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Abstract: The Myrtaceae is a very large and diverse family containing a number of economically
and ecologically valuable species. In Australia, the family contains approximately 1700 species from
70 genera and is structurally and floristically dominant in many diverse ecosystems. In addition to
threats from habitat fragmentation and increasing rates of natural disasters, infection by myrtle rust
caused by Austropuccinia psidii is of significant concern to Australian Myrtaceae species. Repeated
infections of new growth have caused host death and suppressed host populations by preventing
seed set. Although most Myrtaceae species demonstrate orthodox seed storage behavior, exceptional
species such as those with desiccation sensitive seed or from myrtle rust-suppressed populations
require alternate conservation strategies such as those offered by cryobiotechnology. Targeting
seven key Australian genera, we reviewed the available literature for examples of cryobiotechnol-
ogy utilized for conservation of Myrtaceae. While there were only limited examples of successful
cryopreservation for a few genera in this family, successful cryopreservation of both shoot tips and
embryonic axes suggest that cryobiotechnology provides a viable alternative for the conservation of
exceptional species and a potential safe storage method for the many Myrtaceae species under threat
from A. psidii.

Keywords: ex situ conservation; cryobiotechnology; cryostorage; plant tissue culture; in vitro culture;
exceptional species; Austropuccinia psidii

1. Introduction

The Myrtaceae is a large and diverse family found on all continents except Antarctica,
though occurring mainly in tropical and temperate regions of the Southern Hemisphere [1].
The family includes more than 6000 species [2] and new species continue to be discovered
in remote tropical forests, with many still to be formally identified to species level [3].
Many species have been cultivated for their timber, oils, or fruits and are economically
valuable both within their country of origin and in plantations around the world. On-going
impacts of land clearing, a changing climate, and myrtle rust on this family mean there is a
growing need to conserve species and cultivars ex situ. While most dryland genera can be
conserved effectively by seed banking, species that no longer produce seeds, or that have
desiccation- or freezing-sensitive seeds, require alternative conservation techniques such
as in vitro culture and cryopreservation. In this review we discuss the significance of the
Myrtaceae family (globally and in Australia), on-going threats to species in the wild and in
cultivation, and possible ex situ conservation measures to mitigate extinction risk. We then
review the available literature for information on cryobiotechnology tools that have been
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utilized to preserve exceptional species in the Myrtaceae, and outline a research approach
for developing such tools for highly threatened Australian species.

2. Significance of Myrtaceae

Given the size and diversity of the Myrtaceae family, it is not surprising that there is
a similar diversity of ways in which species have been exploited for human use (Table 1).
Products from some species have been utilized for thousands of years by indigenous
populations for food, shelter, bedding, transport, medicines, toys and tools [4–7]. Po-
tentially useful properties of a range of species continue to be investigated, particularly
phytochemicals for use in medicine and food e.g., reviews by [8,9].

Table 1. Recorded variety of uses for Myrtaceae species in different industries.

Industry Uses Genus or Species References

Plantation Timber, pulp, fuel, charcoal
Eucalyptus spp. e.g., E. camaldulensis,

E. globulus, E. grandis and E. tereticornis
and their crosses

[1,10]

Agriculture

Windbreaks Eucalyptus [11]
Pesticides Eucalyptus, Melaleuca, and others (essential oils) [10,12]

Honey production Various, mainly Eucalyptus [1]
Livestock breeding Syzygium aromaticum (essential oils) [13,14]

Horticulture
Ornamental species Syzygium, Callistemon, and Melaleuca [1]

Cut flowers and foliage Chamelaucium (flowers) [15]
Eucalyptus (foliage) [16,17]

Medicine

Traditional medicines

Eucalyptus pachyphylla (flowers and sap) [4]
Babingtonia camphorosmae (flowers, leaves and
stems), Kunzea preissiana (leaves and flowers),

Eucalyptus and Corymbia (leaves and gum),
Melaleuca radula (leaves)

[6]

Rhodomyrtus tomentosa (flowers, fruit, leaves,
bark, sap, roots) [18]

Various, including Campomanesia, Eugenia
and Myrcia [19]

Diabetes Syzygium cumini (extracts) [20]

Bacterial infections Corymbia torelliana,
Melaleuca alternifolia (extracts) [21,22]

Viral infections Melaleuca alternifolia,
Backhousia citriodora (extracts) [23,24]

Fungal infections Eucalyptus (extracts) [10]

Mosquito control Various, including Eucalyptus and
Melaleuca (extracts) [25–28]

Food

Fresh or processed fruit

Eugenia spp., Kunzea pomifera, Myrciaria
cauliflora, Psidium cattleyanum, P. guajava,
Syzygium aqueum, S. cumini, S. jambos, S.

leuhmannii, S. samarangense

[1,29,30]

Spices
Backhousia citriodora (leaves), Pimenta dioica

(fruit), Syzygium anisatum (leaves), S.
aromaticum (flower buds)

[1,29]

Teas Backhousia citriodora, Melaleuca citrolens,
Syzygium anisatum (leaves) [29,31]

Additives (flavoring,
antioxidant, antibacterial)

Backhousia citriodora, Eucalyptus citriodora,
E. olida,

E. stragiana, Syzygium anisatum,
S. leuhmannii (extracts)

[10,29,32–35]

Eucalyptus species and their cultivated crosses are perhaps the most widely planted
of the Myrtaceae, with both small-scale and industrial plantations covering millions of
hectares globally, particularly in Asia and South America [1,10]. Different Eucalyptus species
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can be grown in a range of geographical and climatic conditions and are suitable for the
production of fuel, timber, pulp, tannin, oils, windbreaks, ornamental plants and honey [36].
Some of the most valuable essential oils are also products of Myrtaceae, including clove
(Syzygium aromaticum), tea tree (Melaleuca alternifolia), lemon-scented (Backhousia citriodora
and Corymbia citriodora), and eucalyptus peppermint (various Eucalyptus spp.) oils [1].
These oils are used in everything from food production and cosmetics to medicines and
pesticides. Species such as guava (Psidium guajava), rose apple (S. jambos), wax apple (S.
samargarense) and jamun (S. cumini) are important horticultural species cultivated in tropical
regions for their fruit [37–39].

In Australia, the Myrtaceae family is structurally and floristically dominant in many
ecosystems [40], occurring in 11 of the 13 major plant formations recognized by Specht [41].
Approximately 1700 species from 70 genera of Myrtaceae are found growing in diverse
habitats [42], from rainforests to arid regions and lowland swamps to alpine regions [1].
Myrtaceae species contribute a high proportion to the plant biomass and diversity of the
continent [41], and provide shelter, breeding sites, and food sources for a wide range
of insectivorous and vertebrate fauna [10,41,43–45]. Drier forests and woodlands are
dominated by eucalypts (species from the genera Eucalyptus, Corymbia, Angophora and
Syncarpia) [10,43] and species from the Myrteae and Syzygieae tribes are common in
tropical and subtropical forests [46]. Eucalypts are particularly important to a range of
threatened fauna, providing the main food source for the koala (Phascolarctos cinereus) [47],
an important component of the diet of the Eastern pygmy-possum (Cercatetus nanus) [48],
and preferred nesting habitat for glossy black cockatoos (Calyptorhynchus lathami) and the
superb parrot (Polytelis swainsonii) [49].

Myrtaceae species are also important to Australia’s small but growing ‘bush food’
industry. Backhousia citriodora (lemon myrtle), Kunzea pomifera (muntries), Syzygium anisatum
(aniseed myrtle), and S. leuhmannii (riberry) are four of the most commercialized Myrtaceae,
grown mainly in mixed-species plantations on the east coast of Australia [29]. A number
of Australian fruits are gaining popularity as ‘functional’ foods due to their relatively
low sugar contents and high nutrition levels, with both K. pomifera and S. leuhmannii
listed as priority fruits for development [9] and further research of plant characteristics
and production requirements [50]. The fruits of other species utilized by indigenous
communities–such as S. suborbiculare, S. eucalyptoides and Eugenia reinwardtiana [7]–may
also have value as bush foods. While large-scale production of Australian bush foods mostly
occurs overseas, small-scale operations are valued for supporting indigenous communities,
providing supplementary income in remote areas [15,29].

3. Threats to Myrtaceae—A Focus on Myrtle Rust

Though a number of Myrtaceae species are considered valuable in diverse industries
around the world, many are also threatened in their natural habitats. For example, a review
of plant conservation in Brazil [30] identified 14 Myrtaceae species from the Atlantic Forest
biome as being in danger of extinction. This included 11 species with recalcitrant seeds,
eight of them Eugenia spp., with value to their local ecosystems and for fruit production
and the pharmaceutical industry [30].

Threats to Australian flora, including Myrtaceae species, include changing land use,
habitat fragmentation, increasing rates of natural disasters–such as extreme fires and
flooding–due to climate change, and invasive species [51,52]. Invasive fungal pathogens
in particular have been implicated in the decline of a number of species globally, both
as individual species and in multi-species interactions [53–56]. One such species causing
concern in Australia and globally is Austropuccinia psidii, a fungal pathogen native to South
America that causes a disease known as myrtle rust.

Although A. psidii typically causes only mild infections in species within its natural
distribution [57,58], the impact of the pathogen on ‘naïve’ hosts in new environments
has varied with pathogen strain and susceptibility of host species [53,59]. For example,
rapid and severe damage was reported in the Jamaican allspice industry in 1934 within
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two years of myrtle rust detection [57]; whereas only two of 70 susceptible species in
New Caledonia were severely affected in the first three years after detection of another
strain [55]. Globally, over 500 species from 69 genera are known to have some susceptibility
to A. psidii [60]. Many of these records are from areas with more recent incursions, for
example New Caledonia in 2013 [55], South Africa in 2013 [61], Indonesia in 2015 [62],
Singapore in 2016 [63], and New Zealand in 2017 [64]. Myrtle rust was first reported in
Australia in 2010 as Uredo rangelii [65] and has since spread along the entire east coast with
reported damage to both natural ecosystems and to industry [53,66]. Makinson [53] lists
394 host species in Australia, including 358 native species and subspecies, ranging from
‘relatively tolerant’ to having ‘extreme susceptibility’ to A. psidii. This list is likely to grow
with predicted climatic changes increasing the potential distribution of the pathogen [67].

While only one strain of A. psidii is presently known in Australia, it has been shown to
cause host death after repeated infections of new growth [53,58,66]. Myrtle rust may also
suppress host populations by preventing seed set, and suppressing regeneration through
infection of seedlings and suckers [68]. Less susceptible species may also succumb to
the compounded effects of insect damage and A. psidii, for example as seen in Melaleuca
quinquenervia and cultivars of Syzygium [68]. In the twelve years since A. psidii was detected
in Australia, four species have been declared critically endangered as a direct result of
myrtle rust [53,69] and, along with 12 other rainforest species, are at risk of extinction
within one generation [70].

4. Ex Situ Conservation Efforts

Given on-going threats to Myrtaceae species in the wild, ex situ conservation is
needed to preserve species from extinction and to provide a source of material for restora-
tion. Ex situ conservation includes the maintenance of plant genetic diversity in living
collections, seed banks, in vitro collections, and cryostorage. Each method has its own
benefits and challenges, and these are outlined with many examples from Australia in
Martyn Yenson, et al. [71]. Approximately 95% of the Myrtaceae are thought to have ortho-
dox seed suitable for storage in a seedbank [72] and seedbanks in Australia currently hold
collections for a total of 1534 taxa from 72 genera [73]. The remainder of the family falls
into the category of ‘exceptional’ [74], with species that no longer produce seeds due to
myrtle rust (e.g., Rhodamnia rubescens and Rhodomyrtus psidioides [70,75]), or that produce
seeds that are intolerant of desiccation (e.g., Syzygium spp. [72,76]) or storage at −20 ◦C
(e.g., Backhousia citriodora [77] and Rhodamnia maideniana [78]).

Woody plant species from rainforests are over-represented in the exceptional species
categories, with a much higher proportion of species with desiccation-sensitive seeds than
those from drier vegetation types [76,79,80]. Although the majority of Myrtaceae species
have dry fruit and orthodox seeds, fleshy fruited trees and shrubs are common in the
Myrteae and Syzygieae tribes [1] and these are more likely to have desiccation sensitive
seeds than those with dry fruits [11]. A study of Australian species has found this to
be true for fleshy-fruited species containing a single seed, however those containing a
number of small seeds were more likely to show intermediate behaviors, with typically
desiccation tolerant seeds but a range of responses to freezing [78]. As repeated infections
of reproductive organs by myrtle rust are likely to affect seed set [81], even species with
orthodox seed storage behavior may become exceptional species, resulting in the need for
alternate conservation methods such as tissue culture and cryopreservation for a greater
proportion of species.

5. Cryobiotechnology Applied to Myrtacaeae

Cryobiotechnology includes cryopreservation (storage of germplasm at ultra-low tem-
peratures) and the in vitro technologies needed to support the preparation and recovery of
cryopreserved tissues [82,83]. The storage of germplasm at ultra-low temperatures in liquid
nitrogen limits any biochemical activity, extending the viability of the stored germplasm
far longer than traditional seed banking as long as the temperatures are kept constant [84].
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Species from multiple Australian plant families have been cryopreserved successfully [85].
Cryobiotechnology could thus provide a viable alternative for the conservation of excep-
tional Myrtaceae species, including the many species under threat from A. psidii. The
remainder of this review will therefore focus on reports of cryobiotechnologies applied to
seven key genera with known susceptibility to myrtle rust both in the wild and in culti-
vation, comprising: two very large genera, i.e., Eucalyptus and Syzygium; one small genus
with species of commercial and ecological value, i.e., Backhousia [70]; and four genera with
a number of species at risk of imminent extinction from myrtle rust, i.e., Gossia, Lenwebbia,
Rhodamnia, and Rhodomyrtus [53,68,70].

5.1. Eucalyptus

With over 700 species and a number of hybrids and cultivars, Eucalyptus is one of
the largest genera in the Myrtaceae [86]. Perhaps as a result of their typically orthodox
seed, research into cryobiotechnology of this genus has been limited to conservation of
valuable timber cultivars, hybrids, and elite clonal lines rather than ‘wild’ species [87]. In
fact, ‘unknown genetic diversity’ in stored seed was listed as a problem for some authors
aiming to conserve specific genotypes, limiting the applicability of these collections for
conservation [88]. Historically, conservation of genetic resources in industry has utilized
seeds, cuttings, and clonal hedges [89], however a number of research groups have begun
to turn to biotechnology in recent decades.

In vitro cultures of Eucalyptus species have been comparatively well studied, with
work done on optimizing establishment of shoot, callus and somatic embryogenic cultures,
looking at the effects of basal salts and plant growth regulators required [90], with over
82 species and 19 hybrids mentioned in various publications [90–92]. In stark contrast, only
4 threatened species have been cultured in vitro [93–95]. A number of difficulties have
been reported with in vitro initiation and maintenance of Eucalyptus cultures (from both
seed and vegetative material), including browning and rapid dieback, internal and external
contamination, low germination rates, slow growth, and limited multiplication [96–98].
Limited success with hardening off for planting out has also been noted as a barrier to mass
production of Eucalyptus material from in vitro cultures [36].

The use of cryobiotechnology to preserve these in vitro collections has seen less appli-
cation, with successful cryostorage limited to a few species and hybrids (Table 2). Although
reported survival rates vary from 0–100%, the diversity of species and methods that have
been trialed is promising (Table 2). Some reports have shown identical or even increased
viability after storage in liquid nitrogen [99,100]. Others have shown high rates of survival
after pretreatment prior to cryostorage (e.g., desiccation and application of cryoprotectants),
but no survival after storage in liquid nitrogen [97,101]. Reduced survival after exposure to
liquid nitrogen may be a result of high water content of stored material. For example, stud-
ies of E. grandis axillary buds have found the buds to be desiccation-sensitive. Although the
use of ABA and encapsulation was seen to increase survival of buds after pretreatment, the
authors cautioned that the material may not then be sufficiently desiccated for successful
cryopreservation [89,102].

Table 2. Reported use of cryobiotechnology for ex situ conservation of Eucalyptus.

Species Propagule 1 Method 2 Success References

E. grandis Axillary bud LN Limited [97]
E. grandis × E. urophylla Callus LN Limited [101,103]

E. grandis Pollen LN Yes [97]
E. dunnii, E. urophylla and E. robusta Pollen LN Yes [99]

E. burracoppinensis, E. lane-poolei, and E. loxophleba var. gratiae Seed LN Limited [98]
E. microtheca Seed LN Yes [100]
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Table 2. Cont.

Species Propagule 1 Method 2 Success References

Various Shoot tips LN Yes [87]

Various Seed and
seedlings SE Yes [88]

E. globulus, E. saligna × E. maidenii TC material SE Yes [88]
E. grandis × E. urophylla Callus IVC Yes [104]

E. maculata Cutting IVC Yes [105]
E. dolorosa, E. graniticola,
E. impensa and E.phylacis Cutting IVC Yes [93–95]

1 TC material: shoot apices and leaves from first and second nodes of in vitro collections. 2 LN: cryopreservation
in liquid nitrogen; SE: somatic embryogenesis; IVC: in vitro culture.

5.2. Syzygium

Distributed throughout tropical and subtropical regions around the globe, Syzygium
contains at least 1119 species [86], of which approximately 70 are found in Australia.
Syzygium species typically have fleshy fruits with desiccation sensitive seeds [72] however
there is some variation within the genus. For example, S. paniculatum and S. unipunctatum
have desiccation sensitive seeds [78] while S. anisatum fruits are dry and their seeds are
orthodox, though artificial aging experiments have shown they are likely to be very short-
lived in storage at −20 ◦C [106]. S. anisatum is the only species of the genus with seeds held
in storage at the Australian PlantBank [73].

Syzygium species are also known to have a range of susceptibility to myrtle rust,
ranging from ‘low’ to ‘very high’ [81]. S. maire, the only native species of this genus in New
Zealand, is also known to be susceptible to myrtle rust and has been made a priority for
conservation using cryobiotechnology [107,108]. With the exception of S. maire, much of
the literature reporting use of cryobiotechnology for conservation of Syzygium species is
focused on species cultivated for fruit and medicinal purposes, particularly those species
common in Asia (e.g., S. cumini [109]). In Australia, in vitro collections of S. francissi have
been successfully initiated from cuttings [110] and S. paniculatum (as Eugenia myrtifolia)
cultures have been initiated from seed [111]. In vitro collections of S. anisatum, S. australe,
S. leuhmannii, S. moorei, S. paniculatum, and S. pseudofastigiatum, all initiated from cutting
material, are currently maintained at the Australian PlantBank (pp. 290–291, [71]). Initiation
of cultures from seed, embryo, and embryonic axes of S. fullagarii and S. unipunctatum have
also been trialed; however, sterilizing this material sufficiently for successful initiation has
proven difficult (L. Hardstaff, unpubl.).

A few published reports of cryopreservation are available for this genus. Shatnawi et al. [110]
reported successful cryopreservation of encapsulated shoot tips of S. francissi when the
encapsulated material was precultured on 0.75 M sucrose media for one day followed by 6 h
dehydration to 20% moisture content. Malik et al. [112] reported 100% survival following
cryopreservation for embryonic axes of S. cumini cultured on media with 3% sucrose but
details of the cryopreservation treatments used were not supplied. Evaluation of the use of
droplet-vitrification, vacuum-infiltration vitrification, and encapsulation-dehydration to
cryopreserve embryonic axes of S. maire found none of the methods resulted in ongoing
embryo survival following exposure to liquid nitrogen [113]. S. maire embryonic axes
have been shown to survive exposure to liquid nitrogen after encapsulation-dehydration;
however, the embryos did not form complete plantlets after radicle elongation [108]. Trials
of cryopreservation of S. anisatum, S. australe, S. fullagarii, and S. paniculatum embryonic
axes or shoots have commenced at The Australian PlantBank and Kings Park and Botanic
Garden, but no material has yet survived exposure to liquid nitrogen, regardless of pre-
treatment (L. Hardstaff, E. Bunn, unpubl.).
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5.3. Backhousia

The 13 known Backhousia species occur on the east coast of Australia, predominantly
in Queensland [2]. Backhousia citriodora and B. myrtifolia are perhaps the most well-known
species, the former for its value as a commercial species and the latter as a species com-
monly used in habitat restoration programs [77]. Backhousia spp. have been reported to
have a range of susceptibility to myrtle rust, from ‘low’ to ‘very high’ [81]. Myrtle rust
damage can impact conservation research on such species by reducing seed availability, as
reported in a study of seed set, characteristics, longevity and germination of B. citriodora
(intermediate) and B. myrtifolia (orthodox) [77]. No reports of successful cryopreservation
could be found for this genus. Attempts to conserve the genus in vitro have been limited by
difficulties with initiation, including limited availability of clean material and issues with
contamination [114]. Previous studies have reported the difficulty of growing B. citriodora
from cuttings, with root formation strongly linked to genotype [115], which may limit the
conservation of genetic diversity within the species.

5.4. Gossia

Gossia is a recently described genus containing 39 species occurring in New Guinea,
the Southwest Pacific and eastern Australia [2]. A number of species in this genus have
been reported to have some degree of susceptibility to myrtle rust [81]. While the seeds
of one species (the endangered G. fragrantissima) have been reported to be orthodox [78],
recent surveys have found population decline and limited seed production in A. psidii
infected populations of G. hillii, G. lewisensis, G. inophloia, and G. punctata [70]. Even before
the advent of myrtle rust, Shapcott [116] observed very few seedlings and no viable seed
production for the extremely rare G. gonoclada. Seeds for only two species, G. fragrantissima
and G. hillii, are currently held in conservation seed banks [73]. No reports of in vitro
culture or cryopreservation for the genus could be found in the literature; however, G.
fragrantissima has been successfully propagated by cuttings and initiated into tissue culture
at The Australian PlantBank [114].

5.5. Lenwebbia

Lenwebbia is another recently described genus, endemic to Australian rainforests, with
only two described species and another two species yet to be published [117]. Lenweb-
bia lasioclada and L. prominens are found in north-eastern Australia [86]. L. prominens is
thought to have orthodox seed storage behavior [78] and two seed collections are held at
the Australian PlantBank. Both L. lasioclada and L. prominens are reported to have ‘high’
susceptibility to myrtle rust and the disease has been recorded on reproductive structures
of L. prominens [81], which is likely to reduce the future availability of seed for research and
conservation. Lenwebbia sp. Blackall Range and L. sp. Main Range are reported to have
some variation in susceptibility but have low seedling recruitment [70]. Cutting-grown
collections of the critically endangered L. sp. Main Range, which has exhibited severe
population decline and very low reproductive capacity [70], have been established at the
Australian PlantBank but the species has proven difficult to culture in vitro. While explants
have survived initial cleaning, sterilizing and incubation on initiation medium, they have
failed when transferred to multiplication media (WPM, MS or 1/2MS) [114].

5.6. Rhodamnia

Rhodamnia is a genus of 41 species found in China, Indo-China, Australia and the
Southwest Pacific [2]. Of the 20 species found in north-eastern Australia, four are critically
endangered under state and/or national legislation, including R. angustifolia, R. longisepala,
R. maideniana, and R. rubescens [118]. Both R. maideniana and R. rubescens are listed as having
‘very high’ susceptibility to A. psidii [81] and were only recently listed as critically endan-
gered after severe population declines caused by myrtle rust [53]. A study of R. rubescens
in situ comparing control and fungicide-treated plots over a period of 24 months found
that myrtle rust may reduce ongoing recruitment of the species, with infected flowers
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producing no fruit on the individuals studied. The authors of the study also observed
a reduced abundance of seedlings under the canopy of control plots, with evidence of
defoliation and mortality of seedlings caused by the disease [119]. Population studies of
R. spongiosa and R. pauciovulata also found decline and very low reproductive capacity
as a result of A. psidii [70]. While seed collections for four species (R. argentea, R. dumi-
cola, R. maideniana and R. rubescens) are held in conservation seed banks [73], the seed of
R. maideniana is known to be freezing-sensitive or short-lived in storage at −20 ◦C [78] and
recent experiments on R. rubescens have also demonstrated short-lived behavior at that
temperature (K. Sommerville, unpubl.). R. rubescens has been grown successfully in tissue
culture and protocols for multiplying and deflasking the species have been developed [75],
however there are no published reports of successful cryopreservation for this species.

5.7. Rhodomyrtus

Of the 21 Rhodomyrtus species distributed from tropical and sub-tropical Asia to the
Southwest Pacific [2], 10 are found in north-eastern Australia. While other Australian
species are not currently listed as threatened species, R. psidioides is listed as critically
endangered after significant population decline caused by myrtle rust [53,120]. R. psidioides
is listed as having ‘very high’ susceptibility to A. psidii and other Australian species have
‘moderate’ or ‘high’ susceptibility [81]. Repeated surveys of R. psidioides have found ongoing
decline and even collapse of populations due to A. psidii infection causing death of mature
trees and preventing seed production and seedling recruitment [59,70,119]. Given the
urgent need for ex situ conservation and lack of fruit production in the wild, a seed orchard
of R. psidioides was established at the Australian Botanic Garden Mount Annan [121]. Seed
produced from the orchard was used to determine that the seeds were desiccation tolerant
but freezing sensitive and did not have orthodox seed storage behavior, as previously
thought [78]. R. psidioides has been grown successfully in vitro and protocols for multiplying
and deflasking the species have been published (pp. 282–283, [71,75]). Cryopreservation
trials have found the seeds to grow into healthy seedlings after osmotic desiccation and
incubation in PVS2 for 30 min, but not surviving exposure to liquid nitrogen using a
droplet vitrification protocol (L. Hardstaff, unpubl.). No reports of ex situ conservation
could be found in the literature for other native Australian species, however successful
in vitro induction of callus has been reported for R. tomentosa [122], which grows as an
exotic species in Australia.

6. Discussion

The Myrtaceae is a large family with many species of economic, ecological and cultural
importance. Increasing threats to this family from land clearing, cataclysmic wildfires,
and myrtle rust are increasing the need for human intervention to avert the extinction
of individual species [53]. While many dryland species in this family can be conserved
by seed banking, the number of species falling in the category of ‘exceptional’ is grow-
ing, as research into seed storage behavior identifies species with recalcitrant, freezing-
sensitive or short-lived seeds [75–78], and as myrtle rust reduces the capacity for seed
set [59,70,123]. Long-term conservation of these exceptional species will require investment
in cryobiotechnologies–in vitro culture, cryopreservation and supporting sciences.

The application of cryobiotechnologies to Myrtaceae genera native to subtropical
and tropical rainforests–such as Backhousia, Gossia, Lenwebbia, Rhodamnia, Rhodomyrtus
and Syzygium–may be challenging given that species in those genera are not likely to be
adapted to either desiccation or chilling stresses. Cryopreservation of embryonic axes
rather than shoot tips has been recommended for woody tropical species with desiccation
sensitive seeds [124] and this strategy has also been used to preserve plumules from seeds
of the temperate but desiccation-sensitive Quercus robur (Fagaceae) [125]. This technique
may be appropriate for the large seeds of Syzygium species, but for genera with smaller,
desiccation tolerant seeds (e.g., Gossia and Rhodamnia), cryopreservation of whole seeds
may be more appropriate if seeds can be obtained. This strategy has been used successfully
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to preserve seeds of rainforest-origin plants such as Australian Citrus spp. (Rutaceae) [126],
Carica papaya cultivars (Caricaceae) [127], and Coffea spp. (Rubiaceae) [128]. It is also
appropriate for threatened Myrtaceae species with orthodox seeds. Sixteen Myrtaceae taxa
have been cryopreserved using orthodox seed at Kings Park and Botanic Garden [98,129]
and a further 60 species have recently been cryopreserved in the same manner at The
Australian PlantBank [130]. Where seed is unavailable, however, it will be necessary to first
initiate the species into in vitro culture, and develop suitable protocols for multiplication
and deflasking, to provide shoot tips for cryopreservation.

Over 100 species and hybrids of Australian Myrtaceae are mentioned in the available
literature as having been trialed in tissue culture. In contrast, only a handful of species have
been reported as successfully cryopreserved using shoot tips [95,110,129] or embryonic
axes [112]. Likewise, there are relatively few reports of successful cryopreservation using
shoot tips of woody tropical species, but survival of 70% or more following cryopreservation
has been reported for Parkia speciosa, Trichilia emetica, Carica papaya, Citrus aurantium, Citrus
suavissima and Manihot esculenta [124]. Shoot tips from in vitro cultures have been also
been used to cryopreserve the fungal-blight affected Castanea dentata (Fagaceae) [131].
Application of antioxidants such as vitamins C and E during pretreatment and recovery
may help to increase survival and regrowth after cryopreservation of both shoot tips [132]
and seed embryonic axes [133].

While some work has been done to preserve economically important species in the
Myrtaceae family, there has been very little work utilizing cryobiotechnology to conserve
threatened taxa. Given the devastating impacts of myrtle rust on a number of taxa in the
wild, this is a field of research demanding urgent attention. The successful in vitro culture
of threatened species in the genera Gossia, Rhodamnia, Rhodomyrtus and Syzygium provides
a starting point for this research. Reported successes in cryopreservation of shoot tips of
S. francissi [110] and embryonic axes of S. cumini [112], indicate that long-term conservation
of exceptional Myrtaceae species is possible with the right protocol.

The development of successful cryopreservation protocols can be very complex, re-
quiring an investigation of multiple factors affecting survival during pre-conditioning,
freezing, and thawing processes [134]; the key challenge being to reduce cell water content
sufficiently to prevent ice crystal formation without severely reducing cell viability. The
development of suitable protocols for threatened Myrtaceae will require investigation of
the effect of each stage of the cryopreservation process on biophysical and biochemical
characteristics of the target germplasm. As recommended by Normah et al. [135], once
tissue has been established in vitro, the effect on survival and regrowth of pretreatments,
loading solutions, cryoprotectants, exposure to liquid nitrogen, rewarming, and unloading
solutions, will need to be investigated sequentially. Characterizing changes in sugar content
and cell membrane lipid composition [136,137], the activity of anti-oxidant enzymes [138],
changes in oxidative status [139], and changes in metabolic rates [140] and mitochondrial
function [141] in response to the application of pre-treatments and cryoprotectants may aid
in identifying the most appropriate protocol for a given species. Tools such as differential
scanning calorimetry [142,143] could be utilized to optimize tissue desiccation strategies
such as vacuum infiltration vitrification, cryo-mesh or flash drying [144,145]. Ideally, these
tools would be used to develop a protocol for each genus that could be successfully applied
to multiple species in the genus with minimal variation.

Cryobiotechnology provides a viable alternative for the long-term conservation of
exceptional species and a potential safe storage method for the many Myrtaceae species
under threat from A. psidii. However, considerable gaps in knowledge will need to be
addressed before cryopreservation techniques can be utilized for conservation on a routine
basis. Application of available tools and collaboration between research groups working
with similar species have the potential to expedite the development of successful storage
protocols for species at imminent risk of extinction.
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