

View

Online


Export
Citation

CrossMark

RESEARCH ARTICLE |  MARCH 08 2021

Reservoir computing with swarms 
Thomas Lymburn ; Shannon D. Algar; Michael Small; ... et. al

Chaos 31, 033121 (2021)
https://doi.org/10.1063/5.0039745

Articles You May Be Interested In

Boid Based Timetable Generation

AIP Conference Proceedings (September 2008)

Virtual ethology of aquatic animal heterogeneous behaviours

AIP Conference Proceedings (August 2016)

Learned emergence in selfish collective motion

Chaos (December 2019)

D
ow

nloaded from
 http://pubs.aip.org/aip/cha/article-pdf/doi/10.1063/5.0039745/14632461/033121_1_online.pdf

https://pubs.aip.org/aip/cha/article/31/3/033121/1059449/Reservoir-computing-with-swarms
https://pubs.aip.org/aip/cha/article/31/3/033121/1059449/Reservoir-computing-with-swarms?pdfCoverIconEvent=cite
https://pubs.aip.org/aip/cha/article/31/3/033121/1059449/Reservoir-computing-with-swarms?pdfCoverIconEvent=crossmark
javascript:;
javascript:;
javascript:;
javascript:;
https://doi.org/10.1063/5.0039745
https://pubs.aip.org/aip/acp/article/1046/1/91/861209/Boid-Based-Timetable-Generation
https://pubs.aip.org/aip/acp/article/1761/1/020057/694104/Virtual-ethology-of-aquatic-animal-heterogeneous
https://pubs.aip.org/aip/cha/article/29/12/123101/1027307/Learned-emergence-in-selfish-collective-motion
https://servedbyadbutler.com/redirect.spark?MID=176720&plid=2063251&setID=592934&channelID=0&CID=754911&banID=520996571&PID=0&textadID=0&tc=1&adSize=1640x440&matches=%5B%22inurl%3A%5C%2Fcha%22%5D&mt=1684305345936348&spr=1&referrer=http%3A%2F%2Fpubs.aip.org%2Faip%2Fcha%2Farticle-pdf%2Fdoi%2F10.1063%2F5.0039745%2F14632461%2F033121_1_online.pdf&hc=49065222289a65761732c523f1e6dca3af1a0b43&location=


Chaos ARTICLE scitation.org/journal/cha

Reservoir computing with swarms

Cite as: Chaos 31, 033121 (2021); doi: 10.1063/5.0039745

Submitted: 6 December 2020 · Accepted: 19 February 2021 ·

Published Online: 8 March 2021 View Online Export Citation CrossMark

Thomas Lymburn,1,a) Shannon D. Algar,1 Michael Small,1,2,3 and Thomas Jüngling1

AFFILIATIONS

1Complex Systems Group, Department of Mathematics and Statistics, The University of Western Australia, Crawley, Western

Australia 6009, Australia
2ARC Centre for Transforming Maintenance Through Data Science, The University of Western Australia, Crawley, Western

Australia 6009, Australia
3Mineral Resources, CSIRO, Kensington, Western Australia 6151, Australia

a)Author to whom correspondence should be addressed: thomas.lymburn@research.uwa.edu.au

ABSTRACT

We study swarms as dynamical systems for reservoir computing (RC). By example of a modified Reynolds boids model, the specific symme-
tries and dynamical properties of a swarm are explored with respect to a nonlinear time-series prediction task. Specifically, we seek to extract
meaningful information about a predator-like driving signal from the swarm’s response to that signal. We find that the naïve implementation
of a swarm for computation is very inefficient, as permutation symmetry of the individual agents reduces the computational capacity. To
circumvent this, we distinguish between the computational substrate of the swarm and a separate observation layer, in which the swarm’s
response is measured for use in the task. We demonstrate the implementation of a radial basis-localized observation layer for this task. The
behavior of the swarm is characterized by order parameters and measures of consistency and related to the performance of the swarm as a
reservoir. The relationship between RC performance and swarm behavior demonstrates that optimal computational properties are obtained
near a phase transition regime.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0039745

Reservoir computing (RC) is the art of utilizing one of a wide
range of excitable systems for machine learning. Tasks like time
series prediction and spoken-digit recognition have been demon-
strated with novel electronic, photonic, or mechanic systems,
as well as with numerical RC models, among others. We add
biologically inspired computational swarms to this list of reser-
voir substrates. The common foundation of the diverse field of
RC is given by nonlinear dynamical systems that are employed
for information processing in an input–output scheme. We con-
sider here a numerical model of a swarm subject to external
forcing by a predator that moves on a chaotic trajectory. The
swarm is a dynamical system that is generally suitable for RC.
We find that the permutation symmetry with regard to identi-
cal particles of the swarm prevents the reservoir from functioning
well in a simple setup. An additional observation layer enhances
functionality when measuring the shape of the swarm rather
than individual particle trajectories. We characterize the swarm
dynamics with order parameters, as well as with a consistency
measure that captures the proportion of signal and noise, and
relate these measures to RC performance. We demonstrate that
a swarm is capable of performing meaningful prediction of its
continuous stimulus—that is, simple computational swarms can

act as productive information processing systems. Moreover, we
propose the RC paradigm as a means of analysis of swarming
systems.

I. INTRODUCTION

In responding to perturbations by an external signal, dynami-
cal systems naturally process the information carried by that signal.
Reservoir Computing (RC) is a growing field of study that seeks
to utilize this information processing capacity for various forms
of functional approximation, time series analysis, and machine
learning.1 With roots in neuroscience and computer science, neu-
ral networks are often used to implement the RC framework, as
with liquid state machines and echo state networks.2,3 However, to
operate successfully as a substrate for RC a dynamical system need
to satisfy only some basic properties, such as the separation prop-
erty (different inputs result in separable outputs), the approximation
property (similar inputs lead to similar outputs), the fading memory
property (information about recent inputs is retained), and the con-
sistency property (outputs are a function of the input). This effec-
tively translates to a requirement that the dynamical system must
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generate a broad range of nonlinear functions that are relevant for a
given task.4 Hence, other classes of high-dimensional systems, such
as delay systems,5,6 cellular automata,7 and self-organizing systems,8,9

have also been used as reservoirs. There are also many physical
implementations of the RC principle, with potential for fast and
efficient computation.1

In this work, we demonstrate for the first time how a swarm
can act as a reservoir computer. Swarms are complex dynamical
systems comprised of many simple agents or active particles, with
each individual limited in their ability. The power of the swarm
lies in the interaction of these agents as a source of information
propagation, which engenders emergent group behavior and swarm
intelligence. The latter has previously been used for computation
in a variety of contexts, such as optimization and routing.10 For
example, ant colony optimization has been used to “solve” the trav-
eling salesman problem with local incentives and communication
via pheromones leading to motion along a path that optimizes the
objective function.11 The RC approach proposed in this work is dis-
tinct from previous optimization methods, as instead of searching
for a location or path in the space the agents occupy, we measure the
response of the swarm to perturbation. We then use the functions
generated by that response to approximate a target function.

In these biological and bio-inspired systems, appropriate rules
governing the local interactions of the swarm are central to its
behavior. The individual will often have autonomy over its move-
ment and the complexity of movement is too great to be described
by differential equations. Agent-based models are, therefore, an
increasingly utilized framework for implementing the movement of
these many-particle systems. Rules that govern the evolution of an
individual’s state can be built from the bottom up by incorporating
non-physical interactions and local knowledge into the movement
decisions. The motion of each individual can then be numerically
simulated and the resulting group dynamics can be observed. Bird-
like objects (boids) that steer their own trajectory in this way provide
an efficient method for the generation of realistic group behaviors
and greater global controllability. Consequently, such models are
ubiquitous in studies of collective behavior, collective motion, and,
more recently, collective cognition.

An agent-based model (ABM) is a high-dimensional dynam-
ical system with optional external forcing and thus is a candidate
for RC. The concept of ABM embraces a large number of different
equations of motion, mainly distinguished by whether the agents
(particles) are active or passive. Physical (pseudo-)particles in var-
ious settings may also satisfy the requirements for RC and thus
present interesting novel RC designs. Nevertheless, in this work, we
focus on bio-inspired ABMs. This approach has two complementary
aims. First, we propose swarms as candidates for RC by studying this
combination on the fundamental level of dynamical systems. Sec-
ond, the RC framework may serve as a novel way of characterizing
and measuring the information flow and signal transformation in
swarms. The ABM and RC modeling paradigms have similar and
complementary approaches to processing information. Both were
integrated for the first time in Ref. 12, where trajectories generated
from the ABM provided training data to the RC and the trained
output from the RC was then used to update the agent’s state in a
separate ABM, ultimately demonstrating that the proposed agent-
based movement rules were learnable. Here, we take advantage of

the high level of transparency in ABM, which allows for a detailed
and quantitative study of the relationship between the dynamics of
the swarm and its function as a reservoir.

The remainder of this paper is organized into the following sec-
tions: an outline of the ABM used for the swarm layer (Sec. II A);
how the swarm is employed as a reservoir by introducing an addi-
tional observation layer in the RC (Sec. II B); exploration of the
swarm’s behavior and subsequent influence on its capability as a RC
(Sec. III); followed by our concluding remarks.

II. BUILDING A RESERVOIR

A. The swarm model

We use an agent-based model derived from the Reynolds boids
model.13 In this model, each agent (boid) experiences a set of forces
corresponding to simple principles of separation, alignment, and
cohesion. The actual implementation of the forces can take many
forms. In this work, we define the separation and alignment objec-
tives as the result of interaction within the flock via social forces
of repulsion and Vicsek-like alignment that are activated within
defined distances.14 Global attraction to a home ensures cohesion
without the need for more involved boundary considerations. The
repulsion (r), alignment (a), and homing (h) forces on the ith
particle with position xi and velocity vi are

Fri =

Nr
∑

j=1

xi − xj

‖xi − xj‖
2
, (1)

Fai =

Na
∑

j=1

vj − vi, (2)

Fhi = xhi
− xi, (3)

where Nr and Na are the number of neighbors, j, within the repul-
sion and alignment radii rr and ra, respectively, and || · || denotes
the Euclidean norm. The home location for each agent is xh and we
position this at the origin. We also include a friction-like force that
aims to achieve an agent speed of s = 10 and ensures boundedness
and stationarity,

Ff i
= −vi

(‖vi‖ − s)

s
. (4)

The total force experienced is the sum of all forces,

Fi(t) = KaFai + KrFri + KfFf i
+ KhFhi, (5)

where the K coefficients determine the strength of each force. This
force is then processed by a sigmoidal wrapper, which can be inter-
preted as the disconnect between an agent’s desired motion and their
physical capabilities,

Fi(t) 7→ α tanh(βFi(t)). (6)

We heuristically choose α = 200 and β = 0.1 to produce reasonable
swarm behavior. The qualitative behavior of the swarm does not sen-
sitively depend on these parameter choices but is robust within an
order of magnitude. This also has the effect of limiting the extreme
responses that cause undesirable behavior.
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Assuming a constant mass for each agent, the system evolves
according to

xi(t) = Fi(t). (7)

To implement the evolution, we use an Euler integration to update
each point-like particle’s position and velocity every1t,

vi(t +1t) = vi(t)+ Fi(t)1t, (8)

xi(t +1t) = xi(t)+ vi(t)1t. (9)

The time increment1t = 0.02 was chosen to be sufficiently small to
ensure smooth dynamics.

B. The swarm as a reservoir

We seek to use the swarm as the reservoir of an RC scheme.
This entails measuring the response of the agents to a signal carry-
ing perturbation and using the measured response to approximate
the desired function of that signal. To do so, we need to answer two
questions: First, how do we inject the signal into the reservoir? Sec-
ond, how do we measure the swarm’s response to that signal for use
in a simple readout mechanism as typically employed in RC?

In other RC structures, the choice of how to input informa-
tion into the system is often obvious or predetermined. For example,
in echo state networks, an input node with its state fixed as the
input signal is used. This node connects to the nodes of the reser-
voir according to the weights on its outgoing connections in a way
that is indistinguishable from other nodes. For a photonic reser-
voir, electrical or optical modulation of the dynamical element,
e.g., a semiconductor laser, is determined by physical constraints
like bandwidth limitation and accessibility of relevant degrees of
freedom.15–17 In particular, the delay-based architecture, where a
number of virtual nodes are derived from a single dynamical ele-
ment, relies on temporal multiplexing for signal injection.5 How-
ever, when using the swarm as a reservoir, there are a range of
methods that may be used. In a physical setting, in which actual
particles of some type form the “swarm,” one may think of external
fields or other mechanical forces acting on these particles. Perhaps,
the most natural solution in a bio-inspired setting, and the one
which we will use, is to take inspiration from the original biologi-
cal context of these models and input the signal via a predator which
the agents will try to avoid. To input information into the reservoir,
the predator’s position is fixed by the signal on which we wish to
perform computation. As the agents of the swarm flee the predator,
their motion will be determined by the location and recent history
of the predator, and thus by the signal. We, therefore, include an
additional force into Eq. (5) as

Fpi
= H(rp − ‖xi − xp‖)

xi − xp

‖xi − xp‖
2
, (10)

Fi(t) = KaFai + KrFri + KfFf i
+ KhFhi + KpFpi

, (11)

where xp is the position of a predator and H(·) is the Heaviside
function, which is activated when the predator is within rp of an
agent.

This is not the only biologically plausible way to input infor-
mation into the swarm. Alternatively, we could flip the scenario and

have the agents attracted to the predator, in effect making the agents
the predators chasing a single desirable target. Another possible
method takes inspiration from soft control of swarms, where one or
more “shill” agents do not respond to the other agents, and instead
move on a predetermined path.18 The other agents do not recognize
the special nature of the shill agents and respond to them as they
would any other agent. Although this method does not involve any
special rules for the agents, it is capable of controlling the motion
of a swarm, and so may be a suitable method to inject information
into the reservoir. Finally, one could add an arbitrary forcing term
corresponding to the input signal into the equations of motion of
the agents. We leave further discussion of these methods to later
research and focus on the predator driving the swarm.

To demonstrate this method, we will fix the path of the preda-
tor, xp, to the x- and y-coordinates of a realization of the Lorenz
system with the standard parameter values in the chaotic regime,

ẋL = σ(yL − xL),

ẏL = xL(ρ − zL)− yL,

żL = xLyL − β zL,

(12)

with σ = 10, ρ = 28, and β = 8
3
. We rescale the state of the Lorenz

system for the predator’s position so that the predator’s path and
the swarm are of similar size. The rescaled coordinates are labeled
x̄L, ȳL, and z̄L and have a standard deviation of 2 and a mean of 0.
The predator samples the Lorenz system with a sampling time of
0.02 units. This value was chosen to ensure that the speed of the
predator is similar to the speed of the agents in the swarm. If the
predator is significantly faster than the agents in the swarm, then
the agents do not have enough time to respond to the motion of the
predator and instead the predator acts as a source of noise to their
autonomous motion. Alternatively, if the predator is significantly
slower than the agents, they are able to respond instantaneously to
the predator’s movement. The result of this is that the drive becomes
approximately adiabatic. Neither of these scenarios allow the swarm
to respond in a way that is dependent on the current and recent posi-
tions of the predator and so are unlikely to lead to good reservoir
dynamics. The choices of the scaling factor and sampling time were
made heuristically and with little optimization. An example of the
swarm’s response to this drive is shown in Fig. 1.

The second step of the standard RC approach is to measure
the multivariate response of the reservoir to the perturbation by the
input. Once the state is observed, a projection is found by linear
regression in order to best estimate a target time series, presum-
ably a function of the input time series. In order to do so, one
needs to consider how to observe the state of the system for use
in linear regression. The distinction between the true and observed
reservoir state is subtle, but potentially important in physical RC
applications.19 Here, we will show the importance of examining this
distinction by first considering the naïve approach of taking the two
position coordinates of the N agents in the swarm and forming a 2N
node reservoir. We wish to investigate how the swarm’s response
dynamics can be used for RC and so do not include the predator’s
position in the reservoir. The state of this reservoir is labeled rp(t)
and the training is performed using ridge regression with a training,
validation, and a testing set.
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FIG. 1. Typical response of a swarm (blue dots) of N = 200 agents to the predator (red dot) with trails showing their previous positions. The parameters of the swarm model
are chosen to be Kr = 1, Ka = 0.1, Kh = 2, Kp = 100, and Kf = 20, with radii rr = ra = 1 and rp = 2.

To test our reservoir, we will task it with predicting x̄L with
a prediction horizon of 0.5 units, which is approximately half a
Lyapunov time. We drive a swarm of N = 200 agents, each with
identical equations of motion. The weights for the respective forces
are as in Fig. 1 (Kr = 1, Ka = 0.1, Kh = 2, Kp = 100, and Kf = 20,
with radii rr = ra = 1 and rp = 2). Other parameter choices were
experimented with and lead to comparable results. A detailed sweep
of Kr and Ka is discussed in Sec. III. All other parameters are fixed
for the remainder of this work. The swarm’s prediction is shown in
Fig. 2. Performance is measured by a correlation coefficient between
the reservoir’s trained output y(t) = Worp(t) and the target z(t)
= x̄L(t + 0.5) in the testing set

R =

〈

z(t)y(t)
〉

√

〈

(z(t))2
〉 〈

(y(t))2
〉

, (13)

where 〈·〉 denotes averaging over time. This configuration of the
reservoir achieved a correlation coefficient of only 0.19.

This poor performance stems from the choice of the agent’s
positions as the reservoir coordinates. Since each of the agents has
identical equations of motion, there is a symmetry to any permuta-
tion of the agents. The effect of symmetry on reservoir computers
has previously been investigated in echo state networks.20 Symme-
tries in the network were found to decrease the covariance rank of
the reservoir’s state and thus be detrimental to performance. In this
example, we have an extremely symmetrical system, leading to a lack
of performance.

The effect of this symmetry in the swarm can be explained
as follows. In most parameter regimes studied here, the agents are
free to move throughout the swarm and may interchange positions
with one another if given enough time. If then a recurrence of the
drive happens, i.e., the chaotic trajectory comes arbitrarily close to

a state visited earlier, the same drive pattern acts on a swarm with
different—including exchanged—particle positions. The two similar
stimuli will then lead to significantly different responses, meaning
that the swarm trajectory will not be useful for linear readouts. This
variability in response to repeated inputs is captured by the con-
cept of consistency, which is a measure of the degree of functional
dependence of a dynamical system to a driving signal.21–23 The fluc-
tuations of particle positions in response to the input of the swarm
then correspond to a lack of consistency.

In the context of RC, consistency may be thought of as an
extension of the echo state property (ESP), which refers to the state
of the reservoir being a function of the input signal only. The ESP
corresponds to complete consistency, whereas the general case is
given by some level of inconsistency which may be understood
as noise in the reservoir. The consistency correlation γ 2 measures
the degree to which the reservoir state is a function of the input
signal.22,24 This is conceptually similar to a signal-to-noise ratio,
although with a different measure that is based on pairwise correla-
tion in a replica experiment. The value of the consistency correlation
is bounded by 0 ≤ γ 2 ≤ 1, apart from finite-size effects and given
ergodicity, with the upper bound corresponding to the ESP. Con-
sistency of the reservoir’s readout determines a fundamental limit
on its performance,22,23 with the correlation between a reservoir’s
output and the target bounded by γ . A consistency spectrum (or
consistency profile) describes the multivariate response of the reser-
voir by measuring the directional distribution of signal and noise
among all degrees of freedom. It consists of a set of correlations

{γ 2
k }

N

k=1, which measure the consistency along a corresponding set
of orthogonal projections of the multivariate state. For details, see
the Appendix or Ref. 23.

Figure 2(b) shows the consistency profile of the swarm. The
profile is calculated with a method that utilizes the permutation
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FIG. 2. (a) The x-coordinate of the Lorenz system 0.5 units in the future (black).
The prediction by the particle position based reservoir is shown in red. The pre-
diction by the center of mass reservoir is shown in blue. Both predictions are
extremely poor, and the center of mass reservoir is only slightly less bad. (b)
Consistency profile of the reservoir truncated to the largest 100 components. (c)
Center of mass of the swarm (black) and the state of the swarm projected onto
the two highly consistent components from panel (b) (red dots).

symmetry (see the Appendix, Subsection 2) to reduce finite-size
effects. There are two components with a high degree of consis-
tency, whereas the rest of the spectrum is equal to zero. The two
non-zero components correspond to the center of mass (CoM) of
the swarm, which is the only signal-carrying mode because each
particle has an identical equation of motion. In contrast, the devi-
ation of each particle from the CoM trajectory does not have any
mutual information with the drive. Figure 2(c) shows the CoM tra-
jectory together with the equivalent projection on the two non-zero
consistency components.

The total number of effectively responsive degrees of freedom
is given by the consistency capacity,25

2 =
∑

k

γ 2
k . (14)

In other words, the capacity measures the number of linearly inde-
pendent functions produced by the reservoir that have a good degree
of consistency. The capacity is bounded by the state space dimension
(in this case,2 ≤ 4N) and may be thought of as the effective size of
a reservoir or a soft covariance rank (see the Appendix, Subsection
1). The capacity of this swarm reservoir is 2 = 1.68, meaning that
the entire swarm is approximately equivalent to a reservoir of size
N = 2. In order to support the argument that the swarm reservoir
reduces to its CoM, we compare the performance of the full swarm

reservoir and one made out of the two CoM coordinates only. The
CoM reservoir achieves a correlation of R = 0.20, while the particle
position reservoir has a correlation of R = 0.19.

C. Observation layer

The choice of particle positions as the reservoir coordinates
led to symmetry issues due to the identical equations of motion of
each agent. These issues are reflected in the consistency profile of
the reservoir and significantly restrict the capacity, leading to poor
reservoir performance. One way to address this problem is to mod-
ify the equations of motion to break the symmetry. For example,
we have experimented on a swarm with separate home locations
for each agent. This design forces the agents to remain in differ-
ent locations within the swarm and thus gives rise to a level of
diversity that succeeds in enhancing consistency capacity and per-
formance. We have also experimented with breaking the symmetry
by assigning each agent a distinct value of Kf. This did not result in a
significant increase in performance. Theoretically, any heterogene-
ity introduced to the equations of motion will remove the limit on
consistency capacity. However, this is only a necessary but not suf-
ficient criterion for performance,25 meaning that the introduction
of heterogeneity may affect other properties of the reservoir in an
unfavorable way simultaneously to the increase of capacity.

An alternative method to bypass the symmetry collapse with-
out intervening with the swarm is to add an observation layer. The
method of observation has previously been used to enhance the non-
linear transformation provided by the reservoir without changing
its dynamics.19 Here, we will aim to bypass the swarm’s symmetries
by careful choice of how to observe the reservoir’s internal state.
While the above consistency analysis identified only two respon-
sive components in the swarm, intuitively there appears to be more
information in the motion of the swarm as a single entity than what
is given by the CoM only. This apparent contradiction is resolved by
recalling that consistency measures only indicate the first moment
of the time-dependent state distribution in response to the drive.22,26

The unlabeled particles form a realization of this distribution. We
note that the distribution in the spatial domain is a marginal of the
full state-space distribution, and we work with the approximation
that multiple particles of a single realization are in the spatial domain
equivalent to multiple realizations. This would be correct if the par-
ticles were not interacting, however, we find that the approximation
holds well also for interacting particles.

In order to obtain a better estimate of the distribution, we over-
lay several realizations of the swarm, i.e., solutions from different
initial conditions all receiving the same driving signal, see Fig. 3.
Mutual information with the drive is contained in the entire shape
of the distribution, offering significantly more components than just
the CoM. Consistency does not play a role on this level of consider-
ation, because the leading eigenvalue determining the evolution of
the PDF is negative.26

We aim to characterize the distribution, and thus extract infor-
mation about its shape, at individual points in time. One way to
do this is by calculating statistical moments (i.e., mean, standard
deviation, skewness, curtosis, and higher orders). These moments
are tensors with time-dependent elements that reflect the tem-
poral evolution of the distribution. Another way is given by the
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FIG. 3. Underlying time-dependent probability distribution, estimated by overlaying 1000 replicas. The time steps align with those in Fig. 1. The blue dots show one of the
replica, which were used to estimate the distribution.

statistical modeling paradigm. If a model is built for each time
step from a fixed dictionary of candidate functions, for example,
f(x, y, t) ≈

∑

i αi(t)ϕi(x, y), then the time-dependent model coeffi-
cients will reflect the shape of the distribution. We will demonstrate
the statistical modeling approach to describe the underlying distri-
bution, though we note that experiments with statistical moments
were also performed. In general, those reservoirs performed worse
than the version we will discuss here, possibly due to higher order
moments being needed to accurately describe the shape of the
distribution.

From the modeling perspective, we wish to extract information
about the underlying distribution based on a single realization of
the swarm. For example, one may estimate discretized values of the
time-dependent PDF and define these as the observables. Estimates
based on binning can lead to discontinuities as agents enter and
leave bins. Instead, we choose to build an observation layer based on
kernels. Inspired by the radial basis function modeling technique,27

we place a set of Gaussian observation kernels on the space of the
swarm. The kernel functions are defined as

ψm(x) = e−
(x−cm)

2

2wm , (15)

where m = 1, 2, . . . , M enumerates the functions and cm and wm

determine the location and width of the kernels. Using these kernels,
we measure the velocities and positions of the agents in order to
obtain the observations

r1,m(t) =

N
∑

i=1

ψm(xi(t)), (16)

r2,m(t) =

N
∑

i=1

ψm(xi(t)) vxi(t), (17)

r3,m(t) =

N
∑

i=1

ψm(xi(t)) vyi(t). (18)

The first of these functions effectively counts the number of agents
in the receptive field of a kernel, with the soft boundary removing
discontinuities. The next two functions return the average velocity
of the agents near the center of the kernel. Together, they describe
the motion of the swarm at different locations in space. The 3M
observations are concatenated to obtain the reservoir state, which
is forwarded to the linear readout. We label this reservoir state
rg(t). The entire setup of our reservoir from input to prediction is
summarized in Fig. 4.

In order to determine the location and width of an observation
function, a random agent and a random point in time are chosen.
The location of the agent at that time sets the location of the cen-
ter of the observation kernel cm. This choice ensures that there are
no observation functions located away from the swarm and that the
distribution of observation functions reflects the distribution of the
swarm integrated over time. The width of the kernel is set to the dis-
tance to the 5th neighbor of the agent used to determine the location
of the kernel at that time. This ensures greater resolution where the
swarm is denser and gives less importance to outlying agents. We
note that the described design of the observation layer contains sev-
eral choices that do not necessarily optimize reservoir performance.
Many other distributions, including regular and purely random dis-
tributions, were also experimented with and lead to similar results.
An example of our standard kernel design is shown in Fig. 5(c).
There is some overlap of the kernel functions which leads to redun-
dancy, in the sense that adding a kernel function that overlaps
with the existing ones will not increase reservoir capacity signifi-
cantly. Decorrelation of the kernel functions through an unsuper-
vised pre-training step may lead to maximally effective observation
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FIG. 4. Schematic of the swarm reservoir. The input signal is injected into the swarm via the trajectory of the predator. In fleeing the predator, the swarm provides a nonlinear
transformation of the input signal. Information about this transformation is carried in the shape of the swarm, which is captured by a layer of observation kernels. The
measurements on these kernels are combined by a linear readout to synthesize the target, in this case a prediction of the Lorenz system.

layers, however, such technique is out of the scope of this
study.

We build a reservoir with M = 200 observation kernels from
the same swarm trajectory that was used in Fig. 2. The time

FIG. 5. (a) Prediction of the Lorenz x-coordinate 0.5 units in the future with
a reservoir formed by Gaussian kernel observation functions. (b) Consistency
profile of the Gaussian kernel reservoir truncated to 100 components. (c) The
positions and widths of the observation kernels.

series prediction task is shown in Fig. 5, achieving a correlation
of R = 0.74.

The observation layer was introduced to measure the shape and
motion of the swarm as a single entity. As the observation func-
tions are invariant under permutations of the agents, the symmetry
issue which previously led to decreased capacity is bypassed. Figure
5(b) shows that the addition of the observation layer on top of the
swarm layer has lead to a substantial increase in capacity. While this
capacity of 2 = 60.1 may appear relatively small compared to the
total number of kernels, this means—recalling that there are only
N = 200 agents—that on average about three agents create a con-
sistent observable. This is a massive gain with respect to the direct
observation in which the response of the swarm effectively collapses
to the CoM. In terms of capacity, the swarm with the observation
layer is equivalent to an ESN with about 60 nodes and the ESP.
Though it is common practice to simply use larger reservoirs, such
an ESN is capable of performing simple computation tasks, and we
observe that this is also true for the swarm with regard to predicting
the Lorenz system [Fig. 5(a)].

III. INFLUENCE OF SWARM BEHAVIOR ON RC

CAPABILITY

Basic boid models have been shown to produce a spectrum
of behaviors from unorganized swarming to ordered milling and
directed motion. The purpose of the following exploration is to
understand which types of group behaviors, if any, are most capa-
ble of “learning” the predator’s movement and therefore performing
well as a reservoir.

The group’s behavior can be partially categorized into collec-
tive modes of motion by analyzing the standard order metrics for
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polarization and rotation,28

8P =
1

N

∣

∣

∣

∣

∣

∑

i

vi

|vi|

∣

∣

∣

∣

∣

, (19)

8P ∈ [0, 1] with8P = 1 for a perfectly aligned group.

8R =
1

N

∣

∣

∣

∣

∣

∑

i

xCi
× vi

|xCi
× vi|

∣

∣

∣

∣

∣

, (20)

where xCi
are centered positions xCi

= xi(t)− xCoM and hence the
numerator is the angular momentum of each particle i. We take the
absolute value of the normalized angular momentum so that 8R ∈

[0, 1], with 8R = 1 indicating a perfectly coherent rotation and
8R ∼ 0 for non-coherent group rotation as positive and negative
contributions (anticlockwise and clockwise rotation, respectively)
cancel.

For a simulation of 5 × 104 time steps, we calculate the time
average 〈8〉 after an initial period of 1000 time steps. These met-
rics alone do not perfectly capture the complexity of the swarm
dynamics as they are global metrics for a single, specific type of
behavior that is averaged over time, however, for the purpose of this
exploration they are sufficient indicators.

A pseudo-logarithmic parameter sweep over the repulsion and
alignment strengths, Kr and Ka, was done as these forces were found
to be the most influential with regards to both the swarm behav-
ior and the RC performance. Specifically, we test values of Kr, Ka ∈

[0.001, 100]. The swarm is presented with two distinct scenarios: a
safe world, free from the predator with Kp = 0 and; a “risky” envi-
ronment where behavior is largely driven by fear of the predator
with Kp = 100. A range of predator strengths were also investi-
gated, indicating a gradual change between these two extremes (not
shown). Other parameters are kept fixed as in Sec. II B. We record
both the behavior of the swarm and performance of the RC in each
of these scenarios over the entire grid of interest and display this in
Figs. 6 and 8.

Without the predator, the swarm demonstrates a rich variety
of dynamics as is expected of boid-like models (Fig. 6). When the
predator is included, the behavioral state of the swarm naturally
adapts. Sharp transitions with minor adjustments to force strengths
are replaced by more gradual changes in behavior (Fig. 6). The
behavior of the swarm demonstrates a transition from a highly con-
densed and ordered flock (A), through a dynamically rich “critical”
regime (B) into a “disordered” regime (C) as the repulsion force is
increased. Typical behavior in these regimes is shown in Fig. 7. Full
simulations can be found online (Multimedia view). In connection
to physical systems going through a phase change, we view this as
a single swarm droplet evaporating into a gas-like state, with the
critical behavior occurring at the boiling point. In this analogy, the
repulsive force parameter Kr effectively plays the role of temperature
in systems of physical particles.

Figure 8 shows the RC performance R across parameter space.
We note a strong dependence on Ka and Kr. In particular, reasonable
performance is found in a region where Ka < Kr < Kp. A qualitative
comparison of order and performance in Figs. 6 and 8 suggests that
small amounts of order may substantially improve the capability of
the reservoir. Conversely, a reduction in performance is likely with

FIG. 6. The time averaged magnitude of the polarization (row 1) and rotation (row
2) order parameters for the case of no predator Kp = 0 (column 1) and Lorenz
predator with Kp = 100 (column 2) are indicated by color as a function of varying
repulsive and alignment force strengths plotted on a log scale. Each color point is
a single simulation. Labels A, B, C, and D correspond to the behaviors shown in
Fig. 7.

FIG. 7. Typical behaviors of the swarm for different parameters. (a)
Ka = 0.01, Kr = 0.01, (b) Ka = 0.01, Kr = 2, (c) Ka = 0.01, Kr = 50, and (d)
Ka = 10, Kr = 1. Full simulations available online. Multimedia views: https://
doi.org/10.1063/5.0039745.1; https://doi.org/10.1063/5.0039745.2; https://doi.
org/10.1063/5.0039745.3; https://doi.org/10.1063/5.0039745.4.
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FIG. 8. Points in the (repulsion, alignment) parameter space are mapped to their
(a) polarization order and (b) capacity for Kp = 100. The red dashed lines indi-
cate Kr = Ka and Kr = Kp. (c) Performance against polarization order. Colors
indicate the parameters Ka and Kr (see the inset). Labels A, B, C, and D corre-
spond to characteristic behaviors in Fig. 7. (d) Performance against polarization
order thresholded such that only reservoirs with2 > 3 are shown.

order that is so large that groups are rigid and unable to respond
diversely.

To better understand the relationship between order and per-
formance, we plot these two metrics directly against each other in
Figs. 8(c) and 8(d). We focus only on the polarization order. For
sufficient drive strength, Kp, an arc-like structure emerges. This is
also visible for other order measures but is not shown here. All
subsequent analysis is for polarization only.

The arc is generated by the range of swarm configurations,
which is roughly spanned by the three points: (A) high polarization
and low performance; (B) medium polarization and high perfor-
mance; and (C) low polarization and low performance. (A), (B), and
(C) here correspond to those used previously describing the con-
densed (droplet-like), critical (“boiling”), and disordered (gas-like)
regimes, respectively. Taking slices through the parameter space for
a constant alignment strength, we traverse the arc from right to
left as the repulsion strength is increased. The arc structure dis-
appears for unreasonably large alignment force (D), where the Kr

dependence collapses to a cluster of intermediate order with low
performance.

Regarding the suitability of the swarm as a reservoir in each of
these regimes: (A) has poor performance due to a lack of diversity;
(B) has good performance due to the swarm’s ability to respond to
the predator while maintaining cohesive and at least locally ordered
motion with “interesting” oscillations and pulsations of the swarm;
and (C) again has poor performance, but due to particles moving

FIG. 9. Polarization order for the case of (a) Kp = 0 and (b) Lorenz predator
with Kp = 100. Performance is determined for both plots by the swarm when
the predator is turned on with Kp = 100, i.e., the y-axis values are the same
in both plots. Thresholds of 〈8P〉 < 0.2 and 〈8P〉 > 0.8 are shown in red and
blue, respectively. The thresholded points in (a) are mapped to their corresponding
points in (b).

in a seemingly random fashion with little impact by the modulation
from the predator.

These observations are further supported by the consistency
capacity measure, Eq. (14), see Fig. 9(b). There is good agreement
between the areas of high performance and high capacity. In par-
ticular, we note that these areas correspond to the aforementioned
triangular region Ka < Kr < Kp. An intuitive explanation of this
domain is given by the competing roles of repulsion and alignment,
which tend to decorrelate and correlate the particles, respectively.
The principle of RC relies on the reservoir producing a diverse range
of functions, so it is important for the decorrelating repulsion force
to dominate the alignment. This holds for sections (A) and (B).
However, if Kr is increased to the level of Kp [sections (B) and (C)]
and beyond, then the repulsion force between particles exceeds the
predator force, resulting in decreasing impact by the predator sig-
nal. This leads to reduced functional dependency of the swarm on
the input signal, and thus lower capacity and poorer performance.

The origin of the arc can be further understood by observing
the behavior of the swarms in the absence of a predator. In Fig. 9(a),
we plot the polarization order of the swarms without the predator,
as well as the eventual performance when the predator is intro-
duced. Interestingly, high performance can come from a swarm that
has either high or low polarization originally. We threshold based
on the polarization order in the absence of a predator (〈8P〉 < 0.2
and 〈8P〉 > 0.8) and map those points to the corresponding ones in
Fig. 9(b), which shows the performance and order with the predator.
The high and low polarization regions merge at the top of the arc.
This implies that a good reservoir does not necessarily result from
a swarm that is intrinsically in a moderate order regime. Rather,
it is the swarms that readily adapt their behavior in response to a
perturbing signal, which have the best characteristics for reservoir
computing.

IV. DISCUSSION AND CONCLUSION

We have presented an analytical and computational study of
information processing in complex dynamical systems. Processing
here is understood as the nonlinear transformation of signals in

Chaos 31, 033121 (2021); doi: 10.1063/5.0039745 31, 033121-9

Published under license by AIP Publishing.

D
ow

nloaded from
 http://pubs.aip.org/aip/cha/article-pdf/doi/10.1063/5.0039745/14632461/033121_1_online.pdf

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

a drive response scheme, where a dynamical system is subject to
an information-carrying excitation. We have studied this by the
example of active-particle swarms within the reservoir computing
paradigm. By merging these two concepts, we have laid the founda-
tion for a broad range of developments in biology, machine learning,
and other forms of unconventional computation.29 On the one hand,
our design may be extended toward novel forms of physical reser-
voir computing like using ion traps subject to laser excitation as
a medium for ultra-fast signal throughput. This might ultimately
lead to hybrids of reservoir and quantum computing.30 On the other
hand, the reservoir computing framework can be interpreted as a
form of nonlinear analysis that offers a novel way of understanding
the information flow in biological systems. The prediction capacity
of the swarm as a reservoir thus may be read as an inherent potential
of the whole system to augment the responsiveness of the individual
agents to predator attacks. Future studies may aim at the correla-
tion between the RC ability of the swarm and its fitness as measured
by other means. Finally, the design of robotic swarms31 may benefit
from the nonlinear dynamics theory of how information propagates
and is being transformed in the interaction of active agents.

Within the fundamental mathematical context of dynamical
systems as considered here, swarming systems are suitable candi-
dates to operate as a reservoir computer due to their diverse and
high-dimensional response to a driving signal. We have imple-
mented a chaotic time series prediction task such that an agent-
based model receives the driving signal via the movement of a
predator. For indistinguishable particles, the naïve approach of iden-
tifying the individual particle coordinates with reservoir variables is
ineffective, because the permutation symmetry reduces the respon-
sive degrees of freedom to the center-of-mass coordinate only. An
additional observation layer solves this problem by capturing infor-
mation from the time-dependent distribution of particles. We used
randomly placed Gaussian kernels as observation functions to gen-
erate the reservoir variables, resulting in a significant improvement
in performance. In addition to bypassing the symmetry issues, the
observation layer provides robustness to the loss or gain of agents,
as the distribution of the swarm remains largely unaffected. This
may be an advantage of this method in potential future applica-
tions. Were this system be deployed for operational time series
prediction tasks, we expect that this kernel structure would need
to be optimized. Proceeding with a naïve random placement of
kernels, we employed a consistency measure to indicate the compu-
tational capacity of the reservoir, showing an effective number of 60
responsive degrees of freedom extracted from a 200-particle swarm.

We studied reservoir computing performance over a range of
interaction parameters, as well as the subsequent dynamical regimes
of the swarm as characterized by common order parameters. We
found that swarms operating in a critical regime of intermediate
polarization order were most responsive to the predator and per-
formed best as a reservoir. The observed transition in behavior from
fluid to a gas-like state of the swarm corresponds to a transition from
low to high and back to low performance. This supports the idea
of information processing capability being optimized at criticality.32

Extensions and more detailed explorations of this work will likely
lead to a better understanding of what a swarm is capable of learn-
ing and how information propagates within it, ultimately extending
our understanding of swarm intelligence in terms of computation,

as well as information processing capacity of a dynamical system in
general.

ACKNOWLEDGMENTS

We would like to thank Ben Giangiulio for his assistance in
performing simulations. T.L. is supported by the Australian Gov-
ernment Research Training Program at The University of Western
Australia. S.D.A. is supported by the Australian Research Coun-
cil Discovery through Grant No. DP200102961. M.S. is partially
supported by the Australian Research Council through the Centre
for Transforming Maintenance Through Data Science (Grant No.
IC180100030) funded by the Australian Government.

APPENDIX: CONSISTENCY ANALYSIS

The analysis of the consistent response of a multivariate system
starts with the replica test, an extension of the Abarbanel test for
generalized synchronization.33 Two copies of the system are driven
with an identical drive signal but from different initial conditions.
These are chosen to be close in order to make sure the two trajec-
tories are on the same attractor, in case there is more than one. The
different responses may be labeled x(t) and x′(t) and are assumed to
have zero mean. We assume sufficiently long time series to neglect
any finite-size effects. Each replica may be decomposed into a signal
and a noise component x(t) = s(t)+ n(t) and x′(t) = s(t)+ n′(t).
The signal component s(t) is defined as the ensemble average of an
infinite number of replicas, and the noise component is defined as
the remainder for each replica. The degree of consistency is then
found by comparing the ratio of the signal component to the full
response. For the univariate case, this can be found by the ratio of
the variances

γ 2 =
〈s2〉

〈(s + n)2〉
, (A1)

where γ 2 is termed the consistency correlation.
In the multivariate case, a method analog to principal compo-

nent analysis (PCA) is performed to decompose the response into
a set of characteristic modes with the consistency spectrum {γ 2

k } as
follows. First, the covariance matrix is calculated as

[Cxx]ij = 〈xi(t)xj(t)〉. (A2)

Eigendecomposition of this positive semi-definite matrix reads
Cxx = Q62Q>. The reservoir states are normalized with the trans-
formation T◦ = Q6−1Q>, which yields coordinates in which the
covariance is an identity matrix. To ensure numerical stability, we
add a small regularization term 10−9 × I to the covariance matrix
prior to calculating T◦.

In the new coordinates x◦(t) = T◦x(t), we calculate the covari-
ance matrix of the signal component, which in the long-time limit is
identical to the cross-covariance matrix of the two replicas

[Css]ij = 〈s◦,i(t)s◦,j(t)〉 = 〈x◦,i(t)x
′
◦,j(t)〉. (A3)

The eigendecomposition of this positive semi-definite matrix reads
Css = Qss6

2
ssQ

>
ss . The diagonal entries of62

ss are the consistency cor-
relations γ 2

k . This spectrum (or profile) tells us the distribution of
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useful information in a reservoir computer across its degrees of free-
dom and can be used to explain its performance in the presence of
noise or chaos.

1. Capacity

Capacity in general refers to the ability of a driven dynamical
system to produce a range of independent functions.34 The consis-
tency profiles can be used to derive a special capacity measure, which
counts the linearly independent functions in the presence of noise or
chaos. This measure can be thought of as the effective size of such a
reservoir and is predictive of performance.25

It can be shown that for a reservoir with a consistency profile

given by {γ 2
k }

N

k=1 and the correlation between the signal components
and some target signal given by ak, the performance on that task
measured by the correlation coefficient is given by

∑N
k=1 γ

2
k a2

k. Since
the correlations ak are measures of a reservoir’s performance on a
specific task, while γ 2

k are independent of that task, we can define a
predictor of performance in general as

2 =

N
∑

k=1

γ 2
k = Tr(Css). (A4)

We call 2 the consistent capacity. This measure can be thought of
as a modified version of the covariance rank, to which it is identical
in the absence of noise or chaos.

2. Consistency with symmetry

Underlying consistency theory is an assumption of infinitely
long time series, but of course in reality this is not the case. Finite-
size effects can cause errors in calculating consistency, and to
account for this one typically uses as long a time series as feasi-
ble. However, in high dimensional and highly inconsistent systems,
extremely long time series may be required to accurately measure
a consistency profile. If possible, it is desirable to use the known
structure of the system to improve the efficiency of calculating its
consistency profile. An example of a structure that may improve
efficiency is when a system has symmetry.

Consider a system like the one described in Sec. II A, where
each agent has an identical equation of motion. We will also
first consider agents moving in one dimension, then extend to
higher dimensions later. We further assume a single global attrac-
tor, which means the response of the swarm is ergodic, such that
any permutation of the agents results in an equivalent solution
with asymptotically identical statistics. A consequence of this per-
mutation symmetry for consistency analysis is that the covariance
matrices for each permutation of a given solution must be equal
to all others. The effect of swapping two agents on the covariance
matrix is to swap the rows and columns corresponding to those
agents. Any permutation can be represented as a sequence of such
swaps, leading to the swapping of any two off-diagonal elements or
any two diagonal elements of the covariance matrices. Therefore, in
order for the covariance matrices to be identical before and after the
permutation, we require that all off-diagonal elements are equal to
each other and the same for the diagonal elements. While this is only
true in the limit of infinite trajectories, we can enforce the structure

by averaging on the diagonal and off-diagonal elements and thus
better approximate the asymptotic behavior.

Analog to the covariance matrix, the symmetry also implies
that the cross-covariance matrix Css has a simplified structure
asymptotically. Each element is given by [Css]ij = 〈s◦,i(t)s◦,j(t)〉, see
Eq. (A3). Since each agent has an identical equation of motion, and
we assume a single attractor, the functional part of each agent’s
response must also be the same, meaning that s◦,i(t) = s◦,j(t) = s◦(t).
Thus, all matrix elements are the same, namely, Css = 〈(s◦(t))

2〉 ×

1N, where 1N is a N × N matrix of ones. This structure means that
there is a single non-zero eigenvalue of λ = N〈(s◦(t))

2〉, with a corre-
sponding eigenvector composed of all ones. This implies that there is
a single consistent component, which aligns with the center of mass.
As before, we can enforce the long-time structure from a finite time
estimate by averaging the elements of the matrix, this time mixing
the diagonal and off-diagonal elements together.

For simplicity, we have focused on one-dimensional systems.
The extension to higher-dimensional systems results in a restriction
on the allowed permutations only within the corresponding physi-
cal dimensions, which enforces a block structure in the covariance
matrices. A system of N identical agents in a D-dimensional space
will result in a covariance matrix of size ND, consisting of D2 N × N
blocks. The permutation of agents allows the swapping of elements
within each block, but not between. Again, for Cxx, the diagonal ele-
ments within each block may only be swapped with other diagonal
elements within that same block, while for Css they may mix. For a
two-dimensional example, this results in the following structure:

Cxx = A ⊗ IN + B ⊗ 1N

=

(

a11 a12

a21 a22

)

⊗ IN +

(

b11 b12

b21 b22

)

⊗ 1N,

Css = H ⊗ 1N

=

(

h11 h12

h21 h22

)

⊗ 1N. (A5)
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