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Abstract
Aim: Environmental DNA (eDNA) metabarcoding has demonstrated its applicabil-
ity as a highly sensitive biomonitoring tool across small spatial and temporal scales 
in marine ecosystems. However, it has rarely been tested across large spatial scales 
or biogeographical barriers. Here, we scale up marine eDNA metabarcoding, test its 
ability to detect a major marine biogeographic break and evaluate its use as a regional 
biomonitoring tool in Australia.
Location: North-western Australia (NWA).
Methods: We applied metabarcoding assays targeting the mitochondrial 16S rRNA 
and CO1 genes to 284 surface seawater eDNA samples collected from 71 mid-shelf, 
inshore, coastal and nearshore estuarine sites over 700 km of the NWA coastline.
Results: Metabarcoding detected a wide range of bony fish (404 taxa), elasmobranchs 
(44) and aquatic reptiles (5). We detected bioregional and depth differentiation within 
inshore bony fish communities. These findings support the presence of a marine bio-
geographic break, which is purported to occur in the vicinity of Cape Leveque, de-
marcating the border between the Kimberley and Canning bioregions. Inshore bony 
fish and elasmobranch communities, as well as coastal bony fish assemblages, were 
additionally found to differ between the South and North Kimberley regions sug-
gesting previously unrecognized subregional differentiation amongst these taxa. The 
overall compositional data have been used to update distribution information for a 
number of endangered, elusive and data-deficient taxa, including sawfish (family: 
Pristidae), northern river shark (Glyphis garricki) and wedgefish (genus: Rhynchobatus).
Main conclusions: eDNA metabarcoding demonstrated a high level of sensitivity that 
was able to discern fine-scale patterns across the large-scale, remote and ocean-
ographically complex region of North-western Australia. Importantly, this study 
highlights the potential of integrating broad-scale eDNA metabarcoding alongside 
other baseline surveys and long-term monitoring approaches, which are crucial for 
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1  | INTRODUC TION

Broad-scale biomonitoring of marine environments is integral for 
the detection of biological changes, stressors and shifting base-
lines over large spatial and temporal scales (Dafforn et al., 2016). 
Typically, these approaches utilize rapid assessment methods, 
such as underwater visual census (UVC), marine manta tow and 
baited remote underwater video (BRUV) surveys (Ellis et al., 2011; 
Gaertner et al., 2013; Piacenza et al., 2015) that provide informa-
tion to distinguish broad-scale indicators and subsequently direct 
further research efforts to areas of interest. However, the appli-
cation of these techniques is not suitable in marine environments 
with limited visibility and other safety hazards to divers, for ex-
ample the presence of saltwater crocodiles (Crocodylus porosus). 
The advent of environmental DNA (eDNA) metabarcoding coupled 
with next-generation sequencing (NGS) has enabled the genetic 
detection and profiling of a wide range of biota present in envi-
ronmental samples (e.g. water, scat and soil etc.). Environmental 
DNA metabarcoding has the potential to be utilized as a sensi-
tive, cost-effective, and rapid broad-scale biomonitoring tool 
and is particularly well suited to marine environments (Thomsen 
et al., 2012; Thomsen & Willerslev, 2015; Valentini et al., 2016). 
Importantly, the collection of surface water (or at depth with a 
water sampler) for eDNA analyses bypasses logistical and safety 
hazards associated with visual surveillance work in turbid and 
dangerous marine environments. Furthermore, eDNA-derived 
compositional data can provide greater biological coverage to 
distinguish spatial and habitat variation, identify network associ-
ations, trophic structure, biological invasions and the presence of 
critically endangered species (Valentini et al., 2016). Whilst eDNA 
metabarcoding has demonstrated its applicability across small, yet 
highly sensitive, spatial (Jeunen et al., 2019; O’Donnell et al., 2017; 
Port et  al.,  2016; West et  al.,  2020) and temporal scales (Berry 
et al., 2019) in marine ecosystems, it is in a preliminary stage of 
being scaled up and tested across broader regional scales (Aglieri 
et al., 2020; Fraija-Fernández et al., 2020).

The extensive coastline of north-western Australia (NWA) sup-
ports a diverse array of tropical marine habitats and biota, extend-
ing from offshore coral reefs on the edge of the continental shelf, 
to coastal intertidal sand, rock and reef habitats, constituting 12 
distinct bioregions (Wilson,  2014). A profound change in the un-
derlying geomorphology of the Canning and Kimberley basins, 
from Cretaceous-Cainozoic sedimentary (largely sandstone) rocks 
to Proterozoic metasedimentary, metamorphic and igneous rocks, 
has shaped various coastal marine habitats in these bioregions 

(Wilson, 2014). The Canning bioregion comprises coastlines typified 
by benthic soft substrates, such as intertidal sand and mudflat hab-
itats with very little coral reefs, whilst the Kimberley bioregion is 
dominated by rocky, intertidal platforms, fringing coral and offshore 
coral reefs, and substantial mangrove habitat (Richards et al., 2018; 
Wilson, 2014). Environmental conditions and connectivity patterns 
across these bioregions are additionally shaped by various oceanic 
currents, immense tidal systems (macrotides ranging up to 11 m in 
the Kimberley), seasonal discharge and extreme turbidity from major 
rivers (Semeniuk, 1993; Thackway & Cresswell, 1998). Temperature 
varies between the bioregions and also across subregions, semi-
arid in the Canning, sub-humid in the southern Kimberley, humid in 
the northern Kimberley and sub-humid in the northeast Kimberley 
(Cresswell & Semeniuk, 2011).

This environmental variation is purported to contribute 
to a major biogeographic break at Cape Leveque – the tip of 
the Dampier Peninsula, demarcating the border between the 
Kimberley and Canning bioregions – see Figure  1 (Travers 
et al., 2010; Wilson, 2014). A significant change in the fish assem-
blage composition across Cape Leveque (Hutchins,  2001a) likely 
reflects the latitudinal transition in benthic substrates, overlaid on 
a strong bioregional effect reflecting various habitat, tidal and riv-
erine discharge influences (Travers et al., 2006, 2010). Population 
connectivity studies in bony fish (stripey snapper; Lutjanus car-
ponotatus and blackspotted croaker; Protonibea diacanthus) and 
corals (Isopora brueggemanni and Acropora aspera) further revealed 
a genetic transition zone across Cape Leveque, with dispersal 
and gene flow likely constricted by extreme tidal flushing at the 
head of King Sound (DiBattista et al., 2017; Taillebois et al., 2017; 
Underwood et al., 2017).

The aim of this study was to conduct a broad-scale multi-
marker eDNA metabarcoding survey across the extensive coastline 
of NWA in order to: (a) detect the purported biogeographic break 
across Cape Leveque using eDNA-derived bony fish, shark and ray 
and aquatic reptile taxonomic compositional data, (b) update distri-
butional information for endangered elasmobranchs, such as saw-
fish (family Pristidae) and the northern river shark (Glyphis garricki), 
marine turtles (superfamily Chelonioidea) and for data-deficient 
taxa such as sea snakes (subfamily Hydrophiinae), and (c) evaluate 
the overall strengths and weaknesses of eDNA metabarcoding as 
a biomonitoring tool when used across a broad geographic region. 
Given the remoteness of NWA, long-term monitoring programmes 
are sparse, particularly for species that are not of commercial value 
(Evans et al., 2017). As such, there is a great potential to integrate 
eDNA metabarcoding as a long-term, large-scale biomonitoring tool 

the sustainable management and conservation of marine biodiversity in this unique 
marine region.

K E Y W O R D S

biogeographic, biomonitoring, elasmobranch, environmental DNA, Kimberley, large-scale, 
marine biodiversity, marine reptile, teleost, threatened species
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in NWA, capable of providing distribution information on a wide va-
riety of taxa.

2  | METHODS

2.1 | Field sampling

Four one-litre water replicates were sampled from 71 sites 
across the Canning/Kimberley bioregions (Figure 1; Table S1) in 
September 2017 and July/September 2018, totalling 284 sam-
ples over 700  km of coastline. Samples were taken on a tran-
sect line traversing the purported biogeographic break and more 
widely across the Kimberley region in mid-shelf, inshore, coastal 
and nearshore estuarine habitats. Surface water was collected 
using bleach sterilized 1L Nalgene bottles attached to an ex-
tended pole, to avoid close encounters with saltwater crocodiles 
(C. porosus). Samples were immediately stored on ice and were 
individually filtered across Pall 0.45μm Supor® polyethersul-
phone membranes using a Pall Sentino® Microbiology pump (Pall 
Corporation) within five hours of collection. Filtration equipment 
was cleaned using 10% bleach (4% chlorine) – a one-litre sample 
of this was taken at the end of each sampling day as a filtration 
control to test for any carry over contamination. Membranes with 
filtrate were immediately frozen at −20°C, prior to their trans-
portation to the Trace & Environmental DNA (TrEnD) Laboratory 
in Perth, Western Australia, where they were stored at −80°C 

until extraction – all eDNA was isolated within two months of 
collection.

2.2 | DNA extraction

DNA was extracted from half of the membrane using a DNeasy 
Blood and Tissue Kit (Qiagen) with the following modifications: 
540 μl of ATL lysis buffer, 60 μl of Proteinase K and a 3-hr diges-
tion at 56ºC. Extracts were eluted in 100  μl of Buffer EB. This 
was completed within four weeks of collection. Extraction blank 
controls were processed in parallel with all samples to detect any 
cross-contamination. Genomic DNA extracts were then stored at 
−20°C.

2.3 | Metabarcoding assay design, amplification and 
library sequencing

Three PCR metabarcoding assays were employed: 16S Fish, COI 
Elasmobranch and 16S Reptile (Table  1) to amplify bony fish, 
elasmobranchs and aquatic reptiles, respectively, from mixed en-
vironmental samples. The 16S Fish and COI Elasmobranch PCR 
assays have been optimized and successfully applied in previous 
eDNA metabarcoding studies examining fish and shark diversity 
and trophic interactions (Bakker et  al.,  2017; Berry et  al.,  2017; 
Boussarie et al., 2018; Stat et al., 2017, 2019; West et al., 2020). 

F I G U R E  1   Location of sampling 
sites across the Canning and Kimberley 
bioregions in north-western Australia 
(NWA). The Canning sites (1–7; latitude 
16.1°S-17.5°S) located within the 
Dampier Peninsula subregion extend 
northwards from Broome to the 
purported biogeographic break line off 
Cape Leveque. The Kimberley sites (8–71) 
located north-west of the purported 
biogeographic break are additionally 
categorized into the subregions, South 
Kimberley (sites 8–44 and 68–71; latitude 
15.1°S-16.4°S) and North Kimberley 
(sites 45–66; latitude 13.6°S-14.6°S). 
Bathymetry data were sourced from 
Geoscience Australia (Whiteway, 2009) 
[Colour figure can be viewed at 
wileyonlinelibrary.com]
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     |  1945WEST et al.

The 16S Reptile assay has been recently designed to amplify 
northern Australian aquatic reptiles, such as sea snakes, turtles 
and crocodiles (West et al., 2021).

Following quantitative PCR-based (qPCR) quantification to op-
timize levels of input DNA (Murray et  al.,  2015), final qPCR was 
performed in a single step using fusion tagged primer architecture 
consisting of Illumina compatible sequencing adaptors, a unique 
index (6-8bp in length) and a respective primer sequence for each 
assay. All qPCR reactions were prepared in dedicated clean room fa-
cilities at the TrEnD Laboratory, Curtin University, and are described 
in detail in Section S1. Quantitative PCR amplicons were pooled at 
equimolar ratios based on qPCR ΔRn values and size-selected using 
a Pippin-Prep (Sage Science, Beverly, USA) to remove any off-tar-
get amplicons. Size-selected libraries were then purified using the 
Qiaquick PCR Purification Kit (Qiagen), quantified using a Qubit 
4.0 Fluorometer (Invitrogen) and diluted to 2 nM for loading onto 
a 300 cycle MiSeq® V2 Standard Flow Cell. Sequencing was con-
ducted on an Illumina MiSeq platform (Illumina), housed in the TrEnD 
Laboratory at Curtin University, Western Australia.

2.4 | Bioinformatics

Sequencing reads were demultiplexed and quality filtered in OBITools 
(v1.2.9; Boyer et al., 2014) and in R (v3.5.3; R Core Team, 2015) using 
the DADA2 (v1.10.1) bioinformatics package (Callahan et al., 2016; 
see Section S2 for bioinformatic parameter details). Resulting am-
plicon sequence variants (ASVs) were queried against NCBI’s 
GenBank nucleotide database (accessed in 2018/19 for different 
assays; Benson et  al.,  2005) using BLASTn and also against an in-
house 16S rRNA Western Australian fish database consisting of 306 
species (Nester et al., 2020). Taxonomic assignments of ASVs were 
made using a lowest common ancestor approach (https://github.
com/mahsa​-mousa​vi/eDNAF​low/tree/maste​r/LCA_taxon​omyAs​
signm​ent_scripts, Mousavi-Derazmahalleh et al., unpublished data; 
see Section S2). All taxonomic assignments required 100% query 
coverage, with a species-level assignment requiring at minimum a 
98% identity match to a reference sequence. Consolidated taxa as-
signments (at the lowest possible taxonomic level) were then addi-
tionally categorized based on habitat association and biogeographic 
distribution information obtained from Kimberley biodiversity 
checklists (Moore et al., 2014), FishBase (Froese & Pauly, 2019) and 
the World Register of Marine Species (WoRMS; Horton et al., 2018). 
Nomenclature was reviewed and, if necessary, updated using the 
Australian Faunal Directory (AFD; ABRS, 2009).

In order to normalize the dataset, we determined appropriate 
subsampling depths for each assay (see Section S2 for more detail) 
and conducted consecutive rounds of subsampling using the mul-
tiple_rarefactions function in QIIME (v1.7.0; Caporaso et al., 2010). 
ASVs detected in filtration and/or extraction blanks were entirely re-
moved, prior to ASVs being merged by taxonomy using the phyloseq 
(v1.24.2) “tax_glom” function (McMurdie & Holmes, 2013) in RStudio. 
We then consolidated our assay data into three taxonomic-based TA
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datasets: Actinopterygii (bony fish), Elasmobranchii (elasmobranchs, 
i.e. sharks and rays) and Reptilia (reptiles), which allowed us to ex-
amine community composition by discrete taxonomic group, rather 
than by individual metabarcoding assays which contained some 
overlap in taxonomic detections.

2.5 | Statistics

Community composition variation was analysed across the study 
region, with a particular focus across the purported biogeographic 
break at Cape Leveque. In order to control for the effect of differing 
habitats, variation was tested between sites within inshore, coastal 
and nearshore estuarine habitats independently. Presence–absence 
data for each taxonomic dataset (bony fish, elasmobranchs and rep-
tiles) were converted to Jaccard similarity matrices and tested for 
compositional variation by a distance-based linear routine (DistLM) 
using a step-wise selection procedure and adjusted R2 criterion in the 
PERMANOVA + add-on (Anderson et al., 2008) of PRIMER v7 (Clarke 
& Gorley, 2015). Normalized spatial predictor variables included bi-
oregion (Canning and Kimberley), subregion (Dampier Peninsula 
[Canning], South Kimberley and North Kimberley), latitude and site 
depth (Table S1); longitude was omitted due to collinearity with lati-
tude. Temporal variation in sampling was not included, given earlier 
research indicated that season only has a small influence on inshore 
reef fish composition in this region (Travers et  al.,  2006). DistLM 
analyses are capable of handling unbalanced designs (Anderson 
et al., 2008), in this case, where there are an unequal number of sites 
in the spatial predictor variable groups. We did, however, run an ad-
ditional DistLM routine on a subset (Sites 1–11 and 42–44) of the 
data assemblages to assess the bioregional influence across 14 sites 
(seven sites directly on either side of the purported biogeographic 
break). Site variation was visualized by principal coordinate analysis 
(PCO) using the stats function “cmdscale” and predictor variables 
overlaid using the vegan “ordisurf” function (Oksanen et al., 2019) in 
R Studio (v1.1.423; R Core Team, 2015). Observed taxonomic rich-
ness at each site was tested for significance between bioregions and 
subregions using ANOVA and graphed in ggplot2 (Wickham, 2016) 
in RStudio. Additionally, similarity percentage analyses (SIMPER) 
were conducted in PRIMER to identify the top inshore and coastal 
taxa that contribute to pairwise dissimilarity between bioregions 
and subregions, where significant in the DistLM analyses. This elu-
cidated whether variation in community composition between the 
bioregions and subregions is driven by uneven taxonomic richness 
and/or variation in compositional diversity.

3  | RESULTS

3.1 | Sampling and sequencing statistics

The three eDNA metabarcoding assays yielded a total of 57,311,878 
sequencing reads. The mean number of filtered sequences 

(post-quality, denoizing and chimera filtering) was 75,800 ± 41,071 
per replicate sample (303,202 ± 143,648 per site) for the 16S Fish 
assay; 15,838 ± 21,799 per replicate sample (61,347 ± 58,418 per 
site) for the COI Elasmobranch assay; and 32,569 ± 42,241 per rep-
licate sample (130,278 ± 114,036 per site) for the 16S Reptile assay 
(Table S2). ASV accumulation curves based on the addition of each 
sampling replicate per site indicated that four one-litre water repli-
cates (selected a priori to sampling) were just shy of maximizing ASV 
richness for each of the three assays (Figures S1–S3). On fitting a 
polynomial curve to the median accumulation curve for each assay, 
it was extrapolated that an average of 6.9, 6.1 and 6.1 one-litre water 
replicates would be required to maximize ASV richness for 16S Fish, 
COI Elasmobranch and 16S Reptile assays, respectively. The rarefac-
tion analyses determined suitable subsampling cut-offs (after pool-
ing of the four replicates per site) of 30,977 reads for the 16S Fish 
assay (Figures S4–S6), 4,000 reads for the COI Elasmobranch assay 
(Figures S7–S9) and 4,000 reads for the 16S Reptile assay (Figures 
S10–S12).

Potential cross-contaminant ASVs that were detected in fil-
tration and/or extraction blanks were removed from subsequent 
analyses. This included ASVs that produced detection hits for giant 
trevally (Caranx ignobilis; 7 ASVs, 6,837 total reads), snapper (genus: 
Lutjanus; 4 ASVs, 55,199 total reads), blue threadfin (Eleutheronema 
tetradactylum; 6 ASVs, 7,868 total reads), barramundi (Lates calcar-
ifer; 43 ASVs, 22,866 total reads) and pilchard (genus: Sardinops; 38 
ASVs, 40,820 total reads). These species were targeted for fisheries 
and/or commercial research on the sampling vessels with the ex-
ception of pilchards, which were utilized as bait for BRUV deploy-
ments. Only compromized ASVs were removed from subsequent 
analyses. For example, we retained 15 barramundi ASVs that were 
not detected in filtration and/or extraction blanks. We also detected 
salmon (genus: Salmo; 1 ASV, 9 total reads), which has previously 
been detected as a sporadic reagent contamination in both our 
workflows and other laboratories (Thomsen et  al.,  2016), and as 
such was entirely removed. We also omitted all ASVs that produced 
detection hits for taxa outside of our targeted taxonomic groups of 
bony fish, elasmobranchs and reptiles. This included humans (Homo 
sapiens), chicken (Gallus gallus) and horse (Equus caballus).

3.2 | Overall diversity

A total of 310 taxa (ranging from family to species-level assignments; 
4.9 ± 9.9 ASVs per taxa) were detected by the 16S Fish assay, 139 
taxa (1.3 ± 1.0 ASVs per taxa) by the COI Elasmobranch assay and 
181 taxa (2.9 ± 5.2 ASVs per taxa) by the 16S Reptile assay, prior 
to subsampling (Figure 2). Collectively, the three metabarcoding as-
says yielded 453 identifiable taxa, representing 96 families within 41 
orders of bony fish, elasmobranchs and aquatic reptiles (Table S3). 
Of these taxa, 63.7% are widely distributed across the Indo-West 
Pacific, 12.4% circumglobal and 8.6% endemic to the Australian re-
gion (including Indo-Australian, Northern Australian and Western 
Australian bioregions). The majority of detected taxa are associated 
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with hard substrate habitats (54.0%), followed by soft substrate 
(38.6%), estuarine (33.6%), pelagic (28%), freshwater (12.4%), man-
grove (9.7%) and seagrass (2.6%) habitats (Table S3).

Four hundred and four bony fish taxa (class: Actinopterygii) were 
detected (15 at family level only, 136 at genus level only and 253 at a 
species level) from 80 families within 34 orders (Table S3). Predominant 
bony fish families included Gobiidae (gobies; 39 taxa), Labridae (wrasse; 
33), Carangidae (jacks and pompanos; 26) and Lutjanidae (snapper; 
20), which is in line with the most speciose families in tropical marine 
environments (Blaber, 2008; Mora, 2015). Bony fish of conservation, 
cultural, recreation and/or commercial importance in the Canning 
and Kimberley bioregions are presented in Table 2. This includes the 
protected Queensland groper (Epinephelus lanceolatus) and the highly 
prized barramundi (Lates calcarifer). We also report 21 putative new fish 
occurrence records in the Canning and Kimberley (Table S3); however, 
these cannot be fully validated in our study. To verify a new occurrence 
record based on eDNA metabarcoding, we required all congeneric taxa 
to have been barcoded for the targeted gene regions (in this case 16S 
and COI). However, as this criterion was not fulfilled, we cannot rule 
out the possibility that our new occurrence records represent a closely 
related (not yet barcoded) taxon.

Forty-four elasmobranch taxa (class: Chondrichthyes, subclass: 
Elasmobranchii) were detected from 11 families within four orders 
(Table S3). The two most speciose elasmobranch families were the 
Carcharhinidae (requiem sharks; 15 taxa) and Dasyatidae (stingrays; 
14), which collectively comprised over half of the total detected 
shark and ray taxa (Table S3). We detected five elasmobranchs that 
are listed as either “Endangered” or “Critically Endangered” on the 
IUCN Red List and are under various national and state protection 

management (see Table 2); these taxa were the largetooth sawfish 
(Pristis pristis), the dwarf sawfish (Pristis clavata), the knifetooth saw-
fish (Anoxypristis cuspidate), wedgefishes (genus: Rhynchobatus) and 
the northern river shark (Glyphis garricki). Other rare and uncommon 
taxa include the Australian weasel shark (Hemigaleus australiensis), 
the snaggletooth shark (Hemipristis elongata) and the pigeye shark 
(Carcharhinus amboinensis).

Only five reptile taxa (class: Reptilia) were detected from five 
families within three orders (Table S3): the saltwater crocodile 
(Crocodylus porosus), the black-headed python (Aspidites melano-
cephalus), Stokes's sea snake (Hydrophis stokesii), the white-bellied 
mangrove snake (Fordonia leucobalia) and the green turtle (Chelonia 
mydas). Given the low frequency of detection of these taxa, reptiles 
were excluded from all multivariate analyses.

3.3 | Community composition

3.3.1 | Bony fish composition

Bony fish composition was examined independently in each habi-
tat type (inshore, coastal and nearshore estuarine), excluding the 
mid-shelf habitat which was only comprised of one site. In regard 
to inshore bony fish compositions, a distance-based linear model 
(DistLM) routine across all sites indicated that bioregion (i.e. the 
Canning and Kimberley bioregions) explained the highest pro-
portion of fitted variance, followed by site depth and subregion 
(Table  3; Table S4). This result was additionally validated by the 
subset analysis (restricted to several sites either side of the break), 

F I G U R E  2   Order level dendrogram 
of bony fish, elasmobranch and reptile 
diversity detected across the Canning 
and Kimberley bioregions using eDNA 
metabarcoding. Three metabarcoding 
assays were applied (16S Reptile, 16S Fish 
and COI Elasmobranch) and produced 
181, 310 and 139 unique taxonomic 
assignments, respectively. As depicted 
in the circlize plot, there were cross-
amplification of taxonomic groups 
between the three assays [Colour figure 
can be viewed at wileyonlinelibrary.com]
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which again indicated that bioregion had the highest significant in-
fluence on inshore bony fish compositions across the purported bi-
ogeographic break (Table S4). Subsequent pairwise DistLM analyses 
between each of the subregions (i.e. Dampier Peninsula [Canning], 
South Kimberley and North Kimberley) identified a highly signifi-
cant subregional influence on the inshore bony fish compositions 
between the Dampier Peninsula and adjacent South Kimberley sub-
regions, and between the Dampier Peninsula and North Kimberley 
subregions. This reflects the broader biogeographic boundary be-
tween the Canning and Kimberley bioregions. Inshore bony fish 
compositions between the South Kimberley and North Kimberley 
subregions were largely found to transition based on site depth and 
latitudinal gradients; however, there was also a smaller subregional 
influence. Bony fish composition across all inshore sites is visualized 
in a PCO in Figure 3a. Cumulatively, the formed models explained 
between 20.1% and 26.7% of total fitted variance between inshore 
fish assemblages (Table 3; Table S4).

Taxonomic richness of inshore bony fish did not significantly 
differ between the two bioregions (Table S5; Figure S13). This in-
dicates that the detected bioregional variation was not influenced 
by uneven taxonomic richness, but solely compositional varia-
tion. Similarity percentage analysis (SIMPER) was used to identify 
prominent inshore bony fish taxa contributing most to pairwise 

dissimilarity between the Canning and Kimberley bioregions (Table 
S6). This indicated a higher detection rate of sardinella (genus: 
Amblygaster), purple tuskfish (Choerodon cephalotes) and chub 
mackerels (genus: Rastrelliger) in the Canning bioregion, whilst the 
Kimberley region had a higher detection rate of Spanish mackerel 
(genus: Scomberomorus), giant trevally (Caranx ignobilis) and blue 
tuskfish (Choerodon cyanodus).

In examining coastal fish assemblages (those restricted to the 
South and North Kimberley subregions), a DistLM analysis indicated 
that subregion was a highly significant predictor variable, explain-
ing 17.9% of fitted variance (Table 3; Table S7; Figure 3b). For bony 
fish composition in nearshore estuarine sites (only surveyed in the 
South Kimberley), depth was the only significant predictor variable, 
explaining 12% of the fitted variance (Table S8; Figure 3c).

3.3.2 | Elasmobranch composition

Elasmobranch composition across all inshore sites was found to 
be driven by subregion and depth, explaining 24.3% of fitted vari-
ance (Table 4; Figure 4a; Table S9). Pairwise DistLM analyses re-
vealed a subregional effect between all three of the subregions 
being the Dampier Peninsula (Canning), the South Kimberley and 

TA B L E  3   Summary table of the distance-based linear model (DistLM) analyses for bony fish

Sites Predictor Pseudo-F Proportion
Cumulative 
proportion p

Inshore

All sites Bioregion 3.302 0.086 0.086 .000***

Depth 3.005 0.074 0.160 .000***

Subregion 1.837 0.044 0.205 .000***

Dampier Peninsula and South 
Kimberley

Subregion 1.993 0.160 0.160 .000***

Depth 2.729 0.101 0.261 .000***

South and North Kimberley Depth 3.087 0.099 0.099 .000***

Latitude 1.943 0.060 0.159 .000***

Subregion 1.349 0.041 0.201 .029*

Dampier Peninsula and North 
Kimberley

Subregion 3.537 0.157 0.157 .001**

Depth 1.516 0.066 0.223 .015*

Latitude 1.011 0.044 0.267 .452

Coastal

South and North Kimberley Subregion 3.280 0.179 0.179 .000***

Depth 1.298 0.070 0.249 .087

Latitude 1.244 0.066 0.315 .148

Nearshore estuarine

South Kimberley Depth 1.903 0.120 0.120 .034*

Latitude 1.017 0.064 0.184 .368

Note: These were constructed using a sequential step-wise selection procedure and adjusted R2 criterion. Significant codes are as follows: 0 < 0.001 
“***,” 0.001 < 0.01 “**”and 0.01 < 0.05 “*.” The predictor variables highlighted in bold are significant (p < .05). Full DistLM results, including marginal 
tests and best solutions, are provided in Tables S4, S7 and S8.
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1950  |     WEST et al.

the North Kimberley (Table 4; Table S9). Cumulatively, the signifi-
cant spatial predictor variables that formed models explained be-
tween 23.6% and 34.3% of total fitted variance between inshore 
sites (Table 4). Taxonomic richness of inshore elasmobranchs did 
not differ significantly between the three subregions (Table S10; 
Figure S14); however, within the Dampier Peninsula only two sites 
(post-subsampling) had detectable traces of elasmobranch taxa. 
SIMPER analysis was used to identify prominent inshore elasmo-
branchs contributing most to pairwise dissimilarity between the 
three subregions (Table S11). Bluespotted maskray (Neotrygon 
kuhlii) dominated detections in the Dampier Peninsula, mangrove 
whipray (Himantura granulate), bluespotted ribbontail ray (Taeniura 
lymma) and brownbanded bamboo shark (Chiloscyllium punctatum) 
in the South Kimberley subregion, whilst the North Kimberley 
had a higher detection of requiem sharks such as grey reef shark 
(Carcharhinus amblyrhynchos), bull shark (Carcharhinus leucas), 
blacktip reef shark (Carcharhinus melanopterus) and spot-tail shark 
(Carcharhinus sorrah).

In examining elasmobranch taxa composition within coastal sites 
(South and North Kimberley only), site depth was the only signifi-
cant predictor variable, explaining 13.3% of the total fitted variance 
(Table  4; Table S12; Figure  4b). For the nearshore estuarine sites, 
there were no significant tested predictor variables that could ex-
plain the fitted variance (Table 4; Table S13; Figure 4c).

4  | DISCUSSION

4.1 | Bony fish compositional transitions across 
NWA

The Canning and Kimberley bioregions have some of the least 
impacted marine and coastal ecosystems in the world (Halpern 
et al., 2008) with over 1,500 reported species of bony fish (Fox & 
Beckley, 2005; Moore et al., 2014, 2020). This synthesis is the re-
sult of numerous surveys and museum records since the 1880s 
(Hutchins,  2001b; Moore et  al.,  2014, 2020; Paxton et  al.,  2006). 
This singular eDNA study detected 404 bony fish taxa from 80 
families across 71 sites, which comprises nearly a third of the total 
fish assemblage composition known from this region. This detec-
tion rate is comparable to a previous trawling and trapping survey 
of inshore fish fauna (up to 361 species from 85 families), reveal-
ing faunal transitions over NWA (Travers et al., 2010). With a similar 
high detection rate, we expected the eDNA site assemblages to be 
representative of the overall fish composition and reveal fine-scale 
changes across the Canning and Kimberley bioregions. Potential 
confounding effects of water movement on eDNA profiles between 
our sites (>4 km apart) are expected to be minimal, given a growing 
body of evidence indicating the localization of eDNA over small spa-
tial scales (<1 km) (Jeunen et al., 2019; Koziol et al., 2019; Murakami 

F I G U R E  3   Principal coordinate analysis (PCO) of bony fish composition in (a) inshore, (b) coastal and (c) nearshore estuarine sites. Depth 
gradients are plotted if they are a significant predictor variable in the corresponding DistLM analyses. The proportion of variation explained 
by each axis is shown on the axis labels [Colour figure can be viewed at wileyonlinelibrary.com]
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     |  1951WEST et al.

et al., 2019; Stat et al., 2019; West et al., 2020). Variation in DNA 
persistence between sites is also expected to be minimal, given that 
sea surface temperatures only vary by 1–2°C across our study region 
(Bureau of Meteorology, 2020).

The profound change in the underlying geomorphology and 
ensuing offshore, inshore and coastal habitats of the Canning and 
Kimberley bioregions corresponds to documented transitions in the 
marine faunal composition across Cape Leveque (Wilson,  2013). 
Studies of inshore soft substrate and reef fish fauna across NWA 
(Travers et al., 2006, 2010, 2012) revealed a latitudinal transition 
overlaid on a strong bioregional influence, presumably reflecting 
the very different environmental characteristics of the Kimberley 
and Canning marine bioregions, such as tidal regime, turbidity 
and the distribution of mangrove forests and seagrass meadows 
which provide nursery habitats for certain fish species (Travers 
et al., 2010). This built upon earlier meta-analyses and visual sur-
veys of fish distributions across Western Australia which iden-
tified a distinction between the Kimberley and the north-west 
shelf region (Fox & Beckley, 2005; Hutchins, 1997, 2001a). In our 
study, which examined the inshore bony fish compositions that 
traverse the purported biogeographic break across Cape Leveque, 
we demonstrated that site dissimilarity is driven by a bioregional 
effect (in addition to depth and subregion) across the Canning and 
Kimberley. This provides new evidence to support the existence 
of the biogeographic break on inshore fish composition. It also 
reveals the ability of eDNA to detect fine-scale changes across 
large-scale regions, even with a suboptimal level of replication to 
maximize the observed species richness.

The coastal bony fish assemblages, surveyed in this study across 
the South and North Kimberley regions, were shown to be influ-
enced by a subregional effect. Previous research by Hutchins (1997, 
2001a), identified discrete nearshore fish assemblages on either 
side of Cape Leveque and in the northeast Kimberley (east of Cape 
Londonderry), the latter typifying species found in the Northern 
Territory. Hutchins (1997) attributes the bioregional breaks in near-
shore fish fauna to varying environmental conditions, such as in-
creased turbidity in the King Sound area, which may prevent species 
from ranging further northwards. Unfortunately, the coastal sites 
surveyed in this study did not extend beyond the South and North 
Kimberley subregions; therefore, we could not examine whether this 
is a possible bioregional break in coastal fish between the Canning 
and Kimberley regions, and a subregional break between the North 
and Northeast Kimberley. However, this is the first report of a poten-
tial subregional break between coastal fish in the South Kimberley 
and North Kimberley regions.

4.2 | Elasmobranch compositional transitions 
across NWA

Detailed shark and ray fauna compositional data are underrepre-
sented in NWA marine surveys, with scant information on popu-
lations and species compositions across the bioregion. Many 
elasmobranchs are not efficiently sampled by trawl surveys (Travers 
et al., 2012) and can elude visual observations in NWA, particularly 
taxa such as sawfish which are benthic in nature and prefer turbid 

TA B L E  4   Summary table of the distance-based linear model (DistLM) analyses for elasmobranchs

Sites Predictor Pseudo-F Proportion
Cumulative 
proportion p

Inshore

All sites Subregion 3.822 0.184 0.184 .000***

Depth 2.578 0.059 0.243 .007**

Dampier Peninsula and South 
Kimberley

Subregion 3.288 0.135 0.135 .013*

Depth 3.395 0.125 0.260 .005**

South and North Kimberley Subregion 1.954 0.122 0.122 .003**

Depth 2.428 0.072 0.194 .008**

Latitude 1.414 0.042 0.236 .133

Dampier Peninsula and North 
Kimberley

Subregion 5.989 0.240 0.240 .000***

Depth 1.675 0.065 0.304 .076

Latitude 1.037 0.040 0.344 .417

Coastal

South and North Kimberley Depth 2.299 0.133 0.133 .013*

Subregion 1.060 0.061 0.194 .404

Latitude 1.237 0.070 0.264 .254

Note: These were constructed using a sequential step-wise selection procedure and adjusted R2 criterion. Significant codes are as follows: 0 < 0.001 
“***,” 0.001 < 0.01 “**”and 0.01 < 0.05 “*.” The predictor variables highlighted in bold are significant (p < .05). Full DistLM results, including marginal 
tests and best solutions, are provided in Tables S9 and S12.
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environments (Simpfendorfer et  al.,  2016). With the exception of 
reef-associated species (MacNeil et al., 2020), existing compositional 
data from coastal species are based on limited, and invariably biased, 
observations from commercial fisheries (Braccini & Taylor,  2016; 
Field et  al.,  2012; McAuley et  al.,  2005). In examining shark and 
ray eDNA-derived compositional data across the Canning and 
Kimberley regions, we detected a significant subregional influence 
on inshore species. This reflected variation across the purported 
biogeographic break between the Dampier Peninsula (Canning) and 
South Kimberley and also between the South and North Kimberley 
regions.

This widespread subregional influence on inshore shark 
and ray composition across NWA was consistent with observa-
tions from elsewhere across northern Australia where composi-
tion and relative abundance have been shown to vary markedly 
at a range of spatial and temporal scales (Espinoza et  al.,  2014; 
Harry et al., 2011; Taylor & Bennett, 2013; White & Potter, 2004; 
Yates, Heupel, Tobin, Moore, et  al.,  2015; Yates et  al.,  2015a). 
Northern Australia has a comparatively high elasmobranch bio-
diversity that includes many large-bodied and highly mobile spe-
cies (Last & Stevens,  2009). Variability in species composition is 
not only influenced by regional conditions, but also reflects the 
complex life-history strategies of many elasmobranchs that in-
cludes behaviour such as inshore nursery usage (Simpfendorfer & 

Milward,  1993; Yates, Heupel, Tobin, Moore, et  al.,  2015; Yates 
et al., 2015b), partitioning by size and sex (Knip et al., 2012; Yates, 
Heupel, Tobin, Moore, et  al.,  2015), and seasonal migration be-
tween tropical and temperate waters (Braccini et al., 2018; Heupel 
et al., 2015). Disentangling such patterns is beyond the capability 
of presence–absence data alone; however, these data can none-
theless assist in corroborating existing patterns in composition as 
well as identify new ones.

The identification of subregional breaks (which additionally 
alludes to a biogeographical break) in inshore species across the 
Canning and Kimberley regions is consistent with observations from 
commercial shark fisheries in NWA, where historically there has 
been a shift in the main target species from blacktip (C. tilstoni/C. 
limbatus) and spot-tail sharks (C. sorrah) in the North Kimberley 
and Northern Territory, to sandbar sharks (C. plumbeus) in the 
South Kimberley, Canning, Pilbara and Gascoyne (Field et al., 2012; 
McAuley et al., 2007). Such observations are limited by confounding 
factors such as gear type and are also biased towards commercially 
valuable species (intermediate- to large-bodied sharks) (Bensley 
et  al.,  2010). The eDNA-derived compositional data lend support 
to the existence of multiple subregional breaks and suggest it may 
also extend to a broad range of shark and ray taxa. Given that we 
only detected two elasmobranch species in the Canning region how-
ever (post-subsampling), we do recommend that further in-depth 

F I G U R E  4   Principal coordinate analysis (PCO) of elasmobranch composition in (a) inshore, (b) coastal and (c) nearshore estuarine sites. 
Depth gradients are plotted if they are a significant predictor variable in the corresponding DistLM analyses. The proportion of variation 
explained by each axis is shown on the axis labels [Colour figure can be viewed at wileyonlinelibrary.com]
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sampling is conducted to provide more definitive evidence of the 
purported biogeographic break on inshore elasmobranch species.

Interestingly, the coastal shark and ray assemblages in the South 
Kimberley and North Kimberley regions were solely influenced by 
site depth, unlike the inshore assemblage which exhibited subregional 
variation. The coastal elasmobranchs detected in this study are associ-
ated with a wide range of inhabited depths; some are commonly found 
in shallow coral and sandy areas, for example the blacktip reef shark 
(C. melanopterus), bull shark (C. leucas) and tawny nurse shark (Nebrius 
ferrugineus); others are found in deeper coral reef slopes, for example 
grey reef shark (C. amblyrhynchos) and whitetip reef shark (Triaenodon 
obesus), whilst others prefer neritic waters, for example the Australian 
sharpnose shark (Rhizoprionodon taylori), great hammerhead (Sphyrna 
mokarran) and scalloped hammerhead (Sphyrna lewini).

4.3 | A new approach for surveying endangered, 
elusive and data-deficient taxa in NWA

The coastline of NWA exhibits high turbidity resulting from immense 
tidal action and seasonal discharge from major rivers (Semeniuk, 1993; 
Thackway & Cresswell, 1998). This limits visibility and subsequently the 
application of visual surveillance techniques, such as UVCs, BRUVs and 
marine manta tows. Additionally, the widespread presence of saltwater 
crocodiles restricts diving even in inshore coral reef areas. Environmental 
DNA metabarcoding has thus provided an alternative biomonitoring ap-
proach which circumvents many of the logistical and safety limitations 
of working in this marine region. Our multi-marker eDNA metabarcod-
ing survey has successfully amplified a wide range of bony fish and 
elasmobranchs, including 21 putative new occurrence records (requir-
ing further validation), and a number of endangered, elusive and data-
deficient taxa. Aquatic reptiles were under-detected in this study based 
on low detection rates, which was unexpected given the widespread 
distribution of saltwater crocodiles (C. porosus) and marine turtles (su-
perfamily: Chelonioidea) across the Canning and Kimberley regions; this 
may reflect an emerging challenge in regard to the shedding of reptilian 
skin cells and subsequent detection with eDNA (Adams et al., 2019; see 
Section S3 for further discussion). Despite a low detection rate, this is 
the first study to our knowledge, to have detected crocodiles and sea 
snakes using an eDNA approach under field conditions.

A species-specific eDNA assay has previously been developed 
to detect the largetooth sawfish (P. pristis) across northern Australia 
(Simpfendorfer et al., 2016). A significant finding in our study was the 
detection of three out of the four globally endangered sawfish taxa 
(family: Pristidae) found in Australia using a metabarcoding approach. 
The largetooth sawfish is a euryhaline elasmobranch species that was 
once globally distributed in tropical marine, estuarine and freshwater 
environments of the Eastern and Western Atlantic, Eastern Pacific 
and Indo-West Pacific; however, population declines and extirpation 
have led to significant range contractions (Kyne, Carlson, et al., 2013). 
It is currently listed as Critically Endangered on the IUCN Red List of 
Threatened Species and is a protected species in Australia; Northern 
Australia may be the last viable stronghold for the Indo-Pacific popu-
lation and likely comprises a large proportion of the remaining global 

population (Kyne, Carlson, et  al.,  2013; Last & Stevens,  2009). In 
Western Australia, this species has been identified in the King Sound, 
Fitzroy, Durack, Robinson and Ord Rivers, with eDNA detections 
this distribution now extends to the Gairdner River in the Southern 
Kimberley, and Robroy Reef, an inshore site in the North Kimberley.

The dwarf sawfish (P. clavata) and the knifetooth sawfish (A. cuspi-
date) are both currently listed as Endangered on the IUCN Red List and 
like their confamiliars have undergone significant, yet largely unquan-
tified declines inside and outside of Australia (D’Anastasi et al., 2013; 
Kyne, Rigby, et  al.,  2013). Scattered records of the dwarf sawfish 
across the Indo-West Pacific indicate that it may have been widely 
distributed; however, there has been a lack of confirmed records out-
side of Australia since the 1800s (Kyne, Rigby, et al., 2013). Within 
Australia, the Kimberley and northern Pilbara regions represent sig-
nificant strongholds for the dwarf sawfish; these include sites in the 
King Sound, Fitzroy, May and Robinson Rivers, Hall Point and Cape 
Kerauden (Stevens et al., 2008; Thorburn et al., 2008). Environmental 
DNA detection extends the distribution of dwarf sawfish to Wildcat 
Reef, George Water and the Glenelg River in the South Kimberley. The 
knifetooth sawfish distribution extends across the Indo-West Pacific 
from the Persian Gulf to Japan and the central coasts of western and 
eastern Australia (Last & Stevens, 2009); eDNA of knifetooth sawfish 
was detected in Cape Bougainville, Troughton Island, Freshwater Bay 
and Vansittart Bay in the North Kimberley.

The northern river shark (G. garricki) is considered a rare species 
with limited distribution information and population estimates avail-
able (Field et  al.,  2013). All identified populations are considered to 
be of high conservation value and as such, recreational fishing of the 
species is banned under Australian federal law. The detection of the 
northern river shark in this study extends its current known distribu-
tion in Western Australia from scattered sightings in the King Sound 
(Compagno et al., 2008; Thorburn & Morgan, 2004, 2005), Ord River, 
King River and Joseph Bonaparte Gulf (Pillans et  al.,  2009) to the 
Gairdner River and the Walcott River in the South Kimberley region. 
These additional distribution records of endangered elasmobranchs 
will contribute to recovery plans and management arrangements and 
are already contributing to locations where additional surveys will be 
undertaken.

5  | CONCLUSION

This large-scale eDNA metabarcoding study across the coastlines of 
North-western Australia was able to detect a purported marine bio-
geographic break between the Canning and Kimberley bioregions. 
This demonstrates that eDNA metabarcoding is a highly sensitive de-
tection tool, capable of producing large amounts of high-resolution 
(e.g. to a species level) presence–absence data that can discern fine-
scale patterns across large geographic regions. Further broad-scale 
applications of this technique could be used to potentially reveal ma-
rine biogeographic breaks in other regions. For example, significant 
phylogeographic structure in mantis shrimp and seahorses in south-
east Asia is claimed to reflect historical oceanographic divisions; the 
former exhibits divergence along a sharp genetic break between the 
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Indian and Pacific Ocean regions (previously separated during the Last 
Glacial Maximum), whilst the latter is separated into east and west lin-
eages reminiscent of the terrestrial Wallace's Line (Barber et al., 2000; 
Lourie & Vincent, 2004). Environmental DNA metabarcoding could be 
used to assess whether these phylogeographic breaks reflect wider 
biogeographic partitioning in marine community compositions.

The eDNA samples resulting from this study will be archived and 
available for further assay applications extending beyond the taxo-
nomic groups targeted in this study. Additionally, our sequencing data 
can be retrospectively analysed with expanding databases to resolve 
ambiguous taxonomic assignments. Our georeferenced sites herein 
will be used as a baseline for future eDNA biomonitoring and notably 
will direct targeted surveying for the critically endangered elasmo-
branchs across NWA. We anticipate that eDNA metabarcoding will 
be integrated into broad-scale monitoring tool kits, particularly in 
northern Australia, where it circumvents many of the logistical and 
safety limitations of visual surveillance. At present, this technique is 
limited in its ability to provide quantitative data in relation to popu-
lation sizes and biomass. However, its ability to produce multi-taxon 
and potentially even whole-ecosystem data, without the need for 
taxonomic expertise, is both time- and cost-efficient. Amidst global 
population declines and resource limitations, innovative approaches 
to whole-ecosystem and biodiversity surveying are required to un-
derpin the best practice management of fisheries, tourism and com-
mercial interests in this remote region of Australia. We advocate that 
eDNA offers a promising demand-driven solution that is fast gaining 
traction when planning and executing biodiversity surveys.
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