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Abstract. This study relaxes the distributional assumption of the return of
the risky asset, to arrive at the optimal portfolio. Studies of portfolio selec-
tion models have typically assumed that stock returns conform to the normal
distribution. The application of robust optimization techniques means that
only the historical mean and variance of asset returns are required instead
of distributional information. We show that the method results in an opti-
mal portfolio that has comparable return and yet equivalent risk, to one that
assumes normality of asset returns.
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1. Introduction. Portfolio selection models are of great practical significance to
investors around the world. The optimal portfolio is chosen such that expected
return is maximized, and risk is minimized. The way risk is defined and measured
will lead to different optimal portfolios. Markowitz laid the foundation for this
line of research with the well-known mean-variance (M-V) model in a single period
case [14]. Since then, research has developed to include multi-period cases and
alternate risk measures in place of variance.

Examples of risk measures used include the semi-variance [13, 15] and the mean
absolute deviation [5, 7]. Some researchers combined two measures of risk, for
example, Konno and Suzuki who considered both variance and skewness as the
measure of risk [6]. Yet other researchers explored minimax type of risk functions
which include minimizing the maximum of individual risk [1, 17, 18]; minimizing
the average of maximum individual risks over a number of time periods [19]; and
maximizing the minimum possible expected rates of returns on portfolio [4]. Of the
minimax type of risk functions, an analytical solution was obtained for the single-
period case [17] and for the multi-period case [18]. However, in both [17] and [18],
the log returns were assumed to be normally distributed. However, this assumption
is clearly not realistic.

The main contribution of this paper is adding to literature of portfolio selection
models by relaxing the normality assumption of log returns. Our proposed method
only requires the mean and variance of the asset returns, to obtain the optimal
portfolio. Full knowledge of the distribution of asset returns is not required. By
applying robust optimization techniques to portfolio selection problem, this study
shows that the optimal results improve with additional constraints, and are consis-
tent with reality.

Our paper has two additional contributions. First, we add to the literature by
comparing the results of the portfolio obtained via robust optimization technique to
the optimal portfolio obtained by [17] using the assumption of normal distribution
of log returns. In both cases, the same risk measure was used. We find that,
when only basic information of upper and lower bounds of the returns is available,
the robust optimization technique is unable to arrive at a solution for the efficient
frontier due to inadequate information. When more information on the mean and
variance of the return is provided, the optimal portfolio using robust optimization
is similar to the optimal portfolio obtained by using the analytical formula obtained
in [17]. Our study illustrates that even without the knowledge of the distribution
of asset returns, the results under robust optimization is not compromised.

Second, we obtain a new risk measure by applying a distributionally robust
optimization technique [8, 9, 10, 11, 12, 20], and the exact corresponding compu-
tationally tractable reformulation is derived. The optimal portfolio obtained under
this new risk measure outperforms the portfolio obtained using the risk measure
in [17]. Particularly, the computation of the new risk measure and that of the old
one are both tackled by the CVaR based schemes.

The remainder of this paper is organized as follows. Section 2 formulates the
single period portfolio selection problem as a bi-criteria optimization problem. Sec-
tion 3 is divided into Section 3.1 and Section 3.2, where the problem in transformed
into a robust linear programming problem and a second-order cone programming
problem, respectively. Section 4 introduces a new risk measure. Section 5 provides
some numerical simulations and Section 6 concludes the paper.
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2. Problem formulation. The portfolio selection problem is based on a single
investment period. Assume that there are N risky assets in the market. An investor
allocates the capital at the investment time by assigning a share to each selected
available asset. The share is expressed as a percentage of the capital, i.e., xj , j =
1, . . . , N . To avoid ambiguity, we further assume that the investor will invest all
available capital, and short selling of the risky assets is not allowed. To express the
assumptions mathematically, we define

X =
{
x = [x1, . . . , xN ]⊤ ∈ RN :

N∑
j=1

xj = 1, xj ≥ 0, j = 1, . . . , N
}

The return of asset j is denoted as Rj . Here, unlike the normality assumption of
the return of the risky asset imposed in previous works, Rj is a random variable
of unknown distribution. The expected value of Rj is represented by rj , which is
calculated by averaging the historical returns of asset j over T periods.

rj =
1

T

T∑
i=1

Rji

where Rji denotes the actual return of asset j for the i th time period.
Thus, the expected return of the portfolio x = [x1, . . . , xN ]⊤ is given by

r(x1, . . . , xN ) = E
{ N∑

j=1

Rjxj

}
=

N∑
j=1

E{Rj}xj

=

N∑
j=1

rjxj (1)

Here, we assume that the investor is sensitive to downside losses, relative to up-
side gains. The portfolio is only considered risky when it is more sensitive to the
downward market movement than to the upward market movement. We adjust the
probabilistic risk measure introduced in [17] to cater for the risk preference of the
investor. The portfolio risk is measured by wp(x), which is defined as the largest
individual downside risk shown below.

wp(x) = min
1≤j≤N

Pr{Rjxj − rjxj ≥ −θδ } (2)

As defined in [17], θ is a constant to adjust the risk level, while δ denotes the average
risk of the entire portfolio, which is obtained by averaging the standard deviation
of all single risky assets in the portfolio,

δ =
1

N

N∑
j=1

σj (3)

where σj indicates the standard deviation of asset j’s return, which is evaluated
using historical data.

To find such a portfolio that maximizes the expected return while minimizing the
risk, the portfolio selection problem can be formulated as a bi-criteria optimization
problem as follows.

max
(

min
1≤j≤N

f(xj),

N∑
j=1

rjxj

)
(4a)
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s.t. x ∈ X (4b)
where f(xj) = Pr{Rjxj − rjxj ≥ −θδ }.

The maximin objective in (4a) can be tackled by adding another variable y,
and N constraints, so that problem (4) is converted into an equivalent bi-criteria
optimization problem.

max
(
y,

N∑
j=1

rjxj

)
(5a)

s.t. y ≤ f(xj), j = 1, . . . , N (5b)

x ∈ X (5c)

where y ≤ f(xj) is the j (th) probabilistic constraint. Since the optimization process
will push the value of y to be equal to min

1≤j≤N
f(xj), it is clear that the optimization

problem (5) is equivalent to the optimization problem (4).

3. Robust transformation of the problem. As mentioned in Section 2, y will
eventually be equal to min

1≤j≤N
f(xj). By definition, f(xj) is a probability, so y should

range from 0 to 1. If we choose y to be an arbitrary but fixed real number within
the range, problem (5) becomes the following single objective optimization problem.

max
x

N∑
j=1

rjxj (6a)

s.t. f(xj) ≥ y, j = 1, . . . , N (6b)

x ∈ X (6c)
Now, the focus lies in (6b), and thus, the evaluation of Pr{Rjxj − rjxj ≥ −θδ }.
The probabilistic downside risk cannot be derived directly without distributional
assumption of Rj . However, inspired by the connections between chance constraints
and the bounds on the CVaR measure in [2], we can successfully approximate the
chance constraints (6b) with different sets of conventional inequality constraints.

3.1. A LP transformation. For the sake of uniformity in CVaR measure, we
rewrite constraints (6b) as

Pr{ gj ≤ 0 } ≥ 1− ε, j = 1, . . . , N (7)
where gj = (rj − Rj)xj − dj , ε = 1 − y, and dj = θδ. For each j = 1, . . . , N , the
constraint in (7) is a typical VaR measure, which is known to be non-convex. As a
result, we replace it by a CVaR constraint, which is the best convex approximation
of (7) [16]. For j = 1, . . . , N ,

CVaR1−ε(gj) ≤ 0

or equivalently,

min

{
βj +

1

ε
[E(gj − βj)

+ ]

}
≤ 0 (8)

βj ∈ R is an introduced variable. Then, we define set
Wj = { gj : gj = (rj −Rj)xj − dj ,x ∈ X }
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By Theorem 2.3 in [2], an upper bound for E(gj − βj)
+ is

E(gj − βj)
+ ≤ [−βj + max

gj∈Wj

gj ]
+

Therefore, (8) is valid if the following constraint is satisfied.

min
βj

{
βj +

1

ε
(−βj + max

gj∈Wj

gj)
+

}
≤ 0 (9)

Again, to eliminate the minimax components in (9), we add another variable αj so
that constraint (9) is relaxed to the following set of constraints.

min
αj ,βj

βj +
αj

ε
≤ 0 (10a)

s.t. αj + βj ≥ max { gj : gj ∈ Wj } (10b)
αj ≥ 0. (10c)

Suppose that Rj is bounded. We have
lj ≤ Rj ≤ uj

It is obvious that
max { gj : gj ∈ Wj } ≤ max {−ljxj + rjxj − dj ,−ujxj + rjxj − dj }

Thus, constraint (7) is valid if the following set of constraints is satisfied.

βj +
αj

ε
≤ 0, j = 1, . . . , N (11)

αj + βj + ljxj − rjxj ≥ −dj , j = 1, . . . , N (12)
αj + βj + ujxj − rjxj ≥ −dj , j = 1, . . . , N (13)
αj ≥ 0, j = 1, . . . , N (14)

With constraints (6b) replaced by multiple sets of constraints in (11) - (14), there
are new decision variables αj , βj , j = 1, . . . , N , introduced into problem (6). Now,
problem (6) can be written as the following linear programming problem:

min
ξ

c⊤ξ (15a)

s.t. βj +
αj

ε
≤ 0, j = 1, . . . , N (15b)

αj + βj + ljxj − rjxj ≥ dj , j = 1, . . . , N (15c)
αj + βj + ujxj − rjxj ≥ dj , j = 1, . . . , N (15d)
αj ≥ 0, j = 1, . . . , N (15e)
x ∈ X (15f)

where
c = [−r1, . . . ,−rN , 0, . . . , 0 ]⊤ ∈ R3N

and
ξ = [x1, . . . , xN , α1, . . . , αN , β1, . . . , βN ]⊤ ∈ R3N

Clearly, problem (15) is in the form of a linear programming problem. It is conve-
nient for us to solve this problem using an interior-point algorithm.
Remark 1. For this method, we need the bounds of the return lj and uj . They
can be simply obtained by taking the lowest value and the largest value the return
from the historical data. However, with assumption we cannot capture the extreme
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losses of the portfolio. Therefore, in the next section and Section 4, we present two
method without making this assumption.

3.2. A second-order cone formulation. Our focus in this paper is on relaxing
the distributional assumption of the return of the risky asset in regards of reality.
In the last section, it is assumed that the rate of return is bounded within a certain
finite range. The problem is then approximated into a linear programming problem
(15). This transformation only requires the bounds of each risky asset. The resulting
linear programming problem is computationally economical. However, a deficiency
is that a large feasible region of the original problem is being cutoff. Thus, although
the feasible region of problem (15) is a convex set, the difference between the two
feasible regions may be large. Therefore, the optimal solution of problem (15) may
be far away from the optimal solution of the original problem. One way to achieve
a better solution to the problem is to enlarge the convex feasible region so that this
region could possibly get nearer to the global optimal solution, or even cover it. In
this section, we will show that problem (6) can be converted into a second-order
cone programming (SOCP) problem after more information is fed into the system.

As stated in Section 3.1, the best convex approximation of constraints (6b) is

min

{
βj +

1

ε
[E(gj − βj)

+ ]

}
≤ 0, j = 1 . . . , N (16)

where βj , ε and gj are defined as in Section 3.1.
Suppose that z is a random variable with zero mean and positive variance. Then

an upper bound is presented in [2]. That is,

E(Y0 + Yz)+ ≤ 1

2
Y0 +

1

2

√
Y2
0 + Y2Varz (17)

We set z = rj −Rj , Y = xj and Y0 = −dj − βj , and obtain

E(−dj − βj + (rj −Rj)xj)
+ ≤ 1

2
(−dj − βj) +

1

2

√
(−dj − βj)2 + x2

jVarRj

where VarRj is the variance of Rj . Hence, (16) is valid if

βj +
1

ε

[
1

2
(−dj − βj) +

1

2

√
(−dj − βj)2 + x2

jVarRj

]
≤ 0

is valid.
Consequently, the approximate problem can be stated formally as

min
ξ̃

c̃⊤ξ̃ (18a)

s.t.
√

(dj + βj)2 + x2
jVarRj ≤ (1− 2ε)βj + dj , j = 1 . . . , N (18b)

x ∈ X (18c)

where c̃ = [r1, . . . , rN , 0, . . . , 0]⊤ ∈ R2N and ξ̃ = [x1, . . . , xN , β1, . . . , βN ]⊤ ∈ R2N .
Clearly, problem (18) is a second order programming problem which can be solved

using interior-point algorithm. In the next section, some numerical examples using
real stock data are presented and solved to validate the models.
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4. A distributionally robust risk measure. In this section, we consider a new
risk measure, in which the distribution information is not fully known. More specif-
ically, we only know the the mean and the variance of the distribution, and the new
portfolio risk measure wp(x) is defined as below.

wp(x) = min
1≤j≤N

inf
Pj∈Pj

Pr[Pj ]{Rjxj − rjxj ≥ −θδ } (19)

where Pj denotes the distribution of Rj and

Pj =
{
Pj : E[Pj ] [Rj ] = rj , E[Pj ] [Rj − rj ]

2
= σ2

j

}
(20)

Pj is called ambiguity set. Thus, this risk measure is more practical in real world
applications and more general in formulation.

Under this risk measure, the single objective optimization problem (6a) - (6c)
becomes the following problem.

max
x

N∑
j=1

rjxj (21a)

s.t. f̃(xj) ≥ y, j = 1, . . . , N (21b)
x ∈ X (21c)

where
f̃(xj) = inf

Pj∈Pj

Pr[Pj ]{Rjxj − rjxj ≥ −θδ }

To derive the computationally tractable reformulation of (21a) - (21c), we need
the following results.
Lemma 1 [Theorem 2.2 in [20]]. Let L : Rk → R be a continuous loss function that
is either concave in ξ or quadratic in ξ. Then, the following equivalence holds.

inf
P∈P

Pr[P] [L(ξ) ≤ 0] ≥ 1− ϵ ⇐⇒ sup
P∈P

P− CVaRϵ [L(ξ)] ≤ 0 (22)

where P is defined in (20).
Lemma 2 [Theorem 21 in [20]]. The feasible set{

x ∈ Rn : sup
P∈P

P− CVaRϵ

[
y0(x) + yT(x)ξ

]
≤ 0

}
(23)

can be written asx ∈ Rn :
M ⪰ 0, β + 1

ϵTr (ΩM) ≤ 0,

M −
[

0 1
2y(x)

1
2y

T(x) y0(x)− β

]
⪰ 0

 (24)

where

Ω =

[
Σ+ µµT µ

µT 1

]
(25)

µ and Σ are the mean and the variance matrix of ξ, y0(x) and y(x) depend affinely
on x, and Tr(·) denotes the matrix trace.
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Based on the results above, we can show that the problem (21a) - (21c) can be
represented as an semi-definite program (SDP) problem and hence is computation-
ally tractable.
Theorem 1. The problem (21a) - (21c) can be reformulated as the following conic
optimization problem.

max
xj ,βj ,Mj

N∑
j=1

rjxj (26)

s.t. βj +
1

ϵ
Tr (ΩjM j) ≤ 0, j = 1, 2, . . . , N (27)

M j −
[

0 − 1
2xj

− 1
2xj rjxj − θδ − βj

]
⪰ 0, j = 1, 2, . . . , N (28)

M j ⪰ 0, j = 1, 2, . . . , N (29)
where

Ωj =

[
σ2
j + r2j rj
rj 1

]
and M j ∈ S2 denotes all the 2× 2 symmetric matrices.
Proof. For each j, in view of (21b), we can see that L (Rj) = −Rjxj + rjxj − θδ
depends linearly on Rj , which also implies that L (Rj) is concave in Rj . Thus, from
Lemma 1, we know that (21b) is equivalent to

sup
Pj∈Pj

Pj − CVaRϵ [−Rjxj + rjxj − θδ] ≤ 0 (30)

Let y0(xj) = rjxj − θδ and y(xj) = −xj . Clearly, y0(xj) and y(xj) affinely
depend on xj . Then, from Lemma 2, (30) can be rewritten as the constraints
(27)-(29). This completes the proof. □
Remark 2. Comparing with the risk measure (2), the new risk measure (19) op-
timizes the worst-case distribution in the ambiguity set. Although the formulation
of (19) seems more conservative than that of (2), it yields an exact solution. In
contrast, only a convex approximation can be offered for (2).

5. Numerical simulations. In this section, we present some numerical simula-
tions using 50 real stocks’ daily price data for 2480 days. The two curves plotted
in Figure 1 illustrate the resulting efficient frontiers obtained respectively from the
SOCP transformation of Problem 6 and distributionally robust (DB) risk measure
formulation of Problem 21. Both curves are drawn with the x−axis defined as the
probability level y ranging from 0 to 1; whereas the y−axis defined as the optimal
return of the portfolio.

From Figure 1, for every value of y, the portfolio under DB risk measure pro-
vides a higher expected return than one under the SOCP formulation. The results
under the LP transformation of Problem 6 are not illustrated because the lack of
information provided prevents us from arriving at an optimal portfolio, much less
an efficient frontier. This is because the optimization problem is ill-possed if the
return is not upwardly bounded according to [3].

Figure 2 shows the results of the second-order cone model and the distribution-
ally robust risk measure model in mean-standard deviation space, compared with
Markowitz’s efficient frontier (l2). From the figure, we can see that the relaxation
of the normality distribution assumption does not result in an efficient frontier that
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deviates much from Markowitz’s results, except when return is lower than 0.37%.
Again, we can see that the portfolio under the DB risk measure model better repli-
cates the portfolio obtained by Markowitz, but requires much less information than
the latter.
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6. Conclusion. In this paper, we apply the robust optimization method to the
study of portfolio selection. Distributionally robust optimization is a paradigm for
decision-making under uncertainty where the uncertain problem data is assumed
to belong to an ambiguity set comprising all distributions that are compatible with
the decision maker’s prior information. This method means that the distribution
of asset returns is not required in arriving at the optimal portfolio. With just
knowledge of the first two moments, the resulting optimal portfolio performs no
worse than a comparable portfolio of the same risk but with stronger distributional
assumptions. In particular, the second order cone method and the distriubtionally
robust method do not assume the return is bounded and hence they are more
practical in real world applications.

Markowitz laid the foundation for modern portfolio theory (MPT), or mean-
variance analysis. Whilst there have been criticisms of various aspects of the theory,
there is no denying its theoretical importance. Amongst the criticisms are the
assumption that returns follow a Gaussian distribution, using variance as a risk
measure, and the huge amount of data required in arriving at the frontier. Our
paper relaxes all these requirements - we do not assume any distribution for the
returns, we used two risk measures different from variance, and the data required is
much less than under MPT. Nevertheless, we find that our resulting efficient frontier
is almost similar to that under MPT.
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