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a b s t r a c t

Waste glass is inert and non-degradable which leads to enormous environmental and

sustainability troubles, but it can be reused in concrete due to the potential of the

pozzolanic activity. This study proposes methods on activity excitation of waste glass

powder (WGP) including mechanical, chemical, and mechanical-chemical activation. The

results showed that the mortar containing 30% 75 mm WGP activated by the mechanical-

chemical method was optimal to increase the mechanical property and reduce the detri-

mental expansion. In addition, the microstructural analysis was conducted to explore the

activation effect on WGP and WGP-cement system. An artificial intelligence (AI) based

multi-objective optimisation (MOO) model was proposed to seek the optimal mix pro-

portions for the unconfined compression strength (UCS), alkali-silica reaction (ASR), and

cost. A comprehensive dataset was investigated including 549 specimens for the UCS test

and 366 test results for the expansion test. Random Forest (RF) model was utilized for the

prediction of UCS and ASR values with hyperparameters tuned by a firefly algorithm (FA).

The high correlation coefficients (0.93 for UCS and 0.91 for ASR) verified the feasibility of

FA-RF. Subsequently, the FA-RF model was extended as the objective function for the mi-

objective firefly algorithm (MOFA-RF) to obtain the consequent Pareto fronts. This paper

combined the results of experiments, machine learning prediction, and multi-objective

optimisation design for activated WGP mortar, which provided a comprehensive basis

for the practical application.
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1. Introduction

Waste glass (WG) is a promising supplementary cementitious

material (SCM)becauseof itshighsilica content (approximately

70%). Itwas first used to supplant coarse aggregates in concrete

in the 1960s, but it failed owing to the diminished mechanical

property and the serious alkali-silica reaction (ASR) expansion

[1,2].Much researchhas beendone to address this issue suchas

lowering the particle size ofWG [3e5]. The pozzolanic property

of glass particles increased and was even better than fly ash

when it was ground into less than 100 mm [6,7]. Corinaldesi,

et al. [8] reported that waste glass powder (WGP) with particle

size ranging from 36 to 100 mm, both improved mechanical

strengthand reducedASR expansion. Besides, the combination

of WGP with pozzolans (fly ash, silica fume, metakaolin, etc.)

can alleviate the deleterious expansion [9e11].

The previous studies mainly focused on the particle size

and use of supplementary materials with WGP [8,12,13].

Although chemical activation is effective, the investigation is

rarely reported due to the complexity of category and amount

of chemical activator [14e16]. Besides, it is time-consuming

and inaccurate for the traditional design method by summa-

rising rules and phenomena to find the optimal mix composi-

tion when coping with multiple variables [17e19]. Therefore,

the artificial intelligence (AI) based multi-objective optimisa-

tion model is proposed to determine optimal values of vari-

ables including the particle size and replacement proportion of

WGP, and the category and amount of chemical activator.

To this end, machine learning (ML)models are introduced,

such as artificial neural network (ANN) and support vector

regression (SVR) [20e22]. They are widely used in data min-

ing, having excellent generalisation ability, rapid computa-

tions, and high prediction accuracy [23,24]. However, both

ANN and SVR are standaloneMLmodels and possess a higher

probability of overfitting the dataset and worse tolerance to

outliers and noise than ensemble ML models such as the

random forest (RF) model [25,26]. Therefore, the RF model is

chosen for data prediction. However, it has a downside about

its hyperparameters which are hard to adjust using conven-

tional methods. Thus, optimisation algorithms have been

introduced to automatically find the optimal hyper-

parameters, such as genetic algorithm (GA), particle swarm

optimisation (PSO), and firefly algorithm (FA) [27e31].

Because the FA algorithm can eliminate the effect of multi-

modality and automatic subdivision, it is selected to optimise

the hyperparameters of the RF model [32e34].

The FA-RF-based multi-objective optimisation (MOFA-RF) is

established to optimise the mixture proportions utilizing a

metaheuristic algorithm because of its simple codes and high

efficiency in solving complicated engineering problems [35,36].

Compared to the single-objective optimisationmethod, MOFA-

RF can optimise multiple objectives (UCS, ASR, cost, etc.)

simultaneously under highly nonlinear constraints by propos-

ing Pareto solutions [37,38]. Huang, et al. [39] used FA based bi-

objective model to estimate the optimal mixture of steel fiber

reinforced concrete. Zhang, et al. [25] optimised threeobjectives

(strength, slump, and cost) using a multi-objective PSO algo-

rithm. The multi-objective optimisation design is also
promising to combine with updated technology such as Build-

ing Information Modeling [40,41] and 3D-printing technology

[42].

Concrete containing waste glass can also be utilized for

other applications such as radiation shielding, which is worth

being further investigation [43]. The ZnO concentration has a

significant effect on themechanical and shielding properties of

tellurite glasses [44]. Meanwhile, its radiation attenuation

characteristics can be improved by the addition of TeO2 and

Sb2O3 [45,46]. Al-Buriahi et al. [47] demonstrated that Ag2O and

WO3 had little effect on themechanical properties of the TeO2 �
Ag2O�WO3 glass system, but their content had a significant

influence on the shielding properties. In addition, lead sodium

borate glass modified with chromium oxide offers good

shielding properties against gamma, electron, and neutron

radiation [48]. The addition of silver oxide causes a decrease in

the molar polarizability and an increase in the light trans-

mission of Ag2OeMoO3eV2O5eTeO2 (AMVT) glass [49]. Olar-

inoye simulated the effect of Ag2O/ V2O5 substitution on the

radiation shielding ability of tellurite glass systems using

XCOM and FLUKA [50]. The TeO2 �Na2O� TiO glass system

was also investigated with the PHITS Monte Carlo procedure

and proved to be an excellent nuclear shielding material [51].

In this study, the main focus is the effect of mechanical,

chemical, and mechanical-chemical activation of WGP on the

UCS and ASR characteristics of mortar. As the variables of the

physical activation, theWGPwith an average size of 75 mmand

300mmwasselected tosupplant sandby10%, 20%,and30%.The

chemical activators were salt activator (sodium sulfate), and

alkaline activator (calcium hydroxide and sodium hydroxide).

The Scanning ElectronMicroscopy (SEM) was employed for the

study of ASR expansion andmicrostructure analysis. Then, the

MOFA-RF was set up to optimise bi-objective mixture pro-

portions based on the datasets ofUCS (or ASR) and the objective

function of cost. A sensitive studywas finally carried out to find

the degree of dependency of results on variables. This investi-

gation is aimed at providing a feasible glass activation method

and optimal mixture design of WGP mortar.
2. Experimental program

2.1. Materials

WGP was 75 mm and 300 mm in size on average coming from

transparent waste bottles. The bottles were supposed to be

pretreated so that the labels and contaminations were elimi-

nated, followed by air-drying and grinding the bottles using a

ball mill. The prepared WGP was then stored in a sealed

container. Figure 1a and b shows the appearance of WGP in

two different sizes. The strength grade of Ordinary Portland

cement was 42.5 with the specific gravity, fineness index, and

normal consistency around 3 t/m3, 390 m2/kg, and 27%

respectively. The natural sand with over 96% silicon dioxide

was graded as per ASTM C778 [52].

The chemical composition ofWGP and cement obtained by

X-ray Fluorescence Spectrometer (XRF) are listed in Table 1.

Statistically, WGP has a large pozzolanic potential due to the

high content of silica dioxide (74.02%).
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Fig. 1 e The distinctive features of WGP with the mean particle size of (a) 75 mm and (b) 300 mm.

j o u r n a l o f m a t e r i a l s r e s e a r c h and t e c hno l o g y 2 0 2 2 ; 1 8 : 1 3 9 1e1 4 1 1 1393
2.2. Composite mixture design

In this study, the variables included the size and proportion of

WGP and the amounts of chemical activators. WGP was used

to replace natural sand with 10wt%, 20wt%, and 30wt%. The

water to cement ratio and filler (sand þ WGP) to cement ratio

were fixed to 0.47 and 2.25, respectively. The following acti-

vation methods were used:

a. Mechanical activation: The waste glass with a mean par-

ticle size of 300 mm was ground to 75 mm using a ball mill.

The finer WGP was predicted to possess better pozzolanic

properties.

b. Chemical activation: The chemical activators were sodium

sulfate (anhydrous), sodium hydroxide, and calcium hy-

droxide. The commercially available analytically pure (AR)

grade was used. A 1:1 w/w mixture of sodium hydroxide

and calcium hydroxide was used as an alkaline activator,

and sodium sulfate was used as a salt activator. The pro-

portion of both was 2%, 4%, and 6% by mass of cement.

Sodium sulfate and sodium hydroxide were dissolved in

mixingwater in proportion. However, calciumhydroxide, a

slightly soluble material, was mixed with the WGP, and

then blendedwith cement and sand. Themixing procedure

for mortar production complied with ASTM C305.

c. Mechanical-chemical (combined) activation: For this

approach, themechanical and chemical activationmethods

were combined. The WGP was ground transforming from

300 mm to 75 mm, and chemical activators were added as

described in method b.
Table 1 e Chemical compositions of WGP and cement.

WGP General Purpose Cement

Chemical composition Chemical composition

SiO2 74.02% SiO2 20.10%

Al2O3 1.40% Al2O3 4.60%

Fe2O3 0.19% Fe2O3 2.80%

CaO 11.25% CaO 63.40%

MgO 3.34% MgO 1.30%

SO3 0.33% SO3 2.70%

Na2O 9.03% Na2O 0.60%

K2O 0.29% Total chloride 0.02%
In Table 2, the detailed mixing proportions were listed for

each mix. In this table, letters G, S, H stands WGP, sodium

sulfate, and alkali, respectively. The numbers 75 and 300

mean the average particle size of WGP is 75 mm and 300 mm.

The number 10, 20, 30 after the letter G means 10%, 20%, and

30% sand replacement by WGP. And the number 2, 4, 6 after

letters S and H demonstrates the content of sodium sulfate

and alkali with 2%, 4%, and 6%, respectively.

2.3. Unconfined compressive test

The UCS test was conducted for three parallel specimens for

each mix at 7, 14, and 28 curing ages. Cubic specimens with

50 � 50 � 50 mm in size were used for the test as per ASTM

C109. After casting, the sample was immediately stored in a

moist room for 24 hours with plastic sheets covered. Subse-

quently, the specimen was removed from the molds and then

immersed in a saturated limewater tank for 7, 14, and 28 days.

The unconfined compression test was conducted on samples

shortly after being taken out of the storage tank. The experi-

mental setup is presented in Fig. 2 with the loading rate set as

0.6 MPa/s.

2.3.1. Alkali silica reaction
According to ASTM C1260, the potential risk of ASR expansion

was evaluated by monitoring the longitudinal change of

mortar bar samples. For each mix, three specimens were

prepared and the average longitudinal change ratio would be

recorded. The prismatic sample was cast in size of

25 � 25 � 280 mm. Two steel stud gauges were equipped at

both ends, reducing the initial effective length to 260mm. The

figure of mortar bar samples is shown in Fig. 3. The 80 �C
temperature and 1N sodium hydroxide solution was used to

accelerate ASR as per ASTM C1260.

The bar specimens were prepared with the required

aggregate grading specified by ASTM C1260. After casting, the

molds were immediately transferred to the moisture room

curing for 24 hours. Then, they were removed from the molds

and directly placed in 80 �C water for another 24 hours. After

immersing, the length of the bar sample was determined as

the initial length L0 by using a length comparator and a digital

indicator accurate to 0.002mm, shown in Fig. 4. Afterward, the

bar specimens were transferred to 1N NaOH solution at 80 �C.

https://doi.org/10.1016/j.jmrt.2022.02.123
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Table 2 e Mixing proportions for waste glass mortar.

Specimen ID Cement (g) Natural sand (g) Water (g) WGP (g) Na2SO4 (g) Alkali (g)

C (control sample) 450 1012.5 211.5 0 0 0

Waste glass powder (75 mm)

75G10 450 911.25 211.5 101.25 0 0

75G10S2H2 450 911.25 211.5 101.25 9 9

75G10S2H4 450 911.25 211.5 101.25 9 18

75G10S2H6 450 911.25 211.5 101.25 9 27

75G10S4H2 450 911.25þ 211.5 101.25 18 9

75G10S4H4 450 911.25 211.5 101.25 18 18

75G10S4H6 450 911.25 211.5 101.25 18 27

75G10S6H2 450 911.25 211.5 101.25 27 9

75G10S6H4 450 911.25 211.5 101.25 27 18

75G10S6H6 450 911.25 211.5 101.25 27 27

75G20 450 810 211.5 202.50 0 0

75G20S2H2 450 810 211.5 202.50 9 9

75G20S2H4 450 810 211.5 202.50 9 18

75G20S2H6 450 810 211.5 202.50 9 27

75G20S4H2 450 810 211.5 202.50 18 9

75G20S4H4 450 810 211.5 202.50 18 18

75G20S4H6 450 810 211.5 202.50 18 27

75G20S6H2 450 810 211.5 202.50 27 9

75G20S6H4 450 810 211.5 202.50 27 18

75G20S6H6 450 810 211.5 202.50 27 27

75G30 450 708.75 211.5 303.75 0 0

75G30S2H2 450 708.75 211.5 303.75 9 9

75G30S2H4 450 708.75 211.5 303.75 9 18

75G30S2H6 450 708.75 211.5 303.75 9 27

75G30S4H2 450 708.75 211.5 303.75 18 9

75G30S4H4 450 708.75 211.5 303.75 18 18

75G30S4H6 450 708.75 211.5 303.75 18 27

75G30S6H2 450 708.75 211.5 303.75 27 9

75G30S6H4 450 708.75 211.5 303.75 27 18

75G30S6H6 450 708.75 211.5 303.75 27 27

Waste glass powder (300 mm)

300G10 450 911.25 211.5 101.25 0 0

300G10S2H2 450 911.25 211.5 101.25 9 9

300G10S2H4 450 911.25 211.5 101.25 9 18

300G10S2H6 450 911.25 211.5 101.25 9 27

300G10S4H2 450 911.25 211.5 101.25 18 9

300G10S4H4 450 911.25 211.5 101.25 18 18

300G10S4H6 450 911.25 211.5 101.25 18 27

300G10S6H2 450 911.25 211.5 101.25 27 9

300G10S6H4 450 911.25 211.5 101.25 27 18

300G10S6H6 450 911.25 211.5 101.25 27 27

300G20 450 810 211.5 202.50 0 0

300G20S2H2 450 810 211.5 202.50 9 9

300G20S2H4 450 810 211.5 202.50 9 18

300G20S2H6 450 810 211.5 202.50 9 27

300G20S4H2 450 810 211.5 202.50 18 9

300G20S4H4 450 810 211.5 202.50 18 18

300G20S4H6 450 810 211.5 202.50 18 27

300G20S6H2 450 810 211.5 202.50 27 9

300G20S6H4 450 810 211.5 202.50 27 18

300G20S6H6 450 810 211.5 202.50 27 27

300G30 450 708.75 211.5 303.75 0 0

300G30S2H2 450 708.75 211.5 303.75 9 9

300G30S2H4 450 708.75 211.5 303.75 9 18

300G30S2H6 450 708.75 211.5 303.75 9 27

300G30S4H2 450 708.75 211.5 303.75 18 9

300G30S4H4 450 708.75 211.5 303.75 18 18

300G30S4H6 450 708.75 211.5 303.75 18 27

300G30S6H2 450 708.75 211.5 303.75 27 9

300G30S6H4 450 708.75 211.5 303.75 27 18

300G30S6H6 450 708.75 211.5 303.75 27 27
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Fig. 2 e The experimental setup for the UCS test.

Fig. 4 e Schematic figure of ASR expansion test.
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The length of the bar sample was measured at 2, 4, 7, 10, and

14 days within 15±5s after it was removed from the alkali lye.

The bar length at day x is denoted by Lx and the ASR expansion

ratio e can be calculated by Equation (1).

e¼ Lx � L0
260

� 100% (1)

2.3.2. Scanning electron microscopy
SEM was utilized for exploring the microstructure of the WGP

and WGP-cement system. The WGP samples (75 mm) were

pretreated before testing as shown in Table 3. The mortar

specimens were directly taken from the fragments of samples

(75G10 and 75G10S2H2) after the compression test.

Table 3 e Details of the preparation of SEM samples of
WGP.

WGP
Specimen

Pretreatment

WGP
(g)

Na2SO4

(g)
50% NaOH þ50%

CaðOHÞ2 (g)
Water
(g)

G 50 e e 100

G (2%alkaliþ2%

Na2SO4)

50 4.3 4.3 100
3. Multi-objective optimisation methodology

The optimal mixture design of activated WGP mortar adopts

themethodology ofMOFA-RF. The process is depicted in Fig. 5.

Overall, this multi-objective design started from the con-

struction of two RF models for the prediction of UCS and ASR
Fig. 3 e Bar samples for
with the hyperparameters tuned by FA and 10-fold cross-

validation (CV). Then, the cost was calculated for each mix.

The weighted sum method was used for establishing a multi-
ASR expansion test.

https://doi.org/10.1016/j.jmrt.2022.02.123
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Fig. 5 e Flowchart of the MOFA-RF system for WGP-mortar optimisation design.

Table 4 e Statistics of input and output variables for the
UCS dataset.

Variables Minimum Maximum Mean Std Dev

WGP size (mm) 75 300 187.5 112.79

WGP (kg/m3) 0 382.73 249.61 107.09

Sodium sulfate (kg/m3) 0 33.42 22.11 11.04

Alkali (kg/m3) 0 33.36 22.11 11.03

Sand (kg/m3) 868.5 1262.91 999.36 104.62

Age (day) 7 28 22.5 8.75

UCS (MPa) 6.82 35.72 18.64 5.93
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objective function and the Pareto front was produced to show

the optimisation mixture design of WGP mortar.

3.1. Data description

Asmentioned above, the variables are the size and proportion

of WGP and the content of chemical activators. The dataset is

sourced from the results from UCS and ASR expansion tests

and they are served as the output variables. The statistics of

input and output variables are listed in Table 4 for UCS and

Table 5 for ASR.
Table 5 e Statistics of input and output variables for the
ASR dataset.

Variables Minimum Maximum Mean Std Dev

WGP size (mm) 75 300 187.5 112.64

WGP (kg/m3) 0 382.73 249.61 106.94

Sodium sulfate (kg/m3) 0 33.42 22.11 11.03

Alkali (kg/m3) 0 33.36 22.11 11.01

Sand (kg/m3) 868.5 1262.91 999.36 104.47

Age (day) 0 14 5.5 4.78

ASR (%) 0 0.1592 0.0462 0.04
Fig. 6 e Correlation matrix of input variables for (a) UCS

dataset (b) ASR dataset.

https://doi.org/10.1016/j.jmrt.2022.02.123
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The figures of correlation between different input variables

of UCS and ASR datasets are shown in Fig. 6. The correlation

between sand and WGP was high because the WGP was in

replacement of sand by 10% to 30%. Therefore, the ratio of

WGP to sand and cement was used to conduct the variable

importance analysis. While for multi-objective optimisation

(MOO) analysis, the amount of each raw material had to be

represented instead of the ratio. The other correlation values

were low enough that the input variableswere independent so

that the multicollinearity problems could be effectively elim-

inated in this study.

3.2. Establishment of FA-RF model

3.2.1. Random forest model
RF model combines multiple results from different regression

trees (RTs) using the bagging method and can obtain the final

results via voting. The training procedure of the RF model is

described as shown in Fig. 7 where Rq
n stands for a bootstrap

sample including n samples. These samples are from the

training set and each of them is selected randomly with 1
=n

probability. Besides, q and k are independently distributed

vectors and the number of RTs respectively. These regression

trees are trained to predict the respective values: ba (x, Rq1
n ), ba (x,

Rq2
n ), …, ba (x, Rqk

n ) on corresponding k bootstrap samples fRq1
n ;

Rq2
n ; …; Rqb

n g. The prediction outcome will be finally acquired

from the average results of the k RTs.

3.2.2. Firefly algorithm
The firefly algorithm is derived from the social behaviour of

fireflies. Fireflies are attracted to the brightness, so the

brighter firefly, themore attractive it is to others. However, the

attractiveness of brightness decreases as the distance be-

tween two fireflies increases. The brightest firefly flies
Fig. 7 e Construction
randomly through the surrounding area. Eventually, it will be

observed because the other fireflies continuously travel to-

wards it. The brightness depends on the objective function of

a specific problem. Equation (2) shows the position change of

firefly imoving towards firefly jwhich has a higher brightness.

xtþ1
i ¼xt

i þb0e
�gr2

ij

�
xt
j �xt

i

�
þ aðrand� 1 = 2Þ (2)

rij ¼ xt
j � xt

i (3)

In the above function, xt
i and xt

j are the positions of two

fireflies i and j at the t-th iteration. Besides, rij in Equation (3)

shows the Euclidian distance between the positions of the

two fireflies and b0 means the highest attractiveness of the

firefly when r equals zero. Since the brightness reduces with

distance and medium, g is introduced as an absorption coef-

ficient to represent this situation, ranging from 0 to 1. The

other parameters a and rand are the randomization parameter

and random vector derived from the Gaussian distribution,

ranging from 0 to 1. The pseudocode of FA can be shown in

Fig. 8.

3.3. Hyperparameter tuning

3.3.1. Cross fold validation
In the RF model, two hyperparameters need to be optimised.

The first one is numTree which means the total number of

regression trees trained for the dataset. It significantly in-

fluences the computation efficiency and the generalisation

ability. Another hyperparameter is minNumLeaf showing the

minimum sample number of a leaf node and shows the cor-

relation between regression trees.

One of the challenges in the modeling process is to elimi-

nate the overfitting problems. Thus, a 10-fold CV was pro-

posed to comprehensively assess the data in this study. The

data were randomly divided into two groups comprising
of an RF model.

https://doi.org/10.1016/j.jmrt.2022.02.123
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testing sets (30%) and training sets (70%). The training data

was split into 10 folds, nine of which were used for machine

learning, and the remaining onewas used for the validation of

the model performance as shown in Fig. 9. During this pro-

cess, the root means square error (RSME) could be obtained.

The optimal hyperparameters were subsequently determined

after the completion of 50 iterations. The above process was

repeated 10 timeswith a non-repetitive validation fold chosen

at each time. Ultimately, the RF model with the minimum

RSME and corresponding optimal hyperparameters were

applied to predict the results of testing sets.

3.3.2. Performance assessment
Evaluation is essential in measuring the accuracy of the

model. In this research, RMSE, correlation coefficient (R),

mean absolute error (MAE), and mean absolute percentage

error (MAPE) were the evaluation indices. They are defined in

the following equations.

RSME¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

�
y*
i � yi

�2s
(4)

MAE¼ 1
n

Xn
i¼1

��y*
i � yi

�� (5)

MAPE¼ 1
n

Xn

i¼1

����y*
i � yi

yi

���� (6)

R¼
Pn

i¼1

�
y*
i � y*

��
yi � y

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

�
y*
i � y*

�2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

�
y*
i � y

�2q (7)

where n means the n groups of data samples; y*i and yi

demonstrate the predicted and actual values; y* and y are the

mean values of the predicted and actual data, respectively.
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3.4. Multi-objective optimisation

3.4.1. Objective function establishment
The cost was also included for the MOO design. A polynomial

function shown in Equation (8) was used to calculate the cost

of mortar containing WGP.

Cost
�
$
�
m3

�¼CcQc þCwQw þCdQd þCGQG þCSQS þ CHQH (8)

In the above equation, C is the unit price ($=kg) of the

materials used in mortar production and Q represents the

quantity (kg=m3) of different raw materials. The cost of

cement, water, silica sand, WGP, and chemical activators is

listed in Table 6 in which all the prices are the average local

retailing price.

3.4.2. Constraints of variables
To solve multi-objective optimisation problems, several con-

straints are set including mortar volume constraint, range

constraint of materials, and ratio constraint, shown in Equa-

tion (9) and Table 7. The price of WGP mortar is calculated

based on one cubicmeter to unify the unit. The input variables

are summarized for theirminimumandmaximumvalues and

three ratio constraints are also determined for calculating

Pareto optimal solutions.

Vm

�
1m3

�¼Qc

Uc
þQw

Uw
þQd

Ud
þQG

UG
þQS

US
þ QH

UH
(9)

where U is the unit weight of materials.

3.4.3. Construction of MOFA-RF
The establishment of MOFA-RF is based on the objective

functions of UCS, ASR, and cost by applying the weighted sum

method. The UCS and ASR are combined with cost separately

to set up a function as shown in Equation (10).
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Fig. 9 e 10-fold cross-validation.

Table 6 e Price of different materials.

Materials Notation Unit Price
($=kg)

Unit weight
(kg=m3)

Cement Cc 0.057 3000

Water Cw 0.001 1000

Silica sand Cd 0.038 2300

Waste glass

powder

CG 0.087 2450

Sodium sulfate CS 0.143 2680

Alkali CH 0.69 2185

Table 7 e Constraints of input variables.

Variables Expressions Lower bound Upper bound

WGP size S 75 300

Sodium sulfate CS 0 27

Alkali CH 0 27

WGP ratio CG=ðCG þCdÞ 0 0.3

WGP to cement ratio CG=Cc 0 0.675

Sand ratio Cd=Cc 1.575 2.25

Fig. 10 e The schematic diagram
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f ¼
Xi

wifi ;
Xi

wi ¼ 1 (10)

i¼1 i¼1

where fi means the multiple objectives; f is the combined

function in solving MOO problem; wi equals to pi=i where the

denominator is the random number arising from a uniform

distribution [0,1] and the numerator is the uniformly distrib-

uted number.

The above equation can be formulated in the following

manner in this research.

f1 ¼w1,UCSþw2,cost (11)

f2 ¼w1 ,ASRð14 daysÞþw2,cost (12)

X2

i¼1

wi ¼ 1 (13)

To solve the optimisation problem, Pareto optimal front is

determined since the dual objectives are supposed to be

minimized or maximized simultaneously [53]. They represent
of Pareto optimal solutions.
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Fig. 12 e The UCS of mortar containing WGP with different

proportions by mechanical activation at different curing

ages.
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the solutions that are non-dominated so that any of the other

objective functions fail to be improved without harming

another function [54]. Themathematical expression for Pareto

optimum is formed as follows [55].

If x*2S is Pareto optimal solution, whereby S is the set of

feasible solutions, the nonexistence of x2S such that

fiðxÞ� fiðx*Þ for i ¼ 1; 2; 3;…; k and (14)

fiðxÞ< fiðx*Þ for at least one value i (15)

The set of the non-dominated Pareto optimal solutions

constitutes the Pareto front that the connection of blue

points depicts a line if the number of objective functions is

two, shown in Fig. 10. Apart from the Pareto front, the other

feasible points would not be optimal since their objective

function values are larger than at least one point in the

Pareto front. The FA can be developed to MOFA-RF to calcu-

late Pareto optimal solutions for finding optimisation

mixture design. The pseudocode of MOFA-RF is summarised

in Fig. 11.

3.5. Variable importance measure

In some cases where the concrete expression is unavailable,

this blocks the visualisation of the relationship between the

input variables and the outcome. Thus, this study uses a

method based on sensitivity analysis (SA) to assess and rank

the influence of the inputs on the outputs. Sensitivity anal-

ysis is a method commonly used to qualitatively or quanti-

tatively evaluate the dependence of results on variables by

measuring the change in outputs caused by input
disturbances [56,57]. It includes both local and global anal-

ysis, which allows the effect of either a single variable or

multiple variables on outputs. Global sensitivity analysis

(GSA) is preferred in this study because it allows multiple

variables to be altered simultaneously so that a ranking of

importance among variables can be obtained. Equations (16)

and (17) are the calculations where the variable ‘a’ changes in

the range of the input dataset while the other variables

remain constant at their mean values.
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Ga ¼
XL

�� cya;j � dya;j�1
��

(16)

j¼2

� �
N� 1

Ra ¼Ga

	XI

i¼1

Gi (17)

where Ga is the average difference between adjacent outputsdya;j and dya;j�1 ;N is the number of the value of the variable under

research; Ra is the relative importance of the variable ‘a’.
Fig. 13 e The UCS of mortar containing WGP (300 mm) at (a)

10% (b) 20% (c) 30% by chemical activation.
4. Results and discussion

4.1. Results of laboratory tests

4.1.1. Result of unconfined compression test
The outcome of the compression test for mortar samples with

different WGP (75 mm and 300 mm) replacement ratios is

depicted in Fig. 12. The UCS decreased with the increase of

300 mm WGP content, which is inconsistent with previous
Fig. 14 e The UCS of mortar containing WGP (75 mm) at (a)

10% (b) 20% (c) 30% by mechanical-chemical activation.
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results demonstrating the negative influence of using coarse

glass powder as the filler. The strength of mortars containing

fine glass powder (75G10, 75G20, 75G30) was greater than that

of the samples with coarse WGP (300G10, 300G20, 300G30) for

all curing times and replacement ratios. This demonstrated

the positive influence of mechanical activation on UCS by

reducing the particle size of theWGP. Besides, the 28-day UCS

for mortars with 75 mmWGP showed higher strength than the

control sample, mainly due to the relationship between the

increase in cementitious performance and the decrease in

strength caused by the loss of aggregates [6,27]. In fine WGP,

the silica tetrahedron structure is less stable than in coarse

WGP [58]. Therefore, the pozzolanic reaction for finer WGP is

supposed to be more intense. Meanwhile, the finer WGP can

be evenly dispersed into the pores of the mortar samples to

increase their density and compactness. Therefore, mechan-

ical activation is a promising approach to increase strength

without changing its chemical composition [58,59].

Figure 13 shows the UCS of specimens containing 300 mm

WGP for 10%, 20%, and 30% in replacement of sand under

chemical activation. The combination of 2% alkali and 2%

Na2SO4 was optimal on activating coarse WGP mortar.

Compared to non-activated samples (300G10, 300G20, and

300G30), the 28-day UCS for samples prepared by this method

was higher by approximately 6.6%, 7.9%, and 4.2%, respec-

tively. The strength improvement can be attributed to the

combined action of salt and alkali. Na2SO4 tends to react with

CaðOHÞ2 to generate gypsum and NaOH. The gypsum then

reacts with aluminate to form ettringite (AFt) and CaðOHÞ2.
NaOH andWGP can generate an additional gel phase [60]. This

leads to increased hydration which compacts the mortar

samples and improves their strength. The efficacy of alkali is

mainly because of the depolymerisation of the WGP structure

by the alkali, contributing to the dissolution of active silica
Fig. 15 e The ASR of mortar containing WGP (1
[61,62]. If the cations within the alkaline solution are Naþ and

Ca2þ, the NeCeSeH gel tends to form on the surface of the

WGP [63]. However, excessive alkali content in the cement

system can form heterogeneous gels and increase harmful

expansion [64]. Also, excessive Na2SO4 would result in

decreased compression strength, as toomuch AFt with a loose

structurewould be produced. Furthermore, the negative effect

caused by an excess of alkali was greater than excessive

Na2SO4, especially when the proportion of WGP was 20%,

shown in Fig. 13b.

Figure 14 shows the UCS of specimens containing 75 mm

WGP with 10%, 20% and 30% replacement ratios under acti-

vation of alkali and Na2SO4. Similarly, 2% Na2SO4 combined

with 2% alkali was the best choice for both 20% and 30% WGP

specimens. However, for mortar containing 10% fine glass

powder, strength was only increased at the 7-day stage and

decreased after that. In Fig. 14a, the 28-day UCS of 75G10S2H2

was 29.84 MPa and it was about 16.5% lower than 75G10

(35.72MPa). Thismight be because gels propagated around the

surface of the WGP, causing non-uniform voids to form over

time [65]. Out of all the mixes, the highest 28-day UCS was

found in the sample made from 30% 75 mm WGP chemically

activated by 2% Na2SO4 and 2% alkali, standing at 35.33 MPa

(31.6% higher than the control sample). Therefore, the

mechanical-chemical activation is optimal, especially for the

30% WGP replacement ratio.

4.1.2. Result of alkali-silica activation test
The change of ASR expansion of mortars with different pro-

portions of WGP (75 mm and 300 mm) is depicted with ages in

Fig. 15. Generally, the expansion increased with an increase of

WGP for both particle sizes. However, coarse WGP samples

had higher expansion than fine WGP samples. The ASR

expansion of samples containing WGP with all proportions
0%, 20%, 30%) with mechanical activation.
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Fig. 16 e The 14-day ASR values of bar samples containing WGP (75, 300 mm) in the proportion of (a) 20% (b) 30% after being

chemical activated.
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was higher than that of the control sample, illustrating the

adverse influence of the coarse glass powder. This observation

is in good agreement with previous findings. For bar samples

with 10% 75 mmWGP, the expansionwas effectivelymitigated.

One of the plausible reasons is that the pozzolanic reaction of

finer WGP tends to generate non-swelling gels [66]. However,

the 14-day expansion was 0.1423% for the 30% 75 mm WGP

specimen, exceeding the ASTM threshold (0.1%). This seems

to contradict the published findings that finer WGP did not

cause expansion [67,68]. This might be due to the micro-

cracking in glass powder giving rise to high ASR expansion

[69]. Although the exact cause is not clear, the mechanical

activation has nonetheless proved to effectively mitigate the

deleterious ASR expansion.
Figure 16 depicts the values of ASR expansion (14 days) for

coarse and fine WGP with 20% and 30% substitute ratios to

analyse the efficacy of chemical activation. The results of 10%

WGP mortar samples are not depicted because they are

generally larger than the ASTM threshold.

Generally, the trend for ASR for mortars containing 75 and

300 mm WGP particle sizes was similar. In samples with 20%

chemical activatedWGP, the efficacy of the chemical activator

was negative as shown in Fig. 16a. Conversely, when the WGP

content was increased to 30%, the ASR values of both 300 mm

and 75 mm chemical activated WGP bars were lower than

300G30 (0.144%) and 75G30 (0.142%), respectively in Fig. 16b.

The 14-day ASR value of the sample with 30% 75 mm WGP

activated by 2% Na2SO4 and 2% alkali showed 55% lower than

https://doi.org/10.1016/j.jmrt.2022.02.123
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Fig. 17 e SEM micrographs of WGP (75 mm) and mortar.
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30% 300 mmWGP sample. The reasonmight be that the higher

concentration of calcium ions generated gels with lower

swelling capacity since the alkaline activator contained cal-

cium hydroxide [14,63]. However, the trend varying with the

amount of alkali and Na2SO4 was hard to describe. Thus, a

machine learning model was needed to simulate the ten-

dency, as demonstrated in the next section. In conclusion, to

control the 14-day ASR expansion within allowed the range

(lower than 0.1%) as per ASTM C1260, 30% 75 mm WGP is

preferred if the chemical activation approach is needed.

4.1.3. Result of SEM
Figure 17 shows the SEM results of WGP (75 mm) and mortar

samples with and without being activated by 2% alkaliþ2%

Na2SO4. SEM analysis presented the smooth surface of non-

activated WGP with few tiny crystals attached. An obvious

erosion reaction was observed on the surface when it was

exposed to Na2SO4 and the alkaline solution as shown in

Fig. 17c. Plenty of flocculent deposits were generated on the

surface accompanied by calcium hydroxide crystals, indi-

cating the susceptibility of the WGP to alkali.

The microstructural images of the mortars show the hy-

dration product and their cementation on the WGP. The

mortar sample with 2% alkali and 2% Na2SO4 exhibited a finer

and denser structure with fewer fissures and voids than the

non-activated WGP sample, shown in Fig. 17d. Besides, fewer

CH crystals were found on 75 mm chemical activated WGP

mortar samples than non-activated ones, indicating greater
pozzolanic capacity. This confirms that the combination of

mechanical grinding with 2% alkali and 2%Na2SO4 had higher

strength than the control sample. In conclusion, the combined

activation enhances the pozzolanic reaction of WGP and

simultaneously compacts the mortar structure, while the

amount of chemical activator is essential.

4.2. Results of multi-objective optimisation design

4.2.1. Results of hyperparameter tuning
As mentioned above, the two hyperparameters of the RF

model (numTree, minNumLeaf ) were tuned using FA and CV.

The optimal fold within 10 folds CV provided the minimum

RMSE as shown in Fig. 18. The minimum RMSE was observed

at the 9th fold on the UCS dataset and the 6th fold on the ASR

dataset. The optimal RMSE was obtained by iterations several

times. In UCS and ASR datasets, 12 and 25 iterations were

required to the convergency of RMSE respectively, illustrating

the feasibility and efficiency of tuning the hyperparameters by

FA (see Fig. 19). Finally, the optimal hyperparameters

(numTree, minNumLeaf ) were 26 and 1 for the UCS dataset, and

27 and 1 for the ASR dataset, respectively.

4.2.2. Performance of FA-RF
Figure 20a and Fig. 20b intuitively depict the prediction situ-

ation by FA-RF models for UCS and ASR respectively. The

closer the points are to the black solid diagonal line, the

smaller the difference between actual and predicted values.
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Fig. 18 e 10-fold CV for hyperparameters tuning on the (a)

UCS dataset and (b) ASR dataset.

Fig. 19 e RMSE versus iteration in the optimal fold for (a)

UCS dataset and (b) ASR dataset.
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Most points are around the line apart from several outliers,

indicating good prediction ability of the FA-RF model for both

UCS and ASR datasets.

Table 8 summarizes the values of four evaluation indices

(R, RMSE, MAE, and MAPE) of the FA-RF models on the test set

for the prediction of UCS and ASR. The MAPE of the ASR

dataset was unattainable since the actual value of ASR

expansion was zero at zero curing time. The R values were

found as 0.93 and 0.91, showing the robust correlation be-

tween the predicted and actual results. Besides, RMSE, MAE,

and MAPE were all low for both models. And the values of

RMSE or R on the training set and test set were both close

which means that the overfitting issue did not happen. These

numbers showed the credibility of FA-RF giving accurate

predictions for UCS and ASR.

4.2.3. WGP-mortar mixture optimisation design
The Pareto front obtained by MOFA-RF was shown in Fig. 21

giving the non-dominated optimal solutions for UCS and

cost or ASR (14 days) and cost based on the dataset and
constraints. In Fig. 21a, multiple points with the same cost or

UCS were observed since it was possible to increase the

strength without increasing the cost or decrease the cost

without decreasing the strength. The seven points (No. 9, 12,

13, 14, 15, 17, 18) with the better UCS or cost are identified.

Before point 9, the UCS of WGP mortar was improved without

increasing the cost, indicating that the strength of the mortar

was capable to be significantly increased by changing the

mixture with the unchanged total price. However, the higher

UCS can only be achieved by increasing the cost. For point 18

with the highest UCS (30.54 MPa) in Fig. 21a, the price was

predicted to be around 99.08 $=m3.While for point 9, 28.45MPa

compression strength could be reached with a lower price

(78.84 $=m3). The selection is dependent on the decision-

maker to measure the priority between the strength grade

and budget.

Similarly, the Pareto optimal solutions for ASR and cost in

Fig. 21b provides four points 5, 6, 9, and 17. The higher cost

corresponds to the lower ASR value. However, the ASR value

failed to be reduced to lower than 0.0287% although the cost

continuously increased. Gaps were also observed in both

Pareto fronts which were due partly to the limitation of the
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Fig. 20 e Actual versus predicted values for (a) UCS and (b)

ASR.

Fig. 21 e Pareto front based on Cost and (a) UCS or (b) ASR.

Table 9 e Pareto optimal solutions for UCS.

Number of points UCS (MPa) Cost ($=m3) Efficiency ratio

1 16.90 78.84 e

2 19.73 78.84 e

3 20.27 78.84 e

4 22.38 78.84 e

5 23.00 78.84 e

6 25.38 78.84 e

7 26.86 78.84 e

8 27.88 78.84 e

9 28.45 78.84 0

10 28.45 79.00 e

11 28.45 79.07 e
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current dataset and partly to the finite number of Pareto

points. This can be resolved by obtaining more data from

different mixture designs or by generating more Pareto points

with a longer computation time. The estimation of a suitable

curve to link all the Pareto optimal solutions could also be

used to approximate the results.

Table 9 and Table 10 list the UCS, ASR, cost, and efficiency

ratio of the Pareto points. The efficiency ratio was calculated as

the rise of the cost divided by the increase of the UCS or the

decrease of the ASR. The lower efficiency ratio indicates the

lower cost for improved UCS or reduced ASR expansion. For

UCS, the efficiency ratio of point 9 was zero, showing that the

cost of 78.84 $=m3 maximised the UCS up to 28.45 MPa in these

Pareto solutions. However, the efficiency ratio for point 14 was

108.5 which was the highest among the Pareto points so that

the cost efficiency was low. For ASR, compared to the efficiency
Table 8 e Evaluation of FA-RF on UCS and ASR test sets.

Test category Evaluation index

RMSE (MPa) R MAE (MPa) MAPE

UCS 2.942 0.929 2.214 0.115

ASR 0.019 0.912 0.015 e

12 28.55 80.03 11.90

13 29.02 88.40 17.81

14 29.04 90.57 108.5

15 29.26 92.83 10.27

16 29.26 95.21 e

17 30.44 97.24 3.74

18 30.54 99.08 18.40

19 30.54 100.23 e

20 30.54 100.91 e
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Table 10 e Pareto optimal solutions for ASR.

Number of points ASR (%) Cost ($) Efficiency ratio

1 0.0907 78.84 e

2 0.0867 78.84 e

3 0.0837 78.84 e

4 0.0640 78.84 e

5 0.0608 78.84 0

6 0.0467 79.46 43.97

7 0.0467 79.55 e

8 0.0467 79.58 e

9 0.0321 79.69 15.75

10 0.0321 79.73 e

11 0.0321 79.80 e

12 0.0321 79.86 e

13 0.0321 80.03 e

14 0.0321 81.64 e

15 0.0321 82.28 e

16 0.0321 82.56 e

17 0.0287 84.45 1400

18 0.0287 84.95 e

19 0.0287 88.48 e

20 0.0287 89.45 e
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ratio of 1400 for point 17, the other three points (No. 5,6,9) stood

at 0, 43.97, and 15.75 respectively. The ratios were relatively

low, indicating the high-cost efficiency. Notably, a gradual in-

crease was observed between these three points in Fig. 21b.

Generally, the Pareto front provides multi-objective opti-

misation choices, and it is up to the decision-maker to decide

on the budget and the appropriate strength and expansion.

Point 9 and in point 5 in UCS-cost and ASR-cost Pareto solu-

tions are also good choices, since the efficiency ratios of both

are zero, representing the most cost-effective situation.

4.2.4. Variable importance of using FA
The importance scores of variables based on the UCS and ASR

dataset arising from the sensitivity study were transferred to

the importance ratios as shown in Fig. 22. The content of alkali
Fig. 22 e Input variables importance measure for UCS and

ASR of WGP-mortar mixture design.
was found to be the input variable with the greatest influence

on UCS, accounting for 35%. It verified the author's previous

finding that the content of alkali had a higher influence than

the amount of Na2SO4. Curing time was the second most

influential variable, which is reasonable since later UCS was

larger than early UCS. This was followed by the particle size of

the glass powder, indicating that finer UCS possessed better

pozzolanic properties, leading to greater strength. However,

Na2SO4 content and the replacement ratio of WGP seem less

important than other variables, standing at 8.58% and 1.67%,

separately. This further confirms the importance of the particle

size of theWGP and shows that the reduced strength caused by

a higher amount of WGP could be offset by introducing a

chemical activator, provided the amount was suitable.

For the ranking of input variables for ASR expansion, the

variable with the highest importance ratio is curing time,

since the expansion was observed to increase rapidly with a

longer testing time. This was followed by the WGP replace-

ment ratio, as the expansion of 30% WGP (75 mm, 300 mm) bar

samples was found to be much larger than that of samples

containing 10% and 20% WGP. In contrast with the study on

the importance of UCS, alkali content was found to be the

least influential factor for ASR expansion, because the mortar

bar test was conducted in an environment with a high con-

centration of alkali. The amount of Na2SO4 and the particle

size of glass powder was also less important than curing time

and WGP ratio. In conclusion, the importance measure pro-

vides a valuable analysis to compare all the input variables.

Apart from curing time, the content of alkali and WGP

replacement ratio are the most important parameters for UCS

and ASR respectively.
5. Conclusions

In this study, UCS and ASR expansion tests were conducted on

mortar samples where part of sand was replaced by WGP

treated by mechanical, chemical, and mechanical-chemical,

activation. The SEM images were used to investigate the

microstructure of WGP and mortar samples. Besides, a FA-RF

based multi-objective optimisation model was set up to esti-

mate the optimal mixture design for UCS, cost, and ASR cost.

The following results were drawn from this study:

1. The UCS of the WGP mortar specimen was significantly

improved by the mechanical method. The chemical acti-

vation was less effective and adversely affected the UCS

when the amounts of chemical additives were excessive.

The mechanical-chemical activation was optimal that the

highest UCS was observed at 35.33 MPa (31.6% higher than

the control sample) in themortar specimen containing 30%

75 mm WGP activated by 2% Na2SO4 and 2% alkali.

2. Mechanical activation effectively mitigated ASR expan-

sion. Chemical activation was better when the WGP

replacement ratio was 30%. The ASR of 75 mm WGP mortar

sample activated by 2% Na2SO4 and 2% alkali was 55%

lower than 30% 300 mm WGP sample, illustrating the

effectiveness of the mechanical-chemical activation.
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3. SEM results showed that when WGP was exposed to the

chemical activator, its surface underwent a significant

erosion reaction and produced a large number of floccu-

lated deposits with calcium hydroxide crystals. Addition-

ally, the combined activated WGP mortar samples

exhibited a finer and denser structure with fewer fissures

and voids than the non-activated ones.

4. The firefly algorithm was competent in tuning hyper-

parameters of the RF model withminimum RMSE obtained

at the 9th and 6th fold on the UCS and ASR dataset

respectively. The R values for the UCS and ASR test set

were 0.93 and 0.91, indicating their high accuracy in pre-

dicting UCS and ASR.

5. The MOFA-RF successfully measured the Pareto fronts for

dual objectives (UCS, cost, and ASR, cost) with nonlinear

constraints. It provides a guide of multi-objective optimi-

sation designs for the decision-maker. The design with the

lowest efficiency ratio (point 9 for the UCS-cost set and point

5 for the ASR-cost set) means the highest cost-efficiency.

6. The generalisation ability of MOFA-RF can be improved by

producing more Pareto solutions and collecting a compre-

hensive database. Furthermore, the set constraints can be

adjusted to be more suitable for real engineering works.

7. The variable importance ranking determined by the RF

shows that the most significant variables were alkali
ID Compression strength (MPa)

7d 14d 28d 0d

C 17.44 24.15 26.84 0

75G10 19.64 27.14 35.72 0

75G10S2H2 20.89 25.37 29.84 0

75G10S2H4 15.83 20.32 23.63 0

75G10S2H6 13.97 17.63 21.50 0

75G10S4H2 21.24 26.54 30.34 0

75G10S4H4 16.02 19.45 22.89 0

75G10S4H6 13.98 16.46 18.64 0

75G10S6H2 16.97 20.42 23.57 0

75G10S6H4 12.78 17.04 19.66 0

75G10S6H6 10.62 14.35 16.33 0

75G20 18.13 26.44 27.90 0

75G20S2H2 23.74 30.53 33.92 0

75G20S2H4 19.21 21.55 23.12 0

75G20S2H6 16.08 20.46 25.55 0

75G20S4H2 24.96 29.01 33.73 0

75G20S4H4 19.25 23.29 25.72 0

75G20S4H6 9.23 11.99 16.15 0

75G20S6H2 19.70 27.17 30.19 0

75G20S6H4 17.04 22.70 25.22 0

75G20S6H6 13.09 18.69 22.60 0

75G30 17.82 26.44 31.88 0

75G30S2H2 24.73 29.65 35.33 0

75G30S2H4 18.65 22.95 29.05 0

75G30S2H6 13.78 17.54 21.75 0

75G30S4H2 22.03 25.65 32.69 0

75G30S4H4 18.80 20.89 23.24 0

75G30S4H6 10.65 12.45 14.01 0

75G30S6H2 17.96 18.02 22.06 0

75G30S6H4 15.96 22.16 23.82 0

75G30S6H6 13.56 17.06 20.24 0
content and curing time, affecting respectively UCS and

ASR, which is consistent with the experimental findings.
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Appendix A
ASR expansion (%)

2d 4d 7d 10d 14d

0.0196 0.0225 0.0308 0.0346 0.0462

0.0066 0.0077 0.0156 0.0192 0.0192

0.0346 0.0385 0.0519 0.0692 0.1038

0.0154 0.0214 0.0315 0.0577 0.0731

0.0246 0.0308 0.0446 0.0538 0.0808

0.0231 0.0292 0.0538 0.0984 0.1430

0.0154 0.0254 0.0538 0.0808 0.1308

0.0100 0.0231 0.0615 0.0885 0.1160

0.0038 0.0115 0.0462 0.0846 0.1192

0.0085 0.0231 0.0615 0.1077 0.1385

0.0046 0.0247 0.0462 0.0810 0.1000

0.0075 0.0138 0.0308 0.0423 0.0462

0.0157 0.0346 0.0385 0.0538 0.0692

0.0200 0.0386 0.0465 0.0612 0.0808

0.0538 0.0577 0.0713 0.0831 0.1115

0.0346 0.0538 0.0615 0.0756 0.1000

0.0385 0.0615 0.0885 0.1038 0.1166

0.0421 0.0731 0.0885 0.1077 0.1055

0.0077 0.0192 0.0500 0.0650 0.0846

0.0154 0.0260 0.0423 0.0462 0.0577

0.0385 0.0846 0.0962 0.1000 0.1115

0.0462 0.0692 0.1086 0.1192 0.1423

0.0154 0.0200 0.0269 0.0500 0.0654

0.0077 0.0085 0.0154 0.0231 0.0385

0.0154 0.0192 0.0231 0.0269 0.0423

0.0192 0.0288 0.0346 0.0427 0.0462

0.0346 0.0538 0.0577 0.0615 0.0731

0.0216 0.0386 0.0462 0.0538 0.0577

0.0208 0.0269 0.0346 0.0513 0.0615

0.0154 0.0346 0.0486 0.0692 0.0808

0.0268 0.0346 0.0462 0.0538 0.0652
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Appendix B
ID Compression strength (MPa) ASR expansion (%)

7d 14d 28d 0d 2d 4d 7d 10d 14d

300G10 16.20 22.51 25.01 0 0.007 0.015 0.033 0.041 0.051

300G10S2H2 18.29 25.40 26.66 0 0.027 0.046 0.057 0.095 0.126

300G10S2H4 13.77 19.31 20.79 0 0.016 0.025 0.037 0.066 0.083

300G10S2H6 12.02 16.22 19.13 0 0.025 0.034 0.062 0.058 0.091

300G10S4H2 18.69 24.95 26.40 0 0.027 0.034 0.066 0.133 0.166

300G10S4H4 13.46 19.26 20.83 0 0.018 0.028 0.072 0.109 0.144

300G10S4H6 12.02 14.65 16.03 0 0.011 0.026 0.076 0.096 0.140

300G10S6H2 14.26 19.60 21.45 0 0.004 0.015 0.052 0.094 0.131

300G10S6H4 10.35 16.19 17.14 0 0.009 0.030 0.071 0.134 0.158

300G10S6H6 9.13 13.35 14.62 0 0.005 0.035 0.063 0.093 0.108

300G20 15.08 20.94 23.27 0 0.021 0.034 0.062 0.070 0.085

300G20S2H2 18.36 22.05 25.12 0 0.029 0.038 0.055 0.079 0.089

300G20S2H4 14.02 15.52 17.57 0 0.021 0.050 0.056 0.080 0.092

300G20S2H6 11.90 13.71 19.93 0 0.059 0.065 0.082 0.108 0.128

300G20S4H2 17.72 19.73 24.28 0 0.044 0.060 0.067 0.092 0.114

300G20S4H4 15.21 17.47 18.78 0 0.049 0.077 0.104 0.134 0.126

300G20S4H6 7.07 8.64 12.34 0 0.052 0.085 0.122 0.137 0.155

300G20S6H2 14.78 19.29 23.09 0 0.008 0.021 0.055 0.081 0.097

300G20S6H4 13.22 15.89 18.30 0 0.017 0.028 0.049 0.061 0.072

300G20S6H6 10.60 13.83 17.29 0 0.042 0.113 0.125 0.129 0.137

300G30 14.36 19.03 21.69 0 0.041 0.076 0.086 0.130 0.144

300G30S2H2 15.33 20.65 22.61 0 0.039 0.053 0.086 0.113 0.120

300G30S2H4 11.19 16.98 19.17 0 0.013 0.015 0.029 0.038 0.069

300G30S2H6 8.54 12.10 13.33 0 0.028 0.037 0.043 0.045 0.077

300G30S4H2 14.54 18.47 21.58 0 0.032 0.053 0.064 0.071 0.086

300G30S4H4 11.47 15.88 16.15 0 0.062 0.095 0.104 0.103 0.140

300G30S4H6 6.82 9.39 9.80 0 0.037 0.073 0.085 0.089 0.106

300G30S6H2 10.60 12.97 14.41 0 0.039 0.048 0.060 0.086 0.107

300G30S6H4 9.89 15.73 16.29 0 0.026 0.062 0.084 0.122 0.145

300G30S6H6 8.68 11.94 13.97 0 0.050 0.060 0.080 0.093 0.099
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