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Abstract A computational method is developed for solving time consistent
distributionally robust multistage stochastic linear programs with discrete dis-
tribution. The stochastic structure of the uncertain parameters is described by
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backward steps. The backward steps solve some conic programming problems
to approximate the cost-to-go function at each node, while the forward steps
are used to generate additional trial points. A new framework of convergence
analysis is developed to establish the global convergence of the approximation
procedure, which does not depend on the assumption of polyhedral structure
of the original problem. Numerical results of a practical inventory model are
reported to demonstrate the effectiveness of the proposed method.

Keywords multistage stochastic programming · distributionally robust ·
scenario tree model · decomposition method

Mathematics Subject Classification (2000) MSC 90C15 · 90C47

This work is partially supported by Grants 11401384, B16002 and 11271243 of National
Natural Science Foundation of China.

H. Yu
School of Statistics and Mathematics, Shanghai Lixin University of Accounting and Finance,
PRC.
E-mail: nianchuixiao@msn.com

J. Sun (The corresponding author)
School of Science, Hebei University of Technology, PRC and School of Business, National
University of Singapore, Singapore
E-mail: jie.sun@curtin.edu.au

Y. Wang
School of Mathematics, Shanghai University of Finance and Economics, PRC
E-mail: wangyj@mail.shufe.edu.cn

Citation
Yu, H. and Sun, J. and Wang, Y. 2021. A time-consistent Benders decomposition method for multistage 
distributionally robust stochastic optimization with a scenario tree structure. Computational 
Optimization and Applications. 79 (1): pp. 67-99. http://doi.org/10.1007/s10589-021-00266-7

http://doi.org/10.1007/s10589-021-00266-7


2 Yu et al.

1 Introduction

Stochastic programming focuses on optimization models involving random fac-
tors. In many cases, the decision is naturally split into several stages in response
to the realization of a random process. This leads to the concept of multistage
stochastic programming. The general form of a T -stage stochastic program-
ming problem is as follows:

min
x1∈C1

F1(x1)+E

[
inf

x2∈C2(x1,ξ2)
F2(x2, ξ2)+E

[
· · ·E[ inf

xT∈CT (x[T−1],ξ[T ])
FT (xT , ξ[T ])]

]]
,

(1)
where x[t] = (x1, ..., xt) and xt = xt(ξ[t]) depend on the data process ξ[t] =

(ξ1, ..., ξt)
> up to time t (note that the first stage data ξ1 is in fact determin-

istic, representing the given data before any decision is made). This pattern
of solution is due to the nonanticipative nature of human decisions, where
C1, ..., CT (x[T−1], ξ[T ]) are constraints parameterized by past decision x[t−1]
and past random data ξ[t], t = 1, ..., T . See [1] for details on multistage stochas-
tic programming.

In order to solve a stochastic optimization problem by computer, one often
has to make simulation or discretization for the distribution of the involved
random variables. It is therefore natural to assume that the random process
ξ1, · · · , ξT has a finite number of realizations, which leads to the scenario tree
model, where the value of ξ1 at stage 1 is the root node, and the realizations
of ξt correspond to nodes of level t in this tree. For stage t satisfying 1 < t <
T , each node has a parent node and some children nodes, corresponding to
the realizations of its previous and next stages, respectively. In this way, all
the possible realizations of the random process can be organized through a
tree structure. The scenario tree formulation is a main model in multistage
stochastic programming, see e.g. [2–4] for references.

We are concerned with a special linear case of the multistage programming
problem (1) with a scenario tree structure as follows.

min
A1x1=b1

x1≥0

c>1 x1 +E

[
min

B2x1+A2x2=b2
x2≥0

c>2 x2 +E
[
· · ·+E[ min

BT xT−1+AT xT =bT
xT≥0

c>T xT ]
]]
, (2)

where the matrix-vector pair (Bt, bt) = (Bt(ξt), bt(ξt)), t = 2, · · · , T , while the
vector ct and the matrix {At} are assumed to be deterministic.

In stochastic optimization, the distribution of the random variables is tra-
ditionally assumed to be known, e.g., see the recent paper [5]. Thus, in an
abstract form, problem (1) and (2) can be written as

min
x∈X

EP [F (x, ξ)]

for a certain decision vector x = (x1, ..., xT ) and a random vector ξ = (ξ1, ..., ξT ),
where the probability measure P and function F are given. However, in many
cases, we can only obtain limited information about the distribution of ξ.
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This motivated the study on distributionally robust stochastic programming
(DRSP), which is generally expressed as follows.

min
x∈X

sup
P∈P

EP [F (x, ξ)], (3)

where P is a set of probability measures of ξ, called the ambiguity set. The
DRSP problem has attracted much interest during the recent two decades. See
e.g., [6–9] for some progress of this method.

The mapping F (x, ξ) in (3) is an abstract function. If F (x, ξ) is not explicit
and contains the optimal value function of a second-stage problem, then it is
called a two-stage DRSP problem, i.e.,

min
x∈X

f(x) := F1(x) + sup
P∈P

EP [F2(x, ξ)], (4)

where F1(x) is its explicit part and F2(x, ξ) is the optimal value of a second-
stage optimization problem for given x with ξ being a random vector. During
the past several years, the two-stage DRSP has attracted much interests. In [10,
11, 13–15], Sun et al. studied the two-stage DRSP problem. Specifically, in [10,
11] they studied the two-stage linear DRSP problem with moment constraints
and in [12–15] they discussed the DRSP problem with non-expectation risk
measures, e.g., general coherent measures. On the other hand, many studies
focus on the two-stage DRSP with different types of ambiguity sets. In [16],
Jiang and Guan studied the risk-averse two-stage stochastic program with
L1 norm based ambiguity set. In [17], Hanasusanto and Kuhn considered the
ambiguity set defined by the Wasserstein balls and showed that this model
can be reformulated to a conic programming. Other studies considered the
two-stage DRSP with binary variables such as [18] and [19].

Compared with the one and two stage models, there is very limited litera-
ture on the multistage-DRSP problems. The difficulty lies in two aspects.

The first aspect is the way to introduce the distributional ambiguity of
the tree process. In stochastic programming, a traditional way is to use the
nested distance, which is based on the nested distribution, to measure the
difference between discrete time stochastic processes. There is a rich body
of literatures on nested distances, which have been applied in scenario tree
reduction techniques and some other areas. As to DRSP problems, Pflug et al.
[20, 21] introduced the Wasserstein distance, one of the most popular nested
distances, to construct the ambiguity set for the scenario tree model, and
proposed a corresponding algorithm for the multistage-DRSP problem.

The nested distance is a powerful tool in scenario tree reduction problems
and some other areas. In view of the dynamic nature of the decision procedure,
however, the nested distance approach may cause some problems when the
issue of “time consistency” comes into play.

Time consistency is a principle postulated on the risk measure or the mul-
tistage stochastic optimization problems to avoid the inconsistency in the de-
cision chain. “The solution of the problem at time 0 consists of a complete
plan for all future decisions at later times. If it turns out that it is preferable
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to change the initial plan at later stages, then the decision problem is called
inconsistent in time” ([1], Page 175). For deterministic problems, due to the
Bellman’s optimality principle, the inconsistency phenomenon will not occur.
While for stochastic problems, some requirements may be imposed so that the
the risk measures or the problems can be reformulated as a nested form, to
which some decomposition methods can be applied. For some problems, such
as the risk aversion problems, a natural approach is to introduce the concept
of time consistent risk measure, which is based on the conditional measure or
dynamical risk measure, see e.g., [22, 23] for reference. A complete review on
the time consistent risk measure can be found in [24].

Another approach to time consistency is to directly deal with the so-called
time-consistent decision problem, similar to the Bellman’s principle for deter-
ministic optimization. Shapiro [25] considered a tree-structured problem and
expressed this approach as “At every state of the system, our optimal decisions
should not depend on scenarios which we already know cannot happen in the
future”. In DRSP it means that, at each node, the decision maker only has to
consider the distributional uncertainty of the descendent subtree, and should
not take into account the scenarios which will not occur in that subtree. Hence
the distributional robustness of the scenario tree should be specifically defined
at every node. Other discussions on the time-consistent problem can be found
in [26].

The second aspect of difficulty lies in the algorithm and its convergence.
The nested Benders decomposition is one of the most important methods for
multistage problems. The main idea is to use supporting hyperplanes to dy-
namically approximate the cost-to-go function at each node and to decompose
the original problem to a series of smaller optimization problems. A compre-
hensive introduction on the nested Benders decomposition method is [27]. A
recent review is [28]. Discussions on its acceleration techniques can be found
in [29].

In stochastic programming, the nested Benders decomposition is further
developed into a stochastic dual dynamic programming (SDDP) approach [30]
by incorporating a forward step to generate a statistical upper bound. Some
recent developments on this method include improvement on the cutting plane
methods for large scale problems [31, 32], stochastic decomposition methods
[33] and their convergence [34], Markov uncertainty [35], the construction of a
deterministic upper bound [36] etc. In robust optimization, a similar method,
called robust dual dynamic programming (RDDP) method, has been proposed
by Georghiou et al. [37].

To establish the convergence analysis, the SDDP-type algorithms com-
monly require the objective function and the feasible set to be polyhedral,
which guarantees the decomposition algorithms to achieve finite termination
and facilitates the use of some vertex enumeration methods. An important
exception is the work of [37], which considered the feasible region to be non-
polyhedral and showed that the RDDP scheme asymptotically converges to
an optimal solution of the generic multistage robust optimization problem.
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The multistage DRSP problem is often more complicated than the multi-
stage stochastic optimization problem. In particular, for the distributionally
robust problem with moment uncertainty considered in this paper, the related
sub-problems in each stage are conic programming problems. Thus, it calls
for a new framework to analyze the convergence of multistage optimization
problems without using the polyhedral property.

The contribution of this paper is two fold. First, a time-consistent Benders
decomposition computational scheme is developed for the linear multistage
distributionally robust scenario tree optimization (DRSTO) model. Differently
from [20, 21], we do not introduce the nested distances. In view of the time
consistency in Shapiro’s sense [25], we decompose the distributional robustness
to each node and consider the following multistage DRSP problems

min
A1x1=b1

x1≥0

c>1 x1+ sup
P2∈P2

E

[
min

B2x1+A2x2=b2
x2≥0

c>2 x2+ sup
P3∈P3

E
[
· · ·+ sup

PT∈PT

E[ min
BT xT−1+AT xT =bT

xT≥0

c>T xT ]
]]
,

(5)
where Pt, t = 1, ..., T are ambiguity sets defined by moment constraints, which
will be made clear in next section.

In contrast to the nested distance approach, model (5) decomposes the
distributional robustness into each decision stage. Since the decision process
is completed stage by stage, for each node, it is natural to only consider the
conditional distributionally robustness for its following scenarios, and exclude
the scenarios which we are known not to happen in the future. This will
guarantee time consistency for the solution to the multistage DRSP problems.

It is emphasized that the ambiguity sets Pt is defined by moment uncer-
tainty. As is pointed out in [38], there are two typical ways to construct the
uncertainty set. One is based on the moment constraints. Another is to intro-
duce a reference probability measure (or called an “empirical distribution”)
and define a related distance or divergence with respect to it. The latter ap-
proach includes the Wasserstein distance and the φ−divergence (e.g. the K-L
divergence). In our opinion, the Wasserstein distance would have a difficulty
in implementation of the time consistency principle. As to the φ−divergence,
a drawback is that the ambiguity set will exclude some important distribu-
tions. For example, if we use the K-L divergence, then the the distributions
contained in the ambiguity set must be absolutely continuous with respect to
the reference distribution. In particular, if the basis distribution p0 is discrete,
and has probability p0(x0) = 0 at some point x0, then any distribution p in
the ambiguity set have to satisfy p(x0) = 0, i.e., x0 will not be contained
in the support of p. It is therefore reasonable to base our work on the mo-
ment constraints, which provides a wide range on the possible choice of the
distributions.

By using the moment constraints, each sub-problem of (5) will be likely a
conic programming problem, which requires substantial change in the conver-
gence analysis. The second contribution of this paper is therefore to develop a
new framework for the convergence analysis. The new framework is based on
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parametric optimization and is hopefully applicable to more general convex
functions.

The rest of this paper is organized as follows. In Section 2, we introduce
the nested moment ambiguity and present the algorithm, which incorporates
forward and backward steps. In Section 3, we analyze the convergence of the
algorithm. We will show that, the approximated cost-to-go functions at every
node will finally converge to their real counterparts. Furthermore, under mild
assumptions, we prove that any limit point of the iteration sequence is a so-
lution to the problem. In Section 4, we report results of numerical tests on
a small inventory control problem to show the effectiveness of the proposed
method. The paper is concluded in Section 5.

2 Problem Formulation and the Decomposition Method

In this section, we formulate the multistage linear DRSTO model and discuss
the decomposition method.

Let N be the set of nodes of the scenario tree. For any i ∈ N , let t(i) be
its stage level in the random process. Further let a(i) be its unique ancestor
node at stage t(i) − 1. If i is the root node, then t(i) = 1 and a(i) = ∅. Let
T (i) be the set of its children nodes at stage t(i) + 1. To unify the expression,
in the case when t(i) = T , i.e., i is a leaf node, let T (i) = {i}.

For any given i ∈ N , let ni = |T (i)| be the cardinality of T (i). Let pij
be the transfer probability from i to j ∈ T (i), thus (pij1 , · · · , pijs) (s =
ni; j1, · · · , js ∈ T (i)) constitutes a conditional probability distribution from
node i to its next stage (For the leaf nodes, trivially, we have pii = 1). In what
follows, we denote such conditional distribution by (pij), j ∈ T (i) for short.

For each non-leaf node i ∈ N , we define a conditional random variable

ηi = ξt(i)+1|ξ
(i)
[t(i)] (we use ξ

(i)
[t(i)] to denote the history process associated to

node i) with Ωi = {ηij = ξ
(j)
t(i)+1|j ∈ T (i)} being its sample space, where

ξ
(j)
t(i)+1 are the possible realizations of ξt(i)+1 for node i. If i is a leaf node,

since T (i) = {i}, we can define ηi ≡ ξ(i)t(i), with Ωi = {ηii = ξ
(i)
t(i)}.

Let µi and Σi be the estimator of the conditional expectation E[ηi] and
the conditional covariance matrix E[(ηi − E(ηi))(ηi − E(ηi))

>], respectively.

To construct the distributionally robust model, we use the following nested
moment uncertainty to describe the ambiguity of distribution information with
respect to ηi,

(E[ηi]− µi)>Σ−1i (E[ηi]− µi) ≤ γ1 (6)

E[(ηi − µi)(ηi − µi)>] � γ2Σi,

where γ1 > 0, γ2 ≥ 1, and Σi � 0 (as usual, � 0 and � 0 mean positive defi-
niteness and positive semidefiniteness, respectively). For discrete distribution,
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the ambiguity set can be equivalently expressed as follows.

Pi(Ωi, µi, Σi, γ1, γ2) = ∑
j∈T (i)

pij = 1, pij ≥ 0

∣∣∣∣∣∣
∑
j∈T (i) pij [(ηij − µi)(ηij − µi)>] � γ2Σi∑
j∈T (i) pij

[
Σi ηij − µi

(ηij − µi)> γ1

]
� 0

 .(7)

The ambiguity set (7) used here was first introduced in [6]. As is well known,
moment uncertainty is a classic approach to construct the ambiguity set be-
cause this formulation has clear statistical meaning and it facilitates the re-
formulation of the distributionally robust problem to conic optimization prob-
lems, to which some well-developed algorithms can be applied.

We first consider the extreme case of the distributionally robustness. The
next proposition shows that if the parameters γ1 and γ2 are sufficiently large,
the distributionally robust constraint will cover the entire space of probability
distributions.

Proposition 1 If Σi � 0, then for sufficiently large γ1 > 0 and γ2 ≥ 1, the
ambiguity set Pi(Ωi, µi, Σi, γ1, γ2) can be described as

P̃i(Ωi) =

p = (pij), j ∈ T (i)

∣∣∣∣∣∣
∑
j∈T (i)

pij = 1, pij ≥ 0

 . (8)

Proof It is sufficient to prove that, for any γ1 and γ2 large enough, any distri-
bution in (8) satisfies the robust constraint in (7). Firstly, for γ1 sufficiently
large,

(ηij − µi)>Σ−1i (ηij − µi) ≤ γ1 for all j ∈ T (i).

Together with the positive definiteness of Σi, we have∑
j∈T (i)

pij

[
Σi ηij − µi

(ηij − µi)> γ1

]
� 0 (9)

holds for any distribution (pij) satisfying (8).
Furthermore, for any unit vector x satisfying ‖x‖2 = 1, it holds that for

any j ∈ T (i)
x>[(ηij − µi)(ηij − µi)>]x ≤ ‖ηij − µi‖22 (10)

and
γ2x
>Σix ≥ γ2λmin(Σi), (11)

where λmin(Σi) > 0 is the least eigenvalue of Σi. Consequently, for γ2 large
enough,

x>
[
γ2Σi − (ηij − µi)(ηij − µi)>

]
x ≥ 0

which means

γ2Σi � (ηij − µi)(ηij − µi)> for all j ∈ T (i). (12)

It follows immediately that
∑
j∈T (i) pij [(ηij − µi)(ηij − µi)>] � γ2Σi. ut
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Next, we specialize some notations in (5) to the ones in a scenario tree
model. Let us designate Ai = At(i), ci = ct(i), and (Bi, bi) be the realization
of (Bt(i), bt(i)) corresponding to node i, respectively. The multi-stage distri-
butionally robust model (5) can then be reformulated as the next dynamic
programming equations

Qi(xa(i)) = min
xi

{
c>i xi +Qi(xi) : Bixa(i) +Aixi = bi, xi ≥ 0

}
. (13)

Here Qi(xi) is called a cost-to-go function whose definition is as follows. If i
is not a leaf node, let

Qi(xi) := sup
Pi∈Pi

E [Qj(xi)] = sup
Pi∈Pi

∑
j∈T (i)

pijQj(xi). (14)

If i is a leaf node, then let Qi(·) ≡ 0. In the case when a(i) = ∅, i.e., i is the
root node, we trivially define x∅ = 0, Bi = 0.

Also notice that, as is shown by Proposition 1, in the limit case when γ1
and γ2 are large enough, the ambiguity set is the entire space of probability
distributions. In this case the cost-to-go function will be

Qi(xi) = max
j∈T (i)

Qj(xi), (15)

which means that the worst case distribution is the Dirac measure δj (the
measure of mass one at the jth sub-branch from i). This case is equivalent
to a multistage robust programming problem without consideration of the
scenario distribution. Overall, the decision process will reduce to a single path
of the scenario tree. That is, when an optimal solution is decided, there exists
a path such that the total cost of all the nodes in this path will be equal to
the optimal value of the first stage problem.

To analyze the convexity of Qi(·), we first cite the next result.

Lemma 2 ([39]) Let X and U be real linear spaces, and suppose F : X×U →
[−∞,+∞] is jointly convex in (x, u). Then the following optimal value function
ϕ(·) is also convex.

ϕ(u) := inf
x∈X

F (x, u) u ∈ U. (16)

Lemma 3 The function Qi(·) and Qi(·) defined as (13) and (14) respectively
are both convex.

Proof The proof is by induction. Firstly, if i is a leaf node, Qi(·) ≡ 0 and
Qi(xa(i)) is the optimal value of a linear programming problem with xa(i) be
its parameter. It follows from the Proposition 2.1 in [40] that Qi(·) is convex,
which implies that Qa(i)(·) is convex.
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Generally, suppose that i is not a leaf node and that for all j ∈ T (i), Qj(·)
are convex functions. Denote C = {(x, u)|Aix+Biu = bi, x ≥ 0}, the indicator
ψC of C as follows:

ψC(x, u) =

{
0 if (x, u) ∈ C,

+∞ if (x, u) /∈ C. (17)

Denote

Fj(x, u) = c>j x+Qj(x) + ψC(x, u),

which is convex for (x, u). It follows from Lemma 2 and (13) that Qj(·) is
convex, which implies the convexity of Qi(·). ut

We now turn to discuss the equivalent form of Qi(xi) by Lagrange duality.
For this purpose, we need the next assumption.

Assumption 4 (Slater’s condition) Suppose that for any node i ∈ N , there
exists a distribution (pij1 , · · · , pijs) ∈ Pi(Ωi, µi, γ1, γ2) (s = ni; j1, · · · , js ∈
T (i)) such that the probability pij1 , · · · , pijs are all positive and∑

j∈T (i)

pijηij = µi,
∑
j∈T (i)

pij
[
(ηij − µi)(ηij − µi)>

]
≺ Σi. (18)

Lemma 5 Suppose γ1 > 0, γ2 ≥ 1, Σi � 0 and Assumption 4 holds. Then
Qi(xi) equals to the optimal value of the following problem

min
S,q,r,v

r + v (19)

s.t. r + η>ijSηij + η>ijq ≥ Qj(xi), (j ∈ T (i))

v ≥ (γ2Σi + µiµ
>
i ) • S + µ>i q +

√
γ1‖Σ1/2

i (q + 2Sµi)‖
S � 0.

Proof By Lemma 1 of [6], we readily have that (19) is the Lagrange dual
problem of (14). Furthermore, Assumption 4 ensures that condition (2.20)
required by Proposition 2.8(ii) of [41] holds. Specifically, since (18) holds and
γ2 ≥ 1, one has ∑

j∈T (i)

pij [(ηij − µi)(ηij − µi)>] ≺ Σi � γ2Σi (20)

and ∑
j∈T (i)

pij

[
Σi ηij − µi

(ηij − µi)> γ1

]
=

[
Σi 0
0 γ1

]
� 0. (21)

On the other hand, problem (14) can be reformulated as

min
p∈C
〈c, p〉 s.t. A(p) + b ∈ K, (22)
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where C := {p = (pij), j ∈ T (i) |pij ≥ 0}, c = (Qj(xi)), j ∈ T (i). A is a linear
mapping defined as follows

A(p) :=
∑
j∈T (i)


pij

−pij [(ηij − µi)(ηij − µi)>]

pij

[
Σi ηij − µi

(ηij − µi)> γ1

]
 . (23)

b = {−1}×{γ2Σi}×{0(mi+1)×(mi+1)} and K = {0}×Smi
+ ×Smi+1

+ , where mi

is the length of the random vector ηi, Smi
+ and Smi+1

+ are the cones of positive
semidefinite matrices of dimension mi and mi + 1 respectively. By (20) and
(21), we readily have that

−b ∈ int[A(C)−K]. (24)

That is, condition (2.20) in [41] holds. This implies that there is no duality
gap between (19) and its primal problem. Hence the lemma holds. ut

Based on the convexity of Qi(·), the main idea of the nested Benders de-
composition method is to use a series of cutting planes to approximate Qi(·).
The definitions of a cutting plane and a supporting plane of a given function
are as follows.

Definition 6 ([42]) Let Q(·) : Rn → R be a convex function. An affine func-
tion l(x) is called a cutting plane of Q(·) if Q(x) ≥ l(x) for all x ∈ Rn. Fur-
thermore, if Q(x0) = l(x0) for some x0, then l(x) is said to be a supporting
plane of Q(x).

In what follows, we illustrate the approach to constructing cutting planes
that approximate the cost-to-go functions Qi(xi), which paves the way to solve
problem (5). As mentioned in Section 1, the construction is realized through
a forward step and a backward step.

Let Q̃i(xi) be an approximation of Qi(xi), i.e.,

Q̃i(xi) = max
1≤k≤Ki

lk(xi) := max
1≤k≤Ki

α>k xi + βk, (25)

where lk(xi) = α>k xi + βk (k = 1, · · · ,Ki) are cutting planes of Qi(xi).
Substitute Qi(xi) by Q̃i(xi) in (13), we can define the following functions

(when i is not a leaf node),

Q̂i(xa(i)) := min
xi,hi

c>i xi + hi (26)

s.t. Bixa(i) +Aixi = bi, xi ≥ 0,

hi ≥ α>k xi + βk (k = 1, · · · ,Ki).

Correspondingly, we define

Q̂i(xi) := sup
Pi∈Pi

E
[
Q̂j(xi)

]
= sup
Pi∈Pi

∑
j∈T (i)

pijQ̂j(xi). (27)
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Q̂i(·) is a counterpart of the real Qi(·) when each Qj(·) is replaced by Q̂j(·)
(j ∈ T (i)). Later, we will see that Q̃i(xi) and Q̂i(xi) are used in the forward
and backward step respectively. Furthermore, since Q̃i(xi) ≤ Qi(xi), one has
Q̂i(xa(i)) ≤ Qi(xa(i)) which implies that Q̂i(xi) ≤ Qi(xi). Hence, any cutting

plane of Q̂i(·) is also a cutting plane of Qi(·). The strict analysis will be given
in Proposition 12.

Proposition 7 Suppose γ1 ≥ 0, γ2 ≥ 1, Σi � 0, and Assumption 4 holds. Let
Ωi = {ηij |j ∈ T (i)} be the sample space of ηi. Then for any given x̄i, Q̂i(x̄i)
equals to the optimal value of the following problem

min
S,q,r,v
xj,hj

r + v (28)

s.t. r + η>ijSηij + η>ijq ≥ c>j xj + hj ,

v ≥ (γ2Σi + µiµ
>
i ) • S + µ>i q +

√
γ1‖Σ1/2

i (q + 2Sµi)‖,
hj ≥ max

k=1,··· ,Kj

α>jkxj + βjk,

Bj x̄i +Ajxj = bj , xj ≥ 0,

S � 0 (j ∈ T (i)).

Proof Similar to the proof of Lemma 5, by (27), Q̂i(x̄i) equals to the optimal
value of the following problem

min
S,q,r,v

r + v (29)

s.t. r + η>ijSηij + η>ijq ≥ Q̂j(x̄i), (j ∈ T (i))

v ≥ (γ2Σi + µiµ
>
i ) • S + µ>i q +

√
γ1‖Σ1/2

i (q + 2Sµi)‖,
S � 0.

The proposition follows by replacing Q̂j(x̄i) with (26) in the above expression.
ut

Lemma 8 Suppose γ1 ≥ 0, γ2 ≥ 1, Σi � 0, and Assumption 4 holds, for
given x̄i, further suppose that for any j ∈ T (i), there exists xj > 0 such that

Bj x̄i + Ajxj = bj. Then Q̂i(x̄i) equals to the optimal value of the following
problem

max
lj ,λj ,djk

Σ
j∈T (i)

∑Kj

k=1 djkβk −Σj l>j (Bj x̄i − bj) (30)

s.t. Σ
j∈T (i)

∑Kj

k=1 djk = 1,
∑Kj

k=1 djk = λj , djk ≥ 0,

A>j lj ≤ λjcj +
∑Kj

k=1 djkαjk,

Σ
j∈T (i)

λj [(ηij − µi)(ηij − µi)>] � γ2Σi,

Σ
j∈T (i)

λj

[
Σj ηij − µi

(ηij − µi)> γ1

]
� 0.
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Proof As is shown by Proposition 7 that, under the stated condition, Q̂i(x̄i)
equals to the optimal value of (28). On the other hand, by Lemma 1 of [6],
it holds that (28) can be rewritten as the following semidefinite programming
problem

min
r,P,p,S,s

xj,hj

(γ2Σi − µiµ>i ) • S + r + (Σi • P )− 2µ>i p+ γ1s (31)

s.t. r + η>ijSηij − 2η>ij(p+ Sµi) ≥ c>j xj + hj ,

hj ≥ α>jkxj + βjk,

Bj x̄i +Ajxj = bj ,[
P p
p> s

]
� 0,

S � 0, xj ≥ 0 (j ∈ T (i), k = 1, · · · ,Kj).

By formulating the Lagrangian of (31), it can be verified that (30) is the
dual problem of (31). Since there exists xj > 0 (j ∈ T (i)) satisfying that
Bj x̄i +Ajxj = bj , there exists (r, P, p, S, s, xj , hj) such that

r + η>ijSηij − 2η>ij(p+ Sµi) > c>j xj + hj , (32)

hj > α>jkxj + βjk,

Bj x̄i +Ajxj = bj ,

S � 0, xj > 0,[
P p
p> s

]
� 0 (j ∈ T (i), k = 1, · · · ,Kj),

which means (r, P, p, S, s, xj , hj) satisfies the Slater condition of (31). There-
fore, there is no duality gap between (30) and (31). ut

Remarks.

(1) The above proof points out the strong duality relationship between (30)
and (31), which is important in the analysis of the subgradient of Q̂i(·).
(2) An alternative approach to verifying Lemma 8 is that, for given x̄i and

Pi ∈ Pi, we can rewrite E
[
Q̂j(x̄i)

]
as follows.

min
xj ,hj

∑
j∈T (i)

pij(c
>
j xj + hj) (33)

s.t. Bj x̄i +Ajxj = bj

hj ≥ α>jkxj + βjk

xj ≥ 0 (j ∈ T (i), k = 1, · · · ,Kj),
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which has the following dual problem

maxlj ,djk
∑
j∈T (i)

Kj∑
k=1

djkβjk −
∑
j∈T (i)

l>j (Bj x̄i − bj) (34)

s.t.

Kj∑
k=1

djk = pij , djk ≥ 0

A>j lj ≤ pijcj +

Kj∑
k=1

djkαjk (j ∈ T (i), k = 1, · · · ,Kj).

By the assumption of Lemma 8, (33) has a strictly feasible solution, hence there

is no duality gap. Thus, E
[
Q̂j(xi)

]
is the optimal value of (34). Together with

the definition of Pi, we obtain that (30) is the equivalent form of (27).

Theorem 9 For given i ∈ N such that neither {i} nor T (i) contains leaf
nodes, and for fixed x̄i, let lj , λj , djk, (j ∈ T (i), k = 1, · · · ,Kj) be any solution
of (30). Then

−
∑
j∈T (i)

B>j lj ∈ ∂Q̂i(x̄i). (35)

Proof Denote Z := (W,Y, v), where W ∈ R|T (i)| consists of scalars wj , v ∈
R|T (i)| denotes the set of vj , and Y consists of scalars yjk, where j ∈ T (i), k =
1, · · · ,Kj . Consider the following parameterized problem of (31)

min
r,P,p,S,s

xj,hj

(γ2Σi − µiµ>i ) • S + r + (Σi • P )− 2µ>i p+ γ1s (36)

s.t. r + η>ijSηij − 2η>ij(p+ Sµi) ≥ c>j xj + hj + wj

hj ≥ α>jkxj + yjk

Ajxj = vj[
P p
p> s

]
� 0

S � 0, xj ≥ 0 (j ∈ T (i), k = 1, · · · ,Kj).

Note that if wj = 0, yjk = βk and vj = bj − Bj x̄i, then (36) is the original
problem (31). Let ϕ(Z) := ϕ(W,Y, v) be the optimal value of (36).

Denote L := (λ,D, l), where λ ∈ R|T (i)| consists of scalars λj , D contains
djk, and L ∈ R|T (i)| consists of scalars lj , with j ∈ T (i), k = 1, · · · ,Kj . The
Lagrangian dual of (36) can be written as

ϕ(Z) := max
lj ,λj ,djk

〈Z,L〉 =
∑
j λjwj +

∑
j

∑
k djkyjk +Σj l

>
j vj (37)

s.t. L = (λ,D, l) ∈ Π,
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where

Π =

(λ,D, l)

∣∣∣∣∣∣∣∣∣∣

∑
j

∑
k djk = 1,

∑
k djk = λj , djk ≥ 0

A>j lj ≤ λjcj +
∑
k djkαjk

Σj∈T (i)λj [(ηij − µi)(ηij − µi)>] � γ2Σi
Σj∈T (i)λj

[
Σj ηij − µi

(ηij − µi)> γ1

]
� 0

 . (38)

Therefore,

ϕ(Z) = sup
L
{〈Z,L〉 − IΠ(L)}, (39)

where IΠ(·) is the indicator function

IΠ(L) =

{
0 if L ∈ Π,

+∞ if L /∈ Π. (40)

This means ϕ(·) is the conjugate of IΠ(·). Since IΠ(·) is a convex and lower
semicontinuous function, IΠ(·) is also the conjugate of ϕ(·), and

∂ϕ(Z) = arg max
L
〈Z,L〉 − IΠ(L) = arg max

L∈Π
〈Z,L〉. (41)

Let Z0 := (W0, Y0, v0), where W0 = 0, y0jk = βjk and v0j = bj −Bj x̄i, L0 =
(λ0, D0, l0) = arg maxL∈Π < Z0, L >. By the chain rule of subdifferentiation,
we have that

∂Q̂i(x̄i) = ∇(Z0(x̄i))
>∂ϕ(Z0) = {−

∑
j

B>j lj}. �

For the case when t(i) = T − 1, i.e., i is the ancestor of some leaf nodes,
we have the following result.

Theorem 10 For given i ∈ N such that t(i) = T − 1 (i.e., the successors of
node i are all leaf nodes) and given x̄i, let lj , λj (j ∈ T (i)) be any solution of
the next problem

maxlj ,λj
−
∑
j

l>j (Bj x̄i − bj) (42)

s.t. A>j lj ≤ λjcj ,
Σ

j∈T (i)
λj [(ηij − µi)(ηij − µi)>] � γ2Σi,

Σ
j∈T (i)

λj

[
Σj ηij − µi

(ηij − µi)> γ1

]
� 0.

Then

−
∑
j

B>j lj ∈ ∂Qi(x̄i). (43)
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Proof Similar to Proposition 7, it holds that for given x̄i, Qi(x̄i) equals to the
optimal value of the following problem

min
S,q,r,v

xj

r + v (44)

s.t. r + η>ijSηij + η>ijq ≥ c>j xj ,

v ≥ (γ2Σi + µiµ
>
i ) • S + µ>i q +

√
γ1‖Σ1/2

i (q + 2Sµi)‖,
S � 0,

Bj x̄i +Ajxj = bj , xj ≥ 0 (j ∈ T (i)).

It can be verified that (42) is the dual of (44). The rest of the proof is similar
to that of Theorem 9. ut

We are now ready to present the proposed decomposition method.

Algorithm 1 The Robust Decomposition Algorithm

Initialization: Let k = 1, for each node i ∈ N , set Ki = 0 and Bi0 = 0.
Denote i0 be the root node and let x∅ = 0. Choose the tolerance ε > 0.

Forward Step: Starts from the root node. For each node i ∈ N , retrieve
xka(i) from its ancestor node. If k = 1, find xki be any feasible point of (13).

If k > 1, for each non-leaf node i, solve (26) to obtain current approximate
solution xki , and for each leaf node i, solve (13) to get current solution xki .

Stop Criteria: If ‖xki − xk−1i ‖ ≤ ε for each node i, then terminates.
Otherwise, go on to carry out the backward step.

Backward Step: First choose i ∈ N whose successors are all leaf nodes,
compute Qi(xki ) by solving (44) and compute a gki of ∂Qi(xki ) by (42) and (43).

Update Q̃k+1
i (·) and Q̂k+1

i (·) by adding the cutting plane lk(x) = Qi(xki ) +
(gki )>(x− xki ) into (25) and (26), respectively.

By recursion, for i ∈ N whose successors have all been renewed in current
iteration, use current xki to compute Q̂k+1

i (xki ) by solving (30) and also com-

pute a gki of ∂Q̂k+1
i (xki ) by (35). Update Q̃k+1

i (·) and Q̂k+1
i (·) by adding the

cutting plane lk(x) = Q̂k+1
i (xki )+(gki )>(x−xi) into (25) and (26), respectively.

Update: Set k = k + 1, and for each node i, Ki = Ki + 1. Return to
the Forward Step. (k is the number of iteration. Ki is the number of cutting
planes for node i.)

The outline of the iteration process is shown by Figure 1 and Figure 2. At
each iteration, a forward step, which starts from the root node, is first carried
out to generate new trial points for each node. The trial points are generated by
solving the approximated problems. Then, a backward step, which starts from
the leaf nodes and ends at the root node, is conducted to compute new cutting
planes to update the cost-to-go functions and the approximated problems for
each node.
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Fig. 1 The Forward Step

Fig. 2 The Backward Step

From the perspective of computation, there are some potential approaches
to improve the numerical efficiency of the decomposition algorithm. For in-
stance, in SDDP, a statistical upper bound is incorporated in the forward step,
which enables the algorithm to be applicable for large scale problems. These
techniques can not be directly applied to the distributionally robust problems,
the main reason is: the computation of the statistical upper bound relies on the
exact knowledge of the distribution of the parameters. A possible approach to
overcome this difficulty is to construct a deterministic upper bound by using
the convex hull of sample points. Literature on this topic includes [36], [43]
etc.

Another problem is, with the increase of the number of the cutting planes,
the number of the constraints will also increase. This will finally lead to a large
scale conic program for each node. An approach to deal with this is to test
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and delete the redundant cutting planes at each iteration. See e.g., [44] and
[45] for references.

The usage of the above techniques needs specific discussions, and the con-
vergence analysis will be much more complicated as well. Hence in the following
sections, we still focus on the convergence properties of Algorithm 1, which
are established through a new framework.

Assumption 11 Suppose that for each node i ∈ N , and any xa(i) ≥ 0 it holds
that
(i) the feasible set Ci(xa(i)) = {xi ≥ 0|Bixa(i) + Aixi = bi} of (13) has
nonempty relative interior;
(ii) Qi(xa(i)) and its approximation Q̂i(xa(i)) are proper functions; and
(iii) there exists α ∈ R and a bounded set C such that for every x̃a(i) ≥ 0 in a
neighborhood of xa(i), the level set

levαQ̂
k
j :=

{
xi ∈ Ci(x̃a(i)) : Q̂kj (xi) ≤ α

}
, j ∈ T (i)

are all contained in C.

Remarks.
(i) The assumption on the feasible set guarantees that the proposed algo-

rithm is always well defined. In practice, in the case where the feasible sets
Ci(xa(i)) are empty, a feasibility cut can be used to ensure the well-definedness
of the algorithm, see [27] for details of the feasibility cut.

(ii) The properness of Qi(xa(i)) and Q̂i(xa(i)) implies that the problem
defined in (13) and (26) must have optimal solutions, otherwise Qi(xa(i)) and

Q̂i(xa(i)) may take the value of −∞. Furthermore, the properness of Qj(xi)

and Q̂j(xi), (j ∈ T (i)) also ensures the properness of Qi(xi) and Q̂i(xi).
(iii) Assumption (iii) is called the inf-compactness condition, which is im-

portant in the stability analysis of an optimization problem. See e.g. Section
4.1 in [46] for references. ut

The next result shows the relationship between Qi(xa(i)), Qi(xi) and their

approximations. This also verifies that the cutting planes contained in Q̃ki (xi)
are also cutting planes of the real cost-to-go function Qi(xi).

Proposition 12 For all i ∈ N , and k = 1, · · · , it holds that Q̂ki (xa(i)) ≤
Qi(xa(i)), Q̃ki (xi) ≤ Q̂ki (xi) ≤ Qi(xi).

Proof The proof is by induction. If i is a leaf node, we have Q̂ki ≡ Qi, and Q̃i ≡
Q̂i ≡ Qi ≡ 0, the statement trivially holds. Generally, for any node i ∈ N ,
suppose that for all j ∈ T (i), the statement holds. Hence, Q̂kj (xi) ≤ Qj(xi),

which implies that Q̂ki (xi) ≤ Qi(xi). Since Q̃ki (xi) is constructed by a series of

cutting planes of Q̂ki (xi), then, Q̃ki (xi) ≤ Q̂ki (xi). Finally, by the definition of

Q̂ki (·), we have Q̂ki (xa(i)) ≤ Qi(xa(i)). Consequently, the statement holds for
all i ∈ N . ut
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Together with Assumption 11 (iii), this proposition implies that, if the
inf-compactness condition holds for Q̂kj , then it also holds for Q̂ki and Qi.
Specifically, we have the next result.

Corollary 13 Suppose Assumption 11 holds, and denote

levαQ̂ki :=
{
xi ∈ Ci(x̃a(i)) : Q̂ki (xi) ≤ α

}
and

levαQi :=
{
xi ∈ Ci(x̃a(i)) : Qi(xi) ≤ α

}
.

Then levαQi ⊆ levαQ̂ki ⊆ C (C is defined in Assumption 11).

Proof Firstly, by Q̂ki (xi) ≤ Qi(xi) it readily holds that levαQi ⊆ levαQ̂ki .

Secondly, choose any xi ∈ levαQ̂ki , then Q̂ki (xi) ≤ α. By (27), this means that

there exists j0 ∈ T (i) such that Q̂kj0(xi) ≤ α. Thus, by Assumption 11 (iii),

we have xi ∈ C. This implies levαQ̂ki ⊆ C. ut

3 Convergence of the Decomposition Method

As is mentioned in Section 1, for multistage distributionally robust problem
with moment constraints, the convergence analysis will be much more compli-
cated than that in most current literature. Since the cost-to-go function Qi(·)
will no longer be polyhedral, we can not take use of the finiteness of the cut-
ting planes any more. In this section, we establish a new framework, by using
the results in parametric optimization, to analyze the convergence properties
of the presented decomposition algorithm. We first cite the next proposition,
which is a general result on the stability of the optimal value function and
optimal solutions of a general optimal problem.

Proposition 14 ([46] Proposition 4.4) Consider the parameterized optimiza-
tion problems of the form

min
x∈X

f(x, u) s.t. G(x, u) ∈ K. (45)

Denote

Φ(u) := {x ∈ X : G(x, u) ∈ K}

and the optimal solution set

S(u) := argminx∈Φ(u)f(x, u).

Let u0 be a given point in the parameter space U . Suppose that (i) the function
f(x, u) is continuous on X×U ; (ii) the multifunction Φ(·) is closed; (iii) there
exists α ∈ R and a compact set C ∈ X such that for every u in a neighborhood
of u0, the level set

levαf(·, u) := {x ∈ Φ(u) : f(x, u) ≤ α}
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is nonempty and contained in C; and (iv) for any neighborhood VX of the set
S(u0) there exists a neighborhood VU of u0 such that VX ∩Φ(u) 6= ∅ for all u ∈
VU . Then (a) the optimal value function φ(u) := infx∈Φ(u) f(x, u) is continuous
at u = u0 and (b) the multifunction u 7→ S(u) is upper semicontinuous at u0.

For optimization problem in finite-dimensional spaces, we can further obtain
the next result.

Lemma 15 Define the function φ : U → [−∞,+∞] as

φ(u) := min f(x, u) (46)

s.t. x ∈ Φ(u),

where f : Rn ×U → R, and the point-to-set mapping Φ : U → P(Rn) is called
the constraint mapping. Suppose that Φ is continuous at ū ∈ U with Φ(ū) 6= ∅
and f is continuous at Φ(ū) × {ū} with φ(ū) > −∞. Furthermore, suppose
condition (iii) in Proposition 14 holds. Then (a) φ is continuous at ū; and
(b) under the additional assumption of the optimal solution set S(ū) being a
singleton, the multifunction u 7→ S(u) is continuous at ū.

Proof It suffices to verify that the conditions in Proposition 14 are satisfied
in a neighbour of Φ(ū) × {ū}. Notice that (i) is just the continuity of f with
respect to jointly x and u. (iii) is guaranteed by the Lemma’s assumptions.
On the other hand, for given Φ(u), it is natural to define G(x, u) := d(x, Φ(u))
and K := {0} to reformulate (46) as the form of (45). Thus the continuity
of the mapping Φ implies that G(x, u) is continuous. Hence (ii) and (iv) hold
(See e.g. Page 264 in [46] for details). Consequently, the statement (a) holds.
Furthermore, the multifunction u 7→ S(u) is upper semicontinuous at ū. Since
S(ū) is a singleton, one must have that S(u) converges to S(ū) with u → ū,
so the statement (b) holds. ut

Proposition 16 Suppose that Assumption 11 holds. Then both Qi(xa(i)) and
Qi(xi) are continuous when xa(i) ≥ 0 and xi ≥ 0.

Proof For each node i, by Assumption 11, it is easy to verify that, at any
xa(i) ≥ 0, the constraint mapping Ci(xa(i)) := {xi ≥ 0|Bixa(i) +Aixi = bi} is
continuous and Ci(xa(i)) 6= ∅.

The proof is by induction. Firstly, if i is a leaf node, then we have Qi(xi) ≡
0, and by Lemma 15, Qi(xa(i)) is continuous when xa(i) ≥ 0. In general, let i
be a non-leaf node, and suppose that for all j ∈ T (i), Qj(xi) is continuous at
xi ≥ 0. Then, f(p, xi) :=

∑
j∈T (i) pijQj(xi) is continuous at (pij)j∈T (i) × xi.

Hence, by Lemma 15, it holds that Qi(xi) is continuous at xi ≥ 0, which
implies that Qi(xa(i)) is also continuous at xa(i). ut

Following the same path of proof, we have the next result.

Proposition 17 Suppose that Assumption 11 holds. Then for each node i ∈
N , both Q̂i(xa(i)) and Q̂i(xi) are continuous when xa(i) ≥ 0 and xi ≥ 0.
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For simplicity, we denote xk = (xki ), i ∈ N for the entire scenario tree.
Recall that for sets A,B ⊆ Rn, dist (x,A) := infx′∈A ‖x− x′‖ and D(A,B) :=
supx∈A dist (x,B).

Proposition 18 ([47],Proposition 2.1.5(b)) Let X be a Banach space with
X∗ being the dual space of continuous linear functionals on X. Let f be Lips-
chitzian near a given point x and let xi and ξi be repectively the sequences in X
and X∗ such that ξi ∈ ∂f(xi), where ∂f(x) is the generalized subdifferential.
Suppose that xi converge to x, and that ξ is a cluster point of ξi in the weak∗

topology. Then one has ξ ∈ ∂f(x).

Notice that the subgradient for a proper convex function is a special case of
the generalized gradient, we readily obtain the next result.

Lemma 19 Let f : Rn → (−∞,+∞] be a closed proper convex function, and
{zk} ⊆ Rn be a sequence converging to z∗. If ζk ∈ ∂f(zk) and {ζk} → ζ∗,
then ζ∗ ∈ ∂f(z∗).

Assumption 20 There is a common bound C such that for all nodes i ∈ N
and any xi ∈ Ci, where Ci = domQi, it holds that ‖g‖ ≤ C for all g ∈ ∂Qi(xi).

Proposition 21 Let f : Rn → (−∞,+∞] be a closed proper convex function
with its domain denoted by X, and suppose there exists a constant C such that
‖g‖ ≤ C for any x ∈ X and all g ∈ ∂f(x). Denote {xk} ⊆ X be a sequence
converging to x∗, Vk = ∂f(xk) and V∗ = ∂f(x∗). Then limk→∞ D(Vk, V∗) = 0.

Proof The proof is by contradiction. Suppose that there exists ε > 0 and
a subsequence {xk}K ,K ⊆ {1, 2, · · · } with some gk ∈ ∂f(xk), such that
dist (gk, V∗) ≥ ε for all k ∈ K. Since ‖gk‖ ≤ C, without loss of general-
ity, we can assume that {gk}K converges to some point g∗. It follows that
dist (g∗, V∗) ≥ ε. However, by Lemma 19 we have g∗ ∈ V∗, which leads to a
contradiction. ut

Lemma 22 Suppose that there exists an iteration subsequence {xk}K which
converges to a limit point x∗. For any i ∈ N fixed, suppose that Q̂ki (xki ) con-
verges to Qi(x∗i ) and there exists a constant Ci such that ‖gki ‖ ≤ Ci for any

gki ∈ ∂Q̂ki (xki ) and k ∈ K sufficiently large. Then limk→∞,k∈K Q̂
k
i (xka(i)) =

Qi(x
∗
a(i)) and limk→∞,k∈K Q̃ki (xki ) = Qi(x∗i ).

Proof By Proposition 12, we have Q̂ki (xka(i)) ≤ Qi(x
k
a(i)) and Q̃ki (xki ) ≤ Qi(xki ).

Since Qi(·) and Qi(·) are continuous, it holds that

lim sup
k→∞,k∈K

Q̂ki (xka(i)) ≤ Qi(x
∗
a(i)) (47)

and

lim sup
k→∞,k∈K

Q̃ki (xki ) ≤ Qi(x∗i ). (48)



A Time-Consistent Decomposition Method for Multistage DRSTO 21

On the other hand, it follows from the definition of Q̂ki (·) that Q̂ki (xka(i)) =

c>i x
k
i +Q̃ki (xki ). Denote K = {k1, k2, · · · , kl, · · · }, for any kl ∈ K, we have that

Q̃kli (xkli ) ≥ Q̂kl−1

i (x
kl−1

i ) + (g
kl−1

i )>(xkli − x
kl−1

i ), (49)

where g
kl−1

i ∈ ∂Q̂kl−1

i (x
kl−1

i ). Consequently,

Q̂kli (xkla(i)) = c>i x
kl
i + Q̃ki (xkli ) (50)

≥ c>i x
kl
i + Q̂kl−1

i (x
kl−1

i ) + (g
kl−1

i )>(xkli − x
kl−1

i ).

Since {xk}K → x∗, ‖gki ‖ ≤ C, and Q̂kl−1

i (x
kl−1

i ) converges to Qi(x∗i ), we have
that

lim inf
k→∞,k∈K

Q̂ki (xka(i)) ≥ c
>
i x
∗
i +Qi(x∗i ) = Qi(x

∗
a(i)) (51)

and
lim inf

k→∞,k∈K
Q̃ki (xki ) ≥ Qi(x∗i ). (52)

Together with (47) and (51), we get limk→∞,k∈K Q̂
k
i (xka(i)) = Qi(x

∗
a(i)). Simi-

larly, from (48) and (52), we have limk→∞,k∈K Q̃ki (xki ) = Qi(x∗i ). ut

Corollary 23 Suppose that there exists a subsequence {xk}K that converges
to a limit point x∗. For any fixed i ∈ N , suppose that the assumptions of
Lemma 22 hold. Then x∗i is the optimal solution of the sub-problem defined by
Qi(x

∗
a(i)).

Proof Recall that xki (k ∈ K) is the optimal solution of the next problem

Q̂ki (xka(i)) = min
xi

{
c>i xi + Q̃ki (xi) : Bix

k
a(i) +Aixi = bi, xi ≥ 0

}
. (53)

Since xka(i) and xki (k ∈ K) converges to x∗a(i) and x∗i respectively, obviously
x∗i satisfies the constraints Bix

∗
a(i) +Aix

∗
i = bi, x

∗
i ≥ 0.

Moreover, by Lemma 22, we have

Qi(x
∗
a(i)) = lim

k→∞,k∈K
Q̂ki (xka(i)) (54)

= lim
k→∞,k∈K

c>i x
k
i + Q̃ki (xki )

= c>i x
∗
i +Qi(x∗i ).

The first equality follows from the first conclusion of Lemma 22, the second
equality follows from the definition of Q̂ki (·), while the last equality follows
from the second conclusion of Lemma 22, which implies that the sub-problem
in Qi(x

∗
a(i)) attains its optimal value at x∗i . ut

Lemma 24 Suppose that there is an iteration subsequence {xk}K which con-
verges to a limit point x∗. Let i ∈ N be any fixed node. Suppose that for all
j ∈ T (i), limk→∞,k∈K Q̂

k
j (xki ) = Qj(x

∗
i ). Then limk→∞,k∈K Q̂ki (xki ) = Qi(x∗i ).
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Proof For any given i ∈ N , denote φ(·) : R|T (i)| → R

φ(q) := sup
Pi∈Pi

∑
j∈T (i)

pijqj . (55)

Denote qk = (Q̂kj (xki )), q∗ = (Qj(x
∗
i )) (j ∈ T (i)), then φ(qk) = Q̂ki (xki ) and

φ(q∗) = Qi(x∗i ). By the Lemma’s assumption, we have qk → q∗(k ∈ K). It
follows immediately from Lemma 15 that φ(qk) converges to φ(q∗). ut

Lemma 25 ([40], Theorem 7.4) Let ft: Rn → R̄, t = 1, · · · ,m be proper
convex functions, x0 be a point such that ft(x0) are all finite, denote f(·) =
f1(·) + · · ·+ fm(·). Then

∂f1(x0) + · · ·+ ∂fm(x0) ⊂ ∂f(x0). (56)

Moreover,

∂f1(x0) + · · ·+ ∂fm(x0) = ∂f(x0) (57)

if any one of the following conditions holds: (i) the set ∩mi=1ri(domfi) is nonempty;
(ii) the functions f1, · · · , fk, k ≤ m, are polyhedral and the intersection of the
sets ∩mi=k+1ri(domfi) is nonempty.

Lemma 26 Suppose Assumption 11 and 20 hold, and there is an iteration
subsequence {xk}K converging to its limit point x∗. For any fixed i ∈ N , sup-
pose that the assumptions of Lemma 22 holds. Further denote V ki = ∂Q̂ki (xki ),
V ∗i = ∂Qi(x∗i ) and suppose limk→∞,k∈K D(V ki , V

∗
i ) = 0. Then it holds that

lim
k→∞,k∈K

D(∂Q̂ki (xka(i)), ∂Qi(x
∗
a(i))) = 0. (58)

Proof For node i ∈ N , denote Xi := {xi|xi ≥ 0}, and NXi
be its normal cone.

Further denote δXi
be the indicator function of Xi, that is,

δXi
(x) = 0 if x ∈ Xi; δXi

(x) = +∞ if x /∈ Xi.

Moreover, we can define

ψ(xa(i), xi) =

{
0 if Bixa(i) +Aixi = bi,

+∞ if Bixa(i) +Aixi 6= bi.
(59)

Consequently, it can be verified that

Q̂ki (xka(i)) = inf
xi

fki

(
xka(i), xi

)
, (60)

where fki (xa(i), xi) = c>i xi + Q̃ki (xi) +ψ(xa(i), xi) + δXi(xi). Similarly, it holds
that

Q∗i (x
∗
a(i)) = inf

xi

f∗i

(
x∗a(i), xi

)
, (61)

where f∗i (xa(i), xi) = c>i xi +Q∗i (xi) + ψ(xa(i), xi) + δXi
(xi).
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Based on Theorem 10.13 in [48], it can be verified that

∂Q̂ki (xka(i)) =
{
y|(0, y) ∈ ∂fki

(
xka(i), x

k
i

)}
(62)

and
∂Q∗i (x

∗
a(i)) =

{
y|(0, y) ∈ ∂f∗i

(
x∗a(i), x

∗
i

)}
. (63)

It follows from Assumption 11 that, the feasible set Ci(xa(i)) of (13) has
nonempty relative interior, hence the condition needed by (57) holds. There-
fore, we have that

∂fki

(
xka(i), x

k
i

)
= (0, c>i )> + ∂Q̃ki (xki ) + ∂ψ

(
xka(i), x

k
i

)
+ ∂δXi

(xki ) (64)

and

∂f∗i

(
x∗a(i), x

∗
i

)
= (0, c>i )> + ∂Q∗i (x∗i ) + ∂ψ

(
x∗a(i), x

∗
i

)
+ ∂δXi

(x∗i ). (65)

Since xka(i) and xki (k ∈ K) converges to x∗a(i) and x∗i respectively, together

with the assumption that limk→∞,k∈K D(V ki , V
∗
i ) = 0, it is easy to verify that

(58) holds. ut

Proposition 27 ([49], Proposition 4.2.5) Let f : R → R be a continuously
differentiable and monotonically nondecreasing function and let g : Rn → R be
a convex function. Suppose the composite function F (·) := f(g(·)) is convex.
Then the subgradient of F (·) is given by

∂F (x) = ∇f(g(x))∂g(x). (66)

Corollary 28 Let f : Rn → R be a continuously differentiable function with
its gradient ∇f(·) ≥ 0, and g : Rm → Rn be a mapping with each com-
ponent gi(·) (i = 1 · · · , n) be a convex function, if the composite function
F (·) := f(g(·)) are convex, and the set ∩ni=1 ri(dom gi) is nonempty, then the
subgradient of F (·) is given by

∂F (x) =

n∑
i=1

f ′i(g(x))∂gi(x), (67)

where f ′i(·) is the ith component of ∇f(·).

Proof Similar to the proof of Proposition 27, it is easy to verify that the
directional derivative of F is

F ′(x; y) =

n∑
i=1

f ′i(g(x))g′i(x; y), x, y ∈ Rn, (68)

where g′i(x; y) is the directional derivative of gi(x) along direction y. Further-
more, it follows from the relationship between the subgradient and directional
derivative that

d ∈ ∂F (x)⇔ ∀y ∈ Rn y′d ≤ F ′(x; y). (69)
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Together with (68), we have that d ∈ ∂F (x) is equivalent to

∀y ∈ Rn y′d ≤
n∑
i=1

f ′i(g(x))g′i(x; y). (70)

Denote fi = f ′i(g(x)), by the corollary’s assumption, we have fi ≥ 0.
Consequently, (70) is further equivalent with

d ∈ ∂

[
n∑
i=1

(fi · gi(x))

]
=

n∑
i=1

f ′i(g(x))∂gi(x). (71)

Consequently, we have that d ∈ ∂F (x) is equivalent with (71), which shows
that (67) is correct. ut

Lemma 29 Denote by {xk}K an iteration subsequence which converges to a
limit point x∗. Let i ∈ N be any fixed node, suppose that for any qk = (Q̂kj (xki ))
and q∗ = (Qj(x

∗
i )) (j ∈ T (i)), problem (55) has a unique optimal solution,

and the set ∩j∈T (i)ri(domQ̂kj ) and ∩j∈T (i)ri(domQj) are nonempty. Further

suppose that qk → q∗. Denote V ki = ∂Q̂ki (xki ) and suppose that for all j ∈ T (i),

limk→∞,k∈K D(∂Q̂kj (xki ), ∂Qj(x
∗
i )) = 0. Then it holds that

lim
k→∞,k∈K

D(V ki , ∂Qi(x∗i )) = 0. (72)

Proof Denote the optimal solution set S(qk) = {pk} and S(q∗) = {p∗}. It can
be verified that condition (i)-(iv) in Proposition 4.12 in [46] holds for problem
(55). Since (55) has a unique optimal solution, we have ∇φ(qk) = pk and
∇φ(q∗) = p∗. It follows from the assumption qk → q∗ and Lemma 15 that
pk → p∗.

Furthermore, by Corollary 28, it holds that

∂Q̂ki (xki ) =
∑
j∈T (i)

φ′i(q
k)∂Q̂kj (xki ) =

∑
j∈T (i)

pkj ∂Q̂
k
j (xki ). (73)

Similarly, we have that

∂Qi(x∗i ) ⊇
∑
j∈T (i)

φ′i(q
∗)∂Qj(x

∗
i ) =

∑
j∈T (i)

p∗j∂Qj(x
∗
i ). (74)

The lemma follows immediately. ut

Lemmae 22-29 constitute a complete chain of induction. We can now es-
tablish the convergence of the proposed algorithm.

Theorem 30 Suppose that Assumption 11 and 20 hold, and there exists an
iteration subsequence {xk}K which converges to a limit point x∗, for each node
i ∈ N . Further suppose that for all qk = (Q̂kj (xki )) and q∗ = (Qj(x

∗
i )) (j ∈

T (i)), problem (27) has a unique optimal solution, and the set ∩j∈T (i)ri(domQ̂kj )
and ∩j∈T (i)ri(domQj) are nonempty. Then
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(i) limk→∞,k∈K Q̂
k
i (xka(i)) = Qi(x

∗
a(i));

(ii) limk→∞,k∈K Q̂ki (xki ) = Qi(x∗i );
(iii) limk→∞,k∈K Q̃ki (xki ) = Qi(x∗i ); and
(iv) for any i ∈ N , x∗i is the optimal solution of the right side problem of
(13). That is, x∗ = (x∗i ), i ∈ N is the optimal solution of the entire multistage
problem.

Proof Under the assumptions of the theorem, it follows from Proposition 16
and 17 that the functions Qi(xa(i)) , Qi(xi), Q̂i(xa(i)) and Q̂i(xi) are all con-
tinuous in their feasible sets.

The proof of (i)-(iii) is by induction. If i is a leaf node, we have Q̂ki ≡ Qi,

and Q̃ki ≡ Q̂ki ≡ Qi ≡ 0, then (i)-(iii) holds for i immediately from the
convergence of {xk}K and the continuousness of Qi at x∗. Furthermore, by
Lemma 26, we have

lim
k→∞,k∈K

D(∂Q̂ki (xka(i)), ∂Qi(x
∗
a(i))) = 0. (75)

Now for any i ∈ N fixed, suppose that for any j ∈ T (i), (i)-(iii) and (75)
hold. By Lemma 24, we have limk→∞,k∈K Q̂ki (xki ) = Qi(x∗i ), i.e., (ii) holds.
On the other hand, by Lemma 29 and (75), we have

lim
k→∞,k∈K

D(∂Q̂ki (xki ), ∂Qi(x∗i )) = 0. (76)

Consequently, the conditions of Lemma 22 hold, which implies (i) and (iii)
holds for i. Furthermore, by Lemma 26 and (76), we obtain that (75) hold for
i. Hence, the induction holds, that is, (i)–(iii) and (75) hold for all i ∈ N .

Finally, since the conditions of Lemma 22 hold for all i ∈ N , (iv) holds by
Corollary 23. ut

4 Numerical Test on a Inventory Control Problem

In this section, we test our algorithm on a classical multistage inventory control
problem. The original form of this problem is described in the AIMMS opti-
mization modeling book ([50], Chapter 17). Here we test a more complicated
version that introduces the distributional robustness.

The multi-period inventory control model aims to maximize the total ex-
pected profit by deciding the production, inventory and external supply vol-
ume of two products at each stage (or each node of the scenario trees). All the
parameters and variables are listed in Table 1. In particular, at each node i,
the random variables are the demand vector di of the two products. Among
the deterministic parameters, the selling price ps, the production cost cp, in-
ventory ci, and external supply ce are all vectors in R2. As to the decision
variables, denote xi = (x1i , x

2
i ), of which the elements x1i and x2i are the vol-

ume of the two types of production respectively. The meanings of the elements
of yi = (y1i , y

2
i ) and zi = (z1i , z

2
i ) are likewise.
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Table 1 Symbols and Notations

Indices
i node
Parameters
ps selling price vector
cp production cost vector
ci inventory cost vector
ce external supply cost vector
c overall capacity
ȳ maximum inventory
Random factors
di demand vector of node i
Decision Variables
xi production volume of node i
yi inventory volume of node i
zi external supply of node i
vi profit of node i

Consider the following dynamic programming form of this model.

Qi(ya(i)) := min
vi,xi,yi,zi

−vi +Qi(yi) (77a)

s.t. x1i + x2i ≤ c, (77b)

xi + ya(i) + zi = di + yi, (77c)

y1i + y2i ≤ ȳ, (77d)

ya(i) + zi ≥ di, (77e)

vi = ps>di − (cp>xi + ci>yi + ce>zi), (77f)

xi, yi, zi ∈ R2
+, vi ∈ R, (77g)

where Qi(·) is defined as follows, in which the ambiguity set Pi is defined by
(7),

Qi(yi) = sup
Pi∈Pi

∑
j∈T (i)

pijQj(yi). (78)

If i is a leaf node, Qi(yi) = 0. The symbols used in model (77) are listed as
follows.

– Constraint (77b) states that the total production of the two products is
restricted by the overall capacity c.

– (77c) is the inventory decision constraint, which means that at each node,
the summation of the production, the external supply of the current node
and the inventory from the predecessor node equals to the summation of
demand and inventory at the current node.

– Constraint (77d) ensures that the total inventory volume is bounded by
the maximum inventory capacity.

– (77e) shows that the stochastic demand should be met by the inventory
of the predecessor node and the external supply at current node. This is
due to the fact that the production of the current node is prepared for the
later stage.
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Fig. 3 Part of the Scenario Tree

– Finally, constraint (77f) is the expression of the profit at each node.

Moreover, −Qi(·) is the worst case expected cumulative profit of the sub-
tree rooted at node i. If i is the root node, ya(i) is actually the initial inventory,
and the objective function Qi(ya(i)) is the total expected profit under the worst
case.

The parameters are set as follows: ps = (300, 400)>, cp = (12, 10)>, ci =
(5, 5)>, ce = (195, 200)>, the overall production capacity c is 46, the maximum
inventory ȳ is 52, and the initial inventory level is (17, 35)>.

We now describe the scenario tree of the tested example. In the example,
each node, except the leaf nodes, has three children nodes. The test problem
has 5 stages, including 81 scenarios and 121 nodes (121 = 1 + 31 + · · · + 34).
Suppose that, for each node, we have obtained its demand and the empirical
transition probability to each of its children nodes. Thus we obtain an estima-
tion of the expectation and the covariance matrix of its predecessor. Part of
this tree is shown in Figure 3.

Since the empirical distribution may not be an accurate estimation of the
real one (this is very likely to occur especially for the leaf nodes), we use
the empirical probability to estimate the moments of the demand and then
solve the distributionally robust problem. For instance, at the root node 1,
the demand is d1 = (20, 30)>, the transition probability is p12 = 0.5, p13 =
0.2, p14 = 0.3, hence the moment statistics is calculated as follows:

µ̂1 =

4∑
j=2

p1jdj = (20.8, 31.7)>,

Σ̂1 =

4∑
j=2

p1j(dj − µ̂1)(dj − µ̂1)> =

(
6.76 3.34
3.34 1.81

)
.
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Fig. 4 Numerical Result for γ1 = 0.5 and γ2 = 1.5
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
γ1 0 0.25 0.5 0.75 1 1.25 1.5 1.6 1.75 1.85 2 2.25 2.5 4 6 8
γ2 1 1.25 1.5 1.75 2 2.25 2.5 2.6 2.75 2.85 3 3.25 3.5 5 7 9

Table 2 Tested Parameters

All numerical tests are coded in MATLAB 7.6 and run on a PC with an
Intel Quad Core 3.4 GHz CPU and 8 GB of RAM under the Windows 7
operating system. We use the Matlab built-in solver linprog in the forward
steps and use CVX with SeDuMi to solve the semidefinite programs in the
backward steps.

Figure 4 illustrates the numerical result when γ1 = 0.5 and γ2 = 1.5.
The algorithm converges after 12 iterations (each iteration consists of all the
forward step and backward step for every node). The total runtime is 62.4
seconds. This means it spends about 5 seconds on average for each circulation
(i.e., traverse all the nodes and compute the forward and backward steps.)
The worst case expected profit −Qi0 should be 71539.64. Also note that the
optimal value is increasing during the additions of the cutting planes. Figure 5
shows the trend of the optimal value as the parameters γ1 and γ2 increase. The
curve starts from the optimal value of the multistage stochastic programming
with γ1 = 0 and γ2 = 1, and progressively converges to an upper bound. This
coincides with the analysis of Proposition 1 and (15), which predicts that, when
these parameters are large enough, the DRSTO problem will finally become
the worst case single path problem of the scenario tree.

5 Conclusion

We proposed a time-consistent Benders decomposition method for solving mul-
tistage distributionally robust stochastic linear programs with a scenario tree
structure. The distributional robustness is incorporated into each node of the
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Fig. 5 Trend of the Optimal Value
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scenario tree, therefore reflects the time consistency and facilitates the decom-
position of the original problem into small ones with respect to each node. A
new and complicated framework of convergence analysis is developed to es-
tablish the global convergence of the method, which does not depend on the
assumption of polyhedral structure of the original problem. Numerical results
of a practical inventory model are reported to demonstrate the effectiveness
of the proposed method.

There have been abundant studies on various ambiguity sets for DRSTO
problems. It is our belief that the proposed method, together with its conver-
gence framework, is general enough to cope with most of them, for example,
the ambiguity sets considered in Ling et al. [13] and some major ambiguity
sets in Wiesemann et al. [51], etc.

For simplicity, in the proposed algorithm we unify the value of γ1 and γ2 for
all nodes. In practice, however, it is better to set different values for different
nodes. Generally speaking, we may have sufficient information on the root
node, and have less information on its successors. This means, we should set
small γ1 and γ2 for the first stage, while setting larger values for the later stage
in order to avoid over-conservativeness. This might be another advantage of
the proposed decomposition method, which allows dynamic adjustment of the
parameters in the ambiguity sets at different nodes.

In the numerical experiments, we carried out the proposed algorithm on a
small scale test problem. In practice, to deal with larger scale practical prob-
lems, the Benders decomposition method should be further incorporated into
a duality dynamic programming framework and some acceleration techniques
should be introduced as well. To construct a SDDP-type algorithm, the main
obstacle is to design an upper bound for distributionally robust problems. As
is mentioned in Section 2, one possible approach is to use a deterministic upper
bound. As to the acceleration techniques for larger scale problems, there ex-
ist several alternative approaches to reducing the amount of the computation
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related with the cutting planes. If the random process has the Markovain struc-
ture, we can use the cutting sharing techniques. Another type of technique is
to delete redundant cutting planes, which means the scale of the constraints
will be reduced. Other possible schemes include introduction of a quadratic
regularized term to speed up the computation, a recent work of this type is
[52]. These are possible topics in future study.
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