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Abstract. Generalized stationary points of the mathematical program with equilibrium con-
straints (MPEC) are studied to better describe the limit points produced by interior point
methods for MPEC. A primal-dual interior-point method is then proposed, which solves a se-
quence of relaxed barrier problems derived from MPEC. Global convergence results are deduced
under fairly general conditions other than strict complementarity or the linear independence
constraint qualification for MPEC (MPEC-LICQ). It is shown that every limit point of the
generated sequence is a strong stationary point of MPEC if the penalty parameter of the merit
function is bounded. Otherwise, a point with certain stationarity can be obtained. Preliminary
numerical results are reported, which include a case analyzed by Leyffer for which the penalty
interior-point algorithm failed to find a stationary point.
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1. Introduction

Given functions f : <n+m → <, c : <n+m → <p, g : <n+m → <`, and F :
<n+m → <m, consider the mathematical program with equilibrium constraints
(MPEC):

min f(x, y) (1)

s.t. c(x, y) ≤ 0, (2)

y ∈ S(x), (3)

where S(x) is the solution set of a parametric variational inequality problem
(PVI)

y ∈ S(x) ⇐⇒
{
g(x, y) ≤ 0,
F (x, y)>(z − y) ≥ 0, ∀ z such that g(x, z) ≤ 0.

(4)

Throughout the paper, we suppose that f , c, and F are twice continuously dif-
ferentiable and that g is triply continuously differentiable. We note that if ` = m
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and g(x, y) = −y, then the PVI is reduced to a parametric nonlinear comple-
mentarity problem, in which case MPEC is specifically called the mathematical
program with complementarity constraints (MPCC).

MPEC includes the bilevel programming problem (e.g., [14,45]) as its special
case and has extensive applications in practical areas such as traffic control,
engineering design, and economic modeling, see [2,26,35,36]. Since there are
variational inequalities in the constraints of the problem, the feasible region
may be nonconvex, nonsmooth, disconnected, and non-closed even if all involved
functions have very good analytical properties (see [35]). As such, MPEC is
known to be a class of very difficult optimization problems [4,8,9].

There have been many papers dealing with MPEC in recent years. Some of
them considered the existence and stationarity of its solution, for example [19,
25,27,35,37,39,44], while some other papers proposed algorithms for MPEC,
see [13,18,20,21,28,35,36,38,41,43]. Upon the success of interior-point methods
for linear and nonlinear programming (NLP), the interior-point approach has
been extended to solve MPEC as well. The penalty interior-point algorithm
(PIPA) developed by Luo, Pang and Ralph [35] is the first interior-point method
for MPEC. Its global convergence requires the linear independence constraint
qualification for MPEC (MPEC-LICQ) and strict complementarity. However, it
was found recently by Leyffer [29] that some conditions required by PIPA for
convergence may collapse at some iterates. As a result, PIPA may fail to find a
stationary point for a simple MPCC.

An interesting idea of designing algorithms for MPEC, discussed in a series of
recent studies, e.g., [5,6,10,11,13,15,31,40] 1, is to reformulate the MPEC as an
NLP problem or a sequence of NLP problems and to solve the reformulated prob-
lem(s) by various algorithms of NLP. On one hand, this approach allows us to
take advantage of certain NLP algorithms to obtain rapid local convergence (see
Fletcher, Leyffer, Ralph, and Scholtes [16]) and, on the other hand, it brings new
challenges to the NLP algorithm to be used. In particular, since MPECs violate
the Mangasarian-Fromovitz constraint qualification [8,42], the usual conditions
for global convergence of an NLP algorithm may not be met and the linearized
complementarity constraints may be inconsistent even for iterates close to the
solutions (see [31] for a detailed analysis). Therefore, a successful NLP algorithm
should be able to handle the irregularity of the reformulated problem. An ex-
ample of such algorithms is due to Fletcher and Leyffer [15] where their filter
SQP method shows very good performance on a large collection of test problems
called MacMPEC [30]. Benson, Shanno and Vanderbei [6] identified the possible
difficulties in convergence when applying LOQO (an interior-point method for
NLP) to MPEC, some heuristics for implementation were suggested to overcome
difficulties in global convergence.

In this paper we present an interior-point method for MPEC. The method,
together with its convergence theory, is an extension of a robust method [32,34]
developed by the authors for NLP. The original motivation of that research was

1 The papers [5,10,31,40] were available to us after the first draft of this paper was submit-
ted.
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to develop an algorithm that can handle some “bad” cases of NLP. The idea
and analysis used in that research turn out to be useful in studying MPEC as
well. In the context of MPEC, the PVI constraint in MPEC is first transformed
to a group of complementarity constraints, the complementarity equations are
then relaxed to inequalities with a relaxation parameter θ (see (28) below). We
then solve the relaxed problem by an interior-point method in which the barrier
parameter µ is a fixed fraction of θ, so it is decreased simultaneously with θ. To
our knowledge, the relaxation scheme is known (see for instance Scholtes [41])
for some time, but is not fully explored and the way of reducing θ and µ appears
to be new. The method has the following properties.

1. All linearized constraints including the linearized complementarity constraints
are always consistent.

2. Global convergence results are derived under fairly general conditions other
than the MPEC-LICQ or the strict complementarity condition.

3. Under certain conditions, the algorithm can find a point with certain sta-
tionarity. Specifically, it is shown that every limit point of the generated
sequence is a strong stationary point of the MPEC if the penalty parameter
of the merit function is bounded. Otherwise, one of the limit points could be a
singular stationary point, an infeasible stationary point, or a weak stationary
point (All of the related definitions will be given later).

The method has been implemented to solve the test problems of Facchinei,
Jiang and Qi [13] with satisfactory results. We present two numerical examples to
show the behavior of the algorithm when the problem is infeasible and when the
MPEC-LICQ does not hold, respectively. In addition, we solve the example given
by Leyffer [29] for which the PIPA fails to find a stationary point. Numerical
experience with the MacMPEC test problems are also reported.

The solution of the relaxed barrier problem plays an important role in our
method. The search direction is computed in two-steps. First, an auxiliary step
is computed through a minimization problem. Then, the auxiliary step is used
in a modified primal-dual Newton equation to calculate the search direction. In
addition, the barrier function with `2-penalty is selected as the merit function
where the penalty parameter is adjusted adaptively. Different steplengths for
the primal and dual updates are used, while special care is taken to avoid rapid
reduction in slack variables.

The paper is organized as follows. In Section 2, we define certain weak sta-
tionarities of MPEC used in our convergence analysis. In Section 3, we describe
the relaxation scheme that paves a way of solving MPEC by interior-point meth-
ods. It is shown that, under certain conditions, the KKT points of the relaxed
problems converge to strong stationary points of the MPEC as the relaxation
parameter tends to zero. In Section 4, we present a primal-dual interior-point
method and derive convergence results for the relaxed barrier problems. In Sec-
tion 5, we describe our algorithm for MPEC and present global convergence
results. In Section 6, we report our numerical results.

It is better to clarify some notations at this point. All vectors are column
vectors except that for simplicity we write (x, y) to stand for the column vec-
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tor [x> y>]>. A vector with superscript k is related to the k-th iterate; its
subscript j means its j-th component. All matrices related to iterate k are in-
dexed by subscript k. The norm ‖ ·‖ represents the Euclidean norm. ∇gi(x, y) =
(∇xgi(x, y),∇ygi(x, y)), i = 1, ..., `, and ∇g(x, y) = [∇g1(x, y) . . . ∇g`(x, y)],
∇gJ (x, y) = [∇gj(x, y)|j ∈ J ], where J is an index set. For functions involv-
ing x, y and other vectors such as H(x, y, λ) used below, we use the notations
∇H(x, y, λ) = (∇xH(x, y, λ),∇yH(x, y, λ)) and ∇EH(x, y, λ) = (∇xH(x, y, λ),
∇yH(x, y, λ),∇λH(x, y, λ)) (“E” for “entire”). For any vector v, diag (v) stands
for the diagonal matrix whose diagonal is the vector v.

We often have to deal with different index sets. Here is a list of them, in
which λj is the multiplier associated with gj .

C0(x, y) = {j ∈ {1, . . . , p}|cj(x, y) = 0}
G0(x, y) = {j ∈ {1, . . . , `}|gj(x, y) = 0}
G0(λ) = {j ∈ {1, . . . , `}|λj = 0}

G00(x, y, λ) = {j ∈ {1, . . . , `}|gj(x, y) = 0, λj = 0}
G0+(x, y, λ) = {j ∈ {1, . . . , `}|gj(x, y) = 0, λj > 0}

Finally, we denote the feasible set of the MPEC by F and by strict comple-
mentarity we mean that G00(x, y, λ) = ∅.

2. Generalized stationary properties of MPEC

We make the following blanket assumption throughout this paper.

Assumption 1.
(1) For every (x, y) ∈ F , the vectors {∇ygj(x, y)| j ∈ G0(x, y)} are linearly

independent.
(2) For any fixed x ∈ {x ∈ <n|c(x, y) ≤ 0 for some y ∈ <m} and each

j ∈ {1, . . . , `}, gj(x, ·) is convex.

It should be noted that Assumption 1 always holds in the important special case
of MPCC. Under Assumption 1, y ∈ S(x) if and only if there is a unique λ ∈ <`
such that {

F (x, y) +
∑`
j=1 λj∇ygj(x, y) = 0,

λ ≥ 0, g(x, y) ≤ 0, λ ◦ g(x, y) = 0
(5)

where ◦ denotes the Hadamard product. In general we designate the set of λ
that satisfies (5) as M(x, y). It is easy to show that if Assumption 1 holds and if
(x, y) is bounded, then M(x, y) is also bounded and problem (1)-(3) is equivalent
to

min f(x, y) (6)

s.t. c(x, y) ≤ 0, (7)

H(x, y, λ) = 0, (8)

λ ≥ 0, g(x, y) ≤ 0, λ ◦ g(x, y) = 0, (9)
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where H(x, y, λ) = F (x, y) +
∑`
j=1 λj∇ygj(x, y). However, Assumption 1 does

not imply strict complementarity. See the following example.

Example 1. Consider the MPEC

min f(x, y1, y2) =
1

2
(x− 1)2 + y1 + y2 (10)

s.t. x ≥ 0, (11)

y1 ≥ 0, y2 ≥ 0, (12)(
2x

y1 − y2

)>(
z1 − y1

z2 − y2

)
≥ 0, ∀z1 ≥ 0, z2 ≥ 0. (13)

Assumption 1 holds at the optimal point (x∗, y∗1 , y
∗
2) = (1, 0, 0) with λ∗1 = 2,

λ∗2 = 0. However, the strict complementarity does not hold.

The following definition is well known.

Definition 1. A point (x, y) ∈ F is a B-stationary point of MPEC if

∇xf(x, y)>dx +∇yf(x, y)>dy ≥ 0, for all (dx, dy) ∈ T (x, y;F), (14)

where T (x, y;F) is the tangent cone of F at (x, y).

It is generally difficult to give an explicit expression of T (x, y;F). Instead,
the following concepts of strong and weak stationary points of MPEC, due to
Scholtes and Scheel [42], are often used in algorithmic design.

Definition 2.
(1) A point (x, y) ∈ F is a strong stationary point of MPEC if for λ ∈

M(x, y) there exist multipliers ζ ∈ <p, η ∈ <` and π ∈ <m such that

∇f(x, y) +∇c(x, y)ζ +∇g(x, y)η +∇H(x, y, λ)π = 0, (15)

ζ>c(x, y) = 0, ζ ≥ 0, (16)

π>∇ygj(x, y) = 0, ∀ j ∈ G0+(x, y, λ), (17)

ηj = 0, ∀ j /∈ G0(x, y). (18)

π>∇ygj(x, y) ≥ 0, ∀ j ∈ G00(x, y, λ), (19)

ηj ≥ 0, ∀ j ∈ G00(x, y, λ). (20)

hold.
(2) A point (x, y) ∈ F is called a weak stationary point of MPEC if for

λ ∈M(x, y) there exist ζ ∈ <p, η ∈ <`, and π ∈ <m such that (15)-(18) hold.

Obviously, a strong stationary point must be a weak stationary point, but
not vice versa. However, under strict complementarity, the two concepts are
equivalent since the set G00(x, y, λ) is vacuous. In general, B-stationarity and
strong stationarity do not imply each other unless the so-called MPEC-LICQ
holds, see Proposition 1 below.
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Definition 3. For any (x, y) ∈ F and λ ∈M(x, y), the MPEC-LICQ holds at
(x, y) if (

∇H(x, y, λ) ∇cC0(x,y)(x, y) ∇gG0(x,y)(x, y) 0
∇λH(x, y, λ) 0 0 [ej , j ∈ G0(λ)]

)
(21)

has full column rank, where ej is the j-th coordinate vector.

Proposition 1. If MPEC-LICQ holds at (x∗, y∗) ∈ F , then (x∗, y∗) is a B-
stationary point of MPEC if and only if it is a strong stationary point of MPEC.

This proposition can be derived in a similar way to the derivation of Theorem
3.3.4 in [35], where the result has been proved in a more general setting. Similar
results are obtained in [39,42].

To describe convergence properties of our algorithm, we need to consider
other types of stationarity.

Definition 4.
(1) A point (x, y) ∈ F is called a singular stationary point of MPEC if

the MPEC-LICQ does not hold at (x, y).
(2) A point (x, y) is called an infeasible stationary point of MPEC if

(x, y) /∈ F , and for some λ ∈ <` and some scalar θ > 0, (x, y, λ) is a stationary
point of the problem

min(x,y,λ) {‖c+‖2 + ‖H‖2 + ‖g+‖2 + ‖λ−‖2 + ‖(λ ◦ g + θe)−‖2}, (22)

that is, (x, y, λ) satisfies the following equations

∇c c+ +∇H H +∇g g+ +∇g Λ(λ ◦ g + θe)− = 0, (23)

∇yg>H + Λλ− + diag (g)(λ ◦ g + θe)− = 0, (24)

where Λ = diag (λ), H = H(x, y, λ), c+ = max{c(x, y), 0}, g+ = max{g(x, y), 0},
λ− = min{λ, 0}, e = (1, . . . , 1) and (λ ◦ g + θe)− = min{λ ◦ g(x, y) + θe, 0}.

These definitions were first given in the context of NLP in [32]. Here we
extend them to MPEC. We note that the objective function (22) can be thought
of as the `2-measure of the total infeasibility of problem (25)-(28) below, so the
infeasible stationarity makes sense. Of course, if (x, y, λ) is a feasible point, then
for any θ > 0, this quantity is zero.

3. An NLP relaxation of MPEC

Suppose θ > 0 is a parameter. By θ-relaxation of MPEC we mean the following
nonlinear program

min f(x, y) (25)

(NLP(θ)) s.t. c(x, y) ≤ 0, (26)

H(x, y, λ) = 0, (27)

λ ≥ 0, g(x, y) ≤ 0, −λ ◦ g(x, y) ≤ θe, (28)



An interior-point method for MPEC 7

where the complementarity constraints in the reformulated MPEC (6)-(9) are
relaxed into inequalities. It is obvious that if θ = 0 then (25)-(28) reduces to
(6)-(9). The following result shows that the MPEC-LICQ implies the LICQ of
NLP(θ) for all sufficiently small θ.

Proposition 2. For (x∗, y∗) ∈ F and λ∗ ∈M(x∗, y∗), if the MPEC-LICQ holds
at (x∗, y∗), then there exists a neighborhood N of (x∗, y∗, λ∗) so that for suffi-
ciently small θ > 0, the LICQ holds at any (x̄, ȳ, λ̄) ∈ N feasible to NLP(θ).

The proof of Proposition 2 is based on a continuity argument and similar results
have been proved in [20,41]. For brevity, we omit it. To simplify the notation,
let

G̃(x, y, λ) = (c(x, y), g(x, y), −λ), (29)

Gθ(x, y, λ) = (G̃(x, y, λ), −λ ◦ g(x, y)− θe). (30)

Then the constraints of NLP(θ) can be written as Gθ(x, y, λ) ≤ 0, H(x, y, λ) = 0
and

∇Gθ(x, y, λ) = [∇c(x, y) ∇g(x, y) 0 − [∇g(x, y)]λ] , (31)

∇λGθ(x, y, λ) = [0 0 − I − diag (g(x, y))] , (32)

where I is the `× ` identity matrix. The Lagrange function of program (25)-(28)
is

Lθ(x, y, λ, u, v) = f(x, y) + u>Gθ(x, y, λ) + v>H(x, y, λ), (33)

where u ∈ <p+3`
+ and v ∈ <m are the multipliers. Let ū = (u1, . . . , up), û =

(up+1, . . . , up+`) and ũ = (up+2`+1, . . . , up+3`). By using (31)-(32) and noting
that ∇λH(x, y, λ) = ∇yg(x, y)>, the KKT conditions of NLP(θ) can be written
as

∇f(x̄, ȳ) +∇c(x̄, ȳ)ū+∇g(x̄, ȳ)η +∇H(x̄, ȳ, λ̄)v = 0, (34)

∇yg(x̄, ȳ)>v ≥ diag (g(x̄, ȳ))ũ, λ̄ ◦ (∇yg(x̄, ȳ)>v − diag (g(x̄, ȳ))ũ) = 0, (35)

λ̄ ≥ 0, ũ ≥ 0, −λ̄ ◦ g(x̄, ȳ)− θe ≤ 0, ũ ◦ (−λ̄ ◦ g(x̄, ȳ)− θe) = 0, (36)

η − (û− λ̄ ◦ ũ) = 0, (37)

û ≥ 0, g(x̄, ȳ) ≤ 0, û ◦ g(x̄, ȳ) = 0, (38)

ū ≥ 0, c(x̄, ȳ) ≤ 0, ū ◦ c(x̄, ȳ) = 0, (39)

H(x̄, ȳ, λ̄) = 0. (40)

Now we show that as θ → 0, the KKT points of NLP(θ) converge to a strong
stationary point of MPEC if the primal and dual variables are bounded.

Proposition 3. Suppose that (x̄, ȳ, λ̄) is a KKT point of NLP(θ), (ū, û, ũ, v)
is the corresponding multiplier vector associated with constraint (c, g,−λ ◦ g −
θe,H). If the sequence {(x̄, ȳ, λ̄, ū, û, ũ, v)} is uniformly bounded as θ → 0 and
(x∗, y∗, λ∗, ū∗, û∗, ũ∗,v∗) is one of its limit points, then (x∗, y∗) is a strong sta-
tionary point of the MPEC (1)-(3).
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Proof. By using ū∗, η∗ and v∗ to replace ζ∗, η∗ and π∗, it is easy to see that
(15) and (16) hold because of (34) and (39). Assumption 1, (36)-(39), and (40)
imply that (x∗, y∗) ∈ F and λ∗ is the unique element of M(x∗, y∗). For any j ∈
G00(x∗, y∗, λ∗), one has λ∗j = 0 and g∗j = 0. Thus, by (35), v∗>∇yg∗j ≥ g∗j ũ∗j = 0,

which proves (19). For j ∈ G0+(x∗, y∗, λ∗), by (35), one has v∗>∇yg∗j = g∗j ũ
∗
j = 0,

which proves (17). Finally, we have (18) and (20) by (37).

In the remainder of this section, we will use (x̄, ȳ, λ̄) to denote a KKT point
of NLP(θ). The following example shows the usage of the θ-relaxation and the
role of Proposition 3.

min f(x, y) =
1

2

[
(x− 1)2 + (y − 1)2

]
(41)

s.t. 2x− λ = 0, (42)

λ ≥ 0, y ≥ 0, λy ≤ θ, (43)

where θ > 0. Its KKT conditions are as follows.

x− 1 + 2v = 0, y − 1− û+ λũ = 0, 2x− λ = 0, (44)

λ ≥ 0, −v + yũ ≥ 0, λ(−v + yũ) = 0, (45)

ũ ≥ 0, λy − θ ≤ 0, ũ(λy − θ) = 0, (46)

û ≥ 0, y ≥ 0, ûy = 0. (47)

For θ ≤ 1
2 , all solutions satisfy λy = θ and they are

(i) (x̄, ȳ, λ̄) =
1

2
(1, 1, 2) +

(√
1

4
− 1

2
θ

)
(1,−1, 2), (û, ũ) =

(
0,

1

2

)
;(48)

(ii) (x̄, ȳ, λ̄) =
1

2
(1, 1, 2)−

(√
1

4
− 1

2
θ

)
(1,−1, 2), (û, ũ) =

(
0,

1

2

)
; (49)

(iii) (x̄, ȳ, λ̄) =

√
2

2
θ(1, 1, 2), (û, ũ) =

(
0,

√
2− θ
2θ

)
. (50)

It is easy to see that solutions (i) and (ii) converge to the strong stationary points
(1, 0) and (0, 1) respectively, but solution (iii) does not where ũ is unbounded.
Satisfication of the MPEC-LICQ at (1,0) and (0,1) implies that they are also
B-stationary points.

The example shows that the success of solving MPEC by NLP(θ) depends
on the dual boundedness of NLP(θ). We next derive a sufficient condition for
this property. We start with some definitions.

Definition 5. A sequence {(x̄, ȳ, λ̄)} is asymptotically weakly nondegen-
erate, if (x̄, ȳ, λ̄) → (x∗, y∗, λ∗) as θ → 0, and there is a θ̄ > 0 such that for
θ ∈ (0, θ̄) and all i ∈ G00(x∗, y∗, λ∗) ∩ Iθ, there exist constants ς1 ≥ ς2 > 0 such
that ς1 ≥ |gi(x̄, ȳ)/λ̄i| ≥ ς2, where Iθ = {i | −λ̄igi(x̄, ȳ) = θ}.
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This definition is of similar nature to that given by Fukushima and Pang [20],
which requires that λ̄i and gi(x̄, ȳ) tend to zero in the same order. It is noted that
if the strict complementarity holds at (x∗, y∗), then the asymptotically weakly
nondegenerate condition holds since G00(x∗, y∗, λ∗) = ∅, but not vice versa.

The following definition is well known in the theory of NLP.

Definition 6. For θ > 0, the second-order necessary optimality condition
of NLP(θ) holds at (x̄, ȳ, λ̄) if (x̄, ȳ, λ̄) is feasible to NLP(θ), and there exist
u = (ū, û, u, ũ) ∈ <p+`+`+` and v ∈ <m such that (34)-(40) are satisfied and

d>∇2Lθ(x̄, ȳ, λ̄, u, v)d ≥ 0 (51)

for all d = (da, dλ) satisfying

∇ci(x̄, ȳ)>da = 0, for i ∈ C0(x̄, ȳ); (52)

∇EH(x̄, ȳ, λ̄)>d = 0; (53)

∇gi(x̄, ȳ)>da = 0, for i ∈ G0(x̄, ȳ); (54)

λ̄i∇gi(x̄, ȳ)>da + gi(x̄, ȳ)dλi = 0, i ∈ Iθ. (55)

We have the following sufficient conditions for the dual boundedness required by
Proposition 3, which is similar in flavor to Theorem 3.1 of [20].

Proposition 4. Suppose that {(x̄, ȳ, λ̄)} is bounded as θ → 0, Θ is an infinite set
of θ in a sufficiently small neighborhood of zero such that (x̄, ȳ, λ̄)→ (x∗, y∗, λ∗)
as θ ∈ Θ and θ → 0. Then {(ū, ũ, û, v) | θ ∈ Θ} is bounded if

the second order necessary optimality condition of NLP(θ) holds at (x̄, ȳ, λ̄)
for θ ∈ Θ,
{(x̄, ȳ, λ̄) | θ ∈ Θ} is asymptotically weakly nondegenerate, and
the MPEC-LICQ holds at (x∗, y∗, λ∗).

Proof. By the MPEC-LICQ and (34), {(ū, η, v) | θ ∈ Θ} is uniformly bounded.
Thus, for θ ∈ Θ, ûi, where i ∈ G0(x̄, ȳ), and λ̄iũi, where i ∈ Iθ) = {i| −
λ̄igi(x̄, ȳ) = −θ}, are also bounded. Suppose ũ is unbounded. Let πθ(x, y, λ) =
u>Gθ(x, y, λ), da = (dx, dy) and d = (da, dλ), then

d>∇2
Eπθ(x̄, ȳ, λ̄)d =

∑
i∈C0(x̄,ȳ)

ūid
>
a∇2ci(x̄, ȳ)da +

∑
i∈G0(x̄,ȳ)

ûid
>
a∇2gi(x̄, ȳ)da

−
∑
i∈Iθ

λ̄iũid
>
a∇2gi(x̄, ȳ)da − 2

∑
i∈Iθ

ũidλi∇gi(x̄, ȳ)>da. (56)

It follows from the MPEC-LICQ at (x∗, y∗), Proposition 2, and the asymp-
totical weak nondegeneracy that there exists a bounded sequence {dθ} with
dθ = (da, dλ) and dθ 6= 0 for all θ ≤ θ̄ such that

∇ci(x̄, ȳ)>da = 0, ∀ i ∈ C0(x̄, ȳ); (57)

∇EH(x̄, ȳ, λ̄)>d = 0; (58)

∇gi(x̄, ȳ)>da = 0, ∀ i ∈ G0(x̄, ȳ); (59)

∇gi(x̄, ȳ)>da = gi(x̄, ȳ)/λ̄i, dλi = −1, ∀ i ∈ I1
θ ; (60)

∇gi(x̄, ȳ)>da = −1, dλi = λ̄i/gi(x̄, ȳ), ∀ i ∈ I2
θ\I1

θ , (61)
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where I1
θ = {i ∈ Iθ | gi(x∗, y∗) = 0}, I2

θ = {i ∈ Iθ | λ∗i = 0}. By (60) and (61),
we have λ̄i∇gi(x̄, ȳ)>da + gi(x̄, ȳ)dλi = 0, i ∈ Iθ. By (56), there holds

d>θ ∇2
Eπθ(x̄, ȳ, λ̄)dθ → −∞ as θ → 0, (62)

which contradicts the second-order necessary optimality condition since

d>θ

[
∇2
Ef(x̄, ȳ) +

m∑
i=1

vi∇2
EHi(x̄, ȳ, λ̄)

]
dθ

is bounded. The result follows immediately.

Let us recall the example (41)-(43). For solution (i), it is apparent that the
MPEC-LICQ and the strict complementarity hold at the limit (1, 0, 2). Moreover,
it is easy to verify that the second-order necessary optimality condition holds
since for all d = (dx, dy, dλ) satisfying

2dx − dλ = 0, (63)

λ̄dy + ȳdλ = 0, (64)

we have

d>∇2L(x̄, ȳ, λ̄, û, ũ, v)d =

[
1

2
− θ

(1 +
√

1− 2θ)2

]2

d2
λ ≥ 0. (65)

The same is true for solution (ii). Thus the three conditions in Proposition 4
hold for solutions (i) and (ii). Consequently, the dual variables of (i) and (ii) are
bounded as θ → 0. On the other hand, at solution (iii) some of dual variables are
unbounded and the second order necessary optimality condition does not hold.
Hence, the results are consistent with Proposition 4.

4. The relaxed barrier problem

We note that applying interior-point approach to (6)-(9) directly will result in
a conflict. This is because, by introducing slack variables, the barrier problem
corresponding to (6)-(9) is

min f(x, y)−
p∑
i=1

µ ln z̄i −
∑̀
j=1

µ ln ẑj −
∑̀
j=1

µ ln λ̂j (66)

s.t. c(x, y) + z̄ = 0, (67)

H(x, y, λ) = 0, (68)

g(x, y) + ẑ = 0, −λ+ λ̂ = 0, −λ ◦ g(x, y) = 0, (69)

where µ > 0 is the barrier parameter, z̄ > 0, ẑ > 0 and λ̂ > 0 are slack variable
vectors. Constraints (69) indicate that for j = 1, . . . , ` we must have λ̂j = 0 if
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ẑj is bounded away from zero and vice versa, which conflicts with the objective

function (66) that attempts to draw both ẑj and λ̂j away from boundary.
We therefore consider to apply the interior-point approach to the θ-relaxation

of MPEC, which leads us to the following θ-relaxed log-barrier problem, hence-
forth referred as the relaxed barrier problem:

min f(x, y)−
p∑
i=1

µ ln z̄i −
∑̀
j=1

µ ln ẑj −
∑̀
j=1

µ ln λ̂j −
∑̀
j=1

µ ln z̃j (70)

s.t. c(x, y) + z̄ = 0, (71)

H(x, y, λ) = 0, (72)

g(x, y) + ẑ = 0, (73)

−λ+ λ̂ = 0, (74)

−λ ◦ g(x, y) + z̃ = θe. (75)

By using (30), (70)-(75) can simply be written as

min f(s)−
q∑
i=1

µ ln zi (76)

s.t. Gθ(s) + z = 0, (77)

H(s) = 0, (78)

where s = (x, y, λ) ∈ <n+m+` is the variable vector, z = (z̄, ẑ, λ̂, z̃) is the slack
vector, f(s) = f(x, y), Gθ(s) = Gθ(x, y, λ), H(s) = H(x, y, λ) and q = p+ 3`.

In the following two subsections, we describe a primal-dual algorithm for
solving problem (76)-(78) for fixed µ and derive global convergence results of
the algorithm. The algorithm for MPEC is then presented in Section 5, which
uses the algorithm in this section as the inner loop and decreases µ in the outer
loop.

4.1. The algorithm for problem (76)-(78).

Define the merit function with `2 penalty

φ(s, z; ρ) = f(s)−
q∑
i=1

µ ln zi + ρ‖(Gθ(s) + z,H(s))‖, (79)

where ρ > 0 is the penalty parameter, the norm ‖ · ‖ is the Euclidian norm.
At the current iterate (sk, zk), suppose that uk ∈ <q+ and vk ∈ <m are the

approximate multipliers corresponding to constraints (77) and (78), respectively.
Let Zk = diag (zk), Uk = diag (uk), ∇Gkθ = ∇Gθ(sk), ∇Hk = ∇H(sk) and
∇fk = ∇f(sk). Let Bk be a positive definite approximation to the Lagrangian
Hessian

∇2L(sk, uk, vk) = ∇2fk +

q∑
i=1

uki∇2(Gθ)
k
i +

m∑
j=1

vkj∇2Hk
j .
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Suppose that (d̂ks , d̂
k
z) is an approximate solution of the problem

min ψk(ds, dz) =
1

2
(d>s Bkds + d>z Z

−1
k Ukdz) + ρk‖(Gkθ + zk +

∇Gkθ
>
ds + dz, H

k +∇Hk>ds)‖ (80)

such that some prescribed conditions (see the next subsection) hold. Then we
compute the search direction (dks , d

k
z , d

k
u, d

k
v) by solving the modified primal-dual

system of equations

Bkds +∇Gkθdu +∇Hkdv = −(∇fk +∇Gkθuk +∇Hkvk), (81)

Ukdz + Zkdu = −(ZkUke− µe), (82)

∇Gkθ
>
ds + dz = ∇Gkθ

>
d̂ks + d̂kz , (83)

∇Hk>ds = ∇Hk>d̂ks . (84)

Note that the right-hand-sides of (83) and (84) are different from the traditional
interior-point approach. For motivation of this modification the reader is referred
to [33,34].

We are now ready to state our algorithm for the relaxed barrier problem with
fixed θ and µ.

Algorithm 1. (The algorithm for problem (76)-(78))

Step 1 Set µ > 0, (s0, z0, u0, v0) ∈ <n+m+` × <q++ × <
q
++ × <m, B0 ∈

<(n+m+`)×(n+m+`) and scalars ρ0 > 0, ξ ∈ (0, 1), 0 < β1 < 1 < β2,
σ0 ∈ (0, 1

2 ). Let k := 0;
Step 2 Calculate the primal search direction (dks , d

k
z) and the dual direc-

tion (dku, d
k
v) by the primal-dual system of equations (81)-(84), where

(d̂ks , d̂
k
z) is derived by approximately minimizing (80);

Step 3 Let
πk(dk; ρk) = ∇f>k dks − µe>Z−1

k dkz − ρkδ(dks , dkz),

where dk = (dks , d
k
z) and δ(dks , d

k
z) = ‖(Gkθ + zk, Hk)‖ − ‖(Gkθ + zk +

∇Gkθ
>
dks + dkz , H

k +∇Hk>dks)‖. If

πk(dk; ρk) ≤ −1

2
dks
>
Bkd

k
s −

1

2
dkz
>
Z−1
k Ukd

k
z , (85)

let ρk+1 = ρk; Otherwise, we replace ρk by a larger ρk+1 (for example
ρk+1 ≥ 2ρk) such that (85) holds;

Step 4 Compute α̂k ∈ (0, 1] such that zk + α̂kd
k
z ≥ ξzk, and select firstly

σ ∈ (0, 1] and then γk ∈ [0, 1] as large as possible such that

φ(sk + σα̂kd
k
s , z

k + σα̂kd
k
z ; ρk+1)− φ(sk, zk; ρk+1)

≤ σ0σα̂kπk(dk; ρk+1), (86)

β1µe ≤ (Uk + γkD
k
u) max{zk + σα̂kd

k
z ,−Gθ(sk + σα̂kd

k
s)}

≤ β2µe, (87)
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where Dk
u = diag (dku). Let αk = σα̂k. The new primal iterate is

generated by

sk+1 = sk + αkd
k
s , (88)

zk+1 = max{zk + αkd
k
z ,−Gk+1

θ }, (89)

and the new dual iterate is generated by

uk+1 = uk + γkd
k
u, v

k+1 = vk + dkv ; (90)

Step 5 If the stopping criterion holds, stop; else calculate values ∇Gk+1
θ ,

∇Hk+1, ∇fk+1, Gk+1
θ and Hk+1, update the approximate Hessian

Bk by Bk+1, let k := k + 1, and go to Step 2.

In practical implementations of the algorithm we may use some more flexible
update for generating the dual iterate. Since Algorithm 1 is only taken as an
inner loop of our algorithm for MPEC, we will give the stopping criterion in the
algorithm for MPEC.

4.2. Convergence of Algorithm 1.

Notice that the relaxed barrier problem differs from the inequality-constrained
NLP only by adding an equality constraint. To simplify the proofs, we will refer
to the results in [32,33] if a proof is lengthy and is the same as in the references.

Suppose that an infinite sequence {(sk, zk, uk, vk)} is produced by Algorithm
1. We need the following general assumptions.

Assumption 2.
(1) {sk} is bounded. That is, there is an open and bounded set Ω ⊂ <n+m+`

such that sk ∈ Ω for all nonnegative integers k.
(2) There exist constants ν1 ≥ ν2 > 0 such that ν2‖d‖2 ≤ d>Bkd ≤ ν1‖d‖2

for all d ∈ <n+m+`.
(3) ∇H(sk) has full column rank for all k ≥ 0.

The following results can be derived similarly to Lemma 4.2 in [32] and Lemmas
3.2, 3.3, and 3.6 in [33].

Lemma 1. Under Assumption 2, we have
(1) {zk} is bounded;
(2) {uk} is componentwise bounded away from zero.
Furthermore, if {ρk} is bounded, then
(3) {zk} is componentwise bounded away from zero;
(4) {uk} is bounded;
(5) if {(dks , dkz , dku)} is bounded, then there exists α∗ ∈ (0, 1] such that αk ≥ α∗

for all k ≥ 0.

Lemma 2. Under Assumption 2, if (d̂ks , d̂
k
z) solves problem (80) exactly, then

(d̂ks , d̂
k
z) satisfies the following conditions.
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(1) (∇Gkθ(Gkθ + zk) +∇HkHk, Zk(Gkθ + zk))→ 0 as (d̂ks , d̂
k
z)→ 0.

(2) It holds that ψk(d̂ks , d̂
k
z) ≤ ψk(0, 0), and there exist constants ρ̂ > 0 and ς > 0

so that for all ρk ≥ ρ̂,

ψk(d̂ks , d̂
k
z)− ψk(0, 0) ≤ −ςρk‖(∇Gkθ(Gkθ + zk) +∇HkHk, Zk(Gkθ + zk))‖2.

(3) There exist ν ∈ (0, 1), ρ̂ > 0 and $ > 0 so that ∀ ρk ≥ ρ̂,

‖(d̂ks , Z−1
k d̂kz)‖ ≤ $‖(Gkθ + zk, Hk)‖ (91)

and
ψk(d̂ks , d̂

k
z) ≤ νψk(0, 0) (92)

if one of the following conditions holds:
(i) {zk} is componentwise bounded away from zero;

(ii) The vectors ∇Hk
j , j = 1, . . . ,m, ∇(Gθ)

k
i , i ∈ Gk0 = {i | zki = 0, i =

1, . . . , q} are linearly independent.

(4) For all k, (d̂ks , Z
−1
k d̂kz)/

√
ρk are uniformly bounded.

Proof. (1) Suppose that there is an infinite index subset K such that for k ∈ K,

k →∞, (∇Gkθ(Gkθ + zk) +∇HkHk, Zk(Gkθ + zk)) 6→ 0. Then as (d̂ks , d̂
k
z)→ 0,

‖(Gkθ + zk +∇Gkθ
>
d̂ks + d̂kz , H

k +∇Hk>d̂ks)‖ 6= 0, and are bounded ∀ k ∈ K.

Since (d̂ks , d̂
k
z) solves problem (80), we have ∇ψ(d̂ks , d̂

k
z) = 0. Hence

Bkd̂
k
s + ρk

∇Gkθ(Gkθ + zk +∇Gkθ
>
d̂ks + d̂kz) +∇Hk(Hk +∇Hk>d̂ks)

‖(Gkθ + zk +∇Gkθ
>
d̂ks + d̂kz , H

k +∇Hk>d̂ks)‖
= 0,

Ukd̂
k
z + ρk

Zk(Gkθ + zk +∇Gkθ
>
d̂ks + d̂kz)

‖(Gkθ + zk +∇Gkθ
>
d̂ks + d̂kz , H

k +∇Hk>d̂ks)‖
= 0,

which contradicts the supposition as (d̂ks , d̂
k
z)→ 0. Thus, we have proved (1).

For simplicity of subsequent statements in this proof, we define

B̃k =

(
Bk

ZkUk

)
, C̃k =

(
∇Gkθ ∇Hk

Zk

)
, c̃k =

(
Gkθ + zk

Hk

)
, d̃k =

(
d̂ks

Z−1
k d̂kz

)
,

and ψk(d̃k) = ψk(d̂ks , d̂
k
z).

(2) The inequality ψk(d̂ks , d̂
k
z) ≤ ψk(0, 0) is obvious. By Proposition 2.2 in

[32], letting
d̄k = −min(1, ηk)B̃−1

k C̃k c̃
k,

where ηk = (c̃k>(C̃>k B̃
−1
k C̃k)c̃k)/(c̃k>(C̃>k B̃

−1
k C̃k)2c̃k), then we have

ψk(d̃k)− ψk(0) ≤ ψk(d̄k)− ψk(0)

≤ 1

2

{
1− ρk min[

1

‖c̃k‖
,
ηk
‖c̃k‖

]

}
c̃k>(C̃>k B̃

−1
k C̃k)c̃k. (93)
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If ρ̂ ≥ 2M1 ≥ 2‖c̃k‖ (M1 is a constant), then for ρk ≥ ρ̂ we have 1−ρk/‖c̃k‖ ≤
−ρk/(2M1) < 0. If ηk ≥ 1, then it follows from (93), Assumption 2 (2), and (87)
that

ψk(d̃k)− ψk(0) ≤ −[ρk/(4M1)] min{ν−1
1 , β−1

2 µ−1}‖C̃k c̃k‖2. (94)

If ηk < 1, then by (93), we have

ψk(d̃k)− ψk(0)

≤ 1

2

{
1− ρkηk/‖c̃k‖

}
c̃k>(C̃>k B̃

−1
k C̃k)c̃k

=
1

2

{
1− ρk

‖(C̃>k B̃
−1
k C̃k)

1
2 c̃k‖2

‖(C̃>k B̃
−1
k C̃k)c̃k‖2‖c̃k‖

}
c̃k>(C̃>k B̃

−1
k C̃k)c̃k (95)

≤ 1

2

{
1− ρk

‖(C̃>k B̃
−1
k C̃k)

1
2 ‖2‖c̃k‖

}
c̃k>(C̃>k B̃

−1
k C̃k)c̃k.

If ρk > ρ̂ ≥ 2M2 ≥ 2‖(C̃>k B̃
−1
k C̃k)

1
2 ‖2‖c̃k‖ (M2 is a constant), then

ψk(d̃k)− ψk(0) ≤ −[ρk/(4M2)] min{ν−1
1 , β−1

2 µ−1}‖C̃k c̃k‖2. (96)

The result follows from (94) and (96) by selecting ς = min{1/(4M1), 1/(4M2)} ·
min{ν−1

1 , β−1
2 µ−1}.

(3) Let d̃k0 = −B̃−1
k C̃k(C̃>k B̃

−1
k C̃k)−1c̃k. Then

ψk(d̃k) ≤ ψk(d̃k0) =
1

2
c̃k>(C̃>k B̃

−1
k C̃k)−1c̃k. (97)

If any one of conditions (i) and (ii) holds, then C̃k has full column rank, which
implies that ψk(d̃k) ≤ ς1‖c̃k‖2 (ς1 > 0 is a constant). By Assumption 2 (2) and
the boundedness of YkΛk, we have ψk(d̃k) ≥ ς2‖d̃k‖2 (ς2 > 0). Thus ‖d̃k‖ ≤√

(ς1/ς2)‖c̃k‖. The result of (91) follows by letting $ =
√
ζ1/ζ2.

Under the given conditions, {(C̃>k B̃
−1
k C̃k)−1} is uniformly bounded, thus we

have ψk(d̂ks , d̂
k
z) ≤ νψk(0, 0) for ρk ≥ ρ̂ ≥ 1

2‖(C̃
>
k B̃
−1
k C̃k)−1c̃k‖. Thus, (92) is

also valid.

(4) This result follows readily from the coerciveness of ψk. A detailed proof
can be found from Lemma 4.10 in [32].

Remark. In practical implementations, we do not need the exact solution of
problem (80). The approximate solutions which satisfy (1) – (4) of Lemma 2 can
be computed very easily. We omit the details and refer the interested reader to
[32].

Lemma 3. Under Assumption 2, if {ρk} is bounded, then {(dks , dkz , dku)} and
{vk} are bounded.
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Proof. By Lemma 2, ψk(d̂ks , d̂
k
z) ≤ ψk(0, 0), then it follows from the coerciveness

of ψk(d̂ks , d̂
k
z) that (d̂ks , d̂

k
z) is bounded. The solution to the system of equations

(81)-(84) can be written as
dks
dkz
dku
vk+1

 = Q−1
k


−(∇fk +∇Gkθuk)
−(Uke− µZ−1

k e)

∇Gkθ
>
d̂ks + d̂kz

∇Hk>d̂ks

 , (98)

as long as Qk is invertible, where

Qk =


Bk 0 ∇Gkθ ∇Hk

0 Z−1
k Uk I 0

∇Gkθ
>

I 0 0

∇Hk> 0 0 0

 . (99)

We next show that Qk is truly invertible and Q−1
k is bounded. Let Q11

k =(
Bk 0
0 Z−1

k Uk

)
, Q12

k =

(
∇Gkθ ∇Hk

I 0

)
, then Q11

k is positive definite, Q11
k
−1

is

bounded, and Q12
k has full column rank by Lemma 1 and Assumption 2 (3). By

doing some calculations, we have Q−1
k =

(
Qlk Qdk

(Qdk)> Qrk

)
, where Qlk = Q11

k
−1 −

Q11
k
−1
Q12
k (Q12

k
>
Q11
k
−1
Q12
k )−1Q12

k
>
Q11
k
−1

, Qdk = Q11
k
−1
Q12
k (Q12

k
>
Q11
k
−1
Q12
k )−1,

Qrk = −(Q12
k
>
Q11
k
−1
Q12
k )−1. It can be seen that Q−1

k exists and is bounded. The
lemma follows from (98), the boundedness of Q−1

k and Lemma 1 immediately.

The following result shows that the algorithm converges to the KKT point
of program (76)-(78) if {ρk} is bounded.

Lemma 4. Under Assumption 2, if ρk is bounded, then

lim
k→∞

‖(dks , dkz)‖ = 0, (100)

lim
k→∞

‖(Gk+1
θ + zk+1, Hk+1)‖ = 0, (101)

lim
k→∞

‖Zk+1Uk+1e− µe‖ = 0, (102)

lim
k→∞

‖∇fk+1 +∇Gk+1
θ uk+1 +∇Hk+1vk+1‖ = 0. (103)

Moreover, γk = 1 for all sufficiently large k.

Proof. It follows from (85), (87) and Lemma 2 (2) that

πk(dk; ρk) ≤ −1

2
ν2‖dks‖2 −

1

2
β1‖Z−1

k dkz‖2. (104)

Since the sequence {ρk} is monotonically increasing and is bounded, there exists
a positive integer k0 such that ρk = ρk0 for all k ≥ k0. Thus, by (86), the
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sequence {φ(sk, zk; ρk)} is a monotonically decreasing sequence for k ≥ k0. Since
|φ(sk, zk; ρk)| is bounded by Assumption 2 and Lemma 1 (3), φ(sk, zk; ρk) is
bounded below. Hence, the limit of the sequence {φ(sk, zk; ρk)} exists, which by
Lemma 1 (5) implies that

πk(dk; ρk)→ 0, as k →∞. (105)

Then (100) follows from (104), (105) and Lemma 1 (3).
By (100), (83) and (84), we have

‖(∇Gkθ
>
d̂ks + d̂kz ,∇Hk>d̂ks)‖ → 0 as k →∞, (106)

which implies that δ(d̂ks , d̂
k
z) → 0 as k → ∞. Since ψk(d̂ks , d̂

k
z) ≤ ρk‖(Gkθ +

zk, Hk)‖, we have

1

2

[
ν2‖d̂ks‖2 + β1‖Z−1

k d̂kz‖2
]
≤ ρkδ(d̂ks , d̂kz). (107)

Thus, (d̂ks , d̂
k
z) → 0 as k → ∞. It follows from Lemma 2 (1) that ‖(Gkθ +

zk,∇HkHk)‖ → 0. Then (101) is obtained by (100) and Assumption 2 (3).
By (82), (100) and Lemma 1 we have limk→∞ Zk(uk + dku) − µe = 0. Then

by (100) again, we have

lim
k→∞

Zk+1(uk + dku)− µe = 0, (108)

which implies that γk = 1 in Step 5 of the algorithm. Thus (102) is derived.
The limit (103) follows from (81), (100), and the continuity of ∇f , ∇Gθ and

∇H.

The following lemma addresses the case where {ρk} is unbounded.

Lemma 5. Under Assumption 2, if ρk is unbounded, then
(1) {zk} is not componentwise bounded away from zero and there exists a

convergent subsequence with k ∈ K such that (sk, zk) → (s∗, z∗) as k ∈ K and
k →∞ with ∇G∗θi, i ∈ G∗0 , ∇H∗j , j = 1, . . . ,m being linearly dependent, where
G∗0 = {i | z∗i = 0};

(2) there is a subsequence {(sk, zk) | k ∈ K} such that

lim
k∈K,k→∞

∥∥∥∥(∇Gkθ ∇Hk

Zk 0

)(
Gkθ + zk

Hk

)∥∥∥∥ = 0. (109)

Proof. (1) Suppose that it is not the case. Then, for sufficiently large k ∈ K, zk is
componentwise bounded away from zero, or ∇Gkθi, i ∈ Gk0 , ∇Hk

j , j = 1, . . . ,m,

are linearly independent, where Gk0 = {i | zki = 0}. Thus by Lemma 2 (3), there
exist constants $i > 0 (i = 1, 2) such that

‖(d̂ks , Z−1
k d̂kz)‖ ≤ $1‖(Gkθ + zk, Hk)‖, (110)

ψk(d̂ks , d̂
k
z)− ψk(0, 0) ≤ −$2ρk‖(Gkθ + zk, Hk)‖. (111)
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It follows from (81)-(84) that

πk(dk; ρk) +
1

2
dks
>
Bkd

k
s +

1

2
dkz
>
Z−1
k Ukd

k
z

≤ ∇f>k d̂ks − µe>Z−1
k d̂kz + ψk(d̂ks , d̂

k
z)− ψk(0, 0). (112)

Thus, there exists a constant ρ̂ > 0 such that πk(dk; ρk) ≤ 0 for ρk ≥ ρ̂, which,
by Step 3 of Algorithm 1, implies that {ρk} is bounded, a contradiction.

(2) Suppose that (109) does not hold. Then, for all sufficiently large k, there
exists a constant χ1 > 0 such that∥∥∥∥(∇Gkθ ∇Hk

Zk 0

)(
Gkθ + zk

Hk

)∥∥∥∥ ≥ χ1. (113)

By Lemma 2 (2) and (4), for all k ∈ K, there are positive constants χ2 and

ς such that ‖(d̂ks , Z−1
k d̂kz)‖ ≤ χ2

√
ρk and

ψk(d̂ks , d̂
k
z)− ψk(0, 0) ≤ −ςχ2

1ρk. (114)

Thus, there exists a constant χ3 > 0 such that

πk(d̂k; ρk) +
1

2
(d̂ks)>Bkd̂

k
s +

1

2
(d̂kz)>Z−1

k Ukd̂
k
z ≤ χ3

√
ρk − ςχ2

1ρk. (115)

The inequality (115) indicates there exists a large ρ̂ > 0 such that (85) holds for
all ρk ≥ ρ̂, which is a contradiction to the assumption that ρk →∞.

We summarize the results in the following theorem.

Theorem 1. Under Assumption 2, suppose {(sk, zk)} is an infinite sequence
generated by Algorithm 1, {ρk} is the penalty parameter sequence. Then one and
only one of the following assertions is true:

(A) The sequence {ρk} is bounded. Then for every limit point (s∗, z∗), there
exists (u∗, v∗) so that

‖(G∗θ + z∗, H∗)‖ = 0, Z∗U∗e = µe, ∇f∗ +∇G∗θu∗ +∇H∗v∗ = 0, (116)

namely, (s∗, z∗) is a KKT point of (76)-(78).

(B) The sequence {ρk} is unbounded and there is a limit point (s∗, z∗) which ei-
ther satisfies that ‖((G∗θ)+, H

∗)‖ = 0 and that ∇H∗j (j = 1, . . . ,m), ∇G∗θi(i ∈
I = {i ∈ {1, . . . , q} : G∗θi = 0}) are linearly dependent, or satisfies that
‖((G∗θ)+, H

∗)‖ 6= 0 and that

∇G∗θ(G∗θ)+ +∇H∗H∗ = 0. (117)

Proof. Conclusion (A) follows from Lemma 4. The first part of (B) is derived by
Lemma 5 (1). Now suppose ‖((G∗θ)+, H

∗)‖ 6= 0, by Lemma 5 (2), Z∗(G∗θ + z∗) =
0. Since G∗θ + z∗ ≥ 0 by (89), we have G∗θ + z∗ = (G∗θ)+. Hence, by Lemma 5
(2), the second part of (B) is obtained.
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5. The algorithm for MPEC and its global convergence

Based on the algorithm and analysis in previous sections, we now present our
algorithm for MPEC and give its global convergence results.

A traditional approach is that we solve the relaxed barrier problem by letting
µ ↓ 0 for each fixed θ. The process is then repeated as θ ↓ 0. For examples we
can see [13,41].

Unlike the traditional approach, our algorithm takes a shortcut to reduce µ
and θ simultaneously. In particular, the barrier parameter µ is selected to be
a fraction of θ (so θ is a multiple of µ). Thus, the barrier problem (76)-(78) is
slightly different from its traditional counterpart in that the barrier parameter
appears both in the constraints and in the objective function. All the convergence
results in the last section would be still valid, however, since all those results
were independent of how µ is specified.

Algorithm 2. (The algorithm for the MPEC)

Step 1 Set the initial point (x0, y0, λ0, z0, u0, v0) with (x0, y0, λ0) ∈ <n+m+`,

z0 ∈ <p+3`
++ , u0 ∈ <p+3`

++ and v0 ∈ <m, the initial barrier parameter
µ0 > 0, penalty parameter ρ0 > 0, constants σ > 0, τ > 0, γ > 0,
κ ∈ (0, 1), and the stopping tolerances ε > 0, ε

′
> 0. Let θ0 = τµ0,

j := 0;
Step 2 Starting from (xj , yj , λj , zj , uj , vj), solve the barrier problem (76)-

(78) by Algorithm 1. The Algorithm 1 is terminated when the iter-
ate (xkj , ykj , λkj , zkj , ukj , vkj ) satisfies one of the following groups of
conditions:

(i)



‖(Gkjθj + zkj , Hkj )‖ < γµj ,

‖ZkjUkje− µje‖ < γµj ,∥∥∥∥∥∥∥
∇xfkj +∇xG

kj
θj
ukj +∇xHkjvkj

∇yfkj +∇yG
kj
θj
ukj +∇yHkjvkj

∇λG
kj
θj
ukj +∇λHkjvkj


∥∥∥∥∥∥∥ < γµj ;

(118)

(ii)


‖((Gkj0 )+, H

kj )‖ ≥ γε,∥∥∥∥∥
(
∇EG

kj
θj

(G
kj
θj

+ zkj ) +∇EHkjHkj

Zkj (G
kj
θj

+ zkj )

)∥∥∥∥∥ < ε;
(119)

(iii)


‖((Gkj0 )+, H

kj )‖ < ε,

det

([
(∇E(G̃kj )Ĩj )

>

(∇EHkj )>

] [
∇E(G̃kj )Ĩj ∇EH

kj
])
< ε,

(120)

where Zkj = diag (zkj ) and Ukj = diag (ukj ), G
kj
0 is the value of G

kj
θ

when θ = 0, det(·) is the determinant, G̃kj = (ckj , gkj ,−λkj ), Ĩj =

{i||(G̃kj )i| < ε}, ∇E(G̃kj )Ĩj is the submatrix of ∇E(G̃kj ) consisting

of all columns indexed by i ∈ Ĩj.
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Set

(xj+1, yj+1, λj+1) = (xkj , ykj , λkj ), (121)

(zj+1, uj+1, vj+1) = (zkj , ukj , vkj ), (122)

and

ρj+1 = max{ρkj , ‖(uj+1, vj+1)‖+ σ}. (123)

If min(yj+1) < ε
′

and Algorithm 1 terminates at (119) or (120),
stop. If Algorithm 1 terminates at (118), go to the next step.

Step 3 If µj < ε, stop; else set µj+1 = κµj, θj+1 = τµj+1, j := j + 1, and
go to Step 2.

Different from the algorithm for general nonlinear programming in [32], we
update the penalty parameter ρj by the information on multipliers, see (123),
where we do not need scalar σ to be positive.

The stopping conditions (118), (119) and (120) are based on the results of
last section. For any given µj , if Algorithm 1 has found an approximate KKT
point of the relaxed barrier problem, then we proceed the algorithm to a new
and smaller barrier parameter. Otherwise, by Theorem 1, if the tolerances are
sufficiently small, then the algorithm will produce a sequence with a limit point
(x∗, y∗, λ∗) for which one of the following assertions is true.

(1) ‖((G∗θj )+, H
∗)‖ = 0, and the vectors ∇EG∗θji (i ∈ Ij = {i | (G∗θj )i = 0}),

∇EH∗i (i = 1, . . . ,m) are linearly dependent. In this case, (x∗, y∗, λ∗) is a feasible
point of NLP(θj) with θj = τµj. If ‖((G∗0)+, H

∗)‖ = 0, that is, (x∗, y∗, λ∗) is also

feasible to MPEC, then Ij = {i | G̃∗i = 0}, and (x∗, y∗) is a singular stationary

point of MPEC since the vectors ∇EG̃∗i (i ∈ {i | G̃∗i = 0}), ∇EH∗i (i = 1, . . . ,m)
are linearly dependent. In this case, Algorithm 2 terminates at (120); otherwise,
the point (x∗, y∗) is an infeasible stationary point of MPEC and Algorithm 2
terminates at (119).

(2) ‖((G∗θj )+, H
∗)‖ 6= 0 and ∇EG∗θj (G

∗
θj

)+ +∇EH∗H∗ = 0, so (x∗, y∗) is an

infeasible stationary point of MPEC. Algorithm 2 terminates at (119).

Recall that these results require an assumption that ∇EHj(x
k, yk, λk), j =

1, . . . ,m are linearly independent, which is guaranteed if F (xk, ·) is strongly
monotone and gj(x

k, ·), j = 1, . . . , ` are convex for all k ≥ 0.

To summarize, we have the following convergence results for the algorithm.

Theorem 2. At termination, one of the two alternatives must hold.

(A) For some µj, Algorithm 2 does not proceed to Step 3. It terminates at
an inner loop. Then the termination point is an approximate singular stationary
point of MPEC if it is approximately feasible to the MPEC, otherwise it is an
approximate infeasible stationary point.

(B) For each µj, Algorithm 2 proceeds to Step 3, the algorithm terminates
at an outer loop. Then it terminates either at an approximate strong stationary
point or at an approximate weak stationary point.
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Proof. (A) This result has been given by the above statements (1) and (2).
(B) We have this result since the point satisfying (118) for sufficiently small

µj and θj is an approximate weak stationary point of MPEC, furthermore, if
ukj and vkj are bounded, then it is also an approximate strong stationary point
(Proposition 3).

The case (B) of Theorem 2 can be further clarified as follows, which does not
require a proof.

Theorem 3. Assume that Algorithm 2 proceeds to Step 3 for each µj, ε =
0 and an infinite sequence {(xj , yj , λj)} is generated. Moreover, assume that
{(xj , yj , λj)} is uniformly bounded.

(B1) If {ρj} is bounded, then every limit point of {(xj , yj)} is a strong sta-
tionary point of MPEC (1)-(3). If in addition the MPEC-LICQ holds at this
limit point, then it is a B-stationary point of the MPEC.

(B2) If {ρj} is unbounded, then every limit point of {(xj , yj)} is a weak
stationary point of MPEC, which may not be a strong stationary point of MPEC.

6. Numerical results

Algorithm 1 and Algorithm 2 have been coded in MATLAB. The initial parame-
ters in Algorithm 1 are selected as σ0 = 0.1, β1 = 0.01, β2 = 100, and ξ = 0.005.
B0 = I is the identity matrix. The computation of (d̂kx, d̂

k
y) is done by Algorithm

6.1 in [32]. In Algorithm 2, we select µ0 = 0.1, ρ0 = 1, σ = −10, τ = 2, κ = 0.1,
γ = 100 and ε = 10−6, ε

′
= 10−15. The initial slack variables and the dual

variables are given by

z0 = e(p+3`), u
0 = µ0e(p+3`), v

0 = 0, (124)

where e(p+3`) is a (p+3`)-dimensional vector of ones. In implementing Algorithm

1, we terminate the algorithm if ‖(dkjs , dkjz )‖ is sufficiently small (less than εµj)
or if one of the stopping criteria (118)-(120) is met.

The approximate Hessian Bk is updated to Bk+1 by the well-known damped
BFGS update procedure.

6.1. The set of test problems in [13] and some special examples.

The numerical tests in this subsection are conducted on a COMPAQ personal
computer with a Pentium-III 450MHz processor and WINDOWS98 operating
system. We first applied our algorithms to the set of test problems listed in the
Appendix of [13]. Some of the test problems were also used in [1,3,37,38,43] to
test various algorithms developed for MPEC.

The test problem 7 has a nondifferentiable term w = max{0, x1 + x2 + y1 −
2y2− 40} in the objective function, we reformulate it as a smooth problem with

f(x, y) = 2x1 + 2x2 − 3y1 − 3y2 + 2000w2 − 60, (125)
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and w ≥ 0, w ≥ x1 + x2 + y1 − 2y2 − 40.
The initial x0s are given by [13], but there is no information on how to select

y0 and λ0. To our convenience we set

y0 = η1em, λ
0 = η2e` (126)

where em and e` are respectively m-dimensional and `-dimensional vectors of
ones, and η1 and η2 are two constants (given in Table 1), which for most test
problems are selected to be 0 or x0

1 (the first component of x0), depending which
one gives a better numerical result.

The computational results are reported in Tables 1 and 2, in which we label
the problem in the same way as in [13], for example, 1(a) represents the test
problem 1 with the starting point (a), whereas 8(2) is the test problem 8 with
the second group of data.

Table 1 includes the solutions and the optimal values obtained by our algo-
rithm. Compared to Table 1 in [13], The optimal values are agreeable up to 10−6

with that given by [13]. In the test we also noted that the solution may not be
unique for some test problems such as Problems 9 and 10 if we use different y0

and λ0.
We list the numbers of function evaluation (FN), gradient evaluation (GR),

the number of total inner iterations (IT) in Table 1. The function evaluation
includes the evaluation of the objective function and the constraint functions.
Similarly, the gradient evaluation also include the evaluation of the gradients of
the objective function and the constraint functions. For easy comparison with
[13], the total numbers of evaluating nonlinear functions and their gradients are
put in parentheses in the respective columns, where all components of H(x, y, λ)
are always treated as nonlinear functions. Note that we count the evaluation
number in term of vectors while [13] counts each component separately, so the
number in the parentheses equals the number out of the parentheses multiplied
by the number of nonlinear functions in the corresponding problems. The eval-
uations on λ ◦ g(x, y) are not included because they can be derived directly.
Comparing with the results of Table 2 in [13], we see that our algorithm gener-
ally requires fewer computations on the functions and their gradients except for
a few problems such as problem 6.

While the relaxation parameter is linearly dependent on the barrier param-
eter, the barrier parameter is decreased by a fixed factor 0.1. Hence the number
of outer iterations is 7 for all test problems. This way of updating the barrier
parameter has been used in a number of interior-point algorithms for NLP such
as Byrd, Hribar and Nocedal [7]. Some other strategies are reported in [23,24].
Our preliminary experiment appears to show that there is no obvious impact on
the number of iterations if we change from the fixed factor to a variable factor.
One of the reasons may be that the solution to the MPEC is always feasible to
the NLP relaxation NLP(θ) and can be reached even if θ is not sufficiently small.
However, we agree with a referee on that this point may worth to be investigated
in more details in future.

In Table 2, we report the optimal penalty parameter ρ∗ and the residuals
of first-order conditions, constraint violations and complementarity, where RD=
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Table 1. Solutions and optimal values

Prob (η1, η2) x∗ f∗ IT FN GR

1(a) (0,0) 4.06041 3.207700 16 17 (119) 17 (119)
(b) (0,0) 4.06041 3.207700 15 16 (112) 16 (112)

2(a) (0,0) 5.15361 3.449404 19 20 (140) 20 (140)
(b) (0,0) 5.15360 3.449404 15 16 (112) 16 (112)

3(a) (0,0) 2.38942 4.604254 16 18 (126) 17 (119)
(b) (0,0) 2.38942 4.604254 19 20 (140) 20 (140)

4(a) (0,0) 1.37313 6.592684 15 17 (119) 16 (112)
(b) (10,10) 1.37313 6.592684 21 29 (203) 22 (154)

5(a) (0,0) (0.50018,0.50018) -1.000000 12 13 (65) 13 (65)

6(a) (0,5) 93.33333 -3266.666667 33 101 (202) 34 (68)

7(a) (0,0) (25.00125,30.00000) 4.999375 30 46 (138) 31 (93)

8(1) (75,75) 55.55129 -343.345260 22 23 (115) 23 (115)
8(2) (75,75) 42.53824 -203.155072 22 23 (115) 23 (115)
8(3) (75,75) 24.14506 -68.135650 23 24 (120) 24 (120)
8(4) (75,75) 12.37270 -19.154065 24 25 (125) 25 (125)
8(5) (75,75) 4.75356 -3.161181 24 25 (125) 25 (125)
8(6) (25,25) 50.00000 -346.893197 27 28 (140) 28 (140)
8(7) (20,20) 39.79144 -224.037202 29 33 (165) 30 (150)
8(8) (15,15) 24.25713 -80.785972 27 28 (140) 28 (140)
8(9) (12.5,12.5) 13.01965 -22.837119 30 32 (160) 31 (155)

8(10) (10,10) 6.00235 -5.349137 23 24 (120) 24 (120)

9(a) (0,0) (5.00000,9.00000) 1.640116e-12 15 17 (51) 16 (48)
9(b) (0,0) (5.00000,9.00000) 1.640719e-12 16 17 (51) 17 (51)
9(c) (0,0) (5.00000,9.00000) 1.640082e-12 17 18 (54) 18 (54)
9(d) (0,0) (5.00000,9.00000) 6.752681e-15 17 18 (54) 18 (54)
9(e) (0,0) (5.00000,9.00000) 1.845236e-14 15 16 (48) 16 (48)

10(a) (0,5) (7.00000,3.00000, -6600.000000 77 97 (485) 78 (390)
12.00000,18.00000)

11(a) (2,2) (0.00038,2.00000) -12.678711 24 25 (200) 25 (200)

‖∇f∗+∇G∗u∗+∇H∗v∗‖, RP= ‖(G̃∗+, H∗)‖ (G̃ is defined by (30)), RC= z∗>u∗

and CC= ‖λ∗ ◦ g∗‖∞. These data are not reported in [13]. We include them
for future reference. The results in Table 2 show that Algorithm 2 obtained
approximate strong stationary points for all test problems including the problems
without strict complementarity (e.g. Problem 1). As indicated in our analysis,
the penalty parameter should be, and in fact it is, bounded for all those test
problems.

Another observation from Table 1 is that for most test problems the number
of function evaluations (FN) is not much larger than the number of iterations,
which means that a full Newton step has been used in most iterations (especially
for problems 1, 2, 3, 4(a), 5, 8, 9, 11), which is a condition to guarantee local su-
perlinear convergence. The interested reader can find more details about Newton
steps in [32]. In the computational test we observed that, when the parameter
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Table 2. Residuals on KKT conditions

Prob ρ∗ RD RP RC CC

1(a) 1 3.91260e-06 9.43459e-13 1.40066e-06 1.08144e-07
(b) 1 3.88400e-06 9.31053e-13 1.40395e-06 1.08133e-07

2(a) 1 6.47515e-06 6.21528e-10 1.40000e-06 1.08331e-07
(b) 1 4.06954e-06 2.90570e-13 1.40004e-06 1.08346e-07

3(a) 2 2.54043e-06 7.87426e-11 1.40000e-06 1.32039e-07
(b) 2 2.45985e-06 6.17211e-11 1.40000e-06 1.32039e-07

4(a) 2 7.36826e-06 1.07658e-12 1.40000e-06 1.62779e-07
(b) 2 7.37578e-06 1.08232e-12 1.40000e-06 1.62779e-07

5(a) 1 3.21444e-07 4.71205e-14 1.06296e-06 3.62825e-11

6(a) 119.0367 9.64017e-06 1.42109e-14 4.30350e-07 6.64785e-08

7(a) 21.6355 2.94241e-06 4.94778e-15 2.39160e-06 1.04159e-07

8(1) 213.5024 5.07962e-08 3.08413e-15 2.60000e-06 1.06089e-07
8(2) 219.9075 6.38270e-07 4.94071e-13 2.60000e-06 1.04141e-07
8(3) 232.9427 3.92007e-07 4.84775e-15 2.59377e-06 1.01998e-07
8(4) 244.5515 2.77047e-07 1.72379e-15 2.60043e-06 1.00927e-07
8(5) 253.7753 8.98560e-07 1.79391e-15 2.60000e-06 1.00335e-07
8(6) 92.7429 1.66264e-10 6.35312e-15 2.60000e-06 1.92255e-07
8(7) 74.3471 4.44064e-09 2.70727e-13 2.60000e-06 1.94887e-07
8(8) 52.6502 3.36448e-11 2.41483e-14 2.60000e-06 1.88150e-07
8(9) 41.3860 5.10181e-08 3.26219e-13 2.60000e-06 1.93200e-07

8(10) 28.0840 9.71402e-06 1.34951e-13 2.60000e-06 1.58395e-07

9(a) 1 2.09588e-06 9.12282e-16 1.00001e-06 1.00012e-07
9(b) 1 2.40326e-06 3.09777e-15 1.00001e-06 1.00012e-07
9(c) 1 2.24411e-06 5.13123e-15 1.00001e-06 1.00012e-07
9(d) 2 3.31860e-07 3.66756e-15 1.00000e-06 1.00000e-07
9(e) 1 2.06686e-06 1.25382e-15 1.00000e-06 1.00000e-07

10(a) 311.7059 5.27949e-07 7.62533e-16 4.50000e-06 1.00000e-07

11(a) 2 8.59246e-07 9.58334e-08 1.47988e-06 1.44038e-07

µ is small enough, the algorithm tends to solve the relaxed barrier problem in
very few iterations (not more than 3 iterations as µ = 10−7 for all test problems
and only 1 iteration for most problems).

We then apply our algorithm to three special examples. The first example is
presented by Leyffer in [29] to show that PIPA may not find a stationary point.

min x+ y (127)

s.t. x ∈ [−1, 1], (128)

−1 + x+ λ = 0, (129)

y ≥ 0, λ ≥ 0, yλ = 0. (130)

The standard starting point is (0, 0.02, 1), and the optimal solution is (−1, 0, 2).
Our algorithm solves it successfully after 8 iterations. FN=GR=9, ρ∗ = 1,
RD=1.67696e-06, RP=0, RC=3.65130e-07 and CC=7.52964e-09.
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The second example is

min (x− 2)2 + y2 (131)

s.t. x ≥ 0, (132)

(1− x)3 − λ = 0, (133)

y ≥ 0, λ ≥ 0, yλ = 0, (134)

of which the optimal point is (1, 0, 0) and is also a singular stationary point of the
problem. The initial point is (1, 1, 1). The algorithm stops at (120) of Step 2 with
residues 1.0967e-15 and 0, respectively. The solution is (1.00000, 0.00707, 0.00000)
and the multiplier vector is (0.0141,−9.3213e+10, 9.3213e+10, 0.0001, 0.5000)
after 42 iterations. The solution is an approximate singular stationary point.
FN= 85, GR= 43, µ = 1.0000e-04, ρ∗ = 1.4837e+11, RD= 1.08486, RP=
1.09669e-15, RC= 3.98811e-04 and CC= 7.49567e-18.

The third example is

min x+ (y − 1) (135)

s.t. x2 + 1 ≤ 0, (136)

x+ y − λ = 0, (137)

y ≥ 0, λ ≥ 0, yλ = 0, (138)

which is obviously an infeasible MPEC. The point (0, 0, 0) minimizes the `2-
infeasibility of constraints. The initial point is (−1, 1, 1). Our algorithm stops
at (119) after 221 iterations with residues 1.0000 and 5.6985e-07. The solution
is (9.06114e-06,−9.53364e-08,9.86731e-06), which is an approximate infeasible
stationary point. FN= 323, GR= 222, µ = 1.0e-07, ρ∗ = 1.3251e+20, RD=
2.40724e+15, RP= 1.00000, RC= 1.91654e-06, CC= 9.40713e-13. These results
are interesting since they show that Algorithm 2 may obtain certain points with
weak stationarity defined in this paper when some other methods may fail to
find meaningful solutions.

6.2. The MacMPEC test problems using AMPL interface.

By hooking our MATLAB codes to AMPL, we apply Algorithm 2 to the MacM-
PEC test problems (see [15,30]) which are the same as [15], where .nl files
are read by a mex file amplfunc.mexhp7*. However, we have a difficulty to use
the sparse version spamfunc.c to derive the corresponding mex file. It happens
that, when the problem is large, we were out of memory (partially due to the
MATLAB environment). Those problems in Table 3 are marked by “-” in the
corresponding columns. The last two problems are marked by “out of domain”,
meaning that certain iterate goes beyond the domain of some function used, so
the solution process is adjourned. The details on using MATLAB with AMPL
can be found in Gay’s preprint [22] and in the book of Fourer et al. [17].

The computational experiments have been done on a Hewlett Packard C3600
workstation with the UNIX system. Many test problems in the former subsection
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are included in this test suite, it is still worthwhile to solve them again since
these problems have been uniformly reformulated as MPECs in a “blackbox”
format; namely we do not have the freedom to reformulate them into a form
that is convenient for applying our algorithm. All starting points are standard
and fixed by the suite or the default of AMPL. In this experiment, we have
ρ0 = 10 for all test problems if not specified.

The numerical results are given in Table 3, where n, mi, me and p are the
numbers of variables, inequality constraints (including bound constraints), gen-
eral equality constraints, and complementarity constraints, respectively. “iter”
represents the number of total inner iterations. f∗ is the value of the objective
function at the solution. “cc” is the maximum of residues of complementarity
constraints. ρ∗ is the value of the penalty parameter when the algorithm ter-
minates. Due to memory limitation, we cannot solve some large problems with
more than 1500 variables.

It can be noted from Table 3 that Algorithm 2 does well on almost all prob-
lems of relatively small sizes. According to the stopping criterion, and referring
to the results given by [6,15], we have derived the approximate strong stationary
points if they exist for the solved problems. It might be worthwhile to note that
the algorithm has found the approximate optimal solutions for problems ex9.2.2,
qpec2, ralph1 and scholtes4 which do not possess a strong stationary point. How-
ever, it has trouble with twelve MPECs (≈ 9% of the test problems). Six of them
took 1000 iterations and the accuracy requirement was yet to meet. For the other
six, from our observation, the trouble is that the direction-finding linear system
(81)-(84) cannot be solved correctly. We noted that the algorithm may produce
a rank-deficient coefficient matrix for the linear system. This kind of unsuccess-
ful cases are marked “rank deficient” in the table. It has been pointed out by
a referee that the optimal packaging problems pack-comp1-*, pack-comp1c-*,
pack-comp2-*, pack-comp2c-*, pack-rig1-*, pack-rig1c-*, pack-rig2-* and pack-
rig2c-* possess constraints other than the complementarity constraints which
cause the problem to have no strict interior. Hence inspite of the relaxation
of the complementarity constraints, NLP(θ) will still have no interior, which
may be the reason of the peculiar behavior of the algorithm in solving those
problems. The problems pack-rig1p-*, pack-rig2p-* are penalty reformulations
of pack-rig1-*, pack-rig2-* respectively, which possess a strictly feasible inte-
rior, so the algorithm can solve these instances and can converge with bounded
penalty parameter.

Lastly, we provide a comparison of the algorithm with FilterSQP and LOQO
(see [6,15]) by showing their log scaling performance profiles (see Dolan and Moré
[12]) respectively in Figure 1, where we use the 106 problems the algorithm solved
successfully in less than 1000 iterations. The data for the filterSQP and LOQO
are taken from [15] and [6]. The performance of the algorithms is measured by

Πs(t) =
1

|P |

∣∣∣∣{p : log2(
iter(s, p)

best iter(p)
) ≤ t, p ∈ P}

∣∣∣∣ ,
where P is the set of problems, | · | is the cardinality of a set ·, iter(s, p) is
the number of iterations the solver s took on problem p and best iter(p) is
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Fig. 1. Plot of the Performance Profile Πs(t)

the smallest number of iterations any known solver took. Under this measure,
the algorithm (named as pdipm in the figure) performs similarly to LOQO but
inferior to filterSQP for the test problems (We have the same observation for
data in [5]). However, as mentioned in Section 6.1, it appears that the algorithm
has a strength in handling “irregular” problems such as the infeasible ones or
the ones with dependent gradients at optimality.
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