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Abstract. With the help of a logarithmic barrier augmented Lagrangian func-
tion, we can obtain closed-form solutions of slack variables of logarithmic-

barrier problems of nonlinear programs. As a result, a two-parameter primal-

dual nonlinear system is proposed, which corresponds to the Karush-Kuhn-
Tucker point and the infeasible stationary point of nonlinear programs, respec-

tively, as one of two parameters vanishes. Based on this distinctive system,

we present a primal-dual interior-point method capable of rapidly detecting
infeasibility of nonlinear programs. The method generates interior-point iter-

ates without truncation of the step. It is proved that our method converges
to a Karush-Kuhn-Tucker point of the original problem as the barrier param-

eter tends to zero. Otherwise, the scaling parameter tends to zero, and the

method converges to either an infeasible stationary point or a singular station-
ary point of the original problem. Moreover, our method has the capability to

rapidly detect the infeasibility of the problem. Under suitable conditions, the

method can be superlinearly or quadratically convergent to the Karush-Kuhn-
Tucker point if the original problem is feasible, and it can be superlinearly or

quadratically convergent to the infeasible stationary point when the problem

is infeasible. Preliminary numerical results show that the method is efficient
in solving some simple but hard problems, where the superlinear convergence
to an infeasible stationary point is demonstrated when we solve two infeasible

problems in the literature.
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1. Introduction. Developing effective methods for nonlinear programs has always
been an active area in optimization research. There are many interesting works in
this area in recent years, which focus on various aspects of nonlinear programs. It is
well known that, without assuming any constraint qualification, a local solution of
nonlinear programs can be either a Karush-Kuhn-Tucker (KKT) point or a singular
stationary point that is a Fritz-John (FJ) point at which the Mangasarian-Fromovitz
constraint qualification (MFCQ) does not hold. A method is said to have strong
global convergence if it can find either a KKT point or a singular stationary point,
or even an infeasible point with first-order stationarity (i.e., an infeasible stationary
point) for minimizing some kind of measure of constraint violations.

There are already many methods for nonlinear programs in the literature which
are proved to have strong global convergence (see, for example, [1, 5, 6, 13, 24, 25,
26, 27, 39]). Some of them are shown to be of locally superlinear/quadratic con-
vergence to the KKT point. However, it has been an open problem whether these
methods are capable of rapidly converging to an infeasible stationary point before
Byrd, Curtis and Nocedal [8] creatively presented a set of conditions to guaran-
tee the superlinear convergence of their SQP algorithm to an infeasible stationary
point. More recently, Burke, Curtis and Wang [5] considered the general program
with equality and inequality constraints, and proved that their SQP method has
strong global convergence and have rapid convergence to the KKT point, and have
superlinear/quadratic convergence to an infeasible stationary point.

The aim of this paper is to present a primal-dual interior-point method capa-
ble of converging to an infeasible stationary point when a nonlinear constrained
optimization problem is infeasible. In addition, this method is of strong global
convergence and locally rapid convergence to the KKT point when the problem is
feasible. Consider the nonlinear program with general inequality constraints

minimize (min) f(x) (1)

subject to (s.t.) ci(x) ≤ 0, i ∈ I, (2)

where x ∈ <n, I = {1, 2, . . . ,m} is an index set, f and ci (i ∈ I) are twice
continuously differentiable real-valued functions defined on <n. By introducing
slack variables to the inequality constraints, problem (1)–(2) is reformulated as the
program with equality and nonnegative constraints as follows:

min f(x) (3)

s.t. ci(x) + yi = 0, i ∈ I, (4)

yi ≥ 0, i ∈ I, (5)

where yi (i ∈ I) are slack variables.
The interior-point approach has been shown to be robust and efficient in solv-

ing linear and nonlinear programs (for example, see [2, 3, 9, 10, 13–22, 25, 27, 28,
31–33, 35, 36]. Among all interior-point methods, the primal-dual interior-point
methods have drawn considerable attention. It is noted that, other than some fea-
sible interior-point methods which requires all iterates to be (strictly) feasible for
constraints, most of efficient interior-point methods for nonlinear programs are pre-
sented by combining a distinctive penalty strategy. These methods can roughly be
summarized into three kinds by the order of using the penalty technique. The first
kind of methods reformulate the original program to a problem with only equal-
ity constraints by interior barrier technique and then prompt the global conver-
gence of these methods by different penalty functions, such as [9, 10, 13], [18]–[21],
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[25, 27, 28, 31]. The second kind of methods first use the penalty strategy to obtain
a new formulation of the original program with only inequality constraints and then
use the interior-point methods to solve the formulation, such as [22]. The third kind
of methods use both penalty strategy and interior-point technique to transform the
original problem with inequality constraints into a new formulation with only equal-
ity constraints (see [14]). The co-existence of penalty and barrier parameters brings
new challenge to this kind of methods. As a reward to the challenge, the last kind
of methods can be expected to have some exclusive global and/or local convergence
properties such as the rapid detection of infeasibility.

Although every interior-point method has its novelty, they share some common
features, for example, the iterates are usually the approximate solutions of some
parametric primal-dual nonlinear system which converges to the KKT conditions
of the original problem as the barrier parameter tends to zero, and should be in-
terior points for nonnegative constraints. The interior-point condition can result
in truncation of the step, which may cause the failure of global convergence to the
KKT point even for a well-posed problem (see [34] for a counterexample). Besides, it
could make the local convergence analysis of the primal-dual interior-point methods
much sophisticated (e.g., [2, 11, 18, 20, 21, 37, 38]). By introducing the null-space
technique, some interior-point methods such as [13, 25, 27] have been proved not to
suffer the failure of global convergence. They have strong global convergence and
can converge to an infeasible stationary point when the problem is infeasible, but
they cannot detect the infeasibility rapidly.

Similar to the first kind of interior-point methods mentioned above, we consider
the logarithmic-barrier problem

min f(x)− β
∑
i∈I

ln yi (6)

s.t. ci(x) + yi = 0, i ∈ I, (7)

where β > 0 is the barrier parameter, yi > 0 (i ∈ I) (that is, (x, y) is an interior
point). With the help of a logarithmic barrier augmented Lagrangian function, we
can obtain closed-form solutions of all slack variables of logarithmic-barrier problems
of nonlinear programs. As a result, a two-parameter primal-dual nonlinear system
is proposed, which corresponds to the KKT point and the infeasible stationary
point of nonlinear programs, respectively, as one of two parameters vanishes. Based
on this distinctive system, we present a primal-dual interior-point method capable
of rapidly detecting infeasibility of nonlinear programs. Our method generates
interior-point iterates without truncation of the step and can detect the infeasibility
of the problem rapidly. It should be noted that rapid detection of infeasibility is
one of important features of newly developed penalty-interior-point algorithm (see
[14]) and SQP methods (see [5, 8]), and is a very useful property in practice.

Our method has similarity to the existing interior-point methods for nonlinear
programs. Similar to [9, 10, 25, 27], we consider the problem with slack variables
(6)–(7) and use similar null-space technique and the technique for updating slack
variables. But unlike those existing methods, our method is based on a distinctive
primal-dual system and uses a different merit function dependent on both primal
and dual variables, which is similar to [18, 21]. We note that [18, 21] also use aug-
mented Lagrangian functions in developing their interior-point methods, but they
are not based on the problem (6)–(7) and have a different flavor with our method.
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A recent work on interior-point methods is [14] which solves a two-parameter sub-
problem (or correspondingly a two-parameter primal-dual nonlinear system), but
that system can only be proved to be asymptotically approximate the KKT condi-
tions of the original problem as the barrier parameter tends to zero. Curtis [14] and

Nocedal, Öztoprak and Waltz [28] have shown by numerical experiments that their
interior-point methods have the ability to detect the infeasibility, but no theoretical
proof is provided to show that those methods can detect infeasibility at quadratic
or superlinear rate as we shall do.

Without assuming any constraint qualification or requiring any feasibility of con-
straints, we prove that our method globally converges to a KKT point of the original
problem as the barrier parameter tends to zero. Otherwise, the scaling parameter
tends to zero, and the method globally converges to either an infeasible stationary
point or a singular stationary point of the original problem. Under suitable local
conditions, we prove that the method not only can be superlinearly or quadrati-
cally convergent to the KKT point if the original problem is feasible, but also can
be superlinearly or quadratically convergent to the infeasible stationary point if the
problem is infeasible. Preliminary numerical results show that the method is effi-
cient in solving some small but hard problems in the literature. The superlinear
convergence have also been observed when we solve the infeasible problems given
by [8].

This paper is organized as follows. In Section 2, we first give a closed-form
solution on slack variables of the KKT system of the logarithmic barrier problem
(6)–(7). A corresponding two-parameter primal-dual nonlinear system is followed.
Then we describe our algorithm in Section 3. The strong global convergence results
on the algorithm are proved in Section 4. In Section 5, under suitable assumptions,
we show that the algorithm can be of locally quadratic or superlinear convergence
to the KKT point or the infeasible stationary point of the original problem. The
algorithm is implemented in Section 6, where preliminary numerical results for some
small but hard problems from literature are reported. We conclude our paper in
Section 7.

Throughout the article, a letter with subscript k (or l) is related to the kth (or
lth) iteration, the subscript i indicates the ith component of a vector or the ith
column of a matrix, and the subscript ki (or li) is the ith component of a vector
or the ith column of a matrix at the kth (or lth) iteration. All vectors are column
vectors, and z = (x, u) means z = [xT , uT ]T , where “T” stands for the transpose.
The expression θk = O(τk) means that there exists a constant M independent of
k such that |θk| ≤ M |τk| for all k large enough, and θk = o(τk) indicates that
|θk| ≤ εk|τk| for all k large enough with limk→0 εk = 0. If it is not specified, I is
an identity matrix whose order may be showed in the subscript or be clear in the
context, ‖ · ‖ is the Euclidean norm, |S| is the cardinality of set S. For simplicity,
we also use simplified notations for functions, such as fk = f(xk), ∇fk = ∇f(xk),
cki = ci(xk), ∇cki = ∇ci(xk) and so on.

2. A two-parameter primal-dual system for nonlinear programs. With the
help of a logarithmic barrier augmented Lagrangian function, we can derive closed-
form solutions on slack variables of the logarithmic barrier problem (6)–(7). A
primal-dual nonlinear system with barrier and scaling parameters is then followed.
Its solution corresponds to the KKT point and the infeasible stationary point of
program (1)–(2), respectively, as one of two parameters vanishes. Based on this
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system, we present our primal-dual interior-point algorithm for nonlinear progrmas
(1)–(2).

We consider the augmented Lagrangian function for the logarithmic barrier prob-
lem (6)–(7)

P(β,ρ)(x, y, u) = ρ

[
f(x)− β

∑
i∈I

ln yi + uT (c(x) + y)

]
+

1

2
‖c(x) + y‖2, (8)

where β > 0 is the barrier parameter, ρ > 0 is a scaling parameter, c(x) = (ci(x), i ∈
I) ∈ <m, y = (yi, i ∈ I) ∈ <m, u is a vector in <m. The stationary conditions on
P(β,ρ)(x, y, u) suggest the following equations:

ρ∇f(x) +
∑
i∈I [ρui + ci(x) + yi]∇ci(x) = 0,

−ρβy−1i + ρui + ci(x) + yi = 0, i ∈ I,
ρ(c(x) + y) = 0.

(9)

By multiplying yi on both sides of the second equation, one has the equation

y2i + (ci(x) + ρui)yi − ρβ = 0, i ∈ I. (10)

Thus, we have closed-form solutions on slack variables

yi =
1

2

[√
(ci(x) + ρui)2 + 4ρβ − (ci(x) + ρui)

]
, i ∈ I,

where the negative root is not taken since yi > 0. Therefore,

ci(x) + yi =
1

2

[√
(ci(x) + ρui)2 + 4ρβ + (ci(x)− ρui)

]
, i ∈ I. (11)

If we set λi = ρui + ci(x) + yi for i ∈ I, one has

λi =
1

2
[
√

(ci(x) + ρui)2 + 4ρβ + (ci(x) + ρui)], i ∈ I. (12)

Using (11) and (12), equations in (9) can be reformulated as the following system
of equations on unknowns (x, u): ρ∇f(x) +

∑
i∈I

1
2

[√
(ci(x) + ρui)2 + 4ρβ + (ci(x) + ρui)

]
∇ci(x) = 0,

1
2ρ
[√

(ci(x) + ρui)2 + 4ρβ + (ci(x)− ρui)
]

= 0, i ∈ I,
(13)

where β > 0 and ρ > 0 are two parameters.
It is noted that, if β = 0 and ρ > 0, equations in (13) are reduced to the equations

ρ∇f(x) +
∑
i∈I

1

2
[|ci(x) + ρui|+ (ci(x) + ρui)]∇ci(x) = 0, (14)

1

2
[|ci(x) + ρui|+ (ci(x)− ρui)] = 0, i ∈ I. (15)

Define index setsA(x) = {i ∈ I|ci(x)+ρui ≥ 0} andN (x) = {i ∈ I|ci(x)+ρui < 0}.
Then, by (15), for any solution (x, u) of the system (13) (if there exists), one has
ci(x) = 0 for i ∈ A(x) and ui = 0, i ∈ N (x). Thus, ci(x) < 0 for i ∈ N (x), and
(14) implies

∇f(x) +
∑

i∈A(x)

ui∇ci(x) = 0. (16)

Consequently, (x, u) is a KKT pair of the original problem (1)–(2).
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If ρ = 0, the first equation in (13) is reduced to the equation∑
i∈I

1

2
[|ci(x)|+ ci(x)]∇ci(x) = 0, (17)

which shows that, if (x, u) satisfies the system (13), and x is infeasible to the
problem (1)–(2), then x is a stationary point for minimizing 1

2‖max(0, c(x))‖2, i.e., a
stationary point for minimizing the `2 measure of residuals of the constraints, which
is also called as an infeasible stationary point of problem (1)–(2) (see Definition 4.1).

The preceding argument shows that the proposed system (13) not only can reduce
to the KKT conditions of the original problem as parameter β vanishes, but also can
reduce to the stationary condition of an infeasible stationary point of the original
problem as parameter ρ is zero. This feature is distinguished from all primal-dual
systems used by the existing interior-point methods. It turns out that is a favorable
and important characterization, since we want to develop an interior-point method
which not only can converge to a KKT point of the original problem as the problem
is feasible, but also can converge to an infeasible stationary point of the original
problem as it is infeasible.

In next section, we will develop our primal-dual interior-point method for non-
linear programs based on the two-parameter system (13). For convenience of state-
ment, we denote, for i ∈ I,

yi(x, u;β, ρ) =
1

2

[√
(ci(x) + ρui)2 + 4ρβ − (ci(x) + ρui)

]
, (18)

λi(x, u;β, ρ) =
1

2

[√
(ci(x) + ρui)2 + 4ρβ + (ci(x) + ρui)

]
. (19)

That is, λi and yi (i ∈ I) are functions on (x, u), and are dependent on parameters
β and ρ. If it is not confused in the context, we may use λi = λi(x, u;β, ρ) and
yi = yi(x, u;β, ρ) for simplicity. Thus, λiyi = ρβ for i ∈ I. Using (18) and (19),
the two-parameter system (13) can be written as the concise form{

ρ∇f(x) +
∑
i∈I λi(x, u;β, ρ)∇ci(x) = 0,

ci(x) + yi(x, u;β, ρ) = 0, i ∈ I.
(20)

We need the following preliminary results for our method and its global and local
analysis.

Lemma 2.1. Given β > 0 and ρ > 0. For i ∈ I, let yi and λi be defined by (18)
and (19), respectively.
(1) If ci(x) is differentiable, then yi and λi are differentiable on (x, u), and

∇xyi = − yi
yi + λi

∇ci(x), ∇xλi =
λi

yi + λi
∇ci(x), (21)

∂yi
∂ui′

=

{
−ρ yi

yi+λi
, if i′ = i;

0, otherwise,

∂λi
∂ui′

=

{
ρ λi

yi+λi
, if i′ = i;

0, otherwise.
(22)

(2) yi is a monotonically decreasing function on ui, and λi is a monotonically
increasing function on ui.
(3) yi is smaller as β > 0 becomes smaller, and it will be also smaller as ρ > 0
becomes smaller provided ci(x) + yi > 0.

Proof. (1) Since yiλi = ρβ, one has

yi∇xλi + λi∇xyi = 0. (23)
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By (19), λi = ρui + ci(x) + yi. Thus,

∇xλi = ∇ci(x) +∇xyi. (24)

Substituting (24) into (23),

∇xyi = − yi
yi + λi

∇ci(x).

Again by (24), ∇xλi = λi

yi+λi
∇ci(x).

Similar to (23) and (24), one has

yi
∂λi
∂ui

+ λi
∂yi
∂ui

= 0,
∂λi
∂ui

= ρ+
∂yi
∂ui

.

Thus,

∂yi
∂ui

= −ρ yi
yi + λi

,
∂λi
∂ui

= ρ
λi

yi + λi
.

For i 6= i′, ∂yi
∂ui′

= ∂λi

∂ui′
= 0 since yi and λi do not depend on ui′ .

(2) The result follows immediately since ∂yi
∂ui

< 0 and ∂λi

∂ui
> 0.

(3) It is obvious from (18) that yi is smaller as β is smaller. If ci(x) + yi > 0,
then yi(ci(x) + yi) > 0, thus uiyi = 1

ρ (λiyi − yi(ci(x) + yi)) < β which implies

∂yi
∂ρ

=
β − uiyi
yi + λi

> 0.

Hence, yi is a nondecreasing function on ρ.

3. Our algorithm. Our algorithm consists of the inner algorithm and the outer
algorithm, where the inner algorithm tries to find an approximate solution of the
system (13) for given parameters β and ρ, while the outer algorithm updates the
parameters by the information derived from the inner algorithm.

3.1. A well-behaved quadratic programming subproblem. A quadratic pro-
gramming subproblem is presented for deriving our search direction in this subsec-
tion. The subproblem is well-behaved since it is always feasible. Suppose that
(xk, uk) is the current iterate. For given β > 0 and ρ > 0, let

Bk = Hk +
∑
i∈I

λki
yki + λki

∇cki∇cTki, (25)

where Hk is the Hessian of the Fritz-John function Lρ(x, λ) = ρf(x) + λT c(x) at
(xk, λk). In order to avoid the computation of second-order derivatives, we may
take Hk to be an approximation to the Hessian in our algorithm. Using (21)–(22),
the Newton’s equations for (20) have the form{

Bkdx +
∑
i∈I ρ

λki

yki+λki
dui∇cki = −(ρ∇fk +

∑
i∈I λki∇cki),

ρ λki

yki+λki
∇cTkidx − ρ2

yki

yki+λki
dui = −ρ(cki + yki), i ∈ I.

(26)

For simplicity of statement, let

Rk =


λk1

yk1+λk1
∇ck1 . . . λkm

ykm+λkm
∇ckm

−ρ yk1

yk1+λk1
. . . 0

. . . . . . . . .

0 . . . −ρ ykm

ykm+λkm

 ,



8 YU-HONG DAI, XIN-WEI LIU AND JIE SUN

and rk = ck + yk. The following result shows that one can obtain the solution of
the system (26) by solving the feasible quadratic programming (QP) subproblem
(27)–(28).

Lemma 3.1. (1) For given β > 0 and ρ > 0, the solution to the QP problem

min qk(d):=(∇xLρ(xk, λk))T dx +
1

2
dTQkd (27)

s.t. RTk d = −(ck + yk) (28)

satisfies the system (26), where d = (dx, du) ∈ <n+m, ∇xLρ(xk, λk) = ρ∇fk +∑
i∈I λki∇cki,

Qk =
Hk +

∑
i∈I

ρβ
(yki+λki)2

∇cki∇cTki
ρ2β

(yk1+λk1)2
∇ck1 · · · ρ2β

(ykm+λkm)2∇ckm
ρ2β

(yk1+λk1)2
∇cTk1

ρ3β
(yk1+λk1)2

· · · 0

· · · · · · · · · · · ·
ρ2β

(ykm+λkm)2∇c
T
km 0 · · · ρ3β

(ykm+λkm)2

 .

(2) If

dTxHkdx +
∑
i∈I

λki
yki + λki

‖∇cTkidx‖2 > 0, ∀dx ∈ <n, (29)

the above QP has a unique solution, which implies that the system (26) is consistent.

Proof. (1) In addition to (28), the KKT conditions of the above QP contain the
following equations:

∇xLρ(xk, λk) + (Hk +
∑
i∈I

ρβ

(yki + λki)2
∇cki∇cTki)dx +

∑
i∈I

ρ2β

(yki + λki)2
dui∇cki

+
∑
i∈I

λki
yki + λki

λ̂ki∇cki = 0, (30)

ρ2β

(yki + λki)2
∇cTkidx +

ρ3β

(yki + λki)2
dui − ρ

yki
yki + λki

λ̂ki = 0, i ∈ I, (31)

where λ̂ki (i ∈ I) are the associated multipliers with (28). One can first have λ̂k
from (31), and then substitute it into (30) to derive the first equation of the system
(26).

(2) If (29) holds, then ∇2qk is positive definite in the null space of RTk since

dTQkd = dTx (Hk +
∑
i∈I

λki
yki + λki

∇cki∇cTki)dx +
∑
i∈I

yki
yki + λki

ρ2d2ui > 0,

for all d ∈ <n+m such that RTk d = 0. It follows from Lemma 16.1 of [29] that QP
(27)–(28) has a unique solution. By (1), the unique solution also solves the system
(26).

The null-space technology in nonlinear optimization was initially presented by
Byrd [7] for trust region methods. It has been proved to be very efficient in trust-
region and line-search SQP and interior-point methods (for example, see [9, 25,
27]). In order to obtain the strong global convergence properties, we introduce
this technique to the subproblem. Firstly, dck ∈ <n+m is computed to satisfy some
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prescribed mild conditions presented in Assumption 4.3, and dck = 0 as rk = 0 (we
refer the readers to [25, 27] for more details). Then we solve the following null-space
quadratic programming subproblem

min q̂k(d) := ρ∇fTk dx +
∑
i∈I

ρβ

yki + λki
(∇cTkidx + ρdui) +

1

2
dTxHkdx

+
1

2

∑
i∈I

ρβ

(yki + λki)2
(∇cTkidx + ρdui)

2 (32)

s.t. RTk d = RTk d
c
k, (33)

where the right-hand-side term −(ck + yk) of (28) is replaced by RTk d
c
k and the

scalar (λk)TRTk d
c
k of the objective in (27) is removed.

3.2. The merit function. In order to prompt global convergence of the algorithm,
we introduce the merit function

Φξ(x, u;β, ρ) = ξρf(x)− ξρβ
∑
i∈I

ln yi + ‖c(x) + y‖,

where ξ > 0 is a penalty parameter which is updated in accordance with the di-
rectional derivative of Φξ(x, u;β, ρ) along the search direction. The update of the
scaling parameter ρ in the outer algorithm depends on the value of ξ. Although it
has a similar form to those used in some existing primal-dual interior-point methods
such as [13, 25, 27], it is essentially different in that y is a function on x and u.

The following result is helpful for us to select an appropriate penalty parameter
ξ so that the search direction is a descent direction of the merit function.

Lemma 3.2. For given β > 0 and ρ > 0, let zk = (xk, uk), and let dk = (dxk, duk)

be the solution of subproblem (32)–(33), Φ
′

ξ(zk; dk) be the directional derivative of

Φξ(z;β, ρ) at zk along the direction dk.
(1) There holds

Φ
′

ξ(zk; dk) ≤ ξ(ρ∇fTk dxk +
∑
i∈I

ρβ

yki + λki
(∇cTkidxk + ρduki))

+‖rk +RTk dk‖ − ‖rk‖.

(2) If rk = 0, then Φ
′

ξ(zk; dk) ≤ − 1
2ξd

T
kQkdk.

Proof. (1) Let

Θ(x, u) = ‖c(x) + y‖. (34)

Then, by the proof of Proposition 3.1 of [25], Θ
′
(zk; dk) ≤ ‖rk + RTk dk‖ − ‖rk‖.

Therefore,

Φ
′

ξ(zk; dk)

≤ ξρ∇fTk dxk − ξρβ
∑
i∈I

y−1ki ((∇xyi)T dxk + (∇uyi)T duk) + ‖rk +RTk dk‖ − ‖rk‖

= ξ(ρ∇fTk dxk +
∑
i∈I

ρβ

yki + λki
(∇cTkidxk + ρduki)) + ‖rk +RTk dk‖ − ‖rk‖,

where the equality follows from Lemma 2.1(1).
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(2) If rk = 0, then, by (1), Φ
′

ξ(zk; dk) ≤ ξ(ρ∇fTk dxk +
∑
i∈I

ρβ
yki+λki

(∇cTkidxk +

ρduki)). The result follows immediately since d = 0 is a feasible solution to the QP
(32)–(33).

Certain additional update techniques are used in primal-dual interior-point meth-
ods for nonlinear programs with strong global convergence (for example, see [9, 25,
27, 32]). A technique, which was introduced first in Byrd, Gilbert and Nocedal
[9] and was examined to be efficient later, is to change yk+1 = yk + αkdyk to
yk+1 = max{yk + αkdyk ,−c(xk+1)}, so that c(xk+1) + yk+1 ≥ 0 at the (k + 1)th
iteration. However, this technique can not be applied to our method straightfor-
ward here since yk depends on both xk and uk. The following result shows that
c(xk+1) + yk+1 ≥ 0 can still hold provided uk+1 is appropriately updated, thus the
strong global convergence is attained.

Lemma 3.3. For given β > 0 and ρ > 0, if ci(xk+1) ≥ 0, or ci(xk+1) < 0 but

uk+1,i ≤ − β
ci(xk+1)

for any i ∈ I, then ci(xk+1) + yk+1,i ≥ 0, where yk+1,i =

yi(xk+1, uk+1;β, ρ) is given by (18).

Proof. If ci(xk+1) ≥ 0, then ci(xk+1)+yk+1,i > 0 since yk+1,i > 0. In the remainder,
we consider the case ci(xk+1) < 0.

If ci(xk+1)− ρuk+1,i ≥ 0, by (11), one has ci(xk+1) + yk+1,i ≥ 0. In this case,

uk+1,i < 0 < − β

ci(xk+1)
.

If ci(xk+1)− ρuk+1,i < 0, by (11), ci(xk+1) + yk+1,i ≥ 0 if and only if√
(ci(xk+1) + ρuk+1,i)2 + 4ρβ ≥ −(ci(xk+1)− ρuk+1,i),

which is equivalent to ci(xk+1)uk+1,i ≥ −β.
Due to ci(xk+1) < 0, the result follows immediately.

3.3. The framework of our algorithm. We denote by F the class of continuous
functions θ : <++ → <++ satisfying limt→0 θ(t) = 0, and

φ(β,ρ)(x, u) =

(
ρ∇f(x) +

∑
i∈I λi(x, u;β, ρ)∇ci(x)

ρ(c(x) + y(x, u;β, ρ))

)
.

Now we are ready to describe our algorithmic framework for problem (1)–(2). The
details on implementation of the algorithm will be provided in Section 6.

Algorithm 3.4. (The algorithm for problem (1)–(2))

Step 1 Given z0 = (x0, u0) ∈ <n+m, β0 > 0, ρ0 > 0, δ ∈ (0, 1), σ ∈ (0, 1
2
), ε > 0, and

functions θ1, θ2 ∈ F . Set l := 0.
Step 2 While βl > ε and ρl > ε, start the following inner algorithm.

Step 2.0 Given H0 ∈ <n×n, ξ0 = 1, let z0 = (xl, ul). Evaluate y0 and λ0 by
(18) and (19)

with β = βl and ρ = ρl. Let k := 0.
Step 2.1 Obtain dck, and solve the QP subproblem (32)–(33) to derive (dxk, duk).
Step 2.2 Choose ξk+1 with either ξk+1 = ξk or ξk+1 ≤ 0.5ξk such that

πξk+1(zk; dk) + (1− δ)(‖rk‖ − ‖rk +RTk dk‖) ≤ −0.5ξk+1d
T
kQkdk, (35)

where πξk+1(zk; dk) = ξk+1(ρl∇fTk dxk +
∑
i∈I

ρlβl
yki+λki

(∇cTkidxk +ρlduki)) +‖rk +

RTk dk‖ − ‖rk‖.
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Step 2.3 Choose the step-size αk ∈ (0, 1] to be the maximal in {1, δ, δ2, . . .}
such that

Φξk+1(xk + αkdxk, uk + αkduk;βl, ρl)− Φξk+1(xk, uk;βl, ρl) ≤ σαkπξk+1(zk; dk). (36)

Step 2.4 Set xk+1 = xk + αkdxk and ûk+1 = uk + αkduk.
Step 2.5 Set

uk+1,i =

{
ûk+1,i, if ci(xk+1) ≥ 0;

min{ûk+1,i,− βl
ci(xk+1)

}, otherwise
(37)

for every i ∈ I. Set zk+1 = (xk+1, uk+1).
Step 3 If ‖φ(βl,ρl)(xk+1, uk+1)‖∞ ≤ ρlθ1(βl), then update βl to βl+1 ≤ 0.1βl, ρl+1 = ρl;

else if ξk+1 ≤ 0.1 min(ρ0.5l , 1), then update ρl to ρl+1 ≤ ξk+1ρl, βl+1 = βl. In
these two cases, the inner algorithm is stopped. Let zl+1 = zk+1, l := l + 1
and go to Step 2. Otherwise, evaluate yk+1 = y(xk+1, uk+1;βl, ρl) and λk+1 =
λ(xk+1, uk+1;βl, ρl), update Hk to Hk+1, let k := k + 1 and go to Step 2.1.

Due to Step 2.2 of Algorithm 3.4, Φ′ξk+1
(zk; dk) < 0. Thus, there is always a

sufficiently small number αk > 0 such that (36) holds (for example, see Lemma 2.7
of [3]). That is, the inner algorithm of Algorithm 3.4 is well-defined.

Let ŷk+1,i = yi(xk+1, ûk+1;βl, ρl) for i ∈ I. It follows from (37) and the proof of
Lemma 3.3 that ci(xk+1) + ŷk+1,i ≥ 0 if and only if uk+1,i = ûk+1,i (thus yk+1,i =

ŷk+1,i). If ci(xk+1) + ŷk+1,i < 0, then uk+1,i = − βl

ci(xk+1)
and ci(xk+1) + yk+1,i = 0

(in this case yk+1,i > ŷk+1,i). Therefore,

c(xk+1) + yk+1 ≥ 0 (38)

and ‖c(xk+1)+yk+1‖ ≤ ‖c(xk+1)+ŷk+1‖. Since the logarithmic function is monoton-
ically nondecreasing, and, for any i ∈ I, yk+1,i ≥ ŷk+1,i, one has ln yk+1,i ≥ ln ŷk+1,i

for every i ∈ I. Note that the line search procedure guarantees Φξk+1
(xk+1, ûk+1;

βl, ρl) ≤ Φξk+1
(xk, uk;βl, ρl). Hence, for every k ≥ 0,

Φξk+1
(xk+1, uk+1;βl, ρl) ≤ Φξk+1

(xk, uk;βl, ρl). (39)

The well-definedness of the whole algorithm is based on the global convergence
results of Algorithm 3.4. It will be proved, in the next section, that either the
inner algorithm converges to a solution satisfying the system (20), in this situation
the terminating condition ‖φ(βl,ρl)(zk+1)‖∞ ≤ ρlθ1(βl) will hold in a finite number

of iterations, or ξk+1 → 0 and the terminating condition ξk+1 ≤ 0.1 min(ρ0.5l , 1)
for the inner algorithm will be satisfied. Since the inner algorithm will always be
terminated in a finite number of iterations, by Step 3 of Algorithm 3.4, either βl or
ρl will be reduced at least to a fixed fraction.

4. Global convergence. We present our global convergence results on Algorithm
3.4 in this section. Firstly, we consider the global convergence of the inner algorithm.
For given βl > 0 and ρl > 0, suppose that the inner algorithm does not terminate in
a finite number of iterations. We prove that, if {ξk} is bounded away from zero, then
every limit point of sequence {(xk, uk)} is a solution of the system (20); otherwise,
ξk → 0 as k → ∞. It shows that the supposition will never happen. After that,
the global convergence results of the whole algorithm are presented. The results
show that the whole algorithm converges to a KKT point of the original problem
provided βl → 0 but ρl 6→ 0, otherwise ρl → 0 and there is one of the limit points
of the sequence {xl} which is an infeasible stationary point or a singular stationary
point of problem (1)–(2).
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We need the following definitions.

Definition 4.1. x∗ ∈ <n is called an infeasible stationary point of problem (1)–(2)
if x∗ is an infeasible point and∑

i∈I
a∗i∇ci(x∗) = 0, (40)

where a∗i = max{ci(x∗), 0}, i ∈ I.

Definition 4.2. x∗ ∈ <n is called a singular stationary point of problem (1)–(2) if
there is a nonzero vector b∗ ∈ <m such that∑

i∈I
b∗i∇ci(x∗) = 0, (41)

b∗i ≥ 0, ci(x
∗) ≤ 0, b∗i ci(x

∗) = 0, i ∈ I. (42)

While Definition 4.1 shows that x∗ is a stationary point for minimizing the con-
straint violations

1

2

∑
i∈I
|max{ci(x), 0}|2, (43)

Definition 4.2 implies that x∗ is a Fritz-John point of problem (1)–(2) at which the
Mangasarian-Fromovitz constraint qualification (MFCQ) does not hold.

It should be noticed that various definitions have been given for infeasible and
singular stationary points, see [5, 6, 8, 13, 25, 26, 39]. These stationary points may
either belong to a set of minimizers of the problem minimizing the measure of con-
straint violations like problem (43) or be the optimal solutions of some degenerate
nonlinear programs, see Section 6.1 for the details. For example, [8] considered the
infeasible stationary point to be a first-order optimal solution x∗ of the problem

min
∑

i∈{I|ci(x∗)>0}

ci(x)

s.t. ci(x) = 0, i ∈ {i ∈ I|ci(x∗) = 0},

whereas [25] identifies some singular stationary points at which the linear indepen-
dence constraint qualification (LICQ) does not hold.

4.1. Global convergence of the inner algorithm. We consider the global con-
vergence of the inner algorithm. Suppose that, for parameters βl > 0 and ρl > 0,
the inner algorithm of Algorithm 3.4 does not terminate in a finite number of iter-
ations and {(xk, uk)} is an infinite sequence generated by the algorithm. For the
sake of global convergence analysis, we need the following blanket assumptions.

Assumption 4.3.
(1) The functions f and ci(i ∈ I) are twice continuously differentiable on <n;
(2) The iterative sequence {xk} is in an open bounded set;
(3) The sequence {Hk} is bounded, and for all k ≥ 0 and d ∈ <n, dTHkd ≥ ρlγ‖d‖2,
where γ > 0 is a constant;
(4) For all k ≥ 0, dck satisfies the conditions:

(i) ‖dck‖ ≤ η1‖Rkrk‖,
(ii) ‖rk‖ − ‖rk + RTk d

c
k‖ ≥ η2‖Rkrk‖2/‖rk‖, where η1 > 0 and η2 > 0 are two

constants.
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The conditions in Assumption 4.3 (1)–(3) are the same as those commonly used
in global convergence analysis of iterative methods for nonlinear optimization (for
example, see [5, 9, 13, 22, 25, 27]). Assumption 4.3 (4) is for the strong global
convergence of the algorithm, which is very mild and can be satisfied easily (see
Section 2.2 of [25]).

The following results depend only on the merit function and can be proved in
the same way as Lemma 5 of [9] and Lemma 4.2 of [27].

Lemma 4.4. Suppose that Assumption 4.3 holds. Then {yk} is bounded, {λk} is
componentwise bounded away from zero and {uk} is lower bounded. Furthermore,
if the penalty parameter ξk remains constant for all sufficiently large k, then {yk}
is componentwise bounded away from zero, {λk} and {uk} are bounded.

Proof. The results on {yk} can be derived by [9, 27]. Due to λkiyki = ρlβl, the
results on {λk} follow immediately.

For given βl > 0 and ρl > 0, if {yk} is bounded, then, by (18), uki > −∞ for
all k ≥ 0 and i ∈ I. Otherwise, if uki → −∞ for some i, then yki → ∞, which is
a contradiction. If {yk} is componentwise bounded away from zero, then, by (18),
uki <∞ for all k ≥ 0 and i ∈ I. Thus, the results on {uk} are proved.

The update rule on ξk is adaptive. It implies that the sequence {ξk} is monoton-
ically nonincreasing, which either remains a positive constant after a finite number
of iterations or tends to zero as k tends to infinity. The next two results show that,
if ξk is bounded away from zero, all step-sizes can be selected to be bounded away
from zero.

Lemma 4.5. Suppose that Assumption 4.3 holds. Let dk = (dxk, duk) ∈ <n+m be
the solution of quadratic programming subproblem (32)–(33), and let gk ∈ <m be
the associated Lagrangian multiplier. If ξk remains a positive constant after a finite
number of iterations, then {‖dk‖} and {‖Rkgk‖} are bounded.

Proof. Since ∇fk and dck are bounded, Hk is bounded and uniformly positive

definite, ‖dxk‖ and |
∑
i∈I

∇cTkidxk+ρlduki

yki+λki
| are bounded due to q̂(dk) ≤ q̂(dck).

If ξk is bounded away from zero, in view of Lemma 4.4, both yki and λki are
bounded above and bounded away from zero. Thus, ‖dk‖ is bounded since 1/(yki+
λki) for every i ∈ I is bounded away from zero.

In view of

ρl∇fk +Hkdxk +
∑
i∈I

ρlβl

yki+λki
(1 +

∇cTkidxk+ρlduki

yki+λki
)∇cki

+
∑
i∈I

λki

yki+λki
gki∇cki = 0, (44)

ρ2l βl

yki+λki
(1 +

∇cTkidxk+ρlduki

yki+λki
)− ρl yki

yki+λki
gki = 0, i ∈ I, (45)

and ρlβl

yki+λki
≤
√
ρlβl

2 for i ∈ I, and note that ‖dk‖ is bounded, one can deduce that

‖Rkgk‖ is bounded.

Lemma 4.6. Suppose that Assumption 4.3 holds. Let {αk} be the sequence of step-
sizes derived from (36) of Algorithm 3.4. If ξk remains a positive constant after a
finite number of iterations, and

‖Rkrk‖ ≥ η̂‖rk‖ (46)

for some constant η̂ > 0 and for all k ≥ 0, then {αk} is bounded away from zero.
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Proof. Due to Lemmas 4.4 and 4.5, for every i ∈ I, one has

− ln yi(zk + αdk;βl, ρl) + ln yki − α 1
yki+λ

+
ki

(∇cTkidxk + ρlduki) = o(α),

Θ(xk + αdxk, uk + αduk) = ‖rk + αRTk dk‖+ o(α)

for all α > 0 sufficiently small, where Θ(x, u) is defined by (34). Therefore,

Φξk+1
(xk + αdxk, uk + αduk;βl, ρl)− Φξk+1

(xk, uk;βl, ρl)

= απξk+1
(zk; dk) + o(α) (47)

for all α ∈ [0, α̃], where α̃ > 0 is a sufficiently small scalar. Note that, due to (46),

(1− σ)απξk+1
(zk; dk) ≤ α(1− σ)(1− δ)(‖rk +RTk dk‖ − ‖rk‖) ≤ −αη3‖rk‖, (48)

where η3 = η2η̂
2(1 − σ)(1 − δ). It follows from (47) and (48) that there exists a

scalar α̂ ∈ (0, α̃] such that

Φξk+1
(xk + αdxk, uk + αduk;βl, ρl)− Φξk+1

(xk, uk;βl, ρl) ≤ σαπξk+1
(zk; dk)

for all α ∈ (0, α̂] and all k ≥ 0. Thus, by Step 2.3 of Algorithm 3.4, αk ≥ α̂ for all
k ≥ 0.

We prove that, if condition (46) holds, the penalty parameter ξk in the merit
function will remain a positive constant after a finite number of iterations.

Lemma 4.7. Suppose that Assumption 4.3 holds. If (46) holds for some scalar

η̂ > 0 and for all k ≥ 0, there is a constant ξ̂ > 0 such that ξk = ξ̂ for all
sufficiently large k.

Proof. We achieve the result by proving that (35) holds with ξk = ξ̂ as ξ̂ is small
enough.

Note that λkiyki = ρlβl and

1

yki + λki
=

yki
y2ki + λkiyki

≤ 1

ρlβl
yki.

Hence, due to q̂k(dk) ≤ q̂k(dck), Assumption 4.3 (4) (ii) and Lemma 4.4, one has

πξk+1
(zk; dk) + (1− δ)(‖rk‖ − ‖rk +RTk dk‖) +

1

2
ξk+1d

T
kQkdk

= ξk+1q̂k(dk) + δ(‖rk +RTk dk‖ − ‖rk‖)
≤ ξk+1q̂k(dck) + δ(‖rk +RTk d

c
k‖ − ‖rk‖)

≤ γ1ξk+1‖dck‖ − δη2η̂2‖rk‖,

where γ1 > 0 is a scalar. Finally, it follows from Assumption 4.3 (4) (i) that (35)

holds with ξk+1 = ξ̂ as ξ̂ ≤ δη2η̂2/(γ1η1).
Now we prove that sequence {(xk, uk)} generated by the inner algorithm of Al-

gorithm 3.4 will converge to a solution of the system (20) provided (46) holds.

Lemma 4.8. Let {(xk, uk)} be the infinite sequence generated by the inner algo-
rithm of Algorithm 3.4. Suppose that Assumption 4.3 holds, and assume that (46)
holds for some scalar η̂ > 0 and for all k ≥ 0. Then any limit point of {(xk, uk)} is
a solution of the system (20).

Proof. Firstly , we prove that

lim
k→∞

‖rk‖ = 0 and lim
k→∞

‖dk‖ = 0. (49)
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Without loss of generality, we suppose that ξk = ξ̂ for all k ≥ 0. Then, by (39),
{Φξ̂(zk;βl, ρl)} is a monotonically nonincreasing sequence. Note that it is also a

bounded sequence. Thus,

lim
k→∞

πξ̂(zk; dk) = 0 (50)

since αk is bounded away from zero. Using the last inequality of (48), one has

lim
k→∞

‖rk‖ = 0,

which implies limk→∞ ‖dck‖ = 0. In view of (35), limk→∞ ‖dk‖ = 0.
It follows from Lemma 4.4 that {yk} and {λk} are bounded above and compo-

nentwise bounded away from zero, {uk} is bounded. Without loss of generality, let
z∗ = (x∗, u∗) be any limit point of {zk} and suppose that limk→∞ xk = x∗ and
limk→∞ uk = u∗. Since limk→∞ ‖rk‖ = 0 and note ck + yk = λk − ρluk, one has

lim
k→∞

λk = ρlu
∗ > 0, lim

k→∞
yk = −c∗ > 0.

In view of limk→∞ ‖dk‖ = 0, by taking the limit on k → ∞ in both sides of
(44) and (45), there holds limk→∞ gkiyki = ρlβl for i ∈ I and limk→∞(ρl∇fk +∑
i∈I gki∇cki) = 0. Thus,

lim
k→∞

(gk − λk) = 0 and lim
k→∞

(ρl∇fk +
∑
i∈I

λki∇cki) = 0.

That is, φ(βl,ρl)(x
∗, u∗) = 0.

Now we are ready to present our global convergence results on the inner algorithm
of Algorithm 3.4. It indicates that, for any given βl > 0 and ρl > 0, the inner
algorithm of Algorithm 3.4 will be terminated in a finite number of iterations.

Theorem 4.9. Given βl > 0 and ρl > 0 are two scalars. Let {(xk, uk)} be the
infinite sequence generated by the inner algorithm of Algorithm 3.4. Suppose that
Assumption 4.3 holds. Then one of the following statements is true:
(1) ‖Rkrk‖ ≥ η̂‖rk‖ for some scalar η̂ > 0 and for all k ≥ 0, ξk remains a positive
constant for all sufficiently large k, and any limit point of {(xk, uk)} is a solution
of the system (20);
(2) ξk → 0 as k →∞, and there exists some infinite index subset K such that

lim
k∈K,k→∞

‖Rkrk‖/‖rk‖ = 0,

where rk ≥ 0 for all k ≥ 0.

Proof. The result (1) follows from the preceding Lemma 4.7 and Lemma 4.8. The
result (2) is straightforward and can be taken as a corollary of Lemma 4.7, where
rk ≥ 0 since (38).

4.2. Global Convergence results of the whole algorithm. Now we consider
the global convergence of the whole algorithm. Without loss of generality, we let
ε = 0 and let {(xl, ul)} be an infinite sequence generated by the outer algorithm of
Algorithm 3.4. It is shown that, either we have βl → 0 and ρl ≥ ρ̂ for some positive
scalar ρ̂ and for all l, and every limit point (x∗, u∗) of sequence {(xl, ul)} is a KKT
pair of the original problem (1)–(2), or we have ρl → 0 and there exists a limit point
x∗ of the sequence {xl} which is either an infeasible stationary point or a singular
stationary point of the problem (1)–(2).
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Theorem 4.10. Suppose that Assumption 4.3 holds for every given parameters
βl > 0 and ρl > 0. Let ε = 0, and let {(xl, ul)} be an infinite sequence generated
by the outer algorithm of Algorithm 3.4. Then one of the following two cases will
happen.
(1) ρl ≥ ρ̂ for some positive scalar ρ̂ and for all l, βl → 0 as l → ∞, every limit
point (x∗, u∗) of sequence {(xl, ul)} is a KKT pair of the original problem (1)–(2).
(2) ρl → 0 as l → ∞, and there exists a limit point x∗ of the sequence {xl} which
is either an infeasible stationary point or a singular stationary point of the problem
(1)–(2).

Proof. Since, for every given parameters βl > 0 and ρl > 0, the inner algorithm of
Algorithm 3.4 is terminated in a finite number of iterations, we have either the case
with ‖φ(βl,ρl)(zl+1)‖∞ ≤ ρlθ1(βl) for all sufficiently large l or the case that there

exists an infinite subsequence {ρlk} of sequence {ρl} such that ρlk ≤ 0.1ρ1.5lk−1 for
all k.

If l0 is a positive integer such that ‖φ(βl,ρl)(zl+1)‖∞ ≤ ρlθ1(βl) for all l ≥ l0,
then, by Step 3 of Algorithm 3.4, ρl ≥ ρl0 for all l and βl → 0 as l→∞. Thus,

lim
l→∞

‖φ(βl,ρl)(xl+1, ul+1)‖∞ = 0.

In view of the argument on the system (13) in section 2, the above equation implies
that every limit point (x∗, u∗) of sequence {(xl, ul)} is a KKT pair of the original
problem (1)–(2).

In the following, we consider the latter case. If ρlk ≤ 0.1ρ1.5lk−1 for all k, then

ρlk ≤ 0.1ρ1.5lk−1
for all k since {ρl} is a nonincreasing sequence. Thus, ρl → 0 as

l→∞. It follows from the result (2) of Theorem 4.9 that

lim
k→∞

‖Rlkrlk‖/‖rlk‖ = 0,

which is equivalent to

lim
k→∞

∑
i∈I

λlki
ylki + λlki

(clki + ylki)

‖rlk‖
∇clki = 0, (51)

lim
k→∞

ylki
ylki + λlki

(clki + ylki)

‖rlk‖
= 0, i ∈ I. (52)

Since {xl} and {yl} are bounded sequences, there exist convergent subsequences,
for which, without loss of generality, we suppose

lim
k→∞

xlk = x∗ and lim
k→∞

ylk = y∗.

If limk→∞ ‖rlk‖ = 0, then x∗ is a feasible point of the original problem (1)–(2).
Without loss of generality, we suppose

lim
k→∞

λlki
ylki + λlki

= ν∗i , i ∈ I, lim
k→∞

clk + ylk
‖rlk‖

= b∗.

Then b∗ 6= 0. Since cl + yl ≥ 0 for all l ≥ 0, one has b∗ ≥ 0. By (52), (1− ν∗i )b∗i =
0, i ∈ I. Thus, for i ∈ I, b∗i = ν∗i b

∗
i , i.e., b∗i = 0 as ν∗i = 0, ν∗i = 1 as b∗i 6= 0. Note

that ν∗i = 1 implies y∗i = 0 and c∗i = 0. Hence, b∗i c
∗
i = 0,∀i ∈ I. Finally, by (51),

(41) holds. That is, x∗ is a singular stationary of the problem (1)–(2).
Due to (52) we have

y∗i (c∗i + y∗i ) = 0, i ∈ I. (53)
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Since cl+yl ≥ 0 for all l ≥ 0, it follows from (53) that, for i ∈ I, c∗i+y
∗
i = max{c∗i , 0}.

If limk→∞ ‖rlk‖ 6= 0, then x∗ is an infeasible point of the original problem (1)–
(2). By (51) and (52), one has

∑
i∈I max{c∗i , 0}∇c∗i = 0. Therefore, (40) follows

immediately.
The preceding theorem shows that, for any given ε > 0, Algorithm 3.4 will be

terminated at either the case βl ≤ ε or the case ρl ≤ ε.

5. Local convergence. In this section, we prove that, under suitable conditions,
the step at xl in Algorithm 3.4 can be a superlinearly or quadratically convergent
step, no matter whether the sequence {xl} converges to a KKT point or an infeasible
stationary point of the original problem. Thus, the whole algorithm is capable of
rapidly converging to a KKT point when the problem is feasible, and, in particular,
rapidly converging to an infeasible stationary point when a problem is infeasible.

Let ρl → ρ∗ and βl → β∗ as l → ∞, νl ∈ <m be a vector with components
νli = λli/(yli + λli), i ∈ I. For simplicity, we suppose that ‖ρlul‖ ≤ M for some
constant M > 0 and for all l ≥ 0. This supposition is reasonable from the global
convergence analysis in previous section, and it does not hinder ‖ul‖ tend to ∞.
If {xl} converges to a KKT point, then ul is bounded and the supposition holds
obviously. If it is other than that case, since the inner algorithm is terminated
finitely for every l, one can select ρl such that the supposition holds. With this
supposition, ‖λl‖ is bounded.

We need the following blanket assumptions for local convergence analysis, in
which Assumption 5.1 (3) and (4) are weaker than that commonly used in nonlinear
programs.

Assumption 5.1.
(1) xl → x∗ and νl → ν∗ as l → ∞. Correspondingly, yl → y∗ and λl → λ∗ as
l→∞;
(2) The functions f and ci (i ∈ I) are twice differentiable on <n, and their second
derivatives are Lipschitz continuous at some neighborhood of x∗;
(3) The gradients ∇ci(x∗) (i ∈ W∗∩I∗) are linearly independent, where W∗ = {i ∈
I|ν∗i 6= 0}, I∗ = {i ∈ I|ci(x∗) = 0};
(4) dTH∗d > 0 for all d 6= 0 such that ν∗i∇ci(x∗)T d = 0, i ∈ I∗, where H∗ =
ρ∗∇2f(x∗) +

∑
i∈I λ

∗
i∇2ci(x

∗).

5.1. Rapid convergence to a KKT point. We focus on how the barrier parame-
ter βl is updated at (xl, ul) results in that (dxl, dul) is a superlinearly or quadratically
convergent step, so that our algorithm is capable of rapidly converging to the KKT
point. In addition to Assumption 5.1, we also need the following general conditions.

Assumption 5.2.
(1) ρ∗ > 0 and β∗ = 0;
(2) ul → u∗ as l→∞. Thus, zl → z∗ as l→∞.

The following index sets are used throughout this subsection: P∗ = {i ∈ I|ci(x∗)+
ρ∗u∗i > 0}, Z∗ = {i ∈ I|ci(x∗) + ρ∗u∗i = 0}, N ∗ = {i ∈ I|ci(x∗) + ρ∗u∗i < 0}. As-
sumption 5.2 shows that (x∗, u∗) is a KKT pair, and ci(x

∗) = 0 for i ∈ P∗ ∪ Z∗,
ci(x

∗) < 0 for i ∈ N ∗. It follows from (18) and (19) that y∗i = 0 and λ∗i > 0 for
i ∈ P∗, and y∗i > 0 and λ∗i = 0 for i ∈ N ∗. They imply that ν∗i = 1 for i ∈ P∗,
ν∗i = 0 for i ∈ N ∗. Hence, W∗ ⊆ I∗ and E∗ = E .

Similar to Lemma 16.1 of [29], one can prove the following result. We omit the
proof for brevity.
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Lemma 5.3. Suppose that Assumptions 5.1 and 5.2 hold. Then the matrix

Ω∗ =

 B∗ [ν∗i∇ci(x∗), i ∈ W∗] 0
[ν∗i∇ci(x∗), i ∈ W∗]T −diag(1− ν∗i , i ∈ W∗) 0

0 0 −I|I\W∗|


is nonsingular, where B∗ = H∗ +

∑
i∈I ν

∗
i∇ci(x∗)∇ci(x∗)T , [ν∗i∇ci(x∗), i ∈ W∗]

is a matrix with ν∗i∇ci(x∗) (i ∈ W∗) as its column vectors, diag(1 − ν∗i , i ∈ W∗)
is a diagonal matrix with (1 − ν∗i ) (i ∈ W∗) as its diagonal entries, I|I\W∗| is an
identity matrix of order |I\W∗|.

For simplicity of notations, we suppose that ρl = ρ∗ for all l ≥ 0 in this subsection.
Let J∗ = liml→∞ Jl, where Jl = ∇φ(βl,ρl)(zl). Then J∗ = D∗Ω∗D∗, where D∗ is
a diagonal matrix with n 1s and m ρ∗s. Due to Lemma 5.3, J∗ is nonsingular. It

follows from the Implicit Function Theorem (p.128 of [30]) that there exists a β̂ > 0

such that the equation φ(βl,ρl)(z) = 0 has a unique solution z∗(βl) for all βl ≤ β̂,
and there holds

‖z∗(βl)− z∗‖ ≤Mβl < ε, (54)

where ε > 0 is small enough and

M = max
‖z−z∗‖<ε

∥∥∥∥[∇φ(βl,ρl)(z)]
−1 ∂φ(βl,ρl)(z)

∂β

∥∥∥∥
is a constant independent of βl.

The following two lemmas can be obtained in a way similar to Lemmas 2.1 and
2.3 in [11]. We will not give their proofs for brevity.

Lemma 5.4. Suppose that Assumptions 5.1 and 5.2 hold. Then there are suffi-

ciently small scalars ε > 0 and β̂ > 0, and positive constants M0 and L0, such that,

for all βl ≤ β̂ and z ∈ {z|‖z − z∗(βl)‖ < ε}, ∇φ(βl,ρl)(z) is invertible,

‖[∇φ(βl,ρl)(z)]
−1‖ ≤M0, (55)

and

‖∇φ(βl,ρl)(z)−∇φ(βl,ρl)(z
∗(βl))‖ ≤ L0‖z − z∗(βl)‖. (56)

Moreover, for z ∈ {z|‖z − z∗(βl)‖ < ε} and βl ≤ β̂, one has

‖∇φ(βl,ρl)(z)
T (z − z∗(βl))− φ(βl,ρl)(z)‖ ≤ L0‖z − z∗(βl)‖2. (57)

Lemma 5.5. Suppose that Assumptions 5.1 and 5.2 hold. Then there are suffi-

ciently small scalars ε > 0 and β̂ > 0, such that for z ∈ {z|‖z − z∗(βl)‖ < ε} and

βl ≤ β̂,

‖z − z∗(βl)‖ ≤ 2M0‖φ(βl,ρl)(z)‖, ‖φ(βl,ρl)(z)‖ ≤ 2M1‖z − z∗(βl)‖, (58)

where M1 = sup‖z−z∗(βl)‖<ε ‖∇φ(βl,ρl)(z)‖.

Using Lemmas 5.4 and 5.5, we can prove the following results.

Theorem 5.6. Suppose that Assumptions 5.1 and 5.2 hold, and βl = O(‖zl−z∗‖2).
If dcl is computed such that ‖rl +RTl d

c
l ‖ = O(‖rl‖2), then

‖zl + dl − z∗‖ = O(‖zl − z∗‖2). (59)

That is, dl is a quadratically convergent step. If, instead, βl = o(‖zl − z∗‖),
‖rl + RTl d

c
l ‖ = o(‖rl‖), then ‖zl + dl − z∗‖ = o(‖zl − z∗‖). That is, the step is

superlinear.
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Proof. In order to prove the result, we show

lim sup
k→∞

‖zl + dl − z∗‖/‖zl − z∗‖2 ≤ γ, (60)

where γ > 0 is a constant.

Let φl = φ(βl,ρl)(zl), Jl = ∇φ(βl,ρl)(zl), φ̂l be the vector which is different from φl

in that the last m components are replaced by −ρlRTl dcl , d̂l be the unique solution
of the equation Jld = −φl. Then, due to ‖rl‖ ≤ ‖φl‖, by (55) and (58),

‖dl − d̂l‖ = ‖J−1l

(
0

rl +RTl d
c
l

)
‖ = O(‖zl − z∗(βl)‖2). (61)

Furthermore, by (55) and (57),

‖zl + d̂l − z∗(βl)‖ ≤ ‖[Jl]−1‖‖Jl(zl − z∗(βl))− φl‖
≤ M0L0‖zl − z∗(βl)‖2. (62)

Using (54), (61) and (62), one has

‖zl + dl − z∗‖
≤ ‖zl + d̂l − z∗(βl)‖+ ‖dl − d̂l‖+ ‖z∗(βl)− z∗‖
≤M0L0‖zl − z∗(βl)‖2 +O(‖zl − z∗(βl)‖2) +Mβl. (63)

If βl = O(‖zl − z∗‖2), that is, βl ≤M2‖zl − z∗‖2 for some constant M2 > 0, then

‖zl − z∗(βl)‖ ≤ ‖zl − z∗‖+ ‖z∗ − z∗(βl)‖ ≤ (1 +MM2‖zl − z∗‖)‖zl − z∗‖.

Thus, (60) follows immediately from (63).
The result for the case βl = o(‖zl − z∗‖) can be proved similarly.

5.2. Rapid convergence to an infeasible stationary point. In this subsection,
we consider the rate of convergence to an infeasible stationary point. We prove that
dxl can be a superlinearly or quadratically convergent step provided the penalty
parameter ρl is appropriately updated at zl. The barrier parameter βl ∈ (0, β0] can
be any finite number.

Other than the general assumptions in Assumption 5.1, we also need some addi-
tional conditions for local analysis in this subsection.

Assumption 5.7.
(1) ρ∗ = 0, x∗ is an infeasible stationary point;
(2) ρlul → 0 as l→∞.

The above assumption does not prevent ‖ul‖ from tending to∞. Since the inner
algorithm is terminated finitely for every l, one can update ρl appropriately such
that Assumption 5.7 (2) holds. With this assumption, ‖λl‖ is bounded.

For simplicity, we set ûl = ρlul. Let P∗ = {i ∈ I|ci(x∗) > 0}, and N ∗ = {i ∈
I|ci(x∗) < 0}. In virtue of (18) and (19), λ∗i > 0 and y∗i = 0 for i ∈ P∗, λ∗i = 0 and
y∗i > 0 for i ∈ N ∗. They imply ν∗i = 1 for i ∈ P∗, and ν∗i = 0 for i ∈ N ∗. Thus,
P∗ ⊆ W∗ ⊆ P∗ ∪ I∗.

Let us consider the system

F(β,ρ)(x, û) = 0, (64)

where F(β,ρ)(x, û) =
(
ρ∇f +

∑
i∈Î∗ λ̂i∇ci +

∑
i∈P∗(ci + ûli)∇cici + ŷi, i ∈ Î∗

)
,

Î∗ = I∗ ∩ W∗, λ̂i = 1
2 [
√

(ci + ûi)2 + 4ρβ + ci + ûi], ŷi = 1
2 [
√

(ci + ûi)2 + 4ρβ −
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ci − ûi]. Obviously, when ρ = 0 and x∗ is an infeasible stationary point of problem
(1)–(2), (x∗, 0) is a solution of (64).

Although our algorithm is totally different from those in [5, 8], we can similarly
establish the following local convergence results.

Lemma 5.8. Suppose that Assumptions 5.1 and 5.7 hold. Let ûI\Î∗ = 0. Then

there exists a constant ρ̂ > 0 such that, for ρ ≤ ρ̂, the system (64) has a unique

solution (x∗(ρ), û∗(ρ)) with û∗i (ρ) = 0 for i ∈ I\Î∗, and∥∥∥∥( x∗(ρ)− x∗
û∗(ρ)

)∥∥∥∥ ≤Mρ (65)

for some positive constant M independent of ρ.

Proof. Let F̂(β,ρ)(x, ûÎ∗) = F(β,ρ)(x, û) with ûI\Î∗ = 0. Note that F̂(β∗,0)(x
∗, 0) = 0

and F̂(β,ρ)(x, ûÎ∗) is continuously differentiable on (x, ûÎ∗). Furthermore,

∇F̂(β,ρ)(x, ûÎ∗) =

(
G(x, ûÎ∗) [ν∗i∇ci(x∗), i ∈ Î∗]

[ν∗i∇ci(x∗), i ∈ Î∗]T −diag(1− ν∗i , i ∈ Î∗)

)
, (66)

where

G(x, ûÎ∗) = ρ∇2f +
∑
i∈Î∗

λ̂i∇2ci +
∑
i∈P∗

ci∇2ci +
∑
i∈Î∗

ν̂i∇ci∇cTi +
∑
i∈P∗

∇ci∇cTi .

Let J∗F = limρ→0∇F̂(β,ρ)(x, ûÎ∗). By items (3) and (4) of Assumption 5.1 and
Assumption 5.7, J∗F is nonsingular. Thus, the result follows immediately by applying
the Implicit Function Theorem (p.128 of [30]).

Corresponding to the mapping F(β,ρ)(x, û), we set

φ̂(β,ρ)(x, u) =

(
ρ∇f +

∑
i∈I λi∇ci

ci + yi, i ∈ Î∗
)
.

Lemma 5.9. Suppose that Assumptions 5.1 and 5.7 hold. Then, for all sufficiently
large l,

‖φ̂(βl,ρl)(xl, ul)− F(βl,ρl)(xl, ûl)‖ ≤Mρl (67)

for some positive constant M independent of ρl.

Proof. For sufficiently large l, one has cli < 0, i ∈ N ∗ and cli > 0, i ∈ P∗. Thus,
for i ∈ N ∗,

λli =
1

2

(√
(cli + ρluli)2 + 4ρlβl + cli + ρluli

)
=

2βlρl√
(cli + ρluli)2 + 4ρlβl − cli − ρluli

≤
√
M

m+ p
ρl, (68)

and for i ∈ P∗,

(λli − cli − ûli) =
1

2

(√
(cli + ρluli)2 + 4ρlβl − cli − ρluli

)
=

2βlρl√
(cli + ρluli)2 + 4ρlβl + cli + ρluli

≤
√
M

m+ p
ρl (69)
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for some positive constant M independent of ρl. Therefore, for sufficiently large l,
there holds

‖φ̂(βl,ρl)(xl, ul)− F(βl,ρl)(xl, ûl)‖ ≤ ‖
∑
i∈P∗

(λli − cli − ûli)∇cli +
∑
i∈N∗

λli∇cli‖

≤ Mρl (70)

provided ‖∇cli‖ ≤
√
M for i ∈ P∗ ∪N ∗. Then the result follows immediately from

items (1) and (3) of Assumption 5.1.
For simplicity, we denote ẑ∗(ρ) = (x∗(ρ), û∗Î∗(ρ)), ẑ = (x, ûÎ∗), ŵ

∗ = (x∗, 0Î∗).

The following two lemmas can be obtained in a way similar to Lemmas 5.4 and 5.5
and hence their proofs are neglected here for brevity.

Lemma 5.10. Suppose that Assumptions 5.1 and 5.7 hold. Let F̂l(ẑ) = F̂(βl,ρl)(ẑ).
Then there are sufficiently small scalars ε > 0 and ρ̂ > 0, and positive constants M0

and L0, such that, for all ρl ≤ ρ̂ and ẑ ∈ {ẑ|‖ẑ− ẑ∗(ρl)‖ < ε}, ∇F̂l(ẑ) is invertible,

‖[∇F̂l(ẑ)]−1‖ ≤M0, (71)

and

‖∇F̂l(ẑ)T (ẑ − ẑ∗(ρl))− F̂l(ẑ)‖ ≤ L0‖ẑ − ẑ∗(ρl)‖2. (72)

Lemma 5.11. Suppose that Assumptions 5.1 and 5.7 hold. Then there are suf-
ficiently small scalars ε > 0 and ρ̂ > 0, such that, for all ρl ≤ ρ̂ and ẑ ∈
{ẑ|‖ẑ − ẑ∗(ρl)‖ < ε},

‖F̂l(ẑ)‖ ≤ 2M1‖ẑ − ẑ∗(ρl)‖,

where M1 = sup‖ẑ−ẑ∗(ρl)‖<ε ‖∇F̂l(ẑ)‖.

Denote (rl)Î∗ = (cli + yli, i ∈ Î∗), (RTl )Î∗ = (RTli , i ∈ Î∗), d̂l = (dxl, ρl(dul)Î∗),

where (dxl, dul) is the solution of QP (32)–(33). Let d̃l be the unique solution of

the equation ∇F̂l(ẑl)T d = −F̂l(ẑl). Now we are ready to provide the following local
convergence result when the whole algorithm converges to an infeasible stationary
point.

Theorem 5.12. Suppose that Assumptions 5.1 and 5.7 hold. If ρl = O(‖xl−x∗‖)2,
and dcl is computed such that ‖(rl)Î∗ + (RTl )Î∗d

c
l ‖ = O(‖(rl)Î∗‖2), then

‖xl + dxl − x∗‖ = O(‖xl − x∗‖2). (73)

If, instead, ρl = o(‖xl − x∗‖), and ‖(rl)Î∗ + (RTl )Î∗d
c
l ‖ = o(‖(rl)Î∗‖), then the

convergence is superlinear.

Proof. Assume that ρl = O(‖xl − x∗‖)2. In order to prove the result, we first show
that

lim sup
l→∞

‖ẑl + d̂l − ẑ∗‖/‖ẑl − ẑ∗‖2 ≤ γ, (74)

where γ > 0 is a constant.
Due to ‖ẑl+ d̃l− ẑ∗(ρl)‖ ≤ ‖[∇F̂Tl ]−1‖‖∇F̂Tl (ẑl− ẑ∗(ρl))− F̂l‖, by (71) and (72),

one has

‖ẑl + d̃l − ẑ∗(ρl)‖ = O(‖ẑl − z∗(ρl)‖2). (75)
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Note that

‖d̂l − d̃l‖ ≤ ‖[∇F̂Tl ]−1(φ̂l − Fl)‖+M0‖(rl)Î∗ + (RTl )Î∗d
c
l ‖

= O(ρl) +O(‖ẑl − ẑ∗(ρl)‖2)

(by (71), Lemmas 5.9 and 5.11) and

‖ẑl + d̂l − ẑ∗‖ ≤ ‖ẑl + d̃l − ẑ∗(ρl)‖+ ‖d̂l − d̃l‖+ ‖ẑ∗(ρl)− ẑ∗‖,

it follows from (65) and (75) that

‖ẑl + d̂l − ẑ∗‖ = O(‖ẑl − ẑ∗‖2). (76)

Therefore, (74) is obtained.

Since ‖ẑl+ d̂l− ẑ∗‖2 = ‖xl+dxl−x∗‖2 +ρ2l (‖(ul)Î∗+(dul)Î∗‖2) and ‖ẑl− ẑ∗‖2 =
‖xl − x∗‖2 + ρ2l (‖(ul)Î∗‖2), if ρl = O(‖xl − x∗‖)2, then

‖xl + dxl − x∗‖ = O(‖xl − x∗‖2). (77)

One can similarly prove the result for the case of ρl = o(‖xl − x∗‖).

6. Numerical experiments. Our main motivation for the numerical experiments
is to observe the performance of our algorithm when applied to solving some in-
feasible nonlinear programs in the literature. We implemented our algorithm in
MATLAB (version R2008a). The numerical tests were conducted on a Lenovo lap-
top with the LINUX operating system (Fedora 11).

The initial parameters were chosen as follows: β0 = 0.1, δ = 0.5, σ = 10−4, and
ε = 10−8. The initial penalty was ρ0 = min{100,max(1, ‖max(0, c(x0))‖/|f(x0)|)},
which depended on the initial point. Simply, we took H0 = ρI (where I ∈ <n×n is
the identity matrix), Hk was updated similarly by the well-known Powell’s damped
BFGS update formula (for example, see [3, 29]).

The vector dck was derived by Algorithm 6.1 of [25]. For solving the QP subprob-
lem (32)–(33), we first computed the null-space matrix Wk of RTk by the MATLAB
null-space routine, then computed the solution of the QP by forming the reduced
Hessian explicitly and using the MATLAB routine of bi-conjugate gradients method
with preconditioner generated by the sparse incomplete Cholesky-Infinity factoriza-
tion, which was presented by Zhang [40] for avoiding numerically zero pivots in the
sparse incomplete Cholesky factorization.

In the inner algorithm, ξk+1 is further updated such that ‖ξk+1gk‖∞ ≤ 0.1 (where
gk is the multiplier of the QP (see Lemma 4.5)), and ξk+1(max(max(ρluk, 0)))1.1 ≤ 1
so that ξk+1ρluk → 0 as ξk+1 → 0. Functions θ1 and θ2 are defined as θ1(β) = 10β
and θ2(ρ) = ρ, respectively. In order to obtain rapid convergence, we update βl to
βl+1 = min(0.1βl, ‖φ(βl,ρl)(zk+1)‖1.5∞ ) when we need to reduce βl. If ρl needs to be
updated, ρl is reduced to

ρl+1 = min{ξk+1ρl, ‖ψ(βl,ξk+1ρl)(zk+1)‖2∞, (‖λ(zk+1;βl, ρl)‖∞/ρl)−2}

provided ‖rk‖ − ‖rk +RTk dk‖ < 0.01‖rk‖, otherwise ρl+1 = ξk+1ρl, where

ψ(βl,ξk+1ρl)(zk+1) = ξk+1ρl∇fk+1 +
∑
i∈I

λi(zk+1;βl, ξk+1ρl)∇ck+1,i.

We use ‖ψ(βl,ξk+1ρl)(zk+1)‖∞ to measure the convergence to the infeasible sta-
tionary point, which is the same as [8]. It is easy to note that ‖ψ(βl,ξk+1ρl)(zk+1)‖∞ →
0 as ρl → 0 due to Theorem 4.10. The whole algorithm was terminated as either
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Table 1. Output for test problem (TP1)

l fl vl ‖φl‖∞ ‖ψl‖∞ βl ρl k

0 5 16.6132 129.6234 129.6234 0.1000 3.3226 -
1 0.1606 2.0205 4.8082 0.7313 0.1000 0.0972 3
2 -0.0149 2.0002 0.0989 0.0445 0.1000 0.0020 4
3 -0.0036 2.0000 0.0029 0.0018 0.1000 3.1595e-06 3
4 -0.0029 2.0000 3.1674e-06 2.8185e-06 0.1000 1.0000e-09 1
5 0.0018 2.0000 1.0011e-09 6.7212e-10 - - -

βl < ε or ρl < ε, or the total number of iterations (that is, the number of solving
QP (32)–(33)) was greater than 1000.

Two infeasible test problems are taken from Byrd, Curtis and Nocedal [8]. The
results for them are reported respectively in Tables 1–2, in which the numbers in
column l are the order numbers of outer iterations, fl = f(xl), vl = ‖max{0, c(xl)}‖,
‖φl‖∞ = ‖φ(βl,ρl)(zk+1)‖∞, ‖ψl‖∞ = ‖ψ(βl,ξk+1ρl)(zk+1)‖∞, k is the number of
inner iterations needed for changing parameters.

The first test problem is the so-called isolated problem:

min x1 + x2

(TP1) s.t. x21 − x2 + 1 ≤ 0,

x21 + x2 + 1 ≤ 0,

−x1 + x22 + 1 ≤ 0,

x1 + x22 + 1 ≤ 0.

The standard initial point is x0 = (3, 2), its solution x∗ = (0, 0) is a strict minimizer
of the infeasibility measure (43). The algorithm presented in [8] found this point.
Our algorithm terminates at an approximate point to it. Table 1 shows that, when
ρ3 = 3.1595e− 06 is reduced to ρ4 = 1.0000e− 09, rapid convergence emerged since
‖ψ3‖∞ is reduced superlinearly.

The second example is the nactive problem in [8]:

min x1

(TP2) s.t.
1

2
(x1 + x22 + 1) ≤ 0,

−x1 + x22 ≤ 0,

x1 − x22 ≤ 0.

The given initial point is x0 = (−20, 10). The point x∗ = (0, 0) derived by [8] was an
infeasible stationary point with ‖max(0, c∗)‖ = 0.5. Algorithm 3.4 terminates at a
point approximating an infeasible stationary point x∗ = (−0.2000, 0.0000). Similar
to that for (TP1), Table 2 indicates that, when ρ6 = 2.6880e − 06 is reduced to
ρ7 = 1.0000e−09, rapid convergence emerged since ‖ψ6‖∞ is reduced superlinearly.

In order to observe the strong global convergence of our algorithm, we also solve
the counterexample presented by Wächter and Biegler [34] (also see Byrd, Marazzi
and Nocedal [12]) and a standard test problem for which the minimizer is a singular
stationary point of the nonlinear program by our algorithm.
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Table 2. Output for test problem (TP2)

l fl vl ‖φl‖∞ ‖ψl‖∞ βl ρl k

0 -20 126.6501 2.8052e+03 2.8052e+03 0.1000 6.3325 -
1 -172.5829 172.7978 1.0948e+03 6.2866 0.1000 0.8719 6
2 0.2155 0.7149 1.4269 0.7894 0.1000 0.3895 1
3 -0.1364 0.5550 0.3865 0.3865 0.0100 0.3895 3
4 -0.1416 0.5223 0.2864 0.2648 0.0100 0.1512 1
5 -0.1472 0.5140 0.1446 0.1446 0.0100 0.0209 4
6 -0.1997 0.4472 0.0084 0.0016 0.0100 2.6880e-06 3
7 -0.1999 0.4472 2.4923e-06 2.4923e-06 0.0100 1.0000e-09 1
8 -0.1999 0.4472 9.2732e-10 9.2732e-10 - - -

Table 3. Output for test problem (TP4)

l fl vl ‖φl‖∞ ‖ψl‖∞ βl ρl k

0 20 2.8284 9.9557 9.9557 0.1000 1 -
1 0.2305 0.4167 0.8900 0.7008 0.0100 1 4
2 0.1652 0.1687 0.1631 0.0771 0.0100 0.3268 4
3 0.1690 0.1630 0.0503 0.0022 0.0100 4.7328e-06 1
4 0.8561 2.9531e-04 3.1379e-06 3.1379e-06 0.0100 1.0000e-09 14
5 0.9028 1.2372e-04 9.3463e-08 9.3463e-08 - - -

The counterexample has the following formulation:

min x1

(TP3) s.t. x21 − x2 − 1 = 0,

x1 − x3 − 2 = 0,

x2 ≥ 0, x3 ≥ 0.

The initial point is x0 = (−4, 1, 1). This problem has a unique global minimizer
(2, 3, 0), at which gradients of the active constraints are linearly independent, and
MFCQ holds. However, [34] showed that many line search interior-point methods
could not find the minimizer, even failed to find a feasible solution. Our algorithm
terminates at the approximate solution x∗ = (2.0000, 3.0000, 0.0000) in 16 iterations
(including all numbers of inner iterations), where, for l = 9, fl = 2.0000, vl =
6.0156e− 06, ‖φl‖∞ = 3.6515e− 10.

The standard test problem is the one taken from [23, Problem 13]:

min (x1 − 2)2 + x22

(TP4) s.t. (1− x1)3 − x2 ≥ 0,

x1 ≥ 0, x2 ≥ 0.

The standard initial point x0 = (−2,−2) is an infeasible point. This problem
was not solved in [31] and some other references, but the algorithms in [10, 32]
got its approximate solution. Its optimal solution x∗ = (1, 0) is not a KKT point
but is a singular stationary point, at which the gradients of active constraints are
linearly dependent. Numerical results show that Algorithm 3.4 terminates at an
approximate point to the solution, but it does not suggest rapid convergence for
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Table 4. The last 4 inner iterations corresponding to l = 4 for
test problem (TP4)

k fk vk ‖φk‖∞ ‖ψk‖∞ xk1 xk2

11 0.8500 5.7136e-04 5.6703e-04 5.6703e-04 1.0780 0.0001
12 0.8548 3.0434e-04 1.2222e-05 1.2222e-05 1.0754 -0.0002
13 0.8556 2.9845e-04 6.2125e-06 6.2125e-06 1.0750 -0.0002
14 0.8561 2.9531e-04 3.1379e-06 3.1379e-06 1.0747 -0.0002

either inner or outer iterations in Tables 3 and 4 where the last n columns are the
components of iterates. In fact, we still do not have any theoretical result on rapid
convergence to a singular stationary point of nonlinear programs in the literature.

In summary, the preceding numerical results not only demonstrate our global
convergence results on Algorithm 3.4 for infeasible, hard and degenerate nonlinear
programs, but also demonstrate our locally rapid convergence results on Algorithm
3.4 with convergence to an infeasible stationary point of a nonlinear program which
is infeasible.

7. Conclusion. Upon great success in solving large-scale linear programming prob-
lems, the interior-point approach has effectively been extended to solving general
convex programming (such as semidefinite and cone programming) and nonconvex
programming problems. The research on interior-point methods for nonlinear pro-
grams has been one of focuses of optimization area in recent years. Based on a
distinctive two-parameter primal-dual nonlinear system, which corresponds to the
KKT point and the infeasible stationary point of nonlinear programs, respectively,
as one of two parameters vanishes, we have presented a new interior-point method
for nonlinear programs in this paper. Our method always produces interior-point
iterates without truncation of the step. The method not only can be globally con-
vergent and locally quick convergent to KKT points when the problem is feasible,
but also can globally converge to an infeasible stationary point and rapidly detect
the infeasibility of the solved problem when the problem is infeasible. A possible
future topic of the subsequent research is to consider similar methods in solving
linear programming or semidefinite programming problems.
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