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Stillbirth risk prediction using 
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Quantification of stillbirth risk has potential to support clinical decision-making. Studies that have 
attempted to quantify stillbirth risk have been hampered by small event rates, a limited range of 
predictors that typically exclude obstetric history, lack of validation, and restriction to a single classifier 
(logistic regression). Consequently, predictive performance remains low, and risk quantification has 
not been adopted into antenatal practice. The study population consisted of all births to women in 
Western Australia from 1980 to 2015, excluding terminations. After all exclusions there were 947,025 
livebirths and 5,788 stillbirths. Predictive models for stillbirth were developed using multiple machine 
learning classifiers: regularised logistic regression, decision trees based on classification and regression 
trees, random forest, extreme gradient boosting (XGBoost), and a multilayer perceptron neural 
network. We applied 10-fold cross-validation using independent data not used to develop the models. 
Predictors included maternal socio-demographic characteristics, chronic medical conditions, obstetric 
complications and family history in both the current and previous pregnancy. In this cohort, 66% of 
stillbirths were observed for multiparous women. The best performing classifier (XGBoost) predicted 
45% (95% CI: 43%, 46%) of stillbirths for all women and 45% (95% CI: 43%, 47%) of stillbirths after 
the inclusion of previous pregnancy history. Almost half of stillbirths could be potentially identified 
antenatally based on a combination of current pregnancy complications, congenital anomalies, 
maternal characteristics, and medical history. Greatest sensitivity is achieved with addition of current 
pregnancy complications. Ensemble classifiers offered marginal improvement for prediction compared 
to logistic regression.

Stillbirth is a devastating outcome for families and society, and accounts for two thirds of perinatal mortality1–3. 
Advances in maternity care since the 1940s have successfully reduced the stillbirth rate by up to 80% in developed 
countries4. However, since then, the stillbirth rate in Australia has remained relatively stable, with a small increase 
over the 20-year period between 1993 and 2012 (6.4 to 7.2 per 1000 births)2, followed by no change between 2013 
and 2014 at 7.1 per 1000 births1.
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Identification of pregnancies at elevated risk of stillbirth is challenging because studies are often hampered 
by small sample sizes (typically less than approximately 500 stillbirths), a limited number of maternal predictors, 
and exclusion of multiple gestations, a known high-risk group of potentially preventable stillbirths5–9. In addition, 
although a history of obstetric complications is likely to be associated with stillbirth in multiparous women10, 
obstetric history is rarely considered in stillbirth prediction models. When specificity is fixed at 90%, the stillbirth 
detection rate (sensitivity) has been reported to vary from 25% using maternal characteristics and chronic condi-
tions alone8 to 55% when using clinical tests at the end of second trimester6. For these predictive models, the area 
under the receiver operating curve (AUC) has been shown to range between 66% and 75%, reflecting moderate 
discrimination. Only one study, conducted in Nigeria, showed greater discrimination with an AUC of 82%7, but 
reported no sensitivity and specificity measures. Moreover, these results were derived in a lower middle income 
country, and comparability with other studies remains limited. To date, most studies have produced poor per-
forming models for stillbirth prediction, models that have been validated with the same records used for model 
development, and models that use non-routinely collected risk factors, and therefore have little value for decision 
support in the antenatal care period.

Routinely collected perinatal records offer great potential to improve identification of pregnancies at elevated 
risk of stillbirth. Longitudinal record linkage enables the ascertainment of family and obstetric histories. Linkage 
with hospitalisations widens the predictor set to health conditions that occur between pregnancies and linkage 
to registries of developmental anomalies extends the predictor set further to birth defects diagnosed up to six 
years after birth. In Western Australia (WA), these records are comprehensive, with nearly complete population 
coverage for more than three decades, which allows family obstetric histories to be established for two to three 
generations.

Advances in computation and the increased availability of open-source software have created the opportunity 
to improve stillbirth prediction using machine learning. Logistic regression is the most common approach to 
classification in the stillbirth prediction literature, but this approach has not been compared with alternatives. 
Side-by-side application of other complementary machine learning approaches to classification will elucidate the 
value of alternative machine learning classifiers, if any. Certain machine learning classifiers have greater potential 
to exploit complex non-linear interactions between risk factors that might translate to substantial improvements 
in stillbirth prediction.

Some stillbirths occur because expectant management is the default for antenatal care and pregnancies at 
elevated risk of stillbirth go undetected. Effective risk quantification will alert antenatal care providers to preg-
nancies at-risk that can benefit from intervention. Existing interventions include aspirin for the prevention of 
pre-eclampsia11–14, treatment for gestational diabetes or induction of labour for near or post-term pregnancies15. 
The most substantial gains to perinatal health will be achieved by improving risk detection among asymptomatic 
pregnant women, or better still, in women prior to pregnancy, and this has not yet been achieved. The primary 
aim of this study was to quantify and validate the predictive accuracy of a comprehensive range of routinely col-
lected risk factors for predicting stillbirth, including maternal characteristics and chronic medical conditions in 
current and previous pregnancies, obstetric complications and family history of stillbirth. The secondary aim of 
this study was to compare the ability of a complementary set of machine learning classifiers to predict stillbirth.

Methods
Data sources.  The study data and linkage keys were sourced from core and other population health data sets 
held by the Data Linkage Branch (DLB) of the WA Department of Health, which were combined by probabilistic 
linkage using common identifiers16,17. Birth records for the period from January 1, 1980 to December 31, 2015 
were ascertained from the WA Midwives Notifications System, a statutory data collection for all registered live-
births and stillbirths ≥20 weeks of gestation or 400 grams birthweight in WA, and complemented with records 
from the WA Births Registry. We merged these records to the WA Hospital Morbidity System, WA Register of 
Developmental Anomalies, and WA Family Connections. Records of terminations of pregnancy were excluded 
from the study. Extracted records for the cohort included information on maternal demographics, chronic med-
ical conditions, obstetric complications, and infants’ characteristics.

Outcomes and risk factors.  Stillbirth was defined as fetal death from at least 20 weeks of gestation.
Predictors included maternal socio-demographic characteristics, chronic medical conditions, obstetric com-

plications and family history in both the current and previous pregnancy (Supplementary Table 1). Maternal 
socio-demographic characteristics included age (<20, 20–24, 25–29, 30–34, 35–39, or ≥40 years), ethnicity 
(Caucasian, Indigenous, or other), urbanicity (rural or urban), area-level socioeconomic status, and parity (0, 
1, 2, or ≥3). The Index of Relative Socioeconomic Disadvantage (IRSD) at a Statistical Local Area based on 
maternal residence at the time of birth was used as a proxy for socioeconomic status and ascertained from the 
Australian Bureau of Statistics18. The IRSD values were divided into quintiles for the state, with the first category 
assigned as the most disadvantaged. Chronic medical conditions included pre-existing diabetes mellitus, essential 
hypertension, asthma, obesity, circulatory system disease and any maternal cancer registration prior to or during 
pregnancy.

Obstetric complications included placenta praevia, unspecified antepartum haemorrhage, pre-labour rupture 
of membranes, preeclampsia, threatened miscarriage, threatened preterm birth, urinary tract infection, gesta-
tional hypertension, and gestational diabetes.

Other characteristics of current pregnancy included: plurality, year of birth, presence of congenital anomaly, 
and small-for-gestational-age (SGA) birth as a proxy for fetal growth restriction. Congenital anomaly was defined 
as any birth defect registered in the WA Register of Developmental Anomalies which includes all diagnoses up 
to six years of age and is comprehensively ascertained from multiple sources in WA. We calculated SGA as the 
lowest 10th percentile of birthweight by sex and gestation within calendar intervals of five years. For women with 
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two or more birth records during the study period, we derived a history of obstetric complications, indicating 
whether complications occurred in the last birth, not in the last but in an earlier birth, no complication history, 
or unknown. This also included previous stillbirth, previous caesarean section, previous gestational diabetes, and 
previous gestational age (<28, 28–31, 32–36, or 37 or more weeks). Other characteristics of past pregnancies 
included previous miscarriage (yes, no, or unknown), and previous congenital anomaly (yes, no, or unknown). 
For births to mothers and fathers who were born during the study period and whose birth details were included 
in our cohort, we derived parental (maternal or paternal) SGA, parental preterm birth, and parental congenital 
anomaly. For these parents, we also derived chronic conditions and a history of obstetric complications of their 
mothers.

Statistical analysis.  We developed three different sets of prediction models based on the total availability of 
data for each group of relevant predictors (Supplementary Table 1). For these models, we allowed for the inclu-
sion of predictors ascertained after birth that are proxies for measurements taken during pregnancy. The first 
model (Model A, N = 953,909, stillbirth = 6,836) produced predictions based on maternal socio-demographic 
characteristics, chronic maternal medical conditions, obstetric complications in current pregnancy, and other 
characteristics of current pregnancy. The second model (Model B, N = 465,327, stillbirth = 3,110) used predictors 
from Model A plus obstetric complications in past pregnancies, and other characteristics of past pregnancies. The 
third model (Model C, N = 136,527, stillbirth = 915) contained all predictors from Model A plus family history. 
Next we developed another three different sets of prediction models based on the temporal availability of data for 
each group of relevant predictors. For these models, we did not use predictors unless they were ascertained at that 
time point in pregnancy or earlier. For these models we also did not use predictors ascertained after birth such as: 
SGA, which is a proxy for fetal growth measurements taken during pregnancy; and congenital anomalies, which 
are present in utero but can be diagnosed up to 6 years after birth. The fourth model (Model D, N = 952,813, still-
birth = 5,788) contained only predictors collected at the booking appointment (Supplementary Table 1). The fifth 
model (Model E, N = 464,778, stillbirth = 2,587) contained predictors from model D plus previous pregnancy 
history. The final model (Model F, N = 464,778, stillbirth = 2,587) contained predictors from model E plus obstet-
ric complications in current pregnancy, and other characteristics of current pregnancy known before delivery.

We used five different machine learning algorithms to perform binary classification as stillbirth versus live-
birth. The classifiers considered in this study included: (i) regularised logistic regression, (ii) decision trees based 
on classification and regression trees (CART), (iii) random forest, (iv) extreme gradient boosting (XGBoost), and 
(v) a multilayer perceptron (MLP) neural network19.

First, we applied regularised logistic regression, which used an L1 penalty to select a subset of predictor var-
iables from a larger ensemble. Estimation proceeds by penalised maximum likelihood, in which the addition of 
the L1 penalty results in variable selection and shrinkage of the values of the coefficients in the linear predictor20. 
The result combines the interpretability of conventional logistic regression with a model that avoids overfitting.

Second, we applied CART, a tree algorithm. The CART approach for decision trees with the Scikit-learn 
package19 undertakes classification through successive splits of the sample into two or more homogeneous 
sub-samples based on the most significant differentiator at each node using an appropriate impurity criterion 
(Gini impurity and information gain using entropy). Decision trees are a well-established approach for classifica-
tion that can produce interpretable results and a hierarchy of feature (predictor) importance.

Third, the random forests approach addresses the problem of overfitting with decision trees21. A random forest 
consists of an ensemble of decision trees, in which each tree is trained on random subsets of training samples and 
predictors. Predictions from these trees are then combined to reduce prediction variance and hence yield more 
accurate prediction than single decision trees.

Next, we applied boosting, which can improve the predictive power when dealing with high-dimensional 
data due to a large number of predictors22. Boosting combines multiple weak learners (i.e. weak prediction rules) 
to build strong learners. However, the drawback of classical boosting techniques, such as conventional gradient 
tree boosting, is increased computational time for training the model because the sequential nature of boosting 
prevents the implementation of more efficient parallelised algorithms23. To address this, we applied a more com-
putationally efficient approach developed based on the gradient boosting implementation, XGBoost, which also 
has an inherent regularisation function that reduces overfitting24.

Finally, we applied MLP, which is an artificial neural network that can capture non-linear associations with 
predictors and statistical interactions between predictors23,25. MLPs consist of input layers, one or more hidden 
layers, and output layers. Within each layer are nodes that connect in one direction, starting from the input layer, 
passing through the hidden layers, and ending at the output layer. The nodes of the input layer are the predictor 
variables. Other layers contain nodes that are non-linear functions of weighted combinations of nodes in the 
previous layer. The output layer produces the stillbirth predictions.

The robustness of predictions was assessed by validation using data not used to develop the models. The 
dataset was randomly divided into 10 folds (i.e. subsets). We employed the stratified K-folds approach to generate 
folds of data that preserved the percentage of stillbirths26. The procedure resulted in 10 different training and 
testing samples. The validation was therefore conducted 10 times, and consequently 10 different classifiers were 
built for each model and we measured the overall performance of each model by averaging the value of each 
evaluation metric. Because of the relatively large sample in this study, we could employ cross-validation, which 
ensured that the data used to develop the model were independent of the data used to evaluate model perfor-
mance. Hyper-parameter tuning was carried out using an exhaustive exploration of parameter configurations 
(Supplementary Table 3). The parameter tuning in this study aimed to maximise the positive predictive value 
(PPV) and sensitivity (true positive rate; TPR) with 10-fold cross-validation (GridSearchCV, Scikit-learn model 
selection package)27.
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The performance of each model was defined as the ability to discriminate between stillbirths and livebirths 
and was evaluated using a range of metrics from the 10-fold cross-validation. These included the area under the 
curve (AUC), sensitivity, PPV, negative predictive value (NPV), positive likelihood ratio (LR+), negative likeli-
hood ratio (LR-), and overall accuracy. Overall accuracy was defined as the proportion of all correctly classified 
subjects. The AUC and accuracy were interpreted as excellent (0.9, 1), good (0.8, 0.9), fair (0.7, 0.8), poor (0.6, 0.7), 
and test not useful (0.5, 0.6). For comparison with past studies, we produced results when the false positive rate 
(FPR) was held constant at 5% (95% specificity) and 10% (90% specificity)5,6. Because the number of livebirths 
greatly exceeded the number of stillbirths, overall accuracy could be maximised by classification of all births 
as liveborn. However, this approach has little value for classification of stillbirths. Consequently, we focussed 
description of results on sensitivity and PPV.

We ascertained sensitivity of our results by repeating analyses for the base predictive model (Model A) after 
restricting to singletons (A1), restricting to births without congenital malformations (A2), restricting to recent 
births from 2000 (A3), and restricting to births from 28 weeks gestation (A4) (Supplementary Table 5).

All analyses were conducted with Anaconda version 4.5.11 and Scikit-learn19 version 0.19.1.
The study was approved by the Human Research Ethics Committee of the Department of Health WA and 

Curtin University. All research activities were conducted in accordance with corresponding guidelines and regu-
lations. Informed consent was waived by these ethics committees on the basis that: (i) the only record linking the 
participant to the research would be the consent document; (ii) this study uses existing registry data and presents 
minimal risk of harm to participants; (iii) further direct contact with participants to obtain consent has potential 
to introduce emotional distress; (iv) the research has potential to lead to public benefit; (v) it is impracticable to 
obtain informed consent for cohort of this size (N = 947,073 births); and (vi) it is infeasible to obtain informed 
consent for participants early in the cohort period (1980–2015).

Results
The final total study population consisted of 947,025 livebirths and 7,788 stillbirths (Supplementary Fig. 1). 
Stillbirth decreased over time (Supplementary Fig. 2), notably for the Caucasian population (Supplementary 
Fig. 3). The distributions for the characteristics of the study population (Supplementary Table 1) remained rela-
tively consistent over time (Supplementary Table 4).

For all models, the AUCs varied from 0.59 (95% CI: 0.58, 0.60) to 0.84 (95% CI: 0.83, 0.85), which indi-
cated that discrimination between livebirths and stillbirths was highly dependent on selection of the predic-
tors (Table 1). For all models, the ensemble classifiers (XGBoost and MLP) marginally outperformed the other 
classifiers in terms of sensitivity and PPV. For Model A, the best performing algorithm (XGBoost) resulted in a 
sensitivity of 44.6% (95% CI: 43.2%, 46.1%) and PPV of 5.18% (95% CI: 5.02%, 5.33%) at 5% FPR based on pre-
dictors including maternal socio-demographic characteristics, chronic maternal medical conditions, obstetric 
complications in current pregnancy, and other characteristics of current pregnancy. When previous pregnancy 
history was added (Model B), the best performing algorithm (XGBoost) displayed a slightly improved sensitivity 
of 45.3% (95% CI: 43.4%, 47.1%) and a PPV of 4.81% (95% CI: 4.63%, 4.99%) at 5% FPR. For the model that 
included family history (Model C), the best performing algorithm (XGBoost) only achieved a sensitivity of 37.6% 
(95% CI: 33.6%, 41.6%) and a PPV of 3.86% (95% CI: 3.44%, 4.28%) at 5% FPR.

The worst performing model included predictors known at the booking appointment (Model D). With the 
best performing algorithm (XGBoost), these predictors only achieved a sensitivity of 10.9% (95% CI: 10.0%, 
11.9%) and a PPV of 1.32% (95% CI: 1.21%, 1.43%) at 5% FPR. After the addition of pregnancy history (Model 
E) to this model, sensitivity increased to 16.6% (95% CI: 14.5%, 18.7%) and PPV increased to 1.82% (95% CI: 
1.60%, 2.04%) at 5% FPR. Finally, after further addition of obstetric complications in current pregnancy, as well 
as other characteristics of current pregnancy known before delivery, the model sensitivity doubled to 32.8% (95% 
CI: 29.9%, 35.7%) and PPV increased to 3.54% (95% CI: 3.24%, 3.83%) at 5% FPR. The substantial improvement 
in model performance in Model B compared to Model F was attributable to the inclusion of congenital anomalies 
and SGA as predictors.

The predictive performances were not sensitive to the inclusion of births with multiple gestations; births with 
congenital anomalies; births before 28 weeks of gestation; they were not sensitive to the time period of the cohort 
(Supplementary Table 5).

Discussion
For our large population-based cohort of almost one million births and nearly 6,000 stillbirths, the XGBoost algo-
rithm was able to use maternal socio-demographic characteristics, chronic maternal medical conditions, obstetric 
complications in current pregnancy, and other characteristics of the current pregnancy to predict approximately 
45% of all stillbirths (at 5% FPR, and 55% at 10% FPR). There was negligible improvement with the inclusion of 
previous pregnancy history. The addition of the grandmothers’ obstetric history and parental birth outcomes did 
not improve prediction beyond use of socio-demographics, chronic conditions and current pregnancy complica-
tions. However, the inclusion of these predictors changed the population used in the analysis. The availability of 
grandmothers’ obstetric history implies that the cohort is descendent from family born in Australia. Therefore, 
stillbirth prediction did not improve either because these predictors provided no additional value to prediction, 
or because stillbirth prediction was more difficult for the population for which these predictors were available. 
Although our models can predict almost half of all stillbirths, their PPV remains relatively low at most 5.2% 
(at 5% FPR). Unlike sensitivity and specificity, PPVs are limited by low prevalence of the outcome (stillbirth). 
Nonetheless, we have demonstrated that risk factors collected from routine health registries can correctly identify 
approximately 45 out of 100 stillbirths (at 5% FPR, and 58 out of 100 stillbirths at 10% FPR) and 5 stillbirths per 
100 births with a positive test result (at 5% FPR, and 3 stillbirths per 100 births at 10% FPR).
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Our study benefited from the inclusion of all births from complete coverage of registered births and midwives 
notifications, which has been shown to have a high level of validity with strong agreement with medical records28. 
Maternal characteristics, medical history and current complications were systematically recorded and the contri-
bution of risk factors from obstetric and family history was objectively and comprehensively ascertained through 
record linkage.

We were able to apply and compare the performance for a range of machine learning classifiers. The 
side-by-side application of multiple machine learning classifiers was a substantial new contribution to the litera-
ture given that all past studies employed logistic regression, and that logistic regression was outperformed by the 
ensemble methods, notably XGBoost. Sensitivity of XGBoost was 4.8 percentage points greater than sensitivity 
for logistic regression (Model B, 5% FPR). In our study of 5,788 stillbirths, this FPR equates to an additional 278 
stillbirths that would have otherwise been missed using logistic regression. Although the ensemble methods out-
performed other classifiers, the degree to which improvement was gained must be kept in context. In particular, 
the range in sensitivity attributable to predictors and populations (models) was more than five times the range in 
sensitivity attributable to machine learning classifiers (within models).

Classifiers Model AUC

5% FPR 10% FPR

+LR −LR Sensitivity PPV NPV CorrectlyClassified +LR −LR Sensitivity PPV NPV
Correctly 
Classified

Logistic Regression A 0.830 8.10 0.63 40.5 4.72 99.62 94.67 5.52 0.50 55.2 3.26 99.7 89.79

B 0.834 8.07 0.63 40.5 4.32 99.65 94.68 5.57 0.49 55.7 3.02 99.73 89.80

C 0.811 7.59 0.66 37.8 3.89 99.65 94.72 5.14 0.54 51.6 2.67 99.71 89.75

D 0.602 2.25 0.93 11.2 1.35 99.43 94.49 1.90 0.90 19.0 1.15 99.45 89.57

E 0.633 3.29 0.88 16.5 1.80 99.51 94.54 2.44 0.84 24.4 1.35 99.53 89.64

F 0.799 6.02 0.74 30.1 3.26 99.59 94.64 4.65 0.60 46.4 2.53 99.67 89.76

Decision Tree A 0.819 8.16 0.62 40.7 4.75 99.62 94.67 5.68 0.51 54.1 3.35 99.69 90.24

B 0.808 8.18 0.63 40.6 4.38 99.65 94.73 5.01 0.51 54.7 2.73 99.72 88.88

C 0.776 6.98 0.68 35.8 3.59 99.64 94.58 5.19 0.63 42.3 2.69 99.67 91.40

D 0.589 2.07 0.95 10.2 1.25 99.43 94.54 1.78 0.91 17.7 1.08 99.45 89.60

E 0.599 3.16 0.89 15.2 1.73 99.50 94.68 2.33 0.86 23.0 1.29 99.52 89.67

F 0.779 5.94 0.74 30.1 3.22 99.59 94.58 5.71 0.73 31.2 3.09 99.59 94.13

Random Forest A 0.831 8.12 0.63 40.6 4.73 99.62 94.67 5.55 0.50 55.5 3.28 99.70 89.79

B 0.836 8.22 0.62 41.1 4.40 99.65 94.71 5.66 0.48 56.4 3.07 99.73 89.85

C 0.788 7.29 0.67 36.4 3.74 99.64 94.69 4.91 0.57 49.1 2.55 99.70 89.78

D 0.594 2.09 0.94 10.4 1.26 99.43 94.48 1.75 0.92 17.5 1.06 99.44 89.57

E 0.633 2.87 0.90 14.4 1.58 99.50 94.54 2.37 0.85 23.7 1.31 99.53 89.64

F 0.801 5.96 0.74 29.8 3.23 99.59 94.64 4.66 0.59 46.7 2.54 99.67 89.76

XGBoost A 0.840 8.93 0.58 44.6 5.18 99.65 94.70 5.81 0.47 58.1 3.43 99.72 89.81

B 0.842 9.03 0.58 45.3 4.81 99.68 94.71 5.86 0.46 58.7 3.18 99.74 89.82

C 0.804 7.54 0.66 37.6 3.86 99.65 94.69 5.12 0.54 51.2 2.66 99.71 89.81

D 0.596 2.18 0.94 10.9 1.32 99.43 94.49 1.85 0.91 18.5 1.12 99.45 89.57

E 0.628 3.31 0.88 16.6 1.82 99.51 94.55 2.47 0.84 24.7 1.36 99.53 89.64

F 0.805 6.56 0.71 32.8 3.54 99.61 94.66 4.84 0.57 48.4 2.64 99.68 89.76

Multi-layer Perceptron A 0.836 8.57 0.60 42.8 4.98 99.63 94.69 5.65 0.48 56.5 3.34 99.71 89.80

B 0.840 8.69 0.60 43.5 4.64 99.67 94.71 5.73 0.48 57.2 3.11 99.73 89.83

C 0.801 7.38 0.67 36.7 3.78 99.65 94.72 5.12 0.55 50.9 2.65 99.71 89.84

D 0.595 2.15 0.94 10.8 1.30 99.43 94.49 1.84 0.91 18.4 1.11 99.45 89.56

E 0.634 3.24 0.88 16.2 1.78 99.51 94.57 2.41 0.84 24.1 1.33 99.53 89.64

F 0.802 6.43 0.71 32.1 3.47 99.60 94.65 4.81 0.58 48.1 2.62 99.68 89.77

Table 1.  Performance of models for predicting stillbirth using different classification algorithms and 10-
fold cross validation. Estimates with 95% confidence intervals are provided in the Supplementary Material, 
Supplementary Table 6. Model A – Socio-demographics, chronic conditions, current pregnancy complications 
and characteristics. Model B – Predictors from Model A, plus previous pregnancy history. Model C – Predictors 
from Model A, plus grandmother’s pregnancy history, parental birth outcomes. Model D – Predictors known 
at the booking appointment. Model E – Predictors from Model D, plus previous pregnancy history. Model F – 
Predictors from Model E, plus current pregnancy complications and characteristics. Abbreviations: AUC – Area 
under the receiving-operator characteristic curve; +LR – Positive likelihood ratio; -LR – Negative likelihood 
ratio; FPR – alpha (type I error) = 1-specificity; Sensitivity – detection rate, TPR; TP – True Positives; FP – False 
Positives; TN – True Negatives; FN – False Negatives; PPV – Positive predictive value = TP/(TP + FP); NPV - 
Negative predictive value = TN/(FN + TN); CI – Confidence Interval.
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Comparison with other studies.  Previous studies have shown that maternal factors alone can predict 
about 16% of all stillbirths at a 5% FPR, and that the addition of screening tests and biomarkers can improve 
the prediction rate to one third of all stillbirths at the end of first trimester and to nearly half of all stillbirths at 
the end of second trimester5,6,9,10. These tests, which are used for assessment of stillbirth risk in selected popula-
tions at risk for anomalies, appear to be relatively more effective for stillbirths attributable to impaired placen-
tation5,6,9,10. The most effective tests were found to be uterine artery pulsatility index (UtA-PI), maternal serum 
pregnancy-associated plasma protein-A (PAPP-A), ductus venosus pulsatility index for veins (DV-PIV) and fetal 
biometry5,6.

Some of the best results have been reported by Akolekar and colleagues in the UK5,6. Their prediction models 
(<300 stillbirths) identified PAPP-A (at 11–13 weeks), DV-PIV (at 11–13 weeks), UtA-PI (at 11–13 weeks, and 
19–24 weeks), and fetal biometry (at 19–24 weeks) as the best predictors of stillbirth (defined from at least 24 
weeks of gestation)10. At a FPR of 5%, these tests combined with maternal factors detected 33% of stillbirths at the 
end of first trimester (explaining 0.72 AUC), or 45% of stillbirths at the end of second trimester (explaining 0.75 
AUC)6,10. A slightly larger study of <500 stillbirths by Trudell and colleagues in the US focussed on prediction 
of late stillbirths ≥32 weeks of gestation8. However, their best performing model included very few maternal 
characteristics and chronic conditions (maternal age, African racial origin, nulliparity, smoking, hypertension, 
diabetes and body mass index), which could potentially detect either 55% of stillbirths with low specificity of 67% 
(33% FPR) or 25% of stillbirths with 92% specificity (8% FPR). Although their model had a moderate AUC 0.66 
(95% CI: 0.60, 0.72), its wide confidence interval suggests imprecision. Finally, the prediction model developed by 
Kyaode and colleagues in the Netherlands (<500 stillbirths) for low-resource settings displayed some promising 
features, although it may be less applicable for detecting stillbirths in high-income countries7, given the underly-
ing causes between high- and low-income countries often differ29. Although their extended model, which com-
bined growth rate with fetal presentation, bleeding, maternal comorbidity and maternal characteristics, achieved 
high calibration and discrimination 0.82 AUC (95% CI: 0.80, 0.83), no sensitivity or specificity measures were 
reported, thus making comparisons with different models difficult, since AUCs tend to increase with smaller 
sample sizes. Only one study presented results for which the births used to evaluate model performance did not 
include the births used to build the predictive model8.

Stillbirth prediction will benefit greatly from use of cohorts with a large number of stillbirth events, the devel-
opment of models that incorporate validation using birth records not used to develop the predictive models, the 
use of clinical predictors whose ascertainment is not a consequence of prior suspicion of stillbirth, determination 
of the cause of stillbirth and the application of complementary classifiers for prediction.

Limitations.  A limitation of using perinatal records that spanned more than three decades is that the data-
base changed over time and therefore some predictors became available, more detailed, or mandatory later in the 
study period. However, sensitivity analyses indicated that results did not differ after restriction to births later in 
the study period. Although we supplemented predictor ascertainment from perinatal records with hospitalisation 
records, these can under-ascertain prevalence of risk factors in the wider population, e.g., urinary tract infections 
during pregnancy. In this study, we enumerated risk factors according to their states – known with the condition, 
known without the condition, or not known. Although this approach does not fully address the issue of missing 
risk factors, it reflects real-life situations – at any given point in time, not all risk factors are known.

We were unable to classify stillbirths as antepartum versus intrapartum because this information was not 
available prior to 2005, and thus we were unable to develop a prediction model specifically for antepartum still-
births. However, based on 2011–2012 data from two Australian states (Victoria and Queensland), approximately 
80% of stillbirths are antepartum2.

We also did not have information on the exact timing of onset for the risk factors that were used as predictors 
of stillbirth in the predictive models. To partially address this issue, we produced additional models that sequen-
tially added predictors as they became available during pregnancy, commencing from predictors known at the 
booking appointment. Ideally, estimates of stillbirth risk would be updated throughout gestation, and it would 
be expected that predictive performance and clinical relevance would improve as new risk factors are diagnosed.

The accuracy of the predictors also varied throughout gestation. Retrospective extrapolation using factors 
known after the birth in antenatal prediction models can lead to either overstated or understated predictive abil-
ity. Notably, SGA was used as a proxy for fetal growth restriction, which may not have been known prior to the 
birth or may have been a less accurate proxy than anthropometric measurements from ultrasounds. Our results 
indicated that the performance of models was dependent on fetal growth restriction and congenital anomaly, 
which are well-established strong risk factors for stillbirth.

Finally, predictive models for less prevalent events such as stillbirth necessitates the use of large population 
health records, but these records do not contain information on the indication of antenatal interventions. We 
cannot rule out the possibility of confounding by indication, which together with multicollinearity means that 
effect estimates of individual risk factors are less interpretable. It is possible that highly effective treatment or 
clinical intervention for significant stillbirth risk factors can erroneously make it appear that these risk factors are 
protective. Therefore, the results performed well for prediction, but caution should be exercised before drawing 
inference on causation.

Clinical significance.  Although risk of mortality and morbidity is assessed by clinical care providers 
using risk factors and morbidities ascertained in the antenatal period, there is currently no quantitative risk 
assessment system to identify and stratify at-risk pregnancies to provide information for evidence-based clini-
cal decision-making. Our study results are promising for the development of decision support systems to iden-
tify pregnancies at elevated risk of stillbirth. Use of the predictors is non-intrusive to mothers because they are 
already routinely collected in antenatal systems. The predictions are not likely to introduce any harm if used as 
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decision-support to complement existing antenatal care. Risk prediction could lead to individualised care that 
may involve ultrasound surveillance for growth, continuity of care, “high risk” care with obstetricians and mid-
wives, or timed birth (induction of labour or pre-labour caesarean section). Our results motivate quantitative risk 
stratification, the addition of clinical predictors routinely collected during the antenatal period, and a focus on 
prognostic models through which risk can be continually updated during pregnancy.

Conclusions
We demonstrated that almost half of stillbirths could be potentially identified antenatally based on a combination 
of current pregnancy complications, congenital anomalies, maternal characteristics, and medical history, but that 
the greatest sensitivity is achieved using current pregnancy complications. Some machine learning classifiers 
(ensemble methods) offer some improvement for prediction compared to logistic regression. Future improve-
ment in quantitative stillbirth risk stratification will be achieved with the addition of information that is routinely 
collected during the antenatal period, including both risk factors as well as indications for treatment.
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