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a b s t r a c t

Waste glass is promising to be recycled and reused in construction for sustainability. Sil-

icon dioxide is the main component of glass, however, its pozzolanic activity is latent

mainly due to its stable silica tetrahedron structure. To excite the activation of waste glass,

chemical activation and mechanical grinding of waste glass powder (WGP) were investi-

gated. As the supplementary, hydrothermal and combined (mechanical-chemical-hydro-

thermal) treatments were conducted on part of the WGP samples. The unconfined

compression strength (UCS), expansion caused by alkaliesilica reaction (ASR), and the

microstructural morphology of WGP were investigated. The results showed the dosage

threshold (around 2%) of the chemical activators (alkali and sodium sulfate) and the

combined activation were optimal. Besides, a firefly algorithm (FA) based multi-objective

optimisation model (MOFA) was applied to seek the Pareto fronts based on three objec-

tives: UCS, ASR expansion, and Cost of mixture proportion. The objective functions of UCS

and expansion were established through training the machine learning (ML) models where

FA was used to tune the hyperparameters. The cost was calculated by a polynomial

function. The ultimate values of root mean square error (RMSE) and correlation coefficient

(R) showed the robustness of the ML models. Moreover, the Pareto fronts for mortars

containing 300 mm and 75 mm WGPs were successfully obtained, which contributed to the

practical application of waste glass in mortar production. In addition, the sensitivity
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analysis was conducted to rank the importance of input variables. The results showed that

curing time, activator's content, and WGP particle size were three essential parameters.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Concrete is an essential component in architectural con-

struction and civil engineering. However, the production

process of concrete inevitably generates enormous carbon

dioxide, exacerbating global warming. Therefore, it is imper-

ative to ascertain novel supplementary cementitious mate-

rials [1e5]. Glass products are broadly utilised in daily life

owing to their extensive sources, prominent plasticity, and

durability so that the quantity of waste glass (WG) is

increasing correspondingly. Improper disposal of waste glass

occupies lands, wastes energy, and damages the ecological

environment [6,7]. With sustainable development and green

building becoming deeply appreciated, research on the WG

application in concrete has received widespread attention

[6,8,9]. The waste glass contains a large proportion of silica,

which yields latent pozzolanic characteristics. Accordingly,

partial replacement of cementitious materials with waste

glass is a promising solution for waste glass reusing [10e12].

Research on concrete incorporating waste glass has gradu-

allydeveloped since the1960s.However,Waste glass concrete is

susceptible to alkaliesilica reaction (ASR), resulting in local

expansion and cracking of concrete which seriously affects the

structure safety and limits its wide application [13,14]. Besides,

waste glass cement cullet usedas aggregate generally possesses

lower workability and compressive strength than natural sand.

This is because the crushed waste glass is often flat and elon-

gated, restricting the shape and size of the aggregate. Previous

studies reported that reducing the particle size of waste glass

can effectively reduce the ASR expansion and improve me-

chanical performance, which was optimal at particle diameters

ranging from 36 to 100 mm [15,16]. When the glass particles are

ground to below 100 mm, its pozzolanic characteristic is greatly

improved, which is superior even to fly ash [14,15,17]. Besides,

the combination of waste glass with pozzolans (fly ash, silica

fume, metakaolin, etc.) and lithium compounds also can alle-

viate the detrimental expansion [18e20]. Apart from the above

methods, chemical and hydrothermal activations are also

included, while the investigation onWG is challenging because

of the complexity of the chemical activators’ category and the

temperature/pressure of the hydrothermal process [21,22].

Apart from ASR expansion and mechanical performance,

the radiation shielding property of concrete containing waste

glass is also a promising research objective which can be

deeply explored in the future. It has been investigated on

concrete containing different proportions of marble [23].

Regarding glass system, Al-Buriahi et al. [24] explored the ra-

diation shielding property of TeO2 � Ag2O�WO3 glass and

stated that the contents of Ag2O and WO3 were essential pa-

rameters to influence the shielding property. The TeO2�
Na2O� TiO glass system was also studied through PHITS

Monte Carlo code, which was verified as an advanced
shielding material for nuclear application [25]. Singh et al. [26]

fabricated a novel bioactive glass system to possess desirable

qualities for radiation shielding. The optical properties of

bismuth incorporated chalcogenide glasses were also inves-

tigated accompanied by the structural shield property [27].

Regardingmortarmix design, the conventionalmethod is a

trial-and-error process based onnumerous experimental data,

which is time-consuming and labor-intensive. Moreover, it is

error-prone to find optimal mixing ratios for multivariate ex-

periments by summarising regularities and phenomena. The

selection of the appropriate regression equation is compli-

cated requiring skill and experience. It could lead to inaccurate

outcomes if an explicit mathematical regression equation is

implemented through the empirical model. Therefore, tradi-

tional methods fail to meet the requirements of modeling

complex nonlinear behavior and uncertainty. Therefore, the

artificial intelligence (AI) based machine learning (ML) and

multi-objective optimisation (MOO) models are popular

nowadays to acquire the optimal mix design.

ML models such as artificial neural networks (ANN) and

support vector regression (SVR) have been utilised extensively

in data mining given their excellent generalisation capability,

computation speed, and predictive accuracy [28,29]. For

instance, the SVR model is capable of handling classification

problems, alongside linear or nonlinear tasks. Besides, it can

be mapped to a higher dimensional space to compute linear

regression functions with reduced complexity [28,30,31].

However, hyperparameters tuning is challenging for ML

modelling [32e34]. Typically, the hyperparameters are

adjusted by a grid search method, which owns high compu-

tational complexity and fails to be applied to address multi-

parameter problems. Hence, optimisation algorithms have

been implemented to auto-search for optimal hyper-

parameters, for instance, particle swarm optimisation (PSO),

genetic algorithm (GA), and firefly algorithm (FA) [35e37]. In

this paper, FA is utilised to optimise the hyperparameters of

the BPNN and SVR model due to its ability to eliminate the

effects ofmultimodality and achieve automatic segmentation.

By applying MOO theory and metaheuristic algorithm, the

FA-based multi-objective optimisation (MOFA) is adopted to

optimise the mix design [38e40]. In contrast to the single-

objective optimisation method, MOFA enables the simulta-

neous optimisation of multiple objectives such as compressive

strength, ASR expansion, and cost under highly nonlinear con-

straints via thepresented Pareto solutions. Cheng et al. [41] used

SVR and GA for the optimisation of high-performance concrete

mixes. Zhang et al. [42] optimised three objectives of strength,

slump, and cost employing a multi-objective PSO algorithm.

This paper focuses on the effects of mechanical, chemical,

hydrothermal, and combined activation on the compressive

strength and ASR expansion of mortar samples containing

waste glass powder (WGP). Meanwhile, WGP with the mean
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Table 1 e Chemical compositions of WGP and cement.

Chemical composition WGP Cement

SiO2 74.02% 20.10%

Al2O3 1.40% 4.60%

Fe2O3 0.19% 2.80%

CaO 11.25% 63.40%

MgO 3.34% 1.30%

SO3 0.33% 2.70%

Na2O 9.03% 0.60%

K2O 0.29% e

True density 2.3e2.5 t/m3 3.0e3.2 t/m3

Total chloride e 0.02%
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particle size of 75 mm and 300 mm was selected as a replace-

ment of fine sand by 10%, 20%, and 30%. The chemical acti-

vators consist of sodium sulfate serving as the salt activator,

calcium hydroxide and sodium hydroxide serving as alkaline

activators. In total, 103 groups of specimens were cast for

compressive and ASR expansion tests. A scanning electron

microscopy (SEM) machine was utilised to analyze the

microstructure of activated WGP. Subsequently, the MOFA

was employed to perfect the multi-objective mixture pro-

portions based on the data of UCS, ASR expansion, and the

objective function of cost. The sensitivity analysis was also

conducted to rank the importance of input variables.
2. Experimental program

2.1. Materials

TheWGP employed in this test was obtained from transparent

waste bottles in a recycling station. The bottles are pretreated

by removing labels and contaminants before the crushing

process. Afterward, the crushed air-dried bottles were ground

into the powder with average particle sizes of 75 m and 300 m

through a ball mill. Lastly, the processed WGP was kept in an

airtight container. The true density of the WGP is around

2.3e2.5 t/m3 and the appearance of WGP with 75 mm and

300 mm is denoted in Fig. 1.

The ordinary Portland cement category is P.O 42.5R and

ground silica sand (over 96% silicon dioxide) is graded as

ASTM C778 [43]. The densities of cement and silica sand are

3.0e3.2 t/m3 and 2.3 t/m3, respectively. The fineness index of

cement was 390 m2/kg and its normal consistency was 27%.

The chemical compositions of the cement and WGP by X-ray

Fluorescence Spectrometer (XRF) are demonstrated in Table 1.

WGP contains 74.02% silica indicating its excellent potential in

terms of pozzolanic behavior [44e46].

2.2. Mix design and WGP activation

In this research, the variables include the WGP size, the WGP

replacementmass ratio, the dosages of chemical additives, and

curing time. The levels of these variables are summarised in

Table 2. Besides, the water to cement ratio was constantly

maintained at 0.45, and the aggregate (WGP þ sand) to cement

ratio was kept at 2.25. It is noted the hydrothermal and
Fig. 1 e The distinctive features of WGP with the m
combined activations are only implemented on samples

incorporating 75 mm WGP where the aim is to compare the ef-

ficacy of versatile activation approaches. The activation treat-

ment methods adopted are specifically described as follows:

a. Mechanical activation: Waste glass on average 300 mm par-

ticle size was ground to 75 mm by a ball mill. The finer glass

powderwas expected to yield better pozzolanic performance.

b. Chemical activation: The chemical activators were sodium

sulfate (NaSO4), calcium hydroxide (Ca(OH)2), and sodium

hydroxide (NaOH). Sodium sulfate was utilised as the salt

activator, and a mixture of 50% sodium hydroxide and 50%

calcium hydroxide was adopted as the alkaline activator.

As water-soluble materials, sodium hydroxide and sodium

sulfate can be proportionally dissolved in mixed water.

Nevertheless, calcium hydroxide is slightly soluble in

water requiring prior mixing with WGP and then blended

with cement and sand. The mixing procedure for mortar

production is as per ASTM C305 [47].

c. Hydrothermal activation: Hydrothermal activation is ach-

ieved by steam treatment of WGP at high pressure and

temperature. The WGP (75 mm and 300 mm) was hydro-

thermally processed at 105 �C and 0.143 MPa for 2 h fol-

lowed by drying in an oven at 80 �C. The dried glass powder

exhibited caking and hardening, which necessitated

further grind and eventual retention in desiccators.

d. Combined activation: In this approach, the activation

methods a, b, and c were united. The chemical activators

and WGP were initially mixed completely in water. After-

ward, the mixture was shifted to the autoclave for hydro-

thermal activation as described in method c.
ean particle size of (a) 300 mm and (b) 75 mm.
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Table 2 e Variables with all levels used in this
experiment.

Variables Number of levels Magnitude

WGP size (mm) 2 75, 300

WGP replacement ratio (%) 4 0, 10, 20, 30

Alkali ratio (%) 4 0, 2, 4, 6

Sodium sulfate ratio (%) 4 0, 2, 4, 6

Curing duration (days) 3 7, 14, 28
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2.3. Unconfined compressive test

The UCS experiment was performed on themortar specimens

to verify the influence of the different activations and

their mix design on the mechanical performance at diverse

curing ages. The samples were cast into cubes of size

50 � 50 � 50 mm with three parallel samples per mix design.

Following the cast, the samples were rapidly protected by

plastic sheets and kept in a humid room for a whole day. Af-

terward, the specimens were released from molds and

maintained in a thermotank for 7, 14, and 28 days. It is

essential to ensure that the strength test is applied soon after

taking the sample out of the storage tank. A servo-hydraulic

testing machine was employed to provide loading rates of

0.6 MPa/s and record ultimate strengths. The experiment re-

sults are summarised in the Appendix.

2.4. Alkali silica reaction (ASR)

The degree of ASR expansion as specified in ASTM C1260 [48]

was assessed by calculating the longitudinal variation of

mortar bar specimens. Three parallel specimens were man-

ufactured for eachmixture and the final results were recorded

as the average longitudinal rate of change. The prismatic

specimens were cast into the size of 25 � 25 � 280 mm

equipped with two steel stud gauges at both ends (effective

length 260 mm). According to ASTM C1260 [48], a high tem-

perature of 80 �C and 1N sodium hydroxide (NaOH) solution

were applied to accelerate ASR. After casting, the molds were

rapidly placed in a humid room to cure for 24 h. Then, the

specimens were demolded and soaked in water of 80 �C for

another whole day. The length of the immersed bar sample

was defined as the initial length L0. Subsequently, the bar

samples were shifted to NaOH solution at 80 �C andmeasured

for length at 2, 4, 7, 10, and 14 days. The length at day x is

represented by Lx. It is noted that the measurement is sup-

posed to be completed within 15±5s of taking samples out of

the alkali solution. A length comparator and a digital indicator

were utilised to gauge the length of bars and the ASR expan-

sion ratio e was derived by Eq. (1). The ASR experimental re-

sults are summarised in the Appendix.

e¼ Lx � L0
260

� 100% (1)

2.5. Scanning electron microscopy (SEM)

A scanning electron microscopy (SEM) apparatus was applied

to visually investigate the microstructure of the activated

WGP. To observe the chemical erosion in the WGP surface, a

50g WGP sample (75 mm) was soaked in 100 ml water mixed
with 4.3g sodium sulfate and 4.3g alkali. The hydrothermal

and combined activationswere also conducted on another 50g

WGP samples to explore the microstructural morphology.
3. Multi-objective optimisation methodology

The optimal mixture design of activated WGP mortar adopts

the methodology of MOFA-SVR. The process is depicted in

Fig. 2. Overall, this multi-objective design started from the

construction of two RF models for the prediction of UCS and

ASR with the hyperparameters tuned by FA and 10-fold cross-

validation (CV). Then, the cost was calculated for each mix.

The weighted sum method was used for establishing a multi-

objective function and the Pareto front was produced to show

the optimisation mixture design of WGP mortar.

3.1. Data description

Asmentioned above, the variables are the size and proportion

of WGP, the content of chemical activators, and the curing

time. The dataset is sourced from the results from UCS and

ASR expansion tests and they are served as the output vari-

ables. The statistics of input and output variables are listed in

Table 3 for UCS and Table 4 for ASR expansion.

The figures of correlation between different input variables

of UCS and ASR datasets are shown in Fig. 3. The correlation

between sand and WGP was high because the WGP was in

replacement of sand by 10%e30%. Therefore, the ratio of WGP

to sand and cement was used to conduct the variable impor-

tance analysis. While for multi-objective optimisation (MOO)

analysis, the amount of each raw material had to be repre-

sented instead of the ratio. The other correlation values were

low enough that the input variables were independent so that

the multicollinearity problems could be effectively eliminated

in this study.

3.2. Establishment of FA-SVR model

3.2.1. Support vector regression (SVR)
SVRwas first established by Vapnik (1995). The Kernel function

defined in SVR can organize data from the sample space to the

higher dimensional space to solve the nonlinear problems. The

sample is described as (xi; yi) where xi is a one-dimensional

vector representing the features and yi is the actual sample

value. The sample space comprising n samples is described in

Eq. (2) and the regression function is written as Eq. (3).��
x1; y1

�
;
�
x2; y2

�
;…;

�
xn; yn

��
(2)

fðxÞ¼w,4ðxÞ þ b (3)

where w and b are theweight vector andbias;4ðxÞ is amapping

function. The loss function is defined as Eq. (4) which repre-

sents the error between prediction fðxiÞ and actual value yi.

L ðx; y; fÞ¼ ��yi � fðxiÞ
��
e
¼
�
0;
��yi � fðxiÞ

��< e��yi � fðxiÞ
��� ei;

��yi � fðxiÞ
�� � e

(4)

where e means the largest tolerance error so that the training

point will not be penalised if it is within the e-tube. The
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Fig. 2 e Flowchart of the MOFA on the design of WGP-mortar.
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problem can be described as Eq. (5) according to the minimal

structural risk [49].

R ðwÞ¼ 1
2
kwk2 þ

Xn
i¼1

L ðx; y; fÞ (5)

To improve tolerance for biased data, the slack variables di

and d*i are introduced to deal with infeasible constraints. Eq.

(5) can be rewritten into the following convex optimisation

equation:

minw;e;d;d* R ðwÞ¼1
2
w2 þ C

Xn
i¼1

�
di þ d*i

�

s:t

8>>>>>>><>>>>>>>:

yi �w,4ðxÞ � b � eþ di

w,4ðxÞ þ b� yi � eþ d*i

di � 0

d*i � 0

(6)

where C is a penalty parameter to evaluate the penalising

degree of the difference between the regression curve and the

samples out of the e-tube.
Table 3 e Statistics of input and output variables for the UCS d

Variables Notation Minimum

Glass powder (kg/m3) WGP 0

WGP size (mm) Z 75

Sodium sulfate (kg/m3) S 0

Alkali (kg/m3) H 0

Sand (kg/m3) D 708.75

Age (day) A 7

Compressive strength (MPa) UCS 6.82
Fig. 4 presents a schematic diagram of a nonlinear SVR.

Subsequently, the positive Lagrange multipliers (ai, a
*
i , ui, u

*
i )

are introduced to deal with varying constraints, as shown in

Eq. (7).

Lðw;b; d;a;uÞ¼1
2
w2 þC

Xn
i¼1

�
di þ d*i

�
�
Xn
i¼1

ai

�
eþ di � yi þw ,4ðxiÞþb

�
�
Xn
i¼1

a*
i

�
eþ di þyi �w ,4ðxiÞ� b

�
�
Xn
i¼1

�
uidi þu*

i d
*
i

�
(7)

When the constraints are seriously opposite to each

other, and the objective equation is differentiable, the

Karush-Kuhn-Tuck (KKT) rules need to be satisfied for

each of the prime and dual points in Eq. (8) [50]. Ac-

cording to the KKT, the product of dual variables and

constraints in the optimal solution is 0 as shown in

Eq. (9).
ataset.

Maximum Median Std Dev

303.75 202.50 84.75

300 75 112.49

27 9 10.02

27 9 10.02

1012.50 810 84.75

28 14 8.73

36.53 19.17 5.91
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Table 4 e Statistics of input and output variables for the ASR dataset.

Variables Notation Minimum Maximum Median Std Dev

Glass powder (kg/m3) WGP 0 303.75 202.50 84.75

WGP size (mm) Z 75 300 75 112.49

Sodium sulfate (kg/m3) S 0 27 9 10.02

Alkali (kg/m3) H 0 27 9 10.02

Sand (kg/m3) D 708.75 1012.50 810 84.75

Age (day) A 2 14 7 4.27

Alkali-silica reaction expansion (%) ASR 0.001 0.144 0.059 0.034
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8>>>>>>>>>>><>>>>>>>>>>>:

vL
vw

¼ w�
Xn
i¼1

�
ai � a*

i

�
4ðxiÞ ¼ 0

vL
vb

¼
Xn
i¼1

�
ai � a*

i

� ¼ 0

C� ai � ui ¼ 0

C� a*
i � u*

i ¼ 0

(8)

ai

�
eþ di � yi þw,4ðxiÞ þ b

� ¼ 0

a*
i

�
eþ di þ yi �w,4ðxiÞ � b

� ¼ 0

ðC� aiÞdi ¼ 0�
C� a*

i

�
d*i ¼ 0

(9)

The Langrage dual problem can be finally derived by solv-

ing the above equations.

maxi

0@� 1
2

Xn
i¼1

Xn
j¼1

�
ai � a*

i

��
aj � a*

j

	
xT
j xj

� e
Xn
i¼1

�
ai �a*

i

�þ Xn
i¼1

yi

�
ai � a*

i

�1As:t

8><>:
Xn
i¼1

�
ai � a*

i

� ¼ 0

ai;a
*
i2½0;C�

(10)

According to Eq. (9), w can be calculated as
Pn
i¼1

ðai � a*
i Þ4ðxiÞ,

and the regression function is shown as follows.

fðxÞ¼
Xn
i¼1

�
ai �a*

i

�
4ðxiÞxþ b (11)

3.2.2. Back-propagation neural network (BPNN)
BPNN is commonly composed of an input layer, one or more

hidden layers, and one output layer. The neural network

employs interlinked neurons to establish the relationships
Fig. 3 e Correlation matrix of input variabl
between inputs and outputs. The output (O) is represented as

follows:

O¼ f

 Xn
j¼1

�
wjxj

�þb

!
(12)

wherewj is the weight value of the jth input neuron (xj) in the

former layer; b is the bias value; f is the activation function

shown in Eq. (13).

fðxÞ¼ 2

1þ expð�xÞ � 1 (13)

The back-propagation process is used to adjust the weight

values and thresholds. This can be achieved by computing the

gradient of theweighting error function. The training iteration

will stop when the mean square error (MSE) between the

actual and predicted outputs become smaller than a defined

threshold. The sketch diagram of the back-propagation pro-

cess is shown in Fig. 5.

Besides, logistic regression (LR) and multiple linear

regression (MLR)were also trained as the baselinemodels. The

specific algorithm description can be found in other research

papers [35].

3.2.3. Firefly algorithm
For the SVR, two basic hyperparameters (Gaussian kernel

parameter g and namely penalty coefficient c) need to be

tuned by FA. As regards BPNN, the hyperparameters are the

amounts of hidden layers and neurons in each layer. The FA is

inspired by the social behaviour of fireflies. Fireflies are

attracted to the brightness so that the attractiveness is in a

positive relationship to the brightness of the firefly. The

attractiveness of brightness decreases as the distance
es for (a) UCS dataset (b) ASR dataset.

https://doi.org/10.1016/j.jmrt.2022.01.066
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Fig. 4 e A support vector regression machine.
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between two fireflies increases. The brightest firefly flies

randomly through the surrounding area. Eventually, the

brightest firefly can be deduced when the other fireflies

continuously travel towards it. The brightness can be written

as a fitness function based on a concrete problem. Eq. (14)

shows the changed position xtþ1
i when firefly i moves to-

wards firefly j.

xtþ1
i ¼ xt

i þ b0e
�gr2

ij

�
xt
j �xt

i

	
þ aðrand�1 = 2Þ (14)

rij ¼



xt

j �xt
i




 (15)

where xti and xtj are the positions of two fireflies i and j at the

t-th iteration; rij in Eq. (15) shows the Euclidian distance be-

tween fireflies i and j; b0 is the highest attractiveness of the

firefly when r equals zero; a and rand are the randomization

parameter and random vector derived from the Gaussian

distribution, ranging from 0 to 1. The g (ranging from 0 to 1) is

introduced (an absorption coefficient) to represent the situa-

tion that the brightness reduces with distance and medium.

The pseudocode of FA can be shown in Fig. 6.

3.3. Hyperparameter tuning

3.3.1. Cross fold validation
A 10-fold CV was used in this study to assess the data, elimi-

nating the overfitting problems. The experimental dataset

was randomly divided into two groups comprising testing set

(accounting for 30%) and training set (accounting for 70%). The

training set was then split into 10 folds (9 for ML training, and

1 for the validation of the model performance), as shown in

Fig. 7. The hyperparameters were iterated for 50 times ac-

cording to the root mean square error (RMSE) obtained after

each validation. The above process was repeated 10 times

with a non-repetitive validation fold chosen at each time.

Ultimately, the trained ML model with optimal hyper-

parameters would be used to test the model performance on

the training set.
3.3.2. Performance assessment
Evaluation is essential in measuring the accuracy of the

model. In this research, RMSE, MAE, correlation coefficient (R),

and mean absolute percentage error (MAPE) were the evalu-

ation indices. They are defined in the following equations.

RSME¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

�
y*
i � yi

�2s
(16)

MAE¼ 1
n

Xn
i¼1

��y*
i � yi

�� (17)

MAPE¼ 1
n

Xn
i¼1

����y*
i � yi

yi

���� (18)

R¼
Pn

i¼1

�
y*
i � y*

��
yi � y

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

�
y*
i � y*

�2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

�
y*
i � y

�2q (19)

where n means the n groups of data samples; y*i and yi

demonstrate the predicted and actual values; y* and y are the

mean values of the predicted and actual data, respectively.

3.4. Multi-objective optimisation

3.4.1. Objective function establishment
The cost was also included for the MOO design. A polynomial

function shown in Eq. (20) was used to calculate the cost of

mortar containing WGP.

Cost
�
$
�
m3
�¼CcQc þ CwQw þ CDQD þ CWGPQWGP þ CSQS þ CHQH

(20)

In the above equation, C is the unit price ($=kg) of the

materials used in mortar production and Q represents the

quantity (kg=m3) of different raw materials. The cost of

cement, water, silica sand, WGP, and chemical activators is

listed in Table 5 in which all the prices are the average local

retailing price.

https://doi.org/10.1016/j.jmrt.2022.01.066
https://doi.org/10.1016/j.jmrt.2022.01.066


Fig. 5 e Back-propagation in the BPNN [35].
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3.4.2. Constraints of variables
To solve multi-objective optimisation problems, several con-

straints are set including mortar volume constraint, range

constraint of materials, and ratio constraint, shown in Eq. (21)

and Table 6. The price of WGP mortar is calculated based on

one cubic meter to unify the unit. The input variables are

summarised for their minimum and maximum values and
Obtain results 
End 

Fig. 6 e The pseud
three ratio constraints are also determined for calculating

Pareto optimal solutions.

Vm

�
1m3

�¼Qc

Uc
þ Qw

Uw
þ QD

Ud
þ QG

UG
þ QS

US
þ QH

UH
(21)

where U is the unit weight of materials.
ocode of FA.

https://doi.org/10.1016/j.jmrt.2022.01.066
https://doi.org/10.1016/j.jmrt.2022.01.066


Fig. 7 e 10-fold cross-validation.
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3.4.3. Construction of MOFA
The establishment of MOFA is based on the objective func-

tions of UCS, ASR, and cost by applying the weighted sum

method. The UCS and ASR are combined with cost separately

to set up a function as shown in Eq. (22).

f ¼
Xi

i¼1

wifi;
Xi

i¼1

wi ¼ 1 (22)

where fi means the multiple objectives; f is the combined

function in solving MOO problem; wi equals to pi= i where the

denominator is the random number arising from a uniform

distribution [0,1] and the numerator is the uniformly distrib-

uted number.

The above equation can be formulated in the following

manner in this research.

F1 ¼w1 ,UCSð28 daysÞþw2 ,ASRð14 daysÞ
þw3,cost; for 300mmWGP

(23)

F2 ¼w1,UCSð28 daysÞ þw2,ASRð14 daysÞ
þw3,cost; for 75mmWGP (24)

X3
i¼1

wi ¼ 1 (25)

To solve the optimisation problem, Pareto optimal front is

determined since the multiple objectives are supposed to be
Table 5 e Unit price and unit weight of each rawmaterial.

Materials Notation Unit Price
($=kg)

Unit weight
(kg=m3)

Cement Cc 0.061 3100

Water Cw 0.001 1000

Sand CD 0.012 2350

Waste glass powder CWGP 0.089 2450

Sodium sulfate CS 0.17 2680

Alkali CH 0.21 2190
minimised simultaneously. They represent the solutions that

are non-dominated so that any of the other objective func-

tions fail to be improved without harming another function.

The mathematical expression for Pareto optimum is formed

as follows [51,52].

If x*2S is Pareto optimal solution, whereby S is the set of

feasible solutions, the nonexistence of x2S such that

fiðxÞ� fiðx*Þfori ¼ 1;2; 3;…; kand (26)

fiðxÞ< fiðx*Þ foratleastone valuei (27)

The set of the non-dominated Pareto optimal solutions con-

stitutes the Pareto optimal front, as shown in Fig. 8. Apart from

the Pareto front, the other feasible points would not be optimal

since their objective function values are larger than at least one

point in the Pareto front. The FA can be developed to MOFA to

calculate Pareto optimal solutions for finding optimisation

mixturedesign.ThepseudocodeofMOFAissummarisedinFig.9.

3.4.4. Decision-making by TOPSIS theory
Pareto front outputs many non-dominating solutions, while it

fails to deal with the best one within these solutions. Thereby,

a multi-criteria decision strategy is proposed, which is the

technique for order preference by similarity to an ideal solu-

tion (TOPSIS) [53]. According to the Pareto solutions, the pos-

itive and negative ideal points can be determined. The
Table 6 e Constraints of input variables.

Variables Expressions Lower
bound

Upper
bound

WGP size S 75 300

Sodium sulfate CS 0 27

Alkali CH 0 27

WGP ratio CWGP=ðCWGP þCDÞ 0.1 0.3

WGP and sand

to

cement ratio

Cc=ðCWGP þCDÞ 0.42 0.46
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https://doi.org/10.1016/j.jmrt.2022.01.066


Fig. 8 e The schematic diagram of Pareto optimal solutions.
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realisation of TOPSIS is to select a solution that is closest to the

positive ideal point and farthest from the negative ideal point.

The positive one is the solution in which the fitness function

value is the most ideal and the negative one corresponds to

the worst fitness function value. This can be represented by

the following equations that a solution with the highest Ci is

considered as the best one.

diþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
j¼1

�
Fij � Fideal

j

	2vuut (28)

di� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
j¼1

�
Fij � Fnon�ideal

j

	2vuut (29)
Sort and find the current best approxim
Update  

end while 
Post process results and visualisa on 

Fig. 9 e The pseudo
Ci ¼ di�
diþ þ di�

(30)

where diþ and di� are the positive and negative ideal solutions;

n and i are the numbers of objectives and the ith Pareto point;

Fidealj is the ideal value of the jth objective and Fnon�ideal
j is the

non-ideal value.

3.5. Variable importance measure

In some cases where the relationship between variables and

objectives is nonlinear and complex, the visualisation of their

relationship is hard to analyse. Hence, this study used a

method based on sensitivity analysis (SA) to rank the impor-

tant degree of the input variables on the outputs. This is
a on to the Pareto front 

code of MOFA.
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commonly used to qualitatively or quantitatively evaluate the

dependence of outputs on variables by computing the change

in output values caused by inputs' variation. In this study,

global sensitivity analysis was utilised because it allows

multiple variables to be altered simultaneously compared

with local sensitivity analysis. In the following equations, the

variable ‘a’ changes in the range of the experimental dataset

while the other variables remain constant at their mean

values.

Ga ¼
XN
j¼2

��� cya;j � dya;j�1

���
N� 1

(31)

Ra ¼Ga

,XI

i¼1

Gi (32)

where Ga is the average difference between adjacent outputsdya;j and dya;j�1 ; N is the number of the value of the variable

under research; Ra is the relative importance of the variable ‘a‘.
4. Results and discussions

4.1. UCS results

The UCS values of specimens containing 300 mm WGP at the

early stage (7 days) and late stage (28 days) are depicted in

Fig. 10a and (b), respectively. Meanwhile, the effects of sodium

sulfate content, alkali content, andWGP replacement ratio on

UCS are intuitively compared. The UCS of WGP mortar sam-

ples without chemical agents presented decreasing trend

when theWGP replacement ratio increased from 0% to 30% for

both early and late curing stages. Statistically, the compres-

sive strength decreased from 26.84MPa to 21.69MPawhen the

WGP ratio increased from 0% to 30%, around 19% lower than

the control sample. This weakening tendency was consistent

with the previous researches finding illustrating the negative

effect of WGP on mechanical strength [54,55]. The possible

reasons are excessive ASR expansion which would be

concretely discussed in the next section and low pozzolanic

reactive arising from its stable silica tetrahedron structure. In

this case, less calcium silicate hydrate (CeSeH) or calcium

aluminate hydrate (C-A-H) can be generated attributed to the

few silicon and aluminum dissolutions. Meanwhile, the

interfacial transition zone between hydration product and

glass powder is weaker than that between cement hydrates

and sand because of the smoother glass surface. Therefore,

the mechanical strength was decreased by the WGP addition.

Regarding the contents of chemical additives, the main

trend between UCS and agents’ contents could be observed

despite of some fluctuations which were probably caused by

the experimental error. Generally, sodium sulfate at 2%

resulted in themaximumUCS. Besides, alkali content ranging

from 0% to 2% led to relatively higher UCS. However, the

excessive contents of both sodium sulfate and alkali caused

significant compressive strength diminishment. In Fig. 10b,

the efficacy of chemical agents (at appropriate dosage) has

been verified to at least enhance the UCS ofWGP sample to the

strength level of the control sample. The mechanisms of UCS
improvement by sodium sulfate and alkali are mainly attrib-

uted to theWGP structure depolymerisation andWGP-cement

system excitation.

The alkali additive provided additional hydroxide ions

apart from those derived from the cement hydration. As

mentioned before, the stable silica tetrahedron structure of

the glass powder hinders the dissolution of silica and

aluminum, reducing its pozzolanic reaction. However, the

stable structure is prone to be destroyed under high alkali

concentrations [56]. This is because the glass solution is

weakly acidic (silicon dioxide is acidic oxide) and the chemical

bonds between silicon/aluminum and oxygen atom are weak

to be broken under high alkali concentration [56]. Specifically,

the chemical bond fracture can be described in the following

equations.

≡SidOdSi≡þ OH�/≡SidO� þHOdSi≡ (33)

SiðOHÞ4 þNaOH/

SiðOHÞ3O

��Naþ þH2O (34)

Naþ þCa2þ þAl3þ þ SiðOHÞ3O�� / ðN;CÞ�A� S� Hgel (35)

Eq. (35) demonstrates the possible formation of gels in the

alkali-activated WGP-cement system. Nevertheless, this gel

product is highly dependent on the WGP reactivity and the

availability of sodium, calcium, and aluminum [57,58]. As a

result, one of the most important contributions from alkali

addition is WGP structural depolimerisation for active silicon

and aluminum dissolution into further pozzolanic reaction.

Way and Shayan [59] also stated the positive relationship

between silica concentration in solution and the addition of

alkali hydroxide. Besides, alkali can also active the cement

system by increasing the PH value, especially at an early age,

resulting in a shorter dormant period of cement hydration and

a faster hydration rate [59]. However, the effect of alkali ad-

ditive on UCS of 300 mm WGP mortar was very limited and

even negativewhen the alkali contentwas higher than 2% (see

Fig. 10). Some researchers observed a similar phenomenon

and attributed it to heterogeneous gel formation and reduc-

tion of calcium ion concentration [56,60]. Another possible

reason is excessive ASR expansion which is specifically dis-

cussed in the next section.

As regards the sodium sulfate efficacy, it can be regarded as

the combination of alkali excitation (owing to Naþ) and sulfate

excitation (owing to SO4
2�) [61,62]. Similar to the fly ash-

cement system, the chemical reaction can be presented in

the following equations. Apart from the alkali activation

mentioned above, the gypsum (CaSO4) can be generated to

react with aluminate (C3A) to form ettringite (AFt). The

increased amount of AFt can enhance the mortar density and

simultaneously improve the early mechanical strength. In

addition, the alite (C3S) hydration can also be accelerated by

sulfate ions to generate CeSeH gels. Nevertheless, too much

sulfate inevitably leads to excessive AFt to causing the loose

structure and reducing the mortar robustness. This is

consistent with the phenomenon in Fig. 10 that the UCS

exhibited a downward trend when the sodium sulfate content

was higher than 2%.

Na2SO4 þCaðOHÞ2 /CaSO4ðgypsumÞ þNaOH (36)

https://doi.org/10.1016/j.jmrt.2022.01.066
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Fig. 10 e 7-day (a) and 28-day (b) UCS of specimens containing WGP (300 mm) chemically activated by different dosages of

sodium sulfate and alkali.
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CaSO4 þaluminateðC3AÞ þ H2O/ettringiteðAFtÞ (37)

Apart from the chemical activation, mechanical grinding is

another feasible method to activate waste glass. Through the

grinding process, the stable silica tetrahedron structure of the

glass is prone to be broken, leading to a reduced degree of

crystallization (the tendency from crystallisation to amor-

phousness) [63,64]. Meanwhile, the specific surface area of

WGP can be increased to enhance the WGP pozzolanic po-

tential. The density of theWGPmortar is also increased owing

to the uniform distribution of tinyWGP in the pores of mortar.

Thereby, the mechanical performance of WGP mortar is sup-

posed to be improved after mechanical grinding. Fig. 11 de-

picts the UCS variations for specimens containing 75 mm WGP

with and without chemical activation. The 28-day UCS was
26.84 MPa for the control sample, which increased to

35.72 MPa, 27.90 MPa, 31.88 MPa, respectively when was 10wt

%, 20wt%, and 30wt% sand was replaced by 75 mm WGP. This

improved UCS verified the positive efficacy of mechanical

grinding. Similar to 300 mm WGP mortar, the chemical addi-

tives’ threshold (2% for both alkali and sodium sulfate) was

also pronounced for most 75 mm WGP mortar samples. How-

ever, the moderate content of chemical additives (i.e., �2%) is

capable of improving the compressive strength. The highest

28-day UCS (35.33 MPa) was found on mortar sample incor-

poration 75 mm WGP (30%), alkali (2%), and sodium sulfate

(2%).

The hydrothermal activation was also investigated as

supplementary. Fig. 12 shows the UCS of samples with ver-

satile curing times and WGP replacement ratios, presenting

https://doi.org/10.1016/j.jmrt.2022.01.066
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Fig. 11 e 7-day (a) and 28-day (b) UCS of specimens containing WGP (75 mm) chemically activated by different dosages of

sodium sulfate and alkali.
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the efficacy variance of four activationmethods (NA, C, H, and

CH). It is noted that the chemical additive in Fig. 12 was the

mixture of 2% alkali and 2% sodium sulfate which was

considered as the optimal one according to the previous

description. The increased UCS demonstrated the positive

efficacy of hydrothermal activation. Regarding the mecha-

nism of hydrothermal activation, it can break the chemical

bond and reduce the WGP structural stability through high

temperature and pressure (105 �C and 0.143MPa in this study).

The Silica tetrahedron units can be depolymerised as pre-

sented in Eq. (38) [65,66]. However, the SiðOHÞ4 is prone to

adhere to the glass surface (silica gel membrane) after being

polarized by water molecules, hindering the hydrothermal

reaction. The alkali can neutrally react with silica gel,

contributing to the WGP depolymerisation. Therefore, the
alkali within the hydrothermal process is essential, otherwise,

the hydrothermal duration cannot be long.

≡SidOdSi≡þ HdOdH/≡SidOHþHOdSi≡ (38)

In general, the chemical activation outperformed hydro-

thermal activation at an early age. However, the gap between

chemical and hydrothermal activations is gradually narrowed

at a late stage (i.e., 28 days). Compared to the un-activated 30%

WGP (75 mm) sample, the 28-day UCS increased from

31.88 MPa to 35.33 MPa and 35.13 MPa, respectively, corre-

sponding to chemical activation and hydrothermal activation.

Besides, the combined activation has the benefit of obtaining

adequate strength at both early and late ages. As mentioned

before, this might be attributed to the alkali addition in the

hydrothermal process which promoted the WGP structural

https://doi.org/10.1016/j.jmrt.2022.01.066
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Fig. 12 e The effect of activation approaches on UCS of specimens containing 75 mm WGP at varying curing ages.
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fracture. Furthermore, the 30% WGP (75 mm) with combined

activation is the optimal choice. The specimen containing

such WGP showed a UCS of 36.5 MPa, about 14% and 36%

larger than that of the non-activated 30% WGP specimen and

control sample, respectively.

4.2. ASR expansion results

Fig. 13 depicts the 14-day ASR expansion outcomes for speci-

mens containing versatile contents of 300 mm and 75 mm

WGPs. The influence of alkali and sodium sulfate on ASR

expansion is also intuitively compared in this figure. The

mechanism of ASR is attributed to the formation of ASR gel

which is capable of swelling when it absorbs water. The ASR

gels can be generated around the glass surface provided the

alkali concentration is high and the silica is reactive.

As to 300 mm WGPmortar without chemical activation, the

ASR expansion exhibited a rising trend by increasing WGP

content. When the glass replacement was 30%, the expansion

reached 0.144% at 14days, exceeding the ASTM threshold

(0.1%). This findingwas consistent with previous publications,

demonstrating the detrimental effect of coarse glass particles

in concrete. Regarding 75 mm WGP mortar without chemical

activation, the ASR expansion was mitigated compared to the

control sample. Shayan and Xu [67] explained that the fine

WGPwas prone to have a pozzolanic reaction to generate non-

swelling gels. The threshold of the WGP size is reported by

some researchers as 0.15e0.30 mm [15,67]. However, the

expansion of 30% 75 mm WGP specimen exceeded the ASTM

threshold, which was similar to that of specimen containing

30% coarseWGP. This phenomenon contradicted the previous

finding that fine glass powderwas harmless to ASR expansion.

Du and Tan [15] attributed the ASR expansion to the micro-

cracks in glass particles, especially glass with more perme-

able and larger cracks. Therefore, the over-expansion might

be ascribed to the micro-cracking accumulation arising from

overmuch incorporated WGP.
Generally, chemical activation showed a negative effect on

ASR expansion when WGP content was low, especially the 10%

replacement ratio. However, the positive effect of chemical

activation canbe observed for sampleswith 30%WGP (300 mmor

75 mm). In this case, the combination of 2% alkali and 4% sodium

sulfate was the optimal choice. It reduced the expansion to

0.086% and 0.046%, respectively, for 300 mm and 75 mm WGP

mortar samples. Besides, no apparent regularity was observed

between the ASR expansion and the dosage of the chemical

agent. However, it can be deduced that the overmuch alkali or

sodium sulfate would result in a relatively larger expansion. In

contrast, appropriate contents of chemical agents couldmitigate

the expansion when WGP content is 30%. This could be attrib-

uted to the increased concentration of Ca2þ and silica reactivity,

which reduced the gel swelling potential [40,68]. However, this is

indistinct and further investigation needs to be conducted. The

AI-based technology was utilised to tackle the relationship

between ASR expansion and dosages of the chemical agents,

which was specifically described in the following sections.

Similar to the UCS test, the hydrothermal activation was

supplemented to compare with chemical and combined

activation for 75 mm WGP mortar. The chemical agents’ dosage

was 2% of alkali and 2% of sodium sulfate. The ASR test results

are shown in Fig. 14. The hydrothermal activation was themost

effectivemethod inmitigating the ASR expansion for specimens

with allWGP replacement ratios. The combined activation could

neutralise the effects of chemical and hydrothermal activations

so that the ASR expansion was between them. As mentioned

before, the pozzolanic reaction of WGP was prone to generate

less swelling gels [15]. Therefore, one possible reason for

hydrothermal activation effectiveness is the pozzolanic reac-

tivity excitation. However, this still needs further investigation.

4.3. SEM results

SEM analysis presented the smooth surface of 75 mm WGP

(N/A), as shown in Fig. 15a. The erosion can be intuitively
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Fig. 13 e ASR expansion for bar specimens containing (a) 300 mm WGP (b) 75 mm WGP at different dosages of sodium sulfate

and alkali.
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observed on chemically activated WGP surface with the for-

mation of numerous flocculent deposits (Fig. 15b). This phe-

nomenon (N� C� S�H gels formation) verifies the erosion

effect of alkali on glass particles. After hydrothermal activa-

tion (Fig. 15c), plenty of tiny glass fragments was observed and

the glass edges turned to be blunt, indicating the WGP struc-

tural destruction. Fig. 15d depicts the combined-activated

WGP, the reaction was the most intense among all the

activation approaches. Substantial sediments and a thick

gelmembranewere generated on the glass surface. Compared

to the chemical activation, the combined method

possesses higher erosion velocity on the surface of WGP.
This also explains the finding that the highest UCS appeared

in combined-activated WGP mortar at both early and late

stages.

Fig. 16 shows the schematic images of the silica tetrahe-

dron structural unit and the effects of versatile activation

methods on WGP at the molecular level. The chemical

activation can contribute to the silica dissolution and the

hydrothermal activation is beneficial to the structural depo-

lymerisation (bond rupture and amorphisation). The com-

bined activation possesses the combined effect so that the

gels might be thick around the WGP surface. This could be

intuitively seen in the above SEM figures.
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Fig. 14 e The comparison of ASR expansion of WGP mortar (75 mm) with different activation methods.
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4.4. Results of multi-objective optimisation design

4.4.1. Results of hyperparameter tuning
The ML hyperparameters were tuned through a 10-fold CV

and FA algorithm. For instance, the fold possessing the min-

imum RMSE (UCS dataset: 6th fold, ASR dataset: 3rd fold)

during SVR's cross-validation is shown in Fig. 17. Fig. 18

specifically depicts the RMSE iteration on the corresponding

folds of different ML models. By comparing the prediction

performance of different models in section 4.2.3, the SVR
Fig. 15 e SEM micrographs of WGP under (a) N/A (b) chemical act
model was optimal in predicting both UCS and ASR expan-

sion. The corresponding hyperparameters c and g were

4001.27 and 0.113 for UCS set, and 113.43 and 2.900 for ASR set,

respectively.

4.4.2. Performance of FA-SVR
In Fig. 19, the predicted UCS and ASR expansion by employing

the optimal ML model (i.e. SVR) were separately compared

with the actual values.Most points in training and test sets are

close to the perfect fitting curve (the solid diagonal line) so that
ivation (c) hydrothermal activation (d) combined activation.
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Fig. 16 e Schematic figure of (a) silica tetrahedron structural unit (b) chemical activation (c) hydrothermal activation (d)

combined activation.

Fig. 17 e 10-fold CV of SVR modelling on the (a) UCS dataset (b) ASR dataset.

Fig. 18 e RMSE versus iteration in the optimal fold of varying ML models for (a) UCS dataset (b) ASR dataset.
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Fig. 19 e Actual versus predicted values for (a) UCS and (b) ASR expansion.
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the model prediction ability is relatively robust. This can be

further verified by the high values of correlation coefficient (R

value), reaching 0.9093 and 0.9059 in the UCS and ASR test

sets, respectively. Meanwhile, the RMSE (or R value) on the

training and test sets were both similar, which means that

the overfitting or under-fitting problem did not exist. There-

fore, the established SVR model is feasible to predict the

properties of WGP mortar and act as the objective function

for the MOO issue.
Fig. 20 e Performance evaluation of varying ML models (a) Boxp

diagram of UCS modelling (d) Taylor diagram of ASR modelling
4.4.3. Model evaluation comparison
Through the box and Taylor diagrams, Fig. 20 intuitively

shows the preciseness comparison between SVR, BPNN, LR,

and MLR. In the boxplot, the error between the predicted and

actual values is plotted shown in Fig. 20 (a) and (b). The SVR

model possessed a lower median error (the red line) and a

more condensed interquartile range (the space inside the blue

rectangle). This phenomenon indicated a lower prediction

error than the other MLmodels. Generally, the SVRmodel was
lot of UCS modelling (b) Boxplot of ASR modelling (c) Taylor

.
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Table 7 e Evaluation of ML models on UCS and ASR test sets.

ML model Evaluation index

RMSE R MAE MAPE

UCS dataset

BPNN 2.764 MPa 0.885 2.156 MPa 0.129

SVR 2.453 MPa 0.909 1.947 MPa 0.113

LR 4.305 MPa 0.852 3.614 MPa 0.205

MLR 3.137 MPa 0.847 2.549 MPa 0.153

ASR dataset

BPNN 0.0194% 0.846 0.0154% 0.4764

SVR 0.0152% 0.906 0.0105% 0.2659

LR 0.0242% 0.791 0.0181% 0.3644

MLR 0.0221% 0.790 0.0179% 0.5171

Fig. 21 e Pareto front on cost, UCS, and ASR expansion of (a) 300 mm WGP mortar (b) 75 mm WGP mortar.
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Table 8 e Mixture proportions of Pareto solutions of
300 mm WGP mortar.

Mixture A (Final point) B C D

Cement (kg/m3) 450 450 450 450

Sand (kg/m3) 891.64 880.40 953.57 957.62

Water (kg/m3) 211.5 211.5 211.5 211.5

WGP (kg/m3) 109.3356 118.19 106.30 107.42

WGP size (mm) 300 300 300 300

Na2SO4 (kg/m3) 10.70188 12.33 2.87 1.32

Alkali (kg/m3) 1.31 1.96 0.03 0.65

28-day UCS (MPa) 26.05361 26.13 24.38 23.94

14-day ASR (%) 0.0864 0.0962 0.0617 0.0644

Cost ($/m3) 63.91 65.29 60.80 60.68

TOPSIS score 1 0.979 0.249 0.112

Table 9 e Mixture proportions of Pareto solutions of
75 mm WGP mortar.

Mixture A (Final point) B C D

Cement (kg/m3) 450 450 450 450

Sand (kg/m3) 882.33 885.52 928.48 930.00

Water (kg/m3) 211.5 211.5 211.5 211.5

WGP (kg/m3) 150.97 134.55 112.42 108.35

WGP size (mm) 75 75 75 75

Na2SO4 (kg/m3) 10.66 13.51 1.58 1.51

Alkali (kg/m3) 2.94 3.64 0.21 1.04

28-day UCS (MPa) 33.34 33.84 27.73 27.73

14-day ASR (%) 0.0646 0.0796 0.0313 0.0341

Cost ($/m3) 67.72 67.06 61.53 61.35

TOPSIS score 1 0.967 0.266 0.256
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optimal among these ML models although several outliners

were produced. Besides, three indices (RMSE, R value, and

standard deviation) are integrated into the polar coordinates,

as presented in Fig. 20 (c) and (d). Both SVRmodels were in the

closest position to the “actual” points, showing the highest R

value, minimum RMSE, and lowest standard deviation among
Fig. 22 e Variable significance on UCS a
the four ML models. Furthermore, Table 7 summarises the

values of four evaluation indices. The SVR model also

possessed the lowest MAE and MAPE indicating its best pre-

diction accuracy. In conclusion, the SVR model is the most

suitable to predict the UCS and ASR values of WGP modified

mortar.

4.4.4. MOO design
The design solutions that optimised the afore-mentioned tri-

objective functionwere completed by usingMOFA-SVRwithin

the constraints. The 100 non-dominated Pareto points were

generated showing the combination of UCS, ASR expansion,

and cost of 300 mm and 75 mmWGPmortars in Fig. 21a and (b),

respectively. The wide distribution of these points in the 3D

space with reasonable ranges indicates the effectiveness and

generalisation of the established MOBAS-SVR program. For

both MOO outcomes of 300 mm and 75 mm WGP mortars, the

increase of UCS can only be achieved by cost addition. How-

ever, this inevitably increased the risk of damage caused by

increased ASR expansion. Therefore, the balance between

these three objectives (UCS, ASR expansion, and cost) must be

achieved according to the judgement of the decision-maker.

Four particular Pareto points (A, B, C, and D) are emphasized

in Fig. 21 which corresponds to the highest TOPSIS score,

maximum UCS, minimum ASR expansion, and lowest cost,

respectively. The specific mixture design of solutions A, B, C,

and D are listed in Table 8 and Table 9. Within these Pareto

points, Point A was recommended as the preferable and more

appropriate solution according to the TOPSIS theory.

4.4.5. Variable sensitivity analysis
The sensitivity of the input variables on the UCS and ASR

expansion is quantified in percentage terms depicted in

Fig. 22. The curing time is undoubtedly the most significant

factor, especially for ASR expansion. The alkali content shows

almost the same important degree as curing time for UCS,

whereas it insignificantly influences the ASR expansion.
nd ASR expansion of WGP mortar.
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Besides, the WGP size remarkably affects both the ASR

expansion and UCS. Compared to the content of Na2SO4, the

alkali content presents greater influence on UCS and less in-

fluence on ASR expansion. These phenomena agree well with

the conclusions drawn from the experimental results. In

general, the variable's sensitivity analysis provides a quanti-

tative understanding of the variable importance.
5. Conclusion

In this study, UCS, ASR expansion, and SEMwere conducted to

investigate WGP mortar and four reactivity excitation

methods: mechanical, chemical, hydrothermal, and com-

bined activations. The main conclusions can be drawn and

applied to other glass with similar chemical components:

1. Mechanical grinding of WGP from 300 mm to 75 mm effec-

tively enhanced the UCS and reduced the ASR expansion.

However, the ASR expansionwas still excessive even if 30%

WGP (75 mm) was incorporated into the mortar.

2. Alkali and sodium sulfate are two commonly used chemi-

cal activators. Regarding UCS improvement, the thresholds

of sodium sulfate and alkali are around 2% and 0%e2%,

respectively. As to ASR expansion, the chemical activation

showed an adequate mitigation effect when the WGP

replacement ratio is 30%. The SEM figure showed intuitive

alkali erosion on the WGP surface.

3. The hydrothermal activation improvedUCS at a late age (28

days) and simultaneously it was themost effectivemethod

on reducing ASR expansion. The SEM figure presented

numerous tiny broken glass fragments. Besides, the com-

bined activation possessed the optimal effect of strength

improvement.

4. The ML (BPNN, SVR, LR, MLR) models were trained with

hyperparameters tuned by FA. The SVR showed the best
ID OPC
(kg/m3)

75 mm
WGP

(kg/m3)

300 mm
WGP

(kg/m3)

Ground
silica sand
(kg/m3)

Water
(kg/m3)

Na2SO4

(kg/m3)
Alkali
(kg/m3)

1 450 0 0 1012.5 211.5 0 0

2 450 101.25 0 911.25 211.5 0 0

3 450 101.25 0 911.25 211.5 0 9

4 450 101.25 0 911.25 211.5 0 18

5 450 101.25 0 911.25 211.5 0 27

6 450 101.25 0 911.25 211.5 9 0

7 450 101.25 0 911.25 211.5 9 9

8 450 101.25 0 911.25 211.5 9 18

9 450 101.25 0 911.25 211.5 9 27

10 450 101.25 0 911.25 211.5 18 0

11 450 101.25 0 911.25 211.5 18 9

12 450 101.25 0 911.25 211.5 18 18

13 450 101.25 0 911.25 211.5 18 27

14 450 101.25 0 911.25 211.5 27 0

15 450 101.25 0 911.25 211.5 27 9

16 450 101.25 0 911.25 211.5 27 18

17 450 101.25 0 911.25 211.5 27 27

18 450 202.5 0 810 211.5 0 0

19 450 202.5 0 810 211.5 0 9

20 450 202.5 0 810 211.5 0 18

21 450 202.5 0 810 211.5 0 27

22 450 202.5 0 810 211.5 9 0

23 450 202.5 0 810 211.5 9 9
prediction accuracy and generalisation ability among the

four ML models. The corresponding R/RMSE values are

0.909/2.453 MPa and 0.906/0.0152%, respectively on UCS

and ASR datasets.

5. By applying MOFA, the Pareto fronts based on three ob-

jectives (UCS, ASR, and Cost) were successfully established,

guiding the design of both 300 mmand 75 mmWGPmortars.

The TOPSIS theory was utilised for decision-making.

6. The sensitivity analysis showed the importance ranking of

versatile variables. The alkali is crucial to UCS and theWGP

size is essential for both UCS and ASR expansion.
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Appendix
Hydro-
thermal
activation

Compressive
strength (MPa)

ASR expansion (%)

7d 14d 28d 2d 4d 7d 10d 14d

e 17.44 24.15 26.84 0.0196 0.0225 0.0308 0.0346 0.0462

e 19.64 27.14 35.72 0.0066 0.0077 0.0156 0.0192 0.0192

e 17.50 23.06 25.00 0.0500 0.0562 0.0654 0.0692 0.0712

e 15.02 21.00 23.11 0.0281 0.0385 0.0550 0.0677 0.0815

e 9.71 12.75 14.49 0.0246 0.0262 0.0308 0.0423 0.0769

e 19.67 27.01 29.35 0.0009 0.0100 0.0120 0.0350 0.0650

e 20.89 25.37 29.84 0.0346 0.0385 0.0519 0.0692 0.1038

e 15.83 20.32 23.63 0.0154 0.0214 0.0315 0.0577 0.0731

e 13.97 17.63 21.50 0.0246 0.0308 0.0446 0.0538 0.0808

e 21.92 27.65 36.53 0.0308 0.0369 0.0531 0.0885 0.1000

e 21.24 26.54 30.34 0.0231 0.0292 0.0538 0.0984 0.1320

e 16.02 19.45 22.89 0.0154 0.0254 0.0538 0.0808 0.1308

e 13.98 0.00 18.64 0.0100 0.0231 0.0615 0.0885 0.1160

e 16.52 21.60 23.61 0.0123 0.0231 0.0654 0.0731 0.0962

e 16.97 20.42 23.57 0.0038 0.0115 0.0462 0.0846 0.1192

e 12.78 17.04 19.66 0.0085 0.0231 0.0615 0.1077 0.1224

e 10.62 14.35 16.33 0.0046 0.0247 0.0462 0.0810 0.1000

e 18.13 26.44 27.90 0.0075 0.0138 0.0308 0.0423 0.0462

e 18.96 25.77 28.73 0.0192 0.0238 0.0423 0.0462 0.0531

e 15.58 20.57 23.97 0.0235 0.0269 0.0423 0.0538 0.0731

e 12.37 16.35 18.46 0.0235 0.0269 0.0308 0.0465 0.0760

e 22.49 28.96 31.53 0.0308 0.0308 0.0538 0.0515 0.0538

e 23.74 30.53 33.92 0.0157 0.0346 0.0385 0.0538 0.0692
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e (continued )

ID OPC
(kg/m3)

75 mm
WGP

(kg/m3)

300 mm
WGP

(kg/m3)

Ground
silica sand
(kg/m3)

Water
(kg/m3)

Na2SO4

(kg/m3)
Alkali
(kg/m3)

Hydro-
thermal
activation

Compressive
strength (MPa)

ASR expansion (%)

7d 14d 28d 2d 4d 7d 10d 14d

24 450 202.5 0 810 211.5 9 18 e 19.21 21.55 23.12 0.0200 0.0386 0.0465 0.0612 0.0808

25 450 202.5 0 810 211.5 9 27 e 16.08 20.46 25.55 0.0538 0.0577 0.0713 0.0831 0.0865

26 450 202.5 0 810 211.5 18 0 e 21.79 25.66 27.48 0.0346 0.0538 0.0654 0.0692 0.0692

27 450 202.5 0 810 211.5 18 9 e 24.96 29.01 33.73 0.0346 0.0538 0.0615 0.0756 0.1000

28 450 202.5 0 810 211.5 18 18 e 19.25 23.29 25.72 0.0385 0.0615 0.0885 0.1038 0.1065

29 450 202.5 0 810 211.5 18 27 e 9.23 11.99 16.15 0.0421 0.0731 0.0885 0.1077 0.1055

30 450 202.5 0 810 211.5 18 0 e 19.26 25.56 28.40 0.0038 0.0269 0.0423 0.0542 0.0615

31 450 202.5 0 810 211.5 27 9 e 19.70 27.17 30.19 0.0077 0.0192 0.0500 0.0650 0.0846

32 450 202.5 0 810 211.5 27 18 e 17.04 22.70 25.22 0.0154 0.0260 0.0423 0.0462 0.0577

33 450 202.5 0 810 211.5 27 27 e 13.09 18.69 22.60 0.0385 0.0846 0.0962 0.1000 0.1115

34 450 303.75 0 708.75 211.5 0 0 e 17.82 26.44 31.88 0.0462 0.0692 0.1086 0.1192 0.1423

35 450 303.75 0 708.75 211.5 0 9 e 19.59 26.89 31.35 0.0708 0.0731 0.0538 0.0615 0.0962

36 450 303.75 0 708.75 211.5 0 18 e 18.20 23.54 26.05 0.0654 0.0662 0.0727 0.0754 0.1019

37 450 303.75 0 708.75 211.5 0 27 e 14.53 18.93 21.32 0.0769 0.0769 0.0846 0.0769 0.1115

38 450 303.75 0 708.75 211.5 9 0 e 23.45 28.16 34.19 0.0200 0.0250 0.0390 0.0640 0.0670

39 450 303.75 0 708.75 211.5 9 9 e 24.73 29.65 35.33 0.0154 0.0200 0.0269 0.0500 0.0654

40 450 303.75 0 708.75 211.5 9 18 e 18.65 22.95 29.05 0.0165 0.0187 0.0568 0.0765 0.0846

41 450 303.75 0 708.75 211.5 9 27 e 13.78 17.54 21.75 0.0175 0.0254 0.0358 0.0586 0.0765

42 450 303.75 0 708.75 211.5 18 0 e 20.65 25.37 32.57 0.0154 0.0154 0.0238 0.0385 0.0508

43 450 303.75 0 708.75 211.5 18 9 e 22.03 25.65 32.69 0.0192 0.0288 0.0346 0.0427 0.0462

44 450 303.75 0 708.75 211.5 18 18 e 18.80 20.89 23.24 0.0346 0.0538 0.0577 0.0615 0.0731

45 450 303.75 0 708.75 211.5 18 27 e 10.65 12.45 14.01 0.0216 0.0386 0.0462 0.0650 0.0840

46 450 303.75 0 708.75 211.5 27 0 e 18.65 24.06 29.41 0.0154 0.0308 0.0423 0.0654 0.0769

47 450 303.75 0 708.75 211.5 27 9 e 17.96 18.02 22.06 0.0208 0.0269 0.0346 0.0513 0.0615

48 450 303.75 0 708.75 211.5 27 18 e 15.96 22.16 23.82 0.0154 0.0346 0.0486 0.0692 0.0808

49 450 303.75 0 708.75 211.5 27 27 e 13.56 17.06 20.24 0.0268 0.0346 0.0540 0.0654 0.0912

50 450 0 101.25 911.25 211.5 0 0 e 16.20 22.51 25.01 0.0070 0.0150 0.0330 0.0410 0.0510

51 450 0 101.25 911.25 211.5 0 9 e 13.75 18.01 20.23 0.0160 0.0810 0.1090 0.1110 0.1080

52 450 0 101.25 911.25 211.5 0 18 e 12.05 16.80 18.65 0.0490 0.0610 0.0840 0.0950 0.1150

53 450 0 101.25 911.25 211.5 0 27 e 7.86 10.23 11.02 0.0380 0.0450 0.0620 0.0840 0.1130

54 450 0 101.25 911.25 211.5 9 0 e 15.54 21.02 25.04 0.0050 0.0120 0.0230 0.0560 0.0845

55 450 0 101.25 911.25 211.5 9 9 e 18.29 25.40 26.66 0.0270 0.0460 0.0570 0.0950 0.1020

56 450 0 101.25 911.25 211.5 9 18 e 13.77 19.31 20.79 0.0160 0.0250 0.0370 0.0660 0.0830

57 450 0 101.25 911.25 211.5 9 27 e 12.02 16.22 19.13 0.0250 0.0340 0.0620 0.0580 0.0910

58 450 0 101.25 911.25 211.5 18 0 e 17.86 21.65 29.03 0.0490 0.0510 0.0770 0.1200 0.1310

59 450 0 101.25 911.25 211.5 18 9 e 18.69 24.95 26.40 0.0270 0.0340 0.0660 0.1110 0.1320

60 450 0 101.25 911.25 211.5 18 18 e 13.46 19.26 20.83 0.0180 0.0280 0.0720 0.1090 0.1440

61 450 0 101.25 911.25 211.5 18 27 e 12.02 14.65 16.03 0.0110 0.0260 0.0760 0.0960 0.1400

62 450 0 101.25 911.25 211.5 27 0 e 13.00 19.02 18.73 0.0120 0.0540 0.0860 0.1200 0.1390

63 450 0 101.25 911.25 211.5 27 9 e 14.26 19.60 21.45 0.0040 0.0150 0.0520 0.0940 0.1310

64 450 0 101.25 911.25 211.5 27 18 e 10.35 16.19 17.14 0.0090 0.0300 0.0710 0.1340 0.1390

65 450 0 101.25 911.25 211.5 27 27 e 9.13 13.35 14.62 0.0050 0.0350 0.0630 0.0930 0.1110

66 450 0 202.5 810 211.5 0 0 e 15.08 20.94 23.27 0.0210 0.0340 0.0620 0.0700 0.0850

67 450 0 202.5 810 211.5 0 9 e 14.65 21.02 23.22 0.0210 0.0360 0.0540 0.0700 0.0860

68 450 0 202.5 810 211.5 0 18 e 12.11 16.85 19.25 0.0180 0.0640 0.0760 0.0840 0.1110

69 450 0 202.5 810 211.5 0 27 e 9.53 13.56 14.13 0.0300 0.0510 0.0560 0.0730 0.0940

70 450 0 202.5 810 211.5 9 0 e 18.40 22.05 25.65 0.0340 0.0490 0.0720 0.0790 0.1010

71 450 0 202.5 810 211.5 9 9 e 18.36 22.05 25.12 0.0290 0.0380 0.0550 0.0790 0.0890

72 450 0 202.5 810 211.5 9 18 e 14.02 15.52 17.57 0.0210 0.0500 0.0560 0.0800 0.0920

73 450 0 202.5 810 211.5 9 27 e 11.90 13.71 19.93 0.0590 0.0650 0.0820 0.1080 0.1130

74 450 0 202.5 810 211.5 18 0 e 17.02 21.05 24.02 0.0210 0.0650 0.0850 0.1080 0.1210

75 450 0 202.5 810 211.5 18 9 e 17.72 19.73 24.28 0.0440 0.0600 0.0670 0.0920 0.1140

76 450 0 202.5 810 211.5 18 18 e 15.21 17.47 18.78 0.0490 0.0770 0.1040 0.1340 0.1260

77 450 0 202.5 810 211.5 18 27 e 7.07 8.64 12.34 0.0520 0.0850 0.1220 0.1370 0.1390

78 450 0 202.5 810 211.5 27 0 e 15.62 20.65 22.45 0.0069 0.0550 0.0680 0.0760 0.0950

79 450 0 202.5 810 211.5 27 9 e 14.78 19.29 23.09 0.0080 0.0210 0.0550 0.0810 0.1060

80 450 0 202.5 810 211.5 27 18 e 13.22 15.89 18.30 0.0170 0.0280 0.0490 0.0840 0.1120

81 450 0 202.5 810 211.5 27 27 e 10.60 13.83 17.29 0.0420 0.1130 0.1250 0.1290 0.1210

82 450 0 303.75 708.75 211.5 0 0 e 14.36 19.03 21.69 0.0410 0.0760 0.0860 0.1300 0.1440

83 450 0 303.75 708.75 211.5 0 9 e 15.12 21.98 25.65 0.0420 0.0650 0.0810 0.0960 0.1230

84 450 0 303.75 708.75 211.5 0 18 e 14.05 18.05 22.01 0.0800 0.1050 0.1210 0.1280 0.1230

85 450 0 303.75 708.75 211.5 0 27 e 11.85 15.65 17.12 0.1020 0.1260 0.1160 0.1210 0.1350

86 450 0 303.75 708.75 211.5 9 0 e 18.00 22.05 27.35 0.0760 0.0790 0.0870 0.0910 0.1090

87 450 0 303.75 708.75 211.5 9 9 e 15.33 20.65 22.61 0.0390 0.0530 0.0860 0.1130 0.1160

88 450 0 303.75 708.75 211.5 9 18 e 11.19 16.98 19.17 0.0130 0.0150 0.0290 0.0560 0.0930

89 450 0 303.75 708.75 211.5 9 27 e 8.54 12.10 13.33 0.0280 0.0370 0.0430 0.0650 0.0950

90 450 0 303.75 708.75 211.5 18 0 e 16.22 20.65 27.02 0.0320 0.0290 0.0400 0.0650 0.0910

91 450 0 303.75 708.75 211.5 18 9 e 14.54 18.47 21.58 0.0320 0.0530 0.0640 0.0710 0.0860

(continued on next page)
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e (continued )

ID OPC
(kg/m3)

75 mm
WGP

(kg/m3)

300 mm
WGP

(kg/m3)

Ground
silica sand
(kg/m3)

Water
(kg/m3)

Na2SO4

(kg/m3)
Alkali
(kg/m3)

Hydro-
thermal
activation

Compressive
strength (MPa)

ASR expansion (%)

7d 14d 28d 2d 4d 7d 10d 14d

92 450 0 303.75 708.75 211.5 18 18 e 11.47 15.88 16.15 0.0620 0.0950 0.1040 0.1030 0.1120

93 450 0 303.75 708.75 211.5 18 27 e 6.82 9.39 9.80 0.0370 0.0730 0.0850 0.0890 0.1060

94 450 0 303.75 708.75 211.5 27 0 e 14.21 19.65 24.06 0.0310 0.0480 0.0810 0.0860 0.0980

95 450 0 303.75 708.75 211.5 27 9 e 10.60 12.97 14.41 0.0390 0.0480 0.0600 0.0860 0.1070

96 450 0 303.75 708.75 211.5 27 18 e 9.89 15.73 16.29 0.0260 0.0620 0.0840 0.1220 0.1260

97 450 0 303.75 708.75 211.5 27 27 e 8.68 11.94 13.97 0.0500 0.0600 0.0800 0.0930 0.1231

98 450 101.25 0 911.25 211.5 0 0 √ 20.76 27.02 34.02 0.0020 0.0027 0.0039 0.0048 0.0060

99 450 101.25 0 911.25 211.5 9 9 √ 21.51 27.2 34.65 0.0181 0.0241 0.0346 0.0428 0.0541

100 450 202.5 0 810 211.5 0 0 √ 19.1 28.46 31.97 0.0040 0.0056 0.0077 0.0090 0.0120

101 450 202.5 0 810 211.5 9 9 √ 22.06 30.33 34.68 0.0081 0.0090 0.0154 0.0190 0.0313

102 450 303.75 0 708.75 211.5 0 0 √ 20.15 27.65 35.13 0.0033 0.0077 0.0154 0.0190 0.0241

103 450 303.75 0 708.75 211.5 9 9 √ 24.71 30.11 36.5 0.0156 0.0264 0.0423 0.0523 0.0611
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