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Abstract: Artificial intelligence (AI)-based computer-aided detection and diagnosis (CAD) is an
important research area in radiology. However, only two narrative reviews about general uses of
AI in pediatric radiology and AI-based CAD in pediatric chest imaging have been published yet.
The purpose of this systematic review is to investigate the AI-based CAD applications in pediatric
radiology, their diagnostic performances and methods for their performance evaluation. A literature
search with the use of electronic databases was conducted on 11 January 2023. Twenty-three articles
that met the selection criteria were included. This review shows that the AI-based CAD could be
applied in pediatric brain, respiratory, musculoskeletal, urologic and cardiac imaging, and especially
for pneumonia detection. Most of the studies (93.3%, 14/15; 77.8%, 14/18; 73.3%, 11/15; 80.0%, 8/10;
66.6%, 2/3; 84.2%, 16/19; 80.0%, 8/10) reported model performances of at least 0.83 (area under
receiver operating characteristic curve), 0.84 (sensitivity), 0.80 (specificity), 0.89 (positive predictive
value), 0.63 (negative predictive value), 0.87 (accuracy), and 0.82 (F1 score), respectively. However,
a range of methodological weaknesses (especially a lack of model external validation) are found in
the included studies. In the future, more AI-based CAD studies in pediatric radiology with robust
methodology should be conducted for convincing clinical centers to adopt CAD and realizing its
benefits in a wider context.

Keywords: children; confusion matrix; convolutional neural network; deep learning; diagnostic
accuracy; disease identification; image interpretation; machine learning; medical imaging; pneumonia

1. Introduction

Artificial intelligence (AI) is an active research area in radiology [1–4]. However, the
investigation of use of AI for computer-aided detection and diagnosis (CAD) in radiology
started in 1955. Any CAD systems are AI applications and can be subdivided into two
types: computer-aided detection (CADe) and computer-aided diagnosis (CADx) [5–7].
The former focuses on the automatic detection of anomalies (e.g., tumor, etc.) on medical
images, while the latter is capable of automatically characterizing anomaly types such as
benign and malignant [7]. Since the 1980s, more researchers have become interested in the
CAD system development due to availabilities of digital medical imaging and powerful
computers. The first CAD system approved by The United States of America Food and
Drug Administration was commercially available in 1998 for breast cancer detection [6].

Early AI-based CAD systems in radiology were entirely rule based, and their algo-
rithms could not improve automatically. In contrast, machine learning (ML)-based and
deep learning (DL)-based CAD systems can automatically improve their performances
through training, and hence, they have become dominant. DL is a subset of ML, and its
models have more layers than those of ML. The DL algorithms are capable of modeling
high-level abstractions in medical images without predetermined inputs [5,8,9].
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A recent systematic review has shown that the DL-based CAD systems in radiology
have been developed for a range of areas including breast, cardiovascular, gastrointestinal,
hepatological, neurological, respiratory, rheumatic, thyroid and urologic diseases, and
trauma. The performances of these CAD systems matched expert readers’ capabilities
(pooled sensitivity and specificity: 87.0% vs. 86.4% and 92.5% vs. 90.5%), respectively [10].
Apparently, the current AI-based CAD systems might help to address radiologist shortage
problems [9–11]. Nevertheless, various systematic reviews have criticized that the diag-
nostic performance figures reported in many AI-based CAD studies were not trustworthy
because of their methodological weaknesses [10,12,13].

Pediatric radiology is a subset of radiology [14–17]. The aforementioned systematic
review findings may not be applicable to the pediatric radiology [10,12,13,16,17]. For
example, the AI-based CAD systems for breast and prostate cancer detections seem not
relevant to children [10,12,13,17]. Although the AI-based CAD is an important topic area
in radiology [10,12,13], apparently, only two narrative reviews about various uses of AI
in pediatric radiology (e.g., examination booking, image acquisition and post-processing,
CAD, etc.) [17] and AI-based CAD in pediatric chest imaging have been published to
date [16]. Hence, it is timely to conduct a systematic review about the diagnostic perfor-
mance of AI-based CAD in pediatric radiology. The purpose of this article is to system-
atically review the original studies to answer the question: “What are the AI-based CAD
applications in pediatric radiology, their diagnostic performances and methods for their
performance evaluation?”

2. Materials and Methods

This systematic review of the diagnostic performance of the AI-based CAD in pediatric
radiology was conducted as per the preferred reporting items for systematic reviews and
meta-analyses (PRISMA) guidelines and patient/population, intervention, comparison,
and outcome model. This involved a literature search, article selection, and data extraction
and synthesis [10,12–14,18].

2.1. Literature Search

The literature search with the use of electronic scholarly publication databases, in-
cluding EBSCOhost/Cumulative Index of Nursing and Allied Health Literature Ultimate,
Ovid/Embase, PubMed/Medline, ScienceDirect, Scopus, SpringerLink, Web of Science,
and Wiley Online Library was conducted on 11 January 2023 to identify articles investigat-
ing the diagnostic performance of the AI-based CAD in the pediatric radiology with no
publication year restriction [12,19,20]. The search statement used was (“Artificial Intelli-
gence” OR “Machine Learning” OR “Deep Learning”) AND (“Computer-Aided Diagnosis”
OR “Computer-Aided Detection”) AND (“Pediatric” OR “Children”) AND (“Radiology”
OR “Medical Imaging”). The keywords used in the search were based on the review
focus and systematic reviews on the diagnostic performance of the AI-based CAD in
radiology [19–23].

2.2. Article Selection

A reviewer with more than 20 years of experience in conducting literature reviews
was involved in the article selection process [14,24]. Only peer-reviewed original research
articles that were written in English and focused on the AI-based CAD in pediatric radi-
ology with the diagnostic accuracy measures were included. Gray literature, conference
proceedings, editorials, review, perspective, opinion, commentary, and non-peer-reviewed
(e.g., those published via the arXiv research-sharing platform, etc.) articles were excluded
because this systematic review focused on the diagnostic performance of the AI-based CAD
in the pediatric radiology and appraisal of the associated methodology reported in the
refereed original articles. Papers mainly about image segmentation or clinical prediction
instead of disease identification or classification were also excluded [12].
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Figure 1 illustrates the details of the article selection process. A three-stage screening
process through assessing (1) article titles, (2) abstracts, and (3) full texts against the selection
criteria was employed after duplicate article removal from the results of the database search.
Every non-duplicate article within the search results was retained until its exclusion could
be decided [14,25,26].
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Figure 1. Preferred reporting items for systematic reviews and meta-analyses flow diagram for
systematic review of diagnostic performance of artificial intelligence-based computer-aided de-
tection and diagnosis in pediatric radiology. CINAHL, Cumulative Index of Nursing and Allied
Health Literature.

2.3. Data Extraction and Synthesis

Two data extraction forms (Tables 1 and 2) were developed based on a recent sys-
tematic review on the diagnostic performance of AI-based CAD in radiology [12]. The
data, including author name and country, publication year, imaging modality, diagnosis,
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diagnostic performance of AI-based CAD system (area under receiver operating char-
acteristic curve (AUC), sensitivity, specificity, positive predictive value (PPV), negative
predictive value (NPV), accuracy and F1 score), AI type (such as ML and DL) and model
(e.g., support vector machine, convolutional neural network (CNN), etc.) for developing
the CAD system, study design (either prospective or retrospective), source (such as pub-
lic dataset by Guangzhou Women and Children’s Medical Center, China) and size (e.g.,
5858 images, etc.) of dataset for testing the CAD system, patient/population (such as
1–5-year-old children), any sample size calculation, model internal validation type (e.g.,
10-fold cross-validation, etc.), any model external validation (i.e., any model testing with
use of dataset not involved in internal validation and acquired from different setting),
reference standard for ground truth establishment (such as histology and expert consensus),
any model performance comparison with clinician and model commercial availability were
extracted from each included paper. When diagnostic performance findings were reported
for multiple AI-based CAD models in a study, only the values of the best performing model
were presented [27]. Meta-analysis was not conducted because this systematic review
covered a range of imaging modalities and pathologies, and hence, high study hetero-
geneity was expected, affecting its usefulness [12,13,28]. The Revised Quality Assessment
of Diagnostic Accuracy Studies (QUADAS-2) tool was used to assess the quality of all
included studies [9,12,13,19,23,27,29].

3. Results

Twenty-three articles met the selection criteria and were included in this review [30–52].
Table 1 shows their AI-based CAD application areas in the pediatric radiology and the diag-
nostic performances. These studies covered brain (n = 9) [30–38], respiratory (n = 9) [42–50],
musculoskeletal (n = 2) [40,41], urologic (n = 2) [51,52] and cardiac imaging (n = 1) [39]. The
commonest AI-based CAD application area (30.4%, 7/23) was pediatric pneumonia [43,45–50].
No study reported all seven diagnostic accuracy measures [30–52]. Most commonly, the papers
(30.4%, 7/23) reported four metrics [30,32,35,42,44,45,52]. Accuracy (n = 19) and sensitivity
(n = 18) were the two most frequently used evaluation metrics [30–39,41–52]. One study only
used one measure, AUC [40]. Most of the articles (93.3%, 14/15; 77.8%, 14/18; 73.3%, 11/15;
80.0%, 8/10; 66.6%, 2/3; 84.2%, 16/19; 80.0%, 8/10) reported AI-based CAD model performances
of at least 0.83 (AUC), 0.84 (sensitivity), 0.80 (specificity), 0.89 (PPV), 0.63 (NPV), 0.87 (accuracy),
and 0.82 (F1 score), respectively. The ranges of the reported performance values were 0.698–0.999
(AUC), 0.420–0.987 (sensitivity), 0.585–1.000 (specificity), 0.600–1.000 (PPV), 0.260–0.971 (NPV),
0.643–0.986 (accuracy), and 0.626–0.983 (F1 score) [30–52]. For the seven studies about AI-based
CAD for pneumonia, their model performances were at least 0.850 (AUC), 0.760 (sensitivity),
0.800 (specificity), 0.891 (PPV), 0.905 (accuracy) and 0.903 (F1 score).
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Table 1. Artificial intelligence-based computer-aided detection and diagnosis application areas in pediatric radiology and their diagnostic performances.

Author, Year and Country Modality Diagnosis
Diagnostic Performance

AUC Sensitivity Specificity PPV NPV Accuracy F1 Score

Brain Imaging

Dou et al. (2022)—China [30] MRI Bipolar disorder 0.830 0.909 0.769 NR NR 0.854 NR

Kuttala et al. (2022)—Australia,
India & United Arab Emirates [31] MRI ADHD and ASD 0.850 (ADHA);

0.910 (ASD) NR NR NR NR 0.854 (ADHA);
0.978 (ASD) NR

Li et al. (2020)—China [32] MRI Posterior fossa
tumors 0.865 0.929 0.800 NR NR 0.878 NR

Peruzzo et al. (2016)—Italy [33] MRI Malformations of
corpus callosum 0.953 0.923 0.904 0.906 NR 0.914 NR

Prince et al. (2020)—USA [34] CT & MRI ACP 0.978 NR NR NR NR 0.979 NR

Tan et al. (2013)—USA [35] MRI
Congenital

sensori-neural
hearing loss

0.900 0.890 0.860 NR NR 0.870 NR

Xiao et al. (2019)—China [36] MRI ASD NR 0.980 0.936 0.959 0.971 0.963 NR

Zahia et al. (2020)—Spain [37] MRI Dyslexia NR 0.750 0.714 0.600 NR 0.727 0.670

Zhou et al. (2021)—China [38] MRI ADHD 0.698 0.609 0.676 NR NR 0.643 0.626

Cardiac Imaging

Lee et al. (2022)—South Korea [39] US Kawasaki disease NR 0.841 0.585 0.811 0.633 0.759 0.826

Musculoskeletal Imaging

Petibon et al. (2021)—Canada,
Israel and USA [40] SPECT Low back pain 0.830 NR NR NR NR NR NR

Sezer and Sezer (2020)—France
and Turkey [41] US DDH NR 0.962 0.980 NR NR 0.977 NR

Respiratory Imaging

Behzadi—Khormouji et al.
(2020)—Iran and USA [42] X-ray Pulmonary

consolidation 0.995 0.987 0.864 NR NR 0.945 NR
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Table 1. Cont.

Author, Year and Country Modality Diagnosis
Diagnostic Performance

AUC Sensitivity Specificity PPV NPV Accuracy F1 Score

Bodapati and Rohith (2022)—India [43] X-ray Pneumonia 0.939 NR NR NR NR 0.948 0.959

Helm et al. (2009)—Canada, UK and
USA [44] CT Pulmonary nodules NR 0.420 1.000 1.000 0.260 NR NR

Jiang and Chen (2022)-China [45] X-ray Pneumonia NR 0.894 NR 0.918 NR 0.912 0.903

Liang and Zheng (2020)-China [46] X-ray Pneumonia 0.953 0.967 NR 0.891 NR 0.905 0.927

Mahomed et al. (2020)-Netherlands
and South Africa [47] X-ray Primary-endpoint

pneumonia 0.850 0.760 0.800 NR NR NR NR

Shouman et al. (2022)-Egypt and Saudi
Arabia [48] X-ray Bacterial and viral

pneumonia 0.999 0.987 0.987 0.979 NR 0.986 0.983

Silva et al. (2022)-Brazil [49] X-ray Pneumonia NR 0.945 NR 0.957 NR NR 0.951

Vrbančič and Podgorelec
(2022)-Slovenia [50] X-ray Pneumonia 0.952 0.976 0.927 0.973 NR 0.963 0.974

Urologic Imaging

Guan et al. (2022)-China [51] US Hydronephrosis NR NR NR NR NR 0.891 0.895

Zheng et al. (2019)-China and USA [52] US CAKUT 0.920 0.86 0.880 NR NR 0.870 NR

ACP, adamantinomatous craniopharyngioma; ADHD, attention deficit hyperactivity disorder; ASD, autism spectrum disorder; AUC, area under receiver operating characteristic curve;
CAKUT, congenital abnormalities of kidney and urinary tract; CT, computed tomography; DDH, developmental dysplasia of hip; MRI, magnetic resonance imaging; NPV, negative
predictive value; NR, not reported; PPV, positive predictive value; SPECT, single-photon emission computed tomography; UK, United Kingdom; US, ultrasound; USA, United States
of America.
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Table 2 presents the included study characteristics. Overall, 18 out of 23 (78.3%) stud-
ies were published in the last three years [30–32,34,37–43,45–51]. Most of them (72.7%,
16/22) developed the DL-based CAD systems [31,34,36,37,39–43,45,46,48–52]. Of these
16 DL-based systems, 75% (n = 12) used the CNN model [34,37,39–43,46,48–51]. Mag-
netic resonance imaging (MRI) (n = 9) [30–38] and X-ray (n = 8) [42,43,45–50] were most
frequently used by the AI-based CAD models for the brain and respiratory disease di-
agnoses, respectively. The majority of studies (69.6%, 16/23) collected the datasets ret-
rospectively [31,33,34,36,38–40,42–46,48–50,52]. Of these 16 retrospective studies, about
one-third (n = 11) relied on the public datasets [31,34,36,38,42,43,45,46,48–50]; most of
them (n = 7) used the chest X-ray dataset consisting of 1741 normal and 4346 pneumonia
images of 6087 1–5-year-old children collected from the Guangzhou Women and Chil-
dren’s Medical Center, China [42,43,45,46,48–50]. No study calculated the sample size
for the data collection [30–52]. Most of the studies (60.9%, 14/23) collected less than
233 cases [30–41,44,52], and about one-third (n = 7) collected data of less than 87 patients
for testing their systems [30,32,34,35,37,40,44]. Hence, for the model internal validation,
more than half of the studies (n = 13) used the cross-validation to address the small test
set issue [30,33–40,47,50–52]. However, all but one did not conduct the external vali-
dation [30–43,45–52]. The only exception conducted external validation for a commer-
cial AI-based CAD system evaluation [44]. Less than one-fifth of the included studies
(n = 4) used the consensus diagnosis as the reference standard (ground truth) for the model
training and performance evaluation [33,42,44,47], and one-quarter (n = 6) did not report
the reference standard [31,43,45,46,48,49]. Only about one-fifth (n = 5) compared their
model performances with those of clinicians [33,34,40,44,47], and most of these (60%, 3/5)
were the studies using the consensus diagnosis as the reference standard [33,44,47].

Figure 2 shows the quality assessment summary of all (23) studies based on the QUADAS-2
tool. Only around one-third of the studies had a low risk of bias [34–38,41,44,52] and concern
regarding applicability for the patient selection category [30,34–38,41,44,52]. The low risk of bias
of the reference standard was only noted in about half of them [32–38,40,42,47,50,52].
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Table 2. Study characteristics of artificial intelligence-based computer-aided detection and diagnosis in pediatric radiology.

Author, Year
and Country Modality Diagnosis AI Type and

Model
Study

Design Dataset Source Test Set Size Patient/
Population

Sample Size
Calculation

Internal
Validation

Type

External
Validation

Reference
Standard

AI vs.
Clinician

Commercial
Availability

Brain Imaging

Dou et al.
(2022)—China

[30]
MRI Bipolar

disorder ML-LR Prospective
Private dataset by
Second Xiangya
Hospital, China

52 scans 12–18-year-old
children No 2-fold cross-

validation No Clinical
diagnosis No No

Kuttala et al.
(2022)—

Australia, India
and United

Arab Emirates
[31]

MRI ADHD and
ASD

DL-GAN and
softmax Retrospective

Public datasets
(ADHD-200 and

Autism Brain
Imaging Data
Exchange II)

217 scans

Children (median
ages for baseline

and follow-up
scans: 12 and

15 years,
respectively)

No NR No NR No No

Li et al.
(2020)—China

[32]
MRI

Posterior
fossa

tumors
ML-SVM Prospective

Private dataset by
Affiliated Hospital

of Zhengzhou
University, China

45 scans 0–14-year-old
children No

Repeated
hold-out with
70:30 random

split

No Histology No No

Peruzzo et al.
(2016)—Italy

[33]
MRI

Malformations
of corpus
callosum

ML-SVM Retrospective

Private dataset by
Scientific Institute
“Eugenio Medea”,

Italy

104 scans 2–12-year-old
children No

Leave-one-
out cross

validation
No Expert

consensus Yes No

Prince et al.
(2020)—USA

[34]

CT and
MRI ACP DL-CNN Retrospective

Public dataset
(ATPC

Consortium) and
private datasets

by Children’s
Hospital Colorado

and St. Jude
Children’s

Research Hospital,
USA

86 CT-MRI
scans Children No

60:40 random
split and

5-fold cross
validation

No Histology Yes No

Tan et al.
(2013)—USA

[35]
MRI

Congenital
sensori-
neural

hearing
loss

ML-SVM Prospective

Private dataset by
Cincinnati
Children’s

Hospital Medical
Center, USA

39 scans 8–24-month-old
children No

Leave-one-
out

cross-
validation

No Follow-up No No

Xiao et al.
(2019)—China

[36]
MRI ASD DL-SAE and

softmax Retrospective

Public dataset
(Autism Brain
Imaging Data
Exchange II)

198 scans 5–12-year-old
children No

11-, 33-, 66-,
99- and
198-fold

cross-
validation

No Clinical
diagnosis No No
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Table 2. Cont.

Author, Year
and Country Modality Diagnosis AI Type

and Model
Study

Design Dataset Source Test Set
Size

Patient/
Population

Sample
Size

Calculation

Internal
Validation

Type

External
Valida-

tion

Reference
Standard

AI vs.
Clinician

Commercial
Availability

Zahia et al.
(2020)—Spain

[37]
MRI Dyslexia DL-CNN Prospective

Private dataset
by University

Hospital of
Cruces, Spain

55 scans 9–12-year-old
children No 4-fold cross

validation No Clinical
diagnosis No No

Zhou et al.
(2021)—China

[38]
MRI ADHD ML-SVM Retrospective

Public dataset
(Adolescent

Brain Cognitive
Development

Data
Repository)

232 scans 9–10-year-old
children No

10-fold
cross-

validation
No Clinical

diagnosis No No

Cardiac Imaging

Lee et al.
(2022)—South

Korea [39]
US Kawasaki

disease DL-CNN Retrospective

Private dataset
by Yonsei
University
Gangnam
Severance

Hospital, South
Korea

203 scans Children No
10-fold
cross-

validation
No

Single
expert
reader

No No

Musculoskeletal Imaging

Petibon et al.
(2021)—

Canada, Israel
and USA [40]

SPECT Low back
pain DL-CNN Retrospective

Private dataset
by Boston
Children’s

Hospital, USA

65 scans 10–17 years old
children No 3-fold cross-

validation No

Other-
ground

truth
established
by artificial

lesion
insertion

Yes No

Sezer and
Sezer (2020)—

France and
Turkey [41]

US DDH DL-CNN Prospective Private dataset 203 scans 0–6-month-old
children No

70:30
random

split
No

Single
expert
reader

No No



Children 2023, 10, 525 10 of 17

Table 2. Cont.

Author, Year
and Country Modality Diagnosis AI Type

and Model
Study

Design Dataset Source Test Set
Size

Patient/
Population

Sample
Size

Calculation

Internal
Validation

Type

External
Valida-

tion

Reference
Standard

AI vs.
Clinician

Commercial
Availability

Respiratory Imaging

Behzadi—
Khormouji

et al.
(2020)—Iran
and USA [42]

X-ray
Pulmonary
consolida-

tion
DL-CNN Retrospective

Public dataset
by Guangzhou

Women and
Children’s

Medical Center,
China

582 images 1–5-year-old
children No

90:10
random

split
No Expert

consensus No No

Bodapati and
Rohith

(2022)—India
[43]

X-ray Pneumonia
DL-CNN

and
CapsNet

Retrospective

Public dataset
by Guangzhou

Women and
Children’s

Medical Center,
China

640 images 1–5-year-old
children No NR No NR No No

Helm et al.
(2009)—

Canada, UK
and USA [44]

CT Pulmonary
nodules NR Retrospective

Private dataset
by a tertiary

pediatric
hospital

29 scans

3 years and
11 months to
18-year-old

children

No NR Yes
Expert and

reader
consensus

Yes Yes

Jiang and
Chen

(2022)—China
[45]

X-ray Pneumonia DL-ViT Retrospective

Public dataset
by Guangzhou

Women and
Children’s

Medical Center,
China

624 images 1–5-year-old
children No NR No NR No No

Liang and
Zheng

(2020)—China
[46]

X-ray Pneumonia DL-CNN Retrospective

Public dataset
by Guangzhou

Women and
Children’s

Medical Center,
China

624 images 1–5-year-old
children No

90:10
random

split
No NR No No

Mahomed
et al. (2020)—
Netherlands
and South
Africa [47]

X-ray

Primary-
endpoint
pneumo-

nia

ML-SVM Prospective

Private dataset
by Chris Hani
Baragwanath

Academic
Hospital, South

Africa

858
digitized
images

1–59-month-old
children No

10-fold
cross-

validation
No Reader

consensus Yes No
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Table 2. Cont.

Author, Year
and Country Modality Diagnosis AI Type

and Model
Study

Design Dataset Source Test Set
Size

Patient/
Population

Sample
Size

Calculation

Internal
Validation

Type

External
Valida-

tion

Reference
Standard

AI vs.
Clinician

Commercial
Availability

Shouman et al.
(2022)—Egypt

and Saudi
Arabia [48]

X-ray

Bacterial
and viral
pneumo-

nia

DL-CNN
and LSTM Retrospective

Public dataset
by Guangzhou

Women and
Children’s

Medical Center,
China

586 images 1–5-year-old
children No

90:10
random

split
No NR No No

Silva et al.
(2022)—Brazil

[49]
X-ray Pneumonia DL-CNN Retrospective

Public dataset
by Guangzhou

Women and
Children’s

Medical Center,
China

1172 images 1–5-year-old
children No NR No NR No No

Vrbančič and
Podgorelec

(2022)—
Slovenia

[50]

X-ray Pneumonia DL-CNN
and SGD Retrospective

Public dataset
by Guangzhou

Women and
Children’s

Medical Center,
China

5858 images 1–5-year-old
children No

10-fold
cross-

validation
No Expert

readers No No

Urologic Imaging

Guan et al.
(2022)—China

[51]
US HydronephrosisDL-CNN Prospective

Private dataset
by Beijing
Children’s

Hospital, China

3257 images Children No
10-fold
cross-

validation
No

Readers and
experts
without

consensus

No No

Zheng et al.
(2019)—China
and USA [52]

US CAKUT DL-SVM Retrospective

Private dataset
by Children’s

Hospital of
Philadelphia,

USA

100 scans

Children with
mean age of

111 days
(SD: 262)

No
10-fold
cross-

validation
No Clinical

diagnosis No No

ACP, adamantinomatous craniopharyngioma; ADHD, attention deficit hyperactivity disorder; AI, artificial intelligence; ASD, autism spectrum disorder; ATPC, Advancing Treatment for
Pediatric Craniopharyngioma; CAKUT, congenital abnormalities of kidney and urinary tract; CapsNet, capsule network; CNN, convolutional neural network; CT, computed tomography;
DDH, developmental dysplasia of hip; DL, deep learning; GAN, generative adversarial network; LR, logistic regression; LSTM, long short-term memory; ML, machine learning; MRI, magnetic
resonance imaging; NR, not reported; SAE, stacked auto-encoder; SD, standard deviation; SGD, stochastic gradient descent; SPECT, single-photon emission computed tomography; SVM, support
vector machine; UK, United Kingdom; US, ultrasound; USA, United States of America; ViT, vision transformer.
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4. Discussion

This article is the first systematic review on the diagnostic performance of the AI-
based CAD in the pediatric radiology covering the brain [30–38], respiratory [42–50],
musculoskeletal [40,41], urologic [51,52] and cardiac imaging [39]. Hence, it advances the
previous two narrative reviews about various uses of AI in the pediatric radiology [17]
and the AI-based CAD in the pediatric chest imaging [16] published in 2021 and 2022,
respectively. Most of the included studies reported AI-based CAD model performances
of at least 0.83 (AUC), 0.84 (sensitivity), 0.80 (specificity), 0.89 (PPV), 0.63 (NPV), 0.87
(accuracy), and 0.82 (F1 score) [30–52]. However, the diagnostic performances of these CAD
systems appeared a bit lower than those reported in the systematic review of the AI-based
CAD in the radiology (pooled sensitivity and specificity: 0.87 and 0.93, respectively) [10]. In
addition, the pediatric pneumonia was the only disease that was investigated by more than
two studies [43,45–50]. Although these studies reported that their CAD performances for
the pneumonia diagnosis were at least 0.850 (AUC), 0.760 (sensitivity), 0.800 (specificity),
0.891 (PPV), 0.905 (accuracy) and 0.903 (F1 score), which would be sufficient to support less
experienced pediatric radiologists in image interpretation, all but one were the retrospective
studies and relied on the chest X-ray dataset consisting of 1741 normal and 4346 pneumonia
images of 6087 1–5-year-old children collected from the Guangzhou Women and Children’s
Medical Center, China [13,43–50]. It is noted that the use of the public dataset could facilitate
AI-based CAD model performance comparison with other similar studies [43]. On the other
hand, this approach would affect the model generalization ability (i.e., unable to maintain
the performance when applying to different settings), causing the model to be unfit for real
clinical situations [10,46]. Although techniques such as the cross-validation can be used
to improve the AI-based CAD model generalization ability [37], only one of these studies
used the cross-validation approach [50], while half of them did not report the internal
validation type [43,45,49]. In addition, some ground truths given in the public datasets
might be inaccurate, indicating potential reference standard issues [10,42]. These studies
did not calculate the required sample size; perform the external validation; and compare
their model performances with radiologists, but they are essential for the demonstration of
the trustworthiness of study findings [43,45,46,48–50]. As per Table 2, the aforementioned
methodological issues were also common for other included studies. These issues are
found in many studies about the AI-based CAD in the radiology as well [10,12,13].

Table 2 reveals that the DL and its model, CNN, were commonly used for the devel-
opment of the AI-based CAD systems in the pediatric radiology similar to the situation
in the radiology [13]. According to the recent narrative review about the AI-based CAD
in the pediatric chest imaging published in 2022, 144 Conformité Européenne-marked
AI-based CAD systems for brain (35%), respiratory, (27%), musculoskeletal (11%), breast
(11%), other (7%), abdominal (6%) and cardiac (4%) imaging were commercially available
in the radiology [16]. The proportions of these systems are comparable to the findings of
this systematic review that the brain, respiratory and musculoskeletal imaging were the
three most popular application areas of the AI-based CAD in the pediatric radiology and
the cardiac imaging was the least (Table 1). However, except for Helm et al.’s retrospective
study about the detection of pediatric pulmonary nodules in 29 3–18-year-old patients
with the use of the AI-based CAD system developed for adults [44], no commercial system
was involved in the included studies (Table 2) [30–43,45–52]. Helm et al.’s study [44] was
the only one that performed the external validation of the CAD system with the reference
standard established by the consensus of six radiologists, and one of the few compared
the CAD performance with the clinicians. However, that study only used four evaluation
measures: sensitivity (0.42), specificity (1.00), PPV (1.00) and NPV (0.26), and the other
metrics commonly used in more clinically focused studies, AUC and accuracy, were not
reported [10,12,44,53]. This highlights that even for a more clinically focused AI-based
CAD study in the pediatric radiology with the better design, the common methodological
weaknesses such as the retrospective data collection with limited information of patient
characteristics reported and cases included, and no sample size calculation, were still
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prevalent (Table 2) [44,54,55]. Hence, these explain the findings in Figure 2 that the concern
regarding applicability was found in the patient selection, and the risk of bias was noted in
both patient selection and reference standard categories, although similar results were also
reported in the systematic reviews of the AI-based CAD in the radiology [10,12].

Apparently, the AI-based CAD in the pediatric radiology is less developed when
compared to its adult counterpart. For example, not many studies were published before
2020 [33,35,36,44,52,56–76], and the studies mainly focused on the MRI and X-ray and par-
ticular patient cohorts [30–52] (Table 2). Although Schalekamp et al.’s [16] narrative review
published in 2022 suggested the use of the AI-based CAD designed for the adult population
in children, Helm et al.’s [44] study demonstrated that this approach yielded low sensitivity
(0.42) and NPV (0.26) in detecting pediatric pulmonary nodules because of the smaller
nodule sizes in children. Hence, AI-based CAD systems specifically designed/finetuned
for the pediatric radiology by researchers and/or commercial companies seem necessary in
the future. In addition, for further research, more robust study designs that can address
the aforementioned methodological issues (especially the lack of the external validation)
are essential for providing trustworthy findings to convince clinical centers to adopt the
AI-based CAD in the pediatric radiology. In this way, the potential benefits of the CAD
could be realized in a wider context [5,10,12,13].

This systematic review has two major limitations. The article selection, data extraction,
and synthesis were performed by a single author, albeit one with more than 20 years of
experience in conducting the literature reviews [14]. According to a recent methodological
systematic review, this is an appropriate arrangement provided that the single reviewer
is experienced [14,24,77–79]. Additionally, through adherence to the PRISMA guidelines
and the use of the data extraction forms (Tables 1 and 2) devised based on the recent
systematic review on the diagnostic performance of the AI-based CAD in the radiology and
the QUADAS-2 tool, the potential bias should be addressed to a certain extent [12,14,26,29].
In addition, only articles in English identified via databases were included, potentially
affecting the comprehensiveness of this systematic review [9,21,26,27,80]. Nevertheless,
this review still has a wider coverage about the AI-based CAD in the pediatric radiology
than the previous two narrative reviews [16,17].

5. Conclusions

This systematic review shows that the AI-based CAD for the pediatric radiology could
be applied in the brain, respiratory, musculoskeletal, urologic and cardiac imaging. Most
of the studies (93.3%, 14/15; 77.8%, 14/18; 73.3%, 11/15; 80.0%, 8/10; 66.6%, 2/3; 84.2%,
16/19; 80.0%, 8/10) reported AI-based CAD model performances of at least 0.83 (AUC),
0.84 (sensitivity), 0.80 (specificity), 0.89 (PPV), 0.63 (NPV), 0.87 (accuracy), and 0.82 (F1
score), respectively. The pediatric pneumonia was the most common pathology covered
in the included studies. They reported that their CAD performances for pneumonia
diagnosis were at least 0.850 (AUC), 0.760 (sensitivity), 0.800 (specificity), 0.891 (PPV),
0.905 (accuracy) and 0.903 (F1 score). Although these diagnostic performances appear
sufficient to support the less experienced pediatric radiologists in the image interpretation,
a range of methodological weaknesses such as the retrospective data collection, no sample
size calculation, overreliance on public dataset, small test set size, limited patient cohort
coverage, use of diagnostic accuracy measures and cross-validation, lack of model external
validation and model performance comparison with clinicians, and risk of bias of reference
standard are found in the included studies. Hence, their AI-based CAD systems might
be unfit for the real clinical situations due to a lack of generalization ability. In the future,
more AI-based CAD systems specifically designed/fine-tuned for a wider range of imaging
modalities and pathologies in the pediatric radiology should be developed. In addition,
more robust study designs should be used in further research to address the aforementioned
methodological issues for providing the trustworthy findings to convince the clinical centers
to adopt the AI-based CAD in the pediatric radiology. In this way, the potential benefits of
the CAD could be realized in a wider context.
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