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Abstract

Many machine learning problems can be formulated as minimizing the
sum of a function and a nonsmooth regularization term. Proximal
stochastic gradient methods are popular for solving such composition
optimization problems. We propose a mini-batch proximal stochastic
recursive gradient algorithm SRG-DBB, which incorporates the diagonal
Barzilai-Borwein (DBB) stepsize strategy to capture the local geome-
try of the problem. The linear convergence and complexity of SRG-DBB
is analyzed for strongly convex functions. We further establish the
linear convergence of SRG-DBB under the non-strong convexity con-
dition. Moreover, it is proved that SRG-DBB converges sublinearly in
the convex case. Numerical experiments on standard data sets indi-
cate that the performance of SRG-DBB is better than or comparable
to the proximal stochastic recursive gradient algorithm with best-tuned
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scalar stepsizes or BB stepsizes. Furthermore, SRG-DBB is superior
to some advanced mini-batch proximal stochastic gradient methods.

Keywords: Stochastic recursive gradient, proximal gradient algorithm,
Barzilai-Borwein method, composite optimization

1 Introduction

We are interested in solving the following problem

min
w∈Rd

P (w) = F (w) +R(w), (1)

where F (w) = 1
n

∑n
i=1 fi(w), each component function fi(w) : Rd → R is

smooth and convex, and R(w) : Rd → R ∪ {+∞} is a relatively simple proper
convex function (sometimes referred to as a regularization) but can be non-
differentiable. We focus on the case where the sample size n is extremely large,
and the scaled proximal operator of R(w) could be computed efficiently.

The formulation (1) appears across a broad range of applications in machine
learning [1–3], statistics [4], matrix completion [5], neural networks [6–8], etc.
One important instance is the regularized empirical risk minimization (ERM)
[1, 4, 9], which involves a collection of training examples {(ai, bi)}ni=1, where
ai ∈ Rd is a feature vector and bi ∈ R is the desired response. With the com-
ponent functions fi(w) = 1

2 (bi− aTi w)2, Lasso, ridge regression and elastic net

employ the regularization terms R(w) = λ1‖w‖1, R(w) = λ2

2 ‖w‖
2
2 and R(w) =

λ1‖w‖1+ λ2

2 ‖w‖
2
2, respectively, where λ1 and λ2 are nonnegative regularization

parameters. When considering binary classification problems, one frequently
used component function is the logistic loss fi(w) = log(1+exp(−biaTi w)) and
R(w) can be any of the aforementioned regularization terms.

Popular methods for solving optimization problems (1) in large-scale set-
ting relay on proximal stochastic approaches. Motivated by the seminal work
of Robbins and Monro [10], a proximal stochastic gradient descent (Prox-SGD)
method has been developed, which chooses ik ∈ {1, 2, . . . , n} uniformly at
random and takes the update

wk+1 = prox
η−1
k Id
R

(
wk − ηk∇fik(wk)

)
, (2)

where ηk > 0 is the stepsize (a.k.a. learning rate), Id ∈ Rd×d is the identity
matrix, and proxAR(w) is defined as

proxAR(w) = arg min
y∈Rd

{
1

2
‖y − w‖2A +R(y)

}
. (3)

However, due to the large variance of the stochastic gradient introduced by ran-
dom sampling, Prox-SGD only enjoys a sublinear convergence rate for strongly
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convex functions. Starting from several prevalent variance reduced stochastic
gradient methods such as stochastic average gradient (SAG) [11, 12], stochas-
tic variance reduced gradient (SVRG) [13], and stochastic recursive gradient
algorithm (SARAH) [14], some efficient proximal stochastic methods have been
developed for solving composite problems. In [15], Xiao and Zhang proposed
a proximal variant of SVRG, called Prox-SVRG and proved its linear conver-
gence rate for strongly convex problems. By combining the mini-batch scheme
with semi-stochastic gradient descent methd (S2GD)[16], Konečný et al. [17]
developed the mS2GD method that achieves better convergence rate and prac-
tical performance than Prox-SVRG. A proximal version of SARAH can be
found in [18].

Since the stepsize has an important influence on the performance of stochas-
tic gradient methods, many researchers are devoted to designing more efficient
scheme of stepsizes. For classical SGD, one frequently employed stepsize
strategy in practical computation is

∞∑
k=1

ηk =∞ and

∞∑
k=1

η2
k <∞.

However, such a choice often yields sublinear convergence of SGD, see [1] for
example. In recent years, using the Barzilai-Borwein (BB) method [19] to auto-
matically calculate stepsizes for SGD and its variants has attracted more and
more attention. One great advantage of BB stepsize is that it is able to capture
hidden second-order information and is not sensitive to the choice of initial
stepsizes, which makes it very promising in practice. See [19–21] and references
therein for more details about BB-like methods. One pioneer work in this line
is due to Tan et al. [22], who proposed to incorporate the BB stepsize with
SGD and SVRG, and got the SGD-BB and SVRG-BB methods. By combin-
ing SARAH with the BB method and importance sampling strategy, Liu et
al. [23] suggested the SARAH-I-BB method. To solve problem (1), Yu et al.
[24] developed a mini-batch proximal stochastic recursive gradient algorithm
that incorporates a trust-region-like scheme and BB stepsizes. Inspired by the
adaptive metric selection strategy in [25], the authors proposed a new diagonal
BB stepsize to update the metric for Prox-SVRG and devised a VM-SVRG
method [26].

In this paper, motivated by the diagonal BB stepsize startegy and the
success of SARAH in solving problem (1), we propose a mini-batch proximal
stochastic recursive gradient method, named SRG-DBB. We present the con-
vergence analysis of SRG-DBB under different conditions, which shows that
it converges linearly for strongly convex and non-strongly convex functions.
The sublinear convergence of SRG-DBB in the convex case is given. Numer-
ical results for solving regularized logistic regression problems on standard
data sets show that the performance of SRG-DBB is better than or compara-
ble to proximal SARAH with best-tuned stepsizes and the proximal variant of
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SARAH-BB with different initial stepsizes. Further comparisons between SRG-
DBB and some advanced mini-batch proximal stochastic gradient methods
demonstrate the efficiency of SRG-DBB.

The rest of this paper is organized as follows. In Section 2 we propose
our SRG-DBB method. In Section 3 we prove that SRG-DBB enjoys a linear
convergence rate under strong convexity and non-strong convexity conditions,
and converges sublinearly under convex condition. Numerical experiments are
reported in Section 4. Finally, we draw some conclusions in Section 5.

2 The SRG-DBB method

A formal description of SRG-DBB is given in Algorithm 1.

Algorithm 1 SRG-DBB(w̃0,m, b, U0)

Input: update frequency m (max # of stochastic steps per outer loop), initial
point w̃0 ∈ Rd, initial matrix U0 = η0Id, mini-batch size b ∈ {1, 2, . . . , n},
probability Ω = {q1, q2, . . . , qn}

1: for k = 0, 1, . . . ,K − 1 do
2: wk1 = wk0 = w̃k

3: vk0 = ∇F (wk0 )
4: Choose tk ∈ {1, 2, . . . ,m} uniformly at random
5: for t = 1, . . . , tk do
6: Choose mini-batch It ⊆ {1, 2, . . . , n} of size b, where each i ∈ It is

chosen from {1, 2, . . . , n} randomly according to Ω
7:

vkt =
1

b

∑
i∈It

[
(∇fi(wkt )−∇fi(wkt−1))/(qin)

]
+ vkt−1 (4)

8: wkt+1 = prox
U−1

k

R (wkt − Ukvkt )
9: end for

10: w̃k+1 = wktk+1

11: Compute Uk from (6)
12: end for
Output: Iterate wa chosen uniformly at random from {{wkt }

tk
t=1}

K−1
k=0

Note that, when Uk = αkId with αk being a scalar stepsize, Algorithm 1
is a proximal version of SARAH [14]. It transforms to the stochastic proximal
quasi-Newton method for Uk ≈ (∇2F (wkt ))−1 [27, 28].

We will use a diagonal matrix Uk to estimate the second-order information
of F (w). In particular, we employ the approach in [26] to compute Uk,

min
u∈Rd

‖sk − Uyk‖22 + ω‖U − Uk−1‖2F (5)

s.t. α2
kId � U � α1

kId,
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U = Diag(u),

where sk = w̃k − w̃k−1, yk = ∇F (w̃k) − ∇F (w̃k−1), ‖ · ‖F is the Frobenius
norm and 0 < α2

k ≤ α1
k are two stepsizes given by users. Clearly, the solution

Uk of (5) satisfies the secant equation sk = Ukyk in the sense of least squares
and is close to the previous matrix Uk−1 where the closeness is controlled by
the hyperparameter ω > 0. In this way, Uk can capture the geometry of the
inverse Hessian of F (w), which is different from the one in [25].

Denote uk = [u
(1)
k , u

(2)
k , . . . , u

(d)
k ] ∈ Rd and Uk = Diag(uk) ∈ Rd×d.

Problem (5) has a closed-form solution given by

u
(j)
k =


α2
k,

s
(j)
k y

(i)
k +ωu

(j)
k−1

(y
(j)
k )2+ω

< α2
k;

α1
k,

s
(j)
k y

(j)
k +ωu

(j)
k−1

(y
(j)
k )2+ω

> α1
k;

s
(j)
k y

(j)
k +ωu

(j)
k−1

(y
(j)
k )2+ω

, otherwise.

(6)

where s
(j)
k and y

(j)
k are the j-th elements of sk and yk, respectively.

As mentioned before, the BB stepsize is suitable for SGD and its variants.
We would like to employ BB-like stepsizes for α1

k and α2
k. Since at most m

biased gradient estimators are added to wk0 for getting wkm in the inner loop,
we employ the following stepsizes

α1
k =

2

m
· ‖sk‖2
sTk yk

(7)

and

α2
k =

2

m
· s

T
k yk
‖yk‖22

, (8)

where α1
k and α2

k are two variant of the long BB stepsize αBB1
k = ‖sk‖2

sTk yk
and the

short BB stepsize αBB2
k =

sTk yk
‖yk‖22

in [19], respectively. In order to guarantee the

boundedness of u
(j)
k (k = 0, 1, . . . ,K−1; j = 1, 2, . . . , d), we project them into

the interval [α, α] when the objective function is not strongly convex. Here,
0 < α ≤ α are two given constants.

We mention that vkt in Algorithm 1 is a biased estimate of the full gradient
∇F (wkt ), which is the same as SARAH [14] but different from SGD and SVRG
types of methods [13, 15]. In fact, it is easy to see that conditioned on Ft, the
expectation of vkt with respect to It is

EIt [vkt |Ft] =

n∑
i=1

∇fi(wkt )−∇fi(wkt−1)

qin
· qi + vkt−1

= ∇F (wkt )−∇F (wkt−1) + vkt−1,
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where Ft = σ(wk0 , I1, I2, . . . , It−1) is the σ-algebra generated by
wk0 , I1, I2, . . . , It−1 and F0 = F1 = σ(wk0 ). As will be seen in Theorems 1
and 2, the simple recursive framework for updating vkt yields a non-increasing
property and a linear convergence of the inner loop of our SRG-DBB method,
which does not hold for Prox-SVRG and mS2GD.

Let Ẽ[·] be the expectation with respect to all random variables. That is,
Ẽ[vkt ] = EI1EI2 . . .EIt−1

[vkt ]. When taking total expectation and employing the

fact vk0 = ∇F (wk0 ), it follows that Ẽ[vk1 ] = Ẽ[∇F (wk1 )]− Ẽ[∇F (wk0 )] + Ẽ[vk0 ] =
Ẽ[∇F (wk1 )]. By induction, we obtain

Ẽ[vkt ] = Ẽ[∇F (wkt )]. (9)

3 Convergence analysis

In order to establish convergence of SRG-DBB in different cases, we make the
following two blanket assumptions.

Assumption 1 The regularization R(w) : Rd → R ∪ {+∞} is a lower semi-
continuous and convex function. However, it can be non-differentiable. Its effective
domain, dom(R) = {w ∈ Rd|R(w) < +∞}, is closed.

Assumption 2 Each component function fi(w) : Rd → R is convex and Li-smooth,
that is, there exists Li > 0 such that

‖∇fi(w)−∇fi(υ)‖2 ≤ Li‖w − υ‖2, ∀w, υ ∈ dom(R).

Let L = 1
n

∑n
i=1 Li, from Assumption 2, we know that F (w) is also L-

smooth. For simplicity, we denote LΩ as

LΩ = max
i=1,2,...,n

Li
nqi

,

then LΩ ≥ L. It is not difficult to obtain the following result from Assumption
2.

Lemma 1 (Theorem 2.1.5 [29]) Suppose that fi(w) is convex and Li-smooth. Then,
for any w, υ ∈ Rd, the following inequality holds

(∇fi(w)−∇fi(υ))T (w − υ) ≥ 1

Li
‖∇fi(w)−∇fi(υ)‖22.

Now we generalize some basic properties of proximal mapping to scaled
proximal operator. Although they are direct extensions, we have not found the
same results in literatures.
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Lemma 2 LetR(w) be a proper closed and convex function on Rd. Then proxA
−1

R (w)
is a singleton for any w ∈ dom(R) and any symmetric positive definite matrix A ∈
Sd×d++ . Furthermore, the following statements are equivalent:

(i) u = proxA
−1

R (w).
(ii) A−1(w − u) ∈ ∂R(u), where ∂R is the subdifferential of R.

Proof The uniqueness of proxA
−1

R (w) can be proved in a similar way as Theorem 6.3
of [30] by noting that A is symmetric positive definite. For the latter part, one can
employ the techniques used in the proof of Theorem 6.39 in [30]. We omit the details
here. �

Lemma 3 Let R(w) be a proper closed and convex function on Rd. Then, for any

w, υ ∈ dom(R) and any A ∈ Sd×d++ , the following inequality holds

‖proxA
−1

R (w)− proxA
−1

R (υ)‖2A−1 ≤ ‖w − υ‖2A−1 .

Proof We only need to consider the nontrivial case w 6= υ. Denoting u = proxA
−1

R (w)

and v = proxA
−1

R (υ). It follows from Lemma 2 that

A−1(w − u) ∈ ∂R(u), A−1(υ − v) ∈ ∂R(v).

By the definition of subdifferential, we have

R(u) ≥ R(v) + (A−1(υ − v))T (u− v),

R(v) ≥ R(u) + (A−1(w − u))T (v − u).

Summing the above two inequalities to get

0 ≥
(
A−1((υ − v)− (w − u)

))T(
u− v

)
=
(
A−1((υ − w) + (u− v)

))T(
u− v

)
,

which results in,

‖u− v‖2A−1 ≤ (A−1(w − υ))T (u− v)

= (A−1/2(w − υ))T (A−1/2(u− v))

≤ ‖A−1/2(w − υ)‖2 · ‖A−1/2(u− v)‖2,

where the first equality holds due to the symmetry and positive definiteness of A
while the last inequality follows from the Cauchy-Schwarz inequality. By squaring
the above inequality, we obtain

‖u− v‖2A−1 · ‖u− v‖2A−1 ≤‖A−1/2(w − υ)‖22 · ‖A−1/2(u− v)‖22
=‖w − υ‖2A−1 · ‖u− v‖2A−1 .

Since w 6= υ, we know that ‖u−v‖2A−1 6= 0. We complete the proof by dividing both

sides of the above inequality by ‖u− v‖2A−1 . �
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The following theorem shows that our proximal stochastic recursive step
wkt+1 − wkt decreases in expectation for convex functions.

Theorem 1 Suppose that Assumptions 1 and 2 hold. Consider vkt defined by (4) in
SRG-DBB with 0 ≺ Uk � 1/LΩId. Then, in the k-th outer loop, for any t > 1, we
have

Ẽ
[
‖wkt+1 − wkt ‖2U−1

k

]
≤ Ẽ

[
‖wkt − wkt−1‖2U−1

k

]
.

Proof Conditioned on Ft, we take expectation with respect to It to obtain

EIt
[
‖wkt+1 − wkt ‖2U−1

k
|Ft
]

= EIt
[
‖prox

U−1
k

R (wkt − Ukvkt )− prox
U−1

k

R (wkt−1 − Ukvkt−1)‖2
U−1

k
|Ft
]

≤ EIt
[
‖wkt − wkt−1 − Uk(vkt − vkt−1)‖2

U−1
k
|Ft
]

= EIt
[
‖wkt − wkt−1‖2U−1

k
+ ‖vkt − vkt−1‖2Uk

− 2(wkt − wkt−1)T (vkt − vkt−1)|Ft
]

= ‖wkt − wkt−1‖2U−1
k

+ EIt
[
‖vkt − vkt−1‖2Uk

∣∣Ft]
− 2EIt

[
(wkt − wkt−1)T (

1

b

∑
i∈It

∇fi(wkt )−∇fi(wkt−1)

qin
)|Ft

]
≤ ‖wkt − wkt−1‖2U−1

k
+ EIt

[
‖vkt − vkt−1‖2Uk

|Ft
]

− 2EIt
[1

b

∑
i∈It

‖∇fi(wkt )−∇fi(wkt−1)‖22
qinLi

|Ft
]

≤ ‖wkt − wkt−1‖2U−1
k

+ EIt
[
‖vkt − vkt−1‖2Uk

|Ft
]

− 2

LΩ
EIt
[1

b

∑
i∈It

‖
∇fi(wkt )−∇fi(wkt−1)

qin
‖22|Ft

]
≤ ‖wkt − wkt−1‖2U−1

k
+ EIt

[
‖vkt − vkt−1‖2Uk

|Ft
]

− 2

LΩ
EIt
[
‖1

b

∑
i∈It

∇fi(wkt )−∇fi(wkt−1)

qin
‖22|Ft

]
(10)

≤ ‖wkt − wkt−1‖2U−1
k

+
1

LΩ
EIt
[
‖vkt − vkt−1‖22|Ft

]
− 2

LΩ
EIt
[
‖1

b

∑
i∈It

∇fi(wkt )−∇fi(wkt−1)

qin
‖22|Ft

]
= ‖wkt − wkt−1‖2U−1

k
− 1

LΩ
EIt
[
‖vkt − vkt−1‖22|Ft

]
≤ ‖wkt − wkt−1‖2U−1

k
,

where the first inequality follows from Lemma 3 and the second inequality uses
Lemma 1. The third inequality holds due to LΩ ≥ Li/(nqi) for i = 1, 2, . . . , n. In
the fourth and fifth inequalities we use the facts that E

[
‖z1 + z2 + . . . + zr‖22

]
≤
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rE
[
‖z1‖22 + ‖z2‖22 + . . .+ ‖zr‖22

]
with zj being random variables for j ∈ {1, 2, . . . , r}

and 0 ≺ Uk � 1/LΩId, respectively. The last equality holds by the definition of vkt .
We can obtain the desired result by taking total expectation.

�

Let W∗ be the set of optimal solutions of problem (1) and w∗ ∈ W∗. From
Theorem 2 in [24], an upper bound on the variance of vkt can be given as
follows.

Lemma 4 Suppose that Assumptions 1 and 2 hold, and choose b ∈ {1, 2, . . . , n}.
Consider vkt as defined in (4). Then, for any t > 1, we have

Ẽ
[
‖vkt −∇F (wkt )‖22

]
≤ 4LΩ

b
Ẽ
[
P (wkt )− P (w∗) + P (wkt−1)− P (w∗)

]
.

To analyze the convergence of multiple outer loops, we define the following
generalization of stochastic gradient mapping

gkt = U−1
k (wkt − wkt+1) = U−1

k

(
wkt − prox

U−1
k

R (wkt − Ukvkt )
)
. (11)

Then the proximal stochastic gradient step in Algorithm 1 can be written as

wkt+1 = wkt − Ukgkt . (12)

Before establishing the convergence of SRG-DBB, we show an upper bound
on P (w) by using (11) and (12) in a similar way to Lemma 3.7 in [15]. However,
we do not require the strong convexity of F (w) and R(w).

Lemma 5 Suppose that Assumptions 1 and 2 hold, and 0 ≺ Uk � 1/LΩId. For any
t ≥ 1, we have

(w∗ − wkt )T gkt +
1

2
‖gkt ‖2Uk

≤ P (w∗)− P (wkt+1)− (w∗ − wkt+1)T δkt ,

where δkt = ∇F (wkt )− vkt .

Proof Since

wkt+1 = arg min
y

{
R(y) +

1

2
‖y − (wkt − Ukvkt )‖2

U−1
k

}
,

by Lemma 2, we get

U−1
k

(
(wkt − Ukvkt )− wkt+1

)
∈ ∂R(wkt+1),

which implies that there exists ϕ ∈ ∂R(wkt+1) such that

U−1
k

(
wkt+1 − (wkt − Ukvkt )

)
+ ϕ = 0.

This together with (12) gives vkt + ϕ = gkt . Then

(w∗ − wkt+1)T (vkt + ϕ) = (w∗ − wkt+1)T gkt . (13)
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From the convexity of F (w) and R(w), we get

P (w∗) ≥ F (wkt ) +∇F (wkt )T (w∗ − wkt ) +R(wkt+1) + ϕT (w∗ − wkt+1). (14)

It follows from the L-smoothness of F (w) that

F (wkt ) ≥ F (wkt+1)−∇F (wkt )T (wkt+1 − wkt )− L

2
‖wkt+1 − wkt ‖22

≥ F (wkt+1)−∇F (wkt )T (wkt+1 − wkt )− LΩ

2
‖wkt+1 − wkt ‖22, (15)

where the second inequality is due to the fact 0 < L ≤ LΩ. Combining (14) and (15),
we have

P (w∗) ≥ F (wkt+1)−∇F (wkt )T (wkt+1 − wkt ) +∇F (wkt )T (w∗ − wkt ) +R(wkt+1)

+ ϕT (w∗ − wkt+1)− LΩ

2
‖wkt+1 − wkt ‖22

= P (wkt+1) +∇F (wkt )T (w∗ − wkt+1) + ϕT (w∗ − wkt+1)− LΩ

2
‖wkt+1 − wkt ‖22

≥ P (wkt+1) +∇F (wkt )T (w∗ − wkt+1) + ϕT (w∗ − wkt+1)− 1

2
‖gkt ‖2Uk

, (16)

where the first equality follows from the definition of P (w) and the last inequality
holds by (12) and 0 ≺ Uk � 1/LΩId. Collecting all inner products on the right-hand
side of (16), we obtain

∇F (wkt )T (w∗ − wkt+1) + ϕT (w∗ − wkt+1)

= (w∗ − wkt+1)T (δkt + vkt ) + (w∗ − wkt+1)Tϕ

= (w∗ − wkt+1)T δkt + (w∗ − wkt+1)T (vkt + ϕ)

= (w∗ − wkt+1)T δkt + (w∗ − wkt+1)T gkt

= (w∗ − wkt+1)T δkt + (w∗ − wkt + wkt − wkt+1)T gkt

= (w∗ − wkt+1)T δkt + (w∗ − wkt )T gkt + (gkt )TUkg
k
t

= (w∗ − wkt+1)T δkt + (w∗ − wkt )T gkt + ‖gkt ‖2Uk
, (17)

where the first equality follows from the definition of δkt , and the third and fifth
equalities are derived from (13) and (12), respectively. Applying (17) to (16), we get

P (w∗) ≥ P (wkt+1) +
1

2
‖gkt ‖2Uk

+ (w∗ − wkt+1)T δkt + (w∗ − wkt )T gkt .

Then the desired result is obtained. �

3.1 Convergence properties for strongly convex case

We analyze the linear convergence of SRG-DBB in the case where P (w) is
strongly convex.

Assumption 3 The objective function P (w) is µ-strongly convex, that is, there
exists µ > 0 such that for all w ∈ dom(R) and υ ∈ Rd,

P (υ) ≥ P (w) + ξT (υ − w) +
µ

2
‖υ − w‖22, ∀ ξ ∈ ∂P (w).

Assumptions 1, 2 and 3 are often satisfied by objective functions in
machine learning, such as ridge regression and elastic net regularization logistic
regression. Moreover, w∗ is unique when P (w) is strongly convex.
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3.1.1 Linear convergence

The following theorem shows that our proximal stochastic recursive step has
a linear convergence rate for strongly convex functions.

Theorem 2 Suppose that Assumptions 1 and 2 hold, F (w) is µF -strongly convex
and 0 ≺ Uk � 2/LΩId. Then, in the k-th outer loop, for any t > 1, we have

Ẽ
[
‖wkt+1 − wkt ‖2U−1

k

]
≤
(

1− (µ2
Fu

min
k )(

2

LΩ
− umax

k )

)
Ẽ
[
‖wkt − wkt−1‖2U−1

k

]
,

where umax
k = maxj{u

(j)
k } and umin

k = minj{u
(j)
k }.

Proof The inequality (10) in Theorem 1 indicates that

EIt
[
‖wkt+1 − wkt ‖2U−1

k
|Ft
]

≤ ‖wkt − wkt−1‖2U−1
k

+ EIt
[
‖vkt − vkt−1‖2Uk

|Ft
]
− 2

LΩ
EIt
[
‖vkt − vkt−1‖22|Ft

]
≤ ‖wkt − wkt−1‖2U−1

k
+ (umax

k − 2

LΩ
)EIt

[
‖vkt − vkt−1‖22|Ft

]
≤ ‖wkt − wkt−1‖2U−1

k
+ (umax

k − 2

LΩ
)‖∇F (wkt )−∇F (wkt−1)‖22

≤ ‖wkt − wkt−1‖2U−1
k

+ µ2
F (umax

k − 2

LΩ
)‖wkt − wkt−1‖22

≤ ‖wkt − wkt−1‖2U−1
k

+ µ2
Fu

min
k (umax

k − 2

LΩ
)‖wkt − wkt−1‖2U−1

k

=
(
1− µ2

Fu
min
k (

2

LΩ
− umax

k )
)
‖wkt − wkt−1‖2U−1

k
.

Here, the second inequality holds due to Uk � umax
k Id, and the third inequality uses

‖∇F (wkt )−∇F (wkt−1)‖22 = ‖EIt [v
k
t − vkt−1|Ft]‖22 ≤ EIt [‖v

k
t − vkt−1‖22|Ft], because it

holds that E[‖z − E[z]‖22] = E[‖z‖22]− ‖E[z]‖2 ≥ 0 for random vector z ∈ Rd. Notice
that umax

k − 2/LΩ ≤ 0 since Uk � 2/LΩId. In the fourth inequality we use the fact

that µF ‖wkt − wkt−1‖2 ≤ ‖∇F (wkt ) −∇F (wkt−1)‖2, which can be deduced from the

strong convexity of F (w). The last inequality is due to the definition of umin
k . By

taking total expectation, we obtain the desired result. �

The following theorem establishes the linear convergence of SRG-DBB
under the strongly convex condition.

Theorem 3 Suppose that Assumptions 1, 2 and 3 hold, and choose b ∈ {1, 2, . . . , n}.
Assume that 0 ≺ Uk � 1/LΩId, 8LΩu

max
k /b < 1, and m is chosen so that

ρk =
1

mµumin
k

(
1− 8LΩu

max
k /b

) +
4LΩu

max
k

mb
(
1− 8LΩu

max
k /b

) < 1.

Then, SRG-DBB converges linearly in expectation

Ẽ
[
P (w̃k+1)− P (w∗)

]
≤ ρkẼ

[
P (w̃k)− P (w∗)

]
.
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Proof From the update rule (12), we obtain that, for any t ≥ 1,

‖wkt+1 − w∗‖2U−1
k

= ‖wkt − Ukgkt − w∗‖2U−1
k

= ‖wkt − w∗‖2U−1
k
− 2(wkt − w∗)T gkt + ‖gkt ‖2Uk

≤ ‖wkt − w∗‖2U−1
k
− 2
(
P (wkt+1)− P (w∗)

)
+ 2(wkt+1 − w∗)T δkt ,

(18)

where the last inequality uses Lemma 5. In order to provide an upper bound on the
quantity 2(wkt+1 − w∗)T δkt , we need the following notation

w̄kt+1 = prox
U−1

k

R (wkt − Uk∇F (wkt )), (19)

which is independent of the random variable It. Then we get

2(wkt+1 − w∗)T δkt
= 2(wkt+1 − w̄kt+1)T δkt + 2(w̄kt+1 − w∗)T δkt
≤ 2‖δkt ‖Uk

‖wkt+1 − w̄kt+1‖U−1
k

+ 2(w̄kt+1 − w∗)T δkt

≤ 2‖δkt ‖Uk
‖(wkt − Ukvkt )− (wkt − Uk∇F (wkt ))‖U−1

k
+ 2(w̄kt+1 − w∗)T δkt

≤ 2umax
k ‖δkt ‖22 + 2(w̄kt+1 − w∗)T δkt , (20)

where the first equality uses the fact that wT υ ≤ ‖w‖A · ‖υ‖A−1 with any positive
definite matrix A, the second inequality holds due to Lemma 3, and the last inequality
follows from the definitions of umax

k and δkt . Combining (20) with (18), we obtain

‖wkt+1 − w∗‖2U−1
k
≤ ‖wkt − w∗‖2U−1

k
− 2
(
P (wkt+1)− P (w∗)

)
+ 2umax

k ‖δkt ‖22 + 2(w̄kt+1 − w∗)T δkt (21)

Since both w̄kt+1 and w∗ are independent of It and the history of random variables

wk0 , I1, I2, . . ., It−1, and Ẽ[δkt ] = 0, we have

Ẽ
[
(w̄kt+1 − w∗)T δkt

]
= 0.

By taking total expectation and applying Lemma 4 to (21), we obtain

Ẽ
[
‖wkt+1 − w∗‖2U−1

k

]
≤ Ẽ

[
‖wkt − w∗‖2U−1

k

]
− 2Ẽ

[
P (wkt+1)− P (w∗)

]
+ 2umax

k Ẽ
[
‖δkt ‖22

]
≤ Ẽ

[
‖wkt − w∗‖2U−1

k

]
− 2Ẽ

[
P (wkt+1)− P (w∗)

]
+

8LΩu
max
k

b
Ẽ
[
P (wkt )− P (w∗)

]
+

8LΩu
max
k

b
Ẽ
[
P (wkt−1)− P (w∗)

]
. (22)

Notice that vk1 = vk0 and δk1 = ∇F (wk1 )−vk1 = ∇F (w̃k)−vk0 = 0 since wk1 = wk0 = w̃k

and vk0 = ∇F (w̃k). It follows from (18) that

‖wk2 − w∗‖2U−1
k
≤ ‖wk1 − w∗‖2U−1

k
− 2
(
(P (wk2 )− P (w∗)

)
. (23)

Summing (22) over t = 2, . . . ,m and taking into account (23), we get

Ẽ
[
‖wkm+1 − w∗‖2U−1

k

]
+ 2Ẽ

[
P (wkm+1)− P (w∗)

]
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+ 2
(
1− 4LΩu

max
k

b

) m∑
t=2

Ẽ
[
P (wkt )− P (w∗)

]
≤ Ẽ

[
‖wk1 − w∗‖2U−1

k

]
+

8LΩu
max
k

b
Ẽ
[
P (wk1 )− P (w∗)

]
+

8LΩu
max
k

b

m−1∑
t=2

Ẽ
[
P (wkt )− P (w∗)

]
≤ Ẽ

[
‖wk1 − w∗‖2U−1

k

]
+

8LΩu
max
k

b
Ẽ
[
P (wk1 )− P (w∗)

]
+

8LΩu
max
k

b

m∑
t=2

Ẽ
[
P (wkt )− P (w∗)

]
, (24)

where the last inequality uses the fact that P (w) ≥ P (w∗) for any w ∈ Rd.
Rearranging terms of (24), this yields

Ẽ
[
‖wkm+1 − w∗‖2U−1

k

]
+ 2Ẽ

[
P (wkm+1)− P (w∗)

]
+ 2
(
1− 8LΩu

max
k

b

) m∑
t=2

Ẽ
[
P (wkt )− P (w∗)

]
≤ Ẽ

[
‖wk1 − w∗‖2U−1

k

]
+

8LΩu
max
k

b
Ẽ
[
P (wk1 )− P (w∗)

]
, (25)

Since 2(1− 8LΩu
max
k /b) < 2, Ẽ

[
‖wkm+1 − w∗‖2U−1

k

]
≥ 0, and wk1 = w̃k, we obtain

2
(
1− 8LΩu

max
k

b

)m+1∑
t=2

Ẽ
[
P (wkt )− P (w∗)

]
≤ ‖w̃k − w∗‖2U−1

k
+

8LΩu
max
k

b
Ẽ
[
P (w̃k)− P (w∗)

]
≤ 1

umin
k

· ‖w̃k − w∗‖22 +
8LΩu

max
k

b
Ẽ
[
P (w̃k)− P (w∗)

]
≤

(
2

µumin
k

+
8LΩu

max
k

b

)
Ẽ
[
P (w̃k)− P (w∗)

]
,

where the second inequality holds by the definition of umin
k and in the last inequality

we use the fact that ‖w̃k−w∗‖22 ≤ 2/µ(P (w̃k)−P (w∗)), which can be deduced from
the strong convexity of P (w). By the definition of w̃k+1 in Algorithm 1, we have
Ẽ[P (w̃k+1)] = (1/m)

∑m
t=1 Ẽ[P (wkt+1)]. Then the following inequality holds

2m
(
1− 8LΩu

max
k

b

)
Ẽ
[
P (w̃k+1)− P (w∗)

]
≤

(
2

µumin
k

+
8LΩu

max
k

b

)
Ẽ
[
P (w̃k)− P (w∗)

]
.

Dividing both sides of the above inequality by 2m
(
1 − 8LΩu

max
k /b

)
and using the

definition of ρk, we arrive at

Ẽ
[
P (w̃k+1)− P (w∗)

]
≤ ρkẼ

[
P (w̃k)− P (w∗)

]
.

Then the desired result is proved.
�
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3.1.2 Comparisons of complexity

In order to achieve an ε-accuracy, i.e.,

Ẽ
[
P (w̃k+1)− P (w∗)

]
≤ ε,

from Theorem 3, we know that the number of outer loops should be set to
O(log(1/ε)). Let umin

k = umax
k = η = θb/LΩ with 0 < θ < 1/8. Then we have

ρ =
κ

mbθ(1− 8θ)
+

4θ

m(1− 8θ)
, (26)

where κ = LΩ/µ is the condition number of the objective function. When
setting θ = 1/16 and m = max{64κ/b, 4}, by (26), it is easy to obtain that
ρ ≤ 5/8. Since SRG-DBB requires at most n + 2bm component gradient
computation in each outer loop, the overall workload of SRG-DBB is

O((n+ κ) log(
1

ε
)).

Table 1 shows the comparison results of complexity of the existing methods and
SRG-DBB under the strong convexity condition. Inequality n+κ ≤ n

√
κ ≤ nκ

implies that the complexity of SRG-DBB is lower than ISTA and FISTA. It
is easy to see that the complexity of SRG-DBB is the same as Prox-SVRG,
mS2GD and SARAH, and is lower than Prox-SGD.

Table 1 Complexity of different methods

Methods Complexity

ISTA O(nκ log( 1
ε
))

FISTA [31] O(n
√
κ log( 1

ε
))

Prox-SGD O( 1
ε
)

Prox-SVRG O((n+ κ) log( 1
ε
))

mS2GD O((n+ κ) log( 1
ε
))

SARAH O((n+ κ) log( 1
ε
))

SRG-DBB O((n+ κ) log( 1
ε
))

3.2 Convergence properties for non-strongly convex case

We establish linear convergence of our SRG-DBB method under quadratic
growth condition (QGC) [32], which is stated as follows:

P (w)− P∗ ≥
ν

2
‖w − ŵ‖22, ∀w ∈ Rd, (27)

where ν > 0, ŵ is the projection of w onto W∗ and P∗ represents the optimal
value of (1).
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QGC is weaker than the strongly convex condition. For example, the `1-
regularized least squares problems and logistic regression problems satisfy
QGC [33], however, they are not strongly convex when the data matrix does
not have full column rank. It is shown that a nonsmooth convex function
satisfying QGC meets the proximal Polyak- Lojasiewicz inequality [32]. The
authors of [34] deduced the equivalence among QGC, the extended restricted
strongly convex property (eRSC) and the extended global error bound property
(eGEB).

Theorem 4 Suppose that Assumptions 1 and 2 hold, problem (1) satisfies QGC
inequality with ν > 0, and choose b ∈ {1, 2, . . . , n}. Further assume that 0 ≺ Uk �
1/LΩId, 8LΩu

max
k /b < 1, and m is chosen so that

ρ̂k =
1

mνumin
k

(
1− 8LΩu

max
k /b

) +
4LΩu

max
k

mb
(
1− 8LΩu

max
k /b

) < 1.

Then, SRG-DBB achieves a linear convergence rate in expectation

Ẽ
[
P (w̃k+1)− P∗

]
≤ ρ̂kẼ

[
P (w̃k)− P∗

]
.

Proof Let ŵkt be the projection of wkt onto W∗, i.e.,

ŵkt = ΠW∗(wkt ) = arg min
w
{w ∈ W∗ : ‖wkt − w‖2U−1

k
}.

Then ŵkt , ŵ
k
t+1 ∈ W∗, which together with (12) implies that, for t ≥ 1,

‖wkt+1 − ŵkt+1‖2U−1
k
≤ ‖wkt+1 − ŵkt ‖2U−1

k

= ‖wkt − Ukgkt − ŵkt ‖2U−1
k

= ‖wkt − ŵkt ‖2U−1
k

+ 2(ŵkt − wkt )T gkt + ‖gkt ‖2Uk

≤ ‖wkt − ŵkt ‖2U−1
k

+ 2(P∗ − P (wkt+1))− 2(ŵkt − wkt+1)T δkt ,

where the first inequality holds due to the positive definiteness of Uk, and the last
inequality is the application of Lemma 5 with ŵkt ∈ W∗.

Similarly to the proof of (23)-(25) in Theorem 3, we obtain

2
(
1− 8LΩu

max
k

b

)m+1∑
t=2

Ẽ
[
P (wkt )− P∗

]
≤ ‖w̃k − ŵk1‖2U−1

k
+

8LΩu
max
k

b
Ẽ
[
P (w̃k)− P∗

]
≤ 1

umin
k

· ‖w̃k − ŵk1‖22 +
8LΩu

max
k

b
Ẽ
[
P (w̃k)− P∗

]
. (28)

The definition of w̃k+1 implies that

Ẽ[P (w̃k+1)] =
1

m

m∑
t=1

Ẽ[P (wkt+1)].
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Considering QGC with w = w̃k, w̃k = wk1 and ŵk1 = ΠW∗(wk1 ) ∈ W∗, we have

P (w̃k)− P∗ = P (w̃k)− P (ŵk1 ) ≥ ν

2
‖w̃k − ŵk1‖22,

which together with (28) yields

2m
(
1− 8LΩu

max
k

b

)
Ẽ
[
P (w̃k+1)− P∗

]
≤

(
2

νumin
k

+
8LΩu

max
k

b

)
Ẽ
[
P (w̃k)− P∗

]
.

Dividing both sides of the above inequality by 2m(1− 8LΩu
max
k /b), and considering

the definition of ρ̂k, we arrive at

Ẽ
[
P (w̃k+1)− P∗

]
≤ ρ̂kẼ

[
P (w̃k)− P∗

]
.

�

3.3 Convergence properties for convex case

We study the convergence of SRG-DBB for convex nonsmooth functions. Next
lemma presents a new 3-point property which generalizes the one in [35].

Lemma 6 (generalized 3-point property) Suppose that R : Rd → R is lower semicon-

tinuous convex (but possibly nondifferentiable) and w′ = proxA
−1

R (w) with A ∈ Sd×d++ .

Then, for any z ∈ Rd, we have the following inequality

R(w′) +
1

2
‖w′ − w‖2A−1 ≤ R(z) +

1

2
‖z − w‖2A−1 −

1

2
‖w′ − z‖2A−1 .

Proof Since w′ = proxA
−1

R (w) = arg minz{R(z) + 1
2‖z − w‖

2
A−1}, there exists $ ∈

∂R(w′) such that

$ +A−1(w′ − w) = 0.

By direct expansion, we have

1

2
‖z − w‖2A−1 =

1

2
‖z − w′‖2A−1 +

1

2
‖w′ − w‖2A−1

+ (z − w′)TA−1(w′ − w), ∀z ∈ Rd.

Using the above two relations and the convexity of R(z), we conclude that

R(z) +
1

2
‖z − w‖2A−1

= R(z) +
1

2
‖z − w′‖2A−1 +

1

2
‖w′ − w‖2A−1 + (z − w′)TA−1(w′ − w)

≥ R(w′) +$T (z − w′) +
1

2
‖z − w′‖2A−1 +

1

2
‖w′ − w‖2A−1 + (z − w′)TA−1(w′ − w)

= R(w′) +
1

2
‖z − w′‖2A−1 +

1

2
‖w′ − w‖2A−1 .

�
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Lemma 7 Suppose that R : Rd → R is lower semicontinuous convex (but possibly
nondifferentiable) and

w′ = proxA
−1

R (w −Aζ) (29)

with A ∈ Sd×d++ and ζ ∈ Rd. Then, the following inequality holds

R(w′) ≤ R(z) + (z − w′)T ζ +
1

2

[
‖z − w‖2A−1 − ‖w′ − w‖2A−1 − ‖w′ − z‖2A−1

]
(30)

for all z ∈ Rd.

Proof By applying Lemma 6 to (29), we get

R(w′) + (w′ − w)T ζ +
1

2
‖w′ − w‖2A−1 +

1

2
‖ζ‖2A

= R(w′) +
1

2
‖w′ − (w −Aζ)‖2A−1

≤ R(z) +
1

2
‖z − (w −Aζ)‖2A−1 −

1

2
‖w′ − z‖2A−1

= R(z) + (z − w)T ζ +
1

2
‖z − w‖2A−1 +

1

2
‖ζ‖2A −

1

2
‖w′ − z‖2A−1 .

�

Lemma 8 Consider P (w) as defined in (1). Suppose that Assumptions 1 and 2 hold.
Then, for w′ defined by (29), the following inequality holds

P (w′) ≤ P (z) + (w′ − z)T (∇F (w)− ζ)− 1

2
‖w′ − z‖2A−1

+
1

2
‖w′ − w‖2(LΩId−A−1) +

1

2
‖z − w‖2(LΩId+A−1),

for all z ∈ Rd.

Proof From the L-smoothness of F and L ≤ LΩ, we obtain

F (w′) ≤ F (w) +∇F (w)T (w′ − w) +
LΩ

2
‖w′ − w‖22,

F (w) ≤ F (z) +∇F (w)T (w − z) +
LΩ

2
‖w − z‖22.

By summing the above two inequalities, we have

F (w′) ≤F (z) +∇F (w)T (w′ − z) +
LΩ

2
‖w′ − w‖22 +

LΩ

2
‖w − z‖22. (31)

Summing (30) and (31), we get

P (w′) ≤ P (z) + (w′ − z)T (∇F (w)− ζ)− 1

2
‖w′ − z‖2A−1

+
1

2
‖w′ − w‖2(LΩId−A−1) +

1

2
‖z − w‖2(LΩId+A−1),

which completes our proof. �

In order to derive an upper bound on the variance of vkt in the mini-batch
setting, we first show the result in the case where b = 1.
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Lemma 9 Suppose that Assumption 1 holds. Consider vkt as defined in (4) with
b = 1, i.e.,

vkt =
∇fit(w

k
t )−∇fit(w

k
t−1)

nqit
+ vkt−1. (32)

Then the following inequality holds

Ẽ[‖vkt −∇F (wkt )‖22] ≤ L2
ΩẼ[‖wkt − wkt−1‖22], ∀t ≥ 1.

Proof Consider vkt defined in (32). Conditioned on Ft = σ(wk0 , i1, . . . , it−1), we take
expectation with respect to it and obtain

Eit
[∇fit(wkt )

nqit
|Ft
]

=

n∑
i=1

qi
nqi
∇fi(wkt ) = ∇F (wkt ). (33)

Similarly we have

Eit
[∇fit(wkt−1)

nqit
|Ft
]

= ∇F (wkt−1). (34)

Then we obtain

Eit
[
‖vkt −∇F (wkt )‖22|Ft

]
= Eit

[
‖
∇fit(w

k
t )−∇fit(w

k
t−1)

nqit

−
(
∇F (wkt )−∇F (wkt−1)

)
+
(
vkt−1 −∇F (wkt−1)

)
‖22|Ft

]
= Eit

[
‖
∇fit(w

k
t )−∇fit(w

k
t−1)

nqit
‖22|Ft

]
− ‖∇F (wkt )−∇F (wkt−1)‖22 + ‖vkt−1 −∇F (wkt−1)‖22

= Eit
[
‖
∇fit(w

k
t )−∇fit(w

k
t−1)

nqit
‖22|Ft

]
− 2
(
∇F (wkt )− vkt−1

)T (
vkt−1 −∇F (wkt−1)

)
− ‖∇F (wkt )− vkt−1‖22

≤ Eit
[
‖
∇fit(w

k
t )−∇fit(w

k
t−1)

nqit
‖22|Ft

]
− 2
(
∇F (wkt )− vkt−1

)T (
vkt−1 −∇F (wkt−1)

)
,

where the second equality follows from (33) and (34).
Taking total expectation, this yields

Ẽ
[
‖vkt −∇F (wkt )‖22

]
≤ Ẽ

[
‖
∇fit(w

k
t )−∇fit(w

k
t−1)

nqit
‖22
]

≤ Ẽ
[ L2

it

n2q2
it

‖wkt − wkt−1‖22
]

≤ L2
ΩẼ
[
‖wkt − wkt−1‖22

]
,

where the first inequality holds due to (9), the second inequality follows from the
smoothness of fi, and the last inequality is due to the fact that LΩ ≥ Li/(nqi) for
i = 1, 2, . . . , n. �



Springer Nature 2021 LATEX template

A SRG-DBB algorithm 19

The following lemma provides an upper bound on vkt , which looks similar
to the Lemma 3 in the appendix of [36], but they are essentially different due
to the update rule of vkt .

Lemma 10 Suppose that Assumption 1 holds and choose b ∈ {1, 2, . . . , n}. Consider
vkt as defined in (4). Then, for any t ≥ 1, the following inequality holds

Ẽ[‖vkt −∇F (wkt )‖22] ≤ L2
Ω

b
Ẽ[‖wkt − wkt−1‖22].

Proof We define

Gi = (∇fi(wkt )−∇fi(wkt−1))/(nqi) + vkt−1.

Then vkt in (4) can be written as

vkt =
1

b

∑
i∈It

(∇fi(wkt )−∇fi(wkt−1)

nqi
+ vkt−1

)
=

1

b

∑
i∈It

Gi.

Conditioned on Ft = σ(wk0 , I1, . . . , It−1), we take expectation with respect to It and
get

EIt
[
‖vkt −∇F (wkt )‖22|Ft

]
=

1

b2
EIt
[
‖
∑
i∈It

(Gi −∇F (wkt ))‖22|Ft
]

=
1

b2
EIt
[
‖
∑
i∈S1

(Gi −∇F (wkt )) + (GIt/S1
−∇F (wkt ))‖22|Ft

]
=

1

b2
EIt
[
‖
∑
i∈S1

(Gi −∇F (wkt ))‖22|Ft
]

+
1

b2
EIt
[
‖GIt/S1

−∇F (wkt )‖22|Ft
]

+
2

b2
EIt
[( ∑
i∈S1

(Gi −∇F (wkt ))
)T (

GIt/S1
−∇F (wkt )

)
|Ft
]
,

where S1 ⊂ It and the number of elements in the set It/S1 is 1. By taking total
expectation and applying the above inequality recursively, we obtain

Ẽ[‖vkt −∇F (wkt )‖22] =
1

b2
Ẽ
[
‖
∑
i∈S1

(Gi −∇F (wkt ))‖22
]

+
1

b2
Ẽ
[
‖GIt/S1

−∇F (wkt )‖22
]

=
1

b2

∑
i∈It

Ẽ
[
‖Gi −∇F (wkt )‖22

]
≤ L2

Ω

b
Ẽ
[
‖wkt − wkt−1‖22

]
,

where the first equality holds due to the fact Ẽ[Gi] = Ẽ[∇F (wkt )], which follows from
(9) with b = 1. In the last inequality we use Lemma 9. �

To establish the convergence of SRG-DBB under convexity condition, we
need the following notation of gradient mapping

GA−1(w) = A−1
(
w − proxA

−1

R

(
w −A∇F (w)

))
, (35)



Springer Nature 2021 LATEX template

20 A SRG-DBB algorithm

where A is a symmetric positive definite matrix. Note that when R(w) is a
constant function, the gradient mapping can be reduced to GA−1(w) = ∇F (w).
It is not difficult to show that GA−1(w) = 0 if and only if w is a solution of
problem (1).

Theorem 5 Suppose that Assumptions 1 and 2 hold, and 0 ≺ Uk � 1/(3LΩ)Id. Let
ctk+1 = 0 and ckt = ckt+1 + (umax

k )2L2
Ω/(2b). Then, for the output wa of Algorithm

1, we have

Ẽ[‖GU−1
k

(wa)‖2Uk
] ≤ 6(P (w̃0)− P (w∗))

T
,

where T =
∑K−1
k=0 tk.

Proof By applying Lemma 8 to the proximal full gradient update defined in (19)
(with w′ = w̄kt+1, w = z = wkt , A = Uk and ζ = ∇F (wkt )), and taking total
expectation, we have

Ẽ[P (w̄kt+1)] ≤ Ẽ[P (wkt ) + ‖w̄kt+1 − wkt ‖2( LΩ
2 Id−U−1

k )
]. (36)

Recalling that the iterates of Algorithm 1 are computed by

wkt+1 = prox
U−1

k

R (wkt − Ukvkt ).

Again by applying Lemma 8 to the above update equation (with w′ = wkt+1, z =

w̄kt+1, w = wkt , A = Uk and ζ = vkt ) and taking total expectation, we have

Ẽ[P (wkt+1)] ≤ Ẽ[P (w̄kt+1) +
1

2
‖w̄kt+1 − wkt ‖2(LΩId+U−1

k )

+
1

2
‖wkt+1 − wkt ‖2(LΩId−U−1

k )
− 1

2
‖wkt+1 − w̄kt+1‖2U−1

k

+ (wkt+1 − w̄kt+1)T (∇F (wkt )− vkt )]. (37)

By summing (36) and (37), we obtain

Ẽ[P (wkt+1)] ≤ Ẽ[P (wkt ) + ‖w̄kt+1 − wkt ‖2(LΩId− 1
2U

−1
k )

+
1

2
‖wkt+1 − wkt ‖2(LΩId−U−1

k )
− 1

2
‖wkt+1 − w̄kt+1‖2U−1

k

+ (wkt+1 − w̄kt+1)T (∇F (wkt )− vkt )]. (38)

Let Γ = (wkt+1−w̄kt+1)T (∇F (wkt )−vkt ). The expectation on Γ can be bounded above
by

Ẽ[Γ] ≤ 1

2
Ẽ[‖wkt+1 − w̄kt+1‖2U−1

k
] +

1

2
Ẽ[‖∇F (wkt )− vkt ‖2Uk

]

≤ 1

2
Ẽ[‖wkt+1 − w̄kt+1‖2U−1

k
] +

umax
k L2

Ω

2b
Ẽ[‖wkt − wkt−1‖22],

where in the first inequality we use Cauchy-Schwarz and Young’s inequality, and the
second inequality follows from the definition of umax

k and Lemma 10. We substitute
the upper bound on Γ in (38) and then obtain

Ẽ[P (wkt+1)] ≤ Ẽ[P (wkt ) + ‖w̄kt+1 − wkt ‖2(LΩId− 1
2U

−1
k )
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+
1

2
‖wkt+1 − wkt ‖2(LΩId−U−1

k )
+
umax
k L2

Ω

2b
‖wkt − wkt−1‖22]. (39)

In order to further analyze (39), we need the following auxiliary function

Υ(wkt+1) = Ẽ[P (wkt+1) + ckt+1‖wkt+1 − wkt ‖2U−1
k

], (40)

where cktk+1 = 0 and ckt = ckt+1 + (umax
k )2L2

Ω/(2b). Then Υ(wkt+1) can be bounded
above by

Υ(wkt+1) = Ẽ[P (wkt+1) + ckt+1‖wkt+1 − wkt ‖2U−1
k

]

≤ Ẽ[P (wkt+1) + ckt+1‖wkt − wkt−1‖2U−1
k

]

≤ Ẽ[P (wkt ) + ‖w̄kt+1 − wkt ‖2(LΩId− 1
2U

−1
k )

+ ckt+1‖wkt − wkt−1‖2U−1
k

+
umax
k L2

Ω

2b
‖wkt − wkt−1‖22]

≤ Ẽ[P (wkt ) + ‖w̄kt+1 − wkt ‖2(LΩId− 1
2U

−1
k )

+ (ckt+1 +
(umax
k )2L2

Ω

2b
)‖wkt − wkt−1‖2U−1

k
]

= Υ(wkt ) + Ẽ[‖w̄kt+1 − wkt ‖2(LΩId− 1
2U

−1
k )

], (41)

where the first inequality follows from Theorem 1, and the second inequality holds by
(39) and 0 ≺ Uk � 1/(3LΩ)Id ≺ 1/LΩId. The last inequality holds by the definition
of umax

k and the last equality is due to the definitions of ckt and Υ(wkt ). By summing
(41) over t = 1, . . . , tk, we get

Υ(wktk+1) ≤ Υ(wk1 ) +

tk∑
t=1

Ẽ[‖w̄kt+1 − wkt ‖2(LΩId− 1
2U

−1
k )

]. (42)

By the fact cktk+1 = 0 and the definition of w̃k+1, we have

Υ(wktk+1) = Ẽ[P (wktk+1)] = Ẽ[P (w̃k+1)].

Since wk1 = wk0 = w̃k, we know that Υ(wk1 ) = Ẽ[P (wk1 )] = Ẽ[P (w̃k)]. It follows from
(42) that

Ẽ[P (w̃k+1)] ≤ Ẽ[P (w̃k)] +

tk∑
t=1

Ẽ[‖w̄kt+1 − wkt ‖2(LΩId− 1
2U

−1
k )

]. (43)

By summing (43) over k = 0, . . . ,K − 1 and rearranging terms, we obtain

K−1∑
k=0

tk∑
t=1

Ẽ[‖w̄kt+1 − wkt ‖2( 1
2U

−1
k −LΩId)

] ≤ P (w̃0)− P (w̃K) ≤ P (w̃0)− P (w∗), (44)

where in the second inequality we use the fact that P (w̃k) ≥ P (w∗) for all k ∈
{0, 1, . . . ,K}.

From (35) and (19), it follows that

GU−1
k

(wkt ) = U−1
k

(
wkt − prox

U−1
k

R

(
wkt − Uk∇F (wkt )

))
= U−1

k (wkt − w̄kt+1).

By 0 ≺ Uk � 1/(3LΩ)Id, we have

‖w̄kt+1 − wkt ‖2( 1
2U

−1
k −LΩId)

= ‖UkGU−1
k

(wkt )‖2
( 1

2U
−1
k −LΩId)
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= GU−1
k

(wkt )TUTk (
1

2
U−1
k − LΩId)UkGU−1

k
(wkt )

≥ GU−1
k

(wkt )TUTk (
1

6
U−1
k )UkGU−1

k
(wkt )

=
1

6
‖GU−1

k
(wkt )‖2Uk

.

Combining the above inequality with (44), we get

K−1∑
k=0

tk∑
t=1

1

6
Ẽ[‖GU−1

k
(wkt )‖2Uk

] ≤ P (w̃0)− P (w∗). (45)

Then we obtain the desired result by the definitions of wa and T . �

4 Numerical experiments

In this section, we present experimental results on the following elastic net
regularized logistic regression problem

min
w∈Rd

1

n

n∑
i=1

log(1 + exp(−biaTi w)) +
λ2

2
‖w‖22 + λ1‖w‖1, (46)

which is usually employed in machine learning for binary classification. All the
tests were performed with R(w) = λ1‖w‖1 and

fi(w) = log(1 + exp(−biaTi w)) +
λ2

2
‖w‖22.

Four publicly available data sets ijcnn1, rcv1, real-sim and covtype, which
can be downloaded from the LIBSVM website 1, were tested. Table 2 lists the
detailed information of these four data sets, including their sizes n, dimensions
d, and Lipschitz constants L. Moreover, the values of regularization param-
eters λ1 and λ2 used in our experiments are also listed in Table 2. Notice
that the choices of regularization parameters are typical in machine learning
benchmarks to obtain good classification performance, see [15] for example.

Table 2 Data sets and parameters used in numerical experiments

Data sets n d λ2 λ1 L

ijcnn1 49,990 22 10−4 10−5 0.9842

rcv1 20,242 47,236 10−4 10−5 0.2501

real-sim 72,309 20,958 10−4 10−5 0.2501

covtype 581,012 54 10−5 10−4 1.9040

For fair comparison, all methods were implemented in Matlab 2018b, and
the experiments were conducted on a laptop with an Intel Core i7, 1.80 GHz
processor and 16 GB of RAM running Windows 10 system. In Figures 1-3, the

1https://www.csie.ntu.edu.tw/˜cjlin/libsvm
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x-axis is the number of effective passes over the data, where the evaluation of
n component gradients counts as one effective pass. The y-axis with “optimal-
ity gap” denotes the value P (w̃k) − P (w∗) with w∗ obtained by running the
proximal SARAH with best-tuned fixed stepsizes.

4.1 Comparison with proximal variants of SARAH and
SARAH-BB

This subsection presents the results of SRG-DBB with b = 1 for solving (46)
on the four data sets listed in Table 2. Proximal SARAH (Prox-SARAH)
and the proximal version of SARAH-BB (Prox-SARAH-BB) were also run for
comparison. Notice that the SARAH-BB method is proposed to solve problem
(1) with R(w) = 0. In order to solve the nonsmooth problem (46), the proximal
operator was incorporated to obtain the Prox-SARAH-BB method. The best-
tuned m were employed by Prox-SARAH and Prox-SARAH-BB.

It can be seen from Figure 1 that SRG-DBB often performs better than
Prox-SARAH with different initial stepsizes. Unlike Prox-SARAH, SRG-DBB
is not sensitive to the choice of initial stepsize, which would save much
time on choosing initial stepsize so that it has promising potential in prac-
tice. Moreover, for different initial stepsizes, SRG-DBB performs better than
Prox-SARAH-BB.
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Fig. 1 Comparison of SRG-DBB, Prox-SARAH and Prox-SARAH-BB with different initial
stepsizes
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4.2 Properties of SRG-DBB with different mini-batch
sizes

Figure 2 illustrates the results of SRG-DBB under various mini-batch sizes b on
the four data sets. We can see that compared with b = 1, SRG-DBB has better
or same performance by increasing the mini-batch size to b = 2, 4, 8, 16, 32.
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Fig. 2 Comparison of SRG-DBB with different mini-batch sizes

4.3 Comparison with other algorithms

In this part, we conduct experiments on SRG-DBB with b = 4 in compari-
son with Prox-SVRG in [15] and four modern mini-batch proximal stochastic
gradient methods, which are specified as follows.

(1) mS2GD: mS2GD is a mini-batch proximal version of S2GD [16] to deal with
nonsmooth problems. In mS2GD, a constant stepsize was used.

(2) mS2GD-BB: mS2GD-BB uses (7) to compute stepsizes for mS2GD.
(3) mSARAH: mSARAH is a mini-batch proximal variant of stochastic recur-

sive gradient algorithm proposed in [14]. In mSARAH, a constant stepsize
was used.

(4) mSARAH-BB: mSARAH-BB is a mini-batch variant of SARAH-BB [23].
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Parameters suggested in [15] were used by Prox-SVRG. For the above four
methods, we set b = 4. The best choices of parameters employed by SRG-
DBB and the compared five methods are given in Table 3, including m for
mS2GD, mS2GD-BB, mSARAH, mSARAH-BB and SRG-DBB, as well as the
best-tuned stepsize η for mS2GD and mSARAH.

Table 3 Best choices of parameters for the methods

Parameter ijcnn1 rcv1 real-sim covtype

mS2GD

(m, η)
( 1.0
L
, 0.06n) ( 1.5

L
, 0.11n) ( 0.7

L
, 0.07n) ( 21

L
, 0.07n)

mS2GD-BB 0.06n 0.03n 0.02n 0.01n

mSARAH

(m, η)
( 1.1
L
, 0.06n) ( 1.6

L
, 0.13n) ( 1.0

L
, 0.1n) ( 25

L
, 0.07n)

mSARAH-BB 0.06n 0.03n 0.02n 0.01n

SRG-DBB 0.04n 0.08n 0.04n 0.15n

Figure 3 demonstrates that our SRG-DBB is better than or competitive
with the compared algorithms on the four data sets.
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Fig. 3 Comparison of SRG-DBB and other modern methods
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5 Conclusion

Based on a diagonal BB stepsize, we proposed a mini-batch proximal stochas-
tic recursive gradient method named SRG-DBB to minimize the composition
of two convex functions. Linear convergence of SRG-DBB was established in
strongly convex and non-strongly convex cases, respectively. We further ana-
lyzed the sublinear convergence of SRG-DBB for the general convex function.
Numerical comparisons of SRG-DBB and recent successful variance reduced
stochastic gradient methods on some real data sets highly suggest the poten-
tial benefits of our SRG-DBB method for composition optimization problems
arising in machine learning. Due to the popularity of deep learning, the nons-
mooth nonconvex problems have attracted more and more attention. It would
be interesting to explore the convergence of the SRG-DBB algorithm in the
nonconvex case.
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