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Abstract. We study the problem of minimizing the sum of two functions.
The first function is the average of a large number of nonconvex component

functions and the second function is a convex (possibly nonsmooth) function

that admits a simple proximal mapping. With a diagonal Barzilai-Borwein
stepsize for updating the metric, we propose a variable metric proximal sto-

chastic variance reduced gradient method in the mini-batch setting, named
VM-SVRG. It is proved that VM-SVRG converges sublinearly to a stationary
point in expectation. We further suggest a variant of VM-SVRG to achieve

linear convergence rate in expectation for nonconvex problems satisfying the

proximal Polyak- Lojasiewicz inequality. The complexity of VM-SVRG is lower
than that of the proximal gradient method and proximal stochastic gradient

method, and is the same as the proximal stochastic variance reduced gradient
method. Numerical experiments are conducted on standard data sets. Com-
parisons with other advanced proximal stochastic gradient methods show the

efficiency of the proposed method.
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1. Introduction. We are interested in the composite minimization problem

min
w∈Rd

P (w) = F (w) +R(w), where F (w) =
1

n

n∑
i=1

fi(w), (1)

and each component function fi(w) : Rd → R, i = 1, 2, . . . , n, is smooth and
nonconvex, while R(w) : Rd → R ∪ {+∞} is a relatively simple convex function
but can be nondifferential (referred to as a regularization term). Problems of the
form (1) often arise in machine learning [3, 8, 29, 32] and statistics [10], known as
regularized empirical risk minimization (ERM).

The proximal gradient descent (Prox-GD) method [19, 22] is popular for solving
composite problems. As a generalization of Prox-GD, the variable metric proximal
gradient (VM-PG) method [2, 21, 23] can achieve better performance with a proper
metric. However, Prox-GD or VM-PG requires to compute the exact full gradient in
each iteration, which is computationally prohibitive in the case where n is extremely
large. One remedy is the proximal stochastic gradient descent (Prox-SGD) method,
which is a variant of stochastic gradient descent (SGD) method that could be dated
back to the seminal work of Robbins and Monro [27]. Specifically, in the k-th
iteration, Prox-SGD chooses ik ∈ {1, 2, . . . , n} uniformly at random and updates
the iterate by

wk+1 = arg min
w∈Rd

{
∇fik(wk)Tw +

1

2ηk
‖w − wk‖22 +R(w)

}
, (2)

where ∇fik(wk) denotes the gradient of the ik-th component function fik at wk and
ηk > 0 is the stepsize (a.k.a. learning rate). Given the scaled proximal operator of
R relative to the metric A [23]:

proxAR(w) = arg min
y∈Rd

{1

2
‖y − w‖2A +R(y)

}
,

where A ∈ Rd×d++ is positive definite and ‖z‖A =
√
zTAz, the update rule of Prox-

SGD in (2) can be equivalently written as

wk+1 = prox
η−1
k Id
R

(
wk − ηk∇fik(wk)

)
, (3)

in which Id ∈ Rd×d is the identity matrix. When R(w) = 0, relation (3) becomes
the update rule of standard SGD method.

From (2) we see that, at each iteration, Prox-SGD only computes the gradient of
a single component function, and thus its computational cost is roughly 1/n of that
of Prox-GD. Since the random sampling yields a large variance of the stochastic
gradient, Prox-SGD only converges sublinearly under strong convexity. Motivated
by several prevalent variance-reduced stochastic gradient methods such as stochas-
tic average gradient (SAG) [28], stochastic variance reduced gradient (SVRG) [12],
incremental gradient (SAGA) [6], semi-stochastic gradient descent (S2GD) [15], and
stochastic recursive gradient (SARAH) [20], many researchers have devoted atten-
tion to how to use variance reduction techniques to improve the convergence rate
of Prox-SGD. For example, proximal stochastic variance reduction gradient (Prox-
SVRG) [34], a mini-batch proximal variant of S2GD (mS2GD) [14] and variance
reduced stochastic gradient descent (VR-SGD) [29] achieve linear convergence for
the nonsmooth strongly convex or non-strongly convex case. Recently, as the pop-
ularization of deep learning, the nonconvex nonsmooth problem (1) has triggered
off intensive research work. To mention a few of them, Reddi et al. [26] developed
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nonconvex variants of Prox-SVRG and Prox-SAGA, and established their linear
convergence under the proximal Polyak- Lojasiewicz (PL) inequality [13]. Li and
Li [17] suggested a variant of Prox-SVRG, called Prox-SVRG+, which converges
sublinearly to a stationary point and achieves linear rate without restart when the
objective function satisfies the PL inequality. A proximal variant of SARAH that
converges sublinearly in the nonconvex case has been proposed by Pham et al. [24].

It is well known that the choice of stepsizes has an important influence on SGD
both theoretically and numerically [3]. The classical SGD and its proximal variants
often employ a diminishing stepsize, or a fixed stepsize tuned by hand. However,
these two types of stepsize rules may be time-consuming in practice. In recent years,
using the Barzilai-Borwein (BB) method [1] to compute the stepsize has attracted
more and more attention in developing efficient SGD methods [18, 30, 35, 36]. For
example, Tan et al. [30] suggested to employ the BB method to automatically
compute stepsizes for SGD and SVRG, and developed the SGD-BB and SVRG-
BB methods. Yu et al. [35] combined the trust-region scheme and BB stepsizes
with SARAH for solving nonsmooth convex composite problems. A remarkable
advantage of the stepsize given by the BB method is that it estimates a scalar ap-
proximation of the Hessian and is not sensitive to the choice of initial stepsizes,
see [5, 7, 11] and references therein for more details about BB-like methods. How-
ever, the research on incorporating BB stepsizes with proximal stochastic gradient
methods in the nonconvex nonsmooth case is far less than in the convex case.

Motivated by the success of the marriage of BB stepsizes and SGD in the convex
case, we propose a variable metric proximal stochastic variance reduced gradient
method in the mini-batch setting, named VM-SVRG, for solving the nonconvex
nonsmooth problem (1). The method employs a diagonal BB stepsize, which is
the closed-form solution of a constrained optimization problem and can easily be
calculated. Moreover, in each iteration our VM-SVRG method has the same com-
putational cost on gradients as Prox-SVRG. It is proved that VM-SVRG converges
sublinearly to a stationary point in expectation. By employing the proximal Polyak-
 Lojasiewicz (PL) inequality [13, 26], a variant of the VM-SVRG method achieves
linear convergence rate in expectation. In addition, the complexity of VM-SVRG
is lower than that of Prox-GD and Prox-SGD, and is the same as Prox-SVRG.
Numerical experiments on standard data sets including ijcnn1, rcv1, real-sim and
covtype show that our proposed VM-SVRG performs better than some advanced
mini-batch proximal stochastic gradient methods and their variants including Prox-
SVRG, mS2GD, mS2GD-BB, mSARAH (a mini-batch proximal variant of SARAH
in [20]), and mSARAH-BB (a mini-batch proximal variant of SARAH-BB in the
literature [18]).

The rest of this paper is organized as follows. In Section 2 we propose our VM-
SVRG method. In Section 3 we analyze the convergence and complexity of VM-
SVRG under different conditions. Numerical experiments are reported in Section
4. Finally, we draw some conclusions in Section 5.

2. The VM-SVRG method. Notice that Prox-SVRG updates the stochastic
gradient as follows

vkt =
∇fit(wkt )−∇fit(w̃k)

qitn
+∇F (w̃k),

where it ∈ {1, 2, . . . , n} is chosen randomly according to Ω. Such a stochastic gradi-
ent provides an unbiased estimate of the full gradient ∇F (wkt ). A great advantage
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of vkt is that its variance is much smaller than that of the stochastic gradient used
by Prox-SGD. Moreover, the variance of vkt will gradually converge to zero. Con-
sequently, Prox-SVRG with a constant stepsize achieves linear convergence rate as
oppose to a sublinear rate of Prox-SGD.

Our VM-SVRG method, presented in Algorithm 1, calculates the stochastic gra-
dient in a mini-batch form of vkt used by Prox-SVRG. We mention that vkt in VM-
SVRG is also an unbiased estimate of the full gradient ∇F (wkt ). In fact, conditioned
on wkt , we take expectation with respect to It and obtain

E[vkt ] =

n∑
i=1

∇fi(wkt )−∇fi(w̃k)

qin
· qi +∇F (w̃k)

= ∇F (wkt )−∇F (w̃k) +∇F (w̃k)

= ∇F (wkt ),

where the second equality follows from the fact ∇F (wkt ) = 1
n

∑n
i=1∇fi(wkt ).

Algorithm 1 VM-SVRG(w0,m, b, U0)

Input: Maximal number of inner iterations m, initial point w̃0 = w0 ∈ Rd, initial
metric U0, mini-batch size b ∈ {1, 2, . . . , n}, probability Ω = {q1, q2, . . . , qn};

1: for k = 0, 1, . . . ,K − 1 do
2: Calculate ṽk = ∇F (w̃k).
3: Set wk0 = w̃k.
4: Choose tk ∈ {1, 2, . . . ,m} uniformly at random.
5: for t = 0, 1, . . . , tk − 1 do
6: Choose mini-batch It ⊆ {1, 2, . . . , n} of size b, where each i ∈ It is chosen

from {1, 2, . . . , n} randomly according to Ω. Compute

vkt =
1

b

∑
i∈It

[
1

qin
(∇fi(wkt )−∇fi(w̃k))

]
+ ṽk. (4)

7: Compute wkt+1 = prox
U−1

k

R (wkt − Ukvkt ).
8: end for
9: Set w̃k+1 = wktk .

10: Compute Uk from (6).
11: end for
Output: Iterate wa chosen uniformly at random from {{wkt }

tk−1
t=0 }

K−1
k=0 .

Clearly, when Uk = αkId with αk being a scalar stepsize, our VM-SVRG method
reduces to mS2GD for qi = 1/n, i = 1, . . . , n, and to Prox-SVRG if we set b = 1
and tk = m. Furthermore, if Uk is an approximation of the inverse Hessian, VM-
SVRG transforms to a stochastic proximal quasi-Newton method, see [31, 33]. As

suggested in [25, 31], wa is chosen uniformly at random from {{wkt }
tk−1
t=0 }

K−1
k=0 , which

can use all the information from both the outer and inner loops.
Notice that the quasi-Newton method captures the second-order information by

requiring Uk to satisfy the secant equation sk = Ukyk or Uksk = yk, where sk =
w̃k−w̃k−1, yk = ∇F (w̃k)−∇F (w̃k−1). The first secant equation approximates Uk to
the inverse Hessian while the second one approximates it to the Hessian. However,
computing a full dense approximation matrix Uk may be extremely expensive in
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large-scale setting. Motivated by the diagonal approximation strategy in [23, 37],
we suggest to compute Uk as follows

min
u∈Rd

‖sk − Uyk‖22 + ω‖U − Uk−1‖2F

s.t. αkId � U � αkId,
U = Diag(u),

(5)

where ω > 0, ‖ · ‖F is the Frobenius norm and 0 < αk ≤ αk are two stepsizes given
by users. In [37], for the convex case of (1), problem (5) is employed to update the
metric for a stochastic recursive gradient method and provide very promising results.
Apparently, problem (5) provides a solution Uk satisfying the secant equation sk =
Ukyk in the sense of least squares and ω controls the closeness to the previous metric
Uk−1. This is different from the one in [23], which constructs Uk by using the secant
equation Uksk = yk, i.e., replacing the objective in (5) with ‖sk − Uyk‖22 + ω‖U −
Uk−1‖2F .

An important advantage of problem (5) is that it has a closed-form solution

Uk = Diag(uk) ∈ Rd×d with uk = [u
(1)
k , u

(2)
k , . . . , u

(d)
k ], where

u
(i)
k =



αk, if
s
(i)
k y

(i)
k +ωu

(i)
k−1(

y
(i)
k

)2
+ω

< αk;

αk, if
s
(i)
k y

(i)
k +ωu

(i)
k−1(

y
(i)
k

)2
+ω

> αk;

s
(i)
k y

(i)
k +ωu

(i)
k−1(

y
(i)
k

)2
+ω

, otherwise.

(6)

Here s
(i)
k and y

(i)
k are the i-th elements of sk and yk, respectively.

For αk and αk, we would like to employ αDk = ‖sk‖2
‖yk‖2 in [4] and αBBk =

sTk sk
sTk yk

in

[1], which have been applied in SGD methods, see [30, 35, 36] for example. To avoid
negative values of the stepsize and consider unbiased gradient estimators added to
wk0 in the inner loop, we use the following two variants

αk =
2b

m
· ‖sk‖2
‖yk‖2

and

αk =
2b

m
· s

T
k sk
|sTk yk|

.

Clearly, both αk and αk are nonnegative and αk ≤ αk always holds due to the
Cauchy-Schwarz inequality. To chop extreme values of αk and αk, we project them

into some interval [α, α] so that u
(i)
k (i = 1, . . . , n) will be bounded for all k.

3. Convergence analysis. In our subsequent analysis, we make the following two
common assumptions.

Assumption 1. The function R(w) : Rd → R∪{+∞} is proper closed and convex,
but can be nondifferentiable.

Assumption 2. Each component function fi(w) : Rd → R, for i = 1, 2, . . . , n, is
Li-smooth. That is, there exists Li > 0 such that

‖∇fi(w)−∇fi(υ)‖2 ≤ Li‖w − υ‖2, ∀w, υ ∈ Rd.
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Denoting L = 1
n

∑n
i=1 Li, by Assumption 2, we conclude that F (w) = 1

n

∑n
i=1 fi(w)

is L-smooth and LΩ ≥ L, where

LΩ = max
i=1,2,...,n

Li
nqi

.

We need the notations umax
k and umin

k as

umax
k = max

j=1,2...,d

{
u

(j)
k

}
and umin

k = min
j=1,2...,d

{
u

(j)
k

}
. (7)

3.1. Sublinear convergence. In this subsection, we establish sublinear conver-
gence of VM-SVRG. We first present some intermediate results.

Lemma 3.1. (Lemma 8 [37]) Consider P (w) defined in (1). Suppose Assumptions

1 and 2 hold. Let w′ = proxA
−1

R (w − Aζ), where A ∈ Sd×d++ is a symmetric positive

definite matrix and ζ ∈ Rd. Then,

P (w′) ≤ P (z) + (w′ − z)T (∇F (w)− ζ) +
1

2
‖w′ − w‖2(LΩId−A−1)

+
1

2
‖z − w‖2(LΩId+A−1) −

1

2
‖w′ − z‖2A−1 , ∀z ∈ Rd.

Now we derive an upper bound on variance of vkt in the following lemma.

Lemma 3.2. Let Assumptions 1 and 2 be satisfied, and choose b ∈ {1, 2, . . . , n}.
Then,

E[‖vkt −∇F (wkt )‖22] ≤ L2
Ω

b
‖wkt − w̃k‖22.

Proof. Let It = {i1, . . . , ib} and define

ϕkt =
1

b

b∑
j=1

ϕkt,ij , where ϕkt,i =
∇fi(wkt )−∇fi(w̃k)

qin
.

Following from the fact F (w) = 1
n

∑n
i=1 fi(w), we have

E[ϕkt ] = E
[1

b

b∑
j=1

ϕkt,ij

]
= ∇F (wkt )−∇F (w̃k). (8)

Therefore,

E[‖vkt −∇F (wkt )‖22] = E[‖ϕkt +∇F (w̃k)−∇F (wkt )‖22]

= E[‖ϕkt − E[ϕkt ]‖22]

=
1

b2
E

[∥∥∥∥∥
b∑
j=1

(ϕkt,ij − E[ϕkt,ij ])

∥∥∥∥∥
2

2

]

=
1

b2

b∑
j=1

E[‖ϕkt,ij − E[ϕkt,ij ]‖22]

≤ 1

b2

b∑
j=1

E

[∥∥∥∥∥∇fij (wkt )−∇fij (w̃k)

qijn

∥∥∥∥∥
2

2

]

≤ 1

b2

b∑
j=1

E

[
L2
ij

q2
ij
n2
‖wkt − w̃k‖22

]
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≤ L2
Ω

b
‖wkt − w̃k‖22,

where the second and third equalities hold due to (8), and the fourth equality
follows from the fact E[‖z1 + . . .+ zr‖22] = E[‖z1‖22 + . . .+‖zr‖22], in which z1, . . . , zr
are independent random variables with mean 0 and the first inequality comes from
E[‖z − E[z]‖22] ≤ E[‖z‖22], the second inequality employs the Li-smoothness of fi,
and the last inequality is due to LΩ ≥ Li/(nqi) for i = 1, 2, . . . , n.

Lemma 3.3. Let cktk = 0 and ckt = ckt+1(1 + β) + umax
k L2

Ω/(2b) with β = b/n and

m = bn/bc for k = 0, . . . ,K. Assume that b ≤ n2/3 and 0 < umax
k ≤ b3/2/(3LΩn).

Then, the following inequality holds(
ckt+1

(
1 +

1

β

)
+
LΩ

2

)
Id �

1

2
U−1
k . (9)

Proof. By the definition of ckt , recursing on t, it is easy to obtain

ckt =
umax
k L2

Ω

2b

(1 + β)tk−t − 1

β

≤ LΩ

6b1/2

[(
1 +

b

n

)tk−t
− 1

]
≤ LΩ

6b1/2

[(
1 +

b

n

)bn/bc
− 1

]
≤ LΩ(e− 1)

6b1/2
,

where the first inequality holds due to umax
k ≤ b3/2/(3LΩn) and β = b/n, and the

second inequality follows from tk ≤ m = bn/bc. In the last inequality we use the
fact that (i) liml→+∞(1 + 1/l)l = e; and (ii) (1 + 1/l)l is an increasing function for
l > 0 (here e is Euler’s number). It follows that

ckt+1(1 + 1/β) +
LΩ

2
≤ LΩ(e− 1)

6b1/2

(
1 +

n

b

)
+
LΩ

2

≤ LΩn(e− 1)

3b3/2
+
LΩ

2

=
3LΩn

2b3/2

[2(e− 1)

9
+
b3/2

3n

]
≤ 3LΩn

2b3/2

(4

9
+

1

3

)
≤ 3LΩn

2b3/2
≤ 1

2umax
k

,

where the second inequality follows from n/b ≥ 1, the third one is due to n ≥ b3/2

and e < 3, and the last inequality holds because umax
k ≤ b3/2/(3LΩn). Since

0 ≺ Uk � umax
k Id, we have

[ckt+1(1 + 1/β) +
LΩ

2
]Id �

1

2umax
k

Id �
1

2
U−1
k .

This completes the proof.

Since the objective function is nonconvex and nonsmooth, we can not use the
optimality gap P (w)−P (w∗) as for the convex case or the gradient norm ‖∇F (w)‖2
as for the smooth case [8, 16, 25] to measure the convergence procedure. A popular
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alternative measure is the gradient mapping [9, 26]. Here, we define the following
generalized gradient mapping:

GA−1(w) = A−1
(
w − proxA

−1

R

(
w −A∇F (w)

))
, (10)

where A is a symmetric positive definite matrix. Clearly, GA−1(w) reduces to∇F (w)
when R(w) ≡ 0. From [33], we know that GA−1(w) = 0 if and only if w is a solution
of problem (1).

Theorem 3.4. Suppose Assumptions 1 and 2 hold, and b ≤ n2/3. Let 0 < umax
k ≤

b3/2/(3LΩn) and m = bn/bc. Then, for the output wa of Algorithm 1, after T
iterations, we have sublinear convergence in expectation

E
[
‖GU−1

k
(wa)‖2Uk

]
≤ 6(P (w̃0)− P (w∗))

T
,

where T =
∑K−1
k=0 tk and w∗ is an optimal solution of problem (1).

Proof. Recalling that the iterates of the proximal full gradient are computed by

w̄kt+1 = prox
U−1

k

R (wkt − Uk∇F (wkt )), (11)

which is not actually computed in our VM-SVRG method. Applying Lemma 3.1
to the above relation (with w′ = w̄kt+1, w = z = wkt , A = Uk and ζ = ∇F (wkt )), we
take expectation and obtain

E[P (w̄kt+1)] ≤ E
[
P (wkt ) + ‖w̄kt+1 − wkt ‖2( LΩ

2 Id−U−1
k )

]
. (12)

Notice that the iterates of VM-SVRG in the inner loop are computed by

wkt+1 = prox
U−1

k

R (wkt − Ukvkt ). (13)

Again applying Lemma 3.1 to (13) (with w′ = wkt+1, z = w̄kt+1, w = wkt , A = Uk
and ζ = vkt ), we take expectation and have

E[P (wkt+1)]

≤ E
[
P (w̄kt+1) +

1

2
‖w̄kt+1 − wkt ‖2(LΩId+U−1

k )
+

1

2
‖wkt+1 − wkt ‖2(LΩId−U−1

k )

− 1

2
‖wkt+1 − w̄kt+1‖2U−1

k

+ (wkt+1 − w̄kt+1)T (∇F (wkt )− vkt )
]
. (14)

Summing up (12) and (14) yields

E[P (wkt+1)] ≤ E
[
P (wkt ) + ‖w̄kt+1 − wkt ‖2(LΩId− 1

2U
−1
k )

+
1

2
‖wkt+1 − wkt ‖2(LΩId−U−1

k )

− 1

2
‖wkt+1 − w̄kt+1‖2U−1

k

+ (wkt+1 − w̄kt+1)T (∇F (wkt )− vkt )
]
. (15)

Let Γkt = (wkt+1 − w̄kt+1)T (∇F (wkt ) − vkt ). Then the expectation on Γkt can be
bounded above by

E[Γkt ] ≤ 1

2
E
[
‖wkt+1 − w̄kt+1‖2U−1

k

]
+

1

2
E
[
‖∇F (wkt )− vkt ‖2Uk

]
≤ 1

2
E
[
‖wkt+1 − w̄kt+1‖2U−1

k

]
+
umax
k L2

Ω

2b
E
[
‖wkt − w̃k‖22

]
, (16)
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where the first inequality follows from the Cauchy-Schwarz and the Young’s in-
equalities, and the second inequality uses the definition of umax

k and Lemma 3.2.
Substituting (16) into (15) yields that

E[P (wkt+1)] ≤ E
[
P (wkt ) + ‖w̄kt+1 − wkt ‖2(LΩId− 1

2U
−1
k )

+
1

2
‖wkt+1 − wkt ‖2(LΩId−U−1

k )
+
umax
k L2

Ω

2b
‖wkt − w̃k‖22

]
. (17)

In order to further analyze (17), we set up the following auxiliary function:

Υk
t = E[P (wkt ) + ckt ‖wkt − w̃k‖22],

where ckt is defined in Lemma 3.3. Then Υk
t+1 can be bounded by

Υk
t+1

= E[P (wkt+1) + ckt+1‖wkt+1 − w̃k‖22]

= E[P (wkt+1) + ckt+1‖wkt+1 − wkt + wkt − w̃k‖22]

= E[P (wkt+1) + ckt+1(‖wkt+1 − wkt ‖22 + ‖wkt − w̃k‖22 + 2(wkt+1 − wkt )T (wkt − w̃k))]

≤ E[P (wkt+1) + ckt+1(1 + 1/β)‖wkt+1 − wkt ‖22 + ckt+1(1 + β)‖wkt − w̃k‖22]

≤ E
[
P (wkt ) + ‖w̄kt+1 − wkt ‖2(LΩId− 1

2U
−1
k )

+ ‖wkt+1 − wkt ‖2(ckt+1(1+1/β)Id+
LΩ
2 Id− 1

2U
−1
k )

+

(
ckt+1(1 + β) +

umax
k L2

Ω

2b

)
‖wkt − w̃k‖22

]
≤ E

[
P (wkt ) + ‖w̄kt+1 − wkt ‖2(LΩId− 1

2U
−1
k )

+

(
ckt+1(1 + β) +

umax
k L2

Ω

2b

)
‖wkt − w̃k‖22

]
= Υk

t + E
[
‖w̄kt+1 − wkt ‖2(LΩId− 1

2U
−1
k )

]
, (18)

where in the first inequality we use the Cauchy-Schwarz and the Young’s inequal-
ities, the second inequality follows from (17), and the last inequality holds due to
(9).

Summing (18) over t = 0, 1, . . . , tk − 1 yields that

Υk
tk
≤ Υk

0 +

tk−1∑
t=0

E
[
‖w̄kt+1 − wkt ‖2(LΩId− 1

2U
−1
k )

]
. (19)

The facts cktk = 0 and w̃k+1 = wktk indicate that

Υk
tk

= E[P (wktk)] = E[P (w̃k+1)].

Note that Υk
0 = E[P (wk0 )] = E[P (w̃k)] holds by the fact wk0 = w̃k. It follows from

(19) that

E[P (w̃k+1)] ≤ E[P (w̃k)] +

tk−1∑
t=0

E
[
‖w̄kt+1 − wkt ‖2(LΩId− 1

2U
−1
k )

]
. (20)

Summing (20) over k = 0, . . . ,K − 1 and rearranging terms, it is easy to obtain

K−1∑
k=0

tk−1∑
t=0

E
[
‖w̄kt+1 − wkt ‖2( 1

2U
−1
k −LΩId)

]
≤ P (w̃0)− P (w̃K) ≤ P (w̃0)− P (w∗), (21)

where the second inequality holds since P (w̃k) ≥ P (w∗) for all k ∈ {0, 1, . . . ,K}.
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Applying (10) with A = Uk and w = wkt , and by (11), we have

GU−1
k

(wkt ) = U−1
k

(
wkt − prox

U−1
k

R

(
wkt − Uk∇F (wkt )

))
= U−1

k

(
wkt − w̄kt+1

)
.

Since 0 < umax
k ≤ b3/2/(3LΩn) and b ≤ n2/3, it follows that

0 ≺ Uk � umax
k Id � 1/(3LΩ)Id.

Therefore,

‖w̄kt+1 − wkt ‖2( 1
2U

−1
k −LΩId)

= ‖UkGU−1
k

(wkt )‖2
( 1

2U
−1
k −LΩId)

= GU−1
k

(wkt )TUTk (
1

2
U−1
k − LΩId)UkGU−1

k
(wkt )

≥ GU−1
k

(wkt )TUTk (
1

6
U−1
k )UkGU−1

k
(wkt )

=
1

6

∥∥GU−1
k

(wkt )
∥∥2

Uk
.

Combining the above inequality with (21) yields that

K−1∑
k=0

tk−1∑
t=0

1

6
E
[∥∥GU−1

k
(wkt )

∥∥2

Uk

]
≤ P (w̃0)− P (w∗).

Since the output wa is uniformly chosen from {{wkt }
tk−1
t=0 }

K−1
k=0 and T =

∑K−1
k=0 tk,

we obtain

E
[
‖GU−1

k
(wa)‖2Uk

]
=

1

T

K−1∑
k=0

tk−1∑
t=0

∥∥GU−1
k

(wkt )
∥∥2

Uk
≤ 6(P (w̃0)− P (w∗))

T
,

which completes the proof.

3.2. Linear convergence under proximal Polyak- Lojasiewicz inequality.
To achieve the desired linear convergence, we assume that P (w) is a nonconvex
function satisfying the proximal Polyak- Lojasiewicz (proximal-PL) inequality [13,
31], i.e., there exits a constant γ > 0 such that

1

2
DR(w,∇F (w), Id, L) ≥ γ(P (w)− P (w∗)), (22)

where DR(w, g,B, α) is given by

DR(w, g,B, α) = −2α min
y∈Rd

{
gT (y − w) +

α

2
‖y − w‖2B +R(y)−R(w)

}
with α > 0, g ∈ Rd, and B ∈ Sd×d++ .

It has been shown that the operator DR(w, g,B, α) is nondecreasing in α for
fixed w, g and B, see [31] for example. Here we recall the monotonic result in the
following lemma.

Lemma 3.5. (Lemma 2.3 [31]) For differentiable function F and convex function
R, we have

DR(w, g,B, δ2) ≥ DR(w, g,B, δ1), ∀ δ2 ≥ δ1 > 0,

where w, g and B ∈ Sd×d++ are fixed.

Our linearly convergent method PL-VM-SVRG is presented in Algorithm 2,
where VM-SVRG is employed as a subroutine.

Using the same arguments as the one in Lemma 3.3, we get the next lemma.
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Algorithm 2 PL-VM-SVRG(w0,m, b, U0)

Input: Number of inner iterations m, initial point w̃0 = w0 ∈ Rd, initial metric
U0, mini-batch size b ∈ {1, 2, . . . , n};

1: for s = 0, 1, . . . , S − 1 do
2: ws+1 = VM-SVRG(ws,m, b, U0).
3: end for

Output: wS .

Lemma 3.6. Let c̃km = 0 and c̃kt = c̃kt+1(1+β)+L2
Ω/(2bθ) with m = bn/bc, β = b/n

and θ = LΩn/b
3/2 for k = 0, . . . ,K. Assume that 0 < umax

k ≤ b3/2/(6LΩn) and

b ≤ n2/3. Then, the following inequality holds(
c̃kt+1

(
1 +

1

β

)
+
θ

2
+
LΩ

2

)
Id �

1

2
U−1
k . (23)

Theorem 3.7. Suppose Assumptions 1 and 2 hold, and 0 < umax
k ≤ b3/2/(6LΩn).

Let m = bn/bc, b ≤ n2/3, β = b/n, θ = LΩn/b
3/2 and T = Km. Further assume

the proximal-PL inequality (22) holds with the parameter γ > 0. Then, we have

E
[
DR
(
wa,∇F (wa), Id,

1

α

)]
≤ 2

αT
E[P (w0)− P (w∗)].

Proof. It follows from the L-smoothness of F (w) and the fact L ≤ LΩ that

F (wkt+1)

≤ F (wkt ) +∇F (wkt )T (wkt+1 − wkt ) +
LΩ

2
‖wkt+1 − wkt ‖22

= F (wkt ) + (vkt )T (wkt+1 − wkt ) +
LΩ

2
‖wkt+1 − wkt ‖22 +R(wkt+1)−R(wkt )

+ (∇F (wkt )− vkt )T (wkt+1 − wkt ) +R(wkt )−R(wkt+1)

= F (wkt ) + (vkt )T (wkt+1 − wkt ) +
1

2
‖wkt+1 − wkt ‖2U−1

k

+R(wkt+1)−R(wkt )

+
LΩ

2
‖wkt+1 − wkt ‖22 −

1

2
‖wkt+1 − wkt ‖2U−1

k

+ (∇F (wkt )− vkt )T (wkt+1 − wkt ) +R(wkt )−R(wkt+1)

= F (wkt ) + min
y∈Rd

{
(vkt )T (y − wkt ) +

1

2
‖y − wkt ‖2U−1

k

+R(y)−R(wkt )
}

+
LΩ

2
‖wkt+1 − wkt ‖22 −

1

2
‖wkt+1 − wkt ‖2U−1

k

+ (∇F (wkt )− vkt )T (wkt+1 − wkt ) +R(wkt )−R(wkt+1),

where the last equality follows from the definition of wkt+1 in VM-SVRG.

By shifting the term R(wkt+1) to the left side and using the definition of P (w),
we have

P (wk
t+1) ≤ P (wk

t ) + min
y∈Rd

{
(vkt )

T (y − wk
t ) +

1

2
‖y − wk

t ‖2U−1
k

+R(y)−R(wk
t )
}

+
LΩ

2
‖wk

t+1 − wk
t ‖22 −

1

2
‖wk

t+1 − wk
t ‖2U−1

k
+ (∇F (wk

t )− vkt )T (wk
t+1 − wk

t )

≤ P (wk
t ) + min

y∈Rd

{
(vkt )

T (y − wk
t ) +

1

2
‖y − wk

t ‖2U−1
k

+R(y)−R(wk
t )
}
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+
LΩ

2
‖wk

t+1 − wk
t ‖22 −

1

2
‖wk

t+1 − wk
t ‖2U−1

k

+
1

2θ
‖∇F (wk

t )− vkt ‖22 +
θ

2
‖wk

t+1 − wk
t ‖22

= P (wk
t ) + min

y∈Rd

{
(vkt )

T (y − wk
t ) +

1

2
‖y − wk

t ‖2U−1
k

+R(y)−R(wk
t )
}

+

(
LΩ

2
+
θ

2

)
‖wk

t+1 − wk
t ‖22 −

1

2
‖wk

t+1 − wk
t ‖2U−1

k
+

1

2θ
‖∇F (wk

t )− vkt ‖22,

(24)

where the second inequality follows from the Cauchy-Schwarz and the Young’s in-
equalities. By noting E[vkt ] = ∇F (wkt ) and using the definition of DR, we take
expectation on both sides of (24) conditioned on wkt and obtain

E[P (wkt+1)] ≤ E[P (wkt )]− 1

2
DR(wkt ,∇F (wkt ), U−1

k , 1) +

(
θ

2
+
LΩ

2

)
E[‖wkt+1 − wkt ‖22]

− 1

2
E[‖wkt+1 − wkt ‖2U−1

k

] +
1

2θ
E[‖∇F (wkt )− vkt ‖22]

≤ E[P (wkt )]− 1

2
DR(wkt ,∇F (wkt ), U−1

k , 1) +

(
θ

2
+
LΩ

2

)
E[‖wkt+1 − wkt ‖22]

− 1

2
E[‖wkt+1 − wkt ‖2U−1

k

] +
L2

Ω

2bθ
‖wkt − w̃k‖22, (25)

where the last inequality follows from Lemma 3.2.
In order to analyze the convergence rate of PL-VM-SVRG, we consider the fol-

lowing auxiliary function

Ψk
t = E[P (wkt ) + c̃kt ‖wkt − w̃k‖22],

where c̃kt is defined in Lemma 3.6. Then we can derive an upper bound on Ψk
t+1 as

follows.

Ψk
t+1

= E[P (wkt+1) + c̃kt+1‖wkt+1 − w̃k‖22]

= E[P (wkt+1) + c̃kt+1(‖wkt+1 − wkt ‖22 + ‖wkt − w̃k‖22 + 2(wkt+1 − wkt )T (wkt − w̃k))]

≤ E[P (wkt+1) + c̃kt+1(1 + 1/β)‖wkt+1 − wkt ‖22 + c̃kt+1(1 + β)‖wkt − w̃k‖22]

≤ E
[
P (wkt ) +

(
c̃kt+1(1 + β) +

L2
Ω

2bθ

)
‖wkt − w̃k‖22

]
− 1

2
DR(wkt ,∇F (wkt ), U−1

k , 1)

+

(
θ

2
+
LΩ

2
+ c̃kt+1(1 + 1/β)

)
E[‖wkt+1 − wkt ‖22]− 1

2
E[‖wkt+1 − wkt ‖2U−1

k

]

= Ψk
t −

1

2
DR(wkt ,∇F (wkt ), U−1

k , 1)

+

(
θ

2
+
LΩ

2
+ c̃kt+1(1 + 1/β)

)
E[‖wkt+1 − wkt ‖22]− 1

2
E[‖wkt+1 − wkt ‖2U−1

k

]

≤ Ψk
t −

1

2
DR(wkt ,∇F (wkt ), U−1

k , 1), (26)

where the first inequality is due to the Cauchy-Schwarz and the Young’s inequali-
ties, the second inequality follows from (25), the last inequality holds because the
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sequence of c̃kt satisfies (23) while the last equality uses the definition of Ψk
t . Rear-

ranging terms of (26) yields

DR(wkt ,∇F (wkt ), U−1
k , 1) ≤ 2(Ψk

t −Ψk
t+1). (27)

Summing (27) over t = 0, 1, . . . ,m− 1, we get

m−1∑
t=0

DR(wkt ,∇F (wkt ), U−1
k , 1) ≤ 2(Ψk

0 −Ψk
m). (28)

Since c̃km = 0, from the definition of w̃k+1 in VM-SVRG, we have Ψk
m = E[P (wkm)] =

E[P (w̃k+1)]. Recall that wk0 = w̃k, we get Ψk
0 = E[P (wk0 )] = E[P (w̃k)]. Therefore,

it follows from (28) that

m−1∑
t=0

DR(wkt ,∇F (wkt ), U−1
k , 1) ≤ 2E[P (w̃k)− P (w̃k+1)]. (29)

Summing up (29) for k = 0, 1, . . . ,K − 1, and multiplying both sides with 1
T , we

have

1

T

K−1∑
k=0

m−1∑
t=0

DR(wkt ,∇F (wkt ), U−1
k , 1) ≤ 2

T
E[P (w̃0)− P (w̃K)]. (30)

By umin
k Id � Uk � umax

k Id, we have ‖y − wkt ‖2U−1
k

≤ 1
umin
k

‖y − wkt ‖22 for any y ∈ Rd.
Then,

∇F (wkt )T (y − wkt ) +
1

2
‖y − wkt ‖2U−1

k

+R(y)−R(wkt )

≤ ∇F (wkt )T (y − wkt ) +
1

2umin
k

‖y − wkt ‖22 +R(y)−R(wkt )

≤ ∇F (wkt )T (y − wkt ) +
1

2α
‖y − wkt ‖22 +R(y)−R(wkt ),

where the last inequality is due to umin
k ≥ α. Note that if f1(y) ≤ f2(y) for all y,

then miny f1(y) ≤ miny f2(y). Consequently,

min
y∈Rd

{
∇F (wkt )T (y − wkt ) +

1

2
‖y − wkt ‖2U−1

k

+R(y)−R(wkt )
}

≤ min
y∈Rd

{
∇F (wkt )T (y − wkt ) +

1

2α
‖y − wkt ‖22 +R(y)−R(wkt )

}
.

It follows from the definition of DR(wkt ,∇F (wkt ), U−1
k , 1) that

DR(wkt ,∇F (wkt ), U−1
k , 1)

≥ − 2 min
y∈Rd

{
∇F (wkt )T (y − wkt ) +

1

2α
‖y − wkt ‖22 +R(y)−R(wkt )

}
= αDR

(
wkt ,∇F (wkt ), Id,

1

α

)
. (31)

Combining (30) and (31) yields that

α

T

K−1∑
k=0

m−1∑
t=0

DR
(
wkt ,∇F (wkt ), Id,

1

α

)

≤ 1

T

K−1∑
k=0

m−1∑
t=0

DR(wkt ,∇F (wkt ), U−1
k , 1)
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≤ 2

T
E[P (w̃0)− P (w̃K)].

Since the output wa of VM-SVRG is uniformly chose from {{wkt }m−1
t=0 }

K−1
k=0 , we have

E
[
DR
(
wa,∇F (wa), Id,

1

α

)]
=

1

T

K−1∑
k=0

m−1∑
t=0

DR
(
wkt ,∇F (wkt ), Id,

1

α

)
≤ 2

αT
E[P (w̃0)− P (w̃K)]

≤ 2

αT
E[P (w0)− P (w∗)], (32)

where the last inequality follows from the fact that P (w) ≥ P (w∗) for any w ∈ Rd
and w0 = w̃0.

Notice that both Theorems 3.4 and 3.7 show the sublinear convergence of VM-
SVRG. However, Theorem 3.7 employs a different measure which is useful in estab-
lishing the linear convergence of PL-VM-SVRG.

Theorem 3.8. Under the same conditions as Theorem 3.7, and set T = d2/(γα)e,
then we have linear convergence in expectation

E[P (wS)− P (w∗)] ≤ (2−S)(P (w0)− P (w∗)).

Proof. Recalling that in each iteration of PL-VM-SVRG ws is the input of VM-
SVRG while ws+1 is the output. By replacing w0 and wa in (32) with ws and ws+1,
respectively, we obtain

E
[
DR
(
ws+1,∇F (ws+1), Id,

1

α

)]
≤ 2

αT
E[P (ws)− P (w∗)]. (33)

Since umax
k ≤ b3/2/(6LΩn) and n ≥ b3/2, we have umax

k ≤ 1/(6LΩ) < 1/LΩ, which
together with α ≤ umin

k ≤ umax
k ≤ 1/LΩ implies that LΩ ≤ 1/α. It follows from

Lemma 3.5 and L ≤ LΩ that

DR(wkt ,∇F (wkt ), Id, L) ≤ DR(wkt ,∇F (wkt ), Id, LΩ)

≤ DR
(
wkt ,∇F (wkt ), Id,

1

α

)
. (34)

Using the proximal-PL inequality with w = ws+1 and taking expectation, we have

2γE[P (ws+1)− P (w∗)] ≤ E[DR(ws+1,∇F (ws+1), Id, L)]. (35)

Combining (33), (34) and (35), and substituting the specific value of T , we obtain

E[P (ws+1)− P (w∗)] ≤
1

2γ

2

αT
E[P (ws)− P (w∗)]

=
1

γαT
E[P (ws)− P (w∗)]

≤ 1

2
E[P (ws)− P (w∗)]

Applying the above inequality recursively we will get the desired result.
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3.3. Comparisons of complexity. In order to measure the efficiency of a prox-
imal stochastic algorithm, we employ the stochastic first-order oracle (SFO) and
proximal oracle (PO) complexity. In particular, for a given point w ∈ Rd, an SFO
takes an index i ∈ {1, 2, . . . , n} and returns ∇fi(w) [9], and a PO returns an output
of a proximal problem [26].

From Theorem 3.4, we conclude that VM-SVRG requires O(1/ε) total number
of inner iterations to achieve E[‖GU−1

k
(wa)‖2Uk

] ≤ ε. Hence the PO complexity is

O(1/ε) as one PO is involved in each inner iteration. Let b = n2/3. Then the
SFO complexity in all inner iterations is O(n2/3/ε). Recall that VM-SVRG takes
n SFO to compute the average gradient in an outer iteration and T is at most a
multiple of m. By summing the total cost together, we obtain the SFO complexity
of VM-SVRG is O(n+ (n2/3/ε)).

When the objective function satisfies the proximal-PL inequality, Theorem 3.8
indicates that, for b = n2/3 and T = O(κ) with κ = LΩ/γ, to achieve E[P (wS) −
P (w∗)] ≤ ε, the SFO and PO complexity of Algorithm 2 are O((n+κn2/3) log(1/ε))
and O(κ log(1/ε)), respectively.

Table 1. Comparison of the SFO and PO complexity.

Complexity Prox-GD Prox-SGD Prox-SVRG VM-SVRG

SFO O(n/ε) O(1/ε2) O(n+ (n2/3/ε)) O(n+ (n2/3/ε))

PO O(1/ε) O(1/ε) O(1/ε) O(1/ε)

SFO(PL) O(nκ log(1/ε)) O(1/ε2) O((n+ κn2/3) log(1/ε)) O((n+ κn2/3) log(1/ε))

PO(PL) O(κ log(1/ε)) O(1/ε) O(κ log(1/ε)) O(κ log(1/ε))

Table 1 lists the SFO and PO complexity of different methods for the above
cases, where PL represents the proximal-PL inequality case. It is easy to see that,
for each case, the SFO and PO complexity of VM-SVRG are lower than that of
Prox-GD and Prox-SGD, and are the same as Prox-SVRG.

4. Numerical experiments. In this section, we present numerical comparisons of
VM-SVRG and some recent developed proximal SVRG methods on four standard
data sets listed in Table 2, which can be downloaded from the LIBSVM website 1.
For fair comparison, all methods are implemented in Matlab 2018b under Windows
10 operating system on a laptop with an Intel Core i7, 1.80 GHz processor and 16
GB of RAM.

Table 2. The information of data sets.

Data sets n d

ijcnn1 49,990 22
rcv1 20,242 47,236
real-sim 72,309 20,958
covtype 581,012 54

1https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
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We focus on two standard testing problems in machine learning, i.e., the elastic
net regularized logistic regression (LR) problem

LR min
w∈Rd

P (w) =
1

n

n∑
i=1

log(1 + exp(−ciaTi w)) +
λ2

2
‖w‖22 + λ1‖w‖1, (36)

and the sparse nonconvex support vector machine (SVM) problem with a sigmoid
loss function

SVM min
w∈Rd

P (w) =
1

n

n∑
i=1

(1− tanh(cia
T
i w)) + λ1‖w‖1, (37)

where λ1 and λ2 are two nonnegative regularization parameters, and {(ai, ci)}ni=1 is
a set of training examples with ai ∈ Rd being the feature vector and ci ∈ {−1,+1}
being the corresponding label.

For the LR model, as suggested in [34], the test was performed with R(w) =
λ1‖w‖1 and

fi(w) = log(1 + exp(−ciaTi w)) +
λ2

2
‖w‖22,

where λ1 = 10−5 and λ2 = 10−4 for ijcnn1, rcv1 and real-sim, and λ1 = 10−4 and
λ2 = 10−5 for covtype. For the SVM model, as suggested in [31], λ1 = 10−5 was
used for all data sets. The Lipschitz constants are set to Li = ‖ai‖22/4 +λ2. We set
L = maxi=1,2,...,n Li. As suggested in [23], we set ω = 10−6.

In all the following figures, the x-axis is the number of effective passes over the
data set, where the evaluation of n component gradients counts as one effective
pass. In experiments on LR model, the y-axis with “Optimality gap” denotes the
value P (w̃k) − P (w∗) with w∗ obtained by running Prox-SVRG with best-tuned
fixed stepsizes. In experiments on SVM model, the y-axis is the squared norm of
gradient.

4.1. Experiment results on LR. We first tested VM-SVRG with different values
of b on the four data sets listed in Table 2 to investigate the influence of mini-batch
size. Figure 1 presents the results of VM-SVRG with b = 1, 2, 4, 8, 16, 32. We
see that when the mini-batch size increases to b = 2, 4, 8, 16, the performance of
VM-SVRG is better than or comparable to the case b = 1.

Then we compared VM-SVRG with mS2GD [14] and mSARAH, which are vari-
ants of Prox-SVRG [34] and SARAH [20] in the proximal mini-batch setting, re-
spectively. We also compared the mS2GD-BB method, which was obtained by
combining mS2GD with the BB method. Moreover, a mini-batch proximal variant
of SARAH-BB [18], named mSARAH-BB, was also run for comparison.

For mS2GD, mS2GD-BB, mSARAH and mSARAH-BB, we set b = 8 which
performs better than other values in our test. In addition, m and initial stepsizes
were tuned by hand to get the best performance. For our VM-SVRG method, we
set b = 4 and used best-tuned parameters. The best choices of m for mS2GD,
mS2GD-BB, mSARAH, mSARAH-BB and VM-SVRG, as well as the best-tuned
stepsizes η for mS2GD and mSARAH, are presented in Table 3.

From Figure 2 we see that our VM-SVRG performs better than or comparable
to other four methods.
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Figure 1. Comparison of VM-SVRG with different mini-batch sizes.

Table 3. Best choices of parameters for the methods.

Data sets mS2GD(m, η) mS2GD-BB mSARAH(m, η) mSARAH-BB VM-SVRG

ijcnn1 (0.02n, 4
L

) 0.04n (0.05n, 1.8
L

) 0.04n 0.04n

rcv1 (0.1n, 4
L

) 0.11n (0.1n, 3.5
L

) 0.09n 0.25n

real-sim (0.12n, 0.6
L

) 0.15n (0.07n, 2
L

) 0.06 0.11n

covtype (0.07n, 21
L

) 0.03n (0.07n, 25
L

) 0.008n 0.01n

4.2. Experiment results on SVM. Now we apply VM-SVRG to the SVM model
(37). Since the values of αk and αk may be extremely large in the nonconvex case,
we project them into [10−6, 2/LΩ] in our test to chop those values.

We also compared VM-SVRG with different mini-batch sizes b. It can be seen
from Figure 3 that, similarly to the LR model, by increasing the mini-batch size to
b = 2, 4, 8, 16, VM-SVRG performs better than or comparable to that with b = 1.

Then we compared VM-SVRG with other SGD methods. Since [31] showed that
Prox-SVRG performs better than Prox-GD for solving (37), we do not present the
results of Prox-GD. Figure 4 presents VM-SVRG vs. mS2GD, where we set b to 4
and 8 for VM-SVRG and mS2GD, respectively, and use best-tuned values for other
parameters. Clearly, VM-SVRG outperforms mS2GD in the sense of squared norm
of gradient.
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Figure 2. Comparison of VM-SVRG and other modern methods
for solving LR problem.

5. Conclusion. We proposed a variable metric mini-batch proximal stochastic
variance reduced gradient method VM-SVRG for nonconvex nonsmooth optimiza-
tion, which uses a diagonal Barzilai-Borwein stepsize to update the metric. We
showed that VM-SVRG converges sublinearly to a stationary point in expectation.
Based on the proximal Polyak- Lojasiewicz inequality, the sublinear rate was fur-
ther improved to linear by slightly modifying VM-SVRG. The complexity of the
proposed methods was lower than that of Prox-GD and Prox-SGD, and was the
same as Prox-SVRG under different conditions. Numerical results showed that our
VM-SVRG method is better than or comparable to the state-of-the-art proximal
stochastic gradient methods.
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Figure 3. Comparison of VM-SVRG with different mini-batch sizes.
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metric proximal methods, Math. Programming, 68 (1995), 15–47.

[3] L. Bottou, F. E. Curtis and J. Nocedal, Optimization methods for large-scale machine learn-
ing, SIAM Rev., 60 (2018), 223–311.

[4] Y.-H. Dai, M. Al-Baali and X. Yang, A positive Barzilai–Borwein-like stepsize and an ex-

tension for symmetric linear systems, Numerical Analysis and Optimization, 134 (2015),
59–75.

[5] Y.-H. Dai, Y. Huang and X.-W. Liu, A family of spectral gradient methods for optimization,

Comput. Optim. Appl., 74 (2019), 43–65.
[6] A. Defazio, F. Bach and S. Lacoste-Julien, SAGA: A fast incremental gradient method with

support for non-strongly convex composite objectives, in Advances in Neural Information

Processing Systems, (2014), 1646–1654.
[7] R. Fletcher, On the Barzilai–Borwein method, in Optimization and control with applications,

Springer, New York, 96 (2005), 235–256.

[8] S. Ghadimi and G. Lan, Stochastic first-and zeroth-order methods for nonconvex stochastic
programming, SIAM J. Optim., 23 (2013), 2341–2368.

[9] S. Ghadimi, G. Lan and H. Zhang, Mini-batch stochastic approximation methods for noncon-

vex stochastic composite optimization, Math. Program., 155 (2016), 267–305.
[10] T. Hastie, R. Tibshirani and J. Friedman, The Elements of Statistical Learning: Data Mining,

Inference, and Prediction, Springer Series in Statistics. Springer, New York, 2009.

http://www.ams.org/mathscinet-getitem?mr=MR967848&return=pdf
http://dx.doi.org/10.1093/imanum/8.1.141
http://www.ams.org/mathscinet-getitem?mr=MR1312104&return=pdf
http://dx.doi.org/10.1007/BF01585756
http://dx.doi.org/10.1007/BF01585756
http://www.ams.org/mathscinet-getitem?mr=MR3797719&return=pdf
http://dx.doi.org/10.1137/16M1080173
http://dx.doi.org/10.1137/16M1080173
http://www.ams.org/mathscinet-getitem?mr=MR3446842&return=pdf
http://dx.doi.org/10.1007/978-3-319-17689-5_3
http://dx.doi.org/10.1007/978-3-319-17689-5_3
http://www.ams.org/mathscinet-getitem?mr=MR3983437&return=pdf
http://dx.doi.org/10.1007/s10589-019-00107-8
http://www.ams.org/mathscinet-getitem?mr=MR2144378&return=pdf
http://dx.doi.org/10.1007/0-387-24255-4_10
http://www.ams.org/mathscinet-getitem?mr=MR3134439&return=pdf
http://dx.doi.org/10.1137/120880811
http://dx.doi.org/10.1137/120880811
http://www.ams.org/mathscinet-getitem?mr=MR3439803&return=pdf
http://dx.doi.org/10.1007/s10107-014-0846-1
http://dx.doi.org/10.1007/s10107-014-0846-1
http://www.ams.org/mathscinet-getitem?mr=MR2722294&return=pdf
http://dx.doi.org/10.1007/978-0-387-84858-7
http://dx.doi.org/10.1007/978-0-387-84858-7


20 TENGTENG YU, XIN-WEI LIU, YU-HONG DAI AND JIE SUN

0 5 10 15 20 25 30

Number of effective passes

10-10

10-8

10-6

10-4

10-2

100

mS2GD
VM-SVRG

(a) ijcnn1

0 5 10 15 20 25 30

Number of effective passes

10-7

10-6

10-5

10-4

10-3

10-2

mS2GD
VM-SVRG

(b) rcv1

0 5 10 15 20 25 30

Number of effective passes

10-7

10-6

10-5

10-4

10-3

10-2

mS2GD
VM-SVRG

(c) real-sim

0 5 10 15 20 25 30

Number of effective passes

10-10

10-8

10-6

10-4

10-2

100

102

mS2GD
VM-SVRG

(d) covtype

Figure 4. Comparison of VM-SVRG and mS2GD for solving
SVM problem.

[11] Y. Huang, Y.-H. Dai, X.-W. Liu and H. Zhang, Gradient methods exploiting spectral prop-
erties, Optim. Methods Softw., 35 (2020), 681–705.

[12] R. Johnson and T. Zhang, Accelerating stochastic gradient descent using predictive variance
reduction, in Advances in Neural Information Processing Systems, (2013), 315–323.

[13] H. Karimi, J. Nutini and M. Schmidt, Linear convergence of gradient and proximal-gradient

methods under the Polyak- Lojasiewicz condition, in Joint European Conference on Machine

Learning and Knowledge Discovery in Databases, (2016), 795–811.
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