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Abstract: Modelling of 3D domain boundaries using information from drill holes is a standard
procedure in mineral exploration and mining. Manual logging of drill holes can be difficult to
exploit as the results may not be comparable between holes due to the subjective nature of geological
logging. Exploration and mining companies commonly collect geochemical or mineralogical data
from diamond drill core or drill chips; however, manual interpretation of multivariate data can be
slow and challenging; therefore, automation of any of the steps in the interpretation process would be
valuable. Hyperspectral analysis of drill chips provides a relatively inexpensive method of collecting
very detailed information rapidly and consistently. However, the challenge of such data is the high
dimensionality of the data’s variables in comparison to the number of samples. Hyperspectral data is
usually processed to produce mineral abundances generally involving a range of assumptions. This
paper presents the results of testing a new fast and objective methodology to identify the lithological
boundaries from high dimensional hyperspectral data. This method applies a quadrant scan analysis
to recurrence plots. The results, applied to nickel laterite deposits from New Caledonia, demonstrate
that this method can identify transitions in the downhole data. These are interpreted as reflecting
mineralogical changes that can be used as an aid in geological logging to improve boundary detection.

Keywords: spectral data; mineralogical data; lithological boundaries; nickel laterite; New Caledonia;
quadrant scan

1. Introduction

A fundamental task for any exploration geologist is to log core or samples from drilling
programs. However, the traditional method of manually logging drill holes has proved
problematic because the logging may be inconsistent between geologists. Not only do
different geologists provide different labels for the same rock type, but they may also
divide the hole into rock types (or domains) of different sizes depending on their perceived
task (i.e., splitters vs. lumpers). To overcome this problem, exploration companies are
increasingly collecting numerical data using sensors, such as hyperspectral scanners, which
can provide a consistent output. However, numerical data still requires interpretation
to provide geological meaning. The same issues of consistent interpretation arise for
numerical data as for core or chip logging, but the problem is exacerbated by the high
dimensionality of much of these data. For example, hyperspectral scanners may provide
measurements for ~500 bands. Hence, it is becoming increasingly popular to use machine
learning to overcome the task of providing consistent labelling for samples with the same
properties [1].

Machine learning provides labelling for each sample independently, which means that
any drill hole logged using machine learning will provide sample-scale results; however,
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the actual rock unit boundaries are not known. The location of boundaries as indicated by
changes in classification of sequential samples can be deceptive due to misclassification
problems; for example, due to mixed samples or noisy data where the sample composition
is close to a classification decision boundary. Multiscale methods utilising the continuous
wavelet transform (CWT) have been proposed as a solution to this problem of detecting
the rock type boundaries [2,3]. CWT methods are based on well-established multiscale
boundary detection methods from image analysis [4–10]. The fundamental shortcoming
of wavelet transforms is that they are univariate. While boundaries can be combined
for several variables to provide a multivariate result [2], this is not a practical solution
for very high dimensional data, such as hyperspectral data. Due to computational load,
dimensionality reduction is essential to the use of efficient boundary detection techniques.

We propose an alternative method of boundary detection, based on non-linear time
series analysis [11–14], that provides simultaneous dimensionality reduction and boundary
detection. This method has two parts, first a recurrence plot is used to simplify the simi-
larity structure of the data and reduce the data dimensionality to two dimensions [12,15].
Second, the quadrant scan method is applied to the recurrence plot to further reduce the
dimensionality to one dimension and to produce a profile line from which transition points
can be extracted [16–19]. It is proposed that the transition points indicate the depths of
geological boundaries. The type of geological boundary depends on the features that are
measured by the input data.

The method does not provide labelling of rock types and so cannot indicate what
rock types the boundary is separating. It is expected that this method would be used in
conjunction with a classification scheme, which may be derived using machine learning or
using more traditional user-selected threshold-based techniques. The boundaries detected
by these methods indicate a significant change in the input data, which may be attributable
to any compositional change including primary rock type, alteration or weathering. There
are several parameters that may be adjusted. We demonstrate the effect of adjusting the
parameters and how these may be used to detect the domaining boundaries with different
scales and significance.

In this paper, we demonstrate the efficacy of applying the quadrant scan method to
recurrence plots to identify compositional boundaries resulting from mineralogical change
detected in hyperspectral scanning data of nickel laterite deposits in New Caledonia [20].
For these deposits, logging of drill core is conducted by visual examination of the cores by
geologists. This results in subjective logging of domaining boundaries, which has proved
to be inconsistent. Unreliable logging is very difficult to use when comparing one drill hole
to another, for example, to construct a geological cross-section. In an attempt to remediate
this problem, the Corescan Hyperspectral Core Imager was used to collect reflectance
hyperspectral data from the nickel laterite deposits [21]. Hyperspectral data have been
shown to be useful in identifying key mineral groups from drill hole samples [22,23]. For
the New Caledonian deposit, the hyperspectral data were used to successfully identify all
the minerals present in the lateritic profile [21]. While the identification of mineral groups
can be used to facilitate logging of rock types, alteration styles and weathering zones
intersected by the drill hole, the process of interpreting hyperspectral data and producing
consistent mineralogical logs is time-consuming and requires high-level expertise. The
ability to automate any part of the workflow would be beneficial, including the use of the
data to detect important geological boundaries. Hyperspectral core scanning provides
continuous data down hole, which can be used to derive very accurate compositional
boundary locations.

The New Caledonian case study is used here to show that the quadrant scan method
can handle high dimensional hyperspectral data efficiently and has the additional advan-
tage in that it can process irregular sampling intervals. We apply a naive approach of
using all the bands in the hyperspectral data set. However, with the inclusion of expert
knowledge on hyperspectral mineralogy and an understanding of which minerals are
important for distinguishing the rock types in the deposit, it would be possible to remove
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the hyperspectral bands that are unlikely to provide useful information, making the results
easier to interpret. In addition, although the reflectance spectra were used in this study,
it is possible that removing the continuum could have an influence on the results of the
Quadrant Scan method.

2. Geological Background and Data Overview

Nickel laterite ores represent over 60% of total nickel reserves; the remaining 40%
is associated with nickel sulphide. New Caledonia is endowed with very large lateritic
nickel deposits (Figure 1) that correspond to 11% of the nickel reserve worldwide with
6.7 Mt reserve and a production in 2019 of 280,000 t [24]. Nickel laterite ores are the
product of intensive deep weathering of ultramafic rocks under humid tropical conditions.
The resulting thick lateritic mantle extends from the bedrock to the surface and includes
distinctive layers of altered and weathered rock as shown in Figure 2. Lithological units
may include: (1) fresh or, totally or partially serpentinised dunite and/or harzburgite that
consist mainly of olivine, pyroxene and serpentine minerals such as lizardite, antigorite
and chrysotile; (2) saprock where weathering begins; (3) coarse saprolite with Ni-rich
garnierite; (4) yellow laterite where Ni-goethite is dominant; (5) red laterite with a mixture
of Ni-goethite and Ni-hematite and (6) lateritic duricrust [25]. In New Caledonia, the
nickel mineralisation occurs as “oxide type” mainly in iron and manganese oxides or as
“garnierite” type in Mg-Ni-silicates (Figure 2).
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Figure 2. Typical weathering profiles developed on ultramafic rocks with absolute and residual
accumulation of Ni and Co (Modified from [25]).

At present, logging of drill core is conducted by visual examination of the core by
geologists, which results in subjective logging of lithological boundaries. The nickel laterite
companies of New Caledonia have developed an ore type classification based on lithology,
degree of serpentinisation and intensity of weathering (Table 1). Classification is dependent
on mineral percentages estimated by the logging geologist. The lithology classification is
based on the proportion of olivine and pyroxene as follows: if the proportion of olivine is
more than 90%, it is dunite; otherwise, the label depends on the proportion of pyroxene.
Harzburgite is 10 to 60% pyroxene, and pyroxenite is >60% pyroxene. Five serpentinization
classes have been characterised (1) Superior (S) with 1–15% serpentine; (2) Intermediary
(I) with 15–45% serpentine; (3) Normal (N) with 45–70% serpentine; (4) Basal (B) with
70–100% serpentine and (5) Green (Vert–V) with 45–70% serpentine (in this facies, the
serpentinisation of the peridotites precedes the obduction). The degree of weathering
is categorised from 0 to 5 based on the rock hardness and the presence of iron oxides
(0 indicating no weathering and 5 indicating complete weathering).

The ability to develop a method for the collection of objective mineralogical data
coupled with consistent lithological interpretation (including the identification of different
ore types) would be of great value for the mining companies. Given that measurements
of lateritic nickel diamond cores and drill chips demonstrated that the Corescan Hyper-
spectral Core Imager Mark III (HCI-3) could identify all the minerals present in the lateritic
profile [21], it is proposed that the reflectance spectra can provide sufficient data for precise,
objective, primary and alteration lithology and weathering boundary detection when used
as input to an automated boundary detection algorithm.
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Table 1. Interpretation of geological domaining samples.

Laterite/Primary Lithology Serpentinization Weathering

Logging Code Interpretation Logging Code Interpretation Logging Code Interpretation

LR Latérite Rouge
(Red Laterite) NA Not Assigned NA Not Assigned

LJ Latérite Jaune
(Yellow Laterite) I Intermediary 1 Weak Weathering

LT Latérite de Transition
(Transition Laterite) V Vert (green) 2

BS Basal Serpentine N Normal 3
H Harzburgite B Basal 4
D Dunite 5 Strong weathering

HD Harzburgite/Dunite
DH Dunite/Harzburgite

2.1. Samples

All the samples used for this study were provided by the Nickel Mining Company
(NMC). The samples were collected from the deposits of Boulinda Monique, N’Go and
Ouaco Mousquetaire. NMC has generally a sampling density of 1 m for drill chip with
some exceptions with denser sampling. A representative sub-sample of each 1 m drill chips
sample was transferred in a 20 cm core tray compartment (Figure 3) before been measured
with the imaging spectrometer.

Minerals 2022, 12, 49 5 of 17 
 

 

 
Figure 2. Typical weathering profiles developed on ultramafic rocks with absolute and residual ac-
cumulation of Ni and Co (Modified from [25]). 

2.1. Samples 
All the samples used for this study were provided by the Nickel Mining Company 

(NMC). The samples were collected from the deposits of Boulinda Monique, N’Go and 
Ouaco Mousquetaire. NMC has generally a sampling density of 1 m for drill chip with 
some exceptions with denser sampling. A representative sub-sample of each 1 m drill 
chips sample was transferred in a 20 cm core tray compartment (Figure 3) before been 
measured with the imaging spectrometer. 

 
Figure 3. Drill chips from OUACO deposit prepared in a core tray divided into 20 cm compart-
ments. 

  

Figure 3. Drill chips from OUACO deposit prepared in a core tray divided into 20 cm compartments.

2.2. Spectral Collection

Corescan’s HCI-3 combines reflectance spectroscopy, visual imagery and 3D laser
profiling to map the mineralogy and geochemistry of geological samples. HCI-3 covers the
VNIR (450 to 1300 nm) and SWIR (1300 to 2500 nm) range of the electromagnetic spectrum
from 450 nm to 2500 nm at a spectral resolution (FWHM) of 3.5 nm. High quality optics
focus the spectral measurement to a 0.5 mm point on the core. A RGB camera provides a
high-resolution visual record of the core at 60 µm pixel size. Measurement of core surface
features, texture and shape is complemented using a 3D laser profiler with a surface profile
resolution of 20 µm. The system comprises a scan unit housing the optics, spectrometers,
cameras and 3D profiling sensors; a translation table with conveyor driven core tray
loading system and a high-speed data acquisition, processing and control computer. For
each compartment sample, an average of 20,000 0.5 mm × 0.5 mm pixels were collected
(depending on sample size) with an individual spectrum in each pixel. For this study, all
the spectra from all pixels were averaged into 1 spectrum representing each sample.

2.3. Spectral Analysis

The HCI-3 can spectrally image drill core and cuttings at 0.5 mm resolution, hence
providing distinct advantages by capturing pixels with less phases. Mineral mapping is
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undertaken using in-house proprietary expert system software. The reflectance spectrum
in each pixel is either a pure mineral or a combination of two or more minerals; it is called
a mineral class. For each mineral class, unique spectral indices were developed and consist
of three parameters; (1) feature tracking that focuses on regions where absorptions exist;
(2) matching regions that focuses on specific spectral regions and compare with the in-
house database using Pearson correlation coefficient PCC and (3) spectral ratio which is a
ratio of two reflectance values at specific wavelengths. Using the expert system, each pixel
was mineralogically quantified and an average mineralogy for each sample was calculated.

3. Methods

The mathematical method described in this paper consists of three steps (Figure 4):
(1) generating a 2D similarity matrix for the series of measurements in each drill hole; (2) con-
verting the similarity matrix to a recurrence plot by applying a threshold, and (3) applying
the quadrant scan method to the recurrence plot to generate a one-dimensional drill hole
profile. Each of these three steps is described in detail in this section.
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Figure 4. A flowchart demonstrating the steps of the proposed mathematical method. In subplot
(A), the colours represent the difference between each sample and all other samples in the drill hole
using the multivariate data. For the binary recurrence matrix, in subplot (B), blue represents 0 (above
the threshold) and yellow represents 1 (below the threshold). At each depth index, the recurrence
matrix is divided into four quadrants, shown in subplot (C), the black vertical and horizontal lines
demonstrate the division for depth index k. The ratio of quadrant values transforms the 2D plot into
a simple function, subplot (D), where maxima indicate transition points in the input data.

In the field of nonlinear time series analysis, recurrence is a fundamental characteristic
of many dynamical systems. Recurrence is defined when two states of the system pass close
to each other in phase space at different times. For example, in geology, recurrence occurs
when geological processes produce similar (but not necessarily exactly the same) rock types
because the geological processes are repeated over time. The recurrence plot was developed
to reconstruct a time series as a two-dimensional plot to facilitate visual investigation of the
recurrence structure in a system. This means that it can reduce any number of variables to a
2D representation (based on a similarity matrix), providing a very powerful dimensionality
reduction tool. For example, a recurrence plot for drill hole data will indicate when similar
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rock types occur at different levels in the drill hole and where changes in rock type occur.
Several measures have been developed to quantify features in recurrence plots, these are
called recurrence quantification analysis measures (RQA). RQA measures can be used
for quantitative investigation of the system’s properties and used to assess its dynamics.
The recurrence plot and RQA measures are widely used as a time series analysis tool in
many applications, including engineering [26], physics [27], chemistry [28], finance [29]
and geology [15,30], and [31] provide an overview of the method and its applications to
different systems.

Recently, a new RQA method was developed to identify transition points in time series
data from dynamical systems, namely, the quadrant scan method [16,18,19]. It has been
used in medical applications for the interpretation of Electroencephalography (EEG) and
Electrocardiography (ECG) signals [18]. More recently, it has been demonstrated that the
quadrant scan method can be applied to spatial data by replacing the time index with a
spatial index when used to detect geological boundaries in geochemical and petrophysical
data from drill holes [19]. These applications have demonstrated that the quadrant scan is
capable of detecting points of change in a data series for both univariate and multivariate
data. For application to drill hole data, an index that provides the order of sampling down
hole is used. If sampling occurs at regular intervals, then this index can be replaced by
the actual depth measurements. For irregularly sampled data, the depth index can be
used to avoid having to resample the data at regular intervals, as is the case for boundary
detection methods involving wavelet transforms. The computational efficiency and low
computational cost of the quadrant scan method [19] makes it an attractive tool to identify
domaining boundaries from high-dimensional hyperspectral data.

The quadrant scan method has two versions, standard (density) or weighted quadrant
scan. As elaborated in [18,19], the steps of the standard version are outlined in the flowchart
(Figure 4) and summarised in the following paragraphs.

(1) First, a distance matrix is constructed (Figure 4A). Generally, the Euclidian norm is
used to measure the pairwise distance between two states of the system. However,
because of the unique structure and high dimensionality of the spectral data, the
Euclidian norm was found to be an inappropriate and misleading measure due
to correlations in the hyperspectral data. The Mahalanobis distance was found to
be more appropriate, as it can account for correlations in the data [32]. However,
due to the significant difference in the dimensionality between the number of the
variables and the number of samples, finding the inverse of the covariance matrix is
problematic. Alternatively, we can find the distance using the covariance matrix of the
normalised samples. Using this method has the advantage that it is not necessary to
have a separate dimensionality reduction step, before constructing the distance matrix.
Equivalent to the Mahalanobis distance, the distance matrix is defined as follows:

Aij = ||
→
x (i) ,

→
x (j)|| =

√
(
→
x (i)−→x (j))

T
S(
→
x (i)−→x (j)) (1)

where
→
x (d) ∈ R514 is a spectrum profile at depth with index d (e.g., i and j refer to

different depth indices), while S is the covariance matrix of the normalised data. Each
index in the matrix refers to the index of the sample, i.e., the depth index. Hence, the
matrix width and height are determined by the total number of samples.

(2) The recurrence plot matrix (Figure 4B) is constructed from the distance matrix A, by
applying a threshold. If an entry in the distance matrix is less than the threshold, then
the corresponding entry in the recurrence plot matrix is assigned to 1, otherwise it is
0. The threshold is controlled by a parameter α, which allows the user to control the
scale of boundary detection [18,19]; that is, if α is small then the distance threshold
will be small, which means that samples have to be very similar in composition to
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be considered below the threshold. The recurrence plot matrix and the threshold are
defined as follows:

Rij =

{
1, i f aij < ε

0, otherwise
(2)

where
ε = α

(
µ
(

Aij
)
+ 3 σ

(
Aij
))

; 0 < α < 1 (3)

where µ
(

Aij
)

and σ
(

Aij
)

are the mean and standard deviation of the distance matrix
entries and ε is the threshold.

(3) The quadrant scan profile (Figure 4D) is derived from the ratio of points in the binary
recurrence plot above and below each depth index, by using the depth index to divide
the recurrence plot into quadrants, as illustrated in Figure 4C. If D1,3 and D2,4 denote
the density of the recurrent points in the first and third quadrants and the second and
fourth quadrants, respectively, then the standard quadrant scan at depth index d for
d = 1, · · · , N is defined as follows:

QS(d) =
D1,3

D1,3 + D2,4
(4)

where, D1,3 =
∑i,j<d Rij+∑i,j>d Rij

(d−1)2+(N−d)2 and D2,4 =
∑i〈d, j〉d Rij+∑i>d, j<d Rij

2(d−1)(N−d) .

In [19] a weighting scheme was applied in which higher weights were assigned to
the states closer to the indexed point; this is called the weighted quadrant scan (WQS)
method and showed considerable improvement over the standard quadrant scan method
where all points are weighted equally. WQS requires two weighting parameters, m1 and
m2, to determine the smoothness of the weighting scheme and selection of these is problem
dependent [18]. The result of the WQS method is a profile in which the peaks can be used to
identify the transitions (Figure 4D). The WQS provides a reduction of the 514 values in the
original spectrum to a single value for each sample. When applied to hyperspectral data, the
peaks in the WQS profile are used to identify the locations of lithological boundaries. Sharp
peaks indicate rapid transitions and rounded peaks represent more gradual transitions [18].

As explained above, the implementation of the WQS method requires the setting of
three parameters α, m1 and m2. Generally, as demonstrated in previous works, setting
these parameters is problem dependent; however, guidance on how to choose these pa-
rameters and their effects on the WQS performance is discussed in [18]. Briefly, α adjusts
and controls the recurrence threshold based on the distribution of the norm matrix and
allows for multi-scale detection. The weighting scheme parameters m1 and m2 identify the
gradient of the weighting function as well as the sizes of the neighbourhoods of the index
point. Accordingly, the points within these neighbourhoods are assigned with maximum,
transitional, or minimum weight. Finally, to avoid any artifact peaks in the WQS at the top
or the bottom of any dataset which do not represent changes in the geological composition,
the datasets are extended by copying the first and last samples four times.

4. Results

To test the algorithm, the WQS detection algorithm was applied to data from three
drill-holes, namely OUACO, NGO_PB4 and BOULINDA. It is proposed that by using
the reflectance spectra as input to the automated boundary detection algorithm, we can
precisely and objectively detect boundaries for primary lithology, alteration or weathering
where these are marked by changes in the spectra. For all the analyses, the weighting
parameters were set at m1 = 10 and m2 = 2; this selection is based on the small number
of the data samples, i.e., less than 50 samples per hole. The recurrence plot threshold
was set at α = 0.03, 0.02 and 0.01. The selection of these values is dependent on the
distributions of the norm matrices derived by the Mahalanobis-like norms (Equation (3)).
For spectral data, the largest variation of the WQS occurs when the value of α is within
this range. For α < 0.01 and α > 0.03 there is less variation in the results. Therefore,
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we choose these values to demonstrate the robustness of our method. The variation of α
allows detection of boundaries at different scales. In order to demonstrate the effectiveness
of the WQS analysis for finding geological boundaries, we compare the results using a
common unsupervised clustering technique, k-means [33]. K-means was chosen as it is
very computationally efficient and one of the few clustering algorithms capable of handling
such high dimensional data. To determine the optimal number of clusters for the k-means
method, the Bayesian Information Criterion (BIC) [34] and the Elbow method are used [35]
(Figure 5). The Elbow method plots the Residual Sum of Squares error (RSS) as a function
of different values of k (the number of clusters), the optimal value of k is the point with
most curvature. The BIC test penalizes for the number of clusters in addition to the RSS
error; the minimal value of BIC identifies the optimal number of clusters. Figure 5 suggests
that k = 8 is the optimal number of clusters to be used.
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(RSS) as a function of the number of clusters.

The results for the three drill-holes are illustrated in Figures 6–8. Producing these
results is quite fast; for example, generating a WQS profile from a 514-dimensional spectrum
with 49 depth samples took approximately 6 s, including plotting three figures (the distance
matrix, the recurrence plot matrix and the WQS profile), using MATLAB on a MacBook
Pro. Figure 6a is a heat-map of the hyperspectral profiles at each depth interval in the
OUACO hole (a total of 49 samples down hole). The heat-map is a graphical representation
of spectral intensity down hole, wherein blue indicates low values and red indicates high
values. Figure 6b shows the WQS profile derived from the spectral data using three different
values of the parameter α (0.03, 0.02 and 0.01). The peaks in this curve identify the transition
points in the data and, therefore, represent the predicted depth location of the lithological
boundaries. Figure 6c demonstrates the results of the manual logging by domain experts;
logging codes are described in Table 1. Figure 6d shows the results of the unsupervised
k-means clustering technique. Figures 7 and 8 show the same information as Figure 5, but
for the other two drill holes, NGO_PB4 and BOULINDA.
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Figure 6. OUACO drill-hole. (a) Heatmap plot of depth index against spectral index (blue colours
reflect low values and red colours reflect high values); (b) Weighted quadrant scan results from
the spectral data using three different values of α, peaks indicate lithological boundaries; (c) The
boundaries identified manually by domain experts (see Table 1 for geology logging codes), and;
(d) Results of k-means clustering with k = 8 (the different colours represent different clusters).
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Figure 7. NGO_PB4 drill-hole. (a) Heatmap plot of depth index against spectral index (blue colours
reflect low values and red colours reflect high values); (b) Weighted quadrant scan results from
the spectral data using three different values of α, peaks indicate lithological boundaries; (c) The
boundaries identified manually by domain experts (see Table 1 for geology logging codes), and;
(d) Results of k-means clustering with k = 8 (the different colours represent different clusters).
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Figure 8. BOULINDA drill-hole. (a) Heatmap plot of depth index against spectral index (blue colours
reflect low values and red colours reflect high values); (b) Weighted quadrant scan results from
the spectral data using three different values of α, peaks indicate lithological boundaries; (c) The
boundaries identified manually by domain experts (see Table 1 for geology logging codes), and;
(d) results of k-means clustering with k = 8 (the different colours represent different clusters).

The depth sampling intervals are irregular; therefore, the figures in this manuscript
show the results in terms of depth indices. The corresponding actual depths are shown for
each hole in Table 2.
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Table 2. The depth indices and corresponding actual depths in metres for each hole.

DEPTH
INDEX 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

OUACO 1 2 3 4 5 5.5 6 7 7.3 8 9 10 10.6 11.5 12 12.5 13 14 15 16 17 18 19 20 21
NGO_PB4 0.3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 19.2 20 21 21.5 22

BOULINDA 1 1.3 2 3 4 5 5.2 6 6.75 7 8 8.3 8.6 8.8 9.1 9.4 9.6 10.2 10.8 11.3 12 12.4 13.1 13.3 13.8

DEPTH
INDEX 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

OUACO 22 22.65 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 38.6 39.6 40.3 41 41.6 42 _
NGO_PB4 22.5 23 23.75 24.75 25.3 26 27 28 28.5 29 30 30.3 32 32 32.5 32.9 33.5 _ _ _ _ _ _ _ _

BOULINDA 14 15 15.2 15.5 16 17 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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5. Discussion
5.1. Comparison with Geologist Logging

Geological logs are plotted alongside the spectral analysis in Figures 6–8 (panels c).
There are three types of geological parameters in the logs: lithology, serpentinisation and
weathering. Logging codes are decoded in Table 1 and, for example, a sample at depth
index 4 will be coded as HI3 in Ouaco (Figure 6), whereas a sample at depth index 27 in
NGO-PB4 will be coded as DB1 (Figure 7) and, lastly, a sample at depth index 26 will be
coded HV1 at Boulinda (Figure 8). Caution must be exercised when comparing geological
logs to logs derived from sensor data, such as hyperspectral imaging, because the input
data to the two methods are not the same. For example, it would be unrealistic to expect
hyperspectral data to recognise textural change that is not accompanied by mineralogical
change. In addition, hyperspectral data may be able to distinguish changes in mineralogy
that show no obvious visual change, and so will not be logged by the geologist.

Under lateritic conditions, the primary ultramafic rocks (dunite and harzburgite) are
intensely serpentinised and weathered. The serpentinization (lizardite, nepouite) occurs
first, affecting both olivine and pyroxene followed by the occurrence of weathering silicate
minerals such as smectite and garnierite. The last and more intense weathering phase
produces iron oxides such as goethite and hematite. Therefore, logging of lithology is
largely based on the geologist’s interpretation of textures, such as grain pseudomorphs, to
indicate the primary rock lithology. Hence, there is a low expectation that WQS analysis
of the hyperspectral data will indicate primary lithological boundaries within the ultra-
mafic rocks. Additionally, when the rock is intensely weathered (e.g., with degree 5), the
goethite/hematite-goethite will dominate, as all other mineralogy have disappeared, and
the WQS analysis of the hyperspectral data will distinguish boundaries between the laterite
and less weathered rocks such as Ouaco at depth index 2 and 9 (Figure 6), NGO_PB4 at
depth index 20 and 23 (Figure 7) and Boulinda at depth index 5 (Figure 8).

WQS also detect boundaries between serpentinisation I and V at depth index 24 as well
as serpentinisation I and N at depth index 47 for Ouaco (Figure 6). At NGO_PB4 (Figure 7),
significant peaks mark the boundaries between two types of laterite, for example, between
LR and LI at depth index 5, between LI and LT at depth index 19, and at depth index 20
between LT and BS. Additionally, boundaries were detected between serpentine N and B
(depth index 23) and lithology H and D (depth index 31) and weathering 2 and 3 (depth
index 39). At Boulinda, boundaries were identified between dunite (D) and harzburgite
(H) and weathering 2 and 4 (depth index 8), between lithology H and D, serpentine V and
B and weathering 2 and 3 (depth index 15), between lithology D and H and weathering
2 and 3 (depth index 23) and between weathering 2 and 3 (depth index 29). However, it
is difficult to confidently assign any profile peaks to the different ultramafic rocks, and
this is likely due to their altered and weathered state. It is often the case that boundaries
for alteration and weathering are gradational and the distinction between the different
groups (strong to weak) is highly subjective when logged by geologists. It is for these cases
that the use of non-subjective methods can be most useful. The WQS technique can be
used to identify significant changes in the cores that are difficult to pinpoint using manual
identification. A more detailed investigation of the mineralogy and the core would be
required to distinguish between these options. The value in the WQS technique is that
it highlights these changes in the mineralogy, which might otherwise be missed by the
logging geologist. It is also the case that some of these changes are occurring in parts of the
hyperspectral bandwidth that do not provide useful information for geological logging. As
previously mentioned, the detection of olivine and pyroxene can only be detected if the
weathering is not intense, as iron oxides will mask their diagnostic features in the visible
and near infrared part of the electromagnetic spectrum.

5.2. Comparison with k-Means Clustering

Panels (b) and (d) of Figures 6–8 compare the boundary identification results derived
by the implementation of WQS with the samples classes derived from k-means clustering
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(for k = 8 clusters as suggested by the BIC and the Elbow method tests in Figure 5),
respectively, on the high dimensional spectral data. K-means failed to distinguish important
lithological boundaries, instead it provides many lithological boundaries based on changes
in sample composition, which may be small or large. K-means attempts to divide a data set
into approximately spherical clusters of approximately equal size. If the data structure is
not compatible, then the class boundaries may be fairly arbitrary. Therefore, the change
in class label may be due to arbitrary subdivision of the data into clusters, and may not
signify an important change in composition. Because the WQS method takes the spatial
correlation of the data into account, it is able to indicate where the more and less significant
changes are using the peak height. Using the WQS method, we can be confident that the
large peaks indicate significant change in the rock composition has occurred.

5.3. Comparison with the Spectrally Derived Mineralogy

Using the Corescan expert system, each pixel was mineralogically quantified and an
average mineralogy for each sample was calculated. The results of this calculation are
shown in Figures 9–11 as abundance percentages of the minerals. More detailed information
on the analysis of the spectral mineralogy will be available in a forthcoming paper and,
therefore will not be addressed further here. To understand how the boundaries detected
by the WQS using the spectral data correspond to mineralogical changes the abundance
ratio of the minerals is plotted alongside the spectral analysis in Figures 9–11.
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Figure 9. OUACO drill-hole: The WQS analysis in comparison with the abundance percentage of
different minerals obtained with Corescan. The left panel is the WQS results from the spectral data
using three different values of α, peaks indicate lithological, alteration and weathering boundaries.
The rest of the panels show the abundance percentage of different minerals along the drill-hole.

For Ouaco (Figure 9), the WQS peaks indicate that the most significant changes in
the mineralogy in the upper part of the profile are mainly depend on goethite, goethite-
hematite and all the types of the smectite percentages. Toward the base of the profile, the
main mineralogical variations are based on smectite derived from serpentine, lizardite and
weathered serpentine percentages. These changes occur, respectively, (a) at depth index 2,
with an increase in goethite-hematite (goethite dominant) and hematite-goethite (hematite
dominant) percentages; (b) at depth index 9, with an increase in goethite and Mg-smectite
percentages and a decrease in Mg-Ni smectite; (c) at depth index 25 with a decrease in Mg
smectite percentage; (d) at depth index 29 with a decrease in Mg smectite percentage; (e) at
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depth index 37 with an increase in smectite serpentine percentage, and (f) at depth index
47 with an increase in smectite serpentine, lizardite and weathered serpentine percentages
and a decrease in Mg smectite percentage.
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Figure 11. BOULINDA drill-hole: The WQS analysis in comparison with the abundance percentage
of different minerals obtained with Corescan. The left panel is the WQS results from the spectral data
using three different values of α, peaks indicate lithological, alteration and weathering boundaries.
The rest of the panels show the abundance percentage of different minerals along the drill-hole.

For NGO_PB4 (Figure 10), the boundaries at depth index, 5, 11 and 15 correspond
to a relative change between goethite and goethite-hematite abundance. The boundaries
identified at depth index 20 correspond to a decrease in goethite percentage and an increase
in weathered serpentine percentage whereas depth index 23 is linked to an increase in
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lizardite. The small change at depth index 27 correspond to a small goethite increase, while
variation at depth index 31 indicates a large goethite increase with an equivalent weathered
serpentine percentage decrease. The last change at depth index 39 is due the presence of a
small amount of smectite derived from serpentine.

Similar observations can be made for boundaries detected in the Boulinda drill-hole
(Figure 11). The different detection scales (α values) provide complementary results. The
boundaries at depth indices at 3, 5, 8, 10, 13, 15, 20, 23, 25, 27, 29 and 30 all correspond
to observable changes in mineral abundances for the iron oxides in the upper part of the
profile, for weathered serpentine, smectite serpentine, lizardite and népouite, serpentine
derived from olivine and serpentine derived from orthopyroxene in the lower part of
the profile.

5.4. Precision of Boundary Detection and Dependance on Sample Size

For automated methods, the precision of boundary detection depends on the sampling
interval. For boundary detection methods based on the continuous wavelet transform,
a consistent size sampling interval is required and, therefore, if the data are provided at
varying scales, all data must be re-scaled to the same scale resulting in a loss of informa-
tion. This is not the case for WQS. For this study, most of the sampling intervals were
approximately one metre (Table 2). However, for a large section of the BOULINDA hole,
the sampling interval was much smaller. Using WQS automatically allows a more precise
identification of boundary location in this section of the drill hole.

The user needs to take the sampling interval into account when interpreting the results,
especially in the case where the sample size is not consistent down hole, as this affects the
precision of the boundary location. Additionally, the spatial correlation depends on the
number of samples not the length they occupy in the drill hole.

6. Conclusions

The WQS, based on the recurrence plot, allows identification of boundaries between
geological domains from very high-dimensional data. The method has been tested on
spectral data from three different drill-holes. The advantages of this algorithm are: (1) it
is automated and so provides consistent data analysis and repeatable results; (2) it is
computationally efficient and can be calculated quickly using a standard desktop or laptop
computer; (3) the algorithm is unsupervised and does not require any geological knowledge;
(4) it reduces very high dimensional spectral data (D = 514) into a single dimension, i.e., the
WQS profile, in which the peaks identify the lithological boundaries; (5) the significance
of the boundary can be inferred from the peak height; (6) sample intervals do not have
to be of consistent size and localised finer scale sampling produces more precise results.
This is beneficial for geologists and geological applications as it provides rapid results
and indicates to the geologist the locations of significant changes in the geology based on
the data.
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Computer Code and Software

The MATLAB code for the WQS method is available in the following public GitHub
repository https://github.com/AyhamZaitouny/Boundaries-Detection-Weight-Quadrant-
Scan- (accessed on 7 October 2021). For more information, contact the corresponding author.
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