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Abstract. An N -person noncooperative game under uncertainty is analyzed,

in which each player solves a two-stage distributionally robust optimization

problem that depends on a random vector as well as on other players’ deci-
sions. Particularly, a special case is considered, where the players’ optimization

problems are linear at both stages, and it is shown that the Nash equilibrium

of this game can be obtained by solving a conic linear variational inequality
problem.

1. Introduction. The study of game theory can be traced back to Von Neumann’s
pioneer work in the 1920s and it has been developed extensively since 1950s follow-
ing Nash’s pioneer work [29, 30]. However, most studies assume that the games
are played in a deterministic setting, in which the players compete with each other
without considering future uncertainties. In such a deterministic noncooperative
game, each decision maker behaves selfishly to optimize one’s own objective func-
tion, which is parameterized by the rivals’ decisions. The study aims to find a Nash
equilibrium (NE), which is defined as a set of decisions for the players, such that
no one can perform better by changing his/her decision if the other players do not
change theirs [29, 30]. Generally, there are two ways of computing the NE. The
first method is based on the ad hoc study of the games by exploring their special
structures, for example, the potential games [28] and supermodular games [43]. The
other method is to solve the Nash equilibrium problem by converting it to a vari-
ational inequality (VI). This idea was firstly introduced by Bensoussan in [5], and
has become a mainstream approach through the study of finite-dimensional VIs and
complementarity problems (CPs) [12, 13, 14, 15, 20, 38].
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A more practical game should incorporate random factors in the players’ decisions
[24]. Since decisions under uncertainty are usually multi-stage in nature, which
means that a decision must be made at present to minimize the sum of a current
cost and an expected payoff of possible corrective actions in future stages, each
player in such game has to solve a multi-stage stochastic optimization problem that
is parameterized by a random vector, as well as by the rivals’ decisions. Several
studies of the multi-stage games have been conducted in the literature [10, 39,
45]. One typical case of such problems has been recently studied by Pang et al
[34] and their research indicated that, in contrast to the deterministic games, the
stochastic factor may bring essential complications such as nondifferetiability and
nonmonotonicity into the VI formulation of the games, hence greatly complicates
the solution procedure.

A possible way of getting around the above complications is to consider a “dis-
tributionally robust” version of the game under uncertainty, which is the purpose of
this paper. In the distributionally robust model, each player solves a parameterized
stochastic multi-stage optimization problem, in which the cost of corrective future
actions is measured not by the usual expectation, but by the worst-case expectation
over a set of possible probability distributions of the random vectors involved. We
aim at a basic two-stage model of this paper, where each player solves a two-stage
distributionally robust stochastic programming problem parameterized by a random
vector and the rivals’ decisions. Note that the assumption of each player facing an
individual random vector is not restrictive at all since it is allowed in our analysis
that some or all the components of the random vectors of different players can be
shared. Among the two-stage models, of particular interest to us is the two-stage
distributionally robust stochastic linear programming (TSDRSLP) since it could be
applicable to areas as production planning [2, 6, 16, 17, 23], finance [26, 27], and
other applications [9, 42].

Another advantage of the distributionally robust models is their computational
tractability. In the classic multistage stochastic optimization models, for the ran-
dom vector with a discrete distribution, the probability structure is known as a
“scenario tree”. Therefore, as the number of random variables increases, the com-
putation overhead is prohibitive, and this is called “curse of dimensionality” in
practice. In a distributionally robust stochastic optimization model, however, the
distribution of the random vector is assumed not exactly known. It is assumed that
the distribution belongs to an “ambiguity set” that is defined via specifying certain
constraints on the distribution such as given support and given first and second or-
der moments, etc. Since the second stage objective function in the distributionally
robust model is the worst-case expectation over the ambiguity set, the computation
of expectation is replaced by a solution to an optimization problem. Consequently,
the distributionally robust formulation can avoid the curse of dimensionality and
often result in polynomial solvability of the problems. Numerical experiments of
this methodology have been very promising [2, 16, 17, 18].

In this paper, we adopt the distributionally robust approach in the study of
games with stochastic factors. We introduce a distributionally robust model of the
two-stage game under uncertainty, in which each player solves a TSDRSLP problem.
We show that this approach results in a monotone conic VI that is computationally
tractable under mild assumptions. Therefore, the pitfalls such as nonsmoothness
and nonmonotonicity in general stochastic games are removed.
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It should be noted that some references [1, 21, 31, 32] have addressed the games
with worst-case objectives. However, the treatment therein is restricted to the
uncertainty sets rather than the ambiguity sets, therefore they would not able to
incorporate more information such as given bound of moments when it is available.
Thus, our formulation is more general than the literature above.

The rest of this paper is organized as follows. In Section 2, we study a general
model of two-stage distributionally robust game and reduce it to a semi-infinite
optimization model. In Section 3, we establish the conic optimization model of the
TSDRSLP problem with “WKS-type” of ambiguity set. In Section 4, we develop
a conic VI formulation of the two-stage distributionally robust game (TSDRG),
which provides a general approach to solving the game problem. Conclusions are
presented in Section 5.

Notations. We denote a random vector, say z̃, with the tilde sign. Matrices and
vectors are represented as upper and lower case letters, respectively. Given a regular
(i.e. pointed, proper, and with nonempty interior) cone KK such as the positive
orthant Rn+, the second-order cone, or the semidefinite cone, for any two vectors
x, y, the notation x �KK y or y �KK x means y − x ∈ KK. The dual cone of KK is
denoted by

KK∗ = {y : 〈y, x〉 ≥ 0,∀x ∈ KK}.
The set PP0(Rm) represents the space of probability distributions of a random
vector in Rm.

2. TSDRG: The general case. Consider an N -person game where player i’s
optimization problem is

min
xi∈Xi

ζi(xi, x−i) ≡
{
θi(xi, x−i) + sup

P∈Pi

EP [Qi(xi, x−i, z̃i)]

}
(2.1)

where the set Pi is the ambiguity set defined as in [44] (details will be given in
Section 2.1), EP stands for the expectation under probability measure P, xi ∈ Rni

is the vector of player i’s first-stage decision variable subject to a feasible region
Xi ⊆ Rni , z̃i is the random vector defined on a probability space (Rmi ,F ,P), which
is realized after xi is chosen but before the second-stage decision yi ∈ Rki is made,
where F is the σ-algebra generated by subsets of Rmi and P is a probability measure
defined on F , andQi(xi, x−i, z̃i) is the corresponding second stage recourse function,
i.e.

Qi(xi, x−i, z̃i) = min
yi∈Rki

{ri(yi) : Gi(xi, x−i, yi, z̃i) ≤ 0} , (2.2)

where Gi : Rki → Rmi for each fixed xi, x−i and z̃i. Let

X = X1 × · · · ×XN .

The blanket assumption. We assume that every ri(·) and every component
function of Gi(·) are convex and continuously differentiable and that Qi(xi, x−i, z̃)
is finite and continuous in z̃ for all x ∈ X.

2.1. The Weisemann-Kuhn-Sim (WKS)-type of ambiguity set. Consider
the random vector z̃i in (2.2). From a practical point of view, it is more flexible to
describe the support set Ωi by a cone constraint. In addition, it would be technically
convenient to allow the random vector z̃i to be associated with an artificial random
vector ũi ∈ Rti and therefore we introduce a random vector w̃i = (z̃i, ũi) ∈ Rmi ×
Rti , where z̃i is an “original” part and ũi is an “auxiliary” part. For instance, the
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epigraph of a function ũi = f(z̃i) is a set of random vectors (z̃i, ũi). More advantages
of such specification can be seen in [44] , where it is shown that many commonly
used statistics can be cast into conic constraints if we employ artificial random
variables. Let PP0(Rmi × Rti) represent the space of all probability distributions
on Rmi × Rti . We define the WKS-type of ambiguity set as

PPi =
{
P ∈ PP0(Rmi × Rti) : EP[Eiz̃i + Fiũi] = gi,P[(z̃i, ũi) ∈ Ωi] = 1

}
,

(2.3)
where Ei ∈ Rpi×mi , Fi ∈ Rpi×ti , gi ∈ Rpi , and the set Ωi is of full dimension,
bounded and representable by a cone inequality

Ωi = {(zi, ui) : Gizi +Hiui �KKi hi} (2.4)

with Gi ∈ Rri×mi , Hi ∈ Rri×ti , and hi ∈ Rri . When the random vector ũi is
absent from (2.3) and (2.4), we may regard Fi and Hi as zero matrices, or null
matrices at our convenience. If the cone KKi in (2.4) is the positive orthant, the set
Ωi is obviously a polyhedron. If KKi is a second-order cone (a semidefinite cone,
respectively), we call Ωi a second-order-cone representable set (semidefinite-cone
representable set, respectively).

The above ambiguity set is less general than the ambiguity set defined in [44]
due to the more restrictive format of function Qi(xi, x−i, z̃i). However, we believe
it is general enough to cover possible applications of (2.1).

The term of “distributionally robust” came from a recent paper of Wiesemann,
Khun and Sim [44] on distributionally robust convex optimization. In a nutshell,
paper [44] considers how to convert a convex constraint

sup
P∈PP

EP[v(x, z̃)] ≤ ν

to a set of cone constraints. In this paper, we apply the conceptual framework of
[44] to (2.1), and discuss how to convert the game (2.1) into a conic VI problem
for the linear case. The challenge here is that the v(x, z̃) in [44] is a function with
an explicit formula, while in the current paper, Qi(xi, x−i, z̃i) is an optimal value
function of the second-stage problem in a game, which not only depends on player
i’s decision, but also depends on other players’ decisions. Thus, more involved
analysis is required.

Historically, the notion of distributionally robust stochastic optimization has
been explored to some extent by Scarf [37], Landua [25], Dupacova [11], Kall and
Wallace [23], and others, but those studies did not result in efficient algorithms.
Stemmed from the recent developments in robust optimization [3] and stochastic
VI [36], some papers explored various algorithms for TSDRSLP under different
specifications of the set PPi. See for instances [2, 7, 8, 16, 17, 26, 27, 41]. A major
contribution of [44] is to provide a very general format for the set PPi that can
be tailored into many important applications. We call the format (2.3)-(2.4) the
“WKS-type” of ambiguity set to acknowledge it.

2.2. Reduction of player i’s problem to a semi-infinite program. We next
prove that the players’ problems can be converted into semi-infinite programming
problems.
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Note that the worst-case recourse value in (2.1) is the optimal value of the fol-
lowing optimization problem.

max
P

EP (Qi(xi, x−i, z̃i))

s. t. EP(Eiz̃i + Fiũi) = gi

EP(1[(z̃i,ũi)∈Ωi]) = 1,

(2.5)

where 1[(z̃i,ũi)∈Ωi] is the indicator function of Ωi.
Using the duality theory of linear optimization in probability spaces (see Rock-

afellar [35]), the dual problem of (2.5) is the following semi-infinite optimization
problem.

min
βi,ηi

g>i βi + ηi

s. t. (Eizi + Fiui)
>
βi + ηi ≥ Qi(xi, x−i, zi), ∀ (zi, ui) ∈ Ωi,

βi ∈ Rpi , ηi ∈ R.

(2.6)

By similar deductions with Lemma 3 in [41], one can obtain the following strong
duality proposition for problems (2.5) and its dual (2.6).

Proposition 2.1. Strong duality holds between problems (2.5) and (2.6) in the
sense that the primal problem is solvable and inf (2.6) = sup (2.5).

A somewhat restrictive condition for the strong duality can be found in [22,
Theorem 6.5], which requires that Ωi is compact. Since Ωi is indeed compact by as-
sumption, together with the generalized Slater condition (called the superconsistent
condition in [22]), it also guarantees the strong duality by [22, Theorem 6.5].

In conclusion, Proposition 2.1 indicates that player i’s problem (2.1) can be
converted to the following semi-infinite program:

min
xi,βi,ηi

θi(xi, x−i) + g>i βi + ηi

s. t. (Eizi + Fiui)
>
βi + ηi ≥ Qi(xi, x−i, zi), ∀ (zi, ui) ∈ Ωi,

xi ∈ Xi.

(2.7)

3. TSDRG: The linear case. Consider an important special case of (2.1), in
which θi(xi, x−i) ≡ c>i xi and

Qi(xi, x−i, z̃i) ≡ min
yi≥0

d>i yi

s.t. Ai(z̃i)xi +A−i(z̃i)x−i +Di(z̃i)yi = bi(z̃i).
(3.1)

In the game, player i has to solve a TSDRSLP

min
xi∈Xi

{
c>i xi + sup

P∈Pi

EP [Qi(xi, x−i, z̃i)]

}
. (3.2)

We consider TSDRSLP (3.2) with a fixed recourse, namely, assuming that Di(z̃i)
≡ Di. Besides, assume that the uncertain data bi(z̃i), Ai(z̃i), and A−i(z̃i), together
with the vector yi(z̃i), in (3.1) are affinely dependent on the random vector z̃i,
namely

yi(z̃i) = y0
i +

mi∑
j=1

z̃ji y
j
i , bi(z̃i) = b0i +

mi∑
j=1

z̃ji b
j
i ,

Ai(z̃i) = A0
i +

mi∑
j=1

z̃jiA
j
i , A−i(z̃i) = A0

−i +
mi∑
j=1

z̃jiA
j
−i

(3.3)
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where bji ∈ Rli , Aji ∈ Rli×ni , and Aj−i ∈ Rli×(n−ni), j = 0, . . . ,mi, n =
∑N
i=1 ni, are

deterministic and given in advance; and y0
i , y

1
i , ..., y

mi
i are decision vectors. Since

each yji is a ki-dimensional vector, define the ki × (mi + 1) matrix Yi as

Yi = [y0
i , y

1
i , ..., y

mi
i ] = [y0

i , Y
0̄
i ] ∈ Rki × Rki×mi

and denote the qth row vector of Y 0̄
i by yqi , i.e.,

yqi = [(y1
i )q, (y

2
i )q, ..., (y

mi
i )q]

> ∈ Rmi .

Note that yqi is a column vector.
We shall refer the above fixed-recourse and the affine-dependence assumption as

the linear decision rule, which is often adopted in dealing with the uncertainties
in robust optimization models. See, e.g., Ben-Tal and Nemirovski [4]. It could
be thought of as a first-order approximation to a nonlinear relationship between
(Ai, bi, yi) and z̃i. Chen et al [8] used it in the context of robust stochastic program-
ming. Also, it is used for dealing with joint chance constraints by Chen et al [7]. It
is easy to see that the following equivalence holds.

Ai(zi)xi +A−i(zi)x−i +Diyi(zi) = bi(zi), ∀zi ∈ Ωi ⇐⇒
Ajixi +Aj−ix−i +Diy

j
i = bji , ∀ j = 0, 1, ...,mi,

(3.4)

if Ωi 6= ∅. Moreover, we have

Proposition 3.1. Under the linear decision rule with the WKS-type of ambiguity
set, it holds that

EP [Qi(xi, x−i, z̃i)] = EP

[
min
Yi,si

d>i y
0
i +

mi∑
j=1

d>i y
j
i z̃
j
i

]
s. t. Ajixi +Aj−ix−i +Diy

j
i = bji , j = 0, 1, ...,mi,

y0
i (q) + h>i s

q
i ≥ 0, q = 1, 2, ..., ki, (3.5)

G>i s
q
i = yqi , q = 1, 2, ..., ki,

H>i s
q
i = 0, q = 1, 2, ..., ki,

sqi ∈ KK
∗
i , q = 1, 2, ..., ki.

Proof. Given (3.4), we only need to show that
yi(zi) ≥ 0, ∀(zi, ui) ∈ Ωi ⇐⇒
min{y0

i +
∑mi

j=1 z
j
i y
j
i : Gizi +Hiui �KKi

hi} ≥ 0⇐⇒
∃sqi ∈ KK

∗
i s.t. y0

i (q) + h>i s
q
i ≥ 0, G>i s

q
i = yqi , H

>
i s

q
i = 0, ∀ q = 1, . . . , ki.

The first equivalence is obvious, so we only need to prove the second equivalence.
Since Ωi is of full dimension, the problem

min{y0
i (q) +

mi∑
j=1

zji y
q
i (j) : Gizi +Hiui �KKi

hi}

satisfies the Slater condition. Therefore the strong duality of cone optimization ([3,
Theorem A.2.1]) holds and we have

min{y0
i (q) +

mi∑
j=1

zji y
q
i (j) : Gizi +Hiui �KKi hi}

= max{y0
i (q) + h>i s

q
i : G>i s

q
i = yqi , H

>
i s

q
i = 0, sqi ∈ KK

∗
i } ∀q = 1, · · · , ki.
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The proposition follows by noting that

max
{
y0
i (q) + h>i s

q
i : G>i s

q
i = yqi , H

>
i s

q
i = 0, sqi ∈ KK

∗
i , ∀q = 1, . . . , ki

}
≥ 0

⇐⇒ The system


y0
i (q) + h>i s

q
i ≥ 0,

G>i s
q
i = yqi ,

H>i s
q
i = 0,

sqi ∈ KK
∗
i ,

is feasible for q = 1, 2, ..., ki.

�
In view of Proposition 2.1 and Proposition 3.1, we have the following.

Proposition 3.2. Under the linear decision rule, (3.2) is equivalent to

min
xi,Yi,Si,βi,ηi

c>i xi + g>i βi + ηi

s.t. (Eizi + Fiui)
>βi + ηi ≥ min

Yi,Si

(
d>i y

0
i +

mi∑
j=1

d>i y
j
i z
j
i

)
,∀ (zi, ui) ∈ Ωi,

Ajixi +Aj−ix−i +Diy
j
i = bji , j = 0, 1, ...,mi,

y0
i (q) + h>i s

q
i ≥ 0, q = 1, 2, ..., ki, (3.6)

G>i s
q
i = yqi , q = 1, 2, ..., ki,

H>i s
q
i = 0, q = 1, 2, ..., ki,

xi ∈ Xi, βi ∈ Rpi , ηi ∈ R, sqi ∈ KK
∗
i , q = 1, 2, ..., ki.

We may further simplify (3.6) to an easier handling form. To this end, define

Fi :=

(xi, x−i, Yi, Si) :
Ajixi +Aj−ix−i +Diy

j
i = bji , j = 0, 1, ...,mi,

xi ∈ Xi, x−i ∈ X−i, sqi ∈ KK
∗
i , y

0
i (q) + h>i s

q
i ≥ 0,

G>i s
q
i = yqi , H

>
i s

q
i = 0, q = 1, 2, ..., ki.


(3.7)

Clearly, Fi is a closed convex set. Its projections onto the (Yi, Si)-space are
defined as

ΠYi,Si
:= {(Yi, Si) : ∃ xi ∈ Xi, x−i ∈ X−i such that (xi, x−i, Yi, Si) ∈ Fi}.

Obviously, we have ΠYi,Si 6= ∅, otherwise it is contradicted with the blanket as-
sumption in Section 2.1.

We next prove that the dual problem (3.6) can be written in a simpler form.

Proposition 3.3. Problem (3.6) is equivalent to

min
xi,Yi,Si,βi,ηi

c>i xi + g>i βi + ηi

s. t. (Eizi + Fiui)
>
βi + ηi ≥ d>i y0

i +

mi∑
j=1

d>i y
j
i z
j
i , ∀ (zi, ui) ∈ Ωi,

Ajixi +Aj−ix−i +Diy
j
i = bji , j = 0, 1, ...,mi,

y0
i (q) + h>i s

q
i ≥ 0, q = 1, 2, ..., ki,

G>i s
q
i = yqi , q = 1, 2, ..., ki, (3.8)

H>i s
q
i = 0, q = 1, 2, ..., ki,

xi ∈ Xi, βi ∈ Rpi , ηi ∈ R, sqi ∈ KK
∗
i , q = 1, 2, ..., ki.
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Proof. The first constraint in (3.6) can be written as follows.

∀(zi, ui) ∈ Ωi, ∃(Yi, Si) ∈ ΠYi,Si such that

(Eizi + Fiui)
>
βi + ηi −

(
d>i y

0
i +

∑mi

j=1 d
>
i y

j
i z
j
i

)
≥ 0,

or equivalently

min
(zi,ui)∈Ωi

max
(Yi,Si)∈ΠYi,Si

(Eizi + Fiui)
>
βi + ηi −

d>i y0
i +

mi∑
j=1

d>i y
j
i z
j
i

 ≥ 0.

Clearly, the function in the left hand side of the above inequality is convex in (zi, ui)
and concave in (Yi, Si). Moreover, Ωi and ΠYiSi are closed and convex. By Sion’s
minimax theorem [40], as Ωi is bounded, we have

min
(zi,ui)∈Ωi

max
(Yi,Si)∈ΠYi,Si

(Eizi + Fiui)
>
βi + ηi −

d>i y0
i +

mi∑
j=1

d>i y
j
i z
j
i


= max

(Yi,Si)∈ΠYi,Si

min
(zi,ui)∈Ωi

(Eizi + Fiui)
>
βi + ηi −

d>i y0
i +

mi∑
j=1

d>i y
j
i z
j
i

 .
The first constraint in (3.6) is therefore equivalent to

∃(Yi, Si) ∈ ΠYi,Si
, ∀(zi, ui) ∈ Ωi such that

(Eizi + Fiui)
>
βi + ηi −

(
d>i y

0
i +

∑mi

j=1 d
>
i y

j
i z
j
i

)
≥ 0,

which proves the proposition. �
Now we are ready to show that problem (3.2) can be reformulated as a conic

optimization problem – a main result of this section.

Theorem 3.1. Under the linear decision rule with the WKS-type of ambiguity set,
the feasible set of problem (3.2) is conic representable. Further, problem (3.2) can
be equivalently converted to the following conic optimization problem.

min
xi,Yi,Si,βi,ηi,φi

c>i xi + g>i βi + ηi

s. t. h>i φi − d>i y0
i + ηi ≥ 0,

G>i φi = E>i βi − Y 0̄
i

>
di,

H>i φi = F>i βi,

Ajixi +Aj−ix−i +Diy
j
i = bji , j = 0, 1, ...,mi, (3.9)

y0
i (q) + h>i s

q
i ≥ 0, q = 1, 2, ..., ki,

G>i s
q
i = yqi , q = 1, 2, ..., ki,

H>i s
q
i = 0, q = 1, 2, ..., ki,

xi ∈ Xi, φi, s
q
i ∈ KK

∗
i , q = 1, 2, ..., ki.

Proof. The first constraint in (3.8) is equivalent to the following

min
(zi,ui)∈Ωi

[(
β>i Ei − d>i Y 0̄

i

)
zi + β>i Fiui − d>i y0

i + ηi : Gizi +Hiui �KKi hi

]
≥ 0.

(3.10)
Fixing Yi, βi, ηi, the left hand side of (3.10) is a convex optimization problem in
(zi, ui) over a cone. According to our assumption on Ωi, the feasible set of the
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convex optimization problem is bounded and is of full dimension. Therefore, it has
a strict interior point and the optimal value is finite. By strong duality of finite-
dimensional conic optimization problem (cf. [3, Theorem A.2.1]) and looking into
the dual problem, it follows that (3.10) is equivalent to the feasibility of system

h>i φi − d>i y0
i + ηi ≥ 0,

G>i φi = E>i βi − Y 0̄
i

>
di,

H>i φi = F>i βi,

φi ∈ KK∗i .

(3.11)

Substituting (3.11) into problem (3.8), the theorem follows. �

4. The VI formulation of TSDRG: Solution methodology. As it is well-
known, an N -person noncooperative game with player i solving a smoothing convex
optimization problem

min
xi∈Xi(x−i)

θi(xi, x−i),

can be equivalently reformulated to a quasi-variational inequality (QVI),

−Θ(x) ∈ NX(x), (4.1)

where Θ(x) := ((∇x1
θ1)>, · · · , (∇xN

θN )>)>, X :=
∏
iXi(x−i), and NX(x) is the

normal cone of the convex set X at x, defined by

NX(x) :=
{
d : d>(y − x) ≤ 0, ∀ y ∈ X

}
.

Note that player i’s constraint set Xi(x−i) depends on other players’ decisions,
which leads that the defining set X depends on the variable x. However, when
Xi(x−i) has some tractable form, (4.1) can reduce to some specific problem, for
instance,

• if Xi(x−i) = Rni for all i, then (4.1) reduces to an equation Θ(x) = 0;
• if Xi(x−i) = Rni

+ for all i, then (4.1) reduces to a complementarity problem
(CP)

0 ≤ Θ(x) ⊥ x ≥ 0,

where a⊥b means a>b = 0;
• if Xi(x−i) = Ki for all i, which is a conic constraint independent of other

players’ decisions, then (4.1) reduces to a conic complementarity problem

0 �K∗ Θ(x) ⊥ x �K 0, where K =
∏
i

Ki;

• ifXi(x−i) = C(x) for all i, i.e., each player has the shared coupling constraints,
then (4.1) reduces to a variational inequality (VI): −Θ(x) ∈ NC(x).

Now, look back into the N -person noncooperative TSDRG (3.2). Based on The-
orem 3.1, the optimal strategy x∗i of player i comes from the solution to problem
(3.9), thus, x∗ = (x∗1, · · · , x∗N ) is an equilibrium of the TSDRSG (3.2) if and only if

−` ∈ NC(x∗)(v
∗), (4.2)

where

v∗ =

v
∗
1
...
v∗N

 , ` =

 `1
...
`N

 , C(x∗) = C1(x∗−1)× · · · × CN (x∗−N ),
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with v∗i = (x∗i , (y
∗)0
i , · · · , (y∗)

mi
i , (s∗)1

i , · · · , (s∗)
ki
i , β

∗
i , η
∗
i , φ
∗
i )
>, `i = (c>i , 0, 0, g

>
i , 1,

0)>, and Ci(x
∗
−i) represents the constraints in (3.9) depending on other players’

strategies.
Note that (4.2) is a QVI, but it is monotone since ` is a constant vector. In

literature, QVI has attracted increasing attention [12, 19, 33, 38], since Bensoussan
first recognized the relationship between the generalized Nash games and QVIs
[5]. In spite of the advantage in modeling complex and realistic problems in the
application, the study of QVI is immature because of its analytical difficulties,
especially for the computation. However, if the generalized Nash game has a special
structure, particularly sharing the coupling constraints for all players, it is possible
to reformulate the game as a VI, which has extensive state-of-the-art study. In case
of our TSDRG (3.2), for every j = 0, 1, · · · ,mi, if data Aji and bji are consistent for
all i = 1, 2, · · · , N , which yields the shared coupling constraints, then a VI can be
reformulated instead of QVI (4.2) to obtain a Nash equilibrium of game (3.2).

Besides, by introducing proper dual variables, the Karush-Kuhn-Tucker (KKT)
system for problem (3.9) parameterized by x−i can be written down:

ci +
∑mi

j=0(Aji )
>ζji = 0, gi − Eiγi − Fiδi = 0, 1− αi = 0,

−hiαi +Giγi +Hiδi ∈ Ki,

−
∑ki
q=1 ϑ

q
ihi +

∑ki
q=1Giλ

q
i +

∑ki
q=1Hiµ

q
i ∈ Ki,

αidi +D>i ζ
0
i − ϑi = 0,

γi(j)di +D>i ζ
j
i + λ̄ji = 0, j = 1, ...,mi,

G>i φi − E>i βi + Y 0̄
i

>
di = 0,

H>i φi − F>i βi = 0,

Ajixi +Aj−ix−i +Diy
j
i − b

j
i = 0, j = 0, 1, ...,mi,

G>i s
q
i = yqi , q = 1, 2, ..., ki,

H>i s
q
i = 0, q = 1, 2, ..., ki,

φi ∈ KK∗i , s
q
i ∈ KK

∗
i , q = 1, 2, ..., ki,

0 ≤ αi ⊥ h>i φi − d>i y0
i + ηi ≥ 0,

0 ≤ ϑqi ⊥ y0
i (q) + h>i s

q
i ≥ 0, q = 1, 2, ..., ki,

(4.3)

where γi(j) is the j-th element of the dual variable γi, λ̄
j
i = (λ1

i (j), · · · , λ
ki
i (j))>

with λqi (j) being the j-th element of the dual variable λqi , q = 1, · · · , ki. Even if
there are no shared coupling constraints, one can concatenate the N KKT systems
(4.3) to a mixed complementarity problem (MiCP), which is a generalization of the
CP, then apply the iterative algorithms for the MiCP to obtain an equilibrium.
Another possible approach stems from a penalty method proposed by Pang and
Fukushima [33]. They presented an algorithm for QVI in the case where Ki is the
positive orthant, in which they penalized the nonstandard constraint via a penalty
term, similarly to the augmented Lagrangian function, then solved a sequence of
penalized VIs. Back to our problem, note that the conic constraints set Ci(x−i)
can be written as

Ci(x−i) := {vi : hi(v) = 0, gi(vi) ≥ 0, fi(vi) ∈ K∗i },
where hi, gi, fi are all affine functions. Motivated by their approach, considering
Aj−i has the formulation as Aj−i = [Aij1 · · · A

ij
i−1 A

ij
i+1 · · · A

ij
N ], one can always

write the constraints of player i which involved other players’ strategies as linear
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equalities

h(v, v∗) := Uv +Wv∗ − b̂ = 0,

with U,W, b̂ having the following forms:

U = [U ′ D 0], W = [W ′ 0 0], b̂ =

 b̂1
...

b̂N

 ,

where

U ′ =



A0
1

...
Am1

A0
2

...
Am2

. . .

A0
N
...
AmN



, D =



D1

...
D1

D2

...
D2

. . .

DN

...
DN



,

W ′ =



A0
1 A10

2 · · · A10
N

...
...

...
...

A1
1 A1m

2 · · · A1m
N

A20
2 A2

2 · · · A20
N

...
...

...
...

A2m
2 Am2 · · · A2m

N
...

...
...

...
AN0

1 AN0
2 · · · A0

N
...

...
...

...
ANm1 ANm2 · · · AmN



− U ′, b̂i =


b0i
b1i
...
bmi

 .

Then, denote the conic constraints without the rivals’ strategies as

C ′ =

N∏
i=1

C ′i, where C ′i := {vi : gi(vi) ≥ 0, fi(vi) ∈ K∗i }.

Putting the coupling constraint h(v, v∗) = 0 into a penalty term, we may get a
solution of the QVI (4.2) iteratively by solving the following VI in the k-th iteration:

−`− U>(u(k) + ρ(k)h(v, v)) ∈ NC′(v),

where {u(k)} is a bounded sequence of vectors and {ρ(k)} is a sequence of increasing
positive scalars tending to +∞.
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5. Conclusion. In this paper, a noncooperative game of N -players with uncer-
tainty is considered, in which each player is supposed to make a deterministic deci-
sion depending on his rivals’ decisions in the first stage and takes a recourse action
depending on a random vector as well as on other players’ strategies in the second
stage. Motivated by the ideas from distributionally robust optimization, a worst-
case approach is proposed to model this game with uncertainty. The model has
certain naval features such as the distribution of the random vector involved is not
assumed to be given, rather, it is assumed to satisfy certain constraints defined
by a WKS-type of ambiguity set. It is shown that under a linear decision rule
and some mild assumptions, a Nash equilibrium of the proposed game exists and
can be found by solving a conic variational inequality problem. Specifically, if all
players’ optimization problems are linear in both stages, the Nash equilibrium of
the two-stage distributionally robust game can be found by solving a deterministic
monotone variational inequality problem.
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