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Abstract: High-strength concrete (HSC) is a functional material possessing superior mechanical
performance and considerable durability, which has been widely used in long-span bridges and
high-rise buildings. Unconfined compressive strength (UCS) is one of the most crucial parameters
for evaluating HSC performance. Previously, the mix design of HSC is based on the laboratory
test results which is time and money consuming. Nowadays, the UCS can be predicted based
on the existing database to guide the mix design with the development of machine learning (ML)
such as back-propagation neural network (BPNN). However, the BPNN’s hyperparameters (the
number of hidden layers, the number of neurons in each layer), which is commonly adjusted by
the traditional trial and error method, usually influence the prediction accuracy. Therefore, in this
study, BPNN is utilised to predict the UCS of HSC with the hyperparameters tuned by a bio-inspired
beetle antennae search (BAS) algorithm. The database is established based on the results of 324 HSC
samples from previous literature. The established BAS-BPNN model possesses excellent prediction
reliability and accuracy as shown in the high correlation coefficient (R = 0.9893) and low Root-mean-
square error (RMSE = 1.5158 MPa). By introducing the BAS algorithm, the prediction process can
be totally automatical since the optimal hyperparameters of BPNN are obtained automatically. The
established BPNN model has the benefit of being applied in practice to support the HSC mix design.
In addition, sensitivity analysis is conducted to investigate the significance of input variables. Cement
content is proved to influence the UCS most significantly while superplasticizer content has the least
significance. However, owing to the dataset limitation and limited performance of ML models which
affect the UCS prediction accuracy, further data collection and model update must be implemented.

Keywords: high-strength concrete; unconfined compressive strength; beetle antennae search; back-
propagation neural network; sensitivity analysis

1. Introduction

High-strength concrete (HSC) is a type of cementitious material that has uniaxial
compressive strength (UCS) larger than 40 MPa [1–3]. The HSC composite exhibit out-
standing mechanical strength, considerable durability, low permeability, and compact
density. In addition, it satisfies special uniformity and performance requirements, which is
superior to ordinary fabricated concrete [4–6]. HSC has been widely applied in long-span
bridges because it sustains superior dead and live loading with fewer bridge piers and thus
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prolongs the service lifespan [7–9]. Meanwhile, HSC is also promising in high buildings
because it enables oversized columns to yield more floor space and larger column spacing
without detracting from lower floors [10–12]. The behaviour of connectors when embedded
in the HSC, such as the shear resistance and ductility, has been investigated by several
researchers [13,14]. The general behaviour of HSC beams was investigated based on the
mid span deflection, failure mode, and crack growth [15]. HSC can also be served as
the main construction material accompanied by several advanced technologies, such as
building information modelling, 3D printing technology, etc. [16–23]. Besides, solid waste
materials, such as waste glass and recycled aggregate, have the potential to be applied in
HSC to overcome the strength shortcomings of the waste itself [24–31]. Therefore, HSC in-
corporated with solid wastes has the benefits of both strength enhancement and sustainable
prospect [32–34].

For HSC composites, the uniaxial compressive strength (UCS) is the most significant
factor in the design procedure before application. Numerous experiments of HSC by the
research facilities have been carried out to investigate the relationship between UCS and
its composite constituents. However, the progress is costly and lengthy because too many
trial batches have to be prepared to explore desirable mechanical performance with a large
number of influencing variables. The pre-configuration of equipment also consumes time
and resources. Some conventional evaluation strategies have been used to predict the UCS
of HSC composites, such as non-linear regression and linear regression. However, it is
still challenging to conduct accurate prediction by applying simple regression models and
advanced techniques are in great demand [35,36].

To overcome the above difficulties, machine learning (ML) algorithms have been de-
veloped rapidly for predicting the USC of concrete materials. ML models make predictions
and decisions by building a mathematical model without being explicit programming based
on sample data [37–39]. Many ML models have been used to predict concrete strength,
such as neural networks, support vector regression (SVR), and tree-based models [40–43].
For instance, Huynh et al., (2020) [44] utilised artificial neural network (ANN), deep neural
network (DNN), and deep residual network (ResNet) to predict the compressive strength
of fly ash-based geopolymer concrete. Besides, the deep neural network (DNN) has been
applied to perform structural reliability analysis and structural damage detection of truss
structures [45,46]. The Extreme Learning Machine (ELM) and ANN were applied and com-
pared to predict the compressive strength of concrete containing fly ash and silica fume [47].
The estimations of moment and rotation in steel rack connections and beam-to-column
connections were implemented through ELM [48,49]. Mohammadhassani et al., (2014) [50]
used an Adaptive Neuro-Fuzzy Inference System (ANFIS) to predict the shear strength of
high strength concrete (HSC) beams without stirrups. The ML models can also be used to
further propose multi-objective optimisation design [51–53]. Among most ML models, the
back-propagation neural network (BPNN) demonstrates superior predicting capacity for
solving engineering problems. The main reason is that BPNN is fast and easy to program
without parameters to tune apart from the number of neurons in the hidden layer [54–56].
Therefore, BPNN is chosen as the prediction ML model in this study.

Generally, the number of hidden layers and the optimal number of neurons in each
hidden layer are two parameters which significantly affect the performance of BPNN. To
determine the two values, traditional trial and error methods are widely used, which is a
waste of effort and time. To overcome the shortcoming, some meta-heuristic algorithms
were developed for ML model optimisation. Genetic Algorithm (GA) and Particle Swarm
Optimization (PSO) accompanied with ANN were applied for properties prediction [57,58].
These meta-heuristic algorithms also have extensive use in other ML models. For instance,
Sharafati et al., (2020) [59,60] developed a combination of adaptive neuro-fuzzy inference
system (ANFIS) with several meta-heuristic algorithms (e.g., PSO) to predict the shear strength
of HSC slender beam and compressive strength of foamed concrete. A SVR-GA was employed
to predict the shear strength of reinforced concrete (RC) deep beams [61]. Multivariate
Adaptive Regression Splines optimized using Water Cycle Algorithm (MARS-WCA) was
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developed for the prediction of the compressive strength of concrete [62]. The grey wolf
optimizer (GWO) was implemented with ELM to predict the compressive strength of concrete
with partial replacements for cement [63]. It also successfully predicts the behaviour of channel
shear connectors in composite floor systems at different temperatures [64]. A Support Vector
Machine (SVM) coupled with Firefly Algorithm (FFA) was performed for the shear capacity
estimation of angle shear connectors [65]. The Beetle Antennae Search (BAS) is another feasible
meta-heuristic algorithm to tune BPNN architecture with fast convergence, stability in local
optimization and uncomplicated implementation [41,66,67]. Therefore, BAS algorithm is
chosen to tune the hyperparameters of BPNN. Some robust optimisers are also proposed
recently such as adaptive hybrid evolutionary firefly algorithm (AHEFA), hybrid differential
evolution and symbiotic organisms search (HDS), and evolutionary symbiotic organisms
search algorithm (ESOS) [68–70].

In this study, the focus is on predicting the UCS of HSC using BAS-BPNN and un-
derstanding the sensitivity ranking of varying influencing factors upon the strength per-
formance of HSC. Different from the traditional ML models, this study develops a novel
ML model comprising BPNN and BAS architectures based on a total of 324 experiment
data from the literature. The BAS algorithm possesses fast convergence which is beneficial
to analysis on the basis of a large database. This pioneering research supplies a novel
method to predict the mechanical strength of HSC for advanced engineering construction
and application.

2. Dataset

A total of 324 HSC data samples are collected from previous literature [71] (listed
in the Appendix A). Type 1 ordinary Portland cement (OPC) is used as binder material.
Silica sand is incorporated as fine aggregate (FA) and the gravel with the size less than
20 mm is served as coarse gravel aggregate (CA). A polycarboxylate-based superplasticizer
(SP) with a density of 1.06 g/cm3 is also introduced for adjusting the cement fluidity and
segregation performance.

The specific statistics of the input and output variables are summarised in Table 1 based
on the database (Appendix A). All the five influencing variables comprise the content of
cement, fine and coarse aggregates, water, and SP. The correlation coefficient distribution is
computed, as shown demonstrated in Figure 1. According to the result, the UCS is highly
correlated with cement. For input variables, most of the correlations are relatively low (less
than 0.5), suggesting that these variables will not produce multicollinearity problems [72–74].

Table 1. Chart of input and output statistics.

ID Data Unit Minimum Maximum Mean Value

Cement Input kg/m3 284 600 417
Water Input kg/m3 160 180 170

Coarse Aggregate Input kg/m3 845 989 899
Fine Aggregate Input kg/m3 552 951 768

SP Input kg/m3 0 2 0.95
UCS Output MPa 37.5 73.6 52
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3. Methodology
3.1. BPNN

The artificial neural network (ANN) is one of the commonly used machine learning
models, which comprises many categories such as recurrent neural networks (RNN) and
feedforward neural network (FFNN). The FFNN includes the Back-propagation neural
network (BPNN), which is widely employed to solve problems in the field of building
materials and construction [42,75,76]. Back propagation (BP) is a popular approach to
adjust the weights and bias of the model, which is composed of an input layer, one or more
hidden layers, and one output layer. The BP process will compare the actual outputs and
predicted outputs to obtain the optimal weight and threshold values of the network. The
output (O) of a neuron is computed as follow

O = f

(
n

∑
j=1

(
wjxj

)
+ b

)
, UCS (MPa) (1)

where wj represents the weight value of the jth input neuron (xj) in the previous layer; b
is the bias value of the output neuron; f denotes the activation function. In this study, the
following active function was used mainly due to its superior performance [75]:

f(x) =
2

1 + exp(−x)
− 1 (2)

In the backpropagation process, the method computes the gradient of the error func-
tion with respect to the weights of the neural networks. The training iteration will stop
when the mean square error (MSE) between the actual and predicted outputs become
smaller than a defined threshold. The topology of the backpropagation process is shown in
Figure 2.
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3.2. BAS

The BAS algorithm is a recently proposed metaheuristic optimization algorithm [77].
It is inspired by the hunting behavior of the longhorn beetle with its two long antennae.
The beetle gradually moves to the food source (the global optimum). Therefore, the
concentration of odour is represented by the objective function at position x. In a multi-
dimensional space, the global optimum (source point) lies in the position with the best
objective value. The beetle’s searching behaviour is given by:

xr = xi + dib (3)

xl = xi − dib (4)

where xr and xl represent the areas in the right-hand side and left-hand side, respectively;
xi is the position at an ith time instant. di denotes the length of the beetle’s antennae at ith
iteration. b denotes a unit vector that is randomly normalized, which is expressed as

b =
rnd(k, 1)
‖rnd(k, 1)‖ (5)

where k denotes the dimensionality of the position; rnd(·) is a random function.
The beetle’s detecting behaviour is determined using the following equation:

xi+1 = xi + δib·sign( f (xr)− f (xl)) (6)

where sign(·) is the sign function; δi represents the step size at the ith iteration, which is
updated using the following formula:

δi+1 = ηδi (7)

where η is the attenuation coefficient of the step size.
The flowchart of BAS is shown in Figure 3 and the pseudocode of tuning hyperparam-

eters of BPNN using BAS is presented in Figure 4.
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3.3. Performance Evaluation

In this study, Root-mean-square error (RMSE) and Correlation coefficient (R) are used
to evaluate the performance of the proposed model. RMSE and R are calculated as follows

RMSE =

√
1
n ∑n

i=1

(
y∗i − yi

)2, MPa (8)

where n denotes the number of data samples; y∗i is the predicted value; yi represents the
actual value;

R =
∑n

i=1
(
y∗i − y∗

)
(yi − y)√

∑n
i=1
(
y∗i − y∗

)2
√

∑n
i=1(yi − y)2

, dimensionless (9)

where and are the mean value of predicted and observed values, respectively.

3.4. Determination of Architecture of BPNN

The hidden layer and the number of neurons in each hidden layer are optimised
using BAS in this study. To tune these hyperparameters, 10-fold cross validation (CV) was
performed in the training set (Figure 5). The training set is divided into 10 folds, in which
9 folds are used to tune the number of neurons by BAS, and the performance of the BPNN
model with the optimal architecture is validated in the remaining fold. After repeating
10 times (for each time, a different fold is selected as the validation fold), the average neuron
number is selected as the final neuron number used in this study. Finally, 30% of the data
in the test set are used to test the performance of the BPNN with optimal architecture.
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4. Results and Discussion
4.1. Results of Hyperparameter Tuning

In this study, the number of neurons in each layer is tuned using the BAS algorithm.
In each fold, the RMSE obtained by the BPNN (with optimal neuron number of this fold) is
plotted in Figure 6. The smallest RMSE values versus iterations corresponding to varying
hidden layers are shown in Figure 7, which presents the process of neuron number tuning.
It can be seen that the RMSE decreases to its minimum value within 40 iterations, suggesting
that BAS has high efficiency in finding the optimal number of neurons. Ultimately, the final
hidden layer is 1 and the corresponding optimal neuron number is 24.
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4.2. Performance of the BAS-BPNN Model

Figure 8 shows the actual values (blue line), predicted values (red point), and errors
between the actual and predicted UCS (yellow bar graph). It can be observed that although
several large noises are observed, most of the errors are pretty small on the training set
(Figure 8a) and test set (Figure 8b). This result indicates that the BAS-BPNN model is
highly accurate. The correlation between the actual and predicted UCS is visualized in
Figure 9. High prediction accuracy is observed on the training set (Figure 9a) and test set
(Figure 9b), as indicated by the high R values (0.9971 and 0.9893 on the training and test
sets, respectively) and low RMSE values (0.7167 MPa and 1.5158 MPa on the training and
test sets, respectively). Compared with previously published papers [42,51], the obtained
results show much higher accuracy (R is around 0.99), which might be attributed to the
model performance or the accuracy and size of the database. Furthermore, no overfitting
problems take place as the test set RMSE (and R) is close to that on the training set. Owing
to the inherent stochastic properties of the BAS algorithm, the statistical outcomes of
extra 20 run times are also reported in Table 2 to verify the robustness of the introduced
ML model.



Buildings 2022, 12, 65 9 of 23

Buildings 2022, 11, x FOR PEER REVIEW 9 of 23 
 

 

(a) 

 

(b) 
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Table 2. Statistical outcomes (RMSE, R) of the BAS-BPNN for the extra 20 run times.

Run Time
RMSE of Training

and Test Sets
(MPa)

R of Training and
Test Sets Run Time

RMSE of Training
and Test Sets

(MPa)

R of Training and
Test Sets

1 1.0036, 1.1543 0.9945, 0.9922 11 1.3392, 1.1305 0.9893, 0.9942
2 1.0879, 1.3876 0.9933, 0.9894 12 0.9725, 1.0086 0.9949, 0.9937
3 0.8851, 1.2874 0.9956, 0.9906 13 1.1523, 1.1125 0.9929, 0.9919
4 1.0482, 1.0455 0.9935, 0.9945 14 1.1654, 1.3617 0.9925, 0.9898
5 1.3044, 1.6762 0.9914, 0.9844 15 0.9353, 1.0637 0.9951, 0.9940
6 0.8887, 1.1730 0.9955, 0.9927 16 1.1210, 1.3923 0.9929, 0.9891
7 1.0657, 1.2421 0.9940, 0.9919 17 1.1539, 1.3263 0.9928, 0.9896
8 0.9304, 1.8270 0.9953, 0.9804 18 1.2006, 1.2839 0.9925, 0.9901
9 0.9678, 1.3371 0.9948, 0.9898 19 0.9878, 1.2744 0.9945, 0.9913

10 1.2053, 1.5601 0.9921, 0.9875 20 0.8121, 1.1521 0.9960, 0.9945
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4.3. Variable Importance

Global sensitivity analysis (GSA) is combined with the developed BPNN model to
analyse the variable importance (Figure 10). It can measure the impact on the proposed
BAS-BPNN output when the input value changes within its value range [79]. The data
sample is represented as x, and xa, a ∈ {1, . . . , M} denotes an input variable through
its range with L levels (M is the number of input variables). And y represents the UCS
value which is predicted by the BPNN. According to the range of xa and L levels, the
input variable xa can be divided into i values, namely, xai, i = {1, . . . , L}. The respective
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sensitivity response of each input variable is calculated by Equation (10). Afterward, the
relative importance of each variable is calculated by Equation (11).

ga =
L

∑
i=2

| ˆya,i − ˆya,i−1|
L− 1

(10)

Ra = ga/
L

∑
i=1

gi (11)

where a is the input variable that needs to be analysed; ˆya,i, i = {1, . . . , L} stands for
the sensitivity response indicator for xai, i = {1, . . . , L}; Ra is the relative importance of
the variable.

It can be observed that UCS of HSC is the most sensitive to contents of cement and
water with importance ratios of 44.9% and 34.9%, respectively. This is mainly due to
the water-to-cement ratio, which is crucial to the development of concrete strength. It is
interesting to note that superplasticiser (importance ratio = 2.7%) is not as important as
other influencing variables. This may be caused by insufficient content of superplasticiser
in the concrete mixtures. It is worthwhile to note that the importance of input variables is
calculated on the basis of the data set collected in this study, as listed in the Appendix A.
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4.4. Comparison of the BAS-BPNN Model with Other ML Models

To seek the optimal ML model and further verify the strength of the established BAS-
BPNN model in the prediction of UCS of HSC, its prediction performance is compared with
several widely used ML models [80]: Support vector machine (SVM), random forest (RF),
K-nearest neighbours (KNN), logistic regression (LR), and multiple-linear regression (MLR).
Among these models, the hyperparameters of SVM, RF, and KNN are also tuned by BAS.
The tuned hyperparameters with their empirical scopes, initial values, and final values are
listed in Table 3. The hyperparameter tuning process of these models is shown in Figure 11.
It can be seen that all RMSE curves can converge within 50 iterations, indicating the high
searching efficiency of the BAS algorithm. In the first 20 iterations, the RMSE obtained by
SVM decreases less significantly in comparison with that obtained by other ML models.
This implies the initial hyperparameters of SVM are close to the optimal hyperparameters.
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Table 3. Hyperparameters of different models.

Classifier Hyperparameter Empirical Scope Initial Value Final Value

SVM
Coefficient of the penalty term [1,1000] 16 18.73

Gamma value of gaussian kernel [0.1,10] 16 34.88

RF
The minimum number of samples
required to split an internal node [1,10] 40 1

The total number of trees [2,100] 40 83

KNN Number of neighbor samples [1,10] 30 2
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The prediction errors of different ML models are compared on the test set using a
boxplot, as shown in Figure 12. The lower edge of the box represents the first quartile,
and the upper edge is the third quartile. The median is demonstrated as a red line in the
box. The lower and upper whiskers are the 1.5 IQR minus the first quartile and 1.5 IQR
above the third quartile, respectively (IQR is the interquartile range). All the other data
points are defined as outliers in this study. It can be observed that BPNN has the smallest
third quartile, indicating that most of the errors obtained by BPNN are relatively small.
Although few outliers were observed in BPNN, the general prediction performance was the
best among these ML models. The advantage of BAS-BPNN is also verified by comparing
different ML models using a Taylor plot that shows in Figure 13, indicating three model
evaluation indices (standard deviation, RMSE, and R). The ML model will be the most
realistic if the distance between the ML model and the point labelled “Actual” is the
shortest. It can be seen that BPNN is the closest to the “Actual point”, suggesting BPNN
performs better in terms of standard deviation, correlation coefficient, and RMSE. Generally,
the boxplot and Taylor plot present a similar phenomenon, ranking the accuracy of ML
models as BP, SVM, RF, MLR, LR, and KNN. This is controlled according to the model
complexity and database suitability. According to the “no free lunch” (NFL) theorem of
machine learning, there is no single model that performs universally superior to other
models for any dataset. Therefore, based on the dataset used in this study, BPNN is the
optimal prediction model.
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5. Conclusions

In this study, the BPNN model with the BAS algorithm being used to tune the hyperpa-
rameters was established to predict the UCS of HSC. The proposed BAS-BPNN model was
developed based on a collected dataset containing over 300 HSC samples with different
mixtures. The BPNNs with 1, 2, and 3 hidden layers were compared and the ultimate
optimal architecture is one hidden layer with 24 neurons. The results show that BAS has
high efficiency in tuning hyperparameters of BPNN and the obtained BAS-BPNN model is
highly accurate (R = 0.9893, RMSE = 1.5158 MPa on the test set). Besides, the BAS-BPNN
is superior by comparing its prediction performance with other widely used ML models
(SVM, RF, KNN, LR, and MLR). In addition, the importance ranking of the input variables
through GSA was implemented showing that cement and water are the most significant
variables to the UCS of HSC. Generally, the findings in this study can be used in practice to
support the HSC mix design.

It is noted that only five input variables are considered in this study, which inevitably
influences the diversity and size of the database. Therefore, more samples containing
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varying raw materials such as fly ash, slags, and other solid wastes will be incorporated
in the future to further improve the generalisation ability of the BAS-BPNN model. Also,
other active functions, advanced machine learning models, and optimization algorithms
(e.g., AHEFA, HDS, and ESOS) can be applied for performance comparison. An Adaptive
Neuro-Fuzzy Inference System can be used to determine the most influencing parameters
to further verify the findings in this study [81,82].
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Appendix A

ID Water
(kg/m3)

OPC
(kg/m3)

FA
(kg/m3)

CA
(kg/m3)

SP
(kg/m3)

UCS
(MPa)

1 160 533 805 845 1 73.6
2 160 533 805 845 1.5 73.6
3 160 533 805 845 2 73.6
4 160 480 786 845 1 73.1
5 160 480 786 845 1.5 73.1
6 160 480 786 845 2 73.1
7 160 427 767 845 1 72.7
8 160 427 767 845 1.5 72.7
9 160 427 767 845 2 72.7

10 160 533 753 898 1 69.4
11 160 533 753 898 1.5 69.4
12 160 533 753 898 2 69.4
13 160 480 734 898 1 70.5
14 160 480 734 898 1.5 70.5
15 160 480 734 898 2 70.5
16 160 427 715 898 1 68.1
17 160 427 715 898 1.5 68.1
18 160 427 715 898 2 68.1
19 160 533 701 950 1 67.8
20 160 533 701 950 1.5 67.8
21 160 533 701 950 2 67.8
22 160 480 682 950 1 67
23 160 480 682 950 1.5 67
24 160 480 682 950 2 67
25 160 427 663 950 1 64.1
26 160 427 663 950 1.5 64.1
27 160 427 663 950 2 64.1
28 170 567 751 845 1 64.6
29 170 567 751 845 1.5 64.6
30 170 567 751 845 2 64.6
31 170 510 731 845 1 64.4
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ID Water
(kg/m3)

OPC
(kg/m3)

FA
(kg/m3)

CA
(kg/m3)

SP
(kg/m3)

UCS
(MPa)

32 170 510 731 845 1.5 64.4
33 170 510 731 845 2 64.4
34 170 453 711 845 1 64.7
35 170 453 711 845 1.5 64.7
36 170 453 711 845 2 64.7
37 170 567 700 898 1 63.9
38 170 567 700 898 1.5 63.9
39 170 567 700 898 2 63.9
40 170 510 679 898 1 63.4
41 170 510 679 898 1.5 63.4
42 170 510 679 898 2 63.4
43 170 453 659 898 1 62
44 170 453 659 898 1.5 62
45 170 453 659 898 2 62
46 170 567 648 950 1 62.4
47 170 567 648 950 1.5 62.4
48 170 567 648 950 2 62.4
49 170 510 628 950 1 61.7
50 170 510 628 950 1.5 61.7
51 170 510 628 950 2 61.7
52 170 453 608 950 1 61.9
53 170 453 608 950 1.5 61.9
54 170 453 608 950 2 61.9
55 180 600 698 845 0.75 59.5
56 180 600 698 845 1.25 59.5
57 180 600 698 845 1.75 59.5
58 180 540 677 845 0.75 61.1
59 180 540 677 845 1.25 61.1
60 180 540 677 845 1.75 61.1
61 180 480 655 845 0.75 60.8
62 180 480 655 845 1.25 60.8
63 180 480 655 845 1.75 60.8
64 180 600 646 898 0.75 60.5
65 180 600 646 898 1.25 60.5
66 180 600 646 898 1.75 60.5
67 180 540 625 898 0.75 59.9
68 180 540 625 898 1.25 59.9
69 180 540 625 898 1.75 59.9
70 180 480 604 898 0.75 57
71 180 480 604 898 1.25 57
72 180 480 604 898 1.75 57
73 180 600 594 950 0.75 59.7
74 180 600 594 950 1.25 59.7
75 180 600 594 950 1.75 59.7
76 180 540 573 950 0.75 60
77 180 540 573 950 1.25 60
78 180 540 573 950 1.75 60
79 180 480 552 950 0.75 59.6
80 180 480 552 950 1.25 59.6
81 180 480 552 950 1.75 59.6
82 160 457 867 845 0.75 62
83 160 457 867 845 1.25 62
84 160 457 867 845 1.75 62
85 160 411 851 845 0.75 62
86 160 411 851 845 1.25 62
87 160 411 851 845 1.75 62



Buildings 2022, 12, 65 16 of 23

ID Water
(kg/m3)

OPC
(kg/m3)

FA
(kg/m3)

CA
(kg/m3)

SP
(kg/m3)

UCS
(MPa)

88 160 366 835 845 0.75 60.6
89 160 366 835 845 1.25 60.6
90 160 366 835 845 1.75 60.6
91 160 457 816 898 0.75 62.1
92 160 457 816 898 1.25 62.1
93 160 457 816 898 1.75 62.1
94 160 411 799 898 0.75 61.5
95 160 411 799 898 1.25 61.5
96 160 411 799 898 1.75 61.5
97 160 366 783 898 0.75 57.8
98 160 366 783 898 1.25 57.8
99 160 366 783 898 1.75 57.8
100 160 457 764 950 0.75 61.5
101 160 457 764 950 1.25 61.5
102 160 457 764 950 1.75 61.5
103 160 411 747 950 0.75 60.8
104 160 411 747 950 1.25 60.8
105 160 411 747 950 1.75 60.8
106 160 366 731 950 0.75 57.6
107 160 366 731 950 1.25 57.6
108 160 366 731 950 1.75 57.6
109 170 486 818 845 0.5 58.8
110 170 486 818 845 1 58.8
111 170 486 818 845 1.5 58.8
112 170 437 801 845 0.5 56.8
113 170 437 801 845 1 56.8
114 170 437 801 845 1.5 56.8
115 170 389 783 845 0.5 55.3
116 170 389 783 845 1 55.3
117 170 389 783 845 1.5 55.3
118 170 486 766 898 0.5 57.8
119 170 486 766 898 1 57.8
120 170 486 766 898 1.5 57.8
121 170 437 749 898 0.5 56.6
122 170 437 749 898 1 56.6
123 170 437 749 898 1.5 56.6
124 170 389 732 898 0.5 56.9
125 170 389 732 898 1 56.9
126 170 389 732 898 1.5 56.9
127 170 486 714 950 0.5 56.1
128 170 486 714 950 1 56.1
129 170 486 714 950 1.5 56.1
130 170 437 697 950 0.5 55.9
131 170 437 697 950 1 55.9
132 170 437 697 950 1.5 55.9
133 170 389 680 950 0.5 54.3
134 170 389 680 950 1 54.3
135 170 389 680 950 1.5 54.3
136 180 514 769 845 0.25 54.2
137 180 514 769 845 0.75 54.2
138 180 514 769 845 1.25 54.2
139 180 463 750 845 0.25 52.7
140 180 463 750 845 0.75 52.7
141 180 463 750 845 1.25 52.7
142 180 411 732 845 0.25 51
143 180 411 732 845 0.75 51
144 180 411 732 845 1.25 51
145 180 514 717 898 0.25 54.6
146 180 514 717 898 0.75 54.6
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ID Water
(kg/m3)

OPC
(kg/m3)

FA
(kg/m3)

CA
(kg/m3)

SP
(kg/m3)

UCS
(MPa)

147 180 514 717 898 1.25 54.6
148 180 463 698 898 0.25 50.3
149 180 463 698 898 0.75 50.3
150 180 463 698 898 1.25 50.3
151 180 411 680 898 0.25 47.3
152 180 411 680 898 0.75 47.3
153 180 411 680 898 1.25 47.3
154 180 514 665 950 0.25 52.1
155 180 514 665 950 0.75 52.1
156 180 514 665 950 1.25 52.1
157 180 463 647 950 0.5 45.5
158 180 463 647 950 1 45.5
159 180 463 647 950 1.5 45.5
160 180 411 628 950 0.5 45.7
161 180 411 628 950 1 45.7
162 180 411 628 950 1.5 45.7
163 160 400 914 845 0.5 49.6
164 160 400 914 845 1 49.6
165 160 400 914 845 1.5 49.6
166 160 360 900 845 0.5 48
167 160 360 900 845 1 48
168 160 360 900 845 1.5 48
169 160 320 886 845 0.5 47.7
170 160 320 886 845 1 47.7
171 160 320 886 845 1.5 47.7
172 160 400 863 989 0.5 49.1
173 160 400 863 989 1 49.1
174 160 400 863 989 1.5 49.1
175 160 360 848 898 0.5 48
176 160 360 848 898 1 48
177 160 360 848 898 1.5 48
178 160 320 834 898 0.5 48.5
179 160 320 834 898 1 48.5
180 160 320 834 898 1.5 48.5
181 160 400 811 950 0.5 49.4
182 160 400 811 950 1 49.4
183 160 400 811 950 1.5 49.4
184 160 360 797 950 0.5 48.7
185 160 360 797 950 1 48.7
186 160 360 797 950 1.5 48.7
187 160 320 782 950 0.5 46.1
188 160 320 782 950 1 46.1
189 160 320 782 950 1.5 46.1
190 170 425 868 845 0 47.7
191 170 425 868 845 0.5 47.7
192 170 425 868 845 1 47.7
193 170 425 853 845 0 47.1
194 170 425 853 845 0.5 47.1
195 170 425 853 845 1 47.1
196 170 340 838 845 0 45
197 170 340 838 845 0.5 45
198 170 340 838 845 1 45
199 170 425 816 898 0 46
200 170 425 816 898 0.5 46
201 170 425 816 898 1 46
202 170 383 801 898 0 45.7
203 170 383 801 898 0.5 45.7
204 170 383 801 898 1 45.7
205 170 340 786 898 0 45.1
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ID Water
(kg/m3)

OPC
(kg/m3)

FA
(kg/m3)

CA
(kg/m3)

SP
(kg/m3)

UCS
(MPa)

206 170 340 786 898 0.5 45.1
207 170 340 786 898 1 45.1
208 170 425 764 950 0 46
209 170 425 764 950 0.5 46
210 170 425 764 950 1 46
211 170 383 749 950 0 45
212 170 383 749 950 0.5 45
213 170 383 749 950 1 45
214 170 340 734 950 0 43.3
215 170 340 734 950 0.5 43.3
216 170 340 734 950 1 43.3
217 180 450 821 845 0 44.5
218 180 450 821 845 0.5 44.5
219 180 450 821 845 1 44.5
220 180 405 805 845 0 43.6
221 180 405 805 845 0.5 43.6
222 180 405 805 845 1 43.6
223 180 360 789 845 0 42
224 180 360 789 845 0.5 42
225 180 360 789 845 1 42
226 180 450 770 898 0 43.8
227 180 450 770 898 0.5 43.8
228 180 450 770 898 1 43.8
229 180 405 754 898 0 43
230 180 405 754 898 0.5 43
231 180 405 754 898 1 43
232 180 360 738 898 0 43.2
233 180 360 738 898 0.5 43.2
234 180 360 738 898 1 43.2
235 180 450 718 950 0 43.5
236 180 450 718 950 0.5 43.5
237 180 450 718 950 1 43.5
238 180 405 702 950 0 41.5
239 180 405 702 950 0.5 41.5
240 180 405 702 950 1 41.5
241 180 360 686 950 0 42.4
242 180 360 686 950 0.5 42.4
243 180 360 686 950 1 42.4
244 160 356 951 845 0.5 46
245 160 356 951 845 1 46
246 160 356 951 845 1.5 46
247 160 320 938 845 0.5 45
248 160 320 938 845 1 45
249 160 320 938 845 1.5 45
250 160 284 926 845 0.5 43.7
251 160 284 926 845 1 43.7
252 160 284 926 845 1.5 43.7
253 160 356 899 898 0.5 44.5
254 160 356 899 898 1 44.5
255 160 356 899 898 1.5 44.5
256 160 320 886 898 0.5 42.6
257 160 320 886 898 1 42.6
258 160 320 886 898 1.5 42.6
259 160 284 874 898 0.5 43.8
260 160 284 874 898 1 43.8
261 160 284 874 898 1.5 43.8
262 160 356 847 950 0.5 43.6
263 160 356 847 950 1 43.6
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ID Water
(kg/m3)

OPC
(kg/m3)

FA
(kg/m3)

CA
(kg/m3)

SP
(kg/m3)

UCS
(MPa)

264 160 356 847 950 1.5 43.6
265 160 320 835 950 0.5 42.6
266 160 320 835 950 1 42.6
267 160 320 835 950 1.5 42.6
268 160 284 822 950 0.5 42.9
269 160 284 822 950 1 42.9
270 160 284 822 950 1.5 42.9
271 170 378 907 845 0.5 44.9
272 170 378 907 845 1 44.9
273 170 378 907 845 1.5 44.9
274 170 340 893 845 0 41.1
275 170 340 893 845 0.5 41.1
276 170 340 893 845 1 41.1
277 170 302 880 845 0 41.5
278 170 302 880 845 0.5 41.5
279 170 302 880 845 1 41.5
280 170 378 855 898 0 42.5
281 170 378 855 898 0.5 42.5
282 170 378 855 898 1 42.5
283 170 340 842 898 0 40.8
284 170 340 842 898 0.5 40.8
285 170 340 842 898 1 40.8
286 170 302 828 898 0 40.8
287 170 302 828 898 0.5 40.8
288 170 302 828 898 1 40.8
289 170 378 803 950 0 41.8
290 170 378 803 950 0.5 41.8
291 170 378 803 950 1 41.8
292 170 340 790 950 0 41.3
293 170 340 790 950 0.5 41.3
294 170 340 790 950 1 41.3
295 170 302 776 950 0 41
296 170 302 776 950 0.5 41
297 170 302 776 950 1 41
298 180 400 863 845 0 41.3
299 180 400 863 845 0.5 41.3
300 180 400 863 845 1 41.3
301 180 360 848 845 0 41.5
302 180 360 848 845 0.5 41.5
303 180 360 848 845 1 41.5
304 180 320 834 845 0 40.3
305 180 320 834 845 0.5 40.3
306 180 320 834 845 1 40.3
307 180 400 811 898 0 41.5
308 180 400 811 898 0.5 41.5
309 180 400 811 898 1 41.5
310 180 360 797 898 0 40
311 180 360 797 898 0.5 40
312 180 360 797 898 1 40
313 180 320 782 898 0 40
314 180 320 782 898 0.5 40
315 180 320 782 898 1 40
316 180 400 759 950 0 42.1
317 180 400 759 950 0.5 42.1
318 180 400 759 950 1 42.1
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ID Water
(kg/m3)

OPC
(kg/m3)

FA
(kg/m3)

CA
(kg/m3)

SP
(kg/m3)

UCS
(MPa)

319 180 360 745 950 0 39.5
320 180 360 745 950 0.5 39.5
321 180 360 745 950 1 39.5
322 180 320 731 950 0 37.5
323 180 320 731 950 0.5 37.5
324 180 320 731 950 1 37.5
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