
The Elicited Progressive Decoupling Algorithm:
A Note on the Rate of Convergence and a Preliminary
Numerical Experiment on the Choice of Parameters

Jie Sun∗and Min Zhang†

Abstract The paper studies the progressive decoupling algorithm (PDA) of Rockafellar
and focuses on the elicited version of the algorithm. Based on a generalized Yosida-
regularization of Spingarn’s partial inverse of an elicitable operator, it is shown that the
elicited progressive decoupling algorithm (EPDA), in a particular nonmonotone setting,
linearly converges at a rate that could be viewed as the rate of a rescaled PDA, which may
provide certain guidance to the selection of the parameters in computational practice. A
preliminary numerical experiment shows that the choice of the elicitation constant has
an impact on the efficiency of the EPDA. It is also observed that the influence of the
elicitation constant is generally weaker than the proximal constant in the algorithm.

Key words Proximal point algorithm, progressive decoupling algorithm, stochastic vari-
ational inequality
MSC classification 90C15, 90C30, 90C33, 91B51

1 Introduction

Rockafellar recently introduced the notion of elicitable monotonicity [9] in an attempt
to extend the proximal point algorithm (PPA for short) and its varieties from monotone
mappings to certain nonmonotone mappings. Roughly speaking, for a given subspaceM
in a Hilbert space H, a set-valued mapping T : H ⇒ H is e-elicitable monotone at level
e ≥ 0 in a neighborhood if T + ePM is monotone in that neighborhood, where PM is the
projection mapping on M.

Our main interest here is a variety of the PPA, called the progressive decoupling
algorithm (PDA for short), for the linkage problem. A prototype of the PDA was first
developed by Rockafellar and Wets [12] for stochastic programming under the name of
progressive hedging algorithm (PHA for short) and later was transplanted to stochastic
variational inequality (SVI for short) and Lagrangian variational inequality by Rockafellar
and Sun [10, 11]. PHA has been numerically tested for various SVI problems, e.g.,

∗Department of Analytics and Operations, School of Business, National University of Singapore,
Singapore 119245 and School of EECMS, Curtin University, Australia 6102. Email: jsun@nus.edu.sg
†Corresponding author. Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences,

Urumqi 830011, China and University of Chinese Academy of Sciences, Beijing 100049, China. Email:
zhangmin1206@ms.xjb.ac.cn

1

Citation
Sun, J. and Zhang, M. 2021. The Elicited Progressive Decoupling Algorithm: A Note on the Rate of Convergence and a 
Preliminary Numerical Experiment on the Choice of Parameters. Set-Valued and Variational Analysis. 29 (4): pp. 997-1018.
http://doi.org/10.1007/s11228-021-00613-0

http://doi.org/10.1007/s11228-021-00613-0


[2, 14, 15] and has been shown promising to become a major tool in solving SVIs of
ordinary-size (i.e., hundreds of variables and scenarios).

In particular, the convergence rate of the PDA has been shown to be globally linear
for monotone linear SVI [8]. The rate of convergence depends on a proximal constant r
that is inherited from the analysis of the PPA [7]. An elicited version of PDA has been
developed both in global and local senses for e-elicitable monotone variational inequality
and optimization problems [9]. Specifically, linear rate of convergence has been estab-
lished for strongly local and global e-elicitable monotone problems. Since this linear rate
of convergence is related to both r and e in the elicitable case, it is conceivable that
the performance of the elicited progressive decoupling algorithm (EPDA for short) will
depend on the joint selection of them, rather than the individual selection of r or e only.
Therefore, some sort of theoretical guidance on the choice of the (r, e) pair would be
practically helpful, which motivates this paper.

The main contribution of this paper is two-fold.

• Theoretically, we provide an interpretation of the EPDA as the iteration scheme

zk+1 = (I + cA(T + ePM)NA)−1(zk),

where c =
√

4r2+e2−e
2r2

, A : u 7→ PN (u) + rPM(u) is a self-adjoint linear operator and
N is the orthogonal complement space of M.1 From this rescaling interpretation,
we conclude that if the elicitable monotonicity is strong with modulus σ > 0, then
the EPDA will converge at rate c−1

c−1+σ
with respect to the r-norm (defined in Section

2). A bigger e leads to a smaller c, which makes the rate closer to 1 and the speed
of convergence would therefore tend to decrease. In addition, we show that the
mapping (T + ePM)N can be regarded as a generalized Yosida-regularization of
operator TN , which sheds some light for understanding the connection between the
EPDA and Pennanen’s nonmonotone proximal point algorithm [4].

• Computationally, we design and test a sequence of numerical problems of both
monotone and nonmonotone but elicitable monotone types. The numerical results
confirm our theoretical analysis. Specifically, it is observed that, as expected, the
elicited version of PDA is generally slower than the non-elicited version in both
number of iterations and computational time if they are used to blindly solve the
same problem, either monotone or elicitable monotone. Furthermore, the elicited
version becomes much slower if the elicitation constant e is set too large. It is also
observed that the influence of e is generally weaker than the influence of r in the
algorithm.

The rest of this paper is organized as follows. Section 2 provides some background
materials on PPA and PDA. Section 3 investigates properties of (T + ePM)N and pro-
vides the aforementioned rescaling interpretation of the EPDA. Section 4 is devoted to
presentation of the numerical results and Section 5 concludes this paper.

1For any operator S : H ⇒ H, SN stands for Spingarn’s partial inverse of S [6] (detailed definition
will be given in next section). Therefore, (T + ePM)N means the partial inverse of T + ePM.

2



2 Preliminaries

We first provide definitions about several types of monotonicity. Then we briefly intro-
duce the PPA for finding a root of a maximal monotone mapping and a nonmonotone
mapping, respectively. After that, we describe the PDA and EPDA with corresponding
convergence results.

Definition 2.1 Let T : H⇒ H be a set-valued mapping. The mapping T is called

• monotone, if

〈u− u′, v − v′〉 ≥ 0 ∀ v ∈ T (u), v′ ∈ T (u′).

Moreover, a monotone mapping T is maximal if, in addition,

6 ∃ monotone T ′ : H⇒ H with grhT ⊂ gphT ′ but gphT 6= gphT ′,

where gphT := {(u, v)|v ∈ T (u)};

• strongly monotone with modulus σ > 0, if

〈u− u′, v − v′〉 ≥ σ‖u− u′‖2 ∀ v ∈ T (u), v′ ∈ T (u′);

• globally (or locally around (ū, v̄)) e-elicitable monotone at level e ≥ 0, if
T +ePM is monotone over H (or locally around (ū, v̄)), where PM is the projection
mapping to a certain given subspace M of H.

Minty [3] discovered a useful property of a maximal monotone mapping T : For every
c > 0 and z ∈ H, there exists a unique u ∈ H such that z − u ∈ cT (u). Equivalently,
JcT := (I + cT )−1 is a single-valued function, which is called the resolvent of mapping
T . It implies that finding a zero point of T is equivalent to finding a fixed point of
its resolvent JcT . Since JcT is nonexpansive when T is maximal monotone, one can in
principle use the following scheme to obtain a solution to 0 ∈ T (z):

zk+1 = JckT (zk) := (I + ckT )−1(zk), (1)

where the sequence {ck} consists of positive scalars satisfying inf ck > 0, which is the
basic scheme of PPA. Moreover, Eckstein and Bertsekas [1] developed a relaxed PPA for
maximal monotone mapping T with the following scheme and established its convergence.

zk+1 = γkJckT (zk) + (1− γk)zk, (2)

with 0 < inf γk ≤ sup γk < 2 and inf ck > 0.

Although these results are based on monotonicity of the underlying mapping, it is shown
by Pennanen [4] that they eventually lead to some results for the nonmonotone case.
When T is no longer maximal monotone but its Yosida-regularization Te = (T−1 +
eI)−1 is maximal monotone for some e > 0, Pennanen demonstrated that the sequence
generated by PPA (1) still converges if the parameter ck is well chosen. In fact, due to
the equivalence between problem 0 ∈ T (z) and 0 ∈ Te(z), the key idea of Pennanen’s

3



work is to apply the relaxed PPA (2) to the maximal monotone Te instead of the original
(possibly nonmonotone) operator T , i.e.

zk+1 = γkJc′kTe(z
k) + (1− γk)zk,

where 0 < inf γk ≤ sup γk < 2 and inf c′k > 0.

Based on the following relationship between the resolvents of Te and T :

(I + cTe)
−1 =

e

c+ e
I +

c

c+ e
[I + (c+ e)T ]−1 , (3)

the relaxed PPA (3) on Te turns out to be a rescaled PPA of form (1) on T by choosing

c′k = ck − e, γk =
ck

ck − e
.

Following the convergence results of the relaxed PPA for maximal monotone mappings,
Pennanen proved that the choice of ck satisfying inf ck > 2e can guarantee the convergence
of PPA (1) for such nonmonotone T .

An important application of the PPA is the PDA [8, 9] in solving the so-called linkage
problem. The notion of linkage problem is popularized by Rockafellar [8, 9]. Let H be a
Hilbert space and consider a set-valued mapping T : H⇒ H. Let N be a subspace of H
and let M be its orthogonal complement. The linkage problem for N and T is to

find x ∈ N and w ∈M such that w ∈ T (x), (4)

where the condition x ∈ N represents a “linkage” constraint. The iteration procedure of
the PDA is, in a nutshell, as follows.

Algorithm 1. The Progressive Decoupling Algorithm
Having xk ∈ N , wk ∈M and r > 0,

Step 1. obtain x̂k via solving wk − r(x− xk) ∈ T (x),

Step 2. update xk+1 = PN (x̂k), wk+1 = wk − r(x̂k − xk+1).

k := k + 1. repeat.

When x = (x1, x2, · · · , xK) ∈ H1×H2×· · ·×HK and T (x) = (T1(x1), · · · , TK(xK)), such
as in SVIs [10, 11, 13], Step 1 of Algorithm 1 can be decomposed in term of scenarios,
namely, obtaing x̂ki by separately solving

wki − r(xi − xki ) ∈ Ti(xi) ∀ i = 1, · · · , K,

where wki is the component of wk corresponding to xi. That is why it is called decoupling.
In the following, we illustrate the connection between the PDA and the PPA. We

start with the case of T being monotone. Based on Spingarn’s partial inverse mapping
TN [6], which is defined by

gphTN := {(PN (u) + PM(v), PM(u) + PN (v)) | (u, v) ∈ gphT}, (5)

4



one can equivalently reformulate the linkage problem (4) as a generalized equation prob-
lem, namely,

find z such that 0 ∈ TN (z), then set x = PN (z), w = PM(z). (6)

Problem (6) is equivalent to

find z such that 0 ∈ ATNA(z), then set x = PN (Az), w = PM(Az), (7)

where A is the invertible linear mapping A : z 7→ PN (z) + rPM(z). Since TN , as well
as ATNA, is maximal monotone if and only if T is maximal monotone, the PDA can be
interpreted as a special version of PPA applied to the mapping ATNA. More concretely,
Algorithm 1 is equivalent to the following scheme

zk+1 = (I + r−1ATNA)−1(zk), with xk+1 = PN (Azk+1), wk+1 = PM(Azk+1).

See a detailed proof in [10]. Following the convergence results of PPA [7], the above
iteration scheme generates a convergent sequence to a solution of problem (4), as long
as (4) has a solution. Moreover, if in addition the graph of T is the union of a finite
collection of polyhedral convex sets, the rate of convergence is linear with respect to
certain norm of z, i.e., ‖A−1(x+ w)‖, which is the so-called r-norm of pair (x,w):

‖(x,w)‖r := (‖x‖2 + r−2‖w‖2)1/2.

Recently, Rockafellar [9] developed a theoretical framework of elicitable monotonicity
to go beyond the assumption of monotonicity and designed the EPDA to handle prob-
lem (4), where the mapping T is possibly nonmonotone, but elicitable monotone. The
iteration scheme is as follows.

Algorithm 2. The Elicited Progressive Decoupling Algorithm
Having xk ∈ N , wk ∈M and r > e ≥ 0,

Step 1. obtain x̂k via solving wk − r(x− xk) ∈ T (x),

Step 2. update xk+1 = PN (x̂k), wk+1 = wk − (r − e)(x̂k − xk+1).

k := k + 1. repeat.

Similar to the monotone case, Rockafellar proved that for an elicitable monotone T ,
as long as a solution to the linkage problem (4) exists, Algorithm 2 generates a convergent
sequence of pairs (xk, wk) to a solution (x∗, w∗) of the linkage problem in the manner
that the so-called (r, e)-norm of the pair (x,w)

‖(x,w)‖r,e :=

(
‖x‖2 +

1

r(r − e)
‖w‖2

)1/2

keeps decreasing. Furthermore, if T + ePN is strongly monotone with modulus σ > 0,
then the convergence will follow the pattern that

‖xk+1 − x∗‖ ≤ ‖(xk+1, wk+1)− (x∗, wk)‖r,e ≤
r

r + σ
‖(xk, wk)− (x∗, w∗)‖r,e. (8)

5



Since both r and e show up in the convergence rate estimate of (8) with an implicit
requirement of r > e, it appears complicated to theoretically compare the convergence
speed for different (r, e). However, by following the idea in the proof of Theorem 1(c) in
[9], we can identify the rate of convergence of EPDA with the rate of a rescaled PDA
under the r-norm, which may provide a clearer guidance for selecting ideal e and r in
practice. We start this job with the following theorem.

Theorem 2.1 Suppose that the linkage problem (4) is solvable and the set-valued map-
ping T : H⇒ H is maximal strongly monotone of modulus σ > 0. Let TN be the partial
inverse of T and A be the linear mapping defined as Az = x + w where x = PN (z) and
w = rPM(z) (r is a positive constant). Let 0 < c ≤ r−1. Then the sequences {(xk, wk)}
and {zk} generated by the procedure

zk+1 = (I + cATNA)−1(zk), and (9)

xk+1 = PN (Azk+1), wk+1 = PM(Azk+1),

will converge to a solution (x∗, w∗) of Problem (4), and z∗ = x∗ + r−1w∗, respectively, in
the following pattern.

‖xk+1 − x∗‖ ≤ ‖(xk+1, wk+1)− (x∗, wk)‖r ≤
c−1

c−1 + σ
‖(xk, wk)− (x∗, w∗)‖r. (10)

Proof. Following exactly the same argument as Theorem 1 in [10] (or cf. [9, Theorem
1(c)] for a coincise proof) , we can prove (xk, wk) → (x∗, w∗), a solution of (4). Thus,
we only have to show z∗ = x∗ + r−1w∗ and (10). Since Az∗ = x∗ + w∗ and A−1(z) =
PN (z) + r−1PM(z) = x+ r−1w, we have z∗ = A−1(x∗+w∗) = x∗+ r−1w∗. We next prove
(10). The first inequality in (10) is obvious due to the definition of the r-norm. For the
second inequality of (10), note that the first formula in (9) means that

c−1(zk − zk+1) ∈ ATNA(zk+1),

which is equivalent to

c−1A−2(Azk − Azk+1) ∈ TN (Azk+1)

⇔ c−1A−2((xk − xk+1) + (wk − wk+1)) ∈ TN (Azk+1). (11)

The definition of A implies that A−2(z) = PN (z) + r−2PM(z), therefore (11) becomes

c−1(xk − xk+1 + r−2(wk − wk+1)) ∈ TN (xk+1 + wk+1). (12)

Let yk+1 = c−1r−2(wk − wk+1). From the definition of TN (set u = xk+1 + yk+1 and
v = c−1(xk − xk+1) + wk+1 in (5)), we see that (12) is equivalent to

c−1(xk − xk+1) + wk+1 ∈ T (xk+1 + yk+1).

Since (x∗, w∗) is a solution to problem (4), it holds w∗ ∈ T (x∗). Based on strong mono-
tonicity of T , we obtain

〈xk+1 + yk+1 − x∗, c−1(xk − xk+1) + wk+1 − w∗〉 ≥ σ‖xk+1 + yk+1 − x∗‖2. (13)

6



The left-hand side of (13) is equal to

c−1〈xk+1 − x∗, xk − xk+1〉+ 〈yk+1, wk+1 − w∗〉
= −c−1‖xk+1 − x∗‖2 + c−1〈xk+1 − x∗, xk − x∗〉 − cr2‖yk+1‖2 + 〈yk+1, wk − w∗〉
= c−1〈xk+1 − x∗, xk − x∗〉+ c−1〈cryk+1, r−1(wk − w∗)〉
−c−1‖xk+1 − x∗‖2 − cr2‖yk+1‖2

= c−1〈xk+1 − x∗ + cryk+1, xk − x∗ + r−1wk − r−1w∗〉
−c−1‖xk+1 − x∗‖2 − cr2‖yk+1‖2, (14)

while the right-hand side of (13) is equal to

σ‖xk+1 − x∗‖2 + σ‖yk+1‖2. (15)

Combining (14) and (15), we have

(c−1 + σ)

∥∥∥∥∥xk+1 − x∗ +

√
σ + cr2

σ + c−1
yk+1

∥∥∥∥∥
2

≤ c−1〈xk+1 − x∗ + cryk+1, xk − x∗ + r−1wk − r−1w∗〉
≤ c−1‖xk+1 − x∗ + cryk+1‖ ‖xk − x∗ + r−1wk − r−1w∗‖, (16)

where the second inequality follows from the Cauchy-Schwartz inequality. Since σ > 0

and 0 < cr < 1, it holds
√

σ+cr2

σ+c−1 ≥ cr. Hence we have∥∥∥∥∥xk+1 − x∗ +

√
σ + cr2

σ + c−1
yk+1

∥∥∥∥∥
2

≥
∥∥xk+1 − x∗ + cr yk+1

∥∥2
.

Therefore, (16) implies that

‖xk+1 − x∗ + cryk+1‖ ≤ c−1

c−1 + σ
‖xk − x∗ + r−1wk − r−1w∗‖,

which is equivalent to

‖(xk+1, wk+1)− (x∗, wk)‖r ≤
c−1

c−1 + σ
‖(xk, wk)− (x∗, w∗)‖r.

The proof is complete. 2

To summarize, our target is to interpret Algorithm 2 as in the format (9) with ap-
propriate definitions of T and r, then apply Theorem 2.1 in order to provide a clearer
explanation on how the convergence rate of the EPDA depends on (r, e). Moreover, since
PDA has a very close connection to PPA in the monotone case, one may naturally wonder
whether the EPDA has some connection with the PPA in the nonmonotone case as well,
especially with the work of Pennanen on nonmonotone PPA [4]. This question is also
mentioned in Rockafellar’s paper [9]. Motivated by these considerations, we attempt to
present a rescaling interpretation of the EPDA through Theorem 2.1. The analysis in
the next section also reveals that mapping (T + ePM)N can be viewed as a generalized
Yosida-regularization of TN , which provides a clue on on the connection between PDA
and Pennanen’s nonmonotone PPA. It also explains why the Yosida-regularization Te
is not a suitable tool for transplanting PDA into the nonmonotone setting and why one
needs instead go along the line of elicited monotonicity by utilizing mapping (T+ePM)N .

7



3 A Rescaling Interpretation of the EPDA

We first derive a relation between (T + ePM)N and TN , then establish the connection
between their resolvents. Based on such connections, we present a rescaling interpretation
for the EPDA in the end of this section.

The next proposition shows the relationship between Spingarn’s partial inverses of
operators T + ePM and T .

Proposition 3.1 Let T : H ⇒ H be a set-valued mapping, e ≥ 0 and TN be Spingarn’s
partial inverse of T . Then,

(T + ePM)N = (T−1
N + ePM)−1. (17)

Moreover, T + ePM is maximal monotone iff T−1
N + ePM is maximal monotone.

Proof.

v ∈ (T + ePM)N (u) ⇔ PN (v) + PM(u) ∈ (T + ePM)(PN (u) + PM(v))

⇔ PN (v) + PM(u)− ePM(v) ∈ T (PN (u) + PM(v))

⇔ v ∈ TN (u− ePM(v))

⇔ u ∈ T−1
N (v) + ePM(v)

⇔ v ∈ (T−1
N + ePM)−1(u).

Since TN is maximal monotone if and only if T is maximal monotone, we have

T + ePM is maximal monotone ⇔ (T + ePM)N is maximal monotone ⇔
(T−1
N + ePM)−1 is maximal monotone ⇔ T−1

N + ePM is maximal monotone.

2

Remark 3.1

1. Recall that the Yosida-regularization of mapping T is Te = (T−1 + eI)−1. Notice
that the equation (17) discloses a similar connection between (T + ePM)N and TN ,
which implies that (T + ePM)N may be viewed as something similar to the Yosida-
regularization of TN ;

2. Recall that
0 ∈ T (z) ⇔ 0 ∈ Te(z),

where T is possibly nonmonotone but Te is monotone for some e > 0. The adoption
of Te enables to find a root of nonmonotone T by applying the relaxed PPA on the
monotone Te. Back to the linkage problem (4), since

0 ∈ TN (z) ⇔ 0 ∈ (T + ePM)N (z),

where T is possibly nonmonotone but T is e-elicitable monotone for some e > 0.
Thus, the adoption of (T + ePM)N plays a similar role on the transformation of
PDA to the e-elicitable monotone case.

8



3. Specifically, When N = {0}, we have TN = T−1. Proposition 3.1 shows that
(T + ePM)N = (T−1)e. In this special case, (T + ePM)N is exactly the Yosida-
regularization of TN .

In [4], Pennanen explored the relation between the resolvents of T and its Yosida-
regularization Te and derived a nonmonotone PPA from it. Hence it is natural to inves-
tigate if there exists any similar relation between the resolvents of TN and (T + ePM)N .
We next establish a connection between the resolvents of DTND and D(T + ePM)ND,
where an invertible linear mapping D, which is an important tool for the analysis on the
convergence rate of the EPDA.

Proposition 3.2 Let D be defined as D : u 7→ αPN (u) + βPM(u) with positive α and β
and let T : H⇒ H be a maximal elicitable monotone mapping at level e. Then we have

(I + cD(T + ePM)ND)−1 = (I −R)I +R(I + cR−1DTND)−1, (18)

where c > 0 and R = (I + e
c
D−1PMD

−1)−1. Moreover, one has

R(u) = PN (u) +
cβ2

cβ2 + e
PM(u), (19)

which infers that R is a single-valued and invertible linear mapping.

Proof. Based on Proposition 3.1, we have (T + ePM)N = (T−1
N + ePM)−1. Therefore,

v = (I + cD(T + ePM)ND)−1(u)

⇔ D−1

(
u− v
c

)
∈ (T−1

N + ePM)−1(Dv)

⇔ Dv ∈ (T−1
N + ePM)

(
D−1

(
u− v
c

))
⇔ Dv − e

c
PMD

−1(u− v) ∈ T−1
N

(
D−1

(
u− v
c

))
⇔ D−1

(
u− v
c

)
∈ TND

(
v − e

c
D−1PMD

−1(u− v)
)
. (20)

From the definition of D and PM, we have D−1PMD
−1(u) = β−2PM(u), which leads to(

I +
e

c
D−1PMD

−1
)

(u) = PN (u) +
cβ2 + e

cβ2
PM(u).

Thus, given the definition of R as R = (I + e
c
D−1PMD

−1)−1, (19) holds, which infers
that R is a single-valued invertible linear mapping. Therefore, (20) is equivalent to

u− v ∈ cDTND
(
R−1v − (R−1 − I)u

)
⇔ R(u− (R−1v − (R−1 − I)u)) ∈ cDTND

(
R−1v − (R−1 − I)u

)
⇔ u− (R−1v − (R−1 − I)u) ∈ cR−1DTND

(
R−1v − (R−1 − I)u

)
⇔ u ∈ (I + cR−1DTND)(R−1v − (R−1 − I)u)

⇔ R−1v − (R−1 − I)u = (I + cR−1DTND)−1(u)

⇔ v =

[
(I −R) +R(I + cR−1DTND)−1

]
(u).

2

9



Remark 3.2 When D = I, we have R = c
c+e

I. Then, equation (18) becomes(
I + c(T + ePM)N

)−1
=

e

c+ e
I +

c

c+ e
(I + (c+ e)TN )−1.

It reveals a similar relation between TN and (T +ePM)N to the relation between mapping
T and its Yosida-regularization Te in Pennanen’s Lemma 8 of [4]. This finding provides
another evidence for viewing mapping (T +ePM)N as a generalized Yosida-regularization
of the partial inverse mapping TN .

In addition, when N = {0}, we have TN = T−1 and (T + ePM)N = (T−1)e, equation
(18) reduces to relation (3) for T−1.

Propositions 3.1 and 3.2 provide a basis for the rescaling interpretation of the EPDA.

Theorem 3.1 Suppose that set-valued mapping T : H⇒ H is elicitable maximal mono-
tone at level e ≥ 0. Then Algorithm 2 is equivalent to PPA for mapping A(T +ePM)NA,
namely

zk+1 = (I + cA(T + ePM)NA)−1(zk), (21)

where c =
√
e2+4r2−e

2r2
and A is a non-singular linear operator defined as A : u 7→ PN (u) +

rPM(u).

Proof. By the definition of elicitable monotonicity, T is maximal elicitable monotone for
some e ≥ 0 iff (T+ePM) is maximal monotone, which leads to the maximal monotonicity
of (T + ePM)N . From Proposition 3.2, the iteration scheme (21) is equivalent to

zk+1 = (I −R)(zk) +R(I + cR−1ATNA)−1(zk), (22)

with R : u 7→ PN (u) + cr2

cr2+e
PM(u). Then, from the iteration scheme (22), we have

R−1
(
zk+1 − zk

)
+ zk = (I + cR−1ATNA)−1(zk)

⇔ zk ∈ (I + cR−1ATNA)
(
R−1

(
zk+1 − zk

)
+ zk

)
⇔ R−1

(
zk − zk+1

)
∈ cR−1ATNA

(
R−1

(
zk+1 − zk

)
+ zk

)
⇔ A−1

(
zk − zk+1

c

)
∈ TN

(
AR−1

(
zk+1 − zk

)
+ A(zk)

)
(23)

Based on the definitions of linear mapping A and R, we have

A−1 : u 7→ PN (u) + r−1PM(u) and AR−1 : u 7→ PN (u) +
cr2 + e

cr
PM(u).

Substituting them into (23), we obtain

PN (zk)− PN (zk+1)

c
+

PM(zk)− PM(zk+1)

cr

∈ TN

(
(PN (zk+1)− PN (zk)) +

cr2 + e

cr

(
PM(zk+1)− PM(zk)

)
+ PN (zk) + rPM(zk)

)
.

10



Based on the definition of partial inverse TN , it follows that

PN (zk)− PN (zk+1)

c
+
cr2 + e

cr

(
PM(zk+1)− PM(zk)

)
+ rPM(zk)

∈ T

(
PN (zk+1) +

PM(zk)− PM(zk+1)

cr

)
. (24)

Let x̂ = PN (zk+1) + PM(zk)−PM(zk+1)
cr

. Then we have{
PN (x̂) = PN (zk+1),

PM(x̂) = PM(zk)−PM(zk+1)
cr

,
⇔

{
PN (zk+1) = PN (x̂),

PM(zk+1) = PM(zk)− crPM(x̂).
(25)

Substituting (25) into (24), we have

PN (zk)

c
−
(
PN (x̂)

c
+ (cr2 + e)PM(x̂)

)
+ rPM(zk) ∈ T (x̂). (26)

Moreover, setting c =
√
e2+4r2−e

2r2
, i.e., c−1 = cr2 + e, then (26) becomes

rPM(zk)− c−1(x̂− PN (zk)) ∈ T (x̂). (27)

Let xk = PN (zk), wk = rPM(zk). Together with (25), it follows that{
xk+1 = PN (zk+1) = PN (x̂),

wk+1 = rPM(zk+1) = r(PM(zk)− crPM(x̂)) = wk − (c−1 − e)(x̂− xk+1).
(28)

Putting (27) and (28) together, the scheme (21) is equivalent to the following iteration
scheme.
Having xk ∈ N , wk ∈M and c−1 > e ≥ 0,
Step 1: obtain x̂ via solving wk − c−1(x̂− xk) ∈ T (x̂),
Step 2: update xk+1 = x̂N and wk+1 = wk − (c−1 − e)(x̂− xk+1),
which is exactly the EPDA (8). 2

Since

c =

√
e2 + 4r2 − e

2r2
and c−1 =

√
e2 + 4r2 + e

2
=: d,

based on Theorems 2.1 and 3.1, if T + ePM is strongly maximal monotone with modulus
σ > 0 for some e ≥ 0, then convergence pattern (10) holds for algorithm (21).Therefore,
we can expect that the rate of convergence

δ :=
c−1

c−1 + σ
=

d

d+ σ

will deteriorate when either parameter e or r grows since δ is an increasing function of
e and r. Moreover, it can be observed that δ could be insensitive to the change of (r, e)
if r (and therefore e) is large. Hence we will concentrate on relatively small r in our
numerical experiments.

11



4 Numerical Experiments

Since the stochastic linear complementarity problem (SLCP) [10] is an important field of
applications of PDA, we design a sequence of experiments on solving two-stage SLCPs
and observe the performance of EPDA under different values of parameter r and e. In all
statements of the problems and algorithms in this section, the support Ξ of the random
vector ξ is finite, which is a common hypothesis in applications of the SLCP.

Given matrices Mij(ξ), i, j = 1, 2 and vectors qi(ξ), the two-stage SLCP aims to
find x(·), y(·) and w(·) such that x(ξ) ≡ x ∀ ξ ∈ Ξ (nonanticipativity), Eξ[w(ξ)] = 0
(orthogonality) and

0 ≤
(
x(ξ)
y(ξ)

)
⊥
(
M11(ξ) M12(ξ)
M21(ξ) M22(ξ)

)(
x(ξ)
y(ξ)

)
+

(
q1(ξ)
q2(ξ)

)
+

(
w(ξ)

0

)
≥ 0, ∀ ξ ∈ Ξ, (29)

where x(·) : ξ 7→ x(ξ) ∈ Rn1 is the first-stage response function and y(·) ∈ Rn2 is the
second-stage response function. Let H be the Hilbert space comprised of all response
functions z(·) := (x(·), y(·)) from Ξ to Rn, n = n1 + n2, equipped with the inner product

〈z(·), u(·)〉 := Eξ[z(ξ)Tu(ξ)] :=
∑
ξ∈Ξ

p(ξ)z(ξ)Tu(ξ), (30)

where p(ξ) > 0 is the probability of scenario ξ and all such probabilities add up to one.
The EPDA for solving the two-stage SLCP (29) has the following specific iteration

scheme [9, 10, 15].

Algorithm 3. The EPDA for two-stage SLCP
Given xk(ξ) ≡ x ∀ ξ, and yk(·) and wk(·) such that Eξ[wk(ξ)] = 0; r > e ≥ 0.

Step 1. Obtain (x̂k(ξ), ŷk(ξ)) by solving the following linear complementarity

problem for each ξ

0 ≤
(
x
y

)
⊥
(
M11(ξ) + rI M12(ξ)
M21(ξ) M22(ξ) + rI

)(
x
y

)
+

(
q1(ξ) + wk(ξ)− rxk(ξ)

q2(ξ)− ryk(ξ)

)
≥ 0.

Step 2. Set xk+1(ξ) = Eξ[x̂k(ξ)], yk+1(ξ) = ŷk(ξ) and

wk+1(ξ) = wk(ξ)− (r − e)(x̂k(ξ)− xk+1(ξ)) ∀ ξ.
Set k := k + 1, repeat.

Set

rel.err1 =
‖x−

∏
≥0

[
x−

(
Eξ[M11(ξ)]x+ Eξ[M12(ξ)y(ξ)] + Eξ[q1(ξ)]

)]
‖

1 + ‖x‖
,

rel.err2 = max
ξ

{‖y(ξ)−
∏
≥0[y (ξ)− (M21(ξ)x+M22(ξ)y(ξ) + q2(ξ))] ‖

1 + ‖y(ξ)‖

}
,

where (
∏
≥0(a))j = max{aj, 0}, and let rel.err = max{rel.err1, rel.err2}. Algorithm 3

stops if rel.err ≤ 10−5 or the iteration number ≥ 5000. In solving the LCP subproblems
in Step 1 of Algorithm 3, we reformulate the complementarity problem to a nonsmooth

12



equation and solve the resulting equation by the semismooth Newton method introduced
by Qi and Sun [5]. The code is adopted from [10], which is available in public domain2.
All experiments are implemented in Matlab R2015b under Windows 7 operating system
on a desktop with an Intel(R) Core i5-6600, 3.30GHz processor and 8GB of RAM.

4.1 Data Generation

Note that, a two-stage response function z(·) : Ξ → Rn in a finite discrete distribution
setting can be equivalently written as a vector in RnK , which is defined as

z := (x(ξ1), · · · , x(ξK), y(ξ1), · · · , y(ξK)),

where K is the number of scenarios. Let F(z(·)) : H → H be the linear function of z(·)
defined by F(z(ξ)) = M(ξ)z(ξ) + q(ξ) for every ξ with

M(ξ) =

(
M11(ξ) M12(ξ)
M21(ξ) M22(ξ)

)
and q(ξ) =

(
q1(ξ)
q2(ξ)

)
.

From definition (30) of the inner product in the space H, we have

〈z(·)− z′(·), (F + ePM)(z(·))− (F + ePM)(z′(·))〉 = vTDMDv + evTDPDv,

where v is the vector equivalent to the response function z(·) − z′(·), and D,M,P are
matrices respectively defined as

D =

(
D̄

D̄

)
,M =

(
M̄11 M̄12

M̄21 M̄22

)
, P =

(
In1K − P̄ 0

0 0

)
,

with D̄ = Diag(
√
piIn1), M̄jk = Diag(Mjk(ξ

i)) ∀ j, k = 1, 2, and

P̄ = p̄p̄T =

 p1In1 · · · √p1pKIn1

...
...√

pkp1In1 · · · pKIn1

 .

We have the following observations.

• The 2-stage SLCP is monotone if and only if matrix M is positive semi-definite,
i.e., (M(ξ) +M(ξ)T )/2 is symmetric positive semi-definite for every ξ.

• The 2-stage SLCP is e-elicitable monotone if and only if matrix M + eP is positive
semi-definite.

• Based on Theorem 5 in [9], a sufficient condition for the 2-stage SLCP being elic-
itable monotone is that there exists α > 0 such that 〈z(·),F(z(·))〉 > α‖z(·)‖2

2The user guide and the MATLAB code are in testing stage and are available upon request; they will
be soon moved to the authors’ websites.

13



∀z(·) ∈ N . This condition is equivalent to the following matrix being positive
definite: 

∑K
i=1 piM11(ξi)

√
p1M12(ξ1) · · · √pKM12(ξK)√

p1M21(ξ1) M22(ξ1)
...

. . .√
pKM21(ξK) M22(ξK)

 .

Moreover, if M(ξ) is symmetric for every ξ, then the above matrix is positive def-
inite if M22(ξ) is positive definite and

∑K
i=1 pi

(
M11(ξi)−M12(ξi)M−1

22 (ξi)M21(ξi)
)

is positive definite.

Based on these observations, we generate monotone and elicitable monotone SLCPs
by the following rules.

• Monotone SLCPs. Matrix M(ξ) for each ξ is generated to be a symmetric
positive semi-definite matrix. For each ξ, we first generate a matrix Mtmp ∈ Rn×n

composed of entries uniformly distributed in (0,1), then set M(ξ) = MT
tmpMtmp. We

also generate vector xtmp ∈ Rn1 composed of entries uniformly distributed in (0,1)
and generate vectors ytmp(ξ) ∈ Rn2 , qtmp(ξ) ∈ Rn composed of entries uniformly
distributed in (0,1) for every ξ, then set q(ξ) = −M(ξ)[xTtmp, y

T
tmp(ξ)]

T − qtmp(ξ).
Probability p(ξ) is randomly generated as p(ξ) > 0 and

∑
p(ξ) = 1.

• Elicitable monotone SLCPs. Matrix M22(ξ) for each ξ is generated to be a
symmetric positive definite matrix. In detail, for each ξ, we first generate Mtmp

composed of entries uniformly distributed in (0,1), then set M22(ξ) = MT
tmpMtmp +

0.1In1 . For each ξ, M12(ξ) is generated to be matrices composed of entries uniformly
distributed in (0,1), and M21(ξ) = MT

12(ξ). For each ξ, M11(ξ) is generated to be a
symmetric matrix by

M11(ξi) =

{
M12(ξi)M−1

22 (ξi)M21(ξi) + In1 , when i = 1, · · · , K − 1,
M12(ξi)M−1

22 (ξi)M21(ξi)− 0.995In1 , when i = K.

The way to generate q(ξ), p(ξ) is the same with the rule for monotone case.

4.2 Experiment Design

The purpose of the experiment is to provide empirical guidelines for the choice of r and
e in Algorithm 3, based on the analysis in Section 3. We also would like to see the sizes
of the problems that Algorithm 3 is capable to solve. Recall that the rate of convergence
is denoted by δ and we have

δ = δ(d) =
d

d+ σ
, (31)

d = d(r, e) =

√
e2 + 4r2 + e

2
. (32)

Since δ(d) is strictly increasing in d and d(·, e) and d(r, ·) are strictly increasing in r
and e, respectively, we should generally keep both r and e as small as possible in the
experiment, say e < r <

√
n if possible, where

√
n was the heuristic value used in [10].

We generate two groups of test examples for both monotone and elicitable monotone
SLCPs.

14



Group 1. Fix the dimension of first and second stage variables as dim=[10, 10] and
increase the number of scenarios (sn for short) as 5, 10, 25, 50, 100. For each
setting, 10 problems are randomly generated and solved by Algorithm 3 under
different values of parameters r and e, and the average number of iterations (iter
for short) and CPU time (in second, time(s) for short) are recorded.

Group 2. Fix sn=25 and increase the dimension to [20,20], [30,30], [40,40], [50,50] and
[60,60]. For each setting, 10 problems are randomly generated and solved by Al-
gorithm 3 under different values of parameters r and e, and the average number of
iterations and CPU time are recorded.

4.3 Numerical Results for the Monotone Case

For Group 1, we apply Algorithm 3 to solve the randomly generated monotone problems
with parameter r = 1, e = 0, 0.25, 0.5, 0.75. For each combination of r, e and sn,
ten random problems are solved. The average number of iteration and the average
computational time of the ten problems are listed in Table 1 and drawn in Figure 1. It
can be seen that when the number of scenarios increases, the convergence follows the same
trend presented in references [10, 15], which takes almost constant number of iterations
and more computing time when the number of scenarios rises. In addition, for the fixed
value of r = 1, the convergence of Algorithm 3 becomes slower when parameter e grows.

Table 1: Monotone results while sn increases (dim=[10,10], r = 1)

sn
e = 0 e = 0.25 e = 0.5 e = 0.75

iter time(s) iter time(s) iter time(s) iter time(s)
5 62 0.1 69 0.1 96 0.1 207 0.2
10 67 0.1 99 0.2 157 0.3 329 0.5
25 68 0.3 92 0.4 146 0.5 307 1.1
50 76 0.6 91 0.7 134 1.0 278 2.0
100 74 1.1 93 1.4 146 2.1 303 4.2

0 20 40 60 80 100

Number of Scenarios

0

50

100

150

200

250

300

350

400

450

500

C
o

n
ve

rg
e

n
ce

 I
te

ra
tio

n
s

(r,e)=(1,0)

(r,e)=(1,0.25)

(r,e)=(1,0.5)

(r,e)=(1,0.75)

0 20 40 60 80 100

Number of Scenarios

0

1

2

3

4

5

6

7

C
o

n
ve

rg
e

n
ce

 T
im

e
(s

)

(r,e)=(1,0)

(r,e)=(1,0.25)

(r,e)=(1,0.5)

(r,e)=(1,0.75)

Figure 1: Results for monotone case when sn increases (dim=[10,10])

For Group 2, we apply Algorithm 3 to solve the randomly generated monotone prob-
lems under the same choice of parameters r = 1, e = 0, 0.25, 0.5 and 0.75, respectively.

15



For each combination of r, e and sn, ten random problems are solved. The average num-
ber of iteration and the average time of computation of the ten problems are presented
in Table 2 and Figure 2. It is shown that both the number of iterations and time for
convergence increase when the dimension grows, which agrees with the results of [10, 15].
Moreover, the speed will generally decline when the parameter e increases.

Table 2: Monotone results while dim increases (sn=25, r = 1)

dim
e = 0 e = 0.25 e = 0.5 e = 0.75

iter time(s) iter time(s) iter time(s) iter time(s)
[20,20] 122 0.5 168 0.7 251 1.0 514 2.2
[30,30] 160 0.8 216 1.0 329 1.5 665 3.3
[40,40] 266 1.7 358 2.3 540 3.4 1088 8.3
[50,50] 265 2.3 352 3.0 527 4.4 1090 10.7
[60,60] 336 3.4 454 4.3 685 7.1 1377 14.5

40 60 80 100 120

Dimension

0

200

400

600

800

1000

1200

1400

1600

1800

C
on

ve
rg

en
ce

 It
er

at
io

ns

(r,e)=(1,0)

(r,e)=(1,0.25)

(r,e)=(1,0.5)

(r,e)=(1,0.75)

40 60 80 100 120

Dimension

0

2

4

6

8

10

12

14

16

18

20

C
on

ve
rg

en
ce

 T
im

e(
s)

(r,e)=(1,0)

(r,e)=(1,0.25)

(r,e)=(1,0.5)

(r,e)=(1,0.75)

Figure 2: Results for monotone case when dim increases (sn=25)

4.4 Numerical Results for the Elicitable Monotone Case

Before applying Algorithm 3 to solve the test problems in the two groups of the non-
monotone case, we examine whether the matrix M + eP is positive semi-definite under
e = 0, 1, 2, · · · to reveal the elicitable monotonicity for all the problems in Group 1 and
Group 2. Table 3 and Table 4 present the number of problems being e-elicited monotone
at level e in Group 1 and Group 2, respectively. It can be observed that in this partic-
ular experiment, all the test problems in the two groups are nonmonotone at e = 0, but
they will be e-elicited monotone at level e ≥ 5 in Group 1 and at level e ≥ 2 in Group
2. Moreover, the number of e-elicitable monotone problems increases when parameter e
grows.

We then conduct Algorithm 3 to solve the test problems in the two groups with
e = 1, 2, · · · , 10 and r = e + 1. It can be observed that all the test problems can be
successfully solved by Algorithm 3 under such choices of r and e, even for problems
without elicited monotonicity under a small e, such as e = 1. In addition, it can be
seen that, similar to the results of the monotone case, under the same (r, e), it takes

16



Table 3: Number of e-elicitable monotone problems in Group 1

e
sn

sum
5 10 25 50 100

0 0 0 0 0 0 0
1 0 0 0 1 1 2
2 7 10 10 10 10 47
3 9 10 10 10 10 49
4 9 10 10 10 10 49
5 10 10 10 10 10 50

Table 4: Number of e-elicitable monotone problems in Group 2

e
dim

sum
[20,20] [30,30] [40,40] [50,50] [60,60]

0 0 0 0 0 0 0
1 1 1 0 1 0 3
2 10 10 10 10 10 50

Table 5: Elicitable monotone results while sn increases (dim=[10,10], r = e+ 1)

e
sn=5 sn=10 sn=25 sn=50 sn=100

iter time(s) iter time(s) iter time(s) iter time(s) iter time(s)
1 186 0.2 164 0.3 189 0.7 216 1.6 268 3.8
2 264 0.3 217 0.4 221 0.9 232 1.8 300 4.3
3 341 0.3 292 0.5 290 1.2 278 2.1 323 4.7
4 430 0.4 370 0.6 370 1.4 357 2.6 368 5.2
5 519 0.5 448 0.7 451 1.7 437 3.1 434 6.0
6 609 0.5 528 0.9 534 2.0 518 3.7 506 7.1
7 697 0.6 608 1.0 618 2.3 599 4.3 585 8.3
8 786 0.7 688 1.1 702 2.6 681 4.7 665 9.3
9 874 0.8 768 1.4 785 3.1 762 5.7 745 10.6
10 963 0.9 848 1.4 869 3.2 843 5.9 826 11.8

Table 6: Elicitable monotone results while dim increases (sn=25, r = e+ 1)

e
dim=[20,20] dim=[30,30] dim=[40,40] dim=[50,50] dim=[60,60]
iter time(s) iter time(s) iter time(s) iter time(s) iter time(s)

1 290 1.3 342 1.7 416 3.6 508 5.7 660 8.3
2 310 1.4 371 2.0 428 3.9 515 6.6 667 8.3
3 342 1.6 393 2.2 460 4.1 537 6.6 674 9.3
4 385 1.8 418 2.3 480 4.3 567 6.6 691 9.0
5 444 2.1 456 2.5 507 4.6 600 7.1 719 9.8
6 522 2.3 506 2.6 544 5.2 615 7.4 733 10.0
7 603 2.8 570 3.1 585 5.6 646 8.0 765 10.1
8 686 3.2 639 3.5 646 6.1 686 8.7 798 11.2
9 769 3.6 706 3.8 723 6.8 732 8.5 843 11.0
10 852 4.0 784 4.3 803 7.4 769 8.9 889 11.4

17



almost constant number of iterations and more time for convergence when the number
of scenarios increases, while more iterations and more time are necessary for convergence
when the dimension grows. In addition, both the number of iterations and the time
become larger when the value of e rises. The detailed results under e ≥ 1, r = e + 1 of
Group 1 and Group 2 are presented in Table 5 and Table 6, respectively.

Figure 3 shows the trend of convergence when the value of e grows in the 50 test
problems in Group 1 and Group 2, respectively. It should be pointed out that parameter
r is increasing together with the growth of e in the above experiments. Note that, the
problems in Group 1 are e-elicited monotone when e ≥ 5. Due to the requirement of
r > e, the choice of r is at least larger than 5. Table 5 shows that the computing time
is around twice under r = 6, e = 5 than that under r = 2, e = 1. Similar observations
can be obtained in Group 2. In addition, we can see from Figure 3 that increasing e
leads to increasing r and decreasing speed of convergence. It should be also pointed out
that Algorithm 3 fails under the choice of e = 0, r = 1 in this particular experiment, but
Algorithm 3 works for all the test problems under e = 0 and r ≥ 2.

2 4 6 8 10

Value of e

0

200

400

600

800

1000

C
on

ve
rg

en
ce

 It
er

at
io

ns

(a) Avg-Iter in Group 1

2 4 6 8 10

Value of e

0

1

2

3

4

5

C
on

ve
rg

en
ce

 T
im

e(
s)

(b) Avg-Time in Group 1

2 4 6 8 10

Value of e

200

400

600

800

1000

C
on

ve
rg

en
ce

 It
er

at
io

ns

(c) Avg-Iter in Group 2

2 4 6 8 10

Value of e

2

3

4

5

6

7

8

9

C
on

ve
rg

en
ce

 T
im

e(
s)

(d) Avg-Time in Group 2

Figure 3: Results for elicitable monotone case under different e

In the following, we observe the impact of e under fixed r. For Group 1, we conduct
Algorithm 3 under the choices of r = 2, 4 and e = 0, r − 1, respectively. The results are
provided in Table 7 and Figure 4. It can be observed that (r, e) = (2, 0) leads to the best
performance. In addition, the influence of e seems less significant than the influence of r,
which is observed from that, for fixed r, both the number of iterations and the computing
time under different values of e are only slightly changed.

Similarly to Group 1, we conduct Algorithm 3 under the choices of r = 2, 4 and
e = 0, r − 1, respectively, for Group 2. Corresponding results are presented in Table 8

18



Table 7: Elicitable monotone results while sn increases (dim=[10,10])

sn
r = 2 r = 4

e = 0 e = 1 e = 0 e = 3
iter time(s) iter time(s) iter time(s) iter time(s)

5 173 0.2 186 0.2 354 0.3 341 0.3
10 148 0.3 164 0.3 317 0.5 292 0.5
25 161 0.6 189 0.7 326 1.2 290 1.2
50 166 1.2 216 1.6 317 2.3 278 2.1
100 187 2.7 268 3.8 312 4.4 323 4.7

0 20 40 60 80 100

Number of Scenarios

0

100

200

300

400

500

600

700

800

900

1000

C
on

ve
rg

en
ce

 It
er

at
io

ns

(r,e)=(2,0)
(r,e)=(2,1)
(r,e)=(4,0)
(r,e)=(4,3)

0 20 40 60 80 100

Number of Scenarios

0

1

2

3

4

5

6

C
on

ve
rg

en
ce

 T
im

e(
s)

(r,e)=(2,0)
(r,e)=(2,1)
(r,e)=(4,0)
(r,e)=(4,3)

Figure 4: Results for elicitable monotone case when sn increases (dim=[10,10])

Table 8: Elicitable monotone results while dim increases (sn=25)

dim
r = 2 r = 4

e = 0 e = 1 e = 0 e = 3
iter time(s) iter time(s) iter time(s) iter time(s)

[20,20] 216 1.0 290 1.3 322 1.4 342 1.6
[30,30] 242 1.2 342 1.7 303 1.6 393 2.2
[40,40] 245 1.9 416 3.6 308 2.5 460 4.1
[50,50] 290 3.3 508 5.7 277 2.9 537 6.6
[60,60] 335 4.2 660 8.3 301 4.1 674 9.3

40 60 80 100 120

Dimension

0

100

200

300

400

500

600

700

800

900

C
on

ve
rg

en
ce

 It
er

at
io

ns

(r,e)=(2,0)
(r,e)=(2,1)
(r,e)=(4,0)
(r,e)=(4,3)

40 60 80 100 120

Dimension

0

2

4

6

8

10

12

C
on

ve
rg

en
ce

 T
im

e(
s)

(r,e)=(2,0)
(r,e)=(2,1)
(r,e)=(4,0)
(r,e)=(4,3)

Figure 5: Results for elicitable monotone case when dim increases (sn=25)

19



and Figure 5. The parameter r seems to impact the convergence speed more than the
parameter e. In this experiment, we achieve the best performance under the choice of
(r, e) = (2, 0) for the problems of smaller dimension and achieve the best performance
under (r, e) = (4, 0) for the problems of larger dimension. However, the convergence will
become slower when choosing a larger e under a fixed r.

In summary, for fixed r, as e increases, the algorithm tends to slowdown and the
performance of the EPDA seems more dependent on the choice of r. As a rule of thumb,
for SLCPs, it looks that smaller e leads to better rate of convergence and the choice of r
is more important than the choice of e. Overall, the computational results are consistent
to our theoretical results (31) and (32).

A plausible theoretical explanation to why the choice of r is more important than the
choice of e can be made from the following fact: We have d′r(r, e) > d′e(r, e) > 0 in the
area r > e, which can be derived from (32).

5 Conclusions

1. It is shown that the mapping (T + ePM)N can be viewed as a generalized Yosida-
regularization of Spingarn’s partial inverse operator TN , which provides a rationale
for the application of the PPA to elicitable monotone SVIs.

2. Under strong elicitable monotonicity of mapping T with modulus σ > 0, the
EPDA converges at rate c−1

c−1+σ
with respect to the r-norm of pair (x,w), where

c =
√
e2+4r2−e

2r2
≤ r−1. When e = 0 (the monotone case), this result reproduces

the result in [10], the rate of convergence for monotone PDA under the strongly
monotonicity of mapping T with modulus σ > 0.

3. The above result explains why the convergence speed of the EPDA is generally
slower than the monotone PDA and why the rate of convergence is closer to 1
when parameter e grows. It also gives possible explanations why smaller r and e
are generally preferred and why the choice of r is more important than the choice
of e in the numerical experiment.

4. The preliminary numerical experiment confirms the theoretical result of Sections 2
and 3. In particular, it is observed that the elicited version of PDA are generally
slower than the non-elicited version in both number of iterations and computational
time. Furthermore, the elicited version becomes much slower if the elicitation
constant e is set too large. To avoid this, the numerical results appear to suggest
to use relatively small e and r for a heuristic start in practice and only increase the
value of e if the EPDA does not converge well.

References

[1] Eckstein, J., Bertsekas, D.P.: On the Douglas-Rachford splitting method and the
proximal point algorithm for maximal monotone operators. Math. Program. 55(3),
293-318 (1992)

20



[2] Lu, Y., Sun, J., Zhang, M., Zhang, Y.: A stochastic variational inequality approach
to the Nash equilibrium model of a manufacturer-supplier game under uncertainty.
preprint. Department of Analytics and Operations, National University of Singapore
(2020)

[3] Minty, G.J.: Monotone (nonlinear) operators in Hilbert space. Duke Math. J. 29(3),
341-346 (1962)

[4] Pennanen, T.: Local convergence of the proximal point algorithm and multiplier
methods without monotonicity. Math. Oper. Res. 27(1), 170-191 (2002)

[5] Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Math. Program. 58, 353-
367 (1993)

[6] Spingarn, J.E.: Partial inverse of a monotone operator. Appl. Math. Optim. 10(3),
247-265 (1983)

[7] Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J.
Control Optim. 14(5), 877-898 (1976)

[8] Rockafellar, R.T.: Progressive decoupling of linkages in monotone variational inequal-
ities and convex optimization. Proceedings of the 10th International Conference on
Nonlinear Analysis and Convex Analysis (Chitose, Japan), 1-21 (2017)

[9] Rockafellar, R.T.: Progressive decoupling of linkages in optimization and variational
inequalities with elicitable convexity or monotonicity. Set-Valued Var. Anal. 27, 863-
893 (2019)

[10] Rockafellar, R.T., Sun, J.: Solving monotone stochastic variational inequalities
and complementarity problems by progressive hedging. Math. Program. 174, 453-471
(2019)

[11] Rockafellar, R.T., Sun, J.: Solving Lagrangian variational inequalities with applica-
tions to stochastic programming. Math. Program. 181, 435-451 (2020)

[12] Rockafellar, R.T., Wets, R.-J.B.: Scenarios and policy aggregation in optimization
under uncertainty. Math. Oper. Res. 16(1), 119-147 (1991)

[13] Rockafellar, R.T., Wets, R.-J.B.: Stochastic variational inequalities: single-stage to
multistage. Math. Program. 165(1), 331-360 (2017)

[14] Zhang, M., Hou, L.S., Sun, J., Yan, A.L.: A model of multistage risk-averse stochas-
tic optimization and its solution by scenario-based decomposition algorithms. Asia-
Pacific J. Oper. Res. 37(4), 2040004, doi:10.1142/S0217595920400047 (2020)

[15] Zhang, M., Sun, J., Xu, H.: Two-stage quadratic games under uncertainty and their
solution by progressive hedging algorithms. SIAM J. Optim. 29(3), 1799-1818 (2019)

21


