
OR I G I N A L AR T I C L E

Diffuse reflectance spectroscopy characterises
the functional chemistry of soil organic carbon
in agricultural soils

Johanna Wetterlind1 | Raphael A. Viscarra Rossel2 | Markus Steffens3,4

1Department of Soil and Environment,
Swedish University of Agricultural
Science, Skara, Sweden
2Soil and Landscape Science, School of
Molecular and Life Sciences, Curtin
University, Perth, Western Australia,
Australia
3Department of Soil Sciences, Research
Institute of Organic Agriculture FiBL,
Frick, Switzerland
4Lehrstuhl für Bodenkunde, Department
für Ökologie und Ökosystemmanagement,
Wissenschaftszentrum Weihenstephan für
Ernährung, Landnutzung und Umwelt,
Technische Universität München,
Freising-Weihenstephan, 85350, Germany

Correspondence
Johanna Wetterlind, Department of Soil
and Environment, Swedish University of
Agricultural Science, PO Box 234, Skara
SE-532 23, Sweden.
Email: johanna.wetterlind@slu.se

Funding information
Australian Research Council, Grant/
Award Number: DP210100420; Svenska
Forskningsrådet Formas, Grant/Award
Numbers: 2017-00887, 229-2010-951

Abstract

Soil organic carbon (SOC) originates from a complex mixture of organic

materials, and to better understand its role in soil functions, one must charac-

terise its chemical composition. However, current methods, such as solid-state
13C nuclear magnetic resonance (NMR) spectroscopy, are time-consuming and

expensive. Diffuse reflectance spectroscopy in the visible, near infrared and

mid-infrared regions (vis–NIR: 350–2500 nm; mid-IR: 4000–400 cm�1) can also

be used to characterise SOC chemistry; however, it is difficult to know the fre-

quencies where the information occurs. Thus, we correlated the C functional

groups from the 13C NMR to the frequencies in the vis–NIR and mid-IR spec-

tra using two methods: (1) 2-dimensional correlations of 13C NMR spectra and

the diffuse reflectance spectra, and (2) modelling the NMR functional C groups

with the reflectance spectra using support vector machines (SVM) (validated

using 5 times repeated 10-fold cross-validation). For the study, we used 99 min-

eral soils from the agricultural regions of Sweden. The results show clear corre-

lations between organic functional C groups measured with NMR and specific

frequencies in the vis–NIR and mid-IR spectra. While the 2D correlations

showed general relationships (mainly related to the total SOC content), analys-

ing the importance of the wavelengths in the SVM models revealed more

detail. Generally, models using mid-IR spectra produced slightly better esti-

mates than the vis–NIR. The best estimates were for the alkyl C group

(R2 = 0.83 and 0.85, vis–NIR and mid-IR, respectively), and the O/N-alkyl C

group was the most difficult to estimate (R2 = 0.34 and 0.38, vis–NIR and mid-

IR, respectively). Combining 13C NMR with the cost-effective diffuse reflec-

tance methods could potentially increase the number of measured samples

and improve the spatial and temporal characterisation of SOC. However, more

studies with a wider range of soil types and land management systems are

needed to further evaluate the conditions under which these methods could

be used.
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Highlights

• Diffuse reflectance spectroscopy was used to characterise and model SOC

functional chemistry.

• NMR derived C functional groups could be modelled with vis-NIR and mid-

IR diffuse reflectance spectra.

• The methods allow for characterisation of SOC chemical composition on

whole mineral soil samples.

• The approach can improve the spatial and temporal characterisation of SOC

composition.
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1 | INTRODUCTION

Soil organic matter consists of a wide range of heteroge-
neous materials in all stages of decomposition, closely
interacting with the soil mineral matrix (Lehmann &
Kleber, 2015). To better understand the mechanisms con-
trolling carbon (C) dynamics, we need information on
the chemical composition of the soil organic carbon
(SOC), the soil physicochemical properties and environ-
mental factors (Kögel-Knabner & Rumpel, 2018; Paré &
Bedard-Haughn, 2013; Schmidt et al., 2011; Viscarra
Rossel et al., 2019). This study pertains to the characteri-
sation of organic functional groups in SOC.

Solid-state 13C Nuclear Magnetic Resonance (NMR)
spectroscopy is a powerful experimental technique used in
different disciplines to elucidate the atomic and molecular
structure of a wide range of substances. The main advan-
tages of NMR spectroscopy are that it is non-destructive
and the sample can be used for other experiments, solid
and liquid samples can be analysed, no extractions are
needed and it gives comprehensive and semi-quantitative
information on the chemical composition of a sample for
one or several selected elements. It is commonly used to
quantitatively determine the chemical composition of SOC
(Bonanomi et al., 2013), to deduce SOC's degree of decom-
position and to allow an estimation of more resistant frac-
tions. Weng et al. (2021) stressed the point that NMR was
used to prove and disapprove various theories and hypoth-
eses on SOC dynamics and stabilisation. The technique
does not provide the structural organisation of SOC on a
molecular level but can broadly differentiate C functional
groups (Audette et al., 2021). Most studies identify alkyl C,
O/N-alkyl C, aromatic C and carbonyl C groups (Audette
et al., 2021; Baldock et al., 1992; Kögel-Knabner, 1997,
2000). Chemical shift ranges can be fitted to four spectral

regions, labelled as (1) alkyl C (10–45 ppm; long-chain
polymethylene type structures, for example, fatty acids,
waxes and resins); (2) O-alkyl C (45–110 ppm; mostly car-
bohydrates); (3) aromatic C (110–160 ppm; protonated and
C substituted aromatics and unsaturated C and oxygen-
ated aromatics); and (4) carboxyl C (160–200 ppm;
carboxylic C, esters and amides) (Baldock et al., 1992;
Oades et al., 1987).

Baldock et al. (1997) evaluated the potential of solid-
state 13C NMR spectroscopy to assess the extent of
decomposition of natural organic matter. They described
a strong link between the progressing decomposition of
natural organic matter, a relative increase in alkyl C and
relative decrease in O-alkyl C. This can be explained by
the characteristic hydrophobicity and more resistant
alkyl materials on the one side and the easily decompos-
able nature of polysaccharides and proteins on the other
side. In a recent meta-analysis, Audette et al. (2021) drew
a comprehensive summary of the origin and lability of
the NMR-derived functional C groups and showed a clear
influence on the proportions of the different 13C NMR-
derived C groups of changes in agricultural management
practises (i.e., fertilisation, tillage, crop rotation and lim-
ing), demonstrating the usefulness of this type of infor-
mation for guiding agricultural practises and improving
soil health.

Due to the small content of total SOC in soil samples
and the low natural abundance of the 13C isotopes, the
measurement with NMR can be slow, which limits the
number of samples that can be analysed, restricting the
use of the method to smaller, dedicated studies (Baldock
et al., 1989; Kinchesh et al., 1995). In addition, paramag-
netic materials such as iron may interfere with the mea-
surements further reducing the signal-to-noise ratio, so
that they have to be removed by treating the samples with
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hydrofluoric acid (HF) (Mathes et al., 2002). This treat-
ment results in an increase in SOC content; however, it is
also associated with varying degrees of SOC loss, both in
terms of total loss and selective loss of organic compounds.
This may result in biased interpretation of the SOC chemi-
cal composition (Sanderman et al., 2017).

Diffuse reflectance spectroscopy in the visible, near
and mid-infrared (vis–NIR: 350–2500 nm or 28,571–
4000 cm�1; mid-IR: 2500–25,000 nm or 4000–400 cm�1)
are rapid, non-destructive, methods commonly used in
soil science (Soriano-Disla et al., 2014). Reflectance spec-
tra in the mid-IR region are the result of interactions
between the radiating energy and the bonds in molecules
of soil constituents. In the NIR, the spectra result from
overtones and combinations of the fundamental vibra-
tions in the mid-IR region, while in the visible range the
primary processes are electronic excitations (Stenberg
et al., 2010). The methods provide qualitative information
on the fundamental composition of the soil, including
clay and iron oxide minerals, organic matter, water and
particle size. Hence, that information is the basis for the
creation of models from the spectra used to estimate sev-
eral properties. However, the information in the diffuse
reflectance spectra is overlapping and complex, and cali-
bration models are needed for quantitative analysis.
Absorbance is bond specific but is also affected by the
type of functional group, its neighbouring molecules and
hydrogen bonds (Miller, 2001). Information on SOC can
be found in several regions of the mid-IR and vis–NIR
spectra, and corresponds to, for example, –CH and –CO
groups. SOC content is one of the most commonly mod-
elled and best-predicted soil properties using these tech-
niques (Stenberg et al., 2010). Because the information is
related to specific molecular bonds and their surrounding
chemistry, SOC content is in fact predicted by its chemi-
cal composition, and a number of studies have shown the
potential for vis–IR spectroscopy to predict different
aspects of the organic matter quality (Knox et al., 2015;
Viscarra Rossel & Hicks, 2015). The possible advantage of
reflectance spectroscopy for characterising the composi-
tion of soil organic C is that the chemical information in
a soil sample might be gained from the analysis of the
whole soil without C fractionation (e.g., into particulate,
mineral associated or pyrogenic organic C) or HF-
treatment.

We found a number of studies that explored the rela-
tionship between vis–NIR or mid-IR spectra and solid-
state 13C NMR spectra (Forouzangohar et al., 2013, 2015;
Kang et al., 2017; Leifeld, 2006; Ludwig et al., 2008;
Terhoeven-Urselmans et al., 2006). These studies used
HF-treated mineral soils (for both solid-state 13C NMR
and the vis–NIR and mid-IR spectroscopy) or specific soil
C fractions, for example, litter, particulate and mineral-
associated organic carbon. To our knowledge, there are

no other published studies on the characterisation of soil
organic C chemistry with spectroscopy focusing on whole
agricultural soils.

Given this research gap, our aim here was to test if
vis–NIR and mid-IR diffuse reflectance spectroscopy could
characterise the functional chemistry of SOC in whole ara-
ble soils with as little pre-treatment as possible, that is,
without HF-treatments or soil C fractionation. To do so,
we derived 2-dimensional correlations of solid-state 13C
NMR spectra and vis–NIR and mid-IR spectra, compared
assignments of the NMR functional organic C groups and
the corresponding frequencies in the vis–NIR and mid-IR,
and modelled the NMR functional groups with the reflec-
tance spectra using support vector machine regression. For
our experiments, we used 99 Swedish soil samples with a
wide range in SOC content.

2 | MATERIALS AND METHODS

2.1 | Soil samples and analyses

We used 99 mineral soil samples from the 0–20 cm
layer of agricultural fields in Sweden (Figure 1). The
soils were selected from 12,500 soil samples collected
in a national campaign run by the Swedish Board
of Agriculture in 2010 and 2011 and archived at the
Swedish University of Agricultural Sciences. The
12,500 samples were collected in a regular grid of one
soil sample per km2, randomly moving the sampling
site 1–150 m around the grid node, across about 90%
of Swedish agricultural land. The 12,500 samples
were air dried, sieved to 2 mm and analysed for soil
texture, soil organic matter content (measured as loss
on ignition and corrected for structural water in clay
[Ekström, 1927]) prior to archiving. Soil texture was
divided into clay (<0.002 mm), silt (0.002–0.06 mm)
and sand (0.06–2 mm). Clay content was analysed
using a sedimentation method modified from Gee and
Bauder (1986); the sand fraction was determined
by sieving and the silt fraction was determined by
difference. The 99 samples used in this study were
selected using stratified random sampling to cover
a wide range of soil texture and soil organic matter
content by dividing the 12,500 soil samples into classes
based on soil texture and organic matter content
and randomly select samples within those classes
(Figures 1, S1 and Table S1). A maximum amount of
organic matter was set to 16% to focus on mineral
soils and the clay content was limited to 40% because
of a focus on more sandy soils in a joint study. The
99 samples selected for this study represent a cross
section of the possible variations in soil texture and
organic matter content of the 12,500 Swedish
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arable soils (within the set organic matter content and
texture boundaries). For comparison with the analyses
of the functional C groups, the 99 samples were also
analysed for SOC. There were no carbonates present in
the soil samples and the 99 samples were analysed for
SOC through dry combustion on an EuroEA elemental
analyser (Hekatech GmbH, Wegberg, Germany). Swed-
ish soil is young (i.e., mainly formed during the quar-
tanery period) and strongly affected by processes
during and after the last glacial period (Karlsson
et al., 2021).

2.2 | vis–NIR and mid-IR spectroscopy

vis–NIR Spectra (350–2500 nm; 28,571 to 4000 cm�1)
were determined using an ASD FieldSpec Pro FR scan-
ning instrument (Malvern Panalytical Ltd, Malvern,
UK) on the 2 mm sieved and air-dried soil samples.
The instrument was equipped with a bare optic fibre
connected to a probe with a 20 W Al-coated halogen
tungsten light source placed 7 cm over the sample,
resulting in a field of view of approximately 7.5 cm2.
Reflectance spectra were recorded in relation to an
external white reference (Spectralon®) and each com-
posite sample spectrum was comprised of 100 averaged
spectra collected from a rotating sample. The spectra
were sampled at 1.4–2 nm intervals with a spectral

resolution of 3–10 nm. A wavelength interval of 1 nm
was interpolated to the instrument output file, result-
ing in spectra consisting of one data point for every
nanometre. The vis–NIR spectra were transformed to
apparent absorbance through log(reflectance�1) and
the 350–400 nm wavelength range was removed from
further analysis due to noise.

Mid-IR spectra were recorded on four ground
(<0.5 mm) replicates of each sample using an FT-IR Ver-
tex70 spectrometer (Bruker, Germany) with a spectral
range of 1333–16,667 nm (7500–600 cm�1) and a spectral
resolution of 4 cm�1 and 64 measurements per minute.
The spectrometer was equipped with a nitrogen gas purg-
ing system to reduce the amount of atmospheric interfer-
ence in the system which reduces masking of weak
spectral features by water vapour or carbon dioxide
absorption. A gold standard was used as reference. The
mid-IR spectra were transformed to apparent absorbance
through log(reflectance�1) and only the 4000–600 cm�1

(2500–16,700 nm) range was used in the further analysis.
The four replicates were averaged to one spectrum per
sample.

2.3 | 13C NMR spectroscopy

The sieved samples were ground <0.630 mm using mor-
tar and pestle prior to solid-state 13C NMR experiments

FIGURE 1 (a) Location of the 99 soil samples and (b) soil texture and (c) soil organic carbon content (SOC) in the samples
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(Bruker DSX 200 NMR spectrometer, Karlsruhe, Ger-
many) which were conducted at the NMR facility of the
Institute of Soil Science at the Technical University of
Munich. No paramagnetic material was present in the
soils and consequently, no HF-treatment was required.
The cross-polarisation magic angle spinning (CPMAS)
technique was applied with a 13C-resonance frequency of
50.32 MHz and a spinning speed of 5 kHz. A ramped 1H-
pulse was used during a contact time of 1 ms in order to
circumvent spin modulation during the Hartmann-Hahn
contact. A pulse delay of 1 s was used for all experiments
and pre-experiments confirmed that the pulse delays
were long enough to avoid saturation. Depending on the
C contents of the samples, between 8000 and 400,000
scans were accumulated and a line broadening of 50 Hz
was applied. The 13C chemical shifts were calibrated rela-
tive to tetramethylsilane (0 ppm).

Relative contributions of the various functional C
groups were determined by integration of the signal
intensity in their respective chemical shift regions accord-
ing to Knicker et al. (2005). The region from 220 to
160 ppm was assigned to carbonyl (aldehyde and ketone)
and carboxyl/amide C. Olefinic and aromatic C were
detected between 160 and 110 ppm. O-alkyl and
N-alkyl-C signals were found from 110 to 60 ppm and
from 60 to 45 ppm. Resonances of alkyl C were assigned
to the region 45 to 10 ppm. (Figure 2).

As indicator of the degree of decomposition of the
SOC, the alkyl C:O/N-alkyl C ratio (45 to �10 ppm)/
(110 to 45 ppm) was calculated from the NMR spectra
(Baldock et al., 2004).

Correlations between the SOC, relative contribution
of the different C groups derived from the 13C NMR spec-
tra and the Alkyl C:O/N-alkyl C ratio derived from rela-
tive contribution were calculated using Spearman
correlations.

2.4 | 2-D correlations

The raw NMR spectra were cut to only include the chem-
ical shifts between 0 and 220 ppm where most of the
information is found. The resolution of the three types of
spectra was reduced to every 7.5th nm for the apparent
absorbance vis–NIR spectra, every 10th cm�1 for the
apparent absorbance mid-IR spectra, and every 0.8th
ppm for the raw NMR spectra resulting in about
300 observations for all three spectral types. This was
done to reduce the number of variables in the correlation
analysis and to have a similar number of variables in all
three spectra. The NMR spectra were further smoothed
by a spline function and baselined using a second-order
polynomial. The raw NMR spectra were then recalcu-
lated as relative intensity (relative to the most intense
peak). Due to the shape of the mid-IR spectra these were
first split into 4 regions (600–2100, 2100–2700, 2700–
3720, 3720–4000 cm�1) and then a baseline was applied
using first, second, third, or fourth order polynomials to
the different sections. After baselining the four sections
were again recombined into one spectrum. To baseline
the vis–NIR spectra we applied a continuum removal
(Clark & Roush, 1984). The baselining was done to

FIGURE 2 Summary of the NMR spectra form the 99 soil samples with (a) showing the median and 16th and 84th percentile NMR

spectrum with the different functional C groups and subgroups indicated, and (b) showing NMR spectra representing three common types of

NMR spectra in the data set, that is, those with a high, low and intermediate ratio of alkyl C to O/N-alkyl C
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further highlight and define the spectral features in the
different spectra. A number of different baselining and
smoothing techniques were tested, and the methods
providing the visually best baselined spectra without
artefacts were selected. The prepossessing of the spectra
was performed in the statistical software environment
R (R Core Team, 2020) and the hyperSpec (Beleites &
Sergo, 2020) packages. The vis–NIR and mid-IR spectra
were correlated to the NMR spectra by heterospectral
correlation using the 2Dshige software (2Dshige©
Shigeaki Morita, Kwansei-Gakuin University, 2004–
2005). The correlations were plotted in 2-D plots for
interpretation.

2.5 | Modelling functional C groups

The original apparent absorbance vis–NIR and mid-IR
spectra were transformed and smoothed using first-order
Savitzky–Golay derivative with 11 smoothing points
(Savitzky & Golay, 1964). First-order derivative is a well-
established pre-processing method in diffuses reflectance
spectroscopy studies (Stenberg et al., 2010). A range of
smoothing points was tested on a subset of SOC variables
and the number producing the best cross-validated
results was used in the final modelling. The vis–NIR and
the mid-IR spectra were calibrated to the different NMR-
derived functional C groups using support vector
machines (SVM) with a radial basis function (RBF) ker-
nel (Karatzoglou et al., 2006). Kernel-based learning
methods use an implicit mapping of the input data into a
higher dimensional feature space defined by a kernel
function. With this, it is possible to derive a linear hyper-
plane as a decision function for non-linear problems
(Vapnik, 1995). Here, we used a Gaussian RBF imple-
mented in the kernlab library of the software R. Upper
and lower bounds for the optimisation of the hyperpara-
meters, penalty (C) and sigma of the RBF were set to
0 and 10, and 0 and 1 for C and sigma, respectively. The
upper and lower bounds of the C and sigma parameters
were used in the caret train function in the R library
caret (Kuhn, 2008) and were optimised using the Differ-
ential Evolution optimisation (Price et al., 2006), imple-
mented in the R library DEoptim (Mullen et al., 2011).

The models were validated using 10-fold (random)
cross-validation repeated five times using the implemen-
tation in the caret library. The aggregation of the
repeated cross-validations generates results that are more
stable and robust. Thus we report the validation statistics
and variable importance on the average of the five
repeats. The validations were evaluated using the
adjusted coefficient of determination (R2) of the linear
relation between the predicted and measured values, the

concordance correlation coefficient (CCC), mean error
(ME), the root-mean-square error (RMSE), which is a
measure of the inaccuracy of the estimates and encom-
passes both bias and imprecision (Viscarra Rossel &
McBratney, 1998). The CCC combines measures of both
precision and accuracy (bias) and is calculated as

2rσoσp

σ2oþσ2pþ μo�μp

� �2

where r is the correlation coefficient between observed
o and predicted p, μo and μp are the means, and σo

2 and
σp2 are the corresponding variances.

To interpret the models, we calculated their variable
importance using the varImp function in the caret library
(Kuhn, 2008) of R.

3 | RESULTS

3.1 | Chemical composition of SOC

The 99 soil samples used in this study were selected from
a total of a little over 12,500 Swedish arable topsoils to
cover a large variation in SOC content and soil texture
(Figure 1).

SOC varied from 1.3% to 10% and clay and sand content
ranged from 5% to 40% and 80%, respectively. Because soil
texture, and particularly clay content, has a significant influ-
ence on the vis–NIR and mid-IR spectra, we chose to use a
data set without correlations between clay content and SOC
and thus ensure independence in our analysis of SOC and
its chemical composition.

Although all samples were collected from arable
fields primarily under cereal crops, the SOC composition
of the soil samples was variable, as shown by the differ-
ent functional carbon groups defined with 13C NMR
(Figure 2 and Table S2).

On average, the O/N-alkyl C group showed the largest
contribution to the NMR spectrum. However, the alkyl C
group with an average contribution of around 25% of the
SOC showed the largest variation, contributing to up to 58%
of the carbon in one sample. The NMR spectra of the soils
could be classified into roughly three types depending on
the contribution of the alkyl C and O/N-alkyl C groups: soil
with a fairly even contribution from the two groups and soil
with a primary contribution from either the alkyl C group
or the O/N-alkyl C group (Figure 2b). The carboxyl-C group
constituted the smallest portion of the total SOC. The
degree of decomposition indicated by the ratio between the
alkyl C and the O/N-alkyl C (Baldock et al., 2004) varied
between 0.34 and 2.5 (Table S2).
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The proportion of the alkyl C group increased with
increasing SOC content (ρ = 0.76, p < 0.05) while the
remaining carbon functional groups decreased
(Table S3). The exception was the large O/N-alkyl C
group that was not correlated with the total SOC con-
tent (ρ = �0.15, p = 0.148) and where the largest sub-
group, the carbohydrates (O/N-alkyl C subgroup 2), was
positively although fairly weakly, correlated to SOC
(ρ = 0.45, p < 0.05). However, the acetal-ketal C portion
of the O/N-alkyl C group (O/N-alkyl C subgroup 3) was
negatively correlated to SOC, as were the other non-
alkyl C groups. The strongest correlations occurred
between the alkyl C group and the other functional
groups. As the alkyl C group increased, the other func-
tional groups made up smaller portions of the SOC.
However, as for the correlations with SOC content, the
largest O/N-alkyl C group, (O/N-alkyl C subgroup 2),
was only weakly correlated with the alkyl C group
(ρ = 0.22, p < 0.05). The ratio of alkyl C to O/N-alkyl C
was strongly correlated to the alkyl C group and less so
with the O/N-alkyl group (ρ = 0.98, p < 0.05, and
ρ = �0.66, p < 0.05, for alkyl C and O/N-alkyl C groups,
respectively).

3.2 | 2D correlations of 13C NMR to
diffuse reflectance spectra and modelling

The relationship between the infrared spectra in the vis–
NIR and mid-IR regions and the NMR spectra are shown
in the 2D correlation plots, Figure 3.

The figure reveals general correlations between the
functional C groups in the NMR spectra and different fre-
quencies in the diffuse reflectance spectra. The vis–NIR
spectra show the strongest positive correlations with the
alkyl C group in the visible part of the spectrum with some
weaker positive correlations around 2000 nm and 2300 nm
(Figure 3a). The correlations to the remaining functional C
groups show an opposite pattern to the correlations with
the alkyl C group. The exception is a weak positive correla-
tion with the O/N alkyl C subgroup 2 at around 2200 nm.

The correlations between the NMR spectra and the
mid-IR spectra were more detailed and less concen-
trated in one region of the spectrum. Although, similar
to the correlations between NMR and the vis–NIR spec-
tra, the general pattern show opposite correlations
between the mid-IR spectra and the alkyl C group com-
pared with the correlations between the mid-IR spectra
and the other functional C groups (Figure 3b). Strong
positive correlations with the alkyl C group occur in the
2800–3000 cm�1 and the 1300–1700 cm�1 regions
(Figure 3b).

The diffuse reflectance spectra in the vis–NIR and the
mid-IR regions were then used, individually, to model
the different NMR-derived C functional C groups using
SVM (Tables 1 and 2).

The best models with both the vis–NIR and mid-IR
spectral regions was the alkyl C group, as a whole and
especially the largest subgroup with CH2-C (alkyl C sub-
group 2) with adjusted R2 of 0.84 and 0.92 for vis–NIR
and mid-IR models, respectively (Tables 1 and 2;
Figure 4).
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FIGURE 3 2D correlation plots between (a) vis–NIR and NMR, and (b) mid-IR and NMR. Blue colour indicates negative correlations

and red indicates positive correlations. Black spectra show the average original absorbance IR spectra and relative intensity NMR spectra,

and red the average base-lined spectra used in the correlations
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The importance of different wavelengths in the
machine learning models (Figure 5) also shows clear con-
tributions from the spectral regions corresponding to the
asymmetric and symmetric CH-vibrations at 2930 cm�1

and 2850 cm�1, respectively, in the mid-IR region, and
their combination bands in the NIR around 2300 nm Vis-
carra Rossel & Behrens, 2010). This corresponds to
results shown in the 2D-correlation, although in the 2D-
correlation plot of the NMR to mid-IR spectra, the
alkyl-C group also showed positive correlations with the

broader absorptions at 1700–1300 cm�1 (Figure 3a) and
the highest correlation between the vis–NIR and the
alkyl-C group was actually in the visible region
(Figure 3b).

The aryl C group was the second-best predicted func-
tional C group with both vis–NIR and mid-IR models.
Absorption near 1500 and 1700–1800 cm�1 was impor-
tant for prediction. Absorptions at 1500 cm�1 can be
attributed to aromatic C=C stretching vibrations and
those near 1700 cm�1 to C=O stretching vibrations (Tinti

TABLE 1 Cross-validated

prediction results for the vis–NIR
calibration models, and the final

hyperparameters used (sigma, C), for

SOC (%), relative contribution of the

different 13C NMR-derived C groups

(%), and the alkyl C:O/N-alkyl C ratio

derived from relative contribution

R2 CCC RMSE ME Sigma C

SOC 0.62 0.75 1.3 �0.207 0.00052 8.735

Alkyl C 0.83 0.91 3.0 0.090 0.00112 9.085

subgroup 1 0.56 0.74 1.6 0.087 0.00074 8.746

subgroup 2 0.84 0.91 2.0 �0.006 0.00110 8.199

O/N-alkyl C 0.34 0.56 2.6 �0.037 0.00187 8.479

subgroup 1 0.10 0.28 0.6 �0.014 0.00254 2.321

subgroup 2 0.26 0.44 1.7 0.027 0.00581 6.312

subgroup 3 0.70 0.82 0.6 0.026 0.00096 7.075

Aryl C 0.77 0.87 1.8 �0.144 0.00109 9.105

subgroup 1 0.73 0.84 1.2 �0.116 0.00111 7.355

subgroup 2 0.71 0.83 0.9 �0.002 0.00184 5.099

Carboxyl C 0.64 0.78 1.4 0.034 0.00123 8.531

subgroup 1 0.64 0.79 0.8 0.012 0.00116 7.466

subgroup 2 0.46 0.65 0.9 0.008 0.00552 3.535

Alkyl C: O/N-alkyl C 0.81 0.89 0.1 �0.007 0.00186 7.573

Note: The predictions are average results of five times repeated 10-fold cross-validation.

TABLE 2 Cross-validated

prediction results for the mid-IR

calibration models, and the final

hyperparameters used, for SOC (%),

relative contribution of the different 13C

NMR-derived C groups (%), and the

alkyl C:O/N-alkyl C ratio derived from

relative contribution

R2 CCC RMSE ME Sigma C

SOC 0.86 0.92 0.8 �0.02 0.00053 5.841

Alkyl C 0.85 0.92 2.7 0.35 0.00048 9.024

subgroup 1 0.56 0.73 1.5 0.088 0.00027 9.137

subgroup 2 0.92 0.96 1.5 �0.017 0.00031 8.961

O/N-alkyl C 0.38 0.60 2.2 �0.003 0.00035 8.577

subgroup 1 0.32 0.54 0.5 0.017 0.00056 6.117

subgroup 2 0.20 0.42 1.7 �0.001 0.00075 7.366

subgroup 3 0.73 0.85 0.6 �0.054 0.00034 9.372

Aryl C 0.72 0.85 2.1 �0.098 0.00082 8.768

subgroup 1 0.71 0.83 1.3 �0.133 0.00039 5.835

subgroup 2 0.81 0.90 0.7 0.049 0.00062 9.955

Carboxyl C 0.54 0.73 1.5 0.006 0.00048 8.188

subgroup 1 0.63 0.77 0.7 �0.026 0.00025 9.126

subgroup 2 0.35 0.56 0.9 �0.10 0.00056 5.320

Alkyl C: O/N-alkyl C 0.84 0.91 0.1 0.00 0.00051 9.138

Note: The predictions are average results of five times repeated 10-fold cross-validation.
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et al., 2015). The 2D-correlation between the NMR and
mid-IR also showed weak positive correlations between
the aryl C group and the broad absorptions between 1700
and 1300 cm�1.

In the carboxyl C group, predictions of the well-
defined subgroup 1 produced R2 = 0.63–0.64 using both
vis–NIR and mid-IR spectra. However, predictions of the
carboxyl C subgroup 2 were poor (R2 = 0.35–0.45), using
mid-IR and vis–NIR spectra respectively. There are
regions in the mid-IR spectra (e.g., 1642–1569 cm�1) that
are attributed to carboxylates, amongst other organic
components (Tinti et al., 2015). However, this was not
shown in our models. Rather, the similar pattern to the
alkyl-C suggests that the carboxyl C subgroups were
modelled based on negative correlations with the alkyl-C
group (Table S2), whereas the large carboxyl C group
show more similarities with the Aryl C subgroups.

The most difficult C group to predict in these soils
was the large O/N-alkyl C group including carbohydrate
C and C in amino groups. However, predictions of the
small O/N-alkyl C subgroup 3, representing acetal and

ketal C, produced an R2 of around 0.7 using both vis–
NIR and mid-IR spectra. One of the explanations for the
difficulties in predicting this large C group might be the
small variation in this group in our dataset, compared to,
for example, the alkyl C group.

The modelling of the alkyl C:O/N-alkyl C ratio with
both vis–NIR and mid-IR spectra produced R2 values of
0.81–0.84, which were similar to the R2 of the alkyl C
group (Tables 1 and 2; Figure 4c and f). This was unsur-
prising because of the good predictability of the alkyl C
and the very large variation in this C group compared
with the O/N-alkyl C group.

The wavelength regions around 2000 nm showing
weak positive correlations to the alkyl C groups and
around 2200 nm showing weak positive correlations with
the O/N alkyl C subgroup 2 in the 2D correlation plot
have been reported to be important for OC modelling
using vis–NIR (Stenberg et al., 2010), however, did not
show as important in any of the models in this study.
Absorbance at 2033 nm can be attributed to C=O vibra-
tions (Viscarra Rossel & Behrens, 2010). Absorbance

FIGURE 4 Cross validated predictions versus measured SOC content (a), (d), relative contribution of alkyl C CH2-C groups (alkyl C

subgroup 2) (b), (e), and alkyl C:O/N-alkyl C ratio derived from relative contribution (c), (f) using machine learning models based on mid-IR

(a)–(c) and vis–NIR (d)–(f) spectra. Red dotted lines are polynomial fits that show deviations from the linear fits. The predictions are the

average of the five repeated cross-validations
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around 2200 nm is largely affected by minerals, for exam-
ple, illite, which is a dominating mineral in the soils in
this study (Stenberg et al., 2010).

Overall, models of the NMR-derived C functional
groups using mid-IR were slightly better than those using
vis–NIR spectra. However, the differences were not always
large. The largest difference in the performance of the mid-
IR and vis–NIR models was for total SOC content (Tables 1
and 2; Figure 4). The mid-IR model produced estimates of
SOC that were as precise as the estimates for alkyl C

(R2 = 0.86 for SOC compared with 0.85 for alkyl C). How-
ever, the estimates of SOC from the vis–NIR model were
less precise (R2 = 0.62) than the estimates of alkyl C and
aryl C (Table 1 and Figures 4a and d).

4 | DISCUSSION

The results provide further evidence that diffuse reflec-
tance spectroscopy in the visible and infrared can be
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used to estimate the chemical composition of SOC
derived from 13C NMR in mineral bulk soil samples.
The results presented in this study are based on young
soils formed from quaternary deposits without
paramagnetic material and with similar land manage-
ment (arable fields), although presenting a large varia-
tion in climatic conditions, SOC content and soil
texture. More studies, including other soil types and
land management strategies, are needed to further
evaluate under what conditions the methods could be
used. Our results also demonstrate that spectroscopic
estimates of SOC are soundly based on its chemical
composition.

Our analyses used two approaches for relating the
functional C groups to the vis–NIR and mid-IR spectra.
First, using 2D heterospectral correlations between 13C
NMR and infrared spectra, and second, using spectro-
scopic models of the specific functional C groups, which
were derived from the 13C NMR. There was good corre-
spondence in the results from the two methods, which
strengthens our confidence in the findings.

The 2D-correlations showed the general associations
between the 13C NMR and vis–NIR, and mid-IR spectra.
The interpretation of the variable importance of the spec-
troscopic (vis–NIR and mid-IR) models of the functional
C groups were similar but they revealed more detail. For
the different C-groups, many of the important wave-
length regions in the models were similar (Figure 5), but
there were some notable differences, for example, com-
paring the mid-IR models of aryl C and alkyl C
(Figure 5b). This also suggests that the chemical composi-
tion of SOC can be characterised separately, and is not
based on SOC content. However, some of the C-groups
seem to be modelled largely based on indirect correla-
tions with other C groups which have a negative effect on
model robustness.

Generally, models using mid-IR spectra produced bet-
ter estimates compared to vis–NIR models. This is
because the fundamental vibrations occur in the mid-IR
region whereas the NIR spectra result from overtones
and combinations of these vibrations (Soriano-Disla
et al., 2014). However, the differences were often small.
One reason for this could be the contribution of the visi-
ble range to the vis–NIR models. The visible region
shows the strongest correlations with the NMR-spectra in
the 2D-correlation plot (Figure 3a) and the visible and
short-wave NIR regions (<1000 nm) are indicated as
important regions in the models (Figure 5a). The
response in the visible region due to organic matter is
broad but clear, and several studies have reported the
improved modelling of SOC when the visible and the
NIR regions are combined (Stenberg et al., 2010). The
advantage of using mid-IR compared to vis–NIR seems to

be in the estimation of total SOC in datasets with a large
variation in the composition of SOC. The estimates of
SOC using vis–NIR spectra appear to be better at smaller
SOC concentrations but deteriorate at SOC contents
above 4% (Figure 4d). Ben-Dor and Banin (1995) found
similar problems with using NIR spectroscopy to estimate
soil organic matter in a data set with variable degrees of
decomposition of the organic matter depending on
organic matter content. We found a clear correlation
between SOC and C composition in the soils used in our
study, with an increase in the proportion of alkyl C with
increasing SOC content, but also an increased variation
in the proportion of the alkyl C with an increase in SOC
(data not shown).

The soil samples used in this study are mineral agri-
cultural soils. The diversity of the C inputs is narrow and,
as might be expected, so is the variability of the SOC.
Nonetheless, the samples originate from a large geo-
graphic extent, covering different climatic regions and
with diverse soil textures (Figure 1), which introduces
variability in decomposition conditions of the soils used.
Apart from the O/N-alkyl C group that constituted a
smaller portion of the total SOC and was less variable in
our study, the proportions and ranges of the functional C
groups were similar to those of studies with more diverse
samples, including forest litter, specific soil fractions and
soils from different land uses (Leifeld, 2006; Terhoeven-
Urselmans et al., 2006).

The promising but somewhat inconsistent results in the
few studies published on this subject (e.g., Leifeld, 2006;
Terhoeven-Urselmans et al., 2006; 431 Ludwig et al., 2008;
Forouzangohar et al., 2015; Kang et al., 2017) may be attrib-
uted to the large variability within the samples, both
between and within studies, and the often small number of
samples used in those studies. Other studies Terhoeven-
Urselmans et al., 2006; Ludwig et al., 2008) reported better
estimates of O/N alkyl C than our study. This might be due
to the relatively small variation in O/N alkyl C in our study
(23%–50%) compared to those studies which included sam-
ples with more less-decomposed material leading to higher
and more variable O/N alkyl C content (33%–82%). Differ-
ences in C inputs, with more diverse materials for example,
including coniferous materials in many of the published
studies, might also partly explain the differences in the
accuracy of the aryl C and carboxyl C group estimates. The
relatively more homogeneous C inputs and SOC of the sam-
ple set in our study might have contributed to the better
estimates of the alkyl C:O/N-alkyl C ratio.

The use of HF-treated soils in some of the other stud-
ies (Forouzangohar et al., 2013, 2015) prevents direct
comparisons to our results. However, our results are
encouraging because we obtained good estimates of the
alkyl C and alkyl C:O/N-alkyl C ratio in whole mineral
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soils without any fractionation or chemical pre-
treatments (R2 for Alkyl C = 0.83 and 0.85, and R2 for
alkyl C:O/N-alkyl C ratio = 0.81 and 0.84, for vis–NIR
and mid-IR respectively). No paramagnetic material was
present in the soils in this study and the results are valid
for soils under similar conditions.

5 | CONCLUSIONS

The study shows that diffuse reflectance spectroscopy in
the visible and infrared can be used to estimate the chem-
ical composition of SOC in whole mineral soil samples
without C fractionation or HF-treatment. The results fur-
ther demonstrate that spectroscopic estimates of SOC are
soundly based on its chemical composition.

Although diffuse reflectance spectroscopy may not
estimate SOC composition as accurately as 13C NMR, and
there is still a need for traditional methods for calibra-
tions, the opportunity to analyse more samples due to the
more cost-efficient analysis could improve the detection
and monitoring of changes that might otherwise be lost
due to spatial variation. Diffuse reflectance spectroscopy
also enables in-field measurements, which make it possi-
ble to consider in-situ measurements of SOC composition
from soil that is under field condition and undergoing
decomposition.
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