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Based on the deterministic description of batch culture expressed in form of switched ordinary differential equations, we introduce
a switched stochastic counterpart system with initial state difference together with uncertain switching instants and system
parameters to model the process of glycerol biodissimilation to 1,3-propanediol (1,3-PD) induced by Klebsiella pneumoniae (K.
pneumoniae). Important properties of the stochastic system are discussed. Our aim is to obtain the unified switched instants and
system parameters under the condition of different initial states. To do this, we will formulate a system identification problem
in which these uncertain switched instants and system parameters are regarded as decision variables to be chosen such that the
relative error between experimental data and computational results is minimized. Such problem governed by the stochastic system
is subject to continuous state inequality constraints and box constraints. By performing a time-scaling transformation as well as
introducing the constraint transcription and local smoothing approximation techniques, we convert such problem into a sequence
of approximation subproblems. Considering both the difficulty of finding analytical solutions and the complex nature of these
subproblems, we develop a parallelized differential evolution (DE) algorithm to solve these approximation subproblems. From an
extensive simulation, we show that the obtained optimal switched instants and system parameters are satisfactory with initial state
difference.

1. Introduction

1,3-Propanediol (1,3-PD) is an important chemical product
with numerous applications in cosmetics, adhesives, lubri-
cants, and medicines. In particular, 1,3-PD has recently been
used as a monomer to synthesize a new type of polyester
called polyurethanes [1]. There are three common methods
of the bioconversion of glycerol by K. pneumoniae to 1,3-PD:
batch culture [2], continuous culture [3–5], and fed-batch
culture [6]. The reason for the necessity of studying batch
culture [7] is that 1,3-PD yield, which is defined as the ratio
between the formation of 1,3-PD and the consumption of
glycerol, is high in batch culture. The high concentration of
glycerol leads to the high formation of 1,3-PD and the low

formation of by-product in batch culture of glycerol [8]. In
particular, note that the high target product yield in batch
culture is only applicable to the bioconversion of glycerol.
Not all the batch culture is of the high target product yield.
Therefore, batch culture, in which the bacteria and substrate
will be added to the bioreactor only at the beginning process,
is now attracting significant interest in many research areas.
Relevant literature includes [9], where identification and
robustness analysis of nonlinear multistage enzyme-catalytic
dynamical system are researched; the study [10], where
sensitivity analysis and identification of kinetic parameters
are investigated; the study [11], where strong stability of
a nonlinear multistage dynamic system is considered; the
study [12], where robust identification of enzymatic nonlinear
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dynamical systems is studied; the study [13], wheremodelling
and parameter identification for a nonlinear time-delay
system are researched; the study [14], where distributionally
robust parameter identification of a time-delay dynamical
system with stochastic measurements is carried out (many
wireless network systems and hybrid dynamical systems [15,
16] have time delays and switchings); the study [17], where
dynamic optimization for switched time-delay systems with
state-dependent switching conditions is studied; the study
[18], where pathway identification using parallel optimization
for a nonlinear hybrid system is considered; the study [19],
where optimality condition and optimal control for a two-
stage nonlinear dynamical system are investigated; the study
[20], where bi-objective dynamic optimization of a nonlinear
time-delay system is carried out; the study [21], where robust
biobjective optimal control is studied. To the best of the
authors’ knowledge and by surveying mentioned literatures,
stochastic influences are not taken into consideration in batch
culture.

Biotechnical treatment of microorganisms is commonly
described by deterministic systems in form of nonlinear
ordinary differential equations [22] to avoid expensive exper-
iments. This description includes an idealization of the
technical system component and a qualitative characteriza-
tion of the biological part. In fact, microbial fermentation
cannot commonly avoid stochastic influences reflected on
the uncertainty of certain parameters [23]. Since this random
phenomenon reveals different patterns and new features,
such randomnness will degrade the role of deterministic
systems in the research [24]. Therefore, research interest on
stochastic dynamic systems has been growing in recent years
[25]. Biological phenomena have the dynamical behaviours
that are intrinsically erratic, and they are concisely described
by a stochastic model, rather than by a deterministic one.
In [26, 27], the randomness is introduced by the parameter
perturbation and it becomes a standard technique in stochas-
tic population modelling. However, parameter uncertainty is
still ignored in their model.

Parameter uncertainty is a key issue in practice because it
is difficult (if not impossible) to determine the exact values
of many parameters in the dynamic equations describing
microbial conversion [28–30]. In this paper, a switched
stochastic counterpart with uncertain switched instants and
system parameters will be taken to replace the commonly
used deterministic description of batch culture with ordinary
differential equations to describe the process of glycerol
biodissimilation to 1,3-PD byK. pneumoniae. In order to esti-
mate the uncertain switched instants and system parameters,
we present a system identification problem governed by the
stochastic system and subject to continuous state inequality
constraints and box constraints to minimize the relative
error between experimental data and computational results.
In order to handle continuous state inequality constraints,
such problem is converted into a sequence of approximation
subproblems and one solves them by using time-scaling
transformation, constraint transcription, and local smooth-
ing approximation techniques. Since it is a very compli-
cated task to solve these subproblems, we develop a paral-
lelized differential evolution (DE) algorithm to solve these

approximation subproblems. Our contribution of this paper
includes (1) to propose a new stochastic switched models
for batch fermentation to describe the process’s randomness
characteristics, (2) to establish a optimal identification proce-
dure to identify the parameters, and (3) to design a parallel
DE algorithm to save the computational time efficiently. It
is observed that the obtained optimal switched instants and
system parameters are satisfactory with initial state difference
via numerical simulations.

The rest of this paper is organized as follows. In Section 2,
a nonlinear switched stochastic dynamical system is formu-
lated to describe the process of glycerol biodissimilation to
1,3-PD by K. pneumoniae and some significant properties
are discussed. In Section 3, a system identification problem
is proposed. In Section 4, time-scaling transformation is
performed and approximate subproblems are presented. In
Section 5, an optimization algorithm is constructed to solve
these subproblems. In Section 6, the numerical results are
clarified. Then, conclusion remarks are presented in Sec-
tion 7.

2. Nonlinear Switched Stochastic System and
Its Properties

2.1. Deterministic System. To the best of our knowledge,
in the actual batch culture process, there are two different
switched instants 𝑡𝑓1 and 𝑡𝑓2 in different chemical reactions
[31]. Accordingly, three different periods have been involved
in the typical cell growth of the batch culture ([0, 𝑡𝑓] ⊂ R+ fl[0, +∞)) as follows:

(i) The development period (or the first period, denoted
by𝐷1 fl [0, 𝑡𝑓1] ⊂ R+)

(ii) The growth period (or the second period, denoted by𝐷2 fl [𝑡𝑓1 , 𝑡𝑓2] ⊂ R+)

(iii) The stabilization period (or the third period, denoted
by𝐷3 fl [𝑡𝑓2 , 𝑡𝑓3 = 𝑡𝑓] ⊂ R+)

Nomenclature

(i) 𝐴T denotes the transposition of the vector or matrix𝐴.
(ii) 𝐼𝑛 fl {1, 2, . . . , 𝑛}.
(iii) 𝑢𝑡 = (𝑡𝑓1 , 𝑡𝑓2) ∈ D fl [𝑎1, 𝑏1] × [𝑎2, 𝑏2] ⊂ R2

+ denotes
switched instants.

(iv) 0 = 𝑡𝑓0 < 𝑎1 < 𝑏1 < 𝑎2 < 𝑏2 < 𝑡𝑓3 = 𝑡𝑓.
(v) Based on the sensitivity analysis [10], we take 𝑢𝑝 fl((𝑢1

𝑝)T, (𝑢2
𝑝)T, (𝑢3

𝑝)T)T ∈ R15 as the system parameter
vector to be optimized.

(vi) 𝐼𝑁 fl {1, 2, . . . ,𝑁} denotes the set of experiment
times in batch culture, where 𝑁 is the total experi-
ment times.

(vii) 𝑥0,𝑙 ∈ R5 denotes the initial state of the first period of
the 𝑙th experiment.
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(viii) 𝑥𝑖−1,𝑙(𝑡𝑓𝑖−1), 𝑖 ∈ {2, 3}, denote both the end period of
the (𝑖 −1)th stage and the initial state of the 𝑖th period
for the 𝑙th experiment.

(ix) 𝑥𝑖,𝑙(𝑡) = (𝑥𝑖,𝑙
1 (𝑡), . . . , 𝑥𝑖,𝑙

5 (𝑡))T ∈ R5 denotes the state
trajectory vector whose components are, respectively,
the concentrations of biomass, extracellular glycerol,
extracellular 1,3-PD, acetate, ethanol of the 𝑖th stage
of the 𝑙th experiment at time 𝑡 ∈ [0, 𝑡𝑓].

Based on [32], the nonlinear three-period dynamical
system governing the batch culture can be described as
follows:

𝑥̇𝑖,𝑙 (𝑡) = ℎ𝑖,𝑙 (𝑥𝑖,𝑙, 𝑢𝑖
𝑝) , 𝑡 ∈ 𝐷𝑖

𝑥𝑖,𝑙 (𝑡𝑓𝑖−1) = {{{
𝑥0,𝑙, 𝑖 = 1,
𝑥𝑖−1,𝑙 (𝑡𝑓𝑖−1) , 𝑖 ∈ {2, 3} .

(1)

In system (1),

ℎ𝑖,𝑙 (𝑥𝑖,𝑙, 𝑢𝑖
𝑝) = (𝜇𝑖,𝑙𝑥𝑖,𝑙

1 , − (𝑢𝑖
𝑝 (2) + 𝜇𝑖,𝑙

0.0165)
⋅ 𝑥𝑖,𝑙

1 , (𝑢𝑖
𝑝 (3) + 41.2584𝜇𝑖,𝑙) 𝑥𝑖,𝑙

1 , (𝑢𝑖
𝑝 (4) + 4.541𝜇𝑖,𝑙) 𝑥𝑖,𝑙

1 ,
+ (𝑢𝑖

𝑝 (5) 3.046𝜇𝑖,𝑙) 𝑥𝑖,𝑙
1 )T ,

(2)

where the specific cellular growth rate 𝜇𝑖,𝑙 can be expressed as
follows:

𝜇𝑖,𝑙 = 𝑢𝑖
𝑝 (1) 𝑥𝑖,𝑙

2𝑥𝑖,𝑙
2 + 0.28

5∏
𝑗=2

(1 − 𝑥𝑖,𝑙
𝑗𝑥∗
𝑗

) . (3)

Let 𝑢0
𝑝 fl [0.67, 2.2, −2.69, −0.97, 5.26]T [32]. The admissible

range 𝑈𝑎𝑑 of system parameters 𝑢1
𝑝, 𝑢2

𝑝 and 𝑢3
𝑝 is defined as

𝑈𝑎𝑑 fl [𝑢𝑝, 𝑢𝑝] = 5∏
𝑗=1

[𝑢𝑝 (𝑗) , 𝑢𝑝 (𝑗)]

= 5∏
𝑗=1

[
[𝑢0

𝑝 (𝑗) −
󵄨󵄨󵄨󵄨󵄨𝑢0

𝑝 (𝑗)󵄨󵄨󵄨󵄨󵄨2 , 𝑢0
𝑝 (𝑗) +

󵄨󵄨󵄨󵄨󵄨𝑢0
𝑝 (𝑗)󵄨󵄨󵄨󵄨󵄨2 ]

] ⊂ R
5.

(4)

Under anaerobic conditions at 37∘C and pH=7.0, the concen-
trations of biomass, glycerol, and products are restricted in
a certain range according to the practical production. 𝑥∗ fl[0.0001, 0.1, 0, 0, 0]T and 𝑥∗ fl [15, 2039, 939.5, 1026, 360.9]T
[32], where 𝑥𝑗∗ ≥ 0 and 𝑥∗

𝑗 ≥ 0, 𝑗 ∈ 𝐼5 are the lower and
upper bound of 𝑥𝑖

𝑗(𝑡), 𝑖 ∈ 𝐼3, respectively. So the admissible
range 𝑆0 of 𝑥𝑖

𝑗(𝑡), 𝑖 ∈ 𝐼3, is
𝑥𝑖 (𝑡) ∈ 𝑆0 fl [𝑥∗, 𝑥∗] = 5∏

𝑗=1

[𝑥𝑗∗, 𝑥∗
𝑗 ] ⊂ R

5
+. (5)

2.2. Stochastic System

Nomenclature

(i) (𝑈𝑎𝑑,F, {F𝑡}𝑡≥0,P) denotes a complete probability
space, where F is a 𝜎-algebra of subsets of 𝑈𝑎𝑑 with
a filtration {F𝑡}𝑡≥0 satisfying the usual conditions
(i.e., it is increasing and right continuous while F0

contains all null subsetsN of 𝑈𝑎𝑑).
(ii) E(⋅) denotes the expectation operator with respect to

some probability measure P.
(iii) For 𝑖 ∈ 𝐼3,
X𝑖,𝑙 (𝑡) fl (𝑋𝑖,𝑙

1 (𝑡) , . . . , 𝑋𝑖,𝑙
5 (𝑡))T ∈ 𝑆0, 𝑡 ∈ [𝑡𝑓𝑖−1 , 𝑡𝑓𝑖] , (6)

which denotes a stochastic process whose components
X𝑖,𝑙

𝑗 (𝑡), 𝑗 ∈ 𝐼5, denote the scalar stochastic process
on biomass, glycerol, 1,3-PD, acetic acid, and ethanol
of the 𝑖𝑡ℎ ∈ 𝐼3 stage in the 𝑙𝑡ℎ ∈ 𝐼𝑁 experiment,
respectively.

The stochastic counterpart of system (1) can be rewritten
in the matrix form

Ẋ𝑖,𝑙 (𝑡) = ℎ𝑖,𝑙 (X𝑖,𝑙 (𝑡) , 𝑢𝑖
𝑝) = A𝑖,𝑙X (𝑡)𝑖,𝑙 , 𝑡 ∈ 𝐷𝑖,

X𝑖,𝑙 (𝑡𝑓𝑖−1) = {{{
X𝑙

0, 𝑖 = 1,
X𝑖−1,𝑙 (𝑡𝑓𝑖−1) , 𝑖 ∈ {2, 3} ,

(7)

where A𝑖,𝑙 fl (𝑎𝑖,𝑙𝜄𝜅 )5×5. It is clear to see that
𝑎𝑖,𝑙11 = 𝜇𝑖,𝑙,
𝑎𝑖,𝑙21 = −𝑢𝑖

𝑝 (2) − 𝜇𝑖,𝑙

0.0165 ,
𝑎𝑖,𝑙31 = 𝑢𝑖

𝑝 (3) + 41.2584𝜇𝑖,𝑙,
𝑎𝑖,𝑙41 = 𝑢𝑖

𝑝 (4) + 4.541𝜇𝑖,𝑙,
𝑎𝑖,𝑙51 = 𝑢𝑖

𝑝 (5) + 3.046𝜇𝑖,𝑙,
𝑎𝑖,𝑙𝜄𝜅 = 0, 𝜄, 𝜅 ∈ 𝐼5, 𝜅 ̸= 1.

(8)

Each system parameter 𝑎𝑖,𝑙𝜄𝜅 is stochastically perturbed as
follows:

𝑎𝑖,𝑙𝜄𝜅 ←󳨀 𝑎𝑖,𝑙𝜄𝜅 + 𝜎𝑖
𝜄𝜅d𝑊𝑖,𝜅 (𝑡) , (9)

where W𝑖(𝑡) fl (𝑊𝑖,1(𝑡), . . . ,𝑊𝑖,5(𝑡))T ∈ F𝑡, 𝑡 ∈ [𝑡𝑓𝑖−1 , 𝑡𝑓𝑖],𝑖 ∈ 𝐼3; its components are Gaussian white noise of the 𝑖𝑡ℎ ∈ 𝐼3
stage and the given diffusion matrix 𝜎𝑖 = (𝜎𝑖

𝜄𝜅)5×5 satisfies the
following conditions:

𝜎𝑖
𝜄𝜄 > 0, if 1 ≤ 𝜄 ≤ 5,

𝜎𝑖
𝜄𝜅 ≥ 0, if 𝜄 ̸= 𝜅. (10)
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The process of batch culture with perturbations can be
formulated as the following nonlinear stochastic dynamical
system:

dX𝑖,𝑙 (𝑡) = ℎ𝑖,𝑙 (X𝑖,𝑙 (𝑡) , 𝑢𝑖
𝑝) d𝑡 + 𝜎𝑖 (X𝑖,𝑙 (𝑡)) dW𝑖 (𝑡) ,

𝑡 ∈ 𝐷𝑖, 𝑖 ∈ 𝐼3,
X𝑖,𝑙 (𝑡𝑓𝑖−1) = {{{

X𝑙
0, 𝑖 = 1,

X𝑖−1,𝑙 (𝑡𝑓𝑖−1) , 𝑖 ∈ {2, 3} ,
(11)

where

(i) 𝜎𝑖(X𝑖,𝑙(𝑡)) = 𝜎𝑖X𝑖,𝑙(𝑡),
(ii) ℎ𝑙(X𝑙(𝑡), 𝑢𝑝) fl [ℎ1,𝑙(X1,𝑙(𝑡), 𝑢1

𝑝), . . ., ℎ3,𝑙(X3,𝑙(𝑡), 𝑢3
𝑝)]T,

(iii) E(X𝑙
0) = 𝑥𝑙

0.
2.3. Properties of Solutions to Stochastic System. In this
section, we will discuss some properties of the solutions
to the stochastic system. According to the definition of the
functions ℎ𝑖,𝑙(X𝑖,𝑙(𝑡), 𝑢𝑖

𝑝) and 𝜎𝑖(X𝑖,𝑙(𝑡)), 𝑖 ∈ 𝐼3, 𝑙 ∈ 𝐼𝑁,
defined by Sections 2.1 and 2.2, we can easily carry out the
proof of Property 1.

Property 1. The vector-valued functions ℎ𝑖,𝑙(X𝑖,𝑙(𝑡), 𝑢𝑖
𝑝) and𝜎𝑖(X𝑖,𝑙(𝑡)), 𝑖 ∈ 𝐼3, 𝑙 ∈ 𝐼𝑁, are measurable for 𝑡 ∈ 𝐷𝑖 and

X𝑖,𝑙 ∈ 𝑆0.
Similarly to [26], we have

Property 2. For the given vector-valued functionsℎ𝑖,𝑙(X𝑖,𝑙(𝑡), 𝑢𝑖
𝑝) and 𝜎𝑖(X𝑖,𝑙(𝑡)), 𝑖 ∈ 𝐼3, 𝑙 ∈ 𝐼𝑁, there

exist positive constants K and K󸀠 such that, for 𝑡 ∈ 𝐷𝑖, the
following conditions hold:

(i) uniform Lipschitz condition

󵄩󵄩󵄩󵄩󵄩ℎ𝑖,𝑙 (X̂𝑖,𝑙, 𝑢𝑖
𝑝) − ℎ𝑖,𝑙 (X̌𝑖,𝑙, 𝑢𝑖

𝑝)󵄩󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩󵄩𝜎𝑖 (X̂𝑖,𝑙) − 𝜎𝑖 (X̌𝑖,𝑙)󵄩󵄩󵄩󵄩󵄩
≤ K

󵄩󵄩󵄩󵄩󵄩X̂𝑖,𝑙 − X̌𝑖,𝑙󵄩󵄩󵄩󵄩󵄩 , ∀X̂𝑖,𝑙, X̌𝑖,𝑙 ∈ 𝑆0; (12)

(ii) growth continuous

󵄩󵄩󵄩󵄩󵄩ℎ𝑖,𝑙 (X̂𝑖,𝑙, 𝑢𝑖
𝑝)󵄩󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩󵄩𝜎𝑖 (X̂𝑖,𝑙)󵄩󵄩󵄩󵄩󵄩 ≤ K

󸀠 (1 + 󵄩󵄩󵄩󵄩󵄩X̂𝑖,𝑙󵄩󵄩󵄩󵄩󵄩) ,
∀X̂𝑖,𝑙 ∈ 𝑆0,

(13)

where ‖ ⋅ ‖ is the Euclidean vector norm.

By the proof in Property 2, Theorem 5.2 in [33], and
Theorem 5.4 in [34], we can get the following interesting
properties.

Property 3 (existence and uniqueness). For ∀𝑙 ∈ 𝐼𝑁, given the
vector-valued functions ℎ𝑖,𝑙(X𝑖,𝑙(𝑡), 𝑢𝑖

𝑝) and 𝜎𝑖(X𝑖,𝑙(𝑡)), 𝑖 ∈ 𝐼3,
system (11) has a unique solution, denoted by
X𝑙(𝑡;X𝑙

0, 𝑢𝑡, 𝑢𝑝) fl (X𝑙
1(𝑡;X𝑙

0, 𝑢𝑡, 𝑢𝑝), . . . ,X𝑙
5(𝑡;X𝑙

0, 𝑢𝑡, 𝑢𝑝))T,
satisfying the initial condition X𝑙

0, 𝑙 ∈ 𝐼𝑁 on [0, 𝑡𝑓].
Furthermore, X𝑙(𝑡;X𝑙

0, 𝑢𝑡, 𝑢𝑝) is continuous with respect
to (𝑢𝑡, 𝑢𝑝) ∈ D × 𝑈3

𝑎𝑑 and satisfies the following integral
equation:

X𝑙 (𝑡;X𝑙
0, 𝑢𝑡, 𝑢𝑝) =

{{{{{{{{{{{{{{{{{

X1,𝑙 (𝑡;X𝑙
0, 𝑢1

𝑝) = X𝑙
0 + ∫𝑡

0
ℎ1,𝑙 (X1,𝑙 (𝑠) , 𝑢1

𝑝) 𝑑𝑠 + ∫𝑡

0
𝜎1 (X1,𝑙 (𝑠)) 𝑑W1 (𝑠) , 𝑡 ∈ 𝐷1,

X2,𝑙 (𝑡;X1,𝑙 (𝑡𝑓1) , 𝑢2
𝑝) = X1,𝑙 (𝑡𝑓1) + ∫𝑡

𝑡𝑓1

ℎ2,𝑙 (X2,𝑙 (𝑠) , 𝑢2
𝑝) 𝑑𝑠 + ∫𝑡

𝑡𝑓1

𝜎2 (X2,𝑙 (𝑠)) 𝑑W2 (𝑠) , 𝑡 ∈ 𝐷2,
X3,𝑙 (𝑡;X2,𝑙 (𝑡𝑓2) , 𝑢3

𝑝) = X2,𝑙 (𝑡𝑓2) + ∫𝑡

𝑡𝑓2

ℎ3,𝑙 (X3,𝑙 (𝑠) , 𝑢3
𝑝) 𝑑𝑠 + ∫𝑡

𝑡𝑓2

𝜎3 (X3,l (𝑠)) 𝑑W3 (𝑠) , 𝑡 ∈ 𝐷3.
(14)

Property 4 (Markov property and boundedness). For ∀𝑙 ∈𝐼𝑁, the solution X𝑙(𝑡;X𝑙
0, 𝑢𝑡, 𝑢𝑝) is a Markov process on the

interval [0, 𝑡𝑓] whose initial probability distribution at 𝑡 = 0
is the distribution of X𝑙

0 and X𝑙(𝑡;X𝑙
0, 𝑢𝑡, 𝑢𝑝) has continuous

paths. Moreover

( sup
0≤𝑡≤𝑡𝑓

E 󵄩󵄩󵄩󵄩󵄩X𝑙 (𝑡;X𝑙
0, 𝑢𝑡, 𝑢𝑝)󵄩󵄩󵄩󵄩󵄩)

2 ≤ 𝐵 (1 + E 󵄩󵄩󵄩󵄩󵄩X𝑙
0

󵄩󵄩󵄩󵄩󵄩2) , (15)

where the constant 𝐵 depends only onK, 𝜎1, 𝜎2, 𝜎3, and 𝑡𝑓.
Property 5 (stochastic continuity). Almost all realizations of
X𝑙(𝑡;X𝑙

0, 𝑢𝑡, 𝑢𝑝) are continuous on [0, 𝑡𝑓].

3. System Identification Problem

The system identification problem governed by a stochastic
system is generally to adjust the values of switched instants
and system parameters so that the discrepancy between pre-
dicted and observed system output is as small as possible.The
purpose of this section is to establish a sysem identification
problem governed by system (11) in batch culture.

In the process of batch culture, we have measured 𝑁
experimental data. Let 𝑦𝑙(𝑡) be the vector function fitted
by experiment data. It denotes the concentration of every
extracellular ingredient at time point 𝑡 ∈ [0, 𝑡𝑓]. The
system identification problem is to choose an optimal vector
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(𝑢𝑡, 𝑢𝑝) ∈ D × 𝑈3
𝑎𝑑 such that the expectation of distinction

between stochastic process, denoted by X𝑙(𝑡;X𝑙
0, 𝑢𝑡, 𝑢𝑝), and𝑦𝑙(𝑡), 𝑙 ∈ 𝐼𝑁, is minimized. Hence, the cost function can be

defined by

𝐽 (𝑢𝑡, 𝑢𝑝)
fl E[

[
∑𝑁

𝑙=1 ∫𝑡𝑓

0
(󵄩󵄩󵄩󵄩󵄩X𝑙 (𝑡;X𝑙

0, 𝑢𝑡, 𝑢𝑝) − 𝑦𝑙 (𝑡)󵄩󵄩󵄩󵄩󵄩 / 󵄩󵄩󵄩󵄩󵄩𝑦𝑙 (𝑡)󵄩󵄩󵄩󵄩󵄩) d𝑡𝑁 × 𝑡𝑓 ]
] . (16)

Now, for 𝑖 ∈ 𝐼3, 𝑙 ∈ 𝐼𝑁, we are in a position to propose a
system identification (SI) problem as follows:

min 𝐽 (𝑢𝑡, 𝑢𝑝)
𝑠.𝑡. X𝑖,𝑙 (𝑡;X𝑖,𝑙 (𝑡𝑓𝑖−1) , 𝑢𝑖

𝑝) ∈ 𝑆0, ∀𝑡 ∈ [𝑡𝑓𝑖−1 , 𝑡𝑓𝑖] ,
(𝑢𝑡, 𝑢𝑝) ∈ D × 𝑈3

𝑎𝑑.
(17)

The following theorem is to show the identifiability of the SI
problem.

�eorem 6. �e SI problem admits an optimal solution.

Proof. According to Property 3, we see that X𝑙(𝑡;X𝑙
0, 𝑢𝑡, 𝑢𝑝)

is continuous with respect to (𝑢𝑡, 𝑢𝑝) ∈ D × 𝑈3
𝑎𝑑, so the

cost function 𝐽(𝑢𝑡, 𝑢𝑝) is continuous on (𝑢𝑡, 𝑢𝑝) ∈ D × 𝑈3
𝑎𝑑.

Moreover, D × 𝑈3
𝑎𝑑 is a closed bounded set, which indicates

that the optimal solution of the SI problem exists. Then, the
proof is complete.

4. Time-Scaling Transformation and
Approximate Subproblems

The SI problempresents twomajor challenges for the existing
numerical solution approaches:

(i) In the SI problem, the switched instants 𝑡𝑓1 and 𝑡𝑓2
are decision variables and need to be optimized. It is
cumbersome to integrate the state and costate systems
numerically when the switched instants 𝑡𝑓1 and 𝑡𝑓2 are
decision variables.

(ii) The continuous state constraints X𝑖,𝑙(𝑡;X𝑖,𝑙(𝑡𝑓𝑖−1),𝑢𝑖
𝑝) ∈ 𝑆0, ∀𝑡 ∈ [𝑡𝑓𝑖−1 , 𝑡𝑓𝑖], 𝑖 ∈ 𝐼3, 𝑙 ∈ 𝐼𝑁 are not easy

to be satisfied in practice.

For these reasons, these conventional numerical opti-
mization algorithms struggle to handle these challenges. In
the section, we use the time-scaling transformation to deal
with the variable time points together with the constraint
transformation and the local smoothing approximate tech-
nique to handle the continuous state constraints.

4.1. Time-Scaling Transformation. Firstly, to handle the first
challenge, one way of circumventing the difficulties caused
by variable switched instants is to apply time-scaling transfor-
mation [35]—originally called the control parameterization

enhancing transform. The time-scaling transformation works
by mapping the variable switched instants to fixed points in a
new time horizon, thus yielding a new optimization problem
with the fixed switched instants. To apply the time-scaling
transformation, we first introduce a new time variables 𝜃𝑖 as
the duration of the 𝑖𝑡ℎ subinterval in (𝑡𝑓𝑖−1 , 𝑡𝑓𝑖]. That is,

𝜃𝑖 fl 𝑡𝑓𝑖 − 𝑡𝑓𝑖−1 , 𝑖 ∈ 𝐼3. (18)

Then, the time-scaling transformation will be imple-
mented by introducing a new time variable 𝑠 ∈ [0, 3] and
relating 𝑠 to 𝑡 through the equation

𝑡 = 𝜇 (𝑠) = 𝑖−1∑
𝚥=0

𝜃𝚥 + 𝜃𝑖 (𝑠 − (𝑖 − 1)) ,
𝑠 ∈ [𝑖 − 1, 𝑖] , 𝑖 ∈ 𝐼3,

(19)

where 𝜇 is the so-called time-scaling function and 𝜃0 = 0.
Note that the time-scaling function is nondecreasing,

continuous, and piecewise-linear. Moreover,
d𝜇 (𝑠)
d𝑠 = 𝜃𝑖, 𝑠 ∈ (𝑖 − 1, 𝑖) , 𝑖 ∈ 𝐼3. (20)

The new decision parameters 𝜃𝑖, 𝑖 ∈ 𝐼3, will satisfy
3∑
𝑖=1

𝜃𝑖 = 𝑡𝑓, 0 ≤ 𝜃𝑖 ≤ 𝑡𝑓, 𝑖 ∈ 𝐼3. (21)

Let 𝜃 fl [𝜃1, 𝜃2, 𝜃3]T. Any 𝜃 ∈ R3 satisfying (21) is called
an admissible duration vector. Now, since 𝑖 − (𝑖 − 1) = 1, for𝑖 ∈ 𝐼3,

𝜇 (𝑠𝑖) = 𝑖∑
𝚥=1

𝜃𝚥 = 𝑡𝑓𝑖 . (22)

Therefore, the time-scaling function maps the fixed integer𝑠 = 𝑖 to the switched instant 𝑡 = 𝑡𝑓𝑖 .
Let X̃𝑖,𝑙(𝑠) fl X𝑖,𝑙(𝜇(𝑠)) and W̃𝑖(𝑠) fl W𝑖(𝜇(𝑠)). If 𝑠 ∈ [𝑖 −1, 𝑖], then 𝜇(𝑠) ∈ [𝑡𝑓𝑖−1 , 𝑡𝑓𝑖]. Substituting (19) and (20) into (11)

gives

dX̃𝑖,𝑙 (𝑠) fl ℎ̃𝑖,𝑙 (X̃𝑖,𝑙 (𝑠) , 𝑢𝑖
𝑝) d𝑠 + 𝜎𝑖 (X̃𝑖,𝑙 (𝑠)) dW̃𝑖 (𝑠)

= dX𝑖,𝑙 (𝜇 (𝑠))
= 𝜃𝑖ℎ𝑖,𝑙 (X̃𝑖,𝑙, 𝑢𝑖

𝑝) d𝑠
+ 𝜃𝑖𝜎𝑖 (X̃𝑖,𝑙 (𝑠)) dW̃𝑖 (𝑠) , 𝑠 ∈ [𝑖 − 1, 𝑖] ,

X̃𝑖,𝑙 (𝑠𝑖−1) = {{{
X̃𝑙

0, 𝑖 = 1,
X̃𝑖−1,𝑙 (𝑖 − 1) , 𝑖 ∈ {2, 3} .

(23)

Let

X̃𝑙 (𝑠;X𝑙
0, 𝜃, 𝑢𝑝)

= {{{
X̃𝑖,𝑙 (𝑠;X𝑙

0, 𝜃𝑖, 𝑢𝑖
𝑝) , 𝑖 = 1,

X̃𝑖,𝑙 (𝑠; X̃𝑖−1,𝑙 (𝑠𝑖−1) , 𝜃𝑖, 𝑢𝑖
𝑝) , 𝑖 ∈ {2, 3} .

(24)
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It denotes the solution of system (23) corresponding to the
admissible pair (𝜃, 𝑢𝑝). Based on (16) and (21) it becomes

𝐽 (𝜃, 𝑢𝑝)
fl E[

[
∑𝑁

𝑙=1 ∫3

0
(󵄩󵄩󵄩󵄩󵄩X̃𝑙 (𝑠;X𝑙

0, 𝜃, 𝑢𝑝) − 𝑦𝑙 (𝜇 (𝑠))󵄩󵄩󵄩󵄩󵄩 / 󵄩󵄩󵄩󵄩󵄩𝑦𝑙 (𝜇 (𝑠))󵄩󵄩󵄩󵄩󵄩) d𝑠3𝑁 ]
] , (25)

Φ(𝜃) fl 3∑
𝑖=1

𝜃𝑖 − 𝑡𝑓 = 0, 0 ≤ 𝜃𝑖 ≤ 𝑡𝑓, 𝑖 ∈ 𝐼3, (26)

where Φ : [0, 𝑡𝑓] 󳨀→ R, is a given function. Then, for𝑖 ∈ 𝐼3, 𝑙 ∈ 𝐼𝑁, the SI problem becomes the transformation
system identification (TSI) problem as follows:

min. 𝐽 (𝜃, 𝑢𝑝)
𝑠.𝑡. X̃𝑖,𝑙 (𝑠; X̃𝑖−1,𝑙 (𝑖 − 1) , 𝜃𝑖, 𝑢𝑖

𝑝) ∈ 𝑆0,
∀𝑠 ∈ [𝑖 − 1, 𝑖] ,

(𝜃𝑖, 𝑢𝑖
𝑝) ∈ [0, 𝑡𝑓] × 𝑈𝑎𝑑,

Φ (𝜃) = 0.

(27)

Note that the time-scaling transformation has replaced
the variable switched instants 𝑡𝑓1 and 𝑡𝑓2 in the original
approximate problem with conventional decision parameter
vector 𝜃𝑖, 𝑖 ∈ 𝐼3, in the equivalent problem. Since 𝑖 ={0, 1, 2, 3}, in the equivalent problem, are fixed, this problem
can be solved readily by any standard gradient-based opti-
mization method or others.

The TSI problem is equivalent to the original problem.
In fact, if (𝜃𝑖∗, 𝑢𝑖∗

𝑝 ), 𝑖 ∈ 𝐼3, is a solution of the transformed
problem, then the optimal switched instants for the SI
problem are

𝑡∗𝑓𝑖 =
𝑖∑

𝚥=1

𝜃𝚥∗. (28)

4.2. Approximate Problem. In view of the definition of semi-
infinite programming problem [17, 36] and the continuous
state inequality constraint in the TSI problem, we know that
the TSI problem is a semi-infinite programming problem.

An efficient algorithm for solving optimization problem of
this type, which involve the so-called constraint transcription
technique, is discussed in [36]. As amatter of fact, the essential
difficulty lies in the judgement of the constraint

X̃𝑖,𝑙(𝑠; X̃𝑖−1,𝑙(𝑖 − 1), 𝜃𝑖, 𝑢𝑖
𝑝) = [𝑋𝑖,𝑙

1 (𝑠; X̃𝑖−1,𝑙(𝑖 − 1), 𝜃𝑖,𝑢𝑖
𝑝), . . . , 𝑋𝑖,𝑙

5 (𝑠; X̃𝑖−1,𝑙(𝑖 − 1), 𝜃𝑖, 𝑢𝑖
𝑝)]T∈𝑆0, ∀𝑠 ∈ [𝑖 − 1, 𝑖], 𝑖 ∈ 𝐼3,𝑙 ∈ 𝐼𝑁. To overcome these difficulties, let

𝑔𝑖,𝑙
𝑗 (X̃𝑖,𝑙 (𝑠; X̃𝑖−1,𝑙 (𝑖 − 1) , 𝜃𝑖, 𝑢𝑖

𝑝))
fl 𝑋𝑖,𝑙

𝑗 (𝑠; X̃𝑖−1,𝑙 (𝑖 − 1) , 𝜃𝑖, 𝑢𝑖
𝑝) − 𝑥∗

𝑗 , 𝑗 ∈ 𝐼5,
𝑔𝑖,𝑙
5+𝑗 (X̃𝑖,𝑙 (𝑠; X̃𝑖−1,𝑙 (𝑖 − 1) , 𝜃𝑖, 𝑢𝑖

𝑝))
fl 𝑥𝑗∗ − 𝑋𝑖,𝑙

𝑗 (𝑠; X̃𝑖−1,𝑙 (𝑖 − 1) , 𝜃𝑖, 𝑢𝑖
𝑝) , 𝑗 ∈ 𝐼5.

(29)

For 𝑖 ∈ 𝐼3, 𝑙 ∈ 𝐼𝑁, the constraint
𝑔𝑖,𝑙
𝑗 (X̃𝑖,𝑙 (𝑠; X̃𝑖−1,𝑙 (𝑖 − 1) , 𝜃𝑖, 𝑢𝑖

𝑝)) ≤ 0,
∀𝑠 ∈ [𝑖 − 1, 𝑖] , (30)

is equivalently transcribed into

𝐺(𝜃𝑖, 𝑢𝑖
𝑝, 𝑖, 𝑙)

fl
10∑
𝑗=1

∫i

𝑖−1
max {0, 𝑔𝑖,𝑙

𝑗 (X̃𝑖,𝑙 (𝑠; X̃𝑖−1,𝑙 (𝑖 − 1) , 𝜃𝑖, 𝑢𝑖
𝑝))} d𝑠

= 0.
(31)

However, 𝐺(𝜃𝑖, 𝑢𝑖
𝑝, 𝑖, 𝑙) is nonsmooth in (𝜃𝑖, 𝑢𝑖

𝑝). Conse-
quently, the standard optimization routines would have
difficulties with this type of equality constraints. Next, we
replace (31) with

𝐺𝜀 (𝜃𝑖, 𝑢𝑖
𝑝, 𝑖, 𝑙)

fl
10∑
𝑗=1

∫𝑖

𝑖−1
𝜑𝜀 (𝑔𝑖,𝑙

𝑗 (X̃𝑖,𝑙 (𝑠; X̃𝑖−1,𝑙 (𝑖 − 1) , 𝜃𝑖, 𝑢𝑖
𝑝)) , 𝑖,

𝑙) d𝑠 = 0,
(32)

where 𝜀 > 0 and
𝜑𝜀 (𝑔𝑖,𝑙

𝑗 (X̃𝑖,𝑙 (𝑠; X̃𝑖−1,𝑙 (𝑖 − 1) , 𝜃𝑖, 𝑢𝑖
𝑝)) , 𝑖, 𝑙)

fl

{{{{{{{{{{{{{

0, if 𝑔𝑖,𝑙
𝑗 (X̃𝑖,𝑙 (𝑠; X̃𝑖−1,𝑙 (𝑖 − 1) , 𝜃𝑖, 𝑢𝑖

𝑝)) < −𝜀,
[𝑔𝑖,𝑙

𝑗 (X̃𝑖,𝑙 (𝑠; X̃𝑖−1,𝑙 (𝑖 − 1) , 𝜃𝑖, 𝑢𝑖
𝑝)) + 𝜀]2

4𝜀 , if − 𝜀 ≤ 𝑔𝑖,𝑙
𝑗 (X̃𝑖,𝑙 (𝑠; X̃𝑖−1,𝑙 (𝑖 − 1) , 𝜃𝑖, 𝑢𝑖

𝑝)) ≤ 𝜀,
𝑔𝑖,𝑙
𝑗 (X̃𝑖,𝑙 (𝑠; X̃𝑖−1,𝑙 (𝑖 − 1) , 𝜃𝑖, 𝑢𝑖

𝑝)) , if 𝑔𝑖,𝑙
𝑗 (X̃𝑖,𝑙 (𝑠; X̃𝑖−1,𝑙 (𝑖 − 1) , 𝜃𝑖, 𝑢𝑖

𝑝)) > 𝜀.
(33)

Note that the equality constraints specified in (32) do not
satisfy the constraint qualification. Thus it is not advisable to

compute it as such numerically. For this reason, we replace
(32) with
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𝐺𝜀,𝛾 (𝜃𝑖, 𝑢𝑖
𝑝, 𝑖, 𝑙)

fl
10∑
𝑗=1

∫𝑖

𝑖−1
𝜑𝜀 (𝑔𝑖,𝑙

𝑗 (X̃𝑖,𝑙 (𝑠; X̃𝑖−1,𝑙 (𝑖 − 1) , 𝜃𝑖, 𝑢𝑖
𝑝)) , 𝑖,

𝑙) d𝑠 − 𝛾 ≤ 0,
(34)

where 𝛾 > 0.
For constructing the optimization algorithm, when 𝜃𝑖

and 𝑢𝑖
𝑝 are not feasible, we can move 𝜃𝑖 and 𝑢𝑖

𝑝 towards
the feasible region in the direction of −𝜕𝐺𝜀,𝛾(𝜃𝑖, 𝑢𝑖

𝑝, 𝑖, 𝑙)/𝜕𝜃𝑖
and −𝜕𝐺𝜀,𝛾(𝜃𝑖, 𝑢𝑖

𝑝, 𝑖, 𝑙)/𝜕𝑢𝑖
𝑝, respectively. In this paper, we

develop a scheme for computing the gradients of constraint𝐺𝜀,𝛾(𝜃𝑖, 𝑢𝑖
𝑝, 𝑖, 𝑙) with respect to the parameters 𝜃𝑖 and 𝑢𝑖

𝑝,
respectively.

�eorem 7. Given 𝑙 ∈ 𝐼𝑁 and 𝑖 ∈ 𝐼3, for each 𝜀 > 0, 𝛾 > 0,
the gradients of the constraint functionals 𝐺𝜀,𝛾(𝜃𝑖, 𝑢𝑖

𝑝, 𝑖, 𝑙) with
respect to 𝑢𝑖

𝑝 and 𝜃𝑖 are
𝜕𝐺𝜀,𝛾 (𝜃𝑖, 𝑢𝑖

𝑝, 𝑖, 𝑙)𝜕𝑢𝑖
𝑝 (𝑘)

fl ∫𝑖

𝑖−1

𝜕𝐻 (X̃𝑖,𝑙 (𝑠; X̃𝑖−1,𝑙 (𝑖 − 1) , 𝜃𝑖, 𝑢𝑖
𝑝) , 𝑢𝑖

𝑝, 𝜆𝑖,𝑙 (𝑠) , 𝑖, 𝑙)
𝜕𝑢𝑖

𝑝 (𝑘) 𝑑𝑠,
𝑘 ∈ 𝐼5,

(35)

and

𝜕𝐺𝜀,𝛾 (𝜃𝑖, 𝑢𝑖
𝑝, 𝑖, 𝑙)𝜕𝜃𝑖

fl ∫𝑖

𝑖−1

𝜕𝐻 (X̃𝑖,𝑙 (𝑠; X̃𝑖−1,𝑙 (𝑖 − 1) , 𝜃𝑖, 𝑢𝑖
𝑝) , 𝑢𝑖

𝑝, 𝜆𝑖,𝑙 (𝑠) , 𝑖, 𝑙)
𝜕𝜃𝑖 𝑑𝑠,

(36)

where

𝐻(X̃𝑖,𝑙 (𝑠; X̃𝑖−1,𝑙 (𝑖 − 1) , 𝜃𝑖, 𝑢𝑖
𝑝) , 𝑢𝑖

𝑝, 𝜆𝑖,𝑙 (𝑠) , 𝑖, 𝑙)
= 10∑

𝑗=1

𝜑𝜀 (𝑔𝑖,𝑙
𝑗 (X̃𝑖,𝑙 (𝑠; X̃𝑖−1,𝑙 (𝑖 − 1) , 𝜃𝑖, 𝑢𝑖

𝑝)) , 𝑖, 𝑙)
+ [𝜆𝑖,𝑙 (𝑠)]T {ℎ̃𝑖,𝑙 (X̃𝑖,𝑙 (𝑠; X̃𝑖−1,𝑙 (𝑖 − 1) , 𝜃𝑖, 𝑢𝑖

𝑝) , 𝑢𝑖
𝑝)

+ 𝜎𝑖 (X̃𝑖,𝑙 (𝑠; X̃𝑖−1,𝑙 (𝑖 − 1) , 𝜃𝑖, 𝑢𝑖
𝑝)) ̇̃W𝑖 (𝑠)} ,

(37)

and

𝜆𝑖,𝑙 (𝑠) = [𝜆𝑖,𝑙
1 (𝑠) , . . . , 𝜆𝑖,𝑙

5 (𝑠)]T , (38)

is the solution of the costate system (39)

𝜆̇𝑖,𝑙 (𝑠)
= −𝜕𝐻(X̃𝑖,𝑙 (𝑠; X̃𝑖−1,𝑙 (𝑖 − 1) , 𝜃𝑖, 𝑢𝑖

𝑝) , 𝑢𝑖
𝑝, 𝜆𝑖,𝑙 (𝑠) , 𝑖, 𝑙)

𝜕X̃𝑖,𝑙 (𝑠; X̃𝑖−1,𝑙 (𝑖 − 1) , 𝜃𝑖, 𝑢𝑖
𝑝) , (39)

with the continuous boundary

𝜆𝑖,𝑙 (𝑖) = [0, 0, 0, 0, 0]T , 𝑖 ∈ 𝐼3. (40)

Proof. Let 𝑢𝑖
𝑝 ∈ 𝑈𝑎𝑑 be an arbitrary but fixed vector and ∀𝛿𝑘 ∈

R, 𝑘 ∈ 𝐼5. Define
𝑢𝑖,𝜛
𝑝 (𝑘) fl [𝑢𝑖

𝑝 (1) , . . . , 𝑢𝑖
𝑝 (𝑘) + 𝜛𝛿𝑘, . . . , 𝑢𝑖

𝑝 (5)] , (41)

where 𝜛 > 0 is an arbitrarily small real number such that𝑢𝑘∗ < 𝑢𝑖
𝑝(𝑘) + 𝜛𝛿𝑗 < 𝑢∗

𝑘 , 𝑘 ∈ 𝐼5. Therefore, 𝐺𝜀,𝛾(𝜃𝑖, 𝑢𝑖,𝜛
𝑝 , 𝑖, 𝑙)

can be expressed as

𝐺𝜀,𝛾 (𝜃𝑖, 𝑢𝑖,𝜛
𝑝 (𝑘) , 𝑖, 𝑙) fl 𝛾

+ 10∑
𝑗=1

∫𝑖

𝑖−1
𝜑𝜀 (𝑔𝑖,𝑙

𝑗 (X̃𝑖,𝑙 (𝑠; X̃𝑖−1,𝑙 (𝑖 − 1) , 𝜃𝑖, 𝑢𝑖,𝜛
𝑝 )) , 𝑖,

𝑙) d𝑠 + ∫𝑖

𝑖−1
[𝜆𝑖,𝑙 (𝑠)]T

× {ℎ𝑖,𝑙 (X̃𝑖,𝑙 (𝑠; X̃𝑖−1,𝑙 (𝑖 − 1) , 𝜃𝑖, 𝑢𝑖,𝜛
𝑝 ) , 𝑢𝑖,𝜛

𝑝 )
+ 𝜎𝑖 (X̃𝑖,𝑙 (𝑠; X̃𝑖−1,𝑙 (𝑖 − 1) , 𝜃𝑖, 𝑢𝑖,𝜛

𝑝 )) ̇̃W𝑖 (𝑠)
− ̇̃X𝑖,𝑙 (𝑠; X̃𝑖−1,𝑙 (𝑖 − 1) , 𝜃𝑖, 𝑢𝑖,𝜛

𝑝 )} d𝑠,

(42)

where 𝜆𝑖,𝑙 is yet arbitrary. Hence, it follows that

Δ𝐺𝜀,𝛾 (𝜃𝑖, 𝑢𝑖
𝑝, 𝑖, 𝑙) fl 𝑑𝐺𝜀,𝛾 (𝜃𝑖, 𝑢𝑖,𝜛

𝑝 (𝑘) , 𝑖, 𝑙)
𝑑𝜛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜛=0
= 𝜕𝐺𝜀,𝛾 (𝜃𝑖, 𝑢𝑖

𝑝, 𝑖, 𝑙)𝜕𝑢𝑖
𝑝 (𝑘) 𝛿𝑘

= ∫𝑖

𝑖−1

{{{
𝜕𝐻(X̃𝑖,𝑙 (𝑠; X̃𝑖−1,𝑙 (𝑖 − 1) , 𝜃𝑖, 𝑢𝑖

𝑝) , 𝑢𝑖
𝑝, 𝜆𝑖,𝑙 (𝑠) , 𝑖, 𝑙)

𝜕X̃𝑖,𝑙 (𝑠; X̃𝑖−1,𝑙 (𝑖 − 1) , 𝜃𝑖, 𝑢𝑖
𝑝)

⋅ ΔX̃𝑖,𝑙 (𝑠; X̃𝑖−1,𝑙 (𝑖 − 1) , 𝜃𝑖, 𝑢𝑖
𝑝)

+ 𝜕𝐻 (X̃𝑖,𝑙 (𝑠; X̃𝑖−1,𝑙 (𝑖 − 1) , 𝜃𝑖, 𝑢𝑖
𝑝) , 𝑢𝑖

𝑝, 𝜆𝑖,𝑙 (𝑠) , 𝑖, 𝑙)
𝜕𝑢𝑖

𝑝 (𝑘) 𝛿𝑘
− [𝜆𝑖,𝑙 (𝑠)]T Δ ̇̃X𝑖,𝑙 (𝑠; X̃𝑖−1,𝑙 (𝑖 − 1) , 𝜃𝑖, 𝑢𝑖

𝑝)}}} d𝑠,

(43)

where𝐻(X̃𝑖,𝑙(𝑠; X̃𝑖−1,𝑙(𝑖−1), 𝜃𝑖, 𝑢𝑖
𝑝), 𝑢𝑖

𝑝, 𝜆𝑖,𝑙(𝑠), 𝑖, 𝑙) is defined as
in (37). Integrating (43) by parts and combining (37), (38),
(39), (40), and (42), we have

𝜕𝐺𝜀,𝛾 (𝜃𝑖, 𝑢𝑖
𝑝, 𝑖, 𝑙)𝜕𝑢𝑖

𝑝 (𝑘) 𝛿𝑘
fl ∫𝑖

𝑖−1

𝜕𝐻 (X̃𝑖,𝑙 (𝑠; X̃𝑖−1,𝑙 (𝑖 − 1) , 𝜃𝑖, 𝑢𝑖
𝑝) , 𝑢𝑖

𝑝, 𝜆𝑖,𝑙 (𝑠) , 𝑖, 𝑙)
𝜕𝑢𝑖

𝑝 (𝑘) 𝛿𝑘d𝑠.
(44)

Since 𝛿𝑘 is arbitrary, conclusion (35) of the theorem follows.
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Similarly to the proof of the above, we can prove

𝜕𝐺𝜀,𝛾 (𝜃𝑖, 𝑢𝑖
𝑝, 𝑖, 𝑙)𝜕𝜃𝑖

fl ∫𝑖

𝑖−1

𝜕𝐻 (X̃𝑖,𝑙 (𝑠; X̃𝑖−1,𝑙 (𝑖 − 1) , 𝜃𝑖, 𝑢𝑖
𝑝) , 𝑢𝑖

𝑝, 𝜆𝑖,𝑙 (𝑠) , 𝑖, 𝑙)
𝜕𝜃𝑖 d𝑠.

(45)

The proof is complete.

Then, the TSI problem can be approximated by the
following problem:

TSI𝜀,𝛾 : min. 𝐽 (𝜃, 𝑢𝑝)
𝑠.𝑡. 𝐺𝜀,𝛾 (𝜃𝑖, 𝑢𝑖

𝑝, 𝑖, 𝑙) ≤ 0, 𝑖 ∈ 𝐼3, 𝑙 ∈ 𝐼𝑁,
(𝜃𝑖, 𝑢𝑖

𝑝) ∈ [𝑡0, 𝑡𝑓] × 𝑈𝑎𝑑, 𝑖 ∈ 𝐼3,
Φ (𝜃) − 𝛾 ≤ 0.

(46)

As is shown in [36], we can prove the following theorem.

�eorem 8. �ere exists a 𝛾(𝜀) > 0 such that for all 𝛾, 𝛾(𝜀) >𝛾 > 0, any feasible decision variables 𝜃∗𝜀,𝛾 and 𝑢𝑝
∗

𝜀,𝛾
to the TSI𝜀,𝛾

problem are also feasible decision variables to the TSI problem.

Remark 9. Theorem 8 ensures that the corresponding 𝛾(𝜀) for
each 𝜀 in this sequence is finite.

5. Parallel Differential Evolution Algorithm

Since it is usually not possible to derive an analytical solution
to system (23), numerical approaches are indispensable, espe-
cially for biological fermentation. To solve the TSI problem
numerically, various optimization routes, such as gradient-
based algorithms [37], can be used. Nonetheless, all those
techniques are only designed to find local optima. Motivated
by the mechanisms of natural selection, differential evolution
(DE) was first proposed by Storn and Price [38] in 1997.
DE is a recent optimization technique and an exceptionally
simple and easy method used for the evolution strategy. It is a
significantly fast and robust numerical optimization method
and it is more likely to find the true global optimum.

Furthermore, one of main hurdles with solving the TSI
problem numerically is that there exists a huge number
of numerical computations of differential equations. This
makes solving the TSI problem intolerable by a serial IDE
algorithm. To improve computational efficiency, it is natural
to construct a parallel optimization algorithm. In 2004,
Tasoulis et al. [39] proposed a parallel DE algorithm using
a ring-network topology, which can improve both the speed
and the performance of themethod.This point of view, which
has been observed for a wide variety of experiments [40–43],
is being gradually accepted by experts in the field of parallel
DE.

However, what we need to solve is an optimization
problem with both box constraints and continuous state
constraints, to which DE cannot be applied directly [41].
To handle such constraints, we introduce the gradients of

the constraint functions into our algorithm (see Theorem 7).
Definitions of variables are shown in Table 1.

In addition, we solve the proposed stochastic identifica-
tion problem using the following Stochastic Euler-Maruyama
(EM) scheme. LetΔ𝑠𝑖 = (𝑠𝑖−𝑠𝑖−1)/𝑄 for some positive integer𝑄, 𝜏𝑖𝜄 = 𝑠𝑖−1 + 𝜄Δ𝑠𝑖, 𝜄 ∈ 𝐼𝑄. Our numerical approximation to
X̃𝑖,𝑙

𝑗 (𝜏𝑖𝜄 ) will be denoted X̃𝑖,𝑙
𝑗,𝜄. The EMmethod takes the form

X̃𝑖,𝑙
𝑗,𝜄 = X̃𝑖,𝑙

𝑗,𝜄−1 + ℎ̃𝑖,𝑙 (X̃𝑖,𝑙
𝑗,𝜄−1, 𝑢𝑖

𝑝)
+ 5∑

𝑝=1

𝜎𝑖
𝑗,𝑝 (X̃𝑖,𝑙

𝑗,𝜄−1) dW𝑖,𝑝
𝜄 ,

𝑖 ∈ 𝐼3, 𝑗 ∈ 𝐼5, 𝑙 ∈ 𝐼𝑁, 𝜄 ∈ 𝐼𝑄,
(47)

where dW𝑖,𝑝
𝜄 = W𝑖,𝑝(𝜏𝑖𝜄 ) − W𝑖,𝑝(𝜏𝑖𝜄−1) is an independent

random variable of the form√Δ𝑠𝑖N(0, 1) andN(0, 1) denotes
a normally distributed random variable with zero mean and
unit variance.

With this in mind, given 𝜀, 𝛾, combining Theorem 8,
we propose a parallel modified differential evolution (MDE)
algorithm for solving the TSI𝜀,𝛾 problem. The main steps
of the parallel MDE are as follows. For convenience, the
optimization vector is denoted by

𝑘 fl (𝜃1, 𝜃2, 𝜃3, 𝑢𝑝)T
fl (𝜃1, 𝜃2, 𝜃3, (𝑢1

𝑝)T , (𝑢2
𝑝)T , (𝑢3

𝑝)T)T .
(48)

Remark 10. The crossover factor is regulated by the following
adaptive strategy:

𝐶𝑅 (ℓ) = {{{
𝑟, if 𝑟𝑐 ≤ 𝑅𝑐

𝐶𝑅 (ℓ − 1) , otherwise, (49)

and the mutation factor 𝐹(ℓ) is given by

𝐹 (ℓ) = {{{
𝐹min + 𝑟ℓ𝐹max, if 𝑟𝑚 ≤ 𝑅𝑚,
𝐹 (ℓ − 1) , otherwise. (50)

Remark 11. In Algorithm 3, 𝜀 is a parameter controlling the
accuracy of the smoothing approximation; 𝛾 is a parameter
controlling the feasibility of constraint (5); 𝜀 and 𝛾 are two
predefined positive parameters ensuring the termination of
Algorithm 3; parameters 𝛼 and 𝛽must be chosen less than 1.

6. Numerical Results

Thebelow parameters are derived empirically after numerous
experiments: 𝑡𝑓 fl 7.75; system (23) is solved by using Euler
method with a step size of (1/72000)(h). In Algorithms 1–3,
we select some parameters listed in Table 2 based on [36, 44].
The TSI problem is solved by using Algorithms 1–3.

The corresponding optimal system parameters𝑢1∗
𝑝 , 𝑢2∗

𝑝 , 𝑢3∗
𝑝 and time variables 𝜃1∗, 𝜃2∗, 𝜃3∗ are shown
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Table 1: Definitions of variables in Section 5.

Variable Representation Variable Representation𝐶𝑅(0) the maximal iteration taken from [0,1] 𝐹(0) the initial mutation factor taken from [0,1]𝑁̃ the total number of genes in the population 𝑀𝑇 the maximal iteration𝑟, 𝑟𝑐, 𝑟ℓ, 𝑟𝑐𝑟, 𝑟𝑚 random numbers 𝑅𝑐, 𝑅𝑚 given constants
h(𝑘ℓ,𝚥) the search direction 𝜌(𝑘ℓ,𝚥) the step-size selected by Armijo line search𝐹𝑚𝑎𝑥, 𝐹𝑚𝑖𝑛 the maximal and minimal mutation factors 𝑘∗ [0, 0, 0, 𝑢𝑝] based on (5)𝑘∗ [𝑡𝑓, 𝑡𝑓, 𝑡𝑓, 𝑢𝑝]

Table 2: The parameter value of Algorithms 1–3.

Algorithms 1-2 𝑁 fl 4, 𝑁̃ fl 40; 𝐶𝑅(0) fl 0.5, 𝐹(0) fl 0.4, 𝐹𝑚𝑎𝑥 fl 0.9, 𝐹𝑚𝑖𝑛 fl 0.1, 𝑅𝑐 fl 0.3,𝑅𝑚 fl 0.3,𝑀𝑇 fl 600; 𝑄 = 1000; 𝜎𝑖,𝑖 = 0.02, 𝜎𝑖,𝑝 = 0.0004, 𝑖 ̸= 𝑝, 𝑖 ∈ 𝐼5, 𝑝 ∈ 𝐼5;𝑥1
0 = {0.102, 418.2609, 0, 0, 0, 0, 0, 0}, 𝑥2

0 = {0.2025, 441.337, 0, 0, 0, 0, 0, 0},𝑥3
0 = {0.173, 402.9348, 0, 0, 0, 0, 0, 0}, 𝑥4

0 = {0.2245, 509.8913, 0, 0, 0, 0, 0, 0}
Algorithm 3 𝜀 fl 0.1, 𝛾 fl 0.01, 𝛼 fl 0.1, 𝛽 fl 0.01, 𝜀 fl 1.0 × 10−7, 𝛾 fl 1.0 × 10−7

Table 3: The value of 𝑢𝑖∗
𝑝 , 𝜃𝑖∗, 𝑖 ∈ 𝐼3, 𝑡∗𝑓1 , and 𝑡∗𝑓2 .

𝑖 𝑢𝑖∗
𝑝

1 [0.620069, 2.03605, -1.86244, -0.67078, 7.50586]
2 [0.388043, 1.13123, -3.42823, -0.670187, 7.50937]
3 [0.352169, 1.65974, -3.28238, -0.669891, 7.51112]𝜃1∗ = 2.6, 𝜃2∗ = 2.4, 𝜃3∗ = 2.75; By (18) and (21), 𝑡∗𝑓1 = 2.6, 𝑡∗𝑓2 = 5.

Table 4: The relative errors under the optimal switched times and system parameters.

in the paper in [12]𝑙 𝑒𝑙1(%) 𝑒𝑙2(%) 𝑒𝑙3(%) 𝑒𝑙1(%) 𝑒𝑙2(%) 𝑒𝑙3(%)𝑙 = 1 4.20 4.21 16.93 41.87 10.21 19.11𝑙 = 2 5.73 6.99 4.89 38.14 13.31 27.87𝑙 = 3 4.09 4.40 5.73 43.25 12.02 15.94𝑙 = 4 4.80 3.24 4.43 23.47 16.26 24.16

in Table 3. For comparison, the relative errors between the
computational values and the experimental data in this work
and the ones in [12] are listed in Table 4, in which the relative
errors are defined as

𝑒𝑙𝜅 fl E
{{{

∑3𝑄
𝑗=1

󵄨󵄨󵄨󵄨󵄨X̃𝑙
𝜅 (𝑠𝑗;X𝑙

0, 𝜃, 𝑢𝑝) − 𝑦𝑙
𝜅 (𝜇 (𝑠𝑗))󵄨󵄨󵄨󵄨󵄨∑3𝑄

𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑦𝑙
𝜅 (𝑠𝑗)󵄨󵄨󵄨󵄨󵄨

}}} ,
𝑠𝑗 = 𝑗 × 1𝑄, 𝑗 = {1, 2, . . . , 3𝑄} , 𝜅 = 1, 2, 3.

(51)

From Table 4, we can see that the relative errors are
cut down greatly in comparison with the ones in [12].
The errors between experimental data and expectation of
sample trajectory with different initial glycerol and biomass
concentrations are displayed in Figures 1–4, where the hori-
zontal axes represent time; the left vertical axes represent the
concentrations of biomass, the center vertical axes represent

the concentrations of glycerol, while the right vertical axes
apply for 1,3-PD; the scattergrams denote experimental data,
the blue solid lines represent sample trajectory, and the
red solid lines display expectation of sample trajectory. The
curves in Figures 1–4 are also confirmed that the nonlinear
systemwith optimal kinetic parameters𝑢1∗

𝑝 , 𝑢2∗
𝑝 , 𝑢3∗

𝑝 and time
variables 𝜃1∗, 𝜃2∗, 𝜃3∗ can describe the batch culture process
reasonably.

7. Conclusion

In this paper, we introduce a switched stochastic counterpart
with uncertain switched instants and system parameters
to replace the commonly used deterministic description of
glycerol biodissimilation to 1,3-PD byK. pneumoniae in form
of ordinary differential equations. Some important properties
of the stochastic system are discussed. Our aim is to identify
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Figure 1: The results of initial glycerol concentration of 418.2609 𝑚𝑚𝑜𝑙/𝐿 and biomass concentration of 0.102 𝑔/𝐿 with 1000 sample
trajectories.
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Figure 2: The results of initial glycerol concentration of 441.337 𝑚𝑚𝑜𝑙/𝐿 and biomass concentration of 0.2025𝑔/𝐿 with 1000 sample
trajectories.
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Figure 3: The results of initial glycerol concentration of 402.9348 𝑚𝑚𝑜𝑙/𝐿 and biomass concentration of 0.173𝑔/𝐿 with 1000 sample
trajectories.
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Figure 4: The results of initial glycerol concentration of 509.8913 𝑚𝑚𝑜𝑙/𝐿 and biomass concentration of 0.2245𝑔/𝐿 with 1000 sample
trajectories.
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Require:
The experimental data such as 𝑥𝑙

0, 𝑦𝑙(𝜇(𝑠)), 𝑠 ∈ [0, 3], 𝑙 ∈ 𝐼𝑁;
Ensure:

The value of 𝑘𝑏𝑒𝑠𝑡 and 𝐽𝑏𝑒𝑠𝑡;
1: Randomly generate 𝑁̃ particle positions, denoted by 𝑘0,1, . . . , 𝑘0,𝑁̃. Based on (34), compute the

constraint functions, denoted by 𝐺𝜀,𝛾(𝑘0,𝚥, 𝑙) fl (𝐺𝜀,𝛾(𝑘0,𝚥, 1, 𝑙), 𝐺𝜀,𝛾(𝑘0,𝚥, 2, 𝑙), 𝐺𝜀,𝛾(𝑘0,𝚥, 3, 𝑙))T, 𝚥 ∈ 𝐼𝑁̃, 𝑙 ∈ 𝐼𝑁;
2: for each 𝚥 ∈ 𝐼𝑁̃ do
3: if 𝐺𝜀,𝛾(𝑘0,𝚥, 𝑙) > 0, 𝑙 ∈ 𝐼𝑁, then
4: compute h(𝑘0,𝚥) fl 𝜕𝐺𝜀,𝛾 (𝑘, 𝑙)𝜕𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑘=𝑘0,𝚥 , and move 𝑘0,𝚥 according to 𝑘0,𝚥 fl 𝑘0,𝚥 − 𝜌(𝑘0,𝚥)h(𝑘0,𝚥),
until 𝐺𝜀,𝛾(𝑘0,𝚥, 𝑙) ≤ 0, with h(𝑘0,𝚥) the search direction and 𝜌(𝑘0,𝚥) the step-size selected by Armijo line search;

5: end if
6: end for
7: Solve system (23) by (47). Based on (25), compute the cost function, denoted by 𝐽(𝑘0,𝚥), 𝚥 ∈ 𝐼𝑁̃

and let 𝐽0𝑏𝑒𝑠𝑡 fl 𝐽(𝑘𝑔), where 𝑘𝑔 fl argmin𝚥∈𝐼
𝑁̃
{𝐽(𝑘0,𝚥)};

8: Let 𝑘𝑏𝑒𝑠𝑡 fl 𝑘𝑔 and broadcast (MPI Broad), 𝐽0𝑏𝑒𝑠𝑡, 𝑘𝑏𝑒𝑠𝑡 and 𝑘0,𝚥, 𝚥 ∈ 𝐼𝑁̃, to all Processors;
9: Let ℓ = 1;
10: for ℓ = 1; ℓ < 𝑀𝑇; ℓ + + do
11: if (ℓ ≥ 𝑀󰜚 and 𝐽ℓ−𝑀󰜚𝑏𝑒𝑠𝑡 − 𝐽ℓ𝑏𝑒𝑠𝑡 < 󰜚1) then
12: return 𝑘𝑏𝑒𝑠𝑡 and 𝐽𝑏𝑒𝑠𝑡;
13: end if
14: Let 𝚥 fl 1;
15: for 𝚥 = 1; 𝚥 < 𝑁̃; 𝚥 + + do
16: if 𝚥 > 𝑁̃ then
17: Let 𝐽ℓ𝑏𝑒𝑠𝑡 fl 𝐽(𝑘𝑔), 𝐽𝑏𝑒𝑠𝑡 fl 𝐽(𝑘𝑔), 𝑘𝑏𝑒𝑠𝑡 fl 𝑘𝑔;
18: Finish the 𝚥𝑡ℎ loop and start the (𝚥 + 1)𝑡ℎ loop;
19: end if
20: Receive (MPI Reck) the updated information of Processor 𝚥 during iteration ℓ, including 𝑘ℓ,𝚥 and 𝐽(𝑘ℓ,𝚥);
21: if 𝐽(𝑘ℓ,𝚥) < 𝐽(𝑘𝑔) then
22: Let 𝑘𝑔 fl 𝑘ℓ,𝚥 and Broadcast (MPI Broad) 𝑘ℓ,𝚥 and the updated 𝑘𝑔 to all slave processors;
23: else
24: Broadcast (MPI Broad) 𝑘ℓ,𝚥 to all slave processors;
25: end if
26: end for
27: end for

Algorithm 1: Master processor (Processor 0).

the uncertain switched instants and system parameters under
condition of different initial state. For this, taking the relative
error between experimental data and computational results
as the cost function, we propose a system identification
problem governed by the stochastic system and subject to
some constraints. In consideration of both the difficulty of
finding analytical solutions and the complexity of solution
procedure, a parallelized differential evolution algorithm is
developed to solve the identification problem. An illustrative
numerical example shows the appropriateness of the optimal
switched instants and system parameters with initial state
difference.
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1: Let ℓ = 1;
2: for ℓ = 1; ℓ < 𝑀𝑇; ℓ + + do
3: if ℓ > 𝑀𝑇 then
4: return Algorithm 1;
5: end if
6: Randomly choose 𝑝1 and 𝑝2 (𝚥 ̸= 𝑝1 ̸= 𝑝2) from {1, 2, . . . , 𝑁̃} and generate the trial vector

𝑘ℓ,𝚥 = {{{
𝑘𝑔 + 𝐹(ℓ)[𝑘ℓ−1,𝑝1

− 𝑘ℓ−1,𝑝2
], if 𝑟𝑐𝑟 ≤ 𝐶𝑅(ℓ)

𝑘ℓ−1,𝚥, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒;
7: if 𝑘ℓ,𝚥 violates boundary constraints then
8: It is reflected back from the bound by

𝑘ℓ,𝚥 = {{{
2𝑘∗ − 𝑘ℓ,𝚥, if 𝑘ℓ,𝚥 ∈ [−∞, 𝑘∗),
2𝑘∗ − 𝑘ℓ,𝚥, if 𝑘ℓ,𝚥 ∈ [𝑘∗, +∞);

9: end if
10: Test the value of the constraint functions 𝐺𝜀,𝛾(𝑘ℓ,𝚥, 𝑙) fl(𝐺𝜀,𝛾(𝑘ℓ,𝚥, 1, 𝑙), 𝐺𝜀,𝛾(𝑘ℓ,𝚥, 2, 𝑙), 𝐺𝜀,𝛾(𝑘ℓ,𝚥, 3, 𝑙))T, 𝚥 ∈ 𝐼𝑁̃, 𝑙 ∈ 𝐼𝑁. For each 𝚥 ∈ 𝐼𝑁̃,

if 𝐺𝜀,𝛾(𝑘ℓ,𝚥, 𝑙) > 0, 𝑙 ∈ 𝐼𝑁, then, based onTheorem 7, compute h(𝑘ℓ,𝚥) fl 𝜕𝐺𝜀,𝛾 (𝑘, 𝑙)𝜕𝑘
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑘=𝑘ℓ,𝚥 ,

and move 𝑘ℓ,𝚥 according to 𝑘ℓ,𝚥 fl 𝑘ℓ,𝚥 − 𝜌(𝑘ℓ,𝚥)h(𝑘ℓ,𝚥), until 𝐺𝜀,𝛾(𝑘ℓ,𝚥, 𝑙) ≤ 0;
11: Solve system (23) by (47) and compute the cost function 𝐽(𝑘ℓ,𝚥), 𝚥 ∈ 𝐼𝑁̃ based on (25);
12: Send (MPI Send) 𝑘ℓ,𝚥 and 𝐽(𝑘ℓ,𝚥), 𝚥 ∈ 𝐼𝑁̃ to Master processor;
13: end for

Algorithm 2: Slave processors (Processor 𝚥, 𝚥 = 1, 2, . . . , 𝑁̃).

1: Choose initial values of 𝜀 > 0, 𝛾 > 0;
2: Solve the TSI𝜀,𝛾 problem using Algorithm 1 to give 𝑘∗

𝜀,𝛾 fl (𝜃1∗, 𝜃2∗, 𝜃3∗, (𝑢1∗
𝑝 )T, (𝑢2∗

𝑝 )T, (𝑢3∗
𝑝 )T)T;

3: Check feasibility of 𝑔𝑖,𝑙
𝑗 (X̃𝑖,𝑙(𝑠; X̃𝑖−1,𝑙(𝑠𝑖−1), 𝜃𝑖∗, 𝑢𝑖∗

𝑝 )) ≤ 0, 𝑗 ∈ 𝐼10, 𝑙 ∈ 𝐼𝑁 for ∀𝑠 ∈ [𝑠𝑖−1, 𝑠𝑖], 𝑖 ∈ 𝐼3;
4: if 𝑘∗

𝜀,𝛾 is feasible then
5: Let 𝜀 fl 𝛽𝜀;
6: if 𝜀 > 𝜀 then
7: Go to 2;
8: else
9: return 𝑘∗

𝜀,𝛾;
10: end if
11: else
12: Let 𝛾 fl 𝛼𝛾;
13: if 𝛾 > 𝛾 then
14: Go to 2;
15: else
16: return 𝑘∗

𝜀,𝛾;
17: end if
18: end if

Algorithm 3: Combining Algorithms 1 and 2 with Theorem 8, the RIP problem can be solved by the algorithm.

Thousand Talents Program and Xinghai Project of Dalian
Maritime University.
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