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Water is an essential ingredient in transforming primitive mantle-derived (mafic) rocks into buoyant 
(felsic) continental crust, thereby driving the irreversible differentiation of Earth’s lithosphere. The 
occurrence in Archaean cratons of sodic granites of the tonalite–trondhjemite–granodiorite (TTG) series, 
high-MgO variolitic basalts, high-Mg diorites (sanukitoids) and diamonds with harzburgitic inclusion 
assemblages, all require the presence of hydrous fluids in Earth’s deep crust and upper (lithospheric) 
mantle since at least the Paleoarchaean (3.6–3.2 billion years ago). However, despite its importance, 
where and how water was stored in Archaean crust, and how some water was transported into the upper 
mantle, are poorly understood. Here, we investigate Archaean crustal fluid budgets through calculated 
phase equilibria for three protolith compositions — a low-MgO mafic (basaltic) composition, a high-MgO 
(picritic) composition and an ultrahigh-MgO ultramafic (komatiitic) composition — that are representative 
of mafic to ultramafic magmatic rocks in Archaean greenstone belts. We show that the mode and 
stability of hydrous minerals, in particular chlorite, is positively correlated with protolith MgO content, 
such that high-MgO basalts can store up to twice the amount of crystal-bound H2O than low-MgO 
basalts. Importantly, ultrahigh-MgO rocks such as komatiite can store four times as much H2O, most 
of which is retained until temperatures exceeding 700 ◦C. Warmer geotherms in the early Archaean 
favoured dehydration of hydrated high-MgO and ultramafic rocks in the deep crust, leading to hydration 
and/or fluid-fluxed melting of overlying basaltic rocks to produce ‘high-pressure’ TTG magmas. Burial of 
Archaean mafic–ultramafic crust along cooler geotherms resulted in dehydration of ultramafic material 
within the lithospheric mantle, providing the source of enriched Archaean basalt that was parental to 
large volumes of ancient TTG-dominated continental crust.

Crown Copyright © 2022 Published by Elsevier B.V. This is an open access article under the CC BY-NC 
license (http://creativecommons.org/licenses/by-nc/4.0/).
1. Introduction

Much of Earth’s oldest continental crust consists of deformed 
and metamorphosed felsic magmatic rocks of the tonalite–
trondhjemite–granodiorite (TTG) series, sodic granitoids with high 
SiO2 (∼65–75 wt%) and Al2O3 (∼15 wt%) contents, and high La/Yb, 
Sr/Y and Na2O/K2O ratios (Smithies et al., 2009; Moyen, 2011). 
Although it is widely accepted that TTG magmas were produced 
by partial melting of hydrated basaltic sources (i.e. amphibolite, 
Barker and Arth, 1976), the geodynamic setting(s) in which they 
formed is debated (Kleinhanns et al., 2003; Bédard, 2006; Moyen, 
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2011; Johnson et al., 2017; Pourteau et al., 2020; Smithies et al., 
2021).

Variations in the trace element compositions of TTG are com-
monly argued to reflect the pressure of melt generation (Moyen, 
2011). Most TTGs were likely produced by fluid-absent anatexis 
(‘dehydration melting’) of garnet-bearing amphibolite in shallow 
subduction systems or the deeper levels of thick Archean pri-
mary (oceanic) crust (Johnson et al., 2017). However, around 20% 
of TTG have elevated Sr, Al2O3 and Na2O contents, which some 
think reflects partial melting of deeply-subducted oceanic crust 
at pressures exceeding plagioclase stability (>2.5 GPa, Moyen and 
Stevens, 2006). By contrast, others have argued that these ‘high-P ’ 
signatures may indicate either hydrous-fluid-fluxed (‘wet’) melting 
of amphibolite (Pourteau et al., 2020) or fractional crystallisation 
of hydrous mafic–intermediate magmas at shallow or deep crustal 
ticle under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).
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levels (Kleinhanns et al., 2003; Smithies et al., 2021; Liou et al., 
2022)

Regardless of the tectonic setting, a critical role for fluids is im-
plicated in nearly all models of TTG formation (André et al., 2019, 
2022; Smithies et al., 2021). Seawater is an obvious source of this 
water, particularly given that a global ocean likely covered most 
of Earth’s surface in the early Archaean (Bindeman et al., 2018). 
Moreover, silicification during seafloor alteration likely played an 
important role in increasing the SiO2 content, and thereby the po-
tential melt fertility, of the hydrated mafic (amphibolite) protoliths 
(Stuck and Diener, 2017, André et al., 2019, 2022).

In addition to near-surface environments, various lines of evi-
dence indicate the existence of a deep fluid reservoir in the early 
Earth (Byerly et al., 2017; Sobolev et al., 2019; Smithies et al., 
2021). Many greenstone sequences contain enriched and ‘boninite-
like’ rocks derived from depleted mantle peridotite that inter-
acted with trace-element-enriched fluids released from recycled 
supracrustal material (Smithies, 2002). Many Archaean cratons also 
preserve high-Mg basaltic rocks with variolitic textures and trace-
element enriched high-Mg porphyritic diorite (i.e. sanukitoid), both 
of which are believed to originate via fluid-fluxed melting of litho-
spheric mantle peridotite (Shirey and Hanson, 1984; Murphy et 
al., 2021). In addition, ancient diamonds containing harzburgitic 
inclusion assemblages with suprachondritic initial 187Os/188Os ra-
tios indicate growth in melt-depleted lithospheric mantle that had 
been metasomatized by hydrous carbon-bearing fluids (Westerlund 
et al., 2006). Despite these varied lines of evidence, the source 
of fluids and the mechanisms by which they were transported 
into the deep crust and lithospheric mantle are poorly under-
stood.

On the modern Earth such mantle metasomatism occurs above 
subduction zones, where oceanic crust and overlying sediment 
are buried and heated, initiating dehydration reactions that re-
lease H2O (and CO2) and fluid-mobile trace elements into the 
surrounding mantle (Peacock, 1990), inducing partial melting. The 
pressure–temperature (P –T ) conditions at which dehydration re-
actions occur are a function of the composition of the subducted 
material, but generally occur around the greenschist–amphibolite 
facies transition at temperatures of 350–500 ◦C for typical oceanic 
crustal materials (Peacock, 1990; Hacker et al., 2003). Accordingly, 
the evidence for fluid-mediated mantle metasomatism in the Ar-
chaean might suggest that subduction-like processes characterised 
by cold geotherms were in operation (Westerlund et al., 2006), 
such that dehydration could occur below the Moho (Foley et al., 
2002). However, a paucity of evidence from the metamorphic rock 
record for geotherms characteristic of subduction processes before 
around 2.0 Ga (<500 ◦C.GPa−1, Weller and St-Onge, 2017; Brown 
and Johnson, 2018) requires some other mechanism to transport 
fluids to upper mantle depths in the early Earth.

Variations in bulk-rock MgO content affect the abundance and 
stability of hydrous ferromagnesian silicate minerals, such as chlo-
rite, serpentine and amphibole (Palin and White, 2016; Starr and 
Pattison, 2019). These minerals accommodate significant amounts 
of water as crystal-bound OH− , such that variability in their modal 
abundance and stability profoundly affects the capacity of a given 
rock to retain water (Palin and White, 2016). Burial of hydrated 
ultramafic rocks in the lower crustal and lithospheric mantle por-
tions of subducting slabs is a potentially important pathway for 
deep volatile recycling in modern subduction zones (van Keken et 
al., 2011). Nevertheless, the role of primitive mafic–ultramafic crust 
in the Archaean lithospheric water cycle has not been explored.

The generation of ultramafic magmas (MgO >18 wt%) formed 
by high-degree partial melting of mantle peridotite requires ex-
treme temperatures (>1600 ◦C), consistent with an Archaean man-
tle that was significantly warmer than at present (Herzberg et al., 
2007). Consequently, Archaean primary crust is characterised by 
2

Fig. 1. Ternary classification diagram for sub-alkaline volcanic rocks illustrating the 
chemical variation in mafic-ultramafic volcanic rocks from the Yilgarn and Pilbara 
Cratons, Western Australia. The original komatiitic basalt (Kb)–komatiite (K) bound-
ary (dashed black line) has been modified to better reflect natural compositional 
breaks based on classification using a total alkalis (Na2O + K2O) versus MgO di-
agram (Fig. S1). Numbered black squares (white font) denote the representative 
composition for each rock type used for thermodynamic modelling. (For interpre-
tation of the colours in the figure(s), the reader is referred to the web version of 
this article.)

considerable variability in its MgO content (Fig. 1 and Fig. S1). At 
one extreme are komatiites, ultramafic (MgO >18 wt%) lavas that 
generally comprise about 2–5 percent by volume of exposed Ar-
chaean volcanic sequences, but which locally may be much more 
abundant (up to 30 vol.%, de Wit and Ashwal, 1995). In addi-
tion, Archaean greenstone sequences commonly contain high- and 
ultrahigh-MgO picrites, ‘boninite-like’ rocks, and ultramafic intru-
sive rocks such as pyroxenites and peridotites that formed by 
fractional crystallisation in mafic–ultramafic magmas (Szilas et al., 
2015; Guice et al., 2018). The common development of pillow 
structures in many mafic and ultramafic rocks, along with oxygen 
isotopic and other geochemical data, indicates that the continents 
were almost entirely submerged in the Archaean (Flament et al., 
2008; Johnson and Wing, 2020; Staude et al., 2020). The higher 
eruption temperatures and lower viscosities of ultramafic magmas 
means they were much more likely to have been erupted onto the 
Archaean seafloor and extensively hydrated (and silicified) during 
subsequent hydrothermal alteration (Dann, 2001; Kump and Bar-
ley, 2007, André et al., 2022).

Here, we present the results of phase equilibrium modelling 
of three representative mafic–ultramafic compositions (Fig. 1, Fig. 
S1, Tables S1 and S2), a metabasite (MgO ∼7 wt% MgO), a high-
MgO metabasite (∼14 wt% MgO), and an ultrahigh-MgO metaba-
site (∼25 wt% MgO), to investigate how MgO content affects the 
fluid budget of primary Archaean crust during prograde metamor-
phism. Ultrahigh-MgO metabasites are defined here as any extru-
sive or shallow crustal intrusive rocks with MgO >18 wt %, and 
include hydrated komatiites, ultrahigh-MgO picrites and boninite-
like rocks, as well as pyroxenite and peridotite cumulates (e.g. 
Szilas et al., 2015). We show that the temperature at which major 
devolatilization occurs is positively correlated with protolith MgO 
content and that metamorphosed ultramafic rocks (MgO >18 wt%) 
undergo dehydration by chlorite breakdown at temperatures in ex-
cess of 700 ◦C. This means these rocks would have provided a key 
source of H2O in the deep crust and/or lithospheric mantle in the 
early Earth.
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Fig. 2. A–C: Isochemical P–T pseudosections for representative samples of metabasite (A), high-MgO metabasite (B) and ultrahigh-MgO metabasite (C) protolith compositions. 
Coloured lines represent appearance and/or disappearance of major rock forming minerals. Solid black lines represent contours for cumulative amount of H2O released 
at various P-T conditions. Dashed black lines denote the wet-solidi. Coloured fields highlight major dehydration intervals associated with actinolite-hornblende transition, 
serpentine breakdown (blue) and chlorite breakdown (green). D–F: Diagrams showing cumulative amount of H2O released versus temperature along geothermal gradients 
ranging from 500 ◦C.GPa−1 to 1100 ◦C.GPa−1 for basaltic (D), picritic (E) and komatiitic (F) protoliths. In all rock types most water is released during chlorite breakdown, 
which occurs at increasingly higher temperatures (and thus pressure/depth) as the protolith MgO content increases.
2. Fluid budgets during burial and heating

Simplified isochemical P –T diagrams (pseudosections) for the 
three modelled compositions are shown in Figs. 2A–C, and in-
clude the (dis)appearance of key minerals along with contours for 
H2O production (as mol.%, ∼vol.%). Also shown are four geotherms 
ranging between 1100 and 500 ◦C.GPa−1. The full phase diagrams 
are provided in the Supplementary Materials (Figs S2–4) along 
with details of their calculation. Curves showing the cumulative 
amount of H2O released from each rock type with increasing tem-
perature are shown in Fig. 2D–F. Changes in mineral modes in each 
rock type are depicted in modebox diagrams in Fig. S5.

Regardless of the geotherm, burial and heating of a typical 
fully-hydrated (seawater-altered) Archaean metabasite produces a 
maximum of around 5 vol.% H2O. Most H2O is produced across a 
narrow temperature interval between 450 and 510 ◦C correspond-
ing to the breakdown of actinolite and chlorite to form hornblende 
(Fig. 2A, Fig. S2). Less than 1 vol.% H2O is released with further 
increases in temperature (Fig. 2D) until the H2O-saturated (‘wet’) 
solidus is reached at around 700 ◦C, at which point any free H2O 
is consumed to form melt. For the high-MgO metabasite (Figs. 2B 
and 2E, Fig. S3), H2O is mainly released in two dehydration steps. 
The first step, at 460–500 ◦C, is associated with the actinolite to 
hornblende transition to produce 3 vol.% H2O. A second dehydra-
tion event is related to the breakdown of chlorite, the stability of 
which is extended to higher temperatures than in the basalt. The 
3

temperature interval over which chlorite breaks down is moder-
ately pressure dependent, occurring at temperatures between 545 
and 555 ◦C along a warm 1100 ◦C.GPa−1 geotherm, but between 
610 and 650 ◦C along cooler geotherms (500 ◦C.GPa−1). At tem-
peratures above chlorite breakdown, there is negligible additional 
H2O produced before reaching the H2O-saturated solidus around 
800 ◦C. Overall, the representative high-MgO metabasite produces 
some 8 vol.% H2O, about 60% more H2O than an equivalent volume 
of Archaean basaltic material.

The calculated phase equilibria for the ultrahigh-MgO metaba-
site (Figs. 2C and 2F, Fig. S4) shows some important differences 
from the other compositions. At lower temperatures, antigorite 
(serpentine) is stable, and its breakdown to form olivine marks the 
first major dehydration event, which liberates around 6 vol.% H2O 
between 480 and 600 ◦C. However, chlorite breakdown occurs at 
much higher temperatures of between 700 and 800 ◦C, releasing 
a large volume of H2O (around 14–16 vol.%). Thus, ultrahigh-MgO 
metabasites can store then liberate around four times as much H2O 
as an equivalent volume of Archaean low-MgO metabasite, most of 
which is released at substantially higher temperature (Fig. 2F). Al-
though the presence of CO2 from devolatilising carbonate within 
mafic–ultramafic rocks affects the phase equilibria (Elmer et al., 
2006; Powell et al., 1991), CO2 plays an insignificant role in the 
temperatures of antigorite and chlorite breakdown for plausible 
quantities of carbonate within the protolith (Fig. S6).



M.I.H. Hartnady, T.E. Johnson, S. Schorn et al. Earth and Planetary Science Letters 594 (2022) 117695

Fig. 3. A. Modelled fluid production versus temperature curves with variable proportions of ultrahigh-MgO material. Note that increasing ultramafic rocks fractions increase 
the proportion of fluid released at high-temperature. B. Plot of Archaean geotherms versus crustal thickness with isotherms corresponding to the approximate temperature 
of chlorite breakdown reactions in each end-member rock type, depicting the depths at which dehydration will occur in the basaltic, picritic and komatiitic (grey field) 
protoliths along a given geotherm.
3. Consequences for volatile recycling in the early Earth

On modern Earth, the upper (basaltic) levels of oceanic crust 
show limited variability in MgO content (mainly 7–9 wt%) (White 
et al., 2014), and dehydration reactions occur over a restricted 
temperature range (350–500 ◦C) (Hacker et al., 2003). By con-
trast, our phase equilibrium modelling indicates that, on burial 
and heating, metamorphic fluids would have been released from 
compositionally-variable Archaean mafic–ultramafic crust over a 
much wider range of temperatures and pressures/depths (Fig. 2).

Whether release of hydrous fluids occurs within the crust or the 
lithospheric mantle is a function of the composition of the crust 
being buried, the thickness of the crust and the geotherm (Fig. 3A, 
Figs. S7 and S8). The thickness of primary mafic–ultramafic crust 
is positively correlated with mantle temperature (Herzberg et al., 
2010). Although the temperature of the upper mantle in the early 
Archaean is debated (Herzberg et al., 2010; Ganne and Feng, 2017), 
most estimates suggest mantle potential temperature was at least 
150 ◦C warmer than the present day, and that primary crustal 
thicknesses were 20–45 km (Herzberg et al., 2010). These results 
are consistent with the trace element composition of most TTG 
that formed by intracrustal melting of amphibolite in the stability 
field of garnet, requiring a crustal thickness of at least ∼20–25 km 
assuming an average density of 2950 kg.m−3 (Bédard, 2006; John-
son et al., 2017). Phase equilibrium calculations suggest most TTG 
formed under crustal geotherms of 700 ◦C.GPa−1 or higher (John-
son et al., 2017), consistent with the range of apparent geotherms 
estimated from the metamorphic rock record (600–1200 ◦C.GPa−1) 
(Brown and Johnson, 2018).

Assuming a minimum thickness of 20 km for early Archaean 
mafic–ultramafic crust, typical Archaean hydrated metabasites 
would have undergone major dehydration within the crust for 
geotherms greater than around 800 ◦C.GPa−1 (Fig. 3B). Impor-
tantly, at a crustal thickness of 20 km and for all plausible 
geotherms (<1100–1200 ◦C.GPa−1), both high-MgO metabasites 
and ultrahigh-MgO metabasites would have undergone chlorite 
dehydration at depths below the Moho (Fig. 3B), leading to hy-
dration and enrichment of the lithospheric mantle in fluid-mobile 
elements, and promoting partial melting of that source to produce 
enriched basalts.
4

For a crustal thickness of 30 km and geotherms >700 ◦C.GPa−1, 
major pulses of intracrustal dehydration by breakdown of chlo-
rite in metabasite and high-MgO metabasite, and of antigorite in 
ultrahigh-MgO metabasite, release H2O to hydrate overlying dry 
or H2O-undersaturated mafic rocks, making them more fertile to 
subsequent partial melting when buried to deeper crustal lev-
els. If fluid produced by dehydration of less magnesium rocks 
in the mid crust was not highly channelised, adjacent ultramafic 
intrusions would potentially have become hydrated, and would 
have acted as a ‘sponge’, permitting transportation of H2O to 
much greater, rather than lesser, depths (Fig. 3A). Under these 
conditions, chlorite dehydration in ultrahigh-MgO metabasite may 
still have occurred within the lithospheric mantle for a geotherm 
<900 ◦C.GPa−1 (Fig. 3B). By contrast, for crust >40 km thick and 
plausible geotherms (>600 ◦C.GPa−1), dehydration of all modelled 
lithologies would have occurred within the crust. Chlorite break-
down in ultrahigh-MgO metabasite occurs at temperatures above 
the H2O-saturated-solidi for Archaean metabasite and high-MgO 
metabasite (Fig. 3), but not above the solidi for strongly H2O-
undersaturated intrusive equivalents.

Subduction buries upper crustal rocks along cool geotherms 
(Peacock, 1990), providing an ideal mechanism for transport-
ing fluids into the mantle. Indeed, many greenstone sequences 
throughout the Archaean eon contain enriched and hydrated 
‘boninite-like’ magmas similar to those that characterise the ini-
tiation stages of modern subduction zones (Smithies et al., 2018), 
where strongly-depleted mantle is fluxed by trace-element en-
riched ‘crustal’ fluids. The occurrence of ‘boninite-like’ rocks in 
many greenstone belts could reflect partial melting of lithospheric 
mantle due to high-temperature dehydration of ultramafic rocks 
buried in ‘warm’ Archaean subduction zones (Fig. 4A). However, 
even more common in Archaean sequences are high-Mg basaltic 
rocks that preserve variolitic textures believed to reflect fluid-
fluxed melting of lithospheric mantle (Murphy et al., 2021). In the 
eastern Pilbara Craton in Western Australia, these voluminous var-
iolitic basalts are included among the oldest preserved volcanic 
rocks in the region (3.47 billion years old), and are argued to have 
formed in a stagnant-lid regime (Murphy et al., 2021). Numeri-
cal modelling has shown intraplate ‘sagduction’ processes are also 
able to bury hydrated upper crustal rocks to upper mantle depths 
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Fig. 4. Schematic diagrams showing plausible end-member scenarios. A. A warm Archaean subduction zone shows mantle metasomatism and TTG formation occurring above 
a dehydrating slab. B. TTG generation by fluid-fluxed melting of mafic crust in an intraplate setting, modified after numerical models from Sizova et al., 2015.
along geotherms similar to those that characterise hot subduction 
zones (Sizova et al., 2015). Given the ability of hydrated mafic–
ultramafic volcanic rocks to transport volatiles to depth under 
geotherms >500 ◦C.GPa−1 suggests that subduction-like environ-
ments may not have been required. Instead, these volatiles could 
have been transported into the mantle via sinking greenstone drips 
(Fig. 4B; Bédard, 2006; Johnson et al., 2016; Murphy et al., 2021; 
Smithies et al., 2021).

4. Implications for the generation of TTG magmas

The presence of hydrous fluids lowers the melting tempera-
ture of metabasalt to 650–700 ◦C. Fluid-fluxed melting produces 
TTG melts with ‘high-pressure’ trace element signatures (high-Sr 
and low-HREE contents), in which the volume of melt produced is 
proportional to the volume of external fluid added until the melt 
becomes saturated in H2O (Pourteau et al., 2020). The presence 
of a significant fluid reservoir in the lower portions of Archaean 
primary mafic-ultramafic crust obviates the need for inverted ther-
mal gradients to introduce fluids at temperatures conducive to 
partial melting (Clemens et al., 2020). Instead, the formation of 
significant volumes of TTG magma in the lower parts of primary 
Archaean crust may have been an inevitable consequence of mag-
matic thickening of variably hydrated ultramafic-rich crust along 
warm Archaean geotherms (e.g. Webb et al., 2020).

Modelling of the bulk Archaean crustal fluid budgets clearly 
shows that the dehydration and subsequent partial melting of pri-
mary mafic-ultramafic crust is sensitive to the proportion of hy-
drated ultramafic rock present (Fig. 3A). For ultramafic rock abun-
dances of 30%, comparable to some komatiite-rich greenstone belts 
(de Wit and Ashwal, 1995) or greenstone belts with abundant 
MgO-rich boninite-like rocks and ultramafic intrusions such as Isua 
in West Greenland (Furnes et al., 2009; Szilas et al., 2015), the to-
tal fluid budget of Archaean crust is twice that of crust comprising 
5

only metabasite (Fig. 3A, Fig. S7 and S8). Importantly, in crust with 
30% ultramafic rocks, >50% of this fluid is released at tempera-
tures >700 ◦C. For ultramafic rock contents of 5%, comparable to 
the average abundance of komatiite in greenstone belts (de Wit 
and Ashwal, 1995), the fluid carrying capacity of Archaean crust 
increases by 20% (Figs. S7 and S8), 17% of which is released at tem-
peratures >700 ◦C. In addition to hydration, silicification (metaso-
matism) during seafloor alteration of Archean primary crust was 
likely important in decreasing solidus temperatures and/or increas-
ing melt fertility (André et al., 2019, 2022), with each mole of 
quartz at the solidus yielding approximately 2 moles of melt upon 
heating to 850 ◦C (Stuck and Diener, 2017). In regions dominated 
by cooler geothermal gradients, where fluids locked within the ul-
tramafic component of Archaean crust were released within the 
lithospheric mantle, TTGs may have formed by a two-stage pro-
cess. The release of fluids in the lithospheric mantle would have 
promoted partial melting and advection of enriched hydrous mafic 
magmas into the lower crust (Fig. 4), contributing additional heat 
and fluids to form the hybridised mafic source of TTG (Smithies et 
al., 2021).

These results therefore highlight that the differentiation of 
Earth’s primary mafic–ultramafic crust likely proceeded by a com-
bination of processes, including both fluid-absent and fluid-present 
crustal anatexis, to produce TTG of variable compositions; where 
the extent of fluid-present melting, and the formation of seem-
ingly ‘high-pressure’ (high Sr/Y) TTG, was limited by the avail-
ability of free water supplied by hydrated lower crustal ultra-
mafic material. Fluid-present melting models may not fully account 
for crustal differentiation throughout the Archaean, but should be 
more widely applicable to the earliest felsic Hadean-Eoarchaean 
proto-continents which are believed to have formed above re-
gions of anomalously hot mantle via partial melting of primary 
mafic–ultramafic crust that was subject to hydrothermal alteration 
(Reimink et al., 2014; André et al., 2019, 2022). Given the strong 



M.I.H. Hartnady, T.E. Johnson, S. Schorn et al. Earth and Planetary Science Letters 594 (2022) 117695
dependence of melt productivity with the volume of external fluid 
supplied to sustain fluid-present melting (Pourteau et al., 2020), an 
intriguing and counter-intuitive implication of our model is that 
the development of Earth’s proto-continents in the early Archaean 
might reflect a primordial variability in the proportion of ultra-
mafic rock (and water content) of Earth’s primary mafic–ultramafic 
crust.

Evidence for these processes in the rock record may be pre-
served in the Lewisian Complex in NW Scotland, where amphibole-
bearing metaperidotites and metapyroxenites are interlayered with 
garnet-bearing metabasic migmatites (Guice et al., 2018). These 
rocks show a close spatial and temporal association with garnet-
biotite gneisses interpreted to be of (volcano) sedimentary origin 
(Johnson et al., 2016). The metaperidotites have a similar miner-
alogy to those predicted for hydrated komatiites metamorphosed 
to granulite facies (Fig. S4), and these lithological associations have 
been interpreted by some to represent an Archaean greenstone se-
quence that sunk into the lower crust (Johnson et al., 2016). More-
over, the greenstone sequence at Isua in West Greenland, preserves 
a range of mafic–ultramafic rocks types, including metabasic rocks 
containing Mg-rich chlorite (Furnes et al., 2009) and amphibole-
bearing olivine serpentinites (Szilas et al., 2015), both of which are 
indicative of hydrated ultramafic protoliths.

5. Conclusions

Throughout the Archaean, Earth was covered in a global ocean 
(Bindeman et al., 2018), such that most or all mafic and ultramafic 
lavas were erupted under water. The recognition that hydrated 
ultramafic rocks dehydrate at elevated temperatures highlights a 
new geochemical pathway for recycling of volatiles into the deep 
crust and upper mantle on a hotter early Earth. Depending on lo-
cal crustal composition and thickness, and the ambient conductive 
geotherm, high-temperature dehydration of ultramafic rocks such 
as, but not limited to, komatiite, would have caused hydration 
and/or fluid-present melting of overlying lower MgO rock types, 
ultimately to form TTG magmas, the building blocks of ancient 
continental crust. Alternatively, if liberated at subcrustal depths, 
such fluids would have metasomatized the lithospheric mantle to 
form the source of enriched Archaean basalts.

6. Methods

Methods and any associated references are available in the sup-
plementary information provided.
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