, we evaluate our method
based on 2 monocular detectors, namely Faster-RCNN
(VGG16) and YOLOv3. For each sequence, the effect of the
occlusion model is studied by comparing the proposed MV-
GLMB-OC with the standard MS-GLMB filter.

5.3.1 Model Parameters

UnlikeWILDTRACKSwhere objects enter the scene from any-
where at the boundary, inCMCweknow the location of objects
entering the scene. Hence, we specify the birth parameters as

PB;þð‘Þ ¼ 0:001 and fB;þðx; ‘Þ ¼ N ðx;mB;þ; 0:12I9Þwhere

mB;þ ¼ ½2:03 0 0:71 0 0:825 0 � 1:2 � 1:2 � 0:18�T :
We use the single-object transition density (26) with
position noise and extent (in logarithm) noise parameter-
ized by

yðpÞ ¼ ½0:0012; 0:0012; 0:0012�T ;
yðsÞ ¼ ½0:0036; 0:0036; 0:0004�T :

5.3.2 Effectiveness of Occlusion Model

Table 3 shows the CLEAR MOT and OSPA(2) benchmarks
with a euclidean base-distance, for the estimated 3D cent-
roids only. Table 4 shows the CLEAR MOT and OSPA(2)

benchmarks with a 3D GIoU base-distance, for the estimated
3D centroids and extent. Both tables compare the tracking
performance with and without and occlusion model, i.e.,
MV-GLMB-OC and MS-GLMB respectively. The asterisked
entry denotes the multi-camera reconfiguration case which
is discussed later on. All results are presented for two differ-
ent detectors YOLOv3 and Faster-RCNN(VGG16).

We focus our initial examination on the non-asterisked
entries in Tables 3 and 4. This corresponds to the case where
all cameras are operational. For the sparse scenario CMC1,
both MV-GLMB-OC and MS-GLMB on either detectors
achieved a close to perfect CLEAR MOT scores in MOTA
and MOTP. Some of the flagged FPs are caused by track ini-
tiation/termination mismatches with the ground truths
(annotations). The OSPA(2) values are relatively low due to
the sparsity of the scenario.

For the medium scenario CMC2, Fig. 7 shows a screen-
shot of the detections and the MV-GLMB-OC estimates. In

TABLE 3
CMC1,2,3 Performance Benchmarks for 3D Position Estimates

CLEAR MOT scores and OSPA(2) distance are calculated on standard position estimates (" means higher is better while # means lower is better).
Two different detectors are considered - Faster-RCNN(VGG16) (monocular) and YOLOv3 (monocular). Two types of trackers are considered -
MV-GLMB-OC (multi-view with occlusion model) and MS-GLMB (multi-sensor without occlusion model). The asterisk (*) indicates the multi-
camera reconfiguration experiment.
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this case, MV-GLMB-OC on both detectors managed to
maintain consistent tracks and accurate estimates overall.
The CLEAR MOT benchmarks for CMC2 show high MOTA
and MOTP but with some FNs and FPs. We observe an
improvement in performance for MV-GLMB-OC over
MS-GLMB, and on both detectors due to the inclusion of
occlusion modeling. The improvement in performance due
to occlusion modeling is also reflected in the OSPA(2).

For the dense scenario CMC3, MV-GLMB-OC on both
detectors managed to achieve acceptable MOTA/MOTP
scores, but is penalizedwith high FPs, FNs, IDs and FMs. This
outcome occurs even with the proposed occlusion model, as
the algorithm fails when a person is totally occluded in all
views. An example of this occurrence is illustrated in Fig. 8,
where the red bounding boxes denote detections, while the
yellow bounding boxes indicate people who are undetected
in all views. Such an event could cause track termination/
switching and is reflected in the performance evaluation. It is
evident from Tables 3 and 4 that the tracking performance

improves considerably with the occlusion model. Examina-
tion of theOSPA(2) error leads to a similar conclusion.

Overall, YOLOv3+MV-GLMB-OC performs slightly better
than Faster-RCNN(VGG16)+MV-GLMB-OC due to better
detections. The tracking performance of the proposed MV-
GLMB-OC filter generally degrades as the number of people
in the scene increases, since the visual occlusions becomemore
frequent andmore difficult to resolve. The results of this study
on the proposed occlusion model suggest that without proper
modeling of the probability of detection, the algorithm fails to
maintain tracks, resulting in poorer tracking results. The
CLEAR evaluation for the monocular detectors used are given
inAppendix 7.4, available in the online supplementalmaterial.

5.3.3 Multi-Camera Reconfiguration

The MV-GLMB-OC approach requires only a one-off train-
ing on each monocular detector, and hence can operate
without retraining and without interruption, in the event

TABLE 4
CMC1,2,3 Performance Benchmarks for 3D Centroid With Extent Estimates

CLEAR MOT scores and OSPA(2) distance are calculated with a 3D GIoU base-distance for estimates of 3D centroid with extent (" means higher is
better while # means lower is better). Two different detectors are considered - Faster-RCNN(VGG16) (monocular) and YOLOv3 (monocular). Two
types of trackers are considered - MV-GLMB-OC (multi-view with occlusion model) and MS-GLMB (multi-sensor without occlusion model). The
asterisk (*) indicates the multi-camera reconfiguration experiment.

Fig. 7. CMC2 Camera 1 to 4 (left to right): YOLOv3 detections (top row) and MV-GLMB-OC estimates (bottom row).
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that cameras are added, removed or repositioned on the fly.
To demonstrate this capability, we design a multi-camera
reconfiguration experiment. At the start of the sequence, all
four cameras are operational. Later, one camera is taken off-
line to mimic a camera failure. Subsequently, two cameras
are taken offline to mimic a more severe camera failure.
After this, the two previously offline cameras are made
operational, while the previously operational cameras are
taken offline, which mimics the event that the two opera-
tional cameras are moved to different locations. We bench-
mark the multi-camera reconfiguration experiment against
the ideal case when all cameras are operational.

Results for the experiments on multi-camera reconfigura-
tion are denoted with an asterisk in Tables 3 and 4. The
reported CLEAR MOT scores and OSPA(2) errors show sim-
ilar trends in respect of inclusion of the occlusion model,
increasing scenario density, and relative performance on
the two detectors. The tracking performance in the multi-
camera reconfiguration case is generally worse than the
case when all cameras are active. This relative observation
is in line with expectations, as there is less sensor data to
resolve occlusions and perform estimation.

To facilitate an examination of the relative performance in
further detail, Fig. 9 plots the OSPAð2Þ error with 3D GIoU
base-distance over a sliding window with time. As a reference
point for the performance comparison, the YOLOv3+MV-
GLMB-OC with all cameras operational case is also shown.
The spikes in the error curve at the beginning and the end of

the scenario are due to mismatches in track initiation and ter-
mination with the ground truths. For CMC1, we observe that
the error curves are relatively close to the reference case. This
would be expected for a sparse scenario as there are virtually
no occlusions even when some cameras are offline. For CMC2
and CMC3, the error curves for both YOLOv3+MV-GLMB-
OC* and Faster-RCNN(VGG16)+MV-GLMB-OC* begin to
deviatemidway into sequence from the all cameras operational
reference. The errors become more pronounced entering the
2-camera only segment, as themore crowded scenarios exacer-
bate the effect of occlusions and misdetections. Nonetheless,
the results show that theMV-GLMB-OC filter is able to accom-
modate on-the-fly changes to the camera configurations.

5.4 CMC4 and CMC5 (3D Multi-Modal Tracking)

Here we present the first multi-camera dataset with people
jumping and falling, which is more challenging for MOT
than scenarios with only normal walking. We demonstrate
the versatility of the proposed MOT framework by using a
Jump Markov System (JMS), to cater for potential switching
between upright and fallen modes [70].

5.4.1 Model Parameters

Each state is augmented xxwith a discrete mode or classm 2
f0; 1g, where m ¼ 0 corresponds to a standing state and
m ¼ 1 corresponds to a fallen state. We consider the single-
object state as ðxx;mÞ, with single-object density pð�Þðxx;mÞ ¼

Fig. 8. CMC3 Camera 1 to 4 (left to right): YOLOv3 detections (red bounding boxes) and people that are occluded in all four cameras (yellow bound-
ing boxes).

Fig. 9. Multi-Camera Reconfiguration Experiment: OSPA(2) plots with 3D GIoU base-distance for estimates of 3D centroid with extent. Three trackers
are considered: YOLOv3+MV-GLMB-OC* (multi-camera reconfiguration) and Faster-RCNN+MV-GLMB-OC* (multi-camera reconfiguration) and
with YOLOv3+MV-GLMB-OC (all cameras operational).
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pð�ÞðxxjmÞmð�ÞðmÞ. The following single-object transition den-
sity and observation likelihood are used

ffS;þðxxþmþjxx;mÞ ¼ f
ðmþÞ
S;þ ðxþjx; ‘;mÞd‘½‘þ�mþðmþjmÞ;

gðcÞðzðcÞjxx;mÞ / gðcÞe ðzðcÞe jmÞ�

N zðcÞ;FðcÞðxxÞþ 02�1

�yðc;mÞ
e =2

� �
;diag

yðcÞp

yðc;mÞ
e

" # ! !
:

The mode transition probabilities are mþð0j0Þ ¼ 0:6,
mþð1j0Þ ¼ 0:4, mþð0j1Þ ¼ 0:6 and mþð1j1Þ ¼ 0:4.

For a standing object, i.e., m ¼ 0, we have yðc;0Þe ¼ yðcÞe ¼
½0:01; 0:0025�T in the above observation likelihood. Further,
standing objects typically have a bounding box size ratio
(y-axis/x-axis) greater than one, thus themodedependent like-

lihood component is chosen as gðcÞe ðzðcÞe j0Þ ¼ e
r ð½0;1�z

ðcÞ
e =½1;0�zðcÞe Þ�1

� �
for all cameras, where r ¼ 2 is a control parameter. The transi-
tion density to another standing state f

ð0Þ
S;þðxþjx; ‘; 0Þ, is the

same as per the previous subsection.
For a fallen object, i.e., m ¼ 1, we have yðc;1Þe ¼

½0:0025; 0:01�T in the above observation likelihood, and the
mode dependent likelihood component is chosen as

gðcÞe ðzðcÞe j1Þ ¼ e
�r ð½0;1�z

ðcÞ
e =½1;0�zðcÞe Þ�1

� �
for all cameras because fallen

objects typically have a bounding box size ratio (y-axis/
x-axis) less than one. The transition density to another fallen
state f

ð1Þ
S;þðxþjx; ‘; 1Þ is the same as that for standing-to-stand-

ing except for the large variance yðsÞ ¼ ½0:15; 0:15; 0:04�T to
capture all possible orientations during the fall.

For a state transition involving a mode switch i.e., stand-
ing-to-fallen or fallen-to-standing, the transition density
f
ð1Þ
þ ðxþjx; ‘; 0Þ or f ð0Þ

þ ðxþjx; ‘; 1Þ takes the form (26), with posi-
tion noise and extent (in logarithm) noise parameterized by

yðpÞ ¼ ½0:0049; 0:0049; 0:0049�T ; yðsÞ ¼ ½0:01; 0:01; 0:01�T :
Notice that the position noise is increased in the case of a
mode switch compared to the case of no switching, in order
to capture the abrupt change in the size of the object during
mode switching.

The birth density is an LMB with parameters PB;þð‘Þ ¼
0:001 and

fB;þðx; ‘; 0Þ ¼0:9Nðx;mB;þ;0;SB;þ;0Þ;
f
ð‘Þ
B;þðx; ‘; 1Þ ¼0:1Nðx;mB;þ;1;SB;þ;1Þ;

mB;þ;0 ¼½2:03 0 0:71 0 0:825 0 � 1:2 � 1:2 � 0:18�T ;
mB;þ;1 ¼½2:03 0 0:71 0 0:413 0 � 0:18 � 0:18 � 1:2�T ;
SB;þ;0 ¼SB;þ;1 ¼ 0:12I9:

5.4.2 Effectiveness of Occlusion Model

Tables 5 and 6 show the CLEAR MOT and OSPA(2) bench-
marks for MV-GLMB-OC and MS-GLMB on both detectors
YOLOv3 and Faster-RCNN(VGG16). The CLEAR evalua-
tions for the monocular detections are given in Appendix
7.4, available in the online supplemental material.

For CMC4 which has a maximum of 3 people, both MV-
GLMB-OC and MS-GLMB on either detectors achieved high
CLEAR MOT scores in MOTA/MOTP, and low OSPA(2)

errors. The incidence of FPs and FNs is caused by track initia-
tion/termination mismatches with the ground truths. None-
theless, we observe that on MOTA/MOTP and OSPA(2),
MV-GLMB-OC outperformsMS-GLMB.

For CMC5 which has a maximum of 7 people, both MV-
GLMB-OC andMS-GLMB on either detectors were still capa-
ble of producing reasonable MOTA/MOTP scores and
OSPA(2) errors. Fig. 10 shows a snapshot of detections and
estimates on a single view. However, due to poor detections
and more occlusions in CMC5, we observe many IDs and
FNs. Again on MOTA/MOTP and OSPA(2), MV-GLMB-OC
outperformsMS-GLMB.

5.4.3 Multi-Camera Reconfiguration

The multi-camera reconfiguration experiment described in
Section 5.3.3 is repeated for the multi-modal datasets CMC4
and CMC5. The results for the multi-camera reconfiguration
are denoted with asterisks in Tables 5 and 6. The plot for
OSPAð2Þ with 3D GIoU base-distance over a sliding window
with time is given in Fig. 11. While similar observations can be
made from the experiments without jumping and falling

TABLE 5
CMC4,5 Performance Benchmarks for 3D Position Estimates

CLEAR MOT scores and OSPA(2) distance are calculated on standard position estimates (" means higher is better while # means lower is better).
Two different detectors are considered - Faster-RCNN(VGG16) (monocular) and YOLOv3 (monocular). Two types of trackers are considered -
MV-GLMB-OC (multi-view with occlusion model) and MS-GLMB (multi-sensor without occlusion model). The asterisk (*) indicates the multi-
camera reconfiguration experiment.
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(CMC1-CMC3), the results for CMC4-CMC5 exhibit different
behavior for people in the fallen state. The estimated extent is
warped out of its ordinary shape when the person is on the
ground, and more data is required to infer the corresponding
state of the fallen person. In CMC4-CMC5, the effect of occlu-
sions or misdetections is exacerbated by having fewer cameras
when the person is on the ground, which would likely lead to
track termination or switching. Nonetheless, the results con-
firm that the JMS variant of the MV-GLMB-OC algorithm can
automatically accommodatemulti-camera reconfiguration.

5.5 Runtimes

The runtimes for the MV-GLMB-OC filter on the WILD-
TRACKS and CMC datasets are summarized in Table 7. The
current implementation is via unoptimized MATLAB code.
The reported runtimes appear to be consistent with the
computational complexity of the MV-GLMB-OC algorithm:
quadratic in the number of objects and linear in the sum of
the number of detections across all cameras.

6 CONCLUSION

By developing a tractable 3D occlusion model, we have
derived an online Bayesian multi-view multi-object filtering
algorithm that only requires monocular detector training,
independent of the multi-camera configurations. This enables

Fig. 10. CMC5 Camera 1: YOLOv3 detections (left) and MV-GLMB-OC
estimates (right).

TABLE 6
CMC4,5 Performance Benchmarks for 3D Centroid With Extent Estimates

CLEAR MOT scores and OSPA(2) distance are calculated with a 3D GIoU base-distance for estimates of 3D centroid with extent (" means higher is
better while # means lower is better). Two different detectors are considered - Faster-RCNN(VGG16) (monocular) and YOLOv3 (monocular). Two
types of trackers are considered - MV-GLMB-OC (multi-view with occlusion model) and MS-GLMB (multi-sensor without occlusion model). The
asterisk (*) indicates the multi-camera reconfiguration experiment.

Fig. 11. Multi-Camera Reconfiguration Experiment: OSPA(2) plots with 3D GIoU base-distance for estimates of 3D centroid with extent. Three track-
ers are considered: YOLOv3+MV-GLMB-OC* (multi-camera reconfiguration) and Faster-RCNN+MV-GLMB-OC* (multi-camera reconfiguration) and
with YOLOv3+MV-GLMB-OC (all cameras operational).

TABLE 7
MV-GLMB-OC Runtime on WILDTRACKS and CMC

Dataset (Cams) Frames No. Obj (avg) Exec. Time (s/frame)

W.T. (7) 400 20 18.0
CMC1(4) 261 3 0.1
CMC2 (4) 263 10 3.2
CMC3 (4) 263 15 7.9
CMC4 (4) 147 3 0.4
CMC5 (4) 560 7 5.5
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themulti-camera system to operate uninterrupted in the event
of extension/reconfiguration (including camera failures),
obviating the need for multi-view retraining. Moreover, it
addresses themulti-camera data association problem in away
that is scalable in the total number of detections. Experiments
on existing 3Dmulti-camera datasets have demonstrated sim-
ilar performance to the state-of-the-art batch method.We also
demonstrated the ability of the proposed algorithm to track in
densely populated scenarios with high occlusions, and with
people jumping/falling in the 3Dworld frame.
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