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Abstract

This dissertation focuses on delay in time series data. The first delay in-

volves the m-delay autoregressive model. This approach considers only the

first and the last previous observation of the traditional autoregressive model.

The least square method is utilized to estimate two unknown parameters of

our proposed model. The numerical results obtained from the simulation and

the case study confirm that the m-delay autoregressive model is effective and

reduces computation time with a larger delay.

Next, the delay is added to the stochastic differential equation for match-

ing the volatility between real-world financial data and Monte Carlo simula-

tions. Autoregressive coefficient and the differential evolution algorithms are

applied to seek the parameters of the stochastic delay differential equation. It

indicates that the estimated volatility obtained from Monte Carlo simulations

for four stocks fits the actual volatility. In addition, the study becomes more

accurate when the delay is increased, and a higher sampling frequency leads

to higher estimation accuracy.

Lastly, we propose a new technique to improve prediction accuracy for

stock price prediction. The well-known deep learning models, namely the

multilayer perceptron, the convolutional neural network and long short-term

memory network, are applied to historical stock prices. The novel technique

is called a two-delay combination model. Each popular deep learning method

combines two delays, half-day and one-day. One challenging task of the linear

combination forecast is weight identification. We utilize the differential evolu-

v



tion algorithm for obtaining optimal weights of the linear combination forecast

procedures. The results show that the patterns of the predicted closing price

obtained from our proposed method are similar to the actual stock prices. As

a result, the combination forecasts perform well compared to the individual

deep learning procedure. One benefit of our proposed technique is that ap-

plying several deep learning methods in the combination forecast method is

unnecessary. Based on the general idea of the combination forecast method,

it requires at least two different approaches to build the forecast combination.

Under our proposed technique, using only one method with two different de-

lays can reduce the evaluation metrics. Consequently, the two-delay combi-

nation model is a potential method with satisfactory prediction performance.
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Chapter 1

Introduction

Chapter 1 presents the background, objectives, contributions, and thesis

framework. First, the background of time series and several applications of

time delay are presented in Section 1.1. Then, Section 1.2 and Section 1.3 in-

troduce the thesis objectives and contributions, respectively. Finally, the thesis

structure is represented in Section 1.4.

1.1 Background

Time is an essential part of the information that most people perceive from

the world. A collection of observations in a time order are called time series.

Hence, time series are everywhere in daily life, and soon everything will be

a time series [5]. Time series data and analysis have been applied in various

areas, including weather, finance, healthcare, and the environment. Weather

prediction is crucial because it can help to minimize risk and save a life. Peo-

ple can plan their activities, including tourism, based on expected weather

conditions. For example, people can plan to get dressed differently when the

weather is hot, cold, windy or rainy. It is also important for aircraft, boats, and

pedestrian transportation, including walking and bicycling. Weather forecast

is one of the popular topics for the researchers in many fields such as temper-
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ature forecasting [6–8], rainfall forecasting [9, 10], tourism forecasting [11, 12],

air traffic [13, 14], marine [15, 16] and forestry [17, 18]. Some sectors require

more accurate weather forecasts. Financial forecasting is important because it

helps to plan and manage business finance. Stock price prediction is a popular

topic for forecasting future price movement. Many scholars proposed various

techniques to predict stock price time series [19–21]. Prediction of health situ-

ations [22, 23], healthcare need forecast [24, 25] ,and disease prediction [26, 27]

are in the area of healthcare forecasting. Accurate forecasting of the healthcare

system is beneficial for satisfying healthcare needs, and demand for medical

service [28].

Time series analysis can be classified into two groups, namely univariate

and multivariate time series analysis. The univariate time series refers to only

one variable varying over equal time-space. Future observations of a time se-

ries are computed using its past and present values [29]. For instance, Lu et

al. [30] developed nine deep learning models and predict of the closing price of

the Shanghai Composite Index. The data are obtained from the wind database

with 7,083 observations. The first 6,083 prices are used as the training set, and

the last 1,000 observations are used as the test set. Xie et al. [12] presented

a hybrid complete ensemble empirical mode decomposition with adaptive

noise (CEEMDAN) and data characteristic analysis (DCA) to predict tourism

demands. The data used in this research are the number of tourist arrivals

to Hong Kong between January 2001 and March 2019, totalling 219 observa-

tions. The four decomposition-ensemble models are applied to compare with

the proposed (CEEMDAN-DCA) method. The data from the above examples

depend only on time and past observations. Hence, there are classified in the

univariate time series. The multivariate time series involves analysis of two or

more variables. Forecasting is based on a sample of time series observations

taking into account the effect of other variables [31]. For example, five vari-

ables, including age, gender, medical comorbidities, medication records, and
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laboratory examination, are used to forecast severe COVID-19 disease in Hong

Kong [32]. Nguyen et al. [33] utilized the multivariable time series, including

the density, the ratio of water-to-cement, and the ratio of sand-to-cement, to

predict the compressive strength of foamed concrete. Bouktif et al. [34] con-

sidered five variables, including open, high, low, close and volume (OHLCV),

and those price data from Yahoo finance can be used for movement prediction.

Delay is one of significant indicators in time series. Time delay plays an

essential role in many fields, especially transportation and medicine. The de-

lay is one of the most remembered performance indicators of any transporta-

tion, particularly flight delay prediction. Flight delays have negative impacts,

mainly on airline business (increasing the operational costs to airlines.), pas-

sengers (increasing the cost to customers), airlines ranking, and airports (hav-

ing effect on airports management). Therefore, flight delay models are pro-

posed for delay prediction. For example, Gui et al. [35] established random

forest-based and the long short-term memory network (LSTM)-based meth-

ods for predictably individual flight delays. They combine many factors that

potentially influence flight delays, such as flight information, weather condi-

tion, traffic flow, flight schedule, and airport information. Yu et al. [36] pro-

vided a novel deep belief network to predict delay using high dimension data

from Beijing International Airport. Weather, seasonal effects, delay propaga-

tion, air traffic control, air route network, and the airport’s crowdedness de-

gree are the relevant factors for flight delay prediction. Qu et al. [37] present

two flight delay prediction models using the dual-channel convolutional neu-

ral network (DCNN) and the squeeze and excitation-densely connected con-

volutional network (SE-DenseNet) to improve the prediction accuracy. The

multivariate variable used in this work are the flight information (e.g., ground

traffic, flight number, takeoff/landing flight path and so on) and meteorologi-

cal data (e.g., wind direction, wind speed, visibility, temperature, air pressure,

and so on).
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There are also numerous studies on the time delay in diagnosis and initi-

ation of treatment in medical science. Some patients suffer from more sever-

ity or mortality because of delayed diagnosis. Bello et al. [38] studied delay

in diagnosing or treating pulmonary Tuberculosis (TB). The six critical delays

were investigated, including the patient’s delay, the diagnostic delay, the treat-

ment delay, the doctor’s delay, the health system delay and total delay. Iqbal

et al. [39] analyzed various factors contributing to the pediatric population’s

delayed diagnosis of Congenital Heart Disease (CHD). The possible factors

for delayed diagnosis include the first time delayed consultation, delayed or

missed diagnosis by the doctor, delayed referral, social factors and financial

factors. Hoyer et al. [40] studied risk factors for diagnostic delay in idiopathic

pulmonary fibrosis. The risk factors for delays include patient, GP, hospital

and waiting.

In this thesis, we investigate delays that are applied in several areas. Chap-

ter 3, we start with the classical autoregressive model. This model relies on

its past observations. The m-delay autoregressive (MAR) model is proposed

based on the idea of ignoring some variables. Our proposed procedure utilizes

only the first and the last observations. The MAR coefficients are presented

to estimate two parameters of our proposed model. Chapter 4 studied the

stochastic delay differential equation (SDDE) to match the estimated volatil-

ity obtained from the Monte Carlo simulations and the real-world volatility.

The autoregressive coefficients (ARC) and the differential evolution (DE) al-

gorithms are applied to estimate unknown parameters of the SDDE model.

Stock price prediction using the linear combination model is the main task in

Chapter 5. A two-delay combination technique based on deep learning (DL)

methods is proposed to improve the performance of the individual DL mod-

els. Our proposed model and the individual DL models are compared for both

univariate and multivariate time series.
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1.2 Objectives

The research objective of this thesis is to study delays in time series. This

work has the following objectives:

• To formulate the m-delay autoregressive model and develop the least

square method for parameter estimation.

• To match the volatility obtained from Monte Carlo simulations using the

stochastic delay differential equation and the real-world historical stock

price.

• To increase the prediction accuracy of the individual deep learning model

using a two-delay combination method.

1.3 Main Contributions of This Thesis

To complete these objectives, the contributions of this thesis are presented

in Chapter 3, Chapter 4 and Chapter 5, respectively. The contributions include

the following aspects.

• A novel autoregressive model, namely the m delay autoregressive model,

is proposed in Chapter 3. This model is a particular case of the classical

autoregressive model that requires only two observations. We then de-

velop the least square method to estimate two unknown parameters of

our proposed model. The novelty of our model is that we consider a

model with unknown and variable m that can be large and that the in-

ference is still feasible. We suggested a computational method allowing

statistical inference for this large unknown m and investigated its com-

putational feasibility.

• The autoregressive coefficients and differential evolution algorithms are

applied for model identification of the stochastic delay differential equa-
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tion to match the volatility between Monte Carlo simulations and case

studies in Chapter 4. To the best of our knowledge, we are the first to

estimate a model parameter, namely the drift term (λ) and the volatility

(σ2) of the stochastic delay differential equation.

• The two-delay combination technique is proposed in Chapter 5. To the

best of our knowledge, there is no attempt to combine two-delay for stock

price prediction. Moreover, the differential evolution algorithm is ap-

plied to estimate the weight of the linear combination model. Further-

more, three well-known deep learning models, including MLP, CNN,

and LSTM, are employed for historical stock prices. Finally, the two-

delay combination method is utilised to improve the popular deep learn-

ing models’ performance and confirm our proposed model’s effective-

ness.

1.4 Outline of The Thesis

This thesis consists of six Chapters. Chapter 1 gives the background, the

objectives and the contribution of the thesis, and the thesis structure. Chapter

2 presents the literature review in time series analysis, including the classical

parametric (Box-Jenkins approach) and nonparametric (deep learning) meth-

ods. The basics of the Box-Jenkins approach in time series analysis and deep

learning techniques are demonstrated in this chapter. Next, the stochastic dif-

ferential equation and the volatility are reviewed. Finally, the deep learning

forecasting with delay is detailed. Chapter 3 represents a classical autoregres-

sive model with skip delay. This model is called the m-delay autoregressive

model. The m-delay AR coefficients are proposed to estimate two unknown

parameters of the proposed model. The parameter estimation using the mod-

ified least square method and the stationary condition is revealed in this part.

Next, Chapter 4 focuses on the estimated volatility of the stochastic delay dif-
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ferential equation (SDDE). The parameter estimation techniques used in this

chapter are the autoregressive coefficients (ARC) and differential evolution

(DE) algorithms. Finally, we match the estimated volatility obtained from the

Monte Carlo simulations and the real-world volatility. Chapter 5 focuses on

the stock price prediction based on the linear combination technique. The two-

delay combination method is proposed for improving the prediction accuracy

of the individual deep learning methods. We also apply the DE algorithm

for the weight identification of the linear combination method. This chapter

is divided into two parts, namely univariate and multivariate time series. The

performance of the individual DL method and our proposed technique is com-

pared for both cases. A summary of the thesis is given in the first part of

Chapter 6. Several possible future studies on the current topic are then given

in the second part of Chapter 6. The details of thesis framework is presented

in Figure 1.1.
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Figure 1.1: Thesis framework.
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Chapter 2

Literature Review

This chapter details the literature review utilised in Chapters 3, 4, and 5. The

delays in this thesis are used in three areas: the traditional time series model,

the stochastic differential equation (SDE), and the deep learning (DL) methods

for stock price prediction. First, Section 2.1 describes the time series analysis.

Next, the stochastic differential equation is presented in Section 2.2. Then, the

deep learning models in time series forecasting are displayed in Section 2.3.

Deep learning for time series with delay is represents in Section 2.4. Finally,

we provide a brief content of this chapter in Section 2.5.

2.1 Time Series Analysis

Time series analysis has been widely applied in many branches, such as

agriculture, environment, etc. For example, the rainfall forecast is a popular

topic in time series analysis for irrigation management proposed for agricul-

ture applications. A time series model has been used to predict the amount of

rainfall for agriculture target planning. This would probably help the farmer

to deal with their resources and gain more agricultural products [41]. Further-

more, the weather forecast is essential for the environment as the temperature

is crucial for government planning and management in many aspects such as
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tourism, vegetation, and public health [42].

Various approaches based on time series methods have been proposed to

fit the data set. These approaches include the Box-Jenkins method, neural net-

works, hybrid technique and fuzzy time series method. Box-Jenkins method is

one of the famous methods consisting of the autoregressive (AR) model, mov-

ing average (MA) model, autoregressive moving average (ARMA) model and

autoregressive integrated moving average (ARIMA) model [43]. This method

has been applied to a wide range of applications including economic especially

a stock process sequence [44], engineer [45], industry [46], medicine [47] ,and

science [48]. The artificial neural networks (ANN) approach is the main tool

for nonlinear data as it is a brain-inspired system [49]. The hybrid technique

has been established since the individual model may not be adequate to ana-

lyze all the actual observations [50]. This method combines at least two indi-

vidual forecast methods to improve forecasting accuracy [51]. ANN approach

integrated with either AR or ARIMA method is called AR-ANN model [52]

or ARIMA-ANN model [53]. Fuzzy time series is a forecasting method us-

ing the fuzzy principle as the basis. It is suitable for numerical and linguistic

data [54]. Apart from the development of forecasting methods, various esti-

mating model-parameter approaches used in the time series model have been

proposed, such as the maximum likelihood method, the method of moment

and the Yule-Walker procedure. For the maximum likelihood method, stud-

ies aim to find the parameter values giving the distribution that maximizes

the probability of observing the data. The method of the moment is a simple

procedure. By equating the sample moments to the corresponding population

moments, the estimating model parameter is solved [55]. The Yule-Walker

method (or autocorrelation) fits an AR model to the window input data by

maximizing the error in the least squares sense [56].

Time series data are commonly classified into two groups; stationary and

non-stationary. For stationary data, its mean and variance are consistent. How-
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ever, its sequence does not reveal an upward (or downward) trend and sea-

sonal pattern. In contrast to the stationary data, the mean and variance of

non-stationary data vary over time. Three common ways to check the sta-

tionary of the data are time series plot, unit root test [57], and roots of the

characteristic equation [58]. For the unit root test, we apply the Augmented

Dickey-Fuller (ADF) test to check whether the data are stationary or not sta-

tionary. The presence of a unit root means the time series is non-stationary.

Hence, the null hypothesis (H0): the data containing unit root (the data are

non-stationary) versus the alternative hypothesis (H1): the data are stationary.

For roots of the characteristic equation, the roots of the characteristic equation

may be real and/or complex numbers. The data are stable if all real roots are

greater than one or the modulus of each complex root is greater than one. The

data is considered non-stationary if at least one root falls between minus and

plus one or falls inside the unit circle [43]. As the AR model requires stationary

data to predict future data, the single/double differencing method and mathe-

matical transformation are two standard procedures to convert non-stationary

data to stationary data [59]. The differencing technique is used to remove the

trend component of the data. At the same time, mathematical transformations,

including the square/cube root transformation and log transformation, are ap-

plied when the variance of data is unstable [60].

AR model has been widely applied in several areas. Many researchers

have developed the AR model for time series prediction. For example, Pena-

Sanchez et al. [61] readdressed the AR model for short-term forecasting of

sea surface elevation. In their work, the authors compared four techniques,

namely the AR model using a linear least square (ARLLS) method, the AR

model via long-range predictive identification (ARLRPI) method, the direct

multistep using the spectrum (DMSSp) method and the direct multistep via

the linear least square (DMSLLS) method to predict wave elevation in Belmul-

let, Ireland. The results obtained from simulation and observed data indicated
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that AR models are suitable for short-term prediction of sea surface elevation

comparable to state-of-the-art procedures. Kandula and Shaman [62] proposed

three AR-base models to forecast the number of outpatient influenza-like ill-

nesses (ILI) in the USA. The three AR-base models include an autoregressive

integrated moving average (ARIMA) model, an ARIMA model with seasonal

and trend decomposition (ARIMA-STL), and a feed-forward autoregressive ar-

tificial neural network with a single hidden layer (AR-NN). The results show

that the hybrid AR-NN model outperforms the other two procedures. Maleki

et al. [63] improved autoregressive models based on two-piece scale mixture

normal distributions, called TPSMNAR model, to predict the number of con-

firmed and recovered cases of COVID-19 in the world. The results confirm

that the proposed model performs well in terms of the mean absolute percent-

age error (MAPE) to estimate the number of confirmed and recovered cases of

COVID-19 for ten days during 21 - 30 April 2020. The summary of reviewed

papers in this section is shown in Table 2.1.

2.2 Stochastic Differential Equation (SDE)

A stochastic process is a process that involves random variables changing

over time [64]. The stochastic processes can be divided into discrete-time and

continuous-time to model the asset price. The price can be discrete or con-

tinuous for both types of stochastic processes. However, a discrete price can

only assume a countable number of possible values, while a continuous price

assumes any positive actual number. A stochastic differential equation (SDE)

is a differential equation that contains one or more of the terms is a stochas-

tic process. This model is essential for modelling random phenomena in the

financial field.
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Table 2.1: The literature summary in Section 2.1 is separated by experiment
types, data types, and the delay problem.

Reference Method Experiment Data Delay

Sim
ulation

C
ase

study

U
nivariate

M
ultivariate

Yes

N
o

Ip et al. [44] MAR ✓ ✓ ✓ ✓
Amo-Salas et al. [45] OED-AR ✓ ✓ ✓ ✓

Acedański [46] NF, SAR, LI ✓ ✓ ✓
Sharafi et al. [47] SRIMA ✓ ✓ ✓
Tsitsika et al. [48] ARIMA ✓ ✓ ✓ ✓

Pan et al. [51] AR-ELM ✓ ✓ ✓
Qi, M and Zhang, G [52] ARIMA-ANN ✓ ✓ ✓
Pena-Sanchez et al. [61] ARLLS, ARLRPI , ✓ ✓ ✓ ✓

DMSSP, DMSLLS
Kandula and Shaman [62] ARIMA-STL, ✓ ✓ ✓

ARIMA,AR-NN
Maleki et al. [63] TP-SMN-AR ✓ ✓ ✓

The general form of the SDE consists of deterministic or average drift and

diffusion terms.

dY(t) = a(Y(t), t)dt + b(Y(t), t)dw(t), (2.1)

where a(Y(t), t) and b(Y(t), t) are drift and diffusion term, respectively, Y(t)

denotes the return of stock prices, t ∈ [0, T], and T > 0. In financial statis-

tics, b(Y(t), t) is termed the ”volatility” [65]. We estimate the solution through

discretization of SDE.

Stochastic processes are widely used in many areas, especially finance, where

asset prices evolve and form a stochastic process. Discrete-time and continuous-

time are two main kinds of stochastic methods for modelling the price of an

asset. The discrete-time stochastic process can be defined as the price changes

instantaneously. For instance, the daily closing price of IBEX 35 on the Span-

ish Continuous Market is classified as a discrete-time stochastic process due

13
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to the price change only at the closing of a trading day. On the other hand, in

the continuous-time process, the price changes continuously even though the

price is only observed at discrete time points.

A stochastic differential equation (SDE) is an equation in which one or

more terms is a stochastic process. The SDE has been used to model an as-

set price and its volatility in finance [66, 67]. Investors use historical stock

prices to predict the market movement and make investment decisions. For

the mathematical model in finance, the Black-Scholes model was introduced to

describe derivatives of the stock price with geometric Brownian motion (GBM)

behaviour [68]. However, it was reported that GBM could not capture for-

ward or backward behaviour [69–71]. The classical SDE has introduced a time

delay to overcome the problem of capturing market dynamics and financial

derivatives. Many researchers have established stochastic delay differential

equations (SDDEs) and applied them to finance studies [72–75].

Tambue et al. [72] compared numerical solutions obtained from the SDDE

and classical Merton model with the actual corporate data. They stated that the

SDDE with constant delay provides stable and accurate behaviour for pricing

equity. Eissa and Tian [73] proposed SDDE with a variable delay to model

the price of a firm and European option. They reported that their proposed

model is more flexible to fit accurate market data. Lee et al. [74] modified

SDDE to capture the feedback effects of the option price. They confirmed that

the modified SDDE model was not a risk-neutral one for generality and cap-

tured the main idea of the delay effect for option pricing. Finally, Ernst and

Soleymani [75] provided a numerical algorithm for solving the SDDE. Their al-

gorithm employed either the Legendre collocation method or the Chebyshev-

type method. The numerical results from both ways were compared and con-

firmed that the proposed method was computationally faster and more accu-

rate than the Chebyshev-type method.

Volatility is a significant task as it is the most important in pricing deriva-
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tive securities. Higher volatility can cause essential variations of return. Hence

it can be a higher risk in the financial market. The important thing is that fi-

nancial volatility is not directly observable, like the return process observed

from the price process. It requires some techniques to estimate the volatility.

The three main classes of volatility estimation are historical volatility, implied

volatility and stochastic volatility. Historical volatility (HV) is a statistical mea-

sure of the dispersion of returns based on historical return movements. The

most usual method is the standard deviation of the log of price returns. This

thesis focuses only the historical volatility because this measure is simple to

use and has been investigated in the literature [76].

For volatility estimation, Masset [77] pointed out that volatility computed

at different time scales has different information content. In general, volatility

forecast accuracy improves as data sampling frequency increases for some fi-

nancial time series [78]. However, when more frequent samples are used can

cause volatility decreases for other financial time series. Concurrent with the

move toward the use of higher frequency data. Zhang et al. [79] reported that

increasing sampling frequency leads to higher volatility. Luong and Dokuchaev

[80] estimated the volatility of the most traded indices and US stocks using a

stochastic delay differential equation at different sample high-frequency data

such as 15 minutes, 5 minutes and 1-hour intervals. The author confirmed

that an additional delay term in the SDE better matches the volatility obtained

from the Monte Carlo simulations and the historical data. The SDDE topics are

summarized in Table 2.2.

2.3 Deep Learning Models in Time Series Forecast-

ing

Nowadays, deep learning techniques have become one of the most re-

searched algorithms due to their ability to deal with non-linear and multi-
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Table 2.2: The summary of literature in SDDE is separated by experiment
types, data types, and analysis problems.

Reference Experiment Data type Analysis

N
um

erical

C
ase

study

Equity

O
ption

price

R
eturn

C
urrency

rate

Forecasting

C
om

parison

D
erivative

Tambue et al. [72] ✓ ✓ ✓ ✓
Eissa and Tian [73] ✓ ✓ ✓

Lee et al. [74] ✓ ✓ ✓
Ernst and Soleymani [75] ✓ ✓ ✓

Lahmiri [76] ✓ ✓ ✓ ✓
Masset [77] ✓ ✓ ✓

Zhang et al. [79] ✓ ✓ ✓
Luong and Dokuchaev [80] ✓ ✓ ✓ ✓ ✓

Andersen et al. [81] ✓ ✓ ✓ ✓

dimensional problems. These methods are a part of machine learning (ML)

based on artificial intelligence (AI). The human nervous system inspires the

ideas of deep learning. Deep learning approaches learn optimal features di-

rectly from large amounts of data, without any visible [82]. These techniques

outperform the machine learning methods in terms of flexibility to solve sev-

eral problems, including complex functions. Time series forecasting using

deep learning methods has been viral among researchers over the past decade.

Several published deep learning predictions with application to various ar-

eas have been presented in the last few years. The Preferred Reporting Items

for Systematic Reviews and Meta-Analyses (PRISMA) is presented to report a

wide array of systematic reviews and meta-analyses on deep learning meth-

ods in time series analysis specifically finance [83]. The criteria to produce the

articles search are as follows:

• The search query used is: (deep-learning) AND (financ* OR stock) AND

(prediction OR forecasting).
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• The databases used in this study are Scopus and Web of Science.

• The search results are limited between 2013 and 2022.

• The search results are considered only the published work in the English

language.

• All the documents searched are conference papers, articles, conference

reviews, book chapters, reviews and books.

Figure 2.1: The PRISMA diagram.

Figure 2.1 displays the PRISMA diagram. First, we collected 1,372 articles

from the Web of Science database and 1,851 articles from the Scopus database.

After that, we removed duplicate articles from both databases. The total 2,287
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remaining articles were documented. Then, only full-text articles are recorded,

with 790 articles available for eligibility assessment. In the last step, the 187

full-text articles were included covering deep learning, finance, and prediction.

Deep Learning refers to the arrangement of multiple hidden layers of neu-

rons in between the input layer and output layer. This technique can be di-

vided into two general groups, supervised and unsupervised learning. The

fundamental difference between supervised and unsupervised is that the algo-

rithms learn from the input data to predict the output, and all observations are

labelled. In contrast, the data used for unsupervised learning are unlabeled,

and the algorithms learn the inherent structure from the input data. Unsuper-

vised learning focuses on finding relationships in a data structure without hav-

ing a measured outcome, while supervised learning is used for forecasting/-

classification a specific result of interest [84]. Popular programming languages

used for deep learning algorithms such as MATLAB, R, and Python [82]. Fig-

ure 2.2 represents deep learning architectures in time series analysis.

2.3.1 Unsupervised Techniques

This technique makes it possible to implement the learning process with

unlabelled data. These algorithms utilize only the input data to mine for rules

and detect patterns in the data. Staked autoencoder (SAE) is one of the famous

models for unsupervised techniques because it improves feature extraction ac-

curacy and reduces dimensional feature space [85]. Another helpful model is

the deep belief network (DBN) [86]. This approach is an effective model when

applied to multi-source inputs.
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Figure 2.2: The most common deep learning architectures for analyzing time
series data.
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However, the major weakness of unsupervised learning is less accurate data

sorting because this technique learns from untagged data [87].

2.3.2 Supervised Technique

Supervised techniques, including the artificial neural network (ANN), the

multilayer perceptron (MLP), the convolutional neural network (CNN), recur-

rent neural network (RNN), and the long short-term memory network (LSTM),

are ordinaries used in deep learning approaches. The main advantage of this

technique is enabling us to collect data or generate output from prior knowl-

edge. However, the big drawback is that the decision boundary may be over-

strained if the training set does not own samples that should be in a class. To

sum up, this technique is more straightforward than other techniques in learn-

ing with high-performance [87].

• Artificial Neural Network (ANN)

ANN is the initial nonparametric nonlinear time series model. It is also

known as a feed-forward neural network because inputs are processed only

forward. The basic structure of ANN consists of a network of computing

units called neurons. These neurons are represented as nodes in artificial neu-

ral networks. The nodes are connected through weights. ANN has become

widespread in research because ANN has flexible and capable of modelling

nonlinear processes. ANN is useful when the data are non-stationary and have

unknown statistical distribution. There are numerous ANN methods such as

feed-forward back propagation (FFBP) [88], radial basis function-based neu-

ral networks (RBF) [89], generalized regression neural networks (GRNN) [90].

However, there are two limitations to using ANN, including overfitting issues

due to large numbers of parameters to fix and little to no historical information

about the importance of inputs in analyzed problems. The other is that ANN

is ineffective for inference because the ANN process is not required training

20



CHAPTER 2. LITERATURE REVIEW

for the whole data set [91].

• Multilayer Perceptron (MLP)

Multilayer perceptron (MLP) is a feedforward artificial neural network (ANN)

class. A perceptron is a neuron network unit that helps categorize the input

data. The MLP is characterized by an input layer, one or more hidden layers

and an output layer. This model has high self-learning ability and fault toler-

ance. However, it has limitations in the learning process as the stock price pat-

tern has tremendous amounts of noise and a high dimension [92]. Many schol-

ars have developed the MLP model to predict future data especially in finance.

Rajabi et al. [93] proposed learnable window size-multilayer perceptron(LWS-

MLP) to predict bitcoin prices. The results indicate that the LWS-MLP model

is superior to the other six methods: ARIMA, random forest (RF), support

vector regression (SVR), LSTM stochastic, MLP stochastic, and wavenet meth-

ods. Peng et al. [94] compared the performance of three individual methods

(ARIMA, MLP, RNN) and the hybrid methods (ARIMA-MLP, ARIMA-RNN)

to forecast the weekly closing price of three stock exchanges. The finding re-

veals that hybrid models provide less error than individual methods in terms

of MAE, RMSE, and MAPE.

Zhang et al. [95] presented the GA-MLP algorithm to seek the hyperparam-

eter of the MLP model using the genetic algorithm (GA). Then, the diversity-

considered GA-MLP ensemble algorithm (DGAMLPE) is presented to fore-

cast the financial distress of Chinese listed companies. Two novel algorithms

are compared with other five algorithms, namely random forest (RF), extreme

gradient boosting (Xgboost), weighted count of errors and correct (WCEC),

integrated of the unsupervised classifier deep belief network (DBN) and sup-

port vector machine in terms of accuracy, F1-score, and area under the curve

(AUC). The empirical results demonstrated that the DGAMLPE algorithm out-

performed the other seven algorithms in terms of accuracy, F1 score and area
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under the curve. Finally, EL-SAID et al. [96] outlined an advanced squirrel

search optimization algorithm (ASSOA) to search for the hyperparameter of

the MLP. The proposed algorithm (ASSOS-MLP) is compared with three clas-

sifiers based on the MLP, including the basic squirrel search (SS) optimiza-

tion algorithm (SS-MLP), grey wolf optimizer (GWO) optimization algorithm

(GWO-MLP), and genetic algorithm (GA-MLP). The data used in this work

are chest X-ray (Pneumonia-COVID-19) images from the Kaggle dataset con-

taining 5,863 X-rays. The experimental results demonstrate that the proposed

ASSOA - MLP algorithm performs very well in detecting chest X-ray COVID-

19 images. Furthermore, the ASSOA algorithm provides better results than

the SS, GWO, and GA algorithms because it gives the lowest average error

and standard deviation.

The hyperparameter of the network is the number of layers and the num-

ber of neurons per layer. Several nonlinear activation functions, including sig-

moid, hyperbolic tangent, rectified linear unit (ReLU), leaky-relu and softmax,

are used in the MLP model. The structure of MLP is displayed in Figure 2.3.

Figure 2.3: Architecture of Multilayer Perceptron [1]

A perceptron is a linear classifier. Each neuron contains three terms, namely

input, weight and bias terms in the hidden layers. The general neuron unit is
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defined as

yi = σ(
n

∑
j=1

wjxj + b), (2.2)

where yi are the outputs, σ is the nonlinear activation function, xj are inputs to

the neuron, i, j = 1, 2, . . . , n, n is the number of the neuron, wj are the weights

and b is the bias [97]. In addition, the nonlinear activation functions are as

follows [98]:

• Sigmoid σ(z) = 1
1+e−z

• Hyperbolic tangent tanh(z) = ez−e−z

ez+e−z

• Rectified Linear Unit R(z) = max(0, z) =

z, if z > 0 (Active state)

0, if z ≤ 0 (Inactive state)

• Leaky-ReLU R(z) = max(kz, z) =

z, if z > 0 (Active state)

kz, if z ≤ 0 (Inactive state)

• Softmax f j(z) = ezj
n
∑

k=1
ezk

• Convolutional Neural Network (CNN)

A convolutional neural network (CNN) is a class of deep learning methods.

There are three types of different dimensions of CNN, namely one-dimensional

CNN (1D-CNN), two-dimensional CNN (2D-CNN) and three-dimensional CNN

(3D-CNN), which are usually used for time series data, image data and 3D im-

age data, respectively. The advantage of CNN compared to its predecessors is

that it automatically identifies the relevant features without any human super-

vision [87]. Using the convolution function, CNN can extract essential and dis-

tinctive features from images. However, this method requires large memory

and computation load because big data must be prepared [99]. CNN is most
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effective in many fields including face recognition [100], object detection [101],

recommender systems [102], medical image analysis [103], traffic flow [104]

and stock prediction [20].

Focusing on stock prediction, Lu et al. [20] proposed a CNN-BiLSTM-AM

for closing price prediction. The novel technique is built based on convolu-

tional neural networks (CNN), bi-directional long short-term Memory (BiL-

STM), and attention mechanism (AM). Then, the seven methods are utilised to

compare with the proposed model. The finding shows that the CNN-BiLSTM-

AM technique performs better than the other model in terms of the MAE,

RMSE and R2. Liang et al. [105] proposed a new hybrid between ICEEMDAN

and LSTM-CNN-CBAM models to predict the gold price. The results confirm

that the ICEEMDAN-LSTM-CNN-CBAM model provides better performance

than the other hybrid models in terms of MAE, RMSE, MAPE, SMAPE, and

R2. Kanwal et al. [106] proposed a novel hybrid technique to predict stock

prices. This model combines a bidirectional cuda deep neural network long

short-term memory (BiCuDNNLSTM) and 1D-CNN model. The other four

DL models, including LSTM, CuDNNLSTM, LSTM-CNN, and LSTM-DNN,

are used to compare the performance of the proposed model. The results il-

lustrate that the BiCuDNNLSTM-1DCNN method is a superior technique for

predicting GDAXI and HSI stock prices.

The convolutional neural network (CNN) is a type of deep neural network

(DNN) that consists of convolutional layers based on the convolutional opera-

tion. CNN mainly comprises two layers, namely the convolution layer and the

pooling layer. The convolution layer is shown in the following formula:

lt = tanh(xtkt + bt), (2.3)

where lt denotes the output value after convolution, kt presents the weight

of the convolution kernel, bt is the bias of the convolution kernel [20], and t

corresponds to its order in the series.
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CNN architectures have different layers, including convolutional, max-pooling,

dropout, and fully connected multilayer perceptron (MLP) layer. The number

of hidden layers, number of units per layer, network weight initialization, ac-

tivation functions, learning rate, momentum values, the number of epochs,

batch size (minibatch size), decay rate, optimization algorithms, dropout, ker-

nel size, and filter size are hyperparameter of CNN model [107]. Figure 2.4

depicts the overall architecture of CNN.

Figure 2.4: Fully Convolutional Neural Network Architecture [2]

• Recurrent Neural Network (RNN)

The recurrent neural network (RNN) is an alternative to CNN for process-

ing sequential data and handling dynamic relationships and long-term depen-

dencies [108]. For the basic idea of RNN, each input data are treated with the

same function, whereas the output of the current input relies on its past com-

putation. After the output is released, it is copied and sent back to the input

to predict the layer’s output. RNN is useful for numerous disciplines such

as speech recognition [109], image captioning [110], machine translation [111],

time series forecasting [112], and natural language processing [87]. However,

RNN models cannot deal with long-term data dependency and require multi-

ple parameters to update. Moreover, the parameter updates are poor when the

slight gradient becomes too small. Therefore, it is difficult to make the learn-
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ing of long-term data. Thus, a Long Short-Term Memory Network (LSTM) is

presented to deal with gradient problems.

• Long Short-Term Memory Network (LSTM)

The long short-term memory (LSTM), introduced by Hochreiter and Schmid-

huber [113], is presented to deal with the weakness of the exploding gradient

problem from RNN. The primary objectives of LSTM are to capture long-term

dependencies and define the optimal time delay (lag) in time series problems.

The LSTM model has two subcategory states: a short-term state (similar to

the RNN) and a long-term state. The information is collected to capture the

long-term dependencies between the present and past hidden states over time.

Traversing from left to right, the long-term state passes through a forget gate.

Some memories are abandoned, and some of them are inserted using the addi-

tion operation. LSTM is insensitive to the input data length compared to other

methods that handle a series of data [114]. The weakness of LSTM is that the

big data and massive processing time for training are required [115].

LSTM is a robust recurrent neural network (RNN) because the network

can remember both short- and long-term dependencies. The LSTM model ar-

chitecture contains various numbers of layers and numerous units per layer.

The number of hidden layers, the number of units per layer, regularization

techniques, network weight initialization, activation functions, learning rate,

momentum values, the number of epochs, batch size (minibatch size), and

sequence length are the hyperparameter of the LSTM model [112, 116]. The

LSTM structure is presented in Figure 2.5.

The following equations detail the operations of the single cell long short-

term memory:

it = σ(W(i)xt + U(i)ht−1 + b(i)), (2.4)

ft = σ(W( f )xt + U( f )ht−1 + b( f )), (2.5)
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Figure 2.5: LSTM model architecture [3]

ot = σ(W(o)xt + U(o)ht−1 + b(o)), (2.6)

ct = it ∗ [tanh(W(u)xt + U(u)ht−1 + b(u))] + ft ∗ ct−1, (2.7)

ht = ot ∗ tanh(ct). (2.8)

Where xt denote the input vector at instant time t, ht represents the hidden

state vector, σ displays logistic sigmoid function, tanh is a hyperbolic tangent

function, it indicates the put gate vector, ot is a output gate vector, ct repre-

sents the memory cell state vector, ft is a forget gate vector and , * presents the

pointwise multiplication of two vectors [117].

LSTM has been effectively employed in universal studies such as time se-

ries prediction [118], wind power prediction [119], human trajectory predic-

tion [120] and stock price prediction [121–125]. In 2022, many papers applied

the LSTM model and combined LSTM with another technique for stock price

forecasting. Bathla et al. [121] studied high variation price movement for seven

months in 2020 (January-July). During this time, the price movements of pop-

ular stocks, including NSE, BSE, NYSE, Dow Jones, Nikkei 225, S&P 500, and

NASDAQ, fluctuated. Moreover, only a few works consider the price move-

ment and predict the stock price at that time. Therefore, the authors con-

ducted the LSTM model with a specific model hyperparameter and compared

it with the state-of-the-art techniques, namely the ARIMA, linear regression
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and ARIMA-RNN methods. The comparison between the LSTM model and

the state-of-the-art methods using the MAPE criterion indicates that it pro-

vides the lowest error (MAPE) and can be used to capture the high variation

price movement.

Bhandari et al. [122] studied the single and multiple layers of the LSTM

model for S&P 500 stock price prediction from 2006 to 2020. The data used

in their work covered two significant events including the financial crisis in

2008 and the COVID-19 pandemic in 2020. The evaluation metrics utilised in

this work are the RMSE, MAPE and the correlation coefficient (R). The experi-

mental results for short-term and long-term closing price prediction show that

the single LSTM model is a high-accuracy model and outperforms multilayer

LSTM models. Ahmad and Singh [123] compared the machine learning and

the deep learning models for the daily NIFTY50 stock prices forecasting. Lin-

ear regression, support vector machine and random forest are three machine

learning used in their work. For deep learning techniques, LSTM and CNN

are considered. The experimental results illustrate that the DL techniques per-

form better than the ML methods in terms of RMSE. Furthermore, the LSTM

model is outstanding over the other techniques as this model provides a more

accurate stock price prediction.

Liu et al. [126] proposed a new hybrid model between the convolutional

autoencoder (CAE) and the long-short-term memory (LSTM) called the CAE-

LSTM model for short-term prediction. The multivariate data used in their

work are the opening, the highest, the lowest and the closing prices of the

Shanghai Stock Exchange Index from 4 January 2000 to 27 May 2021. The

comparison between the proposed model and the LSTM model indicates that

the CAE-LSTM model provided better results than the LSTM model in terms

of the RMSE.

Lin et al. [125] proposed a novel hybrid method for multi-step precious

metal prices prediction. The MEEMD-LSTM is integrated based on the modi-
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fied ensemble empirical mode decomposition (MEEMD) method and the long-

short-term memory (LSTM) method. The well-known DL technique, including

the multilayer perceptron (MLP), support vector regression (SVR) and a com-

bination forecasting model super learner (SL) methods, are utilised to evaluate

the performance of the MEEMD-LSTM model. The four metal time series used

in this work are gold, silver, platinum, and palladium. The results show that

the MEEMD-LSTM is a superior hybrid model for multi-step precious metal

price prediction.

2.4 Deep Learning for Time Series with Delay

Delay is one of the key indicators of time series. Time delay plays an

essential role, especially in forecasting problems. Delay, which is investigated

in this thesis, refers to lag time (time window/timestep/look back). Some

scholars work with delays in time series. For example, Gers et al. [127] applied

the MLP and LSTM methods to deal with time series data when time windows

are fixed. The univariate data used in their work are recorded from a Far-

Infrared (FIR) Laser in a chaotic state, totaling 1,100 observations. The first

1,000 observations were used for training, and the remaining 100 points were

used for testing. The results indicate that the MLP model outperformed the

LSTM because the MLP model could detect chaotic behavior.

Ma et al. [128] presented a novel LSTM model for travel speed predic-

tion. In order to capture the long-term temporal dependency, the proposed

model is called the Long Short-Term Neural Network (LSTM NN). The authors

also proposed a novel algorithm for searching for the optimal time window.

The novel method was compared with classical time series prediction mod-

els: ARIMA, Kalman Filter, Support Vector Machine, Elman Neural Network,

Time-Delay Neural Network, and Nonlinear Autoregressive with Exogenous

Inputs (NARX) Neural Network. The multivariate travel speed data, includ-

29



CHAPTER 2. LITERATURE REVIEW

ing volume, occupancy and speed, were collected from two major ring roads

around Beijing in June 2013. The first 25 days were classified as a training set,

and the rest five days were classified as a testing set. Empirical results indicate

that speed prediction accuracy increases when an extensive time lag is consid-

ered. The LSTM NN performs better than other classical time series prediction

techniques in capturing long-term dependency and automatically defining the

optimal time lags.

Saud and Shakya [129] applied three popular deep learning methods, namely

Vanilla RNN (VRNN), Long Short-term Memory (LSTM), and Gated Recur-

rent Unit (GRU) for next-day closing price prediction. The data used in this

work are from Nepal. Investment Bank (NIB) and Nabil Bank Limited (NABIL)

stocks. The multivariate variables, including Open, High, Low, Close, Trade

Volume, Trade Amount, High-Low, Close-Open, 3day MA, 10day MA, 30day

MA, Standard Deviation, Relative Strength Index, and William %R are input

variables. The next-day forecast varies based on different steps. The results

show that the GRU performs better than the LSTM and the VRNN in MAPE.

However, forecasting performance may not be improved by increasing the

time step.

Kang et al. [130] study on wastewater flow rate prediction using the Bidi-

rectional LSTM (bi-LSTM) method. To evaluate the performance of the bi-

LSTM method, three popular deep learning methods, namely SVM, GRU, and

LSTM, are employed. The wastewater flow rates are obtained from the Yangju

wastewater treatment plant from 19th August 2017 to 18th September 2017,

with a total of 4,464 observations. A bi-LSTM based prediction idea is to use

a current slide window from the training period for m-step ahead forecasting.

The results indicate that bi-LSTM performs better than the well-known deep

learning methods in RMSE.

Wu et al. [131] presented a Transformer-based method for predicting in-

fluenza prevalence. The novel method is compared with the ARIMA, LSTM,
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and sequence-to-sequence (Seq2Seq) model. The influenza prevalence data

were gathered from the Centers for Disease Control and Prevention (CDC) be-

tween 2010 and 2018. The empirical results by fixing the length time window

show that the Transformer-based method outperformed ARIMA, LSTM, and

Seq2Seq-based models in terms of RMSE.

Fan et al. [132] focus on short-term predictions of building energy based

on three techniques, including recursive, direct, and multi-input, multi-output

(MIMO) techniques constructed on RNN, LSTM, and GRU methods. The mul-

tivariate time series used in this work are building operations observations

from an educational building in Hong Kong in 2015 over 17,000 points. The

experiments demonstrated that the direct approach based on recurrent models

performed well in terms of computation time.

Marino et al. [133] compare the performance of standard LSTM and LSTM-

based Sequence to Sequence (S2S) architecture for building-level energy load

forecasting. Individual household electric power consumption time series used

in their work are extracted from a benchmark electricity consumption dataset

for a single residential customer with two different time scales, namely one-

minute and one-hour time intervals. The experimental results indicate that

on both time scales, the S2S LSTM-based algorithms perform well in terms of

RMSE.

Vijayakumar et al. [134] investigated network traffic prediction from the

GÉANT backbone networks in 2004 by utilizing feed-forward networks (FFN),

recurrent neural networks (RNN), long short-term memories (LSTM), gated

recurrent units (GRU), and identity recurrent units (IRNN). Three traffic data

sets were collected: the training set, the validation set, and the testing set, con-

sisting of 370,300 observations, 105,800 observations and 158,700 observations,

respectively. According to the results, the LSTM method performs better than

the other techniques in terms of MSE. An overview of the delay in time series

prediction using deep learning techniques is provided in Table 2.3.
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Table 2.3: A summary of the literature on delay in time series prediction using
deep learning methods is presented by data types, forecasting problems, and
evaluation metrics.

Reference Method Data Forecasting Evaluation metrics

U
nivariate

M
ultivariate

Single-step

M
ulti-step

N
M

SE

M
A

PE

M
SE

R
M

SE

Gers et al. [127] LSTM,MLP ✓ ✓ ✓
Ma et al. [128] LSTM NN ✓ ✓ ✓

Saud and Shakya [129] Vanila RNN, ✓ ✓ ✓
LSTM, GRU

Kang et al. [130] Bi-LSTM ✓ ✓ ✓
Wu et al. [131] Transform-based ✓ ✓ ✓

LSTM, ARIMA
Fan et al. [132] RNN, LSTM,GRU ✓ ✓ ✓

Mario et al. [133] LSTM, S2S-LSTM ✓ ✓ ✓
Vinayakumar et al. [134] FFN, RNN, LSTM ✓ ✓ ✓

GRU, IRNN

2.5 Conclusion

In this chapter, we present a comprehensive literature review. First, time se-

ries analysis is explained. An overview of Box-Jenkins, neural networks, and

hybrid methods that combine Box-Jenkins and neural networks is provided.

We then describe the background of the stochastic differential equation (SDE),

including adding delay to the SDE model and volatility. A summary of pub-

lished works based on time series analysis and the SDDE is presented. Next,

deep learning techniques in time series forecasting are reviewed. It covers

supervised and unsupervised approaches. In addition, it includes publica-

tions that apply deep learning methods to various time series problems. The

PRISMA diagram represents a wide range of systematic reviews and meta-

analyses of time series analysis with deep learning methods. The review of

deep learning for time series with delay is outlined in the last section. It covers

single deep learning techniques and hybrid deep learning techniques for pre-

dictions in numerous areas. Finally, a literature review summary is displayed

based on different data types, forecasting problems, and evaluation metrics.
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Chapter 3

The m-delay Autoregressive Model

In this chapter, we propose the m-delay AR model in which only two param-

eters are determined. This model is a special case of the classical autoregressive

(AR) model. As the classical AR model uses more parameters in the formula to

predict future observation, the idea of ignoring some parameters is presented.

The m-delay AR formula based on the least squares method is derived, and an

optimal delay algorithm based on a brute-force technique is developed. The

organization of this chapter is structured as follows. Section 3.1 concerns the

derivation of the m-delay AR model to obtain two parameters of the m-delay

AR model. The performance of parameter estimation is presented in Section

3.2, and the empirical study is reported in Section 3.3. Conclusion is given in

Section 3.4. Note that the work in this chapter has been published in [135].

3.1 Derivation of the m-delay Autoregressive Model

Generally, an explicit formula of the present value xt is determined by the

standard AR model [43], i.e.

xt = ϵt +
m

∑
i=1

ϕixt−i, (3.1)
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where xt represents the present value at instant time t, {xt−1, xt−2, . . . , xt−m}

is the list of the past observations, ϕi(i = 1, . . . , m) are ith coefficients of AR

model and ϵt is a gaussian white noise process which is assumed to be the

normal distribution, N(0, σ2).

In this study, we propose a m-delay AR (MAR) model to approximate the

present value xt by using only the first term at t − 1 and the last term at t − m,

xt = ϵt + ϕ1xt−1 + ϕmxt−m. (3.2)

The first and the last coefficients of the AR model are estimated by the be-

low equation based on the least squares method. The principle concept of the

least squares procedure is to minimize the sum of square error functions [136].

Sc(ϕ̂1, ϕ̂m) =
n

∑
t=m+1

[
xt − ϕ̂1xt−1 − ϕ̂mxt−m

]2 . (3.3)

To find the optimal values of ϕ̂1 and ϕ̂m in Eq. (3.3). We differentiate Eq.

(3.3) with respect to ϕ̂1 and ϕ̂m and set them to zero. This step is shown in Eq.

(3.4). 

∂Sc

∂ϕ̂1
= −2

n
∑

t=m+1

[
xt − ϕ̂1xt−1 − ϕ̂mxt−m

]
xt−1 = 0,

∂Sc

∂ϕ̂m
= −2

n
∑

t=m+1

[
xt − ϕ̂1xt−1 − ϕ̂mxt−m

]
xt−m = 0.

(3.4)

We finally obtain the m-delay formula for approximating ϕ̂1 and ϕ̂m, i.e.
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ϕ̂1 =

n
∑

t=m+1
xtxt−1

n
∑

t=m+1
x2

t−m −
n
∑

t=m+1
xt−1xt−m

n
∑

t=m+1
xtxt−m

n
∑

t=m+1
x2

t−1

n
∑

t=m+1
x2

t−m −
[

n
∑

t=m+1
xt−1xt−m

]2 ,

ϕ̂m =

n
∑

t=m+1
x2

t−1

n
∑

t=m+1
xtxt−m −

n
∑

t=m+1
xtxt−1

n
∑

t=m+1
xt−1xt−m

n
∑

t=m+1
x2

t−1

n
∑

t=m+1
x2

t−m −
[

n
∑

t=m+1
xt−1xt−m

]2 .

(3.5)

We call ϕ̂1 and ϕ̂m as the new approximation of the m-delay AR coefficients.

As the standard AR model is a stationary time series process, we now deter-

mine the stationarity condition of the m-delay AR model. In this study, we

investigate the stationarity condition of our proposed model in Eq. (3.2) by

computing the roots of AR characteristic equation.

To discuss the stationarity, we define the AR characteristic polynomial as

ϕ(t) = 1 − ϕ1t − ϕmtm, (3.6)

where the characteristic equation is

1 − ϕ1t − ϕmtm = 0. (3.7)

To solve Eq. (3.7) a sufficient stationarity condition of our model is

| ϕ1 | + | ϕm |< 1, (3.8)

where the delay (m) is between 3 and 120.

This study selected a delay range from 3 to 120 in order to account for

small delays (m = 3,5,20), medium delays (m = 35,60,79) and large delays (m =

119,120). The sufficient stationarity condition is shown in Figure 3.1.
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(a) (b)

Figure 3.1: Linear relationship between ϕ1 and ϕm for different delays (m); (a)
m is even number, (b) m is odd number

We then evaluate the performance on the MAR model using the root mean

square error. The formula is given as

RMSE =

√√√√√ L
∑

l=1

[(
ϕ1 − ϕ̂

(l)
1

)2
+
(

ϕm − ϕ̂
(l)
m

)2
]

L
, (3.9)

where ϕ1 and ϕm are parameters of the MAR model, ϕ̂1 and ϕ̂m are approxi-

mated parameters, m is the delay and L is the number of simulations runs.

3.2 Parameter Estimation

This section concerns the effectiveness of the m-delay formula Eq. (3.5) via

Monte Carlo simulations, and the optimal delay using brute-force technique.

3.2.1 Effectiveness of the m-delay Formula

To examine the coefficients ϕ1 and ϕm obtained from the m-delay formulation
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(see Eq. (3.5)), we set the initial value of m data to zero (m ≪ n). The obser-

vations xt determined by Eq. (3.2) are generated using Monte Carlo technique.

Algorithm 1 presents the examination process using computation scheme as

shown in Table 3.1. We perform the same process for the different sample sizes

with different delays.

Algorithm 1

Require: delay (m), sample size (n), the m-delay AR parameter (ϕ1, ϕm), set
initial iteration (l = 0) , the maximum number of simulations runs (L =
1, 000), ε = 0.0001, initial summation of error (SUME = 0) and set xt = 0
for t = 1,2,. . . ,m

1: while( l < L)
2: for t = m + 1 to n
3: xt = ϕ1xt−1 + ϕmxt−m +ϵt
4: end for
5: compute ϕ̂1, ϕ̂m using Eq. (3.5)

6: compute E =
√
(ϕ1 − ϕ̂1)2 − (ϕm − ϕ̂m)2

7: SUME = SUME + E
8: RMSE = SUME/l
9: if RMSE > ε

10: l = l +1
11: end if
12: end while
13: print RMSE

Table 3.1: Computation scheme

Sample size 50 100 300 500 1,000 2,000 5,000 10,000

Delay
5 5 5 5 5 5 5 5

20 20 20 20 20 20 20 20
120 120 120 120 120 120

Figure 3.2 presented the estimated two parameters (ϕ1 and ϕm) with 1,000

iterations when the sample size is 300. The simulation results indicate that the

average ϕ̂1 and ϕ̂mapproach the actual ϕ1 and ϕmfor three delays.

Figure 3.3 illustrates the relationship between average two m-delay coef-

ficients, ϕ̂1 and ϕ̂m, and sample size for three different delays including m =
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(a) (b)

(c) (d)

(e) (f)

Figure 3.2: Scatter plots of the estimated ϕ̂1 : (a) m = 5; (c) m = 20; (d) m = 120
along with scatter plots of the estimated ϕ̂m : (b) m = 5; (d) m = 20; (f) m = 120
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(a)

(b)

(c)

Figure 3.3: Scatter plots of the average m-delay coefficients ϕ̂1 and ϕ̂m : (a)
m = 5; (b) m = 20; (c) m = 120.
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5, 20, 120. For the case of delay 5 and 20, the sample size starts from 50 to 1,000.

Figure 3.3 indicates that sample size greater than 300 gives the reasonable re-

sults of approximated of ϕ̄1 and ϕ̄m. In case of the delay 120, the process starts

with the sample size of 300. The estimated ϕ̄1 and ϕ̄m approach the actual ones

when the sample size about 500. It is noted that Eq. (3.5) is an effective formula

for approximating the m-delay parameter ϕ1 and ϕm.

3.2.2 Determination of Optimal Delay (m)

In this part, we present the Algorithm 2 to seek the optimal delay using the

brute-force technique.

The Algorithm 2 begins with prescribing input parameters including the

sample size (n), the initial delay (m0) and the actual m-delay AR parameters

(ϕ1, ϕm0) and setting the values of all m0 observations to zero. We then generate

the data set (xt) by Eq. (3.2). The process starts with a delay of three at the first

iteration. Two unknown parameters (ϕ̂1,ϕ̂m) are calculated by Eq. (3.5) and

the minimum error (minE) is obtained. We repeat the process by increasing

the delay by one. In each iteration, the minimum error (minE) and minimum

delay (minD) are obtained. The process stops when the delay equals the pre-

scribed delay. The process will succeed when the minimum delay equals the

initial delay, i.e. the optimal delay (mop) is obtained for the sample size n. This

algorithm stops when the number of iterations reaches the maximum number

of iterations. Finally, the accuracy of delay estimation based on the brute-force

technique is computed by Eq. (3.10).

To illustrate the performance of a brute-force technique. We compute the

accuracy on the simulated data set for each different sample size. The accuracy

of the delay estimation is computed by

Accuracy(%) =
Number of success outcomes
Number of possible outcomes

× 100. (3.10)
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Algorithm 2

Require: sample size (n), initial delay (m0), the m-delay AR parameter
(ϕ1, ϕm0), count = 0, set initial iteration (l = 0) , the maximum number
of iterations (L = 10, 000) and set xt = 0 for t = 1,2,. . . ,m0

1: while( l < L)
2: for t = m0 + 1 to n
3: xt = ϕ1xt−1 + ϕmxt−m
4: end for
5: set m = 3
6: compute ϕ̂1, ϕ̂3 using Eq. (3.5)

7: compute E3 =

√
n
∑

t=m+1
(x̂t−xt)2

n−m
8: set minE = E3
9: for m = m + 1 to n

2 − 1
10: compute ϕ̂1, ϕ̂m using Eq. (3.5)
11: compute x̂t = ϕ̂1xt−1 + ϕ̂mxt−m

12: Em =

√
n
∑

t=m+1
(x̂t−xt)2

n−m
13: if Em < MinE
14: minE = Em
15: minD = m
16: end if
17: end for
18: if minD < m0
19: count = count +1
20: mop = minD
21: end if
22: end while
23: compute the accuracy using Eq. (3.10)
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Using a brute-force algorithm, our experiments show that sample size has a

significant effect on the accuracy of the m-delay AR model as shown in Figure

3.4.

(a) (b)

Figure 3.4: The relationship between the percentage of accuracy and sample
sizes of the m-delay approximation.

To investigate the effect of sample size on the accuracy of the m-delay ap-

proximation as revealed in Figure 3.4a, we choose 24 sample sizes between 60

and 3,000 giving the percentage of accuracy from 27.85% to 99.90% and 0.22%

to 99.90% for delay 5 and 20, respectively. The percentage of accuracy with

delay 100 and 120 is shown in Figure 3.4b.

We found that using sample size from 700 to 3,000 gives the percentage of

accuracy 6% to 99.90% and 0.10% to 99.90%, respectively.

3.3 Empirical Study

In this section, we first test the performance of the MAR model comparing

with the AR model as shown in Algorithm 3. We then apply both models

to approximate the monthly mean minimum temperature in Perth, Western

Australia.
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3.3.1 Monte Carlo Simulations

Algorithm 3 below compares the performance of the MAR model (based

on only 2 parameters namely ϕ1 and ϕm) with the AR model (via m coefficient

parameter, ϕ1, ϕ2, . . . , ϕm).

This algorithm starts with determining input parameters including sample

size (n), actual parameters of AR with delay process (ϕ1, ϕm0) and setting the

values of all m0 observations to zero. We then generate the data set (xt) by Eq.

(3.2). To find the root mean square error from the AR model (RMSEAR), we

first estimate the model parameter and compute the root mean square error.

For the MAR model, the computation process of the optimal delay starts at

delay 3. The unknown parameters (ϕ̂1,ϕ̂m) are calculated by Eq. (3.5), and the

minimum error (minE) and the minimum delay (minD) are obtained. The

process is repeated until the delay reaches the prescribed delay
n
2
− 1. This

step returns the optimum delay with the smallest value of the error for each

iteration (mop = minD) and we also calculate RMSEMAR using the optimal

delay (mop). This process repeats until the total iterations equal the maximum

number of iterations. Finally, we compute and compare the average root mean

square error obtained from both models, as shown in Table 3.2.

The experimental results shown in Table 3.2 are generated using ϕ1 =

0.5, ϕm = 0.3, m0 = 10 and L = 10, 000. We now use the independent sample t-

test to confirm that the results obtained from both models are not significantly

different. The null hypothesis and alternative hypothesis are RMSEAR =

RMSEMAR and RMSEAR ̸= RMSEMAR, respectively.
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Algorithm 3

Require: sample size (n), initial delay (m0), the AR parameter (ϕ1, ϕm0), count
= 0, set initial iteration (l = 0) , the maximum number of iterations (maxL),
set L = 0, sumEAR = 0, sumEMAR = 0 and set xt = 0 for t = 1,2,. . . ,m0

1: while( l < maxL)
2: for t = m0 + 1 to n
3: xt = ϕ1xt−1 + ϕmxt−m
4: end for
5: find RMSEAR
6: Estimate the coefficient of the AR model(ϕ̂1, ϕ̂2, . . . , ϕ̂m0)
7: compute RMSEAR
8: find RMSEMAR
9: set m = 3

10: compute ϕ̂1, ϕ̂3 using Eq. (3.5)

11: compute E3 =

√
n
∑

t=m+1
(x̂t−xt)2

n−m
12: set minE = E3
13: for m = m + 1 to n

2 − 1
14: compute ϕ̂1, ϕ̂m using Eq. (3.5)
15: compute x̂t = ϕ̂1xt−1 + ϕ̂mxt−m

16: Em =

√
n
∑

t=m+1
(x̂t−xt)2

n−m
17: if Em < MinE
18: minE = Em
19: minD = m
20: end if
21: end for
22: if minD < m0
23: count = count +1
24: mop = minD
25: end if
26: compute RMSEMAR using mop
27: end while
28: Compute average root mean square error of both models (RMSEAR and

RMSEMAR
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Table 3.2: Average root mean square of the AR model and the MAR model for
different sample sizes.

size AR MAR size AR MAR size AR MAR
30 0.09364 0.08147 650 0.09978 0.09916 4000 0.09999 0.09989
50 0.09703 0.08897 700 0.09959 0.09929 4500 0.09996 0.09978
80 0.09834 0.09320 750 0.09983 0.09930 5000 0.09997 0.09989
100 0.09871 0.09468 800 0.09989 0.09939 5500 0.09996 0.99887
150 0.09908 0.09635 850 0.09981 0.09934 6000 0.09998 0.09991
200 0.09939 0.09737 900 0.09993 0.09948 6500 0.09999 0.09993
250 0.09953 0.09793 950 0.09987 0.09945 7000 0.09999 0.09993
300 0.09955 0.09820 1000 0.09988 0.09948 7500 0.09997 0.09992
350 0.09962 0.09847 1500 0.09990 0.09963 8000 0.09996 0.09991
400 0.09978 0.09878 2000 0.09992 0.09972 8500 0.10000 0.09995
450 0.09969 0.09880 2500 0.09994 0.09978 9000 0.09996 0.09992
500 0.09982 0.09901 3000 0.09995 0.09982 9500 0.09998 0.09994
550 0.09977 0.09905 3500 0.09995 0.09983 10000 0.09999 0.09995
600 0.09975 0.09908

The result of hypothesis testing is demonstrated in Table 3.3.

Table 3.3: Hypothesis test using t-test.

Method N Mean SD df t-test p-value
AR 40 0.0995 0.0011 78 -0.945 0.348MAR 40 0.1208 0.1425

It indicates insufficient evidence to reject the null hypothesis at a signifi-

cance level of 0.05 as a p-value > 0.05. This shows no difference between the

means of the two methods. However, the classical AR model requires m pa-

rameters, while the MAR method only requires two parameters. As a result,

it can be helpful when m is large. Due to this advantage, our proposed MAR

model is an efficient time series prediction method compared to the classical

AR model.

3.3.2 Validation of the m-delay AR Model

This section concerns the prediction of the monthly mean minimum tem-

perature in Perth, Western Australia, using the data obtained from the Bureau
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of Meteorology, Australia between January 1994 and June 2019 containing 306

observations. The data are divided into two sets; training set and test set. The

training set, from January 1994 to December 2017, has 288 observations. The

rest, January 2018 to June 2019, is the testing set consisting of 18 observations.

Figure 3.5a presents time series plot of the original observations. The dash line

divided data into training and test sets. As the training data has a seasonal

pattern as shown in Figure 3.5a, we firstly deseasonalize the original data by

taking the seasonal difference (xt − xt−12). The result after transformation is

shown in Figure 3.5b.

(a) (b)

Figure 3.5: Monthly mean minimum temperature in Perth from January 1994
to December 2017 : (a) Original data; (b) transformed data.

As the AR model requires stationary data, we apply the Augmented Dickey

Fuller (ADF) test to test the stationarity of the monthly mean minimum tem-

perature series. The results obtained from the original and the transformed

data are displayed in Table 3.4.

Table 3.4: ADF unit root test results.

Data ADF p-value
Original data -1.5547 0.1133

Transformed data -13.6170 0.0010

The results of Table 3.4 show that the null hypothesis of non-stationarity is

accepted at a 5% significance level (p-value = 0.1133 > 0.05) for the original

data. We then difference the data and applied the test again. The p-value of

46



CHAPTER 3. THE M-DELAY AUTOREGRESSIVE MODEL

the transformed data is lower than the significance level (p-value = 0.0010 <

0.05). It indicates that the transformed data are stationary.

Next, we check the features of the transformed data: normal and inde-

pendent [137]. To check whether normal distribution of data, we apply the

Shapiro-Wilk test. The result is revealed in Table 3.5. Table 3.5 indicates that

Table 3.5: Normality test for transformed data.

Variable Shapiro-Wilk Test
Statistics df p-value

Transformed data 0.993 276 0.234

transformed data are normally distributed as p-value = 0.234. We now check

the independent of the transformed data by using one sample t-test. The re-

sult is shown in Table 3.6. As shown in Table 3.6, the p-value of 0.911 illustrates

Table 3.6: Independent testing for one-sample group using t-test.

Variable n Mean SD df t p-value
Transformed data 276 0.011 1.610 275 0.112 0.911

that the data are independent. We now can use these transformed data that are

normally distributed and independent to find the suitable AR model.

Classical AR(9) Model

It appears that the transformed data are suitable for this study. From our ex-

periment, it is found that the classical AR(9) model is applicable to this data set

when ϕ̂1 = 0.1871, ϕ̂2 = 0.1916, ϕ̂3 = −01097, ϕ̂4 = 0.0628, ϕ̂5 = −0.0229, ϕ̂6 =

−0.0789, ϕ̂7 = 0.0938, ϕ̂8 = −0.0336 and ϕ̂9 = −0.00029934.

Table 3.7: Normality test of the residuals from the classical AR order 9.

Variable Shapiro-Wilk Test
Statistics df p-value

Residuals 0.993 276 0.221
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Table 3.8: One-sample t-test of the residuals from the classical AR order 9.

Variable n Mean SD df t p-value
Residuals 276 0.009 1.534 275 0.094 0.925

In Table 3.7 and Table 3.8, the residuals of the AR(9) are tested. The sta-

tistical testing results of the residuals from the classical AR(9) based on the

Shapiro-Wilk test (p-value = 0.221) and one sample t-test (p-value = 0.925)

demonstrate that the residuals obtained from the classical AR (9) are normally

distributed and independent.

The m-delay AR (MAR) Model

From Eq.(3.5) and using the transformed data, we obtain the m-delay co-

efficient ϕ̂1 = 0.194561 and ϕ̂9 = 0.027676 which satisfy the characteristic Eq.

(3.7) with inequality condition | ϕ1 | + | ϕm |< 1.

Figure 3.6: All roots of the characteristic obtained from Eq. (3.7) in the MAR
model

From Figure 3.6, we can find that all roots of Eq. (3.7) lie outside the unit cir-

cle. This confirms the stationarity condition of the proposed the MAR model.

The analyses of residuals obtained from the MAR model using Shapiro-Wilk
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test and one sample t-test are presented in Table 3.9 and Table 3.10.

Table 3.9: Normality test of the residuals obtained from the MAR model.

Variable Shapiro-Wilk Test
Statistics df p-value

Residuals 0.995 276 0.485

Table 3.10: One-sample t-test of the residuals from the MAR model.

Variable n Mean SD df t p-value
Residuals 276 0.010 1.579 275 0.106 0.916

The results from Table 3.9 and Table 3.10 illustrate that the residuals from

the MAR model are normally distributed and independent with p-values of

0.485 and 0.916, respectively.

Predictive Modeling

Using the test set of data with 18 observations as shown in column 2 in

Table 3.11 from January 2018 to June 2019, we apply the AR(9) model and the

proposed MAR model to predict the monthly mean minimum temperature as

shown in columns 3 and 4, respectively.

We then plot the forecasting monthly mean minimum temperature obtained

from the MAR model and the AR model with observed data. The scatter plot

is given in Figure 3.7.

As the number of predicted observations on the test set are small (n = 18),

the difference among two methods are investigated with the Mann-Whitney U

test. The null hypothesis (H0) : there is no significant between two methods

against the alternative (H1) : there is significant between two methods [138].

The statistics testing is given in Table 3.12.

From the result as shown in Table 3.12, it indicates that there is not enough

evidence to reject the null hypothesis (p-value = 1.000 > 0.05). Consequently,

it can be conclude that there is no significant difference in the predicted mean
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Table 3.11: Forecasting monthly mean minimum temperature in Perth ob-
tained from the MAR model and the AR(9) model.

Date Observed Predicted values
The MAR model The AR(9) model

January, 2018 18.1 16.9 17.1
February, 2018 18.2 18.0 18.1
March, 2018 17.7 16.5 16.6
April, 2018 13.9 13.2 13.2
May, 2018 10.0 11.2 11.3
June, 2018 8.5 7.8 7.9
July, 2018 9.5 10.4 10.0
August, 2018 8.1 9.3 9.6
September, 2018 8.8 9.9 9.5
October, 2018 13.2 11.7 11.6
November, 2018 13.5 16.3 16.2
December, 2018 16.2 16.2 16.4
January, 2019 16.6 18.0 17.5
February, 2019 17.8 17.9 18.2
March, 2019 17.3 17.6 17.2
April, 2019 13.0 13.8 13.8
May, 2019 8.7 9.8 10.1
June, 2019 9.2 8.2 7.9
Root mean square error (RMSE) 1.1499 1.1282
Mean absolute deviation (MAD) 0.9667 0.9389

Figure 3.7: Scatter plot of observed data, and a dashed line (the MAR model)
and a solid line (the AR model).
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Table 3.12: Mann-Whitney U test result.

Method Mann-Whitney U test p-value
MAR - AR methods 162.000 1.000

minimum temperature in Perth obtained from the MAR model and the AR(9)

model. Consequently, the m-delay AR model is an effective model for time se-

ries prediction because this method utilizes only two model parameters while

the traditional AR order p (AR(p)) method requires p parameters.

3.4 Conclusion

A classical AR model with a large delay requires determining many co-

efficient parameters. This chapter considers a special case of the classical AR

model, particularly when the delay is large. The m-delay AR model (MAR)

using two parameters is proposed. We develop the least squares method for

estimating two model parameters. According to simulations and case studies,

there is no difference between the AR and the MAR methods. Since our pro-

posed method only considers two model parameters, it would be beneficial

when large delays are examined. We outline future developments and possi-

ble applications below.

• For parameter estimation, we only modify the least square method to

approximate the coefficients of the m-delay AR model. There are several

techniques to approximate these AR parameters, namely the maximum

likelihood method, the Yule-Walker estimation, and the method of mo-

ment.

• Based on the simulation results in Section 3.4, the root mean square er-

ror is utilized. For future development, adding more information criteria

can be useful to choose an optimal delay such as the Akaike information

criteria (AIC), the Bayesian information criteria (BIC), the minimum de-
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scription length (MDL) [139], the predictive least square (PLS), the pre-

dictive densities criteria (PDC), the sequentially normalized maximum

likelihood (SNML) criteria, the final prediction error (FPE) [140] and the

criteria autoregressive transfer function (CAT) [141].

• Our proposed model can be applied to historical financial data to esti-

mate the volatility of the stochastic delay differential equation.
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Chapter 4

Estimating Volatility of Stochastic

Delay Differential Equation

This chapter attempts to estimate the parameters of the stochastic delay dif-

ferential equation (SDDE) for matching the volatility obtained from the Monte

Carlo simulations and the real-world volatility. The parameters of the SDDE

are the drift term (λ) and the volatility (σ). We assume that the volatility is

fixed in the first part, but the drift term (λ) parameter is unknown. Two pa-

rameters are unknown in the second part. The organization of this chapter is

structured as follows. Section 4.1 displays the stochastic differential equation.

The data visualization is shown in Sections 4.2. Section 4.3 and 4.4 demon-

strate the model identification for one and two parameters together with the

matching part results, respectively. Section 4.5 makes a summary of this work.

Note that the work in this chapter has been published in [142] and [143].

4.1 Stochastic Differential Equation

A standard stochastic differential equation is given by [144]

dY(t) = a(Y(t), t)dt + b(Y(t), t)dw(t), (4.1)
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where a(Y(t), t) and b(Y(t), t) are drift and diffusion terms, respectively, Y(t)

denote the return of stock prices. In financial statistics, b(Y(t), t) is termed the

”volatility” [145]. We estimate the solution through discretization of SDE.

The widespread application of the SDE in financial economics has attracted

numerous researchers to research and develop this model. The popular SDE

models start with the Bachelier model, which defines the drift and diffusion

terms as constants [146]. The general Bachelier model is described as [147].

Louis Bachelier was the first to initiate the study of continuous-time processes

and introduce Brownian motion mathematically. The general Bachelier model

is described as

dY(t) = βdt + σdw(t), (4.2)

where constants β > 0 and σ > 0 are called the drift and volatility, w(t) is the

standard Brownian motion (Wiener process) and the stock prices are S(t) =

eY(t).

The Ornstein-Uhlenbeck (OU) process was introduced as an improved model

for physical Brownian motion, which incorporates the effect of friction [148].

The following SDE can define the OU process:

dY(t) = −λY(t)dt + σdw(t), (4.3)

where λ presents the rate of mean reversion, the drift coefficient here is a lin-

ear function of Y(t). For the non-linear drift term of SDE, the radial Ornstein-

Uhlenbeck and the hyperbolic diffusion processes are outlined in [149]. The

radial Ornstein-Uhlenbeck is defined as

dY(t) = (λY−1(t)− Y(t))dt + σdw(t). (4.4)
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The hyperbolic diffusion process has the following form:

dY(t) = −λY(t)

(
1√

1 + Y2(t)

)
dt + σdw(t). (4.5)

Loung and Dokuchaev [80] suggested modelling the continuous-time stock

price process based on the general Ornstein-Uhlenbeck in Eq. (4.3) with add

delay term. The authors confirm that the new delay term in the SDE pro-

vides a better result for matching the simulated price process volatility with

the volatility from the historical data [150, 151].

In order to model the Ornstein-Uhlenbeck process on a computer, it is usual

to discretize time and compute samples at discrete time steps of width ∆t,

dY(t) = λ(µ − Y)dt + σdw(t)

= −λ(Y − µ)dt + σdw(t)

if µ = 0

dY(t) = −λY(t)dt + σdw(t)

Y(t)− Y(t − 1) = −λY(t − 1)∆t + σdw(t)

Given a fixed time increment ∆t > 0, one can easily simulate a trajectory of

the Wiener process in the time interval [t0, T]

w(∆t) = w(∆t)− w(0) ∼ N(0, ∆t) ∼
√

∆tN(0, 1),

and the same is also true for any other increment w(t + ∆t) - w(t); i.e.,

w(t + ∆t)− w(t) ∼ N(0, ∆t) ∼
√

∆tN(0, 1).

Let δ = ∆t and ξ = N(0, 1). Therefore,
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Y(t)− Y(t − 1) = −λ[Y(t − 1)− Y(t − m)]∆t + σdw(t)

Y(t) = Y(t − 1)− λ[Y(t − 1)− Y(t − m)]δ + σ
√

δξ(t)

Finally, the SDDE developed by Luong and Dokuchaev [80], is defined by

Y(t) = (1 − λδ)Y(t − 1) + λδY(t − m) + σ
√

δξ(t), (4.6)

where Y(t) are the returns of the stock price at certain time t, σ > 0 is the

stock volatility, m presents a time delay, δ be sampling frequency, and ξ(tk) be

independent and identically distributed random variables from the standard

normal distribution.

Here, the drift parameter is defined as

a(Y(t), t) = −λ(Y(t)− Y(t − m)). (4.7)

In their model, model parameters were turned via trial-and-error. To the

best of our knowledge, there is no attempt to estimate two unknown param-

eters (λ, σ) of SDDE in Eq. (4.6). This motivated us to estimate two model

parameters of the SDDE.

4.2 Data

The intraday closing prices, which are recorded with the frequency of every

5 minutes and 15 minutes, are extracted from the Thomson Reuters database

in 2008 totally of 19,750 and 6,750 prices, respectively [152]. We selected some

of the top stocks in the New York Stock Exchange (NYSE), including the In-

ternational Business Machines Corporation (IBM), the Microsoft Corporation

(MSFT), the Standard and Poor’s 500 (S&P 500) and the Standard and Poor’s
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100 (S&P 100). The NYSE is an American stock exchange in the Financial Dis-

trict of Lower Manhattan in New York City, traded between 9.30 am. and 4.00

pm without lunch break on weekdays. The descriptive statistics in 2008, in-

cluding mean, median, minimum, maximum and standard deviation of four

stocks, are shown in Table 4.1.

Table 4.1: Descriptive statistical analysis results of four original stock prices.

Index Mean Median Minimum Maximum Standard Deviation
• 5 minutes

IBM 110.26 116.01 69.65 130.92 16.24
MSFT 26.74 27.67 17.52 35.92 3.81

S&P 500 1,223.07 1,291.69 743.79 1,459.38 190.01
S&P 100 568.59 596.80 362.62 681.23 80.60

• 15 minutes
IBM 110.26 116 69.65 130.92 16.24

MSFT 26.74 27.68 17.54 35.9 3.81
S&P 500 1,223.06 1,291.56 746.56 1,458.36 189.99
S&P 100 568.59 596.78 363.80 680.83 80.58

The descriptive statistics summaries about the sample and measures of the

data. It consists of two primary measures: measures of central tendency (mean,

median, mode) and measures of variability (minimum, maximum and stan-

dard deviation variables). As shown in Table 4.1 for 5 minutes data, the mean

price of IBM is 110.26 with a median of 116.01 USD. The lowest, highest, and

standard deviation prices are 69.65,130.92 and 16.24, respectively. The average

MSFT stock price is 26.74, and the median is 27.67 USD for MSFT stock. The

price range and the standard deviation are 18.40 and 3.81, respectively. The

mean of S&P 500 stock and the median are 1,223.07 and 1,291.69 USD, respec-

tively. The S&P 500 prices drooped to 743.79 USD and peaked at 1,459.38 USD.

For S&P 100 stock, 568.59 USD is the average price, and 596.80 USD is the me-

dian price. The price range and the standard deviations are 318.61 and 80.60

USD, respectively.

Time series plots of observed price every 5 minutes and 15 minutes time

interval are displayed in Figures 4.1 - 4.2.
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(a) International Business Machines Corporation (IBM)

(b) Microsoft Corporation (MSFT)

(c) Standard and Poor’s 500 (S&P 500)

(d) Standard and Poor’s 100 (S&P 100)

Figure 4.1: Four time series plot at 5 minutes stock prices in 2008
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(a) International Business Machines Corporation (IBM)

(b) Microsoft Corporation (MSFT)

(c) Standard and Poor’s 500 (S&P 500)

(d) Standard and Poor’s 100 (S&P 100)

Figure 4.2: Four time series plot at 15 minutes stock prices in 2008
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As shown from Figure 4.1 and Figure 4.2, we study the pattern of stock

prices during the 2008 global financial crisis and the great recession. It can be

noticed that all sample stock prices significant drop at the end of 2008 [153].

The number of observation per each month at 5 minutes and 15 minutes

time interval is shown in Table 4.2.

Table 4.2: The number of observation at 5 minutes and 15 minutes of four
original stock prices for each month in 2008.

Frequency January February March April May June
5 minutes 1,659 1,580 1,580 1,738 1,659 1,659

15 minutes 567 540 540 594 567 567
Frequency July August September October November December
5 minutes 1,659 1,659 1,659 1,817 1,422 1,659

15 minutes 567 567 567 621 486 567

4.3 Model Identification for One Parameter

In this section, the main aim is to match the estimated volatility for one

unknown parameter (λ) of the SDDE in Eq. (4.6). To achieve the aim, we pro-

pose the m-delay Autoregressive coefficients (ARC) algorithm and compare it

with the standard differential evolution algorithm for matching the estimated

volatility from the Monte Carlo simulations and actual data set.

4.3.1 Research Methods

In this section, we present how to estimate the parameter of the drift term

(λ) in the SDDE model Eq. (4.6). The stock price may be determined by

S(tk) = eY(tk). (4.8)

For notation simplicity, we let Yk = Y(tk). As Eq. (4.6) is a linear autore-

gressive with delay m, we then obtain
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Yk = ϵk + ϕ1Yk−1 + ϕmYk−m, (4.9)

where ϕ1 and ϕm are computed by



ϕ1 =

n
∑

t=m+1
YtYt−1

n
∑

t=m+1
Y2

t−m −
n
∑

t=m+1
Yt−1Yt−m

n
∑

t=m+1
YtYt−m

n
∑

t=m+1
Y2

t−1

n
∑

t=m+1
Y2

t−m −
[

n
∑

t=m+1
Yt−1Yt−m

]2 ,

ϕm =

n
∑

t=m+1
Y2

t−1

n
∑

t=m+1
YtYt−m −

n
∑

t=m+1
YtYt−1

n
∑

t=m+1
Yt−1Yt−m

n
∑

t=m+1
Y2

t−1

n
∑

t=m+1
Y2

t−m −
[

n
∑

t=m+1
Yt−1Yt−m

]2 .

(4.10)

We call ϕ1 and ϕm as the two m-delay AR coefficients which is based on the

m-delay AR model [135].

AR characteristic equation is

1 − ϕ1L − ϕmLm = 0. (4.11)

Let {a1, a2, . . . , am} be the m roots of the characteristic polynomial. As one

of its roots is 1, the series {Yk}κ
k=1 does not rely on stationarity condition.

Hence, we define a1 equal 1 and the others {a2, a3, . . . , am} are greater than

1. We then apply Eq. (4.6) to obtain the estimated volatility.

σ̂ =
√

σ̂2 =

[
1

∆t

n

∑
k=2

(Ȳm − Yk)
2

] 1
2

, (4.12)

where Ȳm is the average of all sample return from the stock prices S(tk), Yk =

logS(tk)− logS(tk−1) and ∆t = (n − 1)δ.

In order to demonstrate the effectiveness of the proposed model, the eval-

uation metrics , namely the root mean square error (RMSE), the mean absolute
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error (MAE) and the mean absolute percentage error (MAPE) are employed.

The definition of three evaluation metrics are as follows:

RMSE =
1
n

√
n

∑
k=1

(y(k)− ŷ(k))2, (4.13)

MAE =

n
∑

k=1
|y(k)− ŷ(k)|

n
, (4.14)

MAPE =

n
∑

k=1
|y(k)− ŷ(k)| /y(k)

n
× 100, (4.15)

where y(k) and ŷ(k) denote observed data and predicted data, respectively.

The ranges of MAPE define the model performance as follows [154]:

• highly accurate if: MAPE ≤ 10 %

• good accurate if: 11% ≤ MAPE ≤ 20 %

• reasonable accurate if: 21 % ≤ MAPE ≤ 50 %

To match the estimated volatility obtained from the Monte Carlo simula-

tions and the historical financial data, we propose the ARC algorithm as fol-

lows:

The ARC algorithm (Algorithm 4) begins with fixing the sample size, the

delay, the sampling frequency, and the constant term. We then computed the

monthly volatility of IBM, MSFT, S&P 500 and S&P 100 by Eq. (4.12). To es-

timate the volatility in the simulation part, we start with setting the volatility

from historical data equal to the volatility of the Monte Carlo simulations. The

initial return set is computed by setting the parameter of the drift term (λ) of

Eq. (4.6) to zero. The two m-delay AR coefficients are calculated using Eq.

(4.10) to obtain (λ̂(1)). We then apply (λ̂(1)) to generate the next return set by
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Algorithm 4 Pseudocode for the ARC algorithm

Require: n : number of sample size, m : delay, δ : sampling frequency, TOL :
constant term

1: Compute the volatility (σhistorical) at two different sampling frequencies
σ5min and σ15min of IBM, MSFT, S&P 500 and S&P 100 by Eq. (4.12).

2: Set σ = σhistorical
3: Set j = 1

Initial return
4: for t = 1 to n do
5: yt = σ

√
δξt

6: end for
7: Compute ϕ1, ϕm from Eq. (4.10) to obtain λ̂1
8: while (|λ̂j − λ̂j−1| ≥ TOL) do
9: for t = m + 1 to n

10: yt = (1 − δλ̂j)yt−1 + (δλ̂j)yt−m + σ
√

δξt
11: end for
12: j = j + 1
13: Compute ϕ1, ϕm from Eq. (4.10) to obtain λ̂j
14: end while
15: Compute the estimated volatility Eq. (4.12)

Eq. (4.6) and the volatility is calculated using Eq. (4.12). The difference be-

tween two steps λ̂ is computed. The process stops when the difference value

is less than the constant term. Finally, the estimated volatility of the Monte

Carlo simulations part is computed using the last set of returns.

The differential evolution (DE) algorithm is used to compare the ARC al-

gorithm’s performance. The DE algorithm is a competitive tool for identifying

the model parameters. It was introduced by Storn and Price in 1996 [155]. The

DE is a stochastic population-based metaheuristic algorithm that is easy to un-

derstand, simple to implement, has better performance and is reliable [101].

DE algorithm has been applied to many fields. This algorithm has successfully

solved various engineering problems [156, 157], such as mechanical engineer-

ing design problems, chemical engineering design, and biomedical engineer-

ing design problems. In finance, the DE technique has been used to estimate

trading strategies to maximise trading profit [158, 159]. The idea of the DE al-

gorithm starts with prescribing the number of population (NP), the crossover
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ratio (CR), the number of model parameters (D), the mutation ratio (F), the

delay (m), the sampling frequency (δ), tolerance term (TOL), the data size

(n), upper bound (U) and lower bound (L). The initial population is chosen

randomly with uniform distribution in the user-defined bounds. The DE opti-

misation process has three operators: mutation, crossover and selection. Trial

vectors are generated using mutation and crossover operators. The selection

operator is applied to select which vectors are survived to be a member of the

next generation. The cycle of the three operators is repeated until the predeter-

mined convergence criterion is satisfied.

The pseudocodeto compute the volatility obtained from the DE algorithm

is displayed in Algorithm 5.

The Algorithm 5 starts with defining the number of population size (NP),

the crossover ratio (CR), the mutation ratio (F), delay (m), the sampling fre-

quency (δ), constant term (TOL) is 0.01, the upper bound (U) and the lower

bound (L). The first step of simple DE starts with the initialization stage. An

initial population is generated using a uniform distribution on the interval

[0,1], where λL and λU are the lower and upper bounds for the decision pa-

rameter, respectively. In the mutation process, three individuals (λr1, λr2, λr3)

are selected in the population set of NP elements, which r1 ̸= r2 ̸= r3 ̸= j. F

is a user-defined constant known as the mutation factor, F ∈ [0, 1]. We then

apply all values to obtain the mutant vectors (vj).

The trial vectors (uj) are generated by mixing the parameters of the tar-

get vectors (λj) with the mutant vectors (vj) according to a selected crossover

probability (CR). The selection scheme is applied in the DE algorithm for the

next step. The historical data are imported to compute the fitness of the target

vectors and the fitness of trial vectors. The best solution is chosen by compar-

ing the fitness of the trial vectors and the corresponding target vectors. We then

calculate the predicted stock prices (ŷ) of SDDE function using Eq. (4.6). The

error between actual stock prices and predicted stocked prices are calculated.
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Algorithm 5 Pseudocode for the classical differential evolution for one model
parameter

Require: NP : number of population size, CR : crossover probability, F : mu-
tation factor,m : delay, δ : sampling frequency, TOL : constant term, U :
upper bound, L : lower bound
Initialisation

1: Generate the initial population
2: for j = 1 to NP do
3: λj = λL + rand · (λU − λL), j = 1, 2, . . . , NP
4: end for
5: for j = 1 to NP do
6: randomly select r1, r2, r3 ∈ 1, 2, . . . , NP where r1 ̸= r2 ̸= r3 ̸= j

Mutation
7: vj = λr1 + F · (λr2 − λr3)

Crossover
8: if rand(0, 1) < CR then
9: uj = vj

10: else
11: uj = λj
12: end if

Selection
13: if f (uj) < f (λj) then
14: λ̂j = uj
15: else
16: λ̂j = λj
17: end if
18: end for
19: Import real stock prices
20: while (MAPE > TOL) do
21: for j = 1 to NP
22: for t = m + 1 to NP
23: ŷt = (1 − δλ̂j)yt−1 + (δλ̂j)yt−m + σ

√
δnoise(0, 1)

24: et =
∣∣∣ yt−ŷt

yt

∣∣∣
25: end for
26: end for
27: MAPE = 1

NP−m ∑NP
t=m+1 et × 100

28: end while
29: Compute the estimated volatility Eq. (4.12)
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The mean absolute percentage error (MAPE) is applied to seek an optimal pa-

rameter (λ̂). The optimization process is stopped whenever the MAPE is less

than a constant term (TOL). Finally, the last set of data is applied in Eq. (4.12)

to obtain the estimated volatility.

For choosing the number of population sizes (NP), Storn and Price [155]

suggested a reasonable choice for NP between 5D and 10D (D represents the

problem size). In this thesis, we choose 10D as the number of populations.

Therefore, the number of populations used in Section 4.3 and Section 5.4.1 (Al-

gorithm 7) is equal to 10 because there is one unknown parameter for estima-

tion. For two unknown parameters determined based on Section 4.4, the num-

ber of populations equals 20. Generally, F and CR fall within the range of [0, 2]

and [0, 1], respectively. The sizes F = 0.2, CR = 0.6 have been used in [160–162].

Consequently, we chose a mutation ratio (F) = 0.2 and a crossover rate (CR) =

0.6 for the entire experiment.

4.3.2 Numerical Results

Monte Carlo Simulations of Stock Volatility

The estimated Volatility (σ̂) in Eq. (4.12) is obtained by the Monte Carlo

simulations in Eq. (4.6) using 22 trading days in a month, 6.5 trading-hours

on a regular day, 12 samples per hour (5-minute interval) and 4 samples per

hour (15-minute interval). The value of parameters used in the simulation are

as follows:

• δ = 1/(22 × 6.5 × 12) for 5 minutes interval

• δ = 1/(22 × 6.5 × 4) for 15 minutes interval

• m = 3, 10, 20, 50 and λ ∈ [−2000, 0) ∪ (0, 20000]

• σ = 0.3
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We obtain the estimated volatility (σ̂) with its mean and standard deviation

(SD) for 10,000 iterations as shown in Table 4.3.

Table 4.3: Mean and standard deviation of estimated volatility (σ̂) for each
triplet (λ, δ, m)

.
λ δ

m = 3 m = 10 m = 20 m = 50
Mean SD Mean SD Mean SD Mean SD

-1.716 5-min 0.2999 0.0051 0.2998 0.0051 0.2999 0.0052 0.2999 0.0051
-0.572 15-min 0.2999 0.0089 0.2999 0.0089 0.3000 0.0089 0.3000 0.0089
-4.290 5-min 0.2998 0.0051 0.2998 0.0051 0.2999 0.0052 0.2999 0.0052
-1.430 15-min 0.3005 0.0089 0.3004 0.0087 0.3005 0.0089 0.3005 0.0089

-17.160 5-min 0.2999 0.0051 0.2999 0.0052 0.3002 0.0051 0.3000 0.0053
-5.720 15-min 0.3026 0.0089 0.3028 0.0090 0.3033 0.0090 0.3059 0.0095
1.716 5-min 0.2998 0.0051 0.2998 0.0051 0.2998 0.0051 0.2999 0.0051
0.572 15-min 0.2993 0.0090 0.2994 0.0088 0.2993 0.0088 0.2994 0.0089
4.290 5-min 0.2998 0.0051 0.2999 0.0051 0.2999 0.0051 0.2999 0.0050
1.430 15-min 0.2988 0.0089 0.2989 0.0088 0.2989 0.0088 0.2990 0.0088

17.160 5-min 0.3000 0.0051 0.3001 0.0052 0.3001 0.0051 0.3004 0.0052
5.720 15min 0.2967 0.0089 0.2971 0.0088 0.2974 0.0089 0.2985 0.0089

As shown from Table 4.3, it can be noted that

• When λ > 0, the estimated volatility decreases as the sampling frequency

decreases.

• When λ < 0, decreasing sampling frequency leads to increasing of the

estimated volatility.

Case Studying Volatility

We now demonstrate the volatility from the high-frequency data of the IBM,

MSFT, S&P 500 and S&P 100. These data were traded between 09.30 am and

04.00 pm from Thomson Reuters database in 2008 [152].

The compromised procedure to compute the volatility is represented in Fig-

ure 4.3

The flow chart starts with importing all stocks from the Thomson Reuters

database. We then clean up errors and fill any missing data using a splines

interpolation method. Next, we take a logarithm to obtain the return and the
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Figure 4.3: Flow chart how to analyze data sets.
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difference. The volatility is computed in the next step. This process is stopped

when the volatility is computed for all stocks.

The volatility for the IBM, MSFT, S&P 500 and S&P 100 at two different

sampling frequencies in 2008 are displayed in Table 4.4.

Table 4.4: Actual volatility of four stock indexes with two different sampling
frequencies in 2008

.

Month Data Stock
IBM MSFT S&P 500 S&P 100

January 5-min 0.128238 0.114330 0.071822 0.070590
15-min 0.111404 0.100703 0.069563 0.067839

February 5-min 0.076853 0.076580 0.050601 0.049385
15-min 0.075787 0.076787 0.049258 0.048145

March 5-min 0.070163 0.081282 0.061975 0.060435
15-min 0.070075 0.083488 0.063043 0.061576

April 5-min 0.059146 0.087885 0.040261 0.039062
15-min 0.056966 0.081779 0.038989 0.038107

May 5-min 0.050221 0.069760 0.032422 0.032110
15-min 0.045363 0.063007 0.031329 0.031074

June 5-min 0.062038 0.079216 0.045904 0.045730
15-min 0.058700 0.078077 0.046096 0.045950

July 5-min 0.076856 0.104967 0.054959 0.055746
15-min 0.073569 0.105926 0.054173 0.055108

August 5-min 0.058617 0.076249 0.040903 0.042842
15-min 0.052804 0.071691 0.040682 0.042794

September 5-min 0.148514 0.137254 0.101656 0.105564
15-min 0.138231 0.128023 0.101457 0.104143

October 5-min 0.258056 0.251875 0.191253 0.188473
15-min 0.235271 0.260465 0.198555 0.195551

November 5-min 0.175672 0.171256 0.144492 0.142027
15-min 0.176757 0.168367 0.147318 0.146257

December 5-min 0.121681 0.132251 0.102008 0.097710
15-min 0.098087 0.111982 0.081194 0.077879
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4.3.3 Matching the Volatility

Using the ARC Algorithm, the estimated volatility and the actual volatility

of each stock (IBM, MSFT, S&P 500 and S&P 100) with two sampling frequen-

cies at 5 minutes and 15 minutes time intervals are shown in Tables 4.5 - 4.8.

Table 4.5: The estimated volatility obtained from the ARC algorithm at each
sampling frequency of IBM stock with four different delays in 2008

.
Month Time σ σ̂m=3 σ̂m=10 σ̂m=20 σ̂m=50

Jan 5-min 0.128238 0.131111 0.129565 0.129179 0.128859
15-min 0.111404 0.108429 0.113126 0.112521 0.111389

Feb 5-min 0.076853 0.080075 0.081295 0.074475 0.077382
15-min 0.075787 0.080538 0.078856 0.074063 0.075016

Mar 5-min 0.070163 0.072932 0.071561 0.069850 0.070021
15-min 0.070075 0.077505 0.072946 0.071310 0.070044

Apr 5-min 0.059146 0.062684 0.060983 0.060286 0.059933
15-min 0.056966 0.059282 0.059059 0.055561 0.056249

May 5-min 0.050221 0.051809 0.051648 0.050058 0.050264
15-min 0.045363 0.048115 0.047032 0.046082 0.045943

Jun 5-min 0.062038 0.067260 0.063685 0.062104 0.062053
15-min 0.058700 0.064242 0.060154 0.057161 0.058913

Jul 5-min 0.076856 0.080862 0.078190 0.077318 0.076888
15-min 0.073569 0.077617 0.076374 0.074069 0.073213

Aug 5-min 0.058617 0.062752 0.059873 0.059973 0.058260
15-min 0.052804 0.055270 0.054887 0.053794 0.052518

Sep 5-min 0.148514 0.150890 0.150781 0.150321 0.149687
15-min 0.138231 0.142430 0.142361 0.140593 0.138394

Oct 5-min 0.258056 0.263987 0.261178 0.252206 0.259156
15-min 0.235271 0.252664 0.229766 0.233416 0.235047

Nov 5-min 0.175672 0.182943 0.170993 0.176974 0.174726
15-min 0.176757 0.167162 0.181122 0.180348 0.177175

Dec 5-min 0.121681 0.124719 0.123943 0.119639 0.121554
15-min 0.098087 0.105139 0.095712 0.096469 0.098808
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Table 4.6: The estimated volatility obtained from the ARC algorithm at each
sampling frequency of MSFT stock with four different delays in 2008

.
Month Time σ σ̂m=3 σ̂m=10 σ̂m=20 σ̂m=50

Jan 5-min 0.114330 0.120710 0.118066 0.116465 0.115147
15-min 0.100703 0.107346 0.104115 0.101948 0.100253

Feb 5-min 0.076580 0.080133 0.079551 0.077411 0.076622
15-min 0.076787 0.091659 0.080123 0.075353 0.076738

Mar 5-min 0.081282 0.085889 0.079921 0.082993 0.081079
15-min 0.083489 0.089207 0.086797 0.081199 0.083016

Apr 5-min 0.087885 0.090029 0.089167 0.088229 0.087684
15-min 0.081779 0.087890 0.085526 0.084595 0.081464

May 5-min 0.069760 0.072065 0.071534 0.070488 0.069721
15-min 0.063008 0.073474 0.066920 0.064605 0.063650

Jun 5-min 0.079216 0.084214 0.083314 0.078727 0.079318
15-min 0.078077 0.085512 0.082536 0.075281 0.077459

Jul 5-min 0.104967 0.109782 0.108305 0.107205 0.104367
15-min 0.105926 0.111484 0.108232 0.106219 0.105661

Aug 5-min 0.076249 0.080315 0.079202 0.077964 0.076533
15-min 0.071691 0.078712 0.074466 0.070298 0.071322

Sep 5-min 0.137254 0.140612 0.138302 0.136621 0.138098
15-min 0.128023 0.136635 0.131371 0.130904 0.128997

Oct 5-min 0.251875 0.246393 0.249783 0.252092 0.251800
15-min 0.260465 0.268659 0.267803 0.257771 0.260186

Nov 5-min 0.171256 0.173374 0.172964 0.170524 0.171154
15-min 0.168367 0.160969 0.173211 0.169196 0.168990

Dec 5-min 0.132252 0.139208 0.135359 0.133803 0.131968
15-min 0.111982 0.118533 0.117688 0.112505 0.111379
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Table 4.7: The estimated volatility obtained from the ARC algorithm at each
sampling frequency of S&P 500 stock with four different delays in 2008

.
Month Time σ σ̂m=3 σ̂m=10 σ̂m=20 σ̂m=50

Jan 5-min 0.071822 0.073439 0.073288 0.072551 0.072058
15-min 0.069563 0.078433 0.077231 0.072319 0.068499

Feb 5-min 0.050601 0.054654 0.053574 0.052854 0.050754
15-min 0.049258 0.054913 0.052228 0.048052 0.049474

Mar 5-min 0.061976 0.063146 0.063050 0.062586 0.061181
15-min 0.063043 0.080765 0.076418 0.065197 0.063799

Apr 5-min 0.040261 0.043961 0.042338 0.041620 0.039222
15-min 0.038989 0.042411 0.040339 0.039282 0.039099

May 5-min 0.032422 0.033721 0.033494 0.033198 0.033012
15-min 0.031329 0.034780 0.034023 0.032934 0.031955

Jun 5-min 0.045904 0.47792 0.046439 0.044256 0.045913
15-min 0.046096 0.049677 0.047986 0.045045 0.046363

Jul 5-min 0.054960 0.057626 0.057089 0.056876 0.054206
15-min 0.054173 0.059272 0.058179 0.052458 0.054894

Aug 5-min 0.040903 0.044130 0.042311 0.041671 0.040758
15-min 0.040682 0.048047 0.044737 0.041774 0.040670

Sep 5-min 0.101656 0.106742 0.103841 0.102507 0.101053
15-min 0.101457 0.105499 0.103348 0.102332 0.101709

Oct 5-min 0.191253 0.188387 0.190046 0.190584 0.191385
15-min 0.198555 0.201774 0.199449 0.199300 0.198109

Nov 5-min 0.144492 0.139871 0.147037 0.145167 0.144179
15-min 0.147319 0.150720 0.149076 0.148845 0.143339

Dec 5-min 0.102008 0.105906 0.103528 0.103493 0.102275
15-min 0.081194 0.088884 0.077286 0.079781 0.081188
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Table 4.8: The estimated volatility obtained from the ARC algorithm at each
sampling frequency of S&P 100 stock with four different delays in 2008

.
Month Time σ σ̂m=3 σ̂m=10 σ̂m=20 σ̂m=50

Jan 5-min 0.070590 0.074387 0.073980 0.073126 0.069935
15-min 0.067839 0.077363 0.072550 0.068619 0.067222

Feb 5-min 0.049385 0.053102 0.051048 0.048980 0.049559
15-min 0.048145 0.054077 0.050828 0.049135 0.049063

Mar 5-min 0.060436 0.067768 0.063437 0.062435 0.060885
15-min 0.061576 0.072895 0.065535 0.062738 0.062018

Apr 5-min 0.039062 0.041113 0.040629 0.040200 0.039174
15-min 0.038107 0.043842 0.040281 0.037707 0.038539

May 5-min 0.032110 0.036498 0.034326 0.033117 0.032426
15-min 0.031074 0.036509 0.034318 0.030385 0.031410

Jun 5-min 0.045730 0.052540 0.049090 0.046614 0.045474
15-min 0.045950 0.059899 0.048014 0.044822 0.045059

Jul 5-min 0.055746 0.059336 0.056797 0.056433 0.055536
15-min 0.055108 0.058433 0.057463 0.056922 0.055661

Aug 5-min 0.042842 0.047380 0.045036 0.044949 0.042122
15-min 0.042794 0.049124 0.047512 0.040176 0.042465

Sep 5-min 0.105564 0.107561 0.107263 0.106174 0.105472
15-min 0.104144 0.108984 0.107181 0.105062 0.104503

Oct 5-min 0.188473 0.191560 0.186986 0.187632 0.188488
15-min 0.195552 0.202384 0.199650 0.198137 0.196001

Nov 5-min 0.142027 0.138092 0.138948 0.145661 0.142942
15-min 0.146258 0.158020 0.149901 0.143770 0.146082

Dec 5-min 0.097710 0.102960 0.098505 0.097654 0.097661
15-min 0.077879 0.090654 0.081065 0.078752 0.077648
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Using the numerical results obtained from Tables 4.5 - 4.8, we plotted the

actual volatility and its estimated volatility obtained from the simulation part

with four different delays at 5 minutes and 15 minutes time intervals in 2008,

as shown in Figures 4.4 - 4.5.

(a) IBM stock (b) MSFT stock

(c) S&P 500 stock (d) S&P 100 stock

Figure 4.4: Actual volatility of four stocks (asterisk mark) and its estimates
provided by Monte Carlo simulations of the ARC model with four delays at 5
minutes time interval.

Figure 4.4 compares the actual volatility and estimated volatility obtained

from the ARC algorithm with four different delays at 5 minutes time intervals

in 2008. It is seen that the estimated volatility for all stocks quite fits the ac-

tual volatility. Furthermore, the estimated volatility is better with a large delay

than a slight delay for all four stocks. The estimated volatility at 15 minutes

time interval is illustrated in Figure 4.5. It can be noticed that the gap between

the actual and its estimated volatility is larger than the results obtained from

5 minutes, particularly in October, due to the volatility reach to a peak this

month. The estimated volatility becomes more accurate when the delay is in-

creased.
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(a) IBM stock (b) MSFT stock

(c) S&P 500 stock (d) S&P 100 stock

Figure 4.5: Actual volatility of four stocks (asterisk mark) and its estimates
provided by Monte Carlo simulations of the ARC model with four delays at 15
minutes time interval.

We then present the DE algorithm for parameter estimation and compare

the estimated volatility with our proposed algorithm. For the DE algorithm,

we first estimate the parameter of the drift term using the classical DE algo-

rithm. Then, the estimated drift parameter is utilised in Eq. (4.6) and calcu-

lates the estimated volatility. The volatility and the actual volatility of each

stock (IBM, MSFT, S&P 500 and S&P 100) at 5 and 15 minutes are shown in

Tables 4.9 - 4.12.

The comparison of the estimated volatility obtained from the DE algorithm

and its actual volatility of each stock (IBM, MSFT, S&P 500 and S&P 100) with

four delays at 5 and 15 minutes time interval are shown in Figures 4.6 - 4.7.
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Table 4.9: The estimated volatility obtained from the DE algorithm at each
sampling frequency of IBM stock with four different delays in 2008

.
Month Time σ σ̂m=3 σ̂m=10 σ̂m=20 σ̂m=50

Jan 5-min 0.128238 0.119657 0.124191 0.124949 0.127253
15-min 0.111404 0.105038 0.107051 0.107979 0.108939

Feb 5-min 0.076853 0.065082 0.071724 0.073882 0.074111
15-min 0.075787 0.062718 0.065644 0.068260 0.070996

Mar 5-min 0.070163 0.075156 0.074016 0.073630 0.073510
15-min 0.070075 0.058058 0.059353 0.064967 0.068159

Apr 5-min 0.059146 0.055986 0.057970 0.057669 0.057890
15-min 0.059966 0.051570 0.052286 0.052904 0.053772

May 5-min 0.050221 0.046642 0.048957 0.049264 0.049316
15-min 0.045363 0.041697 0.041760 0.042055 0.042308

Jun 5-min 0.062038 0.058017 0.058713 0.059980 0.061297
15-min 0.058700 0.049068 0.051974 0.054531 0.056472

Jul 5-min 0.076856 0.070758 0.073988 0.074316 0.074995
15-min 0.073569 0.067920 0.068428 0.069239 0.070483

Aug 5-min 0.058617 0.053744 0.054281 0.057201 0.057593
15-min 0.052804 0.044885 0.047454 0.047613 0.049980

Sep 5-min 0.148514 0.139200 0.144234 0.146532 0.146862
15-min 0.138231 0.129209 0.131454 0.133337 0.134881

Oct 5-min 0.258056 0.239978 0.244892 0.250916 0.255460
15-min 0.235271 0.210368 0.218745 0.226247 0.229019

Nov 5-min 0.175672 0.165518 0.170610 0.171879 0.172907
15-min 0.176757 0.192479 0.189313 0.184587 0.181497

Dec 5-min 0.121681 0.117214 0.119057 0.119816 0.120027
15-min 0.098087 0.115524 0.114389 0.109043 0.100885
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Table 4.10: The estimated volatility obtained from the DE algorithm at each
sampling frequency of MSFT stock with four different delays in 2008

.
Month Time σ σ̂m=3 σ̂m=10 σ̂m=20 σ̂m=50

Jan 5-min 0.114330 0.104255 0.106272 0.111968 0.112793
15-min 0.100703 0.089566 0.092589 0.095037 0.096466

Feb 5-min 0.076580 0.070891 0.070952 0.073941 0.074076
15-min 0.076787 0.093114 0.087099 0.085662 0.082189

Mar 5-min 0.081282 0.077821 0.079137 0.079945 0.080389
15-min 0.083489 0.064409 0.071256 0.073095 0.074307

Apr 5-min 0.087885 0.081894 0.085430 0.086813 0.087387
15-min 0.081779 0.074551 0.075185 0.076580 0.077014

May 5-min 0.069760 0.065622 0.066902 0.067546 0.068315
15-min 0.063008 0.050334 0.057647 0.058245 0.059699

Jun 5-min 0.079216 0.073967 0.074242 0.077882 0.078451
15-min 0.078077 0.061910 0.063765 0.066593 0.073734

Jul 5-min 0.104967 0.098744 0.100007 0.100273 0.102197
15-min 0.105926 0.095941 0.095977 0.101652 0.102463

Aug 5-min 0.076249 0.072981 0.073524 0.073739 0.075068
15-min 0.071691 0.060714 0.063170 0.066195 0.067089

Sep 5-min 0.137254 0.130426 0.133169 0.135560 0.136988
15-min 0.128023 0.118407 0.121234 0.122544 0.125413

Oct 5-min 0.251875 0.246007 0.249582 0.250159 0.250432
15-min 0.260465 0.241803 0.244454 0.252475 0.257118

Nov 5-min 0.171256 0.165104 0.168016 0.170272 0.170382
15-min 0.168367 0.160232 0.162285 0.164363 0.164989

Dec 5-min 0.132252 0.122661 0.128500 0.129048 0.131492
15-min 0.111982 0.120473 0.119138 0.116320 0.113292
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Table 4.11: The estimated volatility obtained from the DE algorithm at each
sampling frequency of S&P 500 stock with four different delays in 2008

.
Month Time σ σ̂m=3 σ̂m=10 σ̂m=20 σ̂m=50

Jan 5-min 0.071822 0.074850 0.074573 0.073508 0.072849
15-min 0.069563 0.085551 0.078416 0.076930 0.075155

Feb 5-min 0.050601 0.058551 0.054652 0.054002 0.050264
15-min 0.049258 0.055888 0.052312 0.051170 0.048196

Mar 5-min 0.061976 0.064171 0.063241 0.062713 0.060897
15-min 0.063043 0.096521 0.086828 0.077756 0.061037

Apr 5-min 0.040261 0.044271 0.043039 0.042125 0.041080
15-min 0.038989 0.043799 0.041611 0.040351 0.039328

May 5-min 0.032422 0.034438 0.034168 0.033607 0.033045
15-min 0.031329 0.036148 0.034392 0.033666 0.030108

Jun 5-min 0.045904 0.049216 0.047276 0.046579 0.046157
15-min 0.046096 0.066056 0.059790 0.054957 0.049789

Jul 5-min 0.054960 0.057797 0.057562 0.057075 0.055636
15-min 0.054173 0.068994 0.064312 0.059102 0.052745

Aug 5-min 0.040903 0.045155 0.043128 0.042927 0.041653
15-min 0.040682 0.048383 0.045401 0.043415 0.041035

Sep 5-min 0.101656 0.107222 0.106714 0.104237 0.102208
15-min 0.101457 0.112052 0.107089 0.105261 0.104008

Oct 5-min 0.191253 0.197290 0.196454 0.193776 0.191517
15-min 0.198555 0.224755 0.207418 0.204282 0.202066

Nov 5-min 0.144492 0.153618 0.150557 0.147613 0.145617
15-min 0.147319 0.155982 0.152046 0.150149 0.145699

Dec 5-min 0.102008 0.107388 0.105864 0.104753 0.103223
15-min 0.081194 0.104013 0.103989 0.099683 0.094588
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Table 4.12: The estimated volatility obtained from the DE algorithm at each
sampling frequency of S&P 100 stock with four different delays in 2008

.
Month Time σ σ̂m=3 σ̂m=10 σ̂m=20 σ̂m=50

Jan 5-min 0.070590 0.079385 0.075823 0.073898 0.072213
15-min 0.067839 0.082973 0.077999 0.074014 0.072144

Feb 5-min 0.049385 0.053968 0.052226 0.052208 0.050437
15-min 0.048145 0.064909 0.053113 0.051059 0.049869

Mar 5-min 0.060436 0.071740 0.064882 0.062712 0.059523
15-min 0.061576 0.073130 0.068053 0.067917 0.059571

Apr 5-min 0.039062 0.041455 0.040731 0.040493 0.039463
15-min 0.038107 0.044670 0.040425 0.037667 0.039393

May 5-min 0.032110 0.036923 0.035112 0.034193 0.032663
15-min 0.031074 0.038387 0.035321 0.033731 0.032476

Jun 5-min 0.045730 0.052853 0.051430 0.048607 0.046298
15-min 0.045950 0.061016 0.048853 0.047506 0.046290

Jul 5-min 0.055746 0.063853 0.059658 0.057757 0.056357
15-min 0.055108 0.063631 0.062088 0.057989 0.054614

Aug 5-min 0.042842 0.049493 0.046917 0.045025 0.043504
15-min 0.042794 0.059914 0.059057 0.052232 0.045782

Sep 5-min 0.105564 0.110800 0.108382 0.106969 0.105169
15-min 0.104144 0.111829 0.108695 0.107634 0.106130

Oct 5-min 0.188473 0.193059 0.190473 0.189568 0.188130
15-min 0.195552 0.215987 0.204513 0.201451 0.197871

Nov 5-min 0.142027 0.158215 0.147940 0.145961 0.141178
15-min 0.146258 0.168589 0.160377 0.149581 0.145843

Dec 5-min 0.097710 0.105548 0.101042 0.098260 0.098094
15-min 0.077879 0.097275 0.096594 0.095704 0.090943
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(a) IBM stock (b) MSFT stock

(c) S&P 500 stock (d) S&P 100 stock

Figure 4.6: Actual volatility of four stocks (asterisk mark) and its estimates
provided by Monte Carlo simulations of the DE model with four delays at 5
minutes.

(a) IBM stock (b) MSFT stock

(c) S&P 500 stock (d) S&P 100 stock

Figure 4.7: Actual volatility of four stocks (asterisk mark) and its estimates
provided by Monte Carlo simulations of the DE model with four delays at 15
minutes.
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It can be observed from Figures 4.6 - 4.7 that the estimated volatility ob-

tained from the DE algorithm provides similar results to the ARC algorithm

in terms of sampling frequency and delays. The estimated volatility follows

a similar movement to the actual volatility for all stocks. Increasing the delay

provides better results in the matching part as the estimated volatility is close

to the actual volatility. Using 5 minutes data has significantly outperformed

the 15 minutes data.

4.3.4 The Comparison of Estimated Volatility Obtained from

the ARC and Classical DE Algorithm

To compare the performance of the ARC algorithm with the classical differ-

ential evolution (DE), the IBM, MSFT, S&P 500 and S&P 100 stocks at 5 minutes

and 15 minutes time intervals in 2008 are used. The comparisons of the esti-

mated volatility obtained from the ARC and DE algorithms with four delays

at 5 minutes time intervals are displayed in Figures 4.8 - 4.11.

(a) m = 3 (b) m = 10

(c) m = 20 (d) m = 20

Figure 4.8: Actual volatility of 5 minutes IBM stock (asterisk mark) and its
estimates provided by the ARC and the DE algorithms with four delays.
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(a) m = 3 (b) m = 10

(c) m = 20 (d) m = 20

Figure 4.9: Actual volatility of 5 minutes MSFT stock (asterisk mark) and its
estimates provided by the ARC and the DE algorithms with four delays.

The comparisons of the estimated volatility obtained from the ARC and

DE algorithms with four delays at 15 minutes time intervals are displayed in

Figures 4.12 - 4.15.

As we can see from Figures 4.8 - 4.15, it can be noticed that the patterns of

the estimated volatility from both algorithms are similar to the actual volatil-

ity. The ARC algorithm outperforms the basic DE algorithm as the estimated

volatility is close to the actual volatility for all stocks with four various delays

at 5 minutes and 15 minutes. In addition, it is obviously seen that larger de-

lays provide better results than small delays. To investigate the performance

of different delays, the evaluation metrics, namely the root mean square error

(RMSE), the mean absolute error (MAE), and the mean absolute percentage

error (MAPE), are employed. The RMSE, MAE, and MAPE obtained from all

stocks at two different time intervals with four delays are shown in Figures

4.16 - 4.17.
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(a) m = 3 (b) m = 10

(c) m = 20 (d) m = 20

Figure 4.10: Actual volatility of 5 minutes S&P 500 stock (asterisk mark) and
its estimates provided by the ARC and the DE algorithms with four delays.

(a) m = 3 (b) m = 10

(c) m = 20 (d) m = 20

Figure 4.11: Actual volatility of 5 minutes S&P 100 stock (asterisk mark) and
its estimates provided by the ARC and the DE algorithms with four delays.
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(a) m = 3 (b) m = 10

(c) m = 20 (d) m = 20

Figure 4.12: Actual volatility of 15 minutes IBM stock (asterisk mark) and its
estimates provided by the ARC and the DE algorithms with four delays.

(a) m = 3 (b) m = 10

(c) m = 20 (d) m = 20

Figure 4.13: Actual volatility of 15 minutes MSFT stock (asterisk mark) and its
estimates provided by the ARC and the DE algorithms with four delays.
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(a) m = 3 (b) m = 10

(c) m = 20 (d) m = 20

Figure 4.14: Actual volatility of 15 minutes S&P 500 stock (asterisk mark) and
its estimates provided by the ARC and the DE algorithms with four delays.

(a) m = 3 (b) m = 10

(c) m = 20 (d) m = 20

Figure 4.15: Actual volatility of 15 minutes S&P 100 stock (asterisk mark) and
its estimates provided by the ARC and the DE algorithms with four delays.
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(a) RMSE

(b) MAE

(c) MAPE

Figure 4.16: The RMSE, MAE and MAPE of four stocks at 5 minutes time in-
terval
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(a) RMSE

(b) MAE

(c) MAPE

Figure 4.17: The RMSE, MAE and MAPE of four stocks at 15 minutes time
interval
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Figures 4.16 - 4.17 present the comparison of the evaluation metrics be-

tween the ARC and the DE algorithms. Our proposed (ARC) algorithm signif-

icantly outperforms the DE algorithm in terms of RMSE, MAE, and MAPE for

all four stocks with four different delays.

4.4 Model Identification for Two Parameters

In this section, we assume that the two model parameters, namely the drift

term parameter (λ) and the volatility of the SDDE in Eq. (4.12), are unknown.

The differential evolution (DE) algorithm is used to estimate two parameters

to match the volatility. The pseudocode of the DE algorithm is displayed in

Algorithm 6.

The idea of Algorithm 6 is similar to Algorithm 5 except the problem size

(D) because this section considers two unknown model parameters (D = 2)

while the previous section works with one unknown parameter (D = 1). After

the SDDE model parameters are computed, we calculate the estimated volatil-

ity for each month. Finally, the actual volatility and the estimated volatility at

5 minutes and 15 minutes intervals of the IBM, MSFT, S&P 500, and S&P 100

stocks with four delays are presented in Tables 4.13 - 4.16.

As shown from Tables 4.13 - 4.16, the estimated volatility obtained from the

DE algorithm provides a similar pattern to the actual volatility. The estimated

volatility using a large delay provides better results than a small delay for four

stocks. The comparison between the estimated volatility obtained from SDDE

and the real-world volatility is displayed in Figures 4.18 - 4.19.

It can be observed from Figures 4.18 - 4.19 that the estimated volatility fol-

lows a similar movement to the actual volatility for all stocks. Increasing the

delay provides better results in the matching part as the estimated volatility is

close to the actual volatility.
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Algorithm 6 DE Pseudocode for two-parameter identification
Require: NP = 20, CR = 0.6, D = 2, F = 0.2, m = 3, 10, 20, 50, δ = 1/n, TOL = 0.01,

XL
1 = −200, XU

1 = 200, XL
2 = 0.01, XU

2 = 1, MAPEmin = 100, maxG = 1000 and
maxI = 12.

1: Import the stock price {yk}n
k=1

2: while( I < maxI)
3: Generate the initial population : set (I = 0, G = 0)
4: xG

i,j = Lj + rand(0, 1) · (xU
j − xL

j ), i = 1, . . . , NP j = 1, . . . , D
5: while(MAPEmin > TOL or G < maxG)
6: for i = 1 to NP
7: Randomly select r1, r2, r3 ∈ 1, 2, . . . , NP where r1 ̸= r2 ̸= r3 ̸= i

Mutation Step
8: vG

i,j = xG
r1,j + F · (xG

r2,j − xG
r3,j)

9: jrand = [rand(0, 1) · D]
Crossover

10: for j = 1 to 2
11: if rand(0, 1) <= CR or j = jrand
12: uG

i,j = vG
i,j

13: else
14: uG

i,j = xG
i,j

15: end if
16: end for

Selection: sumEm = 0, sumE = 0
17: for k = m + 1 to n
18: f m

i (k) = (1− δ · uG
i,1)yk−1 +(δ · uG

i,1)yk−m +
√

δ · uG
i,2 · randn(0, 1)

19: fi(k) = (1− δ · xG
i,1)yk−1 + (δ · xG

i,1)yk−m +
√

δ · xG
i,2 · randn(0, 1)

20: em(k) =
∣∣ f m

i (k)− y(k)
∣∣ /y(k)

21: e(k) = | fi(k)− y(k)| /y(k)
22: sumEm = sumEm + em(k)
23: sumE = sumE + e(k)
24: end for
25: MAPEm = sumEm × 100/(n − m)
26: MAPE = sumE × 100/(n − m)
27: if MAPEm < MAPE
28: xG+1

i,1 = uG
i,1;

29: xG+1
i,2 = uG

i,2;
30: MAPEi = MAPEm
31: else
32: xG+1

i,1 = xG
i,1

33: xG+1
i,2 = xG

i,2
34: MAPEi = MAPE
35: end if
36: end for
37: MAPEmin = min(MAPEi)
38: G = G + 1
39: Compute the volatility (Eq. (4.12)) using the optimal xG+1

i,1 andxG+1
i,2

40: end while
41: I = I + 1
42: end while
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Table 4.13: The estimated volatility obtained from the DE algorithm at each
sampling frequency of IBM stock with four different delays in 2008

.
Month Time σ σ̂m=3 σ̂m=10 σ̂m=20 σ̂m=50

Jan 5-min 0.128238 0.24534 0.125516 0.126534 0.127103
15-min 0.111404 0.102988 0.106083 0.108231 0.109040

Feb 5-min 0.076853 0.073234 0.074196 0.074272 0.075339
15-min 0.075787 0.066058 0.070553 0.072653 0.073225

Mar 5-min 0.070163 0.067790 0.068883 0.069330 0.069693
15-min 0.070075 0.061653 0.064439 0.068148 0.069927

Apr 5-min 0.059146 0.056139 0.057500 0.057910 0.058013
15-min 0.056966 0.049258 0.052996 0.054893 0.055336

May 5-min 0.050221 0.047354 0.048995 0.049035 0.049258
15*min 0.045363 0.039585 0.040919 0.042136 0..042607

Jun 5-min 0.062038 0.059267 0.060818 0.061291 0.061389
15-min 0.058700 0.049129 0.054984 0.056855 0.057032

Jul 5-min 0.076856 0.073512 0.073706 0.075086 0.075885
15-min 0.073569 0.068534 0.070190 0.070948 0.071210

Aug 5-min 0.058617 0.055527 0.056125 0.057020 0.057693
15-min 0.052804 0.047701 0.048808 0.049389 0.051193

Sep 5-min 0.148514 0.138606 0.144517 0.145096 0.147641
15-min 0.138231 0.123459 0.132753 0.134970 0.135104

Oct 5-min 0.258056 0.248788 0.249065 0.254946 0.255797
15-min 0.235271 0.205623 0.226104 0.228266 0.232342

Nov 5-min 0.175672 0.167558 0.171442 0.173507 0.174353
15-min 0.176757 0.168604 0.172557 0.173290 0.174163

Dec 5-min 0.121681 0.118064 0.119937 0.120230 0.120947
15-min 0.098087 0.116222 0.113490 0.111033 0.108649
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Table 4.14: The estimated volatility obtained from the DE algorithm at each
sampling frequency of MSFT stock with four different delays in 2008

.
Month Time σ σ̂m=3 σ̂m=10 σ̂m=20 σ̂m=50

Jan 5-min 0.114330 0.104788 0.110747 0.111965 0.113142
15-min 0.100703 0.088190 0.094377 0.097476 0.098074

Feb 5-min 0.076580 0.072917 0.073019 0.074512 0.074669
15-min 0.076787 0.067055 0.068514 0.072037 0.073590

Mar 5-min 0.081282 0.077285 0.077580 0.079546 0.080533
15-min 0.083489 0.078907 0.079913 0.080037 0.081053

Apr 5-min 0.087885 0.083991 0.085171 0.086724 0.087319
15-min 0.081779 0.076551 0.078392 0.078914 0.079846

May 5-min 0.069760 0.063677 0.066851 0.068001 0.068739
15-min 0.063008 0.056786 0.057166 0.059682 0.060008

Jun 5-min 0.079216 0.074309 0.076855 0.077579 0.078512
15-min 0.078077 0.072225 0.074672 0.076406 0.076637

Jul 5-min 0.104967 0.101422 0.102646 0.103056 0.103717
15-min 0.105926 0.098479 0.100773 0.102298 0.103390

Aug 5-min 0.076249 0.070168 0.074443 0.074916 0.075074
15-min 0.071691 0.064247 0.065166 0.067167 0.068029

Sep 5-min 0.137254 0.127751 0.132470 0.136644 0.136899
15-min 0.128023 0.121539 0.122622 0.125971 0.126749

Oct 5-min 0.251875 0.243867 0.247414 0.250824 0.251905
15-min 0.260465 0.248352 0.252651 0.258612 0.260509

Nov 5-min 0.171256 0.164481 0.166776 0.169422 0.171122
15-min 0.168367 0.162475 0.164643 0.165397 0.166593

Dec 5-min 0.132252 0.124107 0.129175 0.130823 0.131422
15-min 0.111982 0.124265 0.121940 0.115305 0.115516
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Table 4.15: The estimated volatility obtained from the DE algorithm at each
sampling frequency of S&P 500 stock with four different delays in 2008

.
Month Time σ σ̂m=3 σ̂m=10 σ̂m=20 σ̂m=50

Jan 5-min 0.071822 0.075590 0.075011 0.073630 0.071483
15-min 0.069563 0.084017 0.076522 0.071371 0.068735

Feb 5-min 0.050601 0.055916 0.053631 0.051194 0.050527
15-min 0.049258 0.053071 0.051652 0.051641 0.048771

Mar 5-min 0.061976 0.090971 0.063883 0.063011 0.061376
15-min 0.063043 0.073444 0.066146 0.061822 0.062017

Apr 5-min 0.040261 0.044748 0.043036 0.041363 0.040298
15-min 0.038989 0.050395 0.045584 0.040225 0.037657

May 5-min 0.032422 0.037906 0.035362 0.032971 0.031932
15-min 0.031329 0.042935 0.034608 0.034578 0.030921

Jun 5-min 0.045904 0.049937 0.047025 0.046362 0.046013
15-min 0.046096 0.052598 0.050704 0.048221 0.045092

Jul 5-min 0.054960 0.059773 0.058876 0.055093 0.054137
15-min 0.054173 0.070077 0.063354 0.052763 0.054137

Aug 5-min 0.040903 0.045243 0.044240 0.042361 0.040536
15-min 0.040682 0.060255 0.048910 0.043746 0.039016

Sep 5-min 0.101656 0.109990 0.104733 0.102721 0.101035
15-min 0.101457 0.112502 0.106917 0.105077 0.100179

Oct 5-min 0.191253 0.198176 0.196477 0.193212 0.191422
15-min 0.198555 0.208681 0.207043 0.200071 0.197199

Nov 5-min 0.144492 0.150168 0.148467 0.146072 0.143644
15-min 0.147319 0.154971 0.151584 0.145758 0.146120

Dec 5-min 0.102008 0.107367 0.104171 0.103065 0.101387
15-min 0.081194 0.102250 0.099773 0.098842 0.090866
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Table 4.16: The estimated volatility obtained from the DE algorithm at each
sampling frequency of S&P 100 stock with four different delays in 2008

.
Month Time σ σ̂m=3 σ̂m=10 σ̂m=20 σ̂m=50

Jan 5-min 0.070590 0.075687 0.073539 0.071494 0.070818
15-min 0.067839 0.073600 0.069362 0.068863 0.068612

Feb 5-min 0.049385 0.061755 0.051767 0.051452 0.049284
15-min 0.048145 0.052288 0.050533 0.049135 0.047061

Mar 5-min 0.060436 0.065020 0.063688 0.061243 0.059220
15-min 0.061576 0.070731 0.065452 0.060507 0.062018

Apr 5-min 0.039062 0.044834 0.042138 0.041518 0.040311
15-min 0.038107 0.041610 0.040418 0.037575 0.038539

May 5-min 0.032110 0.045690 0.039531 0.038416 0.033969
15-min 0.031074 0.035311 0.034545 0.030350 0.030441

Jun 5-min 0.045730 0.050694 0.048718 0.046840 0.045791
15-min 0.045950 0.052535 0.049169 0.046174 0.045615

Jul 5-min 0.055746 0.059506 0.058621 0.056018 0.055959
15-min 0.055108 0.063336 0.058711 0.054273 0.054726

Aug 5-min 0.042842 0.047555 0.045163 0.043048 0.042104
15-min 0.042794 0.048118 0.045086 0.043007 0.042898

Sep 5-min 0.105564 0.112497 0.109613 0.106575 0.105433
15-min 0.104144 0.112197 0.108861 0.105429 0.103403

Oct 5-min 0.188473 0.192281 0.191103 0.189607 0.188347
15-min 0.195552 0.204228 0.203197 0.196433 0.194705

Nov 5-min 0.142027 0.153560 0.145886 0.144671 0.141921
15-min 0.146258 0.151676 0.149740 0.148211 0.144825

Dec 5-min 0.097710 0.103688 0.100751 0.099383 0.097990
15-min 0.077879 0.099670 0.098753 0.095619 0.089140
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(a) IBM stock (b) MSFT stock

(c) S&P 500 stock (d) S&P 100 stock

Figure 4.18: Actual volatility of four stocks (asterisk mark) and its estimates
provided by Monte Carlo simulations of the DE algorithm with four delays at
5 minutes time intervals.

(a) IBM stock (b) MSFT stock

(c) S&P 500 stock (d) S&P 100 stock

Figure 4.19: Actual volatility of four stocks (asterisk mark) and its estimates
provided by Monte Carlo simulations of the DE algorithm with four delays at
15 minutes time intervals.
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The evaluation metrics of the estimated volatility on the IBM, MSFT, S&P

500 and S&P 100 at 5 minutes and 15 minutes time intervals are presented in

Table 4.17.

Table 4.17: The evaluation metrics on four stocks at 5 minutes and 15 minutes
time intervals in 2008

.
Stock Delay 5 minutes 15 minutes

RMSE MAE MAPE RMSE MAE MAPE

IBM

3 0.005332 0.004640 4.476460 0.012796 0.010872 11.489900
10 0.003602 0.002946 2.746930 0.006665 0.005829 6.743270
20 0.001991 0.001817 1.874120 0.004996 0.004008 4.512810
50 0.001168 0.001079 1.171890 0.003764 0.002859 3.291120

MSFT

3 0.006538 0.006179 5.746870 0.008455 0.007983 7.995730
10 0.003435 0.003313 3.113090 0.006023 0.005699 5.841640
20 0.001641 0.001575 1.616360 0.003270 0.003139 3.439050
50 0.000969 0.000826 0.930076 0.002500 0.002288 2.615260

S&P500

3 0.009830 0.007279 11.621300 0.011964 0.010944 18.746500
10 0.003218 0.003055 4.818490 0.006662 0.005122 7.650710
20 0.001195 0.001065 1.562580 0.005338 0.002863 4.340250
50 0.000505 0.000425 0.642891 0.003008 0.001769 2.623520

S&P100

3 0.007692 0.006924 12.362200 0.008889 0.007573 11.695900
10 0.003646 0.003404 6.128120 0.007057 0.004950 7.271250
20 0.002327 0.001716 3.437930 0.005210 0.002289 3.110570
50 0.000778 0.000525 1.192670 0.003322 0.001501 2.071710

The results from Figures 4.18 - 4.19 and Table 4.17 confirm that the esti-

mated volatility obtained from the DE algorithm for two model parameters

follows a similar movement to the actual volatility. The evaluation metrics

obtained from 5 minutes stock prices are lower than 15 minutes stock prices.

Consequently, using 5 minutes data has significantly outperformed the 15 min-

utes data.

4.5 Conclusions

This chapter focuses on the matching volatility obtained from the SDDE and

the real-world stock prices. First, we divided the matching part into two cases:

one unknown and two unknown parameters. For one parameter estimation,
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the autoregressive coefficients (ARC) algorithm is proposed to identify the pa-

rameter of the drift term (λ) while assuming the volatility is known. Next, we

select the closing prices, the final price on the trading day, every 5 minutes and

15 minutes from the Thomson Reuters database during the 2008 global finan-

cial crisis and Great Recession of the IBM, MSFT, S&P 500 and S&P 100 stocks.

The performance of the ARC algorithm is compared with the DE algorithm

for all four stocks with two different sampling frequencies. The experimen-

tal results suggest that the estimated volatility obtained from the proposed

ARC algorithm performs better than the classical DE algorithm in terms of the

RMSE, MAE, and MAPE. For two parameters, the DE algorithm is utilized

to estimate two unknown model parameters. The empirical results obtained

from the DE algorithm indicate that the estimated volatility of each stock has

a similar pattern to the actual price. We then investigate the performance of

the delay. The results obtained from one and two model identification at two

sampling frequencies confirm that the evolution metrics decrease as the delay

increases. Moreover, the financial time series at 5 minutes time intervals pro-

vide smaller evolution metrics than 15 minutes data. In conclusion, the study

becomes more accurate when the delay is increased, and a higher sampling

frequency leads to higher estimation accuracy.
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Chapter 5

A Two-Delay Combination Model

for Stock Price Prediction

This chapter presents a new technique of the combination method to in-

crease the prediction accuracy of the individual deep learning model using a

two-delay combination method. We also present the new weight of the combi-

nation model using the differential evolution algorithm. The chapter is struc-

tured as follows. Section 5.1 presents the deep learning methods. Section 5.2

displays the overfitting and underfitting with deep learning models. Section

5.3 represents the data visualisation. The ideas to estimate weights and hy-

perparameter optimisation are shown in Section 5.4. The empirical results are

represented in Section 5.5 for univariate and multivariate time series. Finally,

Section 5.6 makes a summary of this work. Note that the work in this chapter

has been published in [163].

5.1 Deep Learning Methods

Deep learning techniques (DL) have been widely studied in stock price

prediction in recent years because the nature of stock price time series is usu-

ally non-linear, non-parametric, and chaotic, which is highly difficult to fit
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models using traditional statistics procedures. Three well-known DLs used in

this chapter are the multilayer perceptron (MLP), the convolutional neural net-

work (CNN) and the long short-term memory (LSTM). Moreover, combination

methods have become widespread in stock price prediction, and many more

suitable models for stock prediction have been proposed. The linear combi-

nation method is one of the ways for many scholars to predict the stock price

more accurately. This technique was introduced by Bates, and Granger [164].

The main objective of this approach is to combine the benefits of different

single forecasting models. Several studies have confirmed that the combina-

tion forecast has superior efficiency to the individual method [165]. However,

weight selection is a significant challenge of the linear combination forecast

method. To our knowledge, there is no literature on combining different de-

lays for stock price prediction. Moreover, little work in the literature was

studied on the delay (look back) period [129]. This motivates us to combine

two delay forecasts and estimate the weights using the differential evolution

algorithm. This chapter presents the two-delay combination techniques and

estimates the hybrid model’s weight using the differential evolution (DE) al-

gorithm. The experiment in this chapter consists of seven parts: data collect-

ing, data pre-possessing, hyperparameter optimization, model training, model

saving, model testing, and out-of-sample prediction results. The flowchart of

the deep learning (DL) process is shown in Figure 5.1. [3]
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Figure 5.1: The flowchart of the deep learning process.
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5.2 Overfitting and Underfitting with Deep Learn-

ing Models

Overfitting and underfitting are widespread problems in machine learning.

An extensive range of literature has been dedicated to studying methods for

preventing these problems. A loss curve can present both against epochs [166].

Overfitting is one of the most significant problems in training neural networks.

This occurs when the model performs well on training data but generalizes

poorly to unseen data (the training loss is significantly lower than the vali-

dation loss) [167–171]. Underfitting is a model that fails to learn the problem

sufficiently and performs poorly on both training and validation datasets (high

loss in both training and validation sets) [170, 172]. In addition, it cannot cor-

rectly handle other data not contained in the training data. An excellent fit

model means the model that suitably learns the training dataset and gener-

alizes well to the holdout dataset (a training and validation loss decreases to

stability with a minimal gap between the two final loss values ) [173]. Under-

fitting is often not discussed as it is easy to detect given a good performance

metric. The machine learning approach has obtained an excellent predictive

performance if the values of both training and testing data are almost simi-

lar [174].

Regularization is a technique used for preventing neural networks from

overfitting. The most common regularization methods are dropout, weight

regularization, and early stopping. Dropout was used as a powerful method

to prevent overfitting [175]. The term dropout refers to dropping out units

(hidden and visible) in a neural network. Dropout can be used on the input

or/and hidden layer, but it is not used on the output layer. Weight regulariza-

tion provides an approach to reduce the overfitting of a neural network model

on the training data and improve the model’s performance on new data, such

as the holdout test set. There are multiple types of weight regularization, such

100



CHAPTER 5. A TWO-DELAY COMBINATION MODEL FOR STOCK PRICE
PREDICTION

as L1 (sum of the absolute weights), L2 (sum of the squared weights), and

L1L2 (sum of the absolute and the squared weights) [173]. Early stopping is a

simple, effective, and widely used approach to training neural networks. The

key idea with early stopping is to keep track of the model parameters that give

the best performance over the validation set and then to stop the training after

this best performance so far over the validation set does not improve over a

predefined number of training steps [176].

5.3 Data

In this chapter, the raw data are collected from the Thomson Reuters

database every 5 minutes between January 2021 and January 2022 totally of

21,409 observations [152] to predict the closing stock prices. For univariate

data, only the closing price is an input variable. In contrast, the five inputs

for the multivariate data set are the opening price, the highest price, the lowest

price, the closing price, and the trading volume (OHLCV). We selected four big

companies’ stocks on the New York Stock Exchange (NYSE), which operates

on a weekday from 9.30 am. to 4.00 pm. without a lunch break, including Ap-

ple Inc. (AAPL), Adobe Inc. (ADBE), Devon Energy Corporation (DVN), and

Moderna, Inc. (MRNA) stocks. The summary statistics of the original closing

prices from four stocks, including mean, median, maximum, minimum, stan-

dard deviation, skewness and kurtosis, are presented in Table 5.1.

Table 5.1: Descriptive statistics.

Statistics AAPL ADBE DVN MRNA
Mean 143.0679 557.2368 30.6329 242.8652

Median 142.8700 554.2500 28.0600 28.0600
Maximum 182.8400 699.2300 54.1300 492.8100
Minimum 116.3500 421.3700 15.7600 104.1700

Standard deviation 16.0622 73.7783 9.4154 96.8969
Skewness 2.8282 2.8247 2.8284 2.8267
Kurtosis 7.9990 7.9844 7.9999 7.9928
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The data used in this chapter are the univariate and multivariate time se-

ries. We present only the characteristics of the closing prices in Table 5.1 be-

cause we are focusing on the closing price prediction for both cases. Apple

Inc. (AAPL) is a specialised company in consumer electronics, software and

online services. The average price is 143.0679 USD, and the standard deviation

is 16.0622. Adobe Inc. (ADBE) is an American multinational computer soft-

ware company incorporated in Delaware. The price peaked at 699.23 USD and

dropped to the lowest at 421.37 USD. Devon Energy Corporation (DVN) is an

energy company engaged in hydrocarbon exploration in the USA. The mean

of DVN stock and the standard deviation are 30.6329 and 9.4154 USD, respec-

tively. Moderna, Inc (MRNA) is an American pharmaceutical and biotechnol-

ogy company. The price range is between 104.17 and 492.81 USD.

Time series plots of observed price along with training set (blue line), vali-

dation set (red line) and test set (green line) are displayed in Figure 5.2.

We then focus on the data pre-processing step before applying it for model

training and testing. After obtaining data from the Thomson Reuters database,

we clean up any errors and fill in any missing data using a splines interpola-

tion method. The historical financial data series were divided into three sets,

namely training, validation, and test sets. For each stock, 19,829 data points

from January to December 2021 were used for training and validating the deep

learning models. 83 % (January - October 2021) were used for training (learn-

ing parameters), and the remaining 17 % (November - December 2021) to val-

idate network performance and avoid overfitting. The remaining one month

(January 2022) was used to assess the model performance (hold-out sample).

All experiments in this study are performed by using Python programming

language, which is running on Google Colaboratory (also known as Google

Colab). Finally, the data are normalized using MinMaxScaler. The MinMaxS-
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(a) Apple Inc.

(b) Adobe Inc.

(c) Devon Energy Corporation

(d) Moderna Inc.

Figure 5.2: Original AAPL, ADBE, DVN, and MRNA stock prices time series
with five minutes from January 2021 to January 2022.
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caler formula is as follow [177].

x′ =
x − xmin

xmax − xmin
, (5.1)

where x′ is the value in the interval [0,1], x presents the observed price, xmin, xmax

represent the minimum and the maximum of the set of stock price, respec-

tively. The inverse normalization function is

ŷi = yi · (xmax − xmin) + xmin. (5.2)

Here ŷi is the predicted value and yi presents the network output value.

5.4 Hybrid Model

Time series prediction has been a challenging task for over five-decade. A

large amount of literature has focused on the method to get accurate forecasts

in numerous practical applications. In general, two main ways can improve

the accuracy of forecasting results: (1) developing and proposing new fore-

casting models and (2) hybridization of existing forecasting models. In this

chapter, we focus on only the hybrid model. The famous hybrid structure con-

sists of the parallel and the series hybrid structures [4]. The framework of two

classifications of hybrid structures is shown in Figure 5.3.

From Figure 5.3, the linear combination of parallel structures is a very chal-

lenging problem because the main aim of this area is to seek the optimal weight

of each forecast. However, we work with delays in time series, and there is no

literature on combining different delays for forecasting. Moreover, only very

little work in the literature studied the delay (look back) period (see [129,178]).

This motivates us to combine two delay forecasts and estimate the weights

using the differential algorithm.
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Figure 5.3: The schematic framework of the hybrid process [4]

The delay (m) in this chapter refers to the network’s input length (look

back). For example, the look back at four means we allow our network to

look back at four data to predict the next timestamp. Each prediction model

was trained utilizing two different delays predicted values, i.e., 43 (half-day

trading delay) and 79 (one-day trading delay). The idea of delay (look back) is

displayed in Table 5.2.

Table 5.2: How the first 4 samples for open, high, low, volume and close prices
would generate the 5th sample.

Datetime Open High Low Volume Close
4/01/2021 9:30:00 AM 222.53 223.00 220.59 1404934 220.72
4/01/2021 9:35:00 AM 220.70 220.75 219.72 731172 219.84
4/01/2021 9:40:00 AM 219.85 220.06 219.28 762643 220.03
4/01/2021 9:45:00 AM 220.02 220.40 219.76 406992 220.05

220.13
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5.4.1 A Two-delay Combination Forecast

Three general deep learning (DL) methods, namely the multilayer percep-

tron (MLP), the convolutional neural network (CNN) and the long short-term

memory (LSTM) network, are applied to predict future stock prices. The lin-

ear combination forecast is presented to improve the single DL forecast ac-

curacy. The idea of the combination forecasts was first introduced by Bates,

and Granger [164]. Many researchers have studied this topic and built several

combination forecast techniques to improve the forecast accuracy (see, for ex-

ample, [165,179,180]). In this chapter, we proposed the two-delay combination

method to predict future closing prices for each stock. Different stock prices

are in different ranges, and we expect our proposed model to work well on

all of these stocks. The general two-delay combination method can be defined

as [181]

ŷc =
2

∑
i=1

wiŷi, (5.3)

where ŷc is the combined forecast, w1, w2 are the weights obtained from the DE

algorithm, w1 + w2 = 1, ŷi is the ith point forecast.

The structure of the linear combination forecast is presented in Figure 5.4.

Figure 5.4: The structure of the two-delay linear combination method

This structure starts with importing a predicted price obtained from the
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first and the second delay on each DL technique. We then combine the fore-

cast results using the linear combination method. Next, the weights are com-

puted using the DE algorithm. Finally, the evaluation indicators are calculated

to compare the forecasting performance obtained by the individual and the

combination of forecast techniques. The pseudocode of the DE algorithm is

displayed in Algorithm 7.

The Algorithm 7 starts with defining some parameters such as the num-

ber of population size (NP), the crossover ratio (CR), the mutation ratio (F),

and the constant term (TOL). Then, an initial population is generated using a

uniform distribution on the interval [0,1], where xL and xU are the lower and

upper bounds for the decision parameter, respectively. In the mutation pro-

cess, three individuals (xr1, xr2, xr3) are selected in the population set of NP

elements, which r1 ̸= r2 ̸= r3 ̸= i. F is a user-defined constant known as

the mutation factor, F ∈ [0, 1]. We then apply all values to obtain the mutant

vectors (vi). The trial vectors (ui) are generated by mixing the parameters

of the target vectors (xi) with the mutant vectors (vi) according to a selected

crossover probability (CR). The selection scheme is applied in the DE algo-

rithm for the next step. The predicted stock prices of the test set are imported

to compute the fitness of the target vectors and the fitness of trial vectors. The

best solution is chosen by comparing the fitness of the trial vectors and the cor-

responding target vectors. We then calculate the predicted stock prices ( fi) of

each DL model. Next, the observed prices are imported to compute the error

measurement. The errors between the observed and predicted stock prices are

calculated. The mean absolute percentage error (MAPE) is applied to seek an

optimal weight (xi). The optimization process stops whenever the MAPE is

less than a constant term (TOL) or the number of iterations reaches the limit.

Finally, the weight is applied in the hybrid predictive model Eq. (5.3) to obtain

the combination forecast. The parameters setting used in this section are NP =

10, F = 0.2, and CR = 0.6 based on Section 4.3.
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Algorithm 7 DE Pseudocode for weight identification

Require: NP = 10, CR = 0.6, F = 0.2, TOL = 0.01, xL = −5, xU = 5,
MAPEmin = 100, maxG = 1000 and G = 0.

1: Generate the initial population
2: xG

i = xL
i + rand(0, 1) · (xU

i − xL
i ), i = 1, . . . , NP

3: While (MAPEmin > TOL or G < maxG)
4: for i = 1 to NP
5: Randomly select r1, r2, r3 ∈ 1, 2, . . . , NP where r1 ̸= r2 ̸= r3 ̸= i

Mutation
6: vG

i = xG
r1 + F · (xG

r2 − xG
r3)

Crossover
7: if rand(0, 1) <= CR
8: uG

i = vG
i

9: else
10: uG

i = xG
i

11: end if
Selection: sumEm = 0, sumE = 0

12: Import the predicted stock prices
{

ŷ(m1)
k

}n

k=1
,
{

ŷ(m2)
k

}n

k=1
and the

observed stock prices {Yk}n
k=1

13: for k = 1 to n
14: f m

i (k) = uG
i ŷ(m1)

k + (1 − uG
i )ŷ

(m2)
k

15: f m
i (k) = xG

i ŷ(m1)
k + (1 − xG

i )ŷ
(m2)
k

16: em(k) =
∣∣ f m

i (k)− Y(k)
∣∣ /Y(k)

17: e(k) = | fi(k)− Y(k)| /Y(k)
18: sumEm = sumEm + em(k)
19: sumE = sumE + e(k)
20: end for
21: MAPEm = sumEm × 100/n
22: MAPE = sumE × 100/n
23: if MAPEm < MAPE
24: xG+1

i = uG
i

25: MAPEi = MAPEm
26: else
27: xG+1

i = xG
i

28: MAPEi = MAPE
29: end if
30: end for
31: MAPEmin = min(MAPEi)
32: G = G + 1
33: end while
34: Compute the predicted combination forecast model using the optimal

weight
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5.4.2 Evaluation Metrics

To evaluate the performance of DL techniques and our proposed method,

the statistical criteria, including the mean absolute error (MAE), the mean ab-

solute percentage error (MAPE), and the root mean square percentage error

(RMSPE), are applied in this chapter. The method which provides the smaller

values of MAE, MAPE, and RMSPE (close to zero) is the better forecasting

method. The definition of the evaluation metrics (also called forecast errors)

are as follows [20]:

RMSPE =

√√√√ 1
n

n

∑
t=1

[
yt − ŷt

yt

]2

× 100, (5.4)

here yt is the observed price, ŷt is the predicted price at time t ,and n is the total

number of observation.

To evaluate the amount of error reductions, the percentage improvement

(PI) is presented. This value is defined as follows:

PI =
FEbest − FEc

FEbest
× 100, (5.5)

where FEbest is the best single model in terms of forecast error (MAE, MAPE,

RMSPE) and FEc is the forecast error obtained from the combination method.

5.4.3 Hyperparameter Optimization

Deep learning algorithm has several variables, known as hyperparameter.

It is challenging for the researcher to choose an optimal hyperparameter be-

fore training data. Trial-and-error is one popular technique for choosing the

model’s variables, but it takes a long time. In this work, SHERPA, a Python li-

brary for hyperparameter tuning machine learning models, is applied to select

hyperparameter for each model in each stock [182]. Some articles apply the

SHERPA algorithm for hyperparameter optimization in neural network fields.
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Beucler et al. [183] introduce a systematic way of enforcing nonlinear analytic

constraints in neural networks via constraints in the architecture or the loss

function. They implement the three NN types and use SHERPA for hyperpa-

rameter optimizations in each NN type. Ott et al. [184] introduce a software

library, the Fortran-Keras Bridge (FKB), which is used for computing large-

scale scientific projects and integrated with modern deep learning methods.

SHERPA algorithm is the tool to optimize hyperparameter for each candidate

neural network model. Lu et al. [185] proposed a novel deep sparse autore-

gressive model (SARM) to generate data via a tractable likelihood technique.

The hyperparameter of the SARM model, including a number of hidden lay-

ers structure, the size of the central area for the two-stage approach and the

size of the intermediate upsampling layer, are selected by using the SHERPA

algorithm.

Before applying SHERPA to our model, it is a necessary stage to define the

parameter search space. For the whole experiment, some parameters are set

as follows: the optimizer is stochastic gradient descent (SGD), and the loss

function is MSE. In addition, we added L2 regularization with a coefficient

of 0.1 to penalize weight parameters for solving the overfitting problem. For

the parameter search space used in DL methods, the choice of the activation

function is linear, relu, tanh, softmax, and sigmoid, the choice of batch size is

32,64,128, 256 and 512, and the learning rates are fallen between 0.001 and 0.1.

The hyperparameter search space of the MLP, LSTM and CNN methods for

univariate and multivariate data are shown in Table 5.3.
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Table 5.3: Hyperparameter search space of three deep learning models.

Model Hyperparameter search space values
Name Range Parameter type

MLP Hidden unit1 [32,256] Discrete
Hidden unit1 [32,256] Discrete

CNN Conv1D [10,32,64,128] Choice
kernel size [1,2,3,4,5] Choice

Hidden unit [32,256] Discrete

LSTM
LSTM(layer1) [32,256] Discrete
LSTM(layer2) [32,256] Discrete

5.5 Empirical Results

The experimental results are divided into three sections. The univariate and

multivariate data results are presented in Sections 5.5.1 and 5.5.2, respectively.

The comparison of the predicted closing prices obtained from two different

data types is shown in Section 5.5.3. In all the experiments, the MLP, CNN and

LSTM models were evaluated by running them and observing the plot for the

training and validation loss during training. The model compilation is done

by calling the python fit() function.

5.5.1 Univariate Data

After the hyperparameter search space are set, the optimal hyperparameter

of three stocks obtained from SHERPA algorithm with two delays for univari-

ate time series are represented in Table 5.4.

We then applied the optimal hyperparameter into the training set of each

stock. The sample MLP, CNN and LSTM architectures used in the training sets

of ADBE stock are shown in Figures 5.5 - 5.7. The rest of DL architectures are

displayed in Appendix A.1 - A.9.

As shown in Figure 5.5, the details of the design of each layer and the over-

all architecture of the MLP model are as follows.

For Figure 5.5a, the shape of the input data to the networks input layer is
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Table 5.4: Optimal hyperparameter of three deep learning models on the uni-
variate data.

Model
Optimal hyperparameter

Half-day trading delay (m = 43) One-day trading delay (m = 79)
AAPL ADBE DVN MRNA AAPL ADBE DVN MRNA

MLP
•Hidden unit1 152 46 43 185 186 102 142 194
•Hidden unit2 211 60 67 209 207 193 73 165
•Activation tanh relu tanh relu tanh relu relu relu
•Learning rate 0.001780 0.00390 0.002834 0.002890 0.001185 0.001847 0.004580 0.002876
CNN
•Conv1D 64 64 32 10 128 32 10 32
•Kernel size 4 2 1 1 4 1 3 1
•Hidden unit1 51 49 120 126 115 121 123 112
•Activation tanh relu tanh tanh tanh tanh tanh relu
•Learning rate 0.005496 0.007075 0.006432 0.005296 0.005090 0.009131 0.020399 0.008197
LSTM
•LSTM(layer1) 236 46 251 194 229 161 59 221
•LSTM(layer2) 146 141 205 248 189 160 228 210
•Activation tanh tanh tanh tanh tanh relu tanh relu
•Learning rate 0.001071 0.009802 0.001897 0.001058 0.002735 0.002045 0.002744 0.004583

(a) Half-day trading delay (m = 43) (b) One-day trading delay (m = 79)

Figure 5.5: The architecture of the univariate MLP model on ADBE stock with:
(a) half-day trading delay (m = 43) and (b) one-day trading delay (m = 79)
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(None,43), indicating that the previous 43 observations (i.e., half-day trading

delay) of the time series are used as the input. This architecture consists of

two hidden layers. The first and the second layers have 43 and 67 neurons,

respectively. The 67 nodes at the output produce the predicted closing prices

for the next timestamp. Figure 5.5b is also a univariate model that uses the

previous one-day closing values as the input and yields the forecast for the

next timestamp. The description of the model remains identical to those of the

MLP model. The only change is the number of neurons in each hidden layer.

From figure 5.5b, the number of neurons are 142 and 73 from the first and the

second layers, respectively.

(a) Half-day trading delay (m = 43) (b) One-day trading delay (m = 79)

Figure 5.6: The architecture of the univariate CNN model on ADBE stock with:
(a) half-day trading delay (m = 43) and (b) one-day trading delay (m = 79)
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The details of the CNN architecture of ADBE stock (Figure 5.6) are as fol-

lows. For Figure 5.6a, it indicates that we input only one variable (the closing

price), and the previous 43 closing prices (half-day delay) of stock prices time

series are considered. The CNN model consists of only one convolution layer

that extracts 64 feature maps from the input data with a kernel of size 2. The

output shape of the third layer is (21,64) because the max-pooling layer reduces

the dimension of the data by a factor of 1/2 [186]. Next, a flattening operation

is used for transformation of the max-pooling layer into one-dimension array

(21 × 64 = 1344). After that, the one-dimensional vector is passed through

a dense layer and sent to the final output layer. In a one-day trading delay

as shown in Figure 5.6b, the CNN architecture process is similar to a half-day

trading delay, except the previous one-day closing values (79 observations) are

added to the model. The CNN model consists of only one convolution layer

that extracts 32 feature maps from the input data with a kernel of size 3. After

the max-pooling step, the size of the feature maps to 38 [187]. The output flat-

ten later is (None, 1216) shows that we flatten the output of the convolutional

layers to create a one-dimension vector (38 × 32 = 1216). Next, the number

of neurons in the dense layer is 121. Finally, the closing prices for the next

timestamp are computed using the 121 nodes at the output of the dense layer.

From Figure 5.7a, the shape (43, 1) of the input prices to the network refers

to only one feature, i.e., the closing prices of the previous half-day trading

(m = 43). The first hidden layer of LSTM, having 46 nodes, receives that data

from the input layer [188]. The second hidden layer of LSTM consist of 141

nodes. Then, the 141 nodes are passed on to a dense layer. Finally, the output

layer containing only one node receives the output of the LSTM layer.

After that, we consider the convergence plot of the loss function. The com-

parison of the loss function between the training and the validation set of the

ADBE stock for all three DL models are displayed in Figures 5.8 - 5.10. The rest

of the loss function are presented in Appendix A.10 - A.18.
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(a) Half-day trading delay (m = 43) (b) One-day trading delay (m = 79)

Figure 5.7: The architecture of the univariate LSTM model on ADBE stock
with: (a) half-day trading delay (m = 43) and (b) one-day trading delay
(m = 79)

(a) Half-day trading delay (m = 43) (b) One-day trading delay (m = 79)

Figure 5.8: The convergence plot between the loss function of the training and
validation sets while training the MLP for the univariate ADBE stock

(a) Half-day trading delay (m = 43) (b) One-day trading delay (m = 79)

Figure 5.9: The convergence plot between the loss function of the training and
validation sets while training the CNN for the univariate ADBE stock
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(a) Half-day trading delay (m = 43) (b) One-day trading delay (m = 79)

Figure 5.10: The convergence plot between the loss function of the training and
validation sets while training the LSTM for the univariate ADBE stock

Figures 5.8 - 5.10 show that the training and validation loss decreased and

stabilized around the very near points to each other. That means our model

architecture can be used for future closing price prediction. We then compute

and compare the evaluation metrics between the training and validation sets

for other stocks. The MAE, MAPE and RMSPE obtained from the MLP, CNN

and LSTM models over the training and validation set are shown in Table 5.5.

From Table 5.5, the MAE, MAPE, and RMSPE obtained from the training

and validation sets is almost similar, resulting in further confirmation of no

overfitting. This indicates that the performance of all individual DL models

behaved well on both the training and validation sets and can be applied to

predict out-of-sample data sets.

After receiving the individual forecast obtained from two different delays,

the optimal weights are chosen using the DE algorithm (Algorithm 7). We

then compute the predicted closing prices obtained from our proposed model

and compare them with the individual forecast for each stock. The prediction

models and the evaluation metrics of the test set of the MLP, CNN and LSTM

models are shown in Tables 5.6 - 5.7, respectively.

The comparison performances of the evaluation metrics obtained from dif-

ferent models on case study are illustrated in Figures 5.11 - 5.14.

Table 5.7 and Figures 5.11 - 5.14 display the evaluation metrics obtained

from two individual delays (half-day delay and one-day delay) and two-delay
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Table 5.5: MAE, MAPE, and RMSPE of three deep learning models obtained
over the training set and the validation set

Model Delay Stock Training set Validation set
MAE MAPE RMSPE MAE MAPE RMSPE

MLP

43

AAPL 2.6642 1.2805 1.6115 2.1408 1.2551 1.5481
ADBE 6.9718 1.3692 1.6414 6.2282 1.0016 1.4172
DVN 0.8611 3.6660 4.3484 0.4859 1.1470 1.5396

MRNA 9.3266 5.1559 6.3266 6.9875 2.6181 3.8597

79

AAPL 1.0059 0.7586 1.0121 1.5939 0.9463 1.1987
ADBE 9.6217 1.8748 2.1904 8.3746 1.3695 1.9541
DVN 1.1071 4.6694 5.4514 0.8003 1.8750 2.2757

MRNA 14.9244 7.4049 8.6824 11.4377 4.3190 5.6957

CNN

43

AAPL 1.5561 1.1926 1.5132 2.8286 1.6648 1.9627
ADBE 10.3001 2.0613 2.5233 8.5650 1.0723 1.5543
DVN 1.5597 4.7325 4.8005 0.9850 2.3019 2.5770

MRNA 10.4116 5.8310 7.2900 7.9378 2.9897 4.2478

79

AAPL 2.4175 1.8634 2.3445 3.2890 1.9270 2.3223
ADBE 15.0778 2.9025 3.1997 12.7104 2.0649 2.5963
DVN 2.7887 10.2477 10.6485 2.6076 6.1728 6.4843

MRNA 15.8038 8.9881 11.2649 12.3861 5.6948 8.1689

LSTM

43

AAPL 2.9796 2.3046 2.8790 4.1680 2.4328 2.9260
ADBE 15.2277 3.0024 3.6045 13.1939 2.0407 2.3060
DVN 1.5866 4.6532 5.7066 1.4976 3.5011 3.6627

MRNA 7.5097 4.0692 5.0593 6.4402 2.4090 3.6164

79

AAPL 5.4446 3.4379 4.2511 5.2228 3.0407 3.6875
ADBE 13.5212 2.7037 3.2645 7.8086 1.2880 1.8136
DVN 1.0278 4.3750 5.1417 0.6272 1.4690 1.8185

MRNA 9.0678 5.0472 6.3214 7.2767 2.7381 3.9050

Table 5.6: Predictive model of the two-delay combination model on the uni-
variate stock price

Model Stock Two-delay combination model

MLP
AAPL ŷc = −0.4077ŷ(m=43) + 1.4077ŷ(m=79)
ADBE ŷc = 3.5225ŷ(m=43) − 2.5225ŷ(m=79)
DVN ŷc = 1.3229ŷ(m=43) − 0.3229ŷ(m=79)

MRNA ŷc = 2.6822ŷ(m=43) − 1.6822ŷ(m=79)

CNN
AAPL ŷc = 2.5787ŷ(m=43) − 1.5787ŷm=79)
ADBE ŷc = 3.5091ŷ(m=43) − 2.5091ŷ(m=79)
DVN ŷc = 0.5036ŷ(m=43) + 0.4964ŷ(m=79)

MRNA ŷc = 3.0584ŷ(m=43) − 2.0584ŷ(m=79)

LSTM
AAPL ŷc = 4.6489ŷ(m=43) − 3.6489ŷ(m=79)
ADBE ŷc = 4.8893ŷ(m=43) − 3.8893ŷ(m=79)
DVN ŷc = −1.3912ŷ(m=43) + 2.3912ŷ(m=79)

MRNA ŷc = 4.1401ŷ(m=43) − 3.1401ŷ(m=79)
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Table 5.7: The comparison of the evaluation metrics together with the percent-
age improvement over the best single model of the test set on the univariate
data sets

Model Stock MAE MAPE RMSPE
m = 43 m = 79 Hybrid PI (%) m = 43 m = 79 Hybrid PI (%) m = 43 m = 79 Hybrid PI (%)

MLP

AAPL 2.5407 1.6185 1.5554 3.90 1.4870 0.9571 0.9244 3.42 1.6598 1.2814 1.2455 2.80
ADBE 9.0591 12.6891 5.9506 34.31 1.7588 2.4626 1.1525 34.47 2.0146 2.8099 1.4649 27.29
DVN 0.9195 2.0318 0.6265 31.86 1.8604 4.0847 1.2760 31.41 2.1925 4.3846 1.6902 22.91

MRNA 10.5215 15.3308 3.7782 64.09 5.8211 8.4239 2.1234 63.52 6.4104 9.0157 2.8679 55.26

CNN

AAPL 3.3066 3.7723 1.5325 53.65 1.9348 2.2046 0.9160 52.66 2.1101 2.4343 1.2746 39.59
ADBE 13.1851 17.5634 6.2687 52.46 2.5595 3.4069 1.2141 52.56 2.8093 3.7271 1.5869 43.51
DVN 2.0325 2.8229 0.9443 53.54 4.0995 4.9415 1.3255 67.67 4.3008 5.3660 1.8648 56.64

MRNA 12.3283 19.4479 4.2438 65.58 6.8228 10.7736 2.3195 66.00 7.4497 11.6383 2.9843 59.94

LSTM

AAPL 5.2144 6.5450 1.0964 78.97 3.0424 3.8160 0.6552 78.46 3.2337 4.0515 0.9357 71.06
ADBE 15.2090 17.4345 8.6542 43.10 2.9567 3.3823 1.6891 42.87 3.1786 3.6055 2.0975 34.01
DVN 2.6990 1.6363 0.6634 59.46 5.4421 3.2923 1.3620 58.63 5.5681 3.5132 1.9846 43.51

MRNA 8.7494 10.9644 3.5757 59.13 4.8098 5.9085 1.9157 60.17 5.3198 6.4621 2.4313 54.30

(a) (b) (c)

Figure 5.11: The evaluation metrics of forecasting results obtained from differ-
ent models on AAPL stock: (a) MAE; (b) MAPE; (c) RMSPE

(a) (b) (c)

Figure 5.12: The evaluation metrics of forecasting results obtained from differ-
ent models on ADBE stock: (a) MAE; (b) MAPE; (c) RMSPE

(a) (b) (c)

Figure 5.13: The evaluation metrics of forecasting results obtained from differ-
ent models on DVN stock: (a) MAE; (b) MAPE; (c) RMSPE
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(a) (b) (c)

Figure 5.14: The evaluation metrics of forecasting results obtained from differ-
ent models on MRNA stock: (a) MAE; (b) MAPE; (c) RMSPE

combination forecasting models on four stocks with each deep learning proce-

dure. It found that the combination model between half-day delay and one-

day delay provided the lowest evaluation metrics for all deep learning models

and stocks.

The comparison of the prediction curves between the individual deep learn-

ing model and the combination model and its actual price of four stocks ob-

tained from the MLP, CNN and LSTM models are illustrated in Figures 5.15 -

5.17. respectively.

(a) AAPL stock (b) ADBE stock

(c) DVN stock (d) MRNA stock

Figure 5.15: The forecasting curve for actual data versus the individual and
combination methods on four stock obtained from MLP model.
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(a) AAPL stock (b) ADBE stock

(c) DVN stock (d) MRNA stock

Figure 5.16: The forecasting curve for Actual data versus the individual and
combination methods on four stock obtained from CNN model.

(a) AAPL stock (b) ADBE stock

(c) DVN stock (d) MRNA stock

Figure 5.17: The forecasting curve for Actual data versus the individual and
combination methods on four stock obtained from LSTM model.
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Figures 5.15 - 5.17 present the observed univariate stock prices compared

to the predicted prices obtained from the individual delay and combination

models of deep learning techniques in January 2022. For all Figures, the blue

lines display the actual stock prices, and the green and pink lines represent

the predicted closing prices obtained from half-day and one-day delays, re-

spectively. The red lines show the predicted closing prices obtained from the

two-delay combination models. The predicted stock prices obtained from the

half-day delay, one-day delay and two-delay combination predictive models

show similar stock price patterns to the actual stock prices. It is obviously seen

that our proposed combination model performed better than the individual

forecast for all stocks and deep learning models because our proposed model

provides the lowest evaluation metrics for all stocks. .

5.5.2 Multivariate Data

The optimal hyperparameter of four stocks obtained from SHERPA algo-

rithm with two delays for the multivariate time series are represented in Table

5.8.

Table 5.8: Optimal hyperparameter of three deep learning models on the mul-
tivariate data.

Model
Optimal hyperparameter

Half-day trading delay (m = 43) One-day trading delay (m = 79)
AAPL ADBE DVN MRNA AAPL ADBE DVN MRNA

MLP
•Hidden unit1 42 254 187 225 126 185 234 103
•Hidden unit2 58 148 204 128 161 98 209 247
•Activation tanh tanh tanh tanh tanh tanh tanh tanh
•Learning rate 0.004617 0.006607 0.005925 0.003161 0.001894 0.001717 0.001742 0.003559
CNN
•Conv1D 64 10 32 128 10 32 10 32
•Kernel size 5 3 5 5 1 5 5 2
•Hidden unit1 73 63 33 35 75 102 42 114
•Activation tanh relu relu relu tanh relu relu relu
•Learning rate 0.006220 0.005527 0.006556 0.017122 0.013092 0.005403 0.008067 0.021873
LSTM
•LSTM(layer1) 47 190 181 206 246 181 224 84
•LSTM(layer2) 87 214 69 83 167 245 116 250
•Activation relu tanh relu relu relu relu relu tanh
•Learning rate 0.002249 0.001660 0.003344 0.006018 0.004311 0.003225 0.009433 0.004824
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We then applied the optimal hyperparameter into the training set of each

stock. The sample network architecture of the ADBE stock used in the training

sets with three DL models are shown in Figures 5.18 - 5.20. The rest of the

multivariate DL architectures are presented in Appendix. A.19 - A.27.

(a) Half-day trading delay (m = 43) (b) One-day trading delay (m = 79)

Figure 5.18: The architecture of the multivariate MLP model on ADBE stock
with: (a) half-day trading delay (m = 43) and (b) one-day trading delay (m =
79)

The details of the MLP model for the multivariate data are as follows.

For Figure 5.18a, the shape of the input data to the network’s input layer is

(None,215), indicating that the previous 215 observations (i.e., half-day trad-

ing delay of OHLCV values; 43 × 5 = 215) of the time series are used as the

input. This MLP model architecture consists of two hidden layers. The first

and the second layers have 254 and 148 neurons, respectively. The 148 nodes

at the output produce the predicted closing prices for the next timestamp. In

Figure 5.18b, the shape of the input layer is (None,395) refers to the previous

one-day closing values of OHLCV values (79 × 5 = 395) are used as the input

and yields the forecast for the next timestamp. The details of the MLP model,

as shown in Figure 5.18b are similar with Figure 5.18a. The only change is the

number of neurons in each hidden layer which are 185 and 98 from the first

and the second layers, respectively.
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(a) Half-day trading delay (m = 43) (b) One-day trading delay (m = 79)

Figure 5.19: The architecture of the multivariate CNN model on ADBE stock

The details of the CNN architecture of ADBE stock (Figure 5.19) are as fol-

lows. For half-day trading delay (Figure 5.19a), the first layer is the input layer

which contains the shape (43,5). It indicates that we use the multivariate input,

including the opening, highest, lowest, volume, and closing prices of the previ-

ous 43’s stock price records. The CNN model consists of only one convolution

layer that extracts 10 feature maps from the input data with a kernel of size

3. The output shape of the third layer is (20,10) because the max-pooling layer

reduces the dimension of the data by a factor of 1/2 [186]. Next, a flattening op-

eration is used for transformation of the max-pooling layer into one-dimension

array (20× 10 = 200). After that, the one-dimensional vector is passed through

a dense layer and sent to the final output layer. In a one-day trading delay as

shown in Figure 5.19b, the CNN architecture process is similar to a half-day

trading delay, except the previous one-day OHLCV values (79 observations)

are added to the model. The CNN model consists of only one convolution
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layer that extracts 32 feature maps from the input data with a kernel of size

5. After the max-pooling step, the size of the feature maps to 37 [187]. The

output flatten later is (None, 1184) shows that we flatten the output of the con-

volutional layers to create a one-dimension vector (37 × 32 = 1184). Next, the

number of neurons in the dense layer is 102. Finally, the closing prices for the

next timestamp are computed using the 102 nodes at the output of the dense

layer.

(a) Half-day trading delay (m = 43) (b) One-day trading delay (m = 79)

Figure 5.20: The architecture of the multivariate LSTM model on ADBE stock

From Figure 5.20a, the shape (43, 5) of the input prices to the network refers

to the five attributes of the previous half-day trading (m = 43). The first hidden

layer of LSTM, having 190 nodes, receives that data from the input layer [188].

The second hidden layer of LSTM has 214 nodes. The 214 modes of the LSTM

block are passed on to a dense layer. Finally, the output layer containing only

one node receives the output of the LSTM layer. For one-day delay, the details

of LSTM model architecture from Figure 5.20b are similar to half-delay delay,

except the number of nodes obtained from two LSTM layers are 181 and 245,

respectively.

The sample convergence plot of the loss function obtained from the training

and validation sets of the ADBE stock on the MLP, CNN and LSTM models are
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presented in Figures 5.21 - 5.23. The rest of the convergence plots are revealed

in Appendix A.28 - A.36.

(a) Half-day trading delay (m = 43) (b) One-day trading delay (m = 79)

Figure 5.21: The convergence plot between the loss function of the training and
validation sets while training the MLP for the multivariate ADBE stock

(a) Half-day trading delay (m = 43) (b) One-day trading delay (m = 79)

Figure 5.22: The convergence plot between the loss function of the training and
validation sets while training the CNN for the multivariate ADBE stock

From Figures 5.21 - 5.23, it can be observed that the training and validation

loss decreased and stabilized around the very near points to each other. That

means our model architecture can be used for future closing price prediction.

We then compute and compare the evaluation metrics between the training set

and the validation set for others stocks.

The MAE, MAPE and RMSPE obtained from the MLP, CNN and LSTM

models over the training and validation set are shown in Table 5.9.

From Table 5.9, the MAE, MAPE, and RMSPE obtained from the training

and validation sets are almost similar, resulting in further confirmation of no

overfitting. This indicates that the performance of all individual DL models

behaved well on both the training and validation sets and can be applied to
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(a) Half-day trading delay (m = 43) (b) One-day trading delay (m = 79)

Figure 5.23: The convergence plot between the loss function of the training and
validation sets while training the LSTM for the multivariate ADBE stock

Table 5.9: MAE, MAPE, and RMSPE of three deep learning models obtained
over the training set and the validation set

Model Delay Stock Training set Validation set
MAE MAPE RMSPE MAE MAPE RMSPE

MLP

43

AAPL 1.6292 1.2407 1.4723 1.1946 0.7109 0.8944
ADBE 6.3935 1.2551 1.5151 6.1042 0.9885 1.3823
DVN 0.4260 1.7766 2.1626 0.3346 0.7939 1.1568

MRNA 5.8028 3.0710 3.8759 5.5952 2.0704 3.3281

79

AAPL 0.9398 0.7117 0.9412 1.5616 0.9239 1.1548
ADBE 7.4241 1.4504 1.7446 7.0317 1.1403 1.6815
DVN 0.5800 2.4086 2.9690 0.5370 1.2753 1.7420

MRNA 8.5199 3.8759 4.8572 8.0658 2.9838 4.5557

CNN

43

AAPL 0.7880 0.5870 0.7797 1.7982 1.0672 1.2924
ADBE 6.5078 1.2634 1.4940 5.8432 0.9488 1.41888
DVN 0.5083 2.1211 2.6344 0.5001 1.1825 1.6013

MRNA 7.4046 3.2285 3.8506 5.9755 2.1690 3.6129

79

AAPL 1.7621 1.3512 1.7176 3.0668 1.8026 2.1406
ADBE 13.4431 2.5963 2.9198 10.7105 1.7673 2.4494
DVN 1.7910 7.5129 8.4227 1.1522 6.6814 8.0634

MRNA 11.3233 5.4668 6.4662 10.3681 3.8775 5.4577

LSTM

43

AAPL 2.4918 1.9251 2.3980 4.0215 2.3424 2.8521
ADBE 7.1833 1.4308 1.7594 5.1997 0.8450 1.2648
DVN 1.1940 5.0314 5.7046 0.6037 4.4101 4.7465

MRNA 5.5966 2.8183 3.4791 5.1013 1.8916 3.0501

79

AAPL 5.2895 3.3160 4.0755 5.0073 2.9092 3.5733
ADBE 7.6241 1.5088 1.8197 5.7147 0.9309 1.3635
DVN 0.8806 3.7211 4.3243 0.5029 3.1789 3.5260

MRNA 7.7340 4.2320 5.3137 6.5452 2.4476 3.6660
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predict out-of-sample data sets.

After receiving the individual forecast obtained from two different delays,

the optimal weights are chosen using the DE algorithm (Algorithm 7). We

then compute the predicted closing prices obtained from our proposed model

and compare them with the individual forecast for each stock. The prediction

models and the evaluation metrics of the test set of the MLP, CNN and LSTM

models are shown in Tables 5.10 - 5.11, respectively.

Table 5.10: Predictive model of the two-delay combination model on multi-
variate stock price

Model Stock Two-delay combination model

MLP
AAPL ŷc = 2.3465ŷ(m=43) − 1.3465ŷ(m=79)
ADBE ŷc = 2.6474ŷ(m=43) − 1.6474ŷ(m=79)
DVN ŷc = 1.8037ŷ(m=43) − 0.8037ŷ(m=79)

MRNA ŷc = 2.9039ŷ(m=43) − 1.9039ŷ(m=79)

CNN
AAPL ŷc = 1.9521ŷ(m=43) − 0.9521ŷm=79)
ADBE ŷc = 1.8338ŷ(m=43) − 0.8338ŷ(m=79)
DVN ŷc = 1.2242ŷ(m=43) − 0.2242ŷ(m=79)

MRNA ŷc = 1.8835ŷ(m=43) − 0.8835ŷ(m=79)

LSTM
AAPL ŷc = 4.7755ŷ(m=43) − 3.7755ŷ(m=79)
ADBE ŷc = 4.9444ŷ(m=43) − 3.9444ŷ(m=79)
DVN ŷc = −2.5519ŷ(m=43) + 3.5519ŷ(m=79)

MRNA ŷc = 2.5827ŷ(m=43) − 1.5827ŷ(m=79)

Table 5.11: The comparison of the evaluation metrics together with the per-
centage improvement over the best single model of the test set

Model Stock MAE MAPE RMSPE
m = 43 m = 79 Hybrid PI (%) m = 43 m = 79 Hybrid PI (%) m = 43 m = 79 Hybrid PI (%)

MLP

AAPL 1.2684 1.6373 1.0156 19.93 0.7481 0.9645 0.6045 19.20 1.1953 1.8632 0.7887 34.02
ADBE 7.5393 9.7927 5.2741 30.04 1.4641 1.9023 1.0219 30.20 1.7173 2.2267 1.3089 23.78
DVN 0.5055 0.7669 0.4166 17.59 1.0283 1.5620 0.8525 17.09 1.3940 2.0659 1.1678 16.22

MRNA 6.7714 9.1518 3.4976 48.35 3.7159 5.0079 1.9269 48.14 4.2414 5.6939 2.5957 38.80

CNN

AAPL 1.9610 3.4172 1.1243 42.67 1.1532 1.9987 0.9548 17.20 1.3544 2.2223 0.6717 50.41
ADBE 8.7128 17.1952 4.1346 52.55 1.6913 3.3344 1.0678 36.87 1.9562 3.7015 0.8022 58.99
DVN 1.2684 2.7751 0.8453 33.36 0.7481 1.6195 0.5052 32.47 0.9398 1.8632 0.7281 22.53

MRNA 6.2193 12.2030 3.0463 51.02 3.4024 6.6567 1.6657 51.04 4.0348 7.3771 2.2992 43.01

LSTM

AAPL 5.0608 6.3435 0.8972 82.27 2.9497 3.6952 0.5348 81.87 3.1466 3.9348 0.7657 75.66
ADBE 9.3189 9.8247 7.4119 20.46 1.8091 1.9069 1.4397 20.42 2.0468 2.1542 1.6739 18.22
DVN 2.0491 1.5069 0.4838 67.89 4.1179 3.0311 0.9884 67.39 4.3010 3.2306 1.4101 56.35

MRNA 5.9994 8.5993 2.4369 59.38 3.2743 4.9374 1.3058 60.12 3.7386 5.4732 1.7367 53.55
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The comparison performances of the evaluation metrics obtained from dif-

ferent models on multivariate case study are illustrated in Figures 5.24 - 5.27.

(a) (b) (c)

Figure 5.24: The evaluation metrics of forecasting results obtained from differ-
ent models on multivariate AAPL stock: (a) MAE; (b) MAPE; (c) RMSPE

(a) (b) (c)

Figure 5.25: The evaluation metrics of forecasting results obtained from differ-
ent models on multivariate ADBE stock: (a) MAE; (b) MAPE; (c) RMSPE

(a) (b) (c)

Figure 5.26: The evaluation metrics of forecasting results obtained from differ-
ent models on multivariate DVN stock: (a) MAE; (b) MAPE; (c) RMSPE
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(a) (b) (c)

Figure 5.27: The evaluation metrics of forecasting results obtained from differ-
ent models on multivariate MRNA stock: (a) MAE; (b) MAPE; (c) RMSPE

Table 5.11 and Figures 5.24 - 5.27 reveal the MAE, MAPE, and RMSPE of

two individual delays (half-day delay and one-day delay) and two-delay com-

bination forecasting models of the MLP, CNN and LSTM models. It found that

the combination model between half-day delay and one-day delay provided

the lowest all evaluation metrics for all deep learning models and stocks.

The comparison of the prediction curves between the individual deep learn-

ing model and the combination model and its actual price curve of four stocks

obtained from the MLP, CNN and LSTM model are illustrated in Figures 5.28

- 5.30. respectively.

(a) AAPL stock (b) ADBE stock

(c) DVN stock (d) MRNA stock

Figure 5.28: The forecasting curve of actual data versus the individual and
combination methods on four stocks obtained from MLP model.

129



CHAPTER 5. A TWO-DELAY COMBINATION MODEL FOR STOCK PRICE
PREDICTION

(a) AAPL stock (b) ADBE stock

(c) DVN stock (d) MRNA stock

Figure 5.29: The forecasting curve of actual data versus the individual and
combination methods on four stocks obtained from CNN model.

(a) AAPL stock (b) ADBE stock

(c) DVN stock (d) MRNA stock

Figure 5.30: The forecasting curve of actual data versus the individual and
combination methods on four stocks obtained from LSTM model.
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Figures 5.28 - 5.30 present the observed closing prices compared to the

predicted prices obtained from the individual deep learning and combination

models in January 2022. For all Figures, the blue lines display the actual stock

prices, and the green and pink lines represent the predicted closing prices ob-

tained from half-day and one-day delays deep learning models, respectively.

The red lines show the predicted closing prices obtained from the two-delay

combination models. The predicted stock prices obtained from all models

show similar stock price patterns to the actual stock prices. Our proposed

combination model performed better than the individual forecast because our

proposed model provides the lowest evaluation metrics for all stocks and deep

learning models.

Based on the experimental results with the forecast error criteria on test-

ing data, we notice that our proposed model attained higher performance and

better convergence for closing price forecasting. This demonstrates that the

two-delay combination approach has obtained an excellent predictive perfor-

mance for all stocks and deep learning models.

5.5.3 Forecasting Evaluation Based on Diebold-Mariano (DM)

Test

We apply the DM test to test whether the two forecasts have significantly dif-

ferent accuracy. In all cases the null hypothesis (H0) is forecasts from Method i

and j are equally accurate. Here i = 1, 2, . . . , 36, j = 1, 2, . . . , 36, and i ̸= j. The

results obtained from the DM test on the univarite and multivariate data are

displayed in Tables 5.12 - 5.13.

As shown from Tables 5.12 - 5.13, the p-value for all cases less than 5%

level of significance. The null hypothesis is rejected at the 5% level of signif-

icance. That is to say, the forecasts obtained from method i, j where i ̸= j are

not equally accurate. The positive test statistic refers to the model i forecast

producing a larger average loss than the model j forecast. Hence, model j is
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Table 5.12: The DM test for univariate data

Stock Method H0 Test Statistics p-value Result

AAPL

MLP
m43 = m79 29.604 0.000 Sign of mean loss is + : m79 outperform m43

m43 = c 22.216 0.000 Sign of mean loss is + : c outperform m43
m79 = c 2.013 0.044 Sign of mean loss is + : c outperform m79

CNN
m43 = m79 -25.112 0.000 Sign of mean loss is - : m43 outperform m79

m43 = c 31.734 0.000 Sign of mean loss is + :c outperform m43
m79 = c 32.093 0.000 Sign of mean loss is + : c outperform m79

LSTM
m43 = m79 -60.058 0.000 Sign of mean loss is - : m43 outperform m79

m43 = c 57.345 0.000 Sign of mean loss is + : c outperform m43
m79 = c 59.310 0.000 Sign of mean loss is + : c outperform m79

ADBE

MLP
m43 = m79 -40.421 0.000 Sign of mean loss is - : m43 outperform m79

m43 = c 14.202 0.000 Sign of mean loss is + : c outperform m43
m79 = c 27.918 0.000 Sign of mean loss is + : c outperform m79

CNN
m43 = m79 -45.379 0.000 Sign of mean loss is - : m43 outperform m79

m43 = c 30.234 0.000 Sign of mean loss is + : c outperform m43
m79 = c 39.229 0.000 Sign of mean loss is + : c outperform m79

LSTM
m43 = m79 -44.280 0.000 Sign of mean loss is - : m43 outperform m79

m43 = c 37.878 0.000 Sign of mean loss is + : c outperform m43
m79 = c 43.172 0.000 Sign of mean loss is + : c outperform m79

DVN

MLP
m43 = m79 -52.527 0.000 Sign of mean loss is - : m43 outperform m79

m43 = c -606.223 0.000 Sign of mean loss is + : c outperform m43
m79 = c -606.226 0.000 Sign of mean loss is + : c outperform m79

CNN
m43 = m79 -11.215 0.000 Sign of mean loss is - : m43 outperform m79

m43 = c 42.169 0.000 Sign of mean loss is + : c outperform m43
m79 = c 54.142 0.000 Sign of mean loss is + : c outperform m79

LSTM
m43 = m79 119.726 0.000 Sign of mean loss is + : m79 outperform m43

m43 = c 63.487 0.000 Sign of mean loss is + : c outperform m43
m79 = c 30.645 0.000 Sign of mean loss is + : c outperform m79

MRNA

MLP
m43 = m79 -65.264 0.000 Sign of mean loss is - : m43 outperform m79

m43 = c 50.846 0.000 Sign of mean loss is + : c outperform m43
m79 = c 60.466 0.000 Sign of mean loss is + : c outperform m79

CNN
m43 = m79 -70.327 0.000 Sign of mean loss is - : m43 outperform m79

m43 = c 43.483 0.000 Sign of mean loss is + : c outperform m43
m79 = c 62.498 0.000 Sign of mean loss is + : c outperform m79

LSTM
m43 = m79 -66.440 0.000 Sign of mean loss is - : m43 outperform m79

m43 = c 49.163 0.000 Sign of mean loss is + : c outperform m43
m79 = c 55.626 0.000 Sign of mean loss is + : c outperform m79
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Table 5.13: The DM test for multivariate data

Stock Method H0 Test Statistics p-value Result

AAPL

MLP
m43 = m79 -22.803 0.000 Sign of mean loss is - : m43 outperform m79

m43 = c 12.522 0.000 Sign of mean loss is + : c outperform m43
m79 = c 18.755 0.000 Sign of mean loss is + : c outperform m79

CNN
m43 = m79 -41.486 0.000 Sign of mean loss is - : m43 outperform m79

m43 = c 23.672 0.000 Sign of mean loss is + :c outperform m43
m79 = c 37.357 0.000 Sign of mean loss is + : c outperform m79

LSTM
m43 = m79 -57.759 0.000 Sign of mean loss is - : m43 outperform m79

m43 = c 57.643 0.000 Sign of mean loss is + : c outperform m43
m79 = c 58.423 0.000 Sign of mean loss is + : c outperform m79

ADBE

MLP
m43 = m79 -32.921 0.000 Sign of mean loss is - : m43 outperform m79

m43 = c 17.324 0.000 Sign of mean loss is + : c outperform m43
m79 = c 25.564 0.000 Sign of mean loss is + : c outperform m79

CNN
m43 = m79 -51.181 0.000 Sign of mean loss is - : m43 outperform m79

m43 = c 28.871 0.000 Sign of mean loss is + : c outperform m43
m79 = c 45.713 0.000 Sign of mean loss is + : c outperform m79

LSTM
m43 = m79 -35.150 0.000 Sign of mean loss is - : m43 outperform m79

m43 = c 32.060 0.000 Sign of mean loss is + : c outperform m43
m79 = c 32.855 0.000 Sign of mean loss is + : c outperform m79

DVN

MLP
m43 = m79 -20.767 0.000 Sign of mean loss is - : m43 outperform m79

m43 = c 11.182 0.000 Sign of mean loss is + : c outperform m43
m79 = c 18.367 0.000 Sign of mean loss is + : c outperform m79

CNN
m43 = m79 -77.882 0.000 Sign of mean loss is - : m43 outperform m79

m43 = c 17.812 0.000 Sign of mean loss is + : c outperform m43
m79 = c 71.399 0.000 Sign of mean loss is + : c outperform m79

LSTM
m43 = m79 70.510 0.000 Sign of mean loss is + : m79 outperform m43

m43 = c 54.830 0.000 Sign of mean loss is + : c outperform m43
m79 = c 43.022 0.000 Sign of mean loss is + : c outperform m79

MRNA

MLP
m43 = m79 -40.947 0.000 Sign of mean loss is - : m43 outperform m79

m43 = c 27.975 0.000 Sign of mean loss is + : c outperform m43
m79 = c 35.560 0.000 Sign of mean loss is + : c outperform m79

CNN
m43 = m79 -55.323 0.000 Sign of mean loss is - : m43 outperform m79

m43 = c 27.203 0.000 Sign of mean loss is + : c outperform m43
m79 = c 47.237 0.000 Sign of mean loss is + : c outperform m79

LSTM
m43 = m79 -57.936 0.000 Sign of mean loss is - : m43 outperform m79

m43 = c 38.807 0.000 Sign of mean loss is + : c outperform m43
m79 = c 49.231 0.000 Sign of mean loss is + : c outperform m79
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better than that model i. On the other hand, the negative test statistic indi-

cates that the model j forecast produces a larger average loss than the model i

forecast. Hence, model i is better than that model j. It can be seen that the two-

delay combination method outperforms the individual forecast for all stocks

and deep learning techniques.

5.5.4 Analysis of Prediction Results

In this section, we compare the accuracy results of the different models on

univariate and multivariate features. In addition, we also compare the eval-

uation metrics (MAE, MAPE, RMSPE) between the univariate and the mul-

tivariate time series obtained from the MLP, CNN and LSTM models. The

comparison results are depicted in Figures 5.31 - 5.33. respectively.

Figures 5.31 - 5.33 show that the forecast errors obtained from the univariate

time series provide higher results than the forecast errors obtained from the

multivariate data for all stocks and DL models in terms of MAE, MAPE and

RMSPE values.

The previous section shows that the two-delay combination procedure out-

performs the individual method. We then compare the forecast prices obtained

from the two-delay combination method on the univariate and multivariate

data. Finally, the time series plot of the actual prices and their forecast obser-

vations through the proposed combination scheme for all four stocks and three

DL methods are displayed in Figures 5.34 - 5.36.
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(a) Half-day delay

(b) One-day delay

(c) Combination

Figure 5.31: Bar diagram showing the performance of all forecast errors ob-
tained from the MLP model on the univariate and multivariate stock price
time series.
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(a) Half-day delay

(b) One-day delay

(c) Combination

Figure 5.32: Bar diagram showing the performance of all forecast errors ob-
tained from the CNN model on the univariate and multivariate stock price
time series.
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(a) Half-day delay

(b) One-day delay

(c) Combination

Figure 5.33: Bar diagram showing the performance of all forecast errors ob-
tained from the LSTM model on the univariate and multivariate stock price
time series.
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(a) AAPL stock (b) ADBE stock

(c) DVN stock (d) MRNA stock

Figure 5.34: Diagrams of actual and combination forecast prices of the MLP
method for the time series:(a) AAPL stock, (b) ADBE stock, (c) DVN stock,
and (d) MRNA stock

(a) AAPL stock (b) ADBE stock

(c) DVN stock (d) MRNA stock

Figure 5.35: Diagrams of actual and combination forecast prices of the CNN
method for the time series:(a) AAPL stock, (b) ADBE stock, (c) DVN stock,
and (d) MRNA stock
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(a) AAPL stock (b) ADBE stock

(c) DVN stock (d) MRNA stock

Figure 5.36: Diagrams of actual and combination forecast prices of the LSTM
method for the time series:(a) AAPL stock, (b) ADBE stock, (c) DVN stock, and
(d) MRNA stock

As shown from Figures 5.34 - 5.36, we have learnt that multivariate data

have a superior predictive capacity compared to univariate data. The fore-

casting performance under the multivariate time series input condition is im-

proved compared with the forecasting performance under the univariate input

condition.

5.6 Conclusion

This chapter proposed a novel two-delay combination procedure to im-

prove the predictive accuracy for the univariate and multivariate time series.

The data used in this chapter are collected from the Thomson Reuters database

every 5 minutes between January 2021 and January 2022. In our framework,

before applying the intraday financial data to the traditional deep learning

model, we divided data into three sets, namely training, validation, and test

sets. We then scale data between 0 and 1 using the Min-Max normalization
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technique. This procedure improves the performance and training stability of

the model. The traditional deep learning (DL) methods used in this chapter are

the MLP, CNN, and LSTM procedures. Each DL technique is applied to four

stocks, namely Apple Inc. (AAPL), Adobe Inc. (ADBE), Devon Energy Corpo-

ration (DVN), and Moderna Inc. (MRNA) stocks, using a half-day delay and

one-day delay of each DL model. Next, the SHERPA algorithm is utilized to

seek the hyperparameter for the DL techniques. The essential step to confirm

that our model architecture can predict the following prices is to examine the

over/underfitting problem by comparing the loss function between the train-

ing and validation sets. After that, the individual delay is integrated using the

linear combination technique.

Next, the differential evolution algorithm (DE) is presented to estimate the

optimal weight of each combination technique. Then the MAE, MAPE, RM-

SPE, and percentage improvement are computed to compare the performance

between the individual and the combination procedures. The experimental re-

sults indicate that the two-day combination technique using the DE algorithm

is more effective than the single technique in terms of the evaluation metrics.

Our proposed approach via DE weight identification improves predictive ac-

curacy for the univariate and multivariate time series by up to 78.97% and

82.27%, respectively. The Diebold-Mariano tests show that the forecasts in all

pairwise comparisons are not equally accurate. This confirms that the two-

delay combination method is outstanding in the other methods. In addition,

the proposed technique gives a beneficial advantage in improving the accuracy

of each DL technique by using different delays to forecast stock prices. That

means applying several DL methods in the combination technique is unneces-

sary. Based on the general idea of the combination forecast model, it requires

at least two different approaches to build the forecast combination. Under our

proposed technique, using only one method with two different delays can re-

duce the evaluation metrics. Consequently, the two-delay combination model
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is a potential method with satisfactory prediction performance. Finally, the

multivariate analysis enables building more accurate forecasting models than

univariate analysis for all stocks and DL models.
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Chapter 6

Conclusions and Future Work

This dissertation considered various topics related to delay in the time se-

ries analysis, namely the delay in the classical autoregressive model, the delay

in the stochastic differential equation and the two-delay combination method

using the deep learning technique. The proposed methods for solving these

problems are described in Chapters 3-5. In the following content, the results

and the contribution of the dissertation are summarized.

6.1 Conclusions

Chapter 3, we proposed a novel autoregressive model called the m-delay

autoregressive (MAR) model. This model is an extraordinary case of the tradi-

tional autoregressive model. The predicted observations depend on only the

previous data at time t − 1 and t − m, respectively. The least squares approach

is developed to estimate two model parameters of the m-delay autoregressive

model. Our parameter identification is named the m-delay autoregressive co-

efficients. For Monte Carlo simulations, the effectiveness of the m-delay for-

mula is examined. It indicates that for the small and medium delay, the sample

size over 300 provides good results of approximating the average of the two

model parameters. For the larger delay, the average of two model parameters
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approaches the actual ones when the sample size is about 500.

Furthermore, the brute-force algorithm is applied to seek the optimal delay.

For the case study, the average minimum temperature in Perth, Western Aus-

tralia, from January 1994 to June 2019, a totally of 306 observations are utilized.

The experimental results obtained from the MAR model and the classical AR

model demonstrated no significant differences between the two models. In

addition, the MAR model reduces computing time in the prediction step be-

cause our proposed model requires only two parameters, while m parameters

are mandatory for the general AR model. Accordingly, the MAR model is ef-

fective for predicting time series data.

The matching volatility obtained from the stochastic delay differential equa-

tion (SDDE) and the real-world stock is presented in Chapter 4. The parameter

of the drift term (λ) and the volatility (σ) are two parameters in this model.

The model identification is divided into two cases: one unknown parameter

(λ) and two unknown parameters (λ, σ). For one parameter estimation, the

drift term (λ) parameter is unknown, while the volatility (σ) is given. The

m-delay autoregressive coefficient (ARC) algorithm is proposed to estimate

the parameter (λ). Next, we compute the estimated volatility from the Monte

Carlo simulations and compare it with the actual volatility. The data used in

this chapter are the closing prices recorded every 5 minutes and 15 minutes

from the Thomson Reuters database in 2008 total of 19,750 and 6,750, respec-

tively. We selected some of the top stocks in the New York Stock Exchange

(NYSE), including the International Business Machines Corporation (IBM), the

Microsoft Corporation (MSFT), the Standard and Poor’s 500 (S&P 500) and the

Standard and Poor’s 100 (S&P 100). The numerical results indicated that the

estimated volatility using the ARC algorithm follows a similar pattern to the

actual volatility for all stocks. Using a larger delay can improve the perfor-

mance of the matching volatility because the estimated volatility is close to the

actual volatility. For two model identification, the differential evolution (DE)
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algorithm is utilized to estimate two model parameters, namely the parame-

ter of the drift term (λ) and the volatility (σ) of the SDDE. Empirical findings

show that the estimated volatility for all stocks with two different sampling

frequencies fits the actual volatility when the delay is large.

The deep learning (DL) techniques for stock price prediction are presented

in Chapter 5. The two-delay combination technique using DE weighted opti-

mization algorithm is proposed to reduce the forecast error obtained from the

individual DL method. The data used in this chapter are the univariate and

multivariate stock price time series. For univariate data, only the closing price

is an input variable. In contrast, five inputs for the multivariate data set are

the opening price, the highest price, the lowest price, the closing price, and

the trading volume (OHLCV). We selected four big companies’ stocks on the

New York Stock Exchange (NYSE), which operates on a weekday between 9.30

am. and 4.00 pm., including Apple Inc. (AAPL), Adobe Inc. (ADBE), Devon

Energy Corporation (DVN), and Moderna, Inc. (MRNA) stocks. The historical

financial data series were divided into three sets, namely training, validation

and test sets. For each stock, 19,829 data points from January to December

2021 were used for training and validating the deep learning models. 83 %

(January - October 2021) were used for training (learning parameters), and the

remaining 17 % (November - December 2021) to validate the performance of

the network and avoid overfitting. The remaining one months (January 2022)

were used to evaluate the model performance.

The results of four real-world stock price time series and three traditional

DL methods indicate that the two-delay combination model using DE weight

optimization is more effective than the single DL technique for the univariate

and multivariate data. One benefit of our proposed technique is that apply-

ing several DL methods in a data set is unnecessary because our approach

combines different delays on each data set. In contrast, the classical combina-

tion method combines various individual techniques. Moreover, our proposed
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technique provides improving the accuracy of each DL. Finally, using multi-

variate data enable us to build more accurate forecasting models than univari-

ate data for all stocks and DL models.

6.2 Future Work

The future works can be consider the following three extensions based on

different delay project.

Firstly, the historical data have been applied to each chapter to evaluate

our proposed models. The missing data is one of the possible problems for the

real-world data set. This thesis uses the spline interpolation technique to fill

any missing value. It would be interesting to replace missing data with other

promising methods such as mean imputation, autoregressive-model-based,

genetic algorithm, maximum likelihood (EM) based method, and maximum

likelihood method. Changing the method for handling the missing data might

affect the experimental results.

Secondly, adding more delay of the SDDE in Chapter 4 might be a concern

to increase the accuracy of the matching process

Thirdly, the data used in Chapter 4 and Chapter 5 are 5-minute time inter-

val. A much more interesting is the investigation of the time window. Higher

frequency (e.g. 1-min, 30-sec) would probably boost the model accuracy.

Finally, in Chapter 5, we applied only a supervised deep learning model to

predict closing prices. However, there are several deep learning methods to

predict future observation, including semi-supervised and unsupervised deep

learning approaches. For the combination technique, we can combine multi-

ple delays of each DL model. Furthermore, we focus on only the linear com-

bination forecast technique. The non-linear combination method is another

interesting technique to increase the accuracy of the DL model.
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Appendix A

List of Abbreviations & Figures

The following list is neither exhaustive nor exclusive, but may be helpful.

AAPL Apple Inc.

ADBE Adobe Inc.

AI Artificial Intelligence

ANN Artificial Neural Network

AR Autoregressive

ARC Autoregressive Coefficients Algorithm

ARCH Autoregressive Conditional Heteroskedastic

ARIMA Autoregressive Integrated Moving Average

ARMA Autoregressive Moving Average

CNN Convolutional Neural Network

CNN-LSTM Convolutional Neural Network and Long Short-Term Memory

DE Differential Evolution
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DL Deep Learning

DVN Devon Energy Corporation

GARCH Generalized Autoregressive Conditional Heteroskedastic

IBM International Business Machines Corporation

JPM JP Morgan Chase & Co

LSTM Long Short-Term Memory

MAR m-Delay AR Model

MAPE Mean Absolute Percentage Error

MdAE Median Absolute Error

MdAPE Median Absolute Percentage Error

ML Machine Learning

MLP Multilayer Perceptrons

MRNA Moderna Inc

MSE Mean Square Error

MSFT Microsoft Corporation

NN Neural Network

NYSE New York Stock Exchange

RMSE Root Mean Square Error

RMSPE Root Mean Square Percentage Error

RNN Recurrent Neural Network

SDE Stochastic Differential Equation
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SDDE Stochastic Delay Differential Equation

S&P 500 Standard and Poor’s 500

S&P 100 Standard and Poor’s 100
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(a) Half-day trading delay (m = 43) (b) One-day trading delay (m = 79)

Figure A.1: The architecture of univariate MLP model on AAPL stock with: (a)
half-day trading delay (m = 43) and (b) one-day trading delay (m = 79)

(a) Half-day trading delay (m = 43) (b) One-day trading delay (m = 79)

Figure A.2: The architecture of univariate MLP model on DVN stock with: (a)
half-day trading delay (m = 43) and (b) one-day trading delay (m = 79)
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(a) Half-day trading delay (m = 43) (b) One-day trading delay (m = 79)

Figure A.3: The architecture of univariate MLP model on MRNA stock with:
(a) half-day trading delay (m = 43) and (b) one-day trading delay (m = 79)

(a) Half-day trading delay (m = 43) (b) One-day trading delay (m = 79)

Figure A.4: The architecture of univariate CNN model on AAPL stock with:
(a) half-day trading delay (m = 43) and (b) one-day trading delay (m = 79)
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(a) Half-day trading delay (m = 43) (b) One-day trading delay (m = 79)

Figure A.5: The architecture of univariate CNN model on DVN stock with: (a)
half-day trading delay (m = 43) and (b) one-day trading delay (m = 79)
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(a) Half-day trading delay (m = 43) (b) One-day trading delay (m = 79)

Figure A.6: The architecture of univariate CNN model on MRNA stock with:
(a) half-day trading delay (m = 43) and (b) one-day trading delay (m = 79)

(a) Half-day trading delay (m = 43) (b) One-day trading delay (m = 79)

Figure A.7: The architecture of univariate LSTM model on AAPL stock with:
(a) half-day trading delay (m = 43) and (b) one-day trading delay (m = 79)
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(a) Half-day trading delay (m = 43) (b) One-day trading delay (m = 79)

Figure A.8: The architecture of univariate LSTM model on DVN stock with: (a)
half-day trading delay (m = 43) and (b) one-day trading delay (m = 79)

(a) Half-day trading delay (m = 43) (b) One-day trading delay (m = 79)

Figure A.9: The architecture of univariate LSTM model on MRNA stock with:
(a) half-day trading delay (m = 43) and (b) one-day trading delay (m = 79)

156



APPENDIX A. LIST OF ABBREVIATIONS & FIGURES

(a) Half-day trading delay (m = 43) (b) One-day trading delay (m = 79)

Figure A.10: The convergence plot between the loss function of the training
and validation sets while training the MLP for the univariate AAPL stock

(a) Half-day trading delay (m = 43) (b) One-day trading delay (m = 79)

Figure A.11: The convergence plot between the loss function of the training
and validation sets while training the MLP for the univariate DVN stock

(a) Half-day trading delay (m = 43) (b) One-day trading delay (m = 79)

Figure A.12: The convergence plot between the loss function of the training
and validation sets while training the MLP for the univariate MRNA stock
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(a) Half-day trading delay (m = 43) (b) One-day trading delay (m = 79)

Figure A.13: The convergence plot between the loss function of the training
and validation sets while training the CNN for the univariate AAPL stock

(a) Half-day trading delay (m = 43) (b) One-day trading delay (m = 79)

Figure A.14: The convergence plot between the loss function of the training
and validation sets while training the CNN for the univariate DVN stock

(a) Half-day trading delay (m = 43) (b) One-day trading delay (m = 79)

Figure A.15: The convergence plot between the loss function of the training
and validation sets while training the CNN for the univariate MRNA stock
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(a) Half-day trading delay (m = 43) (b) One-day trading delay (m = 79)

Figure A.16: The convergence plot between the loss function of the training
and validation sets while training the LSTM for the univariate AAPL stock

(a) Half-day trading delay (m = 43) (b) One-day trading delay (m = 79)

Figure A.17: The convergence plot between the loss function of the training
and validation sets while training the LSTM for the univariate DVN stock

(a) Half-day trading delay (m = 43) (b) One-day trading delay (m = 79)

Figure A.18: The convergence plot between the loss function of the training
and validation sets while training the LSTM for the univariate MRNA stock
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(a) Half-day trading delay (m = 43) (b) One-day trading delay (m = 79)

Figure A.19: The architecture of multivariate MLP model on AAPL stock with:
(a) half-day trading delay (m = 43) and (b) one-day trading delay (m = 79)

(a) Half-day trading delay (m = 43) (b) One-day trading delay (m = 79)

Figure A.20: The architecture of multivariate MLP model on DVN stock with:
(a) half-day trading delay (m = 43) and (b) one-day trading delay (m = 79)
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(a) Half-day trading delay (m = 43) (b) One-day trading delay (m = 79)

Figure A.21: The architecture of multivariate MLP model on MRNA stock
with: (a) half-day trading delay (m = 43) and (b) one-day trading delay
(m = 79)

(a) Half-day trading delay (m = 43) (b) One-day trading delay (m = 79)

Figure A.22: The architecture of multivariate CNN model on AAPL stock with:
(a) half-day trading delay (m = 43) and (b) one-day trading delay (m = 79)
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(a) Half-day trading delay (m = 43) (b) One-day trading delay (m = 79)

Figure A.23: The architecture of multivariate CNN model on DVN stock with:
(a) half-day trading delay (m = 43) and (b) one-day trading delay (m = 79)
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(a) Half-day trading delay (m = 43) (b) One-day trading delay (m = 79)

Figure A.24: The architecture of multivariate CNN model on MRNA stock
with: (a) half-day trading delay (m = 43) and (b) one-day trading delay (m =
79)

(a) Half-day trading delay (m = 43) (b) One-day trading delay (m = 79)

Figure A.25: The architecture of multivariate LSTM model on AAPL stock
with: (a) half-day trading delay (m = 43) and (b) one-day trading delay
(m = 79)
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(a) Half-day trading delay (m = 43) (b) One-day trading delay (m = 79)

Figure A.26: The architecture of multivariate LSTM model on DVN stock with:
(a) half-day trading delay (m = 43) and (b) one-day trading delay (m = 79)

(a) Half-day trading delay (m = 43) (b) One-day trading delay (m = 79)

Figure A.27: The architecture of multivariate LSTM model on MRNA stock
with: (a) half-day trading delay (m = 43) and (b) one-day trading delay (m =
79)
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(a) Half-day trading delay (m = 43) (b) One-day trading delay (m = 79)

Figure A.28: The convergence plot between the loss function of the training
and validation sets while training the MLP for the multivariate AAPL stock

(a) Half-day trading delay (m = 43) (b) One-day trading delay (m = 79)

Figure A.29: The convergence plot between the loss function of the training
and validation sets while training the MLP for the multivariate DVN stock

(a) Half-day trading delay (m = 43) (b) One-day trading delay (m = 79)

Figure A.30: The convergence plot between the loss function of the training
and validation sets while training the MLP for the multivariate MRNA stock
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(a) Half-day trading delay (m = 43) (b) One-day trading delay (m = 79)

Figure A.31: The convergence plot between the loss function of the training
and validation sets while training the CNN for the multivariate AAPL stock

(a) Half-day trading delay (m = 43) (b) One-day trading delay (m = 79)

Figure A.32: The convergence plot between the loss function of the training
and validation sets while training the CNN for the multivariate DVN stock

(a) Half-day trading delay (m = 43) (b) One-day trading delay (m = 79)

Figure A.33: The convergence plot between the loss function of the training
and validation sets while training the CNN for the multivariate MRNA stock
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(a) Half-day trading delay (m = 43) (b) One-day trading delay (m = 79)

Figure A.34: The convergence plot between the loss function of the training
and validation sets while training the LSTM for the multivariate AAPL stock

(a) Half-day trading delay (m = 43) (b) One-day trading delay (m = 79)

Figure A.35: The convergence plot between the loss function of the training
and validation sets while training the LSTM for the multivariate DVN stock

(a) Half-day trading delay (m = 43) (b) One-day trading delay (m = 79)

Figure A.36: The convergence plot between the loss function of the training
and validation sets while training the LSTM for the multivariate MRNA stock
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