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1 Introduction

Suppose that a common commodity is distributed by n Nash players over a network with a

single origin-destination pair and m identical, nonintersecting, parallel links L1, · · · , Lm. Let

M = {1, · · · ,m}. Assume that the demand d is fixed and N = {1, · · · , n}. Then the feasible set

of flows is given by

Ω =

v
∣∣∣∣∣∣ v =

∑
k∈N

vk, e>v = d, vk ≥ 0, ∀k = 1, ..., n

 ,
where e is the m dimensional vector of ones. vk = (vk1 , · · · , vkm) ∈ Rm+ is the vector of flows

selected by the kth Nash player, k ∈ N . Each player treats the other players’ route strategies

as fixed when routing his own flows. We assume that each player can split flow along the given

links. Mathematically, for player k ∈ N , the optimization problem to be solved is

min
v∈Ω

∑
a∈M

ta(v)vka ≡
∑
a∈M

ta(v
k + v−k)vka , (1.1)

where ta(·) is a certain cost function on La, and

v−k =

 v
−k
1
...

v−km

 with v−ka =
∑

i∈N ,i 6=k
via = va − vka ∀a ∈M.

Note that we particularly write v as vk + v−k to show that Problem (1.1) is an optimization

problem with respect to vk, while all other vj , j 6= k are taken as fixed. A point (v1∗, · · · , vn∗)
satisfying

vk∗ ∈ arg min

vk + v−k∗ ∈ Ω

∑
a∈M

ta(v
k + v−k∗)vka ,

is called a Nash-Cournot equilibrium [2]. Generally speaking, finding a Nash-Cournot equilib-

rium is very difficult, for example, see [16].

In this paper, we consider the case that each player knows neither his/her opponents’ exact

strategies nor the probability distribution of their strategies. All the information about his/her

opponents is that their strategies are in a given bounded set. We introduce the concept of

robust Nash-Cournot equilibrium for an n-player game with quadratic cost functions by using

some ideas from robust optimization [4]. This part can be viewed as a direct extension of the

work of Hayashi, Yamashita and Fukushima [12] on two-player bimatrix games. We consider the

case that both the cost function and the opponents’ strategies can be uncertain in the same time

(Paper [12] only studied the cases that either the cost function or the opponents’ strategies were

uncertain). We then show in Section 3 that for some interesting cases, the robust Nash-Cournot

equilibrium problem can be reformulated or relaxed as a second-order cone complementarity

problem, which can be solved efficiently by modern optimization methods [1, 5, 15].

Define the system equilibrium problem as

min
v∈Ω

∑
a∈M

ta(v)va.

Assume that this problem has an optimal solution v̄ with positive optimal value, i.e.

Zs =
∑
a∈M

ta(v̄)v̄a =
∑
a∈M

∑
k∈N

ta(v̄)v̄ka > 0.
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Let

Zu =
∑
a∈M

ta(v
∗)v∗a =

∑
a∈M

∑
k∈N

ta(v
∗)vk∗a

be the total cost at a robust Nash-Cournot equilibrium, where v∗ is a robust Nash-Cournot

equilibrium (also called the user optimum). Then the price of anarchy (PA) is defined as the

ratio Zu/Zs, which was introduced by Koutsoupias and Papadimitriou [14] and has been studied

extensively in [6, 7, 10, 14, 17, 18] for nonatomic games and in [19, 20] for atomic games.

Most of the present works on the PA [6, 7, 10, 14, 17, 18, 19, 20] implicitly assume that each

player knows the opponents’ strategies exactly and can evaluate the cost function exactly. This

assumption restricts the applicability of the model to real world networks since in many cases

the information is incomplete or is subject to errors. To deal with such situations, recently, Garg

and Narahari [8] analyzed the PA by using a Bayesian game under the assumption that each

player only knows the probability distribution of the other players’ strategies. They prove that

the PA is the same as that each player knows the opponents’ complete strategies. We treat this

problem in a different way. Same as in our reformulation scheme, by specifying data uncertainty

sets, we derive some worst-case bounds for the PA, which is the topic of Section 4. Finally, we

make some concluding remarks in Section 5.

2 Preliminaries

2.1 Robust Nash-Cournot equilibria

Recall that a Nash-Cournot equilibrium is the equilibrium solution of the n-person game, in

which the k-th player’s problem is

min
v∈Ω

∑
a∈M

ta(v
k + v−k)vka ,

where ta(·) is a certain cost function on a; particularly in this paper, ta is defined so that∑
a∈M

ta(v
k + v−k)vka = (vk)>A(vk + v−k)

with a certain square matrix A.

In many applications, a player can not estimate the opponents’ strategies accurately and eval-

uate the cost function exactly. To deal with such situations, Hayashi, Yamashita and Fukushima

[12] introduced the concept of robust Nash equilibrium by using the idea of robust optimiza-

tion [4, 9]. Their definition is for two-player bimatrix game and is assumed that the following

statements hold for players 1 and 2:

(i) Player 1 can not estimate Player 2’s strategy z exactly, but can estimate that it belongs

to a set Z(z) ⊆ Rm containing z. Similarly, Player 2 can not estimate Player 1’s strategy

y accurately, but can estimate that it belongs to a set Y (y) ⊆ Rn containing y;

(ii) Player 1 can not estimate his/her cost matrix exactly, but can estimate that it belongs to

a nonempty set D1 ⊆ Rn×m. Player 2 can not estimate his/her cost matrix exactly, but

can estimate that it belongs to a nonempty set D2 ⊆ Rn×m.
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(iii) Each player tries to minimize his/her worst cost under (i) and (ii). That is, the cost

functions are defined respectively as follows:

f̃1(y, z) := max
{
y>Âẑ

∣∣∣ Â ∈ D1, ẑ ∈ Z(z)
}
,

f̃2(y, z) := max
{
ŷ>B̂z

∣∣∣ B̂ ∈ D2, ŷ ∈ Y (y)
}
.

A point (ȳ, z̄) satisfying ȳ ∈ arg min
y∈S1

f̃1(y, z̄) and z̄ ∈ arg min
z∈S2

f̃2(ȳ, z) is called a robust Nash

equilibrium [12], where S1 and S2 are strategy sets of Player 1 and Player 2, respectively.

Furthermore, they proved that whenever either the opponent’s strategies or the cost matrices

can be estimate exactly, a robust Nash equilibrium can be obtained as a solution of a second

order cone complementarity problem.

We now extend the robust Nash equilibrium to the n-player Nash-Cournot game. Suppose

that

(i). Each player k assumes that the opponents’ strategies v−k belongs to a set Vk(v
−k) ⊆ Rm+

containing v−k.

(ii). Each player k assumes that the cost matrix belongs to a nonempty set DA containing A.

(iii). Each player tries to minimize his/her worst-case cost under (i) and (ii). That is, the cost

function for player k is defined as follows:

f̃k(v
k, v−k) := max

{
vk
>
Âv̂−k

∣∣∣ Â ∈ DA, v̂
−k ∈ Vk(v−k)

}
.

A point (v1∗, · · · , vn∗) satisfying vk∗ ∈ arg min
{
f̃k(v

k, v−k∗)
∣∣∣vk + v−k∗ ∈ Ω

}
is then defined as a

robust Nash-Cournot equilibrium of this game.

2.2 The second-order cone optimization problems

Since we will reformulate the game under consideration to a second-order cone optimization

problem, we list some useful notations and concepts in this regard.

Let Qn denote the second-order cone of dimension n,

Qn = {x = (x1, x
n−1) ∈ Rn | x1 ≥ ‖xn−1‖},

where ‖ · ‖ denotes the standard Euclidean norm. It is well known that Qn induces a partial

order on Rn

x �Qn y ⇐⇒ x− y ∈ Qn.

If n is evident from the context we drop it from the subscript. A second-order cone programming

problem is a convex optimization problem in which a linear function is minimized over the

intersection of an affine set and the Cartesian product of second-order cones. It includes linear

programs, convex quadratic programs and quadratically constrained convex quadratic programs

as special cases. Mathematically, a second-order cone program has the following form

min
r∑
i=1

c>i xi

s.t.
r∑
i=1

Aixi = b, xi�Qni
0, i = 1, · · · , r,
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where r is the number of blocks, n =
r∑
i=1

ni, ci ∈ Rni , xi ∈ Rni , Ai ∈ Rm×ni and b ∈ Rm.

The KKT system of the above second-order cone program is a second-order cone comple-

mentarity problem (SOCCP), which has the following format:

Find an z ∈ Qp, such that F (z) ∈ Qp and zTF (z) = 0, (2.2)

where Qp is a second-order cone of certain dimension p (usually p ≥ n+m+r), and F : Rp → Rp

is a given mapping. The SOCCP can be efficiently solved by a smoothing Newton method, see

Chen, Sun, Sun [5] for details.

3 The parametric SOCP reformulation

In this section, we will show that for some interesting cases, the robust Nash-Cournot problem

can either be reformulated as a parametric second-order cone program or be relaxed to this type

of problems. The exact meaning of “parametric second-order cone program” will be made clear

in the sequel.

3.1 Uncertainty in the opponents strategies

We first clarify the meaning of the uncertainty in the opponents strategies.

Assumption 3.1

(a) Vk(v
−k) :=

{
v−k + δv−k

∣∣∣ ‖δv−k‖ ≤ ρk, e>δv−k = 0
}
, ∀k ∈ N where ρ1, ..., ρn are given

nonnegative constants;

(b) DA = {A}.

Here, δv−k represents a perturbation vector. The conditions e>δv−k = 0 is for guaranteeing

e>(v + δv−k) = d.

Under Assumption 3.1, Player k solves the following problem to determine his/her strategy:

minvk max
δv−k

{
vk
>
A(vk + v−k + δv−k)

∣∣∣ ‖δv−k‖ ≤ ρk, e>δv−k = 0
}

s.t. v ∈ Ω. (3.3)

Thus, the robust cost function for Player k is

f̃k(v
k, v−k) = max

{
vk
>
A(vk + v−k + δv−k)

∣∣∣ ‖δv−k‖ ≤ ρk, e>δv−k = 0
}

= vk
>
Av + max

{
vk
>
Aδv−k

∣∣∣ ‖δv−k‖ ≤ ρk, e>δv−k = 0
}

= vk
>
Av + ρk

∥∥∥Ã>vk∥∥∥ ,
where Ã = A(Im− 1

mee
>) and the last equality follows from the fact that projection of A>vk onto

the hyperplane {v | e>v = 0} can be represented as (Im− 1
mee

>)A>vk, Im is the m dimensional
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unit matrix. By introducing an auxiliary variable v0 ∈ R+, Problem (3.3) can be reduced to the

following optimization problem

min vk
>
Av + ρkv0

s.t. ‖Ã>vk‖ ≤ v0, v ∈ Ω. (3.4)

Proposition 3.2 Suppose that the matrix A in (3.4) is positive definite. Then, under As-

sumption 3.1, the user equilibrium is equivalent to a parametric second-order cone program with

parameter v−k.

Proof. Since A is positive definite, B := A+A>

2 is symmetric and positive definite. Let

u = B
1
2 vk +

1

2
B−

1
2Av−k.

Then (3.4) can be reformulated as

min u0

s.t. B
1
2 vk +

1

2
B−

1
2Av−k = u,

Ã>vk = w,

(v0, w) �Q 0, (u0 − ρkv0, u) �Q 0,

v ∈ Ω,

which is a second-order cone program parametrically depending on v−k.

3.2 Entry-wise uncertainty in the cost matrix

In this subsection, we consider the case that the uncertainty in the cost matrix occurs indepen-

dently from entry to entry; that is,

Assumption 3.3

(a) Vk(v
−k) := {v−k}.

(b) DA :=
{
A + δA ∈ Rm×m

∣∣∣ |δAij | ≤ Γij (i, j = 1, · · · ,m)
}

, where A and Γ are given

matrices with Γij ≥ 0, i, j = 1, · · · ,m.

Under Assumption 3.3 and the condition that v ∈ Ω, the cost function f̃k can be written as

f̃k(v
k, v−k) = max

{
vk
>
Âv | Â ∈ DA

}
= vk

>
Av + max

{
vk
>
δAv | A+ δA ∈ DA

}
= vk

>
Av + max

{
vk
>
δAv | |δAij | ≤ Γij

}
= vk

>
Av + vk

>
Γv,
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where the last equality follows from the fact that vk ≥ 0 and v ≥ 0. Thus, the robust Nash-

Cournot problem solved by Player k is

min f̃k(v
k, v−k) := vk

>
Av + vk

>
Γv

s.t. v ∈ Ω, (3.5)

where v−k is taken as fixed parameter. Therefore we have

Proposition 3.4 Suppose that the matrix A and Γ are such that A + Γ is positive definite.

Then, under Assumption 3.3, the user equilibrium is equivalent to the following parametric

second-order cone program with parameter v−k

min u0

s.t. B
1
2 vk +

1

2
B−

1
2 (A+ Γ)v−k = u,

(u0, u) �Q 0, (3.6)

v ∈ Ω,

where B = A+A>+Γ+Γ>

2 .

Proof. Since A+ Γ is positive definite, B := A+A>+Γ+Γ>

2 is symmetric and positive definite. It

follows from (3.5)

f̃k(v
k, v−k) = vk

>
Av + vk

>
Γv

= (B
1
2 vk)>B

1
2 vk + vk

>
(A+ Γ)v−k

=

∥∥∥∥B 1
2 vk +

1

2
B−

1
2 (A+ Γ)v−k

∥∥∥∥2

− 1

4

∥∥∥B− 1
2 (A+ Γ)v−k

∥∥∥2
.

Let u := B
1
2 vk + 1

2B
− 1

2 (A + Γ)v−k, then problem (3.5) and problem (3.6) have same optimal

solutions and their optimal objective values will differ by 1
4‖B

− 1
2 (A+ Γ)v−k‖2.

3.3 Columnwise uncertainty in the cost matrices

We now consider the case where the uncertainty in matrix A occurs columnwise independently.

That is,

Assumption 3.5

(a) Vk(v
−k) := {v−k}.

(b) DA :=
{
A + δA ∈ Rm×m

∣∣∣ ‖δAcj‖ ≤ γj , j = 1, · · · ,m
}

, where A is a given matrix and

γ ≥ 0 is a given vector, and δAcj denotes the jth column of matrix δA.
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Proposition 3.6 Suppose that the matrix A in (3.8) is positive definite. Then, under Assump-

tion 3.5, a relaxation of the user equilibrium problem is the following parametric second-order

cone program

min u0

s.t. B
1
2 vk +

1

2
B−

1
2 (Av−k + γt) = u,

((u0 − (γ>v−k)t+ s), u) �Q 0,

(t, vk) �Q 0, (3.7)

(s,B−
1
2 (Av−k + γt)) �Q 0,

v ∈ Ω,

where B = A+A>

2 .

Proof. Under Assumption 3.5, the cost function f̃k can be written as

f̃k(v
k, v−k) = max

{
vk
>
Âv

∣∣∣ Â ∈ DA

}
= vk

>
Av + max

{
vk
>
δAv

∣∣∣ ‖δAcj‖ ≤ γj}
= vk

>
Av + max

‖δAc
j‖≤γj

m∑
j=1

vjv
k>δAcj

= vk
>
Av +

m∑
j=1

vj
∥∥∥vk∥∥∥ γj

= vk
>
Av + γ>v

∥∥∥vk∥∥∥ .
Thus, Player k solves the following problem

min f̃k(v
k, v−k) := vk

>
Av + v>γ‖vk‖

s.t. v ∈ Ω. (3.8)

Introducing variables u0 and t, we can rewrite the optimization problem (3.8) as

min u0

s.t. vk
>
Av + v>γt ≤ u0, (3.9)

‖vk‖ = t,

v ∈ Ω.

Let B = A+A>

2 . Then (3.9) can be rewritten as

vk
>
Bvk + vk

>
(Av−k + tγ) ≤ u0 − tγ>v−k.

Setting

u = B
1
2 vk +

1

2
B−

1
2 (Av−k + γt),

it follows from the above inequality that

‖u‖2 ≤ u0 − tγ>v−k + s,
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with

s =
1

4

∥∥∥B− 1
2 (Av−k + γt)

∥∥∥2
.

Thus, the optimization problem (3.8) is equivalent to the following problem

min u0

s.t. B
1
2 vk +

1

2
B−

1
2 (Av−k + γt) = u,

‖vk‖ = t,

‖u‖2 ≤ u0 − tγ>v−k + s,

1

4
‖B−

1
2 (Av−k + γt)‖2 = s,

v ∈ Ω.

Relaxing the second and the fourth constraints in the above optimization problem, we get

min u0

s.t. B
1
2 vk +

1

2
B−

1
2 (Av−k + γt) = u,

‖vk‖ ≤ t,
‖u‖2 ≤ u0 − tγ>v−k + s,

1

4
‖B−

1
2 (Av−k + γt)‖2 ≤ s,

v ∈ Ω,

which is equivalent to (3.7).

3.4 Uncertainty in both opponents’ strategy and the cost matrix (column-

wise)

In this subsection, we consider the case that Player k can estimate neither the cost matrix nor

his/her opponents’ strategies exactly and the uncertainty in the cost matrices occurs in columns.

That is, we make the following assumption:

Assumption 3.7

(a) Vk(v
−k) :=

{
v−k + δv−k

∣∣∣ ‖δv−k‖ ≤ ρk, e>δv−k = 0, v−k + δv−k ≥ 0
}
,

(b) DA :=
{
A+ δA ∈ Rm×m

∣∣∣ ‖δAcj‖ ≤ γj , j = 1, · · · ,m
}

, where A is a given matrix, γ ≥ 0

is a given vector, and δAcj denotes the jth column of matrix δA.

Under Assumption 3.7, the cost function f̃k can be written as

f̃k(v
k, v−k)

= max
{
vk
>
Â(vk + v−k + δv−k)

∣∣∣ Â ∈ DA, v
−k + δv−k ∈ Vk(v−k)

}
= vk

>
Av + max

{
vk
>
Aδv−k + vk

>
δA(v + δv−k)

∣∣∣ A+ δA ∈ DA, v
−k + δv−k ∈ Vk(v−k)

}
= vk

>
Av + max

vk>Aδv−k +
m∑
j=1

(δAcj)
>vk(v + δv−k)j

∣∣∣ ‖δAcj‖ ≤ γj , v−k + δv−k ∈ Vk(v−k)
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= vk
>
Av + max

vk>Aδv−k +
m∑
j=1

‖vk‖γj(v + δv−k)j
∣∣∣ v−k + δv−k ∈ Vk(v−k)


≤ vk

>
Av + ‖vk‖v>γ + max

{
vk
>
Aδv−k +

∥∥∥vk∥∥∥ δv−k>γ ∣∣∣ ‖δv−k‖ ≤ ρk, e>δv−k = 0
}

= vk
>
Av +

∥∥∥vk∥∥∥ v>γ + ρk
∥∥∥(Im −m−1ee>)(A>vk + ‖vk‖γ)

∥∥∥ .
Thus, a relaxation of Player k’s problem is

min vk
>
Av + ‖vk‖v>γ + ρk

∥∥∥(Im −m−1eme
>
m)(A>vk + ‖vk‖γ)

∥∥∥
s.t. v ∈ Ω. (3.10)

By introducing auxiliary variables t, s ∈ R, problem (3.10) can be further relaxed to a second-

order cone program with parameter v−k as shown in the following proposition. The proof is

omitted since it is very similar to the proof of Proposition 3.6.

Proposition 3.8 Suppose that the matrix A in (3.10) is positive definite. Then, under As-

sumption 3.7, the user equilibrium can be relaxed to the following parametric second-order cone

program

min u0

s.t. B
1
2 vk +

1

2
B−

1
2 (Av−k + γt) = u,

[Im −m−1ee>](A>vk + tγ) = r,

(u0 − (γ>v−k)t− ρks, u) �Q 0,

(t, vk) �Q 0,

(s, r) �Q 0,

v ∈ Ω,

where B = A+A>

2 .

3.5 Uncertainty in both opponents’ strategy and the cost matrix (entrywise)

In this subsection, we consider the case that Player k can estimate neither the cost matrix nor

his/her opponents’ strategies exactly and the uncertainty in the cost matrix occurs entrywise

independently; that is,

Assumption 3.9

(a) Vk(v
−k) := {v−k + δv−k | ‖δv−k‖ ≤ ρk, e>δv−k = 0 v−k + δv−k ≥ 0},

(b) DA := {A + δA ∈ Rm×m | |δAij | ≤ Γij , j = 1, · · · ,m)} where Γ is a given matrix with

Γij ≥ 0.

Under Assumption 3.9, the cost function f̃k can be written as

f̃k(v
k, v−k)

9



= max
{
vk
>
Â(v + δv−k)

∣∣∣ Â ∈ DA, v
−k + δv−k ∈ Vk(v−k)

}
= vk

>
Av

+ max
{
vk
>
Aδv−k + vk

>
δA(v + δv−k)

∣∣∣ A+ δA ∈ DA, v
−k + δv−k ∈ Vk(v−k)

}
= vk

>
Av + max

vk>Aδv−k +
m∑
j=1

(δAijv
k
i (v + δv−k)j

∣∣∣ |δAij | ≤ Γij , v
−k + δv−k ∈ Vk(v−k)


= vk

>
Av + vk

>
Γv + max

{
vk
>

(A+ Γ)δv−k
∣∣∣ (v−k + δv−k) ∈ Vk(v−k)

}
≤ vk

>
Av + vk

>
Γv + max

{
vk
>

(A+ Γ)δv−k
∣∣∣ ‖δv−k‖ ≤ ρk, e>mδv−k = 0

}
= vk

>
(A+ Γ)v + ρk

∥∥∥[Im −m−1eme
>
m

]
(A+ Γ)>vk

∥∥∥ .
Thus, a relaxation of Player k’s problem is

min vk
>

(A+ Γ)v + ρk
∥∥∥[Im −m−1eme

>
m

]
(A+ Γ)>vk

∥∥∥
s.t. v ∈ Ω.

Based on a similar approach to the proofs of Proposition 3.4 and Proposition 3.8, we can

obtain the following result.

Proposition 3.10 Suppose that the matrix A and Γ are such that A + Γ is positive definite.

Then, under Assumption 3.9, the user equilibrium can be relaxed to the following parametric

second-order cone program

min u0

s.t. B
1
2 vk +

1

2
B−

1
2 (A+ Γv−k) = u,[

Im −m−1ee>
]

(A+ Γ)>vk = r,

(u0 − ρks, u) �Q 0,

(s, r) �Q 0,

v ∈ Ω,

where B = A+Γ+A>+Γ>

2 .

In concluding this section, we explain how the parametric second-order cone programs of the

players can be combined into a (non-parametric) second-order complementarity problem (SOCCP)1.

Let user k′s (robust) optimization problem be denoted by Pk(v
−k), which depends on v−k. Then,

Pk(v
−k) reduces to an SOCCP for any fixed v−k. Now, notice that the robust Nash-Cournot

equilibrium problem is to find {(v∗)k}nk=1 such that (v∗)k solves Pk(v
−k) for all k ∈ N simulta-

neously. Since the KKT conditions of Pk(v
−k) can be rewritten as an SOCCP, say KKTk(v

−k),

by combining all users SOCCPs KKT1(v−1), ...,KKTn(v−n), we can obtain a large SOCCP with

variables (v1, ..., vn). For more detailed discussion in this matter, see [12].

1This paragraph is cited from a referee’s comments.

10



4 The price of anarchy for the robust Nash-Cournot equilibria

We now consider the price of anarchy (PA) for robust Nash-Cournot equilibria and derive several

bounds for it. Recall that the PA is the ratio between the total cost at robust Nash-Cournot

equilibrium and the system cost. Let v∗ denote a robust Nash-Cournot equilibrium and v̄ denote

the system optimal, then the PA % is

% :=
Zu
Zs

=

∑
a∈M ta(v

∗)v∗a∑
a∈M ta(v̄)v̄a

=
(v∗)>Av∗

v̄>Av̄
.

To derive the bounds, we need to define the degree of asymmetry of a matrix A.

Definition 4.1 The degree of asymmetry of a positive definite matrix A is defined as

c2 = ‖S−1A‖2S = sup
w 6=0

‖S−1Aw‖2S
‖w‖2S

= sup
w 6=0

w>A>S−1Aw

w>Sw
,

where

S =
A+A>

2

is the symmetrized part of the matrix A and ‖ · ‖S denotes the S-norm of a vector, i.e. ‖x‖S =√
x>Sx and

∥∥S−1A
∥∥
S is the operator norm of S−1A induced by this vector norm.

It is obvious that c2 = 1 when A is positive definite and symmetric. The constant c2 was

originally introduced by Hammond [11] and has the following property.

Lemma 4.2 If A2 is a positive definite matrix, then c2 ≤ 2.

We now analyze the PA under uncertainties. Since the analysis for Assumption 3.1 and the

other assumptions is very similar, we just focus on the case where Assumption 3.1 holds.

Theorem 4.3 Suppose that the matrix A in (3.4) is a positive definite matrix and Assumption

3.1 holds. Furthermore, suppose that Aij ≥ 0 for all i, j = 1, · · · ,m and there are two scalers

0 ≤ ᾱ, α ≤ 1, such that v̄k ≤ ᾱv̄ and vk∗ ≥ αv∗ for all k ∈ N . Then, the PA % satisfies the

following inequality

% ≤ 2ᾱ+ (1− α)2c2 + (1− α)c
√

(1− α)2c2 + 4ᾱ

2
+

1

1− (1− α)b2

∑
k∈N ρk

(
‖Ãv̄k‖ − ‖Ãvk∗‖

)
(v̄)>Av̄

(4.11)

where b2 is given by (4.15)-(4.16) below.

Proof. Since v∗ is a solution of the robust Nash-Cournot equilibrium and v̄ ∈ Ω, it follows from

(3.4) that

(vk∗)>Av∗ + ρk‖Ãvk∗‖
≤ (v̄k)>A(v̄k + v−k∗) + ρk‖Ãv̄k‖
= (v̄k)>Av̄k + (v̄k)>Av∗ − (v̄k)>Avk∗ + ρk‖Ãv̄k‖
≤ ᾱ(v̄k)>Av̄ + (1− α)(v̄k)>Av∗ + ρk‖Ãv̄k‖,
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where the first inequality follows from the fact that vk∗ is a solution of (3.4) and the last inequality

follows from the v̄k ≥ 0, v∗ ≥ 0 and Aij ≥ 0 for all i, j = 1, · · · ,m and the assumptions that

v̄k ≤ ᾱv̄ and vk∗ ≥ αv∗. Summing up both sides for all k ∈ N , we get

(v∗)>Av∗ +
∑
k∈N

ρk‖Ãvk∗‖

≤ ᾱv̄>Av̄ + (1− α)v̄>Av∗ +
∑
k∈N

ρk‖Ãv̄k‖

= ᾱv̄>Av̄ + (1− α)v̄>AS−1Sv∗ +
∑
k∈N

ρk‖Ãv̄k‖

≤ ᾱv̄>Av̄ + (1− α)‖v̄>AS−1‖S‖v∗‖S +
∑
k∈N

ρk‖Ãv̄k‖

≤ ᾱv̄>Av̄ + c(1− α)‖v̄‖S‖v∗‖S +
∑
k∈N

ρk‖Ãv̄k‖, (4.12)

where the second inequality follows from Cauchy-Schwarz inequality and the last one follows

from the norm inequality.

For any two vectors x and y in Rn, we have

2
√
b1b2‖x‖S‖y‖S ≤ b1‖x‖2S + b2‖y‖2S

if b1, b2 ≥ 0. This implies that

c‖x‖S‖y‖S ≤ b1‖x‖2S + b2‖y‖2S (4.13)

if b1, b2 ≥ 0 and b1b2 ≥ c2/4. It follows from (4.12) and (4.13) that

(1− (1− α)b2)(v∗)>Av∗ ≤ (ᾱ+ (1− α)b1)v̄>Av̄ +
∑
k∈N

ρk(‖Ãv̄k‖ − ‖Ãvk∗‖).

If b2 ≥ 1/(1−α), then the above inequality may hold trivially (at least in some cases). Thus, we

need to add the constraint that b2 < 1/(1− α). We may find the best upper bound by solving

min
ᾱ+ (1− α)b1
1− (1− α)b2

s. t. b1b2 ≥ c2/4

0 ≤ b2 < 1/(1− α).

Since we just want to find an upper bound of the price of anarchy, we can tighten the second

constraint in the above optimization problem

min
ᾱ+ (1− α)b1
1− (1− α)b2

s. t. b1b2 ≥ c2/4 (4.14)

0 ≤ b2 ≤ 1.

The optimal objective value of (4.14) is

t =
2ᾱ+ (1− α)2c2 + (1− α)c

√
(1− α)2c2 + 4ᾱ

2
, (4.15)

12



which is obtained at

b2 =
t− ᾱ−

√
(t− ᾱ)2 − (1− α)2c2t

2
and b1 =

c2

4b2
. (4.16)

This completes the proof.

Remark. Unlike the game with complete information, in our bound, there is a term inherited

from the uncertainties of the data (the second term in the right hand of (4.11)). If ρk = 0 for all

k ∈ N , the case reduces to the one with complete information and the bound (4.11) reduces to

% ≤ 2ᾱ+ (1− α)2c2 + (1− α)c
√

(1− α)2c2 + 4ᾱ

2
, (4.17)

which appears to be new in the literature. Furthermore, if n = 1, that is, if there is only a

monopoly player controls all users in the network, we have ᾱ = α = 1 and the bound given in

(4.17) is % = 1, indicating there is no efficiency loss. For n ≥ 2, it is possible that ᾱ = 1 and

α = 0. For example, this occurs for the network game with unsplittable flows. For this case, the

bound in (4.17) reduces to

% ≤ 2 + c2 + c
√
c2 + 4

2
.

Moreover, if the cost matrix is symmetric, i.e., c = 1, then % ≤ 3+
√

5
2 = 2.618, which is just the

bound derived by Awerbuch et al. [3].

5 Conclusions

We considered a traffic game with incomplete information. We proved that in some interesting

cases, the robust Nash-Cournot equilibrium problem can be reformulated as a second-order cone

program. We also gave some bounds of the PA of the robust Nash-Cournot equilibria, which

appears not to have been considered in the literature.
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