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disease death, fatal or nonfatal ischaemic stroke or 
myocardial infarction. Potential predictors tested were 
based on prior evidence and using a machine-learning 
approach. Cox regression analyses were used to cal-
culate 5-year predicted risk, and discrimination evalu-
ated from receiver operating characteristic curves. 
Calibration was also assessed, and the findings inter-
nally validated using bootstrapping. External valida-
tion was performed in 25,138 healthy, elderly individ-
uals in the primary care environment. During median 
follow-up of 4.7 years, 594 MACE occurred. Predic-
tors in the final model included age, sex, smoking, 

Abstract Identification of individuals with 
increased risk of major adverse cardiovascular events 
(MACE) is important. However, algorithms spe-
cific to the elderly are lacking. Data were analysed 
from a randomised trial involving 18,548 partici-
pants ≥ 70  years old (mean age 75.4  years), without 
prior cardiovascular disease events, dementia or 
physical disability. MACE included coronary heart 
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systolic blood pressure, high-density lipoprotein cho-
lesterol (HDL-c), non-HDL-c, serum creatinine, dia-
betes and intake of antihypertensive agents. With var-
iable selection based on machine-learning, age, sex 
and creatinine were the most important predictors. 
The final model resulted in an area under the curve 
(AUC) of 68.1 (95% confidence intervals 65.9; 70.4). 
The model had an AUC of 67.5 in internal and 64.2 in 
external validation. The model rank-ordered risk well 
but underestimated absolute risk in the external vali-
dation cohort. A model predicting incident MACE in 
healthy, elderly individuals includes well-recognised, 
potentially reversible risk factors and notably, renal 
function. Calibration would be necessary when used 
in other populations.

Keywords Risk prediction · Major adverse 
cardiovascular event · MACE · Elderly · Model ·  
Risk factors

Introduction

Atherothrombotic cardiovascular disease (CVD) is 
a very important non-communicable disease world-
wide and associated with high morbidity and mor-
tality [1–4]. The WHO has declared CVD as one of 
the priority diseases within their action plan, aiming 
to reduce CVD-related mortality by 25% by 2025 [5]. 
A key requirement to achieve this goal is to improve 
the prediction of incident CVD events. This requires 
identification of individuals at highest risk of major 
adverse cardiovascular events (MACE) to target 
effective interventions.

Modifiable and non-modifiable risk factors have 
been incorporated in algorithms aimed to estimate an 
individual’s risk of future cardiovascular events [4, 
6–9]. These algorithms include traditional risk fac-
tors, and estimate the future risk of fatal or nonfatal 
events, over a period of 5 or 10 years. An important 
limitation of most risk scores is that the popula-
tion cohort data from which they were derived have 
included individuals whose median age is typically 
less than 70 years. However, with the ageing of high-
income countries, most cardiovascular events now 
occur in the elderly, beyond the range of most exist-
ing equations.

As an example, the European Society of Cardiol-
ogy (ESC) Systematic COronary Risk Evaluation 

2 (SCORE2) is limited to the age range from 40 to 
65 years and the median age of the recently published 
LIFE-CVD cohorts was approximately 60  years [9, 
10]. Several studies have demonstrated that SCORE, 
Framingham and other similar algorithms are less 
effective in predicting cardiovascular events in the 
elderly [11, 12]. Thus, recent ESC guidelines have not 
recommended their use in individuals over 70 years, 
as the risk for cardiovascular events might be overes-
timated due to competing causes of death [4, 13].

CVD risk prediction models developed specifically 
for use in the elderly also have important limitations. 
The recently published SCORE2 Older Persons (OP) 
equation estimates future risk of incident CVD events 
[14]. However, it is only based on established risk 
factors included in the original SCORE project and in 
addition, high-density lipoprotein cholesterol (HDL-
c) and diabetes, while predictors such as renal func-
tion or comorbidities were not considered. Prediction 
algorithms developed from the PROSPER and ARIC 
studies were based on smaller and less contemporary 
cohorts and had a shorter duration of follow-up [15, 
16]. More recent findings also suggest that traditional 
risk factors for CVD might be weaker predictors of 
future risk in the elderly while the strength of other 
factors such as chronic kidney disease increases with 
ageing [11]. Therefore, improved prediction of CVD 
events in the elderly represents an unmet clinical 
need.

Given these limitations, we aimed to develop a risk 
prediction model for incident MACE from subjects 
enrolled in a large clinical trial in initially healthy, 
elderly individuals and to validate the model in a 
large primary care dataset.

Methods

Derivation dataset

For the derivation of the risk model, data from the 
ASPirin in Reducing Events in the Elderly (ASPREE) 
study was analysed. Details of the ASPREE study 
have been reported previously [17–19]. Briefly, it was 
a randomised, placebo-controlled trial investigating 
the effect of low-dose aspirin on disability-free sur-
vival in healthy, elderly people. Cardiovascular events 
were amongst the prespecified secondary endpoints. 
In total, 19,114 community-dwelling individuals 
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aged ≥ 70  years (≥ 65 for US minorities), without 
prior CVD events, dementia or physical disability 
were recruited in Australia and the USA. Specific 
exclusion criteria are reported in the Supplementary 
Material. For the present analyses, we also excluded 
all participants aged < 70 years, as they comprised US 
minorities. All participants provided written informed 
consent. The study was approved by local Ethics 
Committees and is registered on clinicaltrials.gov 
(NCT01038583).

Potential predictors investigated

All baseline variables were investigated as potential 
predictors and collected as part of the standardised 
recruitment process. The initial selection of such pre-
dictors was based on prior research and risk models, 
and included age, sex, smoking history, systolic and 
diastolic blood pressure, current use of antihyperten-
sive agents, HDL-c, non-HDL-c, serum creatinine, 
diabetes, body mass index (BMI), haemoglobin, fam-
ily history of myocardial infarction (MI) and an area-
based measure of socioeconomic status (the Index of 
Relative Socio-economic Advantage and Disadvan-
tage (IRSAD) score). Details concerning these pre-
dictors are provided in the Supplementary Material.

Endpoint

The primary endpoint for our analyses was a compos-
ite of incident MACE. This included coronary heart 
disease (CHD) death, nonfatal MI and fatal or nonfa-
tal ischaemic stroke. Causes of CHD death included 
MI, sudden or rapid cardiac death and other CHD 
death, but not death from heart failure which was not 
attributable to CHD. All events were adjudicated by 
expert committees blinded to treatment allocation, as 
described previously [18].

External validation dataset

The PREDICT cohort study, which has been 
described before in detail, was used as an external 
validation dataset [8]. Briefly, PREDICT is an ongo-
ing cohort study in New Zealand, which automati-
cally enrols participants without prior events having 
absolute CVD risk assessment in primary care. Using 
linkage to national hospitalisation and mortality 

databases based on International Classification of 
Disease (ICD) codes, incident events are captured. 
For the present analyses, we only considered PRE-
DICT participants aged 70–79  years at baseline, of 
self-reported European ethnicity and without CVD. 
To replicate the ASPREE exclusion criteria, we fur-
ther excluded PREDICT participants having certain 
ICD codes, particularly related to cancer at baseline 
or the prior 5  years (Supplementary Material). The 
MACE endpoint in the validation dataset was based 
on ICD codes and included MI, ischaemic stroke and 
death from CHD (Table S1).

Statistical analyses

Cox proportional hazard regression models were 
used to calculate the 5-year predicted risk of MACE. 
Participants who died for reasons other than MACE 
were censored at the time of death. To allow estima-
tion of predicted risks in the external data, baseline 
survival probability at 5 years was obtained by com-
puting the survival function of a reference participant. 
A reference participant was a subject whose all covar-
iates were equal to zero.

As the amount of missing data for most variables 
was low (< 5%), and it was reasonable to be consid-
ered as missing at random, a complete case analysis 
was used to develop prediction models [20]. How-
ever, the IRSAD score was missing in all US partici-
pants and was therefore only considered in sensitivity 
analyses.

Prior to variable selection, we tested for potential 
non-linear relationships of continuous variables and 
the outcome by modelling them as restricted cubic 
spline functions with two degrees of freedom. From 
the initial selected predictors, a variable was incorpo-
rated in the final model if it showed a strong associa-
tion with the outcome in the data (p < 0.05 in univari-
able analyses) or because it was an established CVD 
predictor in prior research.

To validate the variable selection, we addition-
ally performed a machine-learning variable selec-
tion using the least absolute shrinkage and selection 
operator (lasso) in combination with bootstrapping. 
Sex-specific models were examined as an exploratory 
analysis.

Regarding model performance, the cumulative/
dynamic receiver operating characteristic curves 

405GeroScience (2022) 44:403–413



1 3

and the area under the curve (AUC) for 5-year 
risk were used to evaluate discrimination with 
each of the selected predictors and the final model. 
To assess the agreement between predicted and 
observed risks at 5 years, we used calibration plots 
[21]. The model performances were corrected for 
overfitting by internal bootstrap validation. Spe-
cifically, the selected predictors were fitted to each 
bootstrap sample to obtain bootstrap final models. 
The optimism due to overfitting was then obtained 
by comparing the performance of the bootstrap 
final models on the original dataset and bootstrap 
datasets. We calculated the bias-corrected model 
performance by subtracting the estimated optimism 
from the original model performance. The derived 
model was then applied in the validation dataset, 
and AUC and calibration evaluated. Finally, we 
aimed to compare the model performance with the 
recently published SCORE2-OP model.

All analyses were performed using R version 
3.6.1 (R Foundation for Statistical Computing, 
Vienna, Austria, www.r- proje ct. org).

Results

Baseline characteristics of the derivation dataset

The derivation dataset consisted of 18,548 partici-
pants with a mean age of 75.4 years, of whom 10,426 
(56.2%) were female (Table  1). The majority were 
in the age categories ranging from 70 to 74  years 
(57.1%) and 75 to 79 years (27.1%), while only 3.9% 
were aged above 85  years. When comparing males 
and females, only minor differences were observed 
(Table S2). Most continuous variables in the dataset 
showed only low to moderate correlation (Figure S1).

Development of the prediction model

During the median follow-up time of 4.7 years (inter-
quartile range 3.6–5.7), 594 incident MACE were 
recorded (Table S3). In univariable regression analy-
ses, diastolic blood pressure, BMI and family history 
of MI were not significant predictors for incident 
MACE (Table S4, Figure S2).

When considering all predictors in one model, 
only age, sex, current smoking, systolic blood 

Table 1  Baseline characteristics of the derivation dataset

For all continuous variables, the mean or median and the standard deviation (SD) or interquartile range are reported. For binary vari-
ables, absolute and relative frequencies are provided. Missing values for continuous variables were 1,893 for IRSAD score, 463 for 
creatinine, 446 for non-HDL-c, 444 for HDL-c, 87 for BMI and 2 for haemoglobin. Abbreviations: US, United States; SD, standard 
deviation; BMI, body mass index; HDL-c, high-density lipoprotein cholesterol; MI, myocardial infarction; IRSAD, Index of Relative 
Socio-economic Advantage and Disadvantage

Overall 70–74 years 75–79 years 80–84 years  ≥ 85 years

N total 18,548 (100) 10,598 (57.1) 5,022 (27.1) 2,196 (11.8) 732 (3.9)
Australian participants (%) 16,703 (90.1) 9,669 (91.2) 4,431 (88.2) 1,963 (89.4) 640 (87.4)
US participants (%) 1,845 (9.9) 929 (8.8) 591 (11.8) 233 (10.6) 92 (12.6)
Age (mean (SD)) 75.35 (4.39) 72.28 (1.35) 77.16 (1.43) 82.03 (1.38) 87.41 (2.10)
Female sex (%) 10,426 (56.2) 5,782 (54.6) 2,914 (58.0) 1,295 (59.0) 435 (59.4)
Current smoker (%) 656 (3.5) 436 (4.1) 159 (3.2) 45 (2.0) 16 (2.2)
Systolic blood pressure, mmHg (mean (SD)) 139.35 (16.48) 138.32 (16.18) 139.92 (16.58) 141.53 (16.96) 143.62 (17.21)
BMI, kg/m2 (mean (SD)) 28.02 (4.66) 28.29 (4.70) 27.99 (4.72) 27.30 (4.28) 26.37 (4.14)
Haemoglobin, g/dL (mean (SD)) 14.18 (1.21) 14.28 (1.21) 14.11 (1.19) 13.97 (1.19) 13.76 (1.19)
HDL-c, mmol/L (mean (SD)) 1.59 (0.46) 1.57 (0.46) 1.59 (0.45) 1.61 (0.48) 1.65 (0.46)
Non-HDL-c, mmol/L (mean (SD)) 3.67 (0.94) 3.71 (0.94) 3.64 (0.93) 3.59 (0.95) 3.54 (0.96)
Diabetes (%) 1,900 (10.2) 1,025 (9.7) 554 (11.0) 236 (10.7) 86 (11.7)
Serum creatinine, mg/dL (mean (SD)) 0.91 (0.22) 0.89 (0.21) 0.91 (0.22) 0.94 (0.24) 0.96 (0.26)
Family history of MI (%) 473 (2.6) 261 (2.5) 140 (2.8) 58 (2.6) 14 (1.9)
IRSAD score (mean (SD)) 1,003 (69) 1,004 (70) 1,001 (68) 1,002 (67) 1,007 (69)
Intake of antihypertensive agents (%) 9,712 (52.4) 5,262 (49.7) 2,741 (54.6) 1,255 (57.1) 454 (62.0)
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pressure, non-HDL-c, HDL-c, serum creatinine and 
intake of antihypertensive agents were significant 
predictors (Table S5). Thus, diastolic blood pressure, 
BMI, haemoglobin and family history of MI were not 
considered for the final model. However, diabetes was 
forced into the model, because it is an established car-
diovascular risk factor.

The final algorithm was developed from 17,742 
individuals (Table  2). Increasing age, being a cur-
rent smoker or having diabetes, taking antihyperten-
sive agents, or having higher systolic blood pressure, 
non-HDL-c or serum creatinine increased the risk 
of MACE, while being female or increasing HDL-c 
decreased the risk of MACE (Figure  S3). The final 
model had an AUC of 68.11 (95% confidence inter-
val [CI] 65.86; 70.36) (Table  S6). The final model 
demonstrated good calibration in the derivation 
dataset, with similar predicted and observed risks 
of MACE (Fig. 1). This finding was also confirmed, 
when evaluating calibration separately for males 
and females (Figure  S4). The internal validation of 
the model showed a bias-corrected AUC of 67.52 
(Table S6). Application of the SCORE2-OP model in 
the ASPREE population resulted in an AUC of 66.31 
(95% CI 64.00; 68.61) (Table S6).

In an alternative approach to variable selection 
based on machine-learning, age, sex, serum creati-
nine, non-HDL-c, HDL-c and systolic blood pres-
sure were identified as the most important predictors, 
with each of them being selected in more than 50% of 
cases (Table 3).

External validation

The external validation dataset consisted of 25,138 
participants whose baseline characteristics were simi-
lar to the derivation dataset (Table  S7). Their mean 
age was 73.2  years (SD 2.62), 53% were females, 
5% were current smokers, 13% had diabetes, mean 
systolic blood pressure was 136  mmHg (SD 14.9), 
mean non-HDL-c concentration was 3.6 mmol/L (SD 
0.99) and mean serum creatinine concentration was 
0.91 mg/dL (SD 0.21).

During a median follow-up time of 6.4  years, 
2,340 MACE were observed (Table  S3). The final 
model showed an AUC of 64.16 (95% CI 62.77; 
65.55, Table S6). The model effectively rank-ordered 
risk of MACE; however, the score clearly underesti-
mated absolute risk in the validation cohort (Fig. 1).

Sensitivity analyses

In sensitivity analyses, we included the IRSAD score 
as an indicator of socioeconomic status, but it was 
not shown to be an independent predictor of MACE 
(Table S8). When also including the IRSAD score in 
the lasso selection, this showed a low inclusion fre-
quency (Table S9).

We also calculated the model for males and 
females separately (Table S10, Figure S3). In males, 
age, current smoking, systolic blood pressure, non-
HDL-c and serum creatinine remained independ-
ent predictors, while HDL-c, diabetes and intake of 

Table 2  Multivariable regression model for prediction of incident MACE in the derivation dataset

This model is based on 17,742 individuals and 594 events. Abbreviations: CI, confidence interval; HDL-c, high-density lipoprotein 
cholesterol. Baseline survival function at 5 years (S0(5 years)) is 0.9999872. The predicted risk at 5 years is calculated using this 
formula: 1 − S0(5  years)^exp(PI), with PI = Age * 0.08161426 + Gender * − 0.49972875 + Serum Creatinine * 0.50978624 + non-
HDL-c * 0.25461620 + HDL-c * − 0.26648903 + Current smoking * 0.66701137 + Systolic blood pressure * 0.006212068 + Diabetes 
* 0.18337034 + Intake of antihypertensive agents * 0.27318009

Hazard ratio 95% CI p-value

Age per year 1.09 (1.07; 1.10)  < 0.001
Female sex (yes/no) 0.61 (0.50; 0.74)  < 0.001
Current smoking (yes/no) 1.95 (1.38; 2.76)  < 0.001
Diabetes (yes/no) 1.20 (0.93; 1.55) 0.16
Intake of antihypertensive agents (yes/no) 1.31 (1.11; 1.56) 0.002
Systolic blood pressure per 10 mmHg 1.06 (1.01; 1.12) 0.013
Non-HDL-c per mmol/L 1.29 (1.18; 1.41)  < 0.001
HDL-c per mmol/L 0.77 (0.62; 0.95) 0.016
Serum creatinine per 0.1 mg/dL 1.05 (1.02; 1.09) 0.005
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antihypertensive agents were not. In females, age, 
current smoking, non-HDL-c and intake of antihy-
pertensive agents remained independent predictors, 

while systolic blood pressure, HDL-c, diabetes and 
serum creatinine were not.

Discussion

In a large, contemporary population of healthy, 
elderly individuals in Australia and the US who vol-
unteered for a clinical trial, we developed a model 
predicting incident MACE. This model includes 
age, sex, current smoking, systolic blood pressure, 
HDL-c, non-HDL-c, serum creatinine, diabetes and 
intake of antihypertensive agents as predictors and 
resulted in good discrimination and calibration in 
internal validation analyses (Fig.  2). Importantly, 
the model was externally validated in a large data-
set of older people undergoing cardiovascular risk 
assessment in primary care in New Zealand. The 
model effectively ranked older individuals in order 
of MACE risk but significantly underestimated the 
absolute risk in this validation cohort.

Derivation 

dataset

External 

Validation dataset 

Fig. 1  Calibration plot of the prediction model. The black dots 
compare the observed and the predicted MACE probability 
together with the 95% confidence intervals. The blue crosses 

for the validation dataset represent biased-corrected predicted 
risk based on 200 bootstrap samples

Table 3  Weighting of variable selection using least absolute 
shrinkage and selection operator in the derivation dataset

Abbreviations: BMI, body mass index; HDL-c, high-density 
lipoprotein cholesterol; MI, myocardial infarction

Predictor %

Age 100.0%
Sex 99.5%
Serum creatinine 95.0%
Non-HDL-c 91.5%
HDL-c 77.5%
Systolic blood pressure 53.5%
Current smoking 36.5%
Intake of antihypertensive agents 23.0%
Diabetes 7.0%
Family history of MI 3.0%
BMI 2.0%
Haemoglobin 1.5%
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Most established risk prediction models have 
excluded elderly individuals. This applies to the 
well-established ESC SCORE2, which is only rec-
ommended for individuals aged below 66  years 
[10]. The atherosclerotic CVD score is also lim-
ited to an upper age of 79 years [22] and has been 
shown to perform substantially worse in older than 
in younger individuals [12].

There are relatively few specific risk models for 
elderly individuals. The SCORE2 Older Persons 
risk model is the most recognised [14], and was 
validated in different external cohorts. Another risk 
model was based on the PROSPER study, which 
included 5,146 elderly individuals without CVD 
[16]. The PROSPER cohort was substantially differ-
ent from ASPREE. It is no longer contemporary, as 
recruitment commenced in 1997, and it represents 
a high-risk population with 33% current smokers 
and mean systolic blood pressure very high, being 
157 mmHg.

In contrast to these previous models, the ASPREE 
model was derived from a contemporary, healthy 
population with fairly well-controlled risk factors, 
a high degree of antihypertensive or lipid-lowering 
drug use, contributing to a lower CVD event rate than 
expected from prior data. Importantly, due to rigor-
ous screening at baseline, we can be confident that all 
participants had no prior CVD events.

Although caution is needed in comparing find-
ings from different cohorts, the discrimination of 
the model, with an AUC of 0.68, was higher than 
observed with other models in older people. The ath-
erosclerotic CVD score resulted in an AUC of 0.62 
and the original validation of the SCORE2-OP in an 
AUC of 0.63 [12, 14, 23]. When the SCORE2-OP 
model was applied in ASPREE, it resulted in an AUC 
of 0.66. However, the AUC was lower compared to 
the performance of other risk models developed in 
younger individuals, where the AUC usually ranged 
between 0.70 and 0.75 [24]. This could be explained 
by the greater importance of competing mortality 
risks in the elderly and the fact that their more fre-
quent multimorbidity makes MACE adjudication 
more difficult. This older cohort also has a narrow 
age range and therefore more homogeneous, limiting 
capacity for discrimination.

The model was externally validated in the large 
PREDICT cohort, which consists of community-
dwelling people without prior CVD events undergo-
ing absolute CVD risk estimation. The primary care 
environment is ideal for validation of the model, as it 
is the setting in which application in clinical practice 
typically occurs. Importantly, we were able to mimic 
the ASPREE population in the validation dataset 
by applying ICD codes for prior CVD events, can-
cer diagnoses and cognitive impairment. As usually 

Fig. 2  Summarising figure
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expected in validation studies, the discrimination was 
lower in PREDICT compared to ASPREE. Impor-
tantly, absolute CVD risk was significantly under-
estimated in the validation cohort. There are several 
possible explanations for this. These include the 
relatively low risk of the ASPREE population, likely 
contributed to by a healthy-volunteer effect. Event 
ascertainment was also different, as ASPREE used 
the strict adjudication process of a clinical trial, while 
PREDICT used ICD codes. Furthermore, inter-coun-
try differences in CVD risk between Australia and 
New Zealand may be important. Finally, there remain 
some differences between the derivation and valida-
tion populations, as individuals with major physical 
disability, atrial fibrillation or serious illness were 
excluded in ASPREE, but not in PREDICT. There-
fore, recalibration of the ASPREE model according 
to the risk in the particular population in which the 
equation would be applied should be undertaken. 
This has for example been done for the ESC SCORE, 
distinguishing low- and high-risk countries [4].

An important difference from previous models is 
also the time frame for risk prediction. Most estab-
lished risk models provide estimates for events over 
10 years. However, a shorter time horizon of 5 years 
may be more appropriate in the elderly, due to their 
limited life expectancy and the high frequency of 
competing causes of death, especially cancer [15]. 
This shorter time frame also enables more precise 
modelling and presentation of the potential impact of 
evidence-based interventions as it approximates the 
duration of most CVD prevention trials. Furthermore, 
focus group testing of elderly has found that consum-
ers value nearer life years more highly and discounted 
events further into the future [25].

In our analyses, we provide significant support for 
the relevance of traditional predictors in elderly indi-
viduals. That age remains the dominant predictor was 
expected. This was also confirmed in a recent analy-
sis of 12 predictors using artificial intelligence which 
also found that age was the most important [26]. Sex, 
smoking, lipids, systolic blood pressure and intake 
of antihypertensive agents are also well-established 
risk factors and remain important predictors in the 
elderly. The persisting relevance of modifiable risk 
factors emphasises the role of primary prevention in 
the elderly. This particularly applies to elevated blood 
pressure, as shown in the SPRINT trial [27], as well 
as to elevated lipids. Here, recent data suggests not 

only an association of elevated lipids with MACE 
but also a benefit of statin treatment in elderly peo-
ple [28, 29]. The reversibility of the risk of CVD 
conferred by elevated lipids and the benefit of statin 
treatment in elderly people are also being addressed 
in the ongoing STAREE and PREVENTABLE trials 
(NCT02099123, NCT04262206).

After age and sex, we found impaired renal func-
tion to be the third most frequently selected predictor 
in our machine-learning analysis. Although common 
in an elderly population, measures of impaired renal 
function have not been included in risk models devel-
oped in younger individuals, in whom impaired renal 
function is less frequent. In a recent analysis of the 
atherosclerotic CVD score in elderly individuals, the 
estimated glomerular filtration rate (eGFR) was sub-
stantially lower in elderly [12] and the PROSPER risk 
model included the eGFR as risk factor [16]. In our 
analysis, we focused on serum creatinine instead of 
the eGFR, as creatinine is more widely available and 
the adjustment for age contained in the eGFR model 
was less relevant.

Intriguingly, diabetes, although included in our 
model, was not identified as a significant predictor of 
MACE. This contrasts with recent analyses in elderly 
participants from three population-based studies, in 
which diabetes was a significant predictor for CHD 
events [12]. Only one study, the Finland Italy Neth-
erlands Elderly study, did not show diabetes to be a 
significant predictor in elderly individuals [30]. This 
raises the question about whether the importance of 
diabetes as a risk factor might depend on the age at 
the time of diagnosis and therefore duration of expo-
sure to risk. It is also noteworthy that a high propor-
tion of the ASPREE participants were receiving treat-
ment with statins and blood pressure lowering agents, 
particularly angiotensin converting enzyme inhibitors 
which may have impacted on the risk conferred by 
diabetes (Table S11). Finally, some diabetic patients 
would have been identified at initial study recruitment 
as part of screening.

The current burden of CVD in communities of 
advanced age is well established, with numerous stud-
ies documenting the increased requirement for hospi-
tal and community-based health services, as well as 
increased use of residential care facilities after CVD 
events [31]. Those who experience a CVD event are 
often unable to continue their usual activities, with 
many of those affected becoming increasingly reliant 
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on government support [32, 33]. The identification 
of individuals at risk of MACE and successful early 
preventative intervention can thus have society-wide 
benefits. Given the ageing of populations globally 
[34], and thus the increasing numbers of individuals 
at high risk of CVD events, avoidance of the costs 
associated with CVD is a priority for governments. 
The routine use of a specific MACE prediction model 
offers an important way of minimising these costs.

This present investigation not only has certain 
strengths but also limitations. The major strength is 
the contemporary, high-quality dataset, which was 
used for the analyses. ASPREE, being a randomised 
controlled trial with a prespecified secondary out-
come focused on CVD, provides systematic measure-
ment of risk factors at baseline in a unique dataset of 
elderly individuals, free of CVD events at baseline. 
The robust ascertainment and adjudication process 
of all MACE outcomes also represents an important 
strength compared to other population-based stud-
ies. Another strength is clear definition of the popu-
lation to whom these data are generalisable. Finally, 
we were able to apply the risk model in the family 
practice environment in the large PREDICT cohort, 
which shares important similarities with ASPREE. 
This resulted in a total of 43,686 elderly individuals 
available for our analyses.

Amongst the limitations, the data were obtained 
from a large clinical trial rather than a random sample 
from the general population. However, recruitment to 
a clinical trial allows formal exclusion of those with 
prior CVD events. In addition, the validation in the 
community-based PREDICT cohort showed simi-
lar findings particular in rank-ordering risk, albeit 
underestimating absolute risk. Amongst other limita-
tions, the number of events in the derivation dataset 
was lower than would be expected in a general pop-
ulation. This is very likely explained by the healthy 
cohort effect resulting in better health status of the 
participants at baseline. Finally, our analyses were 
derived from a mainly Caucasian population and thus 
care may be needed in applying the model to other 
populations.

In conclusion, the ASPREE population reflects 
the increasingly large group of Caucasian individu-
als aged 70  years and over without CVD events, in 
general good health and who would be considered 
for primary prevention strategies [15]. In our analy-
ses, we confirmed the importance of age, sex, systolic 

blood pressure, smoking and lipids for prediction of 
future MACE in a population of healthy, elderly indi-
viduals. We also identified impaired renal function 
as an important predictor, which has not been recog-
nised in prior CVD risk models.
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