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Abstract. Convex piecewise quadratic functions (CPQF) play an important role

in mathematical programming, and yet their structure has not been fully studied.

In this paper these functions are categorized into difference-definite and difference-

indefinite types. We show that, for either type, the expressions of a CPQF on

neighboring polyhedra in its domain can differ only by a quadratic function related to

the common boundary of the polyhedra. Specifically, we prove that the monitoring

function in extended linear- quadratic programming is difference-definite. We then

study the case where the domain of the difference-definite CPQF is a union of boxes,

which arises in many applications. We prove that any such function must be a sum

of a convex quadratic function and a separable CPQF. Hence, their minimization

problems can be reformulated as monotropic piecewise quadratic programs.
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1. Introduction

A convex function f : Rn �→ R ∪ {±∞} is piecewise quadratic if its domain (i. e. the

set dom f = {x ∈ Rn|f(x) < ∞}) is a union of finitely many convex polyhedra, on each

of which the function is given by a quadratic formula (including affine formula as a

special case). Due to continuity of the convex piecewise quadratic function (CPQF)

on its domain, the expressions of f on different polyhedra can not be arbitrary. Our

concern in this paper are the relationship between these expressions and the overall

structure of a CPQF.

The interest of studying the CPQF is stimulated by recent research of Rockafellar

and Wets (Refs. 1-3) on stochastic programming and optimal control problems. In

their theoretical framework constraints are separated into two classes; one should

be satisfied exactly and another may be violated. A “monitoring” term in the

objective function is used to reduce the violation. Based on this formulation, a clear

duality relationship can be derived and new algorithms are proposed for previously

unsolvable problems. At the center of their model is a linear-quadratic minimax

problem

(E) minimax L(x, y) = pT x + qT y + (xT Px)/2 − (yT Qy)/2 − yT Rx, x ∈ U, y ∈ V,

where “T” designates the transpose of a vector. Problem (E) induces the primal-dual

pair of extended Linear-quadratic programs:

(P ) minx∈U f(x), where f(x) = supy∈V L(x, y),

(D) maxy∈V g(y), where g(y) = infx∈U L(x, y),

where U(⊂ Rn) and V (⊂ Rm) are convex polyhedra, representing the constraints that

should be satisfied exactly; p and q are fixed vectors, P (positive semidefinite), Q

(positive semidefinite), and R are fixed matrices. Then we have

f(x) = pT x + (xT Px)/2 + ρV,Q(q − Rx) and g(y) = qT y − (yT Qy)/2 − ρU,P (RT y − p),

where

ρV,Q(v) = sup
y∈V

{yT v − (yT Qy)/2} and ρU,P (u) = sup
x∈U

{xT u − (xT Px)/2}.

The functions ρV,Q and ρU,P are the monitoring terms characterizing deviations of Rx

from q and RT y from p, respectively. In Ref. 2, it is shown that both ρV,Q and ρU,P

are CPQF in our sense. Of course, there are other applications of CPQFs, some of

which are described in Refs. 4-8.
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The structure problem of the CPQF has been studied from another angle. In

Ref. 9 it is proved that a function is convex piecewise quadratic if and only if its

subdifferential mapping is polyhedral in Robinson’s (Ref. 10) sense. This prop-

erty is used in analyzing the duality and parametric properties of convex piecewise

quadratic programming. From the viewpoint of algorithmic development, however,

it is convenient to know how the expressions of a CPQF are interrelated and under

what conditions a CPQF can be decomposed into simpler functions. Especially, if a

CPQF is separable, i.e. the function is of the form f(x) = f1(x1) + · · · + fn(xn), where

xi, i = 1, · · · , n are components of x and fi(xi) are one-dimensional convex piecewise

quadratic functions, then, even if additional linear constraints exist, we may solve

the corresponding minimization problem (the so-called monotropic piecewise quadratic

program) quite efficiently (Ref. 11). Naturally one wants to know the possibility of

changing a general CPQF into a separable CPQF by a certain transformation of

variables. Since the original function is linear-quadratic, affine transformation is

preferable. This problem is tightly related to the structure problem to be investi-

gated in this paper.

In the next section we categorize the CPQF into two types (difference-definite

and difference-indefinite) and derive the relationship between expressions on neigh-

boring polyhedra for both types. The result implies that the difference-indefinite

type is not separable under any nonsingular affine transformation. On the other

hand, we prove that the monitoring functions in problem (P) and (D) are difference-

definite. In Section 3 we analyze the difference-definite CPQF whose domain is a

union of boxes and show that any such function must be a sum of a convex quadratic

function and a separable CPQF. Consequently, we point out that the problem of

minimizing this function is equivalent to solving a monotropic piecewise quadratic

program.

2. Structure of General Convex Piecewise Quadratic Functions

In the following derivations, without loss of generality, we assume that the CPQF

under discussion satisfies the following conditions:

(C1) The dimension of dom f is n. Otherwise, we could discuss the problem in a

lower dimensional space by changing the coordinate system.

(C2) dom f = P1 ∪ · · · ∪ Pm, where all Pi, i = 1, · · · , m are convex polyhedra of

dimension n and intPi∩intPj = ∅ (i 
= j). This assumption is reasonable because all

lower-dimensional polyhedra in dom f must be contained in some of the n-dimensional

Pi’s, therefore, the removal of those lower dimensional polyhedra from dom f does

not change f due to continuity of f in dom f. Furthermore, if two polyhedra have a

common internal point, then the quadratic expressions on them must be identical
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and it is a trivial case pertaining to our purposes.

Definition 2.1. Let Pi, Pj(i 
= j) ⊂ dom f. Pi and Pj are neighboring with each other

if the affine hull of Pi∩Pj is of dimension n−1. The affine hull of Pi∩Pj (a hyperplane)

is called their common boundary.

Definition 2.2. A CPQF is said to be of difference-definite type if all of the differ-

ences between its expressions on neighboring polyhedra have positive or negative

semidefinite Hessian. Otherwise it is said to be of difference-indefinite type.

Proposition 2.1. Let f(x) be a CPQF. Let P1 and P2 be two neighboring polyhedra

in dom f with common boundary {x|aT x = b}. Let f1(x) and f2(x) be the quadratic

expressions of f on P1 and P2, respectively. Then there exist a vector ā and a constant

b̄ such that

f2(x) = f1(x) + [aT x − b][āT x − b̄]. (1)

Moreover, a and ā is linearly dependent if f is difference-definite, whereas if f is

difference-indefinite, there exists at least a pair of P1 and P2, such that ā is linearly

independent of a.

Proof. Let x0 ∈ P1 ∩ P2 and let Q be an orthogonal matrix such that QT RQ is

diagonal, where R is the Hessian of f2−f1. Under the affine transformation x = Qy+x0,

the function f(x) = f(Qy + x0) has expressions f1(Qy + x0) and f2(Qy + x0) respectively

on P1 = Q−1(P1 − x0) and P2 = Q−1(P2 − x0), and the common boundary of P1 and P2

passes zero. Without loss of generality let H ≡ {y|h(y) ≡ y1 − c2y2 − · · · − cnyn = 0} be

this common boundary and let f3(y) ≡ f2(Qy + x0) − f1(Qy + x0) = (d1y
2
1 + s1y1) + · · · +

(dny2
n + snyn). By continuity of f in dom f , f3(y) ≡ 0 on H. Then one of the following

must be true:

(i) f3(y) = s1h(y);

(ii) f3(y) = d1h(y)2 + s1h(y) and h(y) = y1.

(iii) f3(y) = h(y)[d1(y1 + cjyj) + s1], d1 
= 0 and h(y) = y1 − cjyj , cj 
= 0.

To prove this, denote {2, · · · , n} by J and notice that f3(y) ≡ 0 on H implies that

0 ≡
∑
j∈J

(djy
2
j + sjyj) + d1(

∑
j∈J

cjyj)2 + s1

∑
j∈J

cjyj .

A quadratic form identically equals zero only if all of its coefficients are zero. There-

fore we get

dj + d1c
2
j = 0, ∀ j ∈ J, (2)

d1cjck = 0, ∀ j, k ∈ J, j 
= k, (3)

sj + s1cj = 0, ∀ j ∈ J. (4)

We consider the following three cases separately:
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Case 1. d1 = 0;

Case 2. d1 
= 0 and for all j ∈ J cj = 0;

Case 3. d1 
= 0 and there exists a j ∈ J such that cj 
= 0.

Case 1. We have d1 = 0. Then dj = 0 ∀j ∈ J because of (2). From (4) we get

sj = −s1cj , ∀ j ∈ J. Thus f3(y) = s1h(y). This is (i).

Case 2. We have d1 
= 0 and cj = 0 for all j ∈ J. Then from (2) and (4) we get

dj = sj = 0, for all j ∈ J. This implies (ii).

Case 3. From (2)– (4) we get dk = sk = ck = 0, ∀ k ∈ J − {j}. Hence we have

f3(y) = d1y
2
1 + djy

2
j + s1y1 + sjyj , h(y) = y1 − cjyj

and

dj + d1c
2
j = 0, sj + s1cj = 0.

Thus

f3(y) = d1(y2
1 − c2

jy
2
j ) + s1(y1 − cjyj) = h(y)[d1(y1 + cjyj) + s1]. (5)

This is (iii). Notice that in this case f3 is indefinite.

Now the inverse transformation y = Q−1(x−x0) will make h(y) back to a multiple

of aT (x − x0) = aT x − b and f3(y) to f2(x) − f1(x). If f is difference-definite, only (i)

and (ii) can happen, then we have f2(x) = f1(x) + α(aT x − b)2 + β(aT x − b), where α

and β are certain constants. Thus (1) is valid with ā being a multiple of a. If f is

difference-indefinite, either cases (i), (ii) or case (iii) could happen, but there is at

least a pair of P1 and P2 such that case (iii) is valid. In addition, from (5) the normal

vectors of h(y) = y1 − cjyj = 0 and d1(y1 + cjyj) + s1 = 0 should be linearly independent

because cj 
= 0. This implies (1) and the linear independence of a and ā.

Remark 2.1. When a and ā are independent, the images of a and ā under a

nonsingular linear transformation of variables should be still independent. Thus

the term [aT x − b][āT x − b̄] will not be separable under the transformation. There-

fore the difference-indefinite CPQF is not separable under any nonsingular affine

transformation of variables. Moreover, the following corollary says that, if f is

difference-indefinite, then there exists two neighboring polyhedra P1 and P2 such

that the restriction of f on P1 ∪ P2 naturally belongs to a nonconvex function.

Corollary 2.1. (Extensible Convexity) A CPQF is difference-definite if and only

if for any neighboring P1, P2 ⊂ dom f, the function

f̄(x) ≡
{

f1(x), if x is on P1’s side of the common boundary,
f2(x), if x is on P2’s side of the common boundary

is convex, where f1 and f2 are the quadratic formulae of f on P1 and P2 respectively.

Proof. f̄ is convex if and only if for any x ∈ dom f, w ∈ Rn, the function φ(α) =

f̄(x + αw) is convex, where α ∈ R. The latter is true if and only if φ−(α) ≤ φ+(α),
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where φ− and φ+ are the ordinary left and right derivatives of φ. It is obvious that

we only have to consider such α that x + αw is on the common boundary. Since

affine transformation does not change convexity, it suffices to show that for any

y ∈ H = {y|h(y) = 0} and z pointing to the P2’s side of the hyperplane H, the directional

derivatives of f ′
3(y, z) ≥ 0. (If z is the opposite direction, we can show f ′

3(y, z) ≤ 0

similarly.) Here f3(y) and h(y) are same as in the proof of Proposition 2.1. Note

that f ′
3(y, z) = ∇f3(y)T z. For case (i), ∇f3(y)T z is independent of y. Thus, if for some

y0 ∈ H we have f ′
3(y

0, z) ≥ 0, then there holds f ′
3(y, z) ≥ 0 for all y ∈ H. According

to the convexity of f , such y0 certainly exists. For case (ii), ∇f3(y) only depends

on y1. However, y1 = 0 for all y ∈ H, so ∇f3(y)T z is also independent of y on the

boundary. In summary, if f is difference-definite, the (local) convexity of f̄ around

some x0 ∈ P1 ∪ P2 implies the (global) convexity of f̄ .

On the other hand, if f is difference-indefinite, then there exist P1 and P2 such

that the case (iii) in the proof of Proposition 2.1 is valid. Hence we have

f3(y) = h(y)[d1(y1 + cjyj) + s1] = h(y)(2d1y1 + s1) on H = {y|y1 − cjyj = 0, cj 
= 0}.

Therefore ∇f3(y)T z = (z1− cjzj)(2d1y1 + s1), for y ∈ H. However, because z /∈ H, we have

z1 − cjzj 
= 0. Thus ∇f3(y)T z can not keep the same sign for all y ∈ H due to d1 
= 0.

Thus f̄ is not convex.

A simple example of the difference-indefinite CPQF is

f(x1, x2) =

⎧⎨
⎩

x2
1 + x2

2, if x1 ≤ 0, x2 ≥ 0,
x2

1 + x1x2 + x2
2, if x1 ≥ 0, x2 ≥ 0,

+∞, if x2 < 0.

If we extend the formula x2
1 + x2

2 to the second and third quadrants and the formula

x2
1 + x1x2 + x2

2 to the first and fourth quadrants, the resulting function f̄ is convex on

the upper half of the plane but not on the lower half of the plane.

An important CPQF is the monitoring function ρV,Q(u) in problem (P) (similarly,

ρU,P (v) in (D)). We now show that this function is difference-definite. For briefness

we only discuss the case of Q being positive definite. The discussion on semidefinite

Q can be reduced to this case, see Ref. 2.

Proposition 2.2. The function

ρV,Q(x) = sup
y∈V

{yT x − (yT Qy)/2}

is a CPQF of difference-definite type, where V is a convex polyhedron and Q is a

positive definite symmetric matrix.

Proof. Since nonsingular linear transformation of variables does not change

difference-definiteness, without loss of generality, we assume that y ∈ Rn, yT Qy =

y2
1 + · · · + y2

n. Then

ρV,Q(x) = sup
y∈V

{yT x − (yT y)/2} = (xT x)/2 − inf
y∈V

||y − x||2/2.
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We need to show that the function d(x) ≡ infy∈V ||y − x||2 has the difference-definite

property. ( In Ref. 2, it is already shown that ρV,Q(x) is a CPQF.) Note that d(x)

is the square Euclidean distance from x to V. It may change its expression only if

the projection of x on V changes from one face of V to another face of different

dimension. The neighboring expressions of f , say f1 and f2 correspond to two faces

of V , say F1 and F2, such that one (say F1) is contained in the boundary of another

(say F2). Since F1 is on the boundary of F2, the square Euclidean distance from x to

F1 is not less than that from x to F2. The corresponding expressions d1(x) and d2(x)

of d(x) then have the following property: d1(x) − d2(x) ≥ 0 for all x ∈ Rn. This is only

possible if d1(x) − d2(x) has a positive semidefinite Hessian.

3. Separability of the Difference-Definite CPQF

Now we would like to know whether the difference-definite CPQF can be decom-

posed into a separable form for computational purposes. We notice that if a CPQF

is separable, then the quadratic formula on each of the polyhedra in its domain has

the form xT Dx+ qT x+ r, where D is a diagonal n by n matrix. (Of course, D, q, and r

may vary on different polyhedra.) Such a CPQF is said to be diagonal. On the other

hand, the diagonality of a difference-definite CPQF on two neighboring polyhedra

implies by Proposition 2.1 that their common boundary should be parallel to a co-

ordinate hyperplane unless these expressions differ only by a linear function. Hence,

for a difference-definite CPQF, diagonality suggests a box structure of its domain.

In this section we show that the opposite is almost true. Namely, if all Pi ⊂ dom f

are of the form {x|εj ≤ xj ≤ δj , j = 1, · · · , n} (εj may be −∞ and δj may be +∞,), then

such f(x), called the CPQF defined on boxes, must be a sum of a convex quadratic

function and a separable CPQF. It should be mentioned that this type of domain

structure often arises in practice (e.g. Refs. 2, 4, 6 and 9) and that it is not too

narrow to make this assumption in theory as one might have imagined.

Proposition 3.1. If a diagonal CPQF is defined on boxes, then this function

must be separable. Namely, there exist one-dimensional convex piecewise quadratic

functions fj(xj), j = 1, · · · , n, so that f(x) = f1(x1) + · · · + fn(xn).

Proof. The common boundaries of the polyhedra in dom f are parallel to coor-

dinate hyperplanes. These boundaries, together with coordinate hyperplanes, par-

tition dom f into boxes: dom f = B1 ∪ · · · ∪ Bm. f(x) has a diagonal expression on each

of Bi for i = 1, · · · , m. Let us call a vertex of Bi the southwest corner of Bi if each

component of the vertex is not greater than each corresponding component of other

vertices of Bi. Without loss of generality we assume that

(A) 0 ∈ dom f and f(0) = 0, for otherwise the same arguments below can be made

for the function f(x + x0) − f(x0), where x0 ∈ dom f .
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(B) The southwest corner of B1 is the origin and there is a vertex of Bi ( i > 1),

(d1, · · · , dn), such that the n edges of Bi initiated from (d1, · · · , dn),

{x ∈ Bi|xj = dj ∀j 
= 1, 1 ≤ j ≤ n}, · · · , {x ∈ Bi|xj = dj ∀j 
= n, 1 ≤ j ≤ n},

are contained either by boxes Bk (k < i) or by a coordinate axis.

To achieve (B), we can order Bi’s in this way: First, label boxes in Rn
+ according

to the lexicographic order of their southwest corner; then we reflect the second

quadrant into Rn
+ and do the same for its boxes, then reflect the third quadrant into

the second and so on.

We now prove that

f(x) = f(x1, 0, · · · , 0) + f(0, x2, 0, · · · , 0) + · · · + f(0, · · · , 0, xn) (6)

for x ∈ dom f by induction. The formula is true on box B1 and all coordinate axes by

(A) and direct verification. Now suppose that this formula is valid for all Bk (k < i)

and consider box Bi. By assumption (B), each edge of box Bi that goes through the

vertex (d1, · · · , dn) either belongs to some box Bk (k < i) or belongs to some coordinate

axis, hence this formula is valid on these edges of Bi. Since f is diagonal on Bi, direct

verification shows that for any x ∈ Bi the following formula is valid:

f(x) = f(x1, d2, · · · , dn) + · · · + f(d1, · · · , dn−1, xn) − (n − 1)f(d1, · · · , dn).

By the validity of formula (6) on the mentioned edges, for x ∈ Bi we have

f(x1, d2, · · · , dn) + · · · + f(d1, · · · , dn−1, xn) − (n − 1)f(d1, · · · , dn)

=[f(x1, 0, · · · , 0) + f(0, d2, 0, · · · , 0) + · · · + f(0, · · · , 0, dn)] + · · ·
+ [f(d1, 0, · · · , 0) + · · · + f(0, · · · , 0, dn−1, 0) + f(0, · · · , 0, xn)]

− (n − 1)[f(d1, 0, · · · , 0) + · · · + f(0, · · · , 0, dn)]

=f(x1, 0, · · · , 0) + f(0, x2, 0, · · · , 0) + · · · + f(0, · · · , 0, xn).

Thus (6) is true in Bi. This completes the induction.

Corollary 3.1. For any difference-definite CPQF f(x) defined on boxes, if it is

diagonal on one of these boxes, then it is diagonal on all the boxes, hence f(x) must

be separable.

Proof. Assume that dom f = B1 ∪ · · · ∪ Bm and f(x) is diagonal on B1, where

the order of Bi’s satisfies the same condition as in the proof of Proposition 3.1.

By repeatedly using Proposition 2.1, we imply the diagonality of fi+1 from fi, i =

1, · · · , m − 1. Proposition 3.1 then ensures the separability.

Corollary 3.1 says that the inseparability of a CPQF defined on boxes might be

caused by a “bad expression” on a single box. The following result confirms this

observation.
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Proposition 3.2. Any difference-definite CPQF defined on boxes can be ex-

pressed as the sum of a convex quadratic function and a separable CPQF. Moreover,

the quadratic function in the sum is exactly the expression on one of the boxes in

dom f.

Proof. Let B1, · · · , Bm and f1, · · · , fm be the boxes in dom f and the expressions

associated with them. Consider the auxiliary function g(x) ≡ f(x)−f1(x)+λ(x2
1+· · ·+x2

n)

where λ ≥ 0 is large enough to ensure the convexity of g. Because g is a difference-

definite CPQF defined on Boxes and is diagonal on B1, By Corollary 3.1, there exist

one-dimensional CPQFs g1, · · · , gn such that g(x) = g1(x1) + · · · + gn(xn). Suppose that

for j = 1, · · · , n,

gj(xj) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

+∞, if xj < cj0

pj1x
2
j + qj1xj + rj1, if cj0 ≤ xj ≤ cj1

· · ·
pjkj x

2
j + qjkj xj + rjkj , if cjkj−1 ≤ xj ≤ cjkj

+∞. if xj > cjkj

Let pj = min{pjk|k = 1, · · · , kj} for j = 1, · · · , n. Then the n-tuple (p1, · · · , pn) corresponds

to at least one box, say B2, so that the expression of g on B2 is G(x) = p1x
2
1 + · · · +

pnx2
n + · · · . Here “· · ·”denotes the nonquadratic terms. Now we show that f − f2 is

convex and separable. Note that

f(x)− f2(x) = g(x)− [f2(x)− f1(x) + λ(x2
1 + · · ·+ x2

n)] = g(x) −G(x) =
n∑

j=1

[gj(xj)− pjx
2
j ]− · · · .

Since pjk ≥ pj for k = 1, · · · , kj , f − f2 is a (separable) convex function. This completes

the proof.

Remark 3.1. Proposition 3.2 says that minimizing any difference-definite CPQF

defined on boxes can be reduced to minimizing the sum of a separable CPQF and

a smooth convex quadratic function. The problem of minimizing such a function

xT Rx+qT x+
∑

i fi(xi) can in turn be reformulated as: min{yT y+qT x+
∑

i fi(xi)|y = Qx},
where QT Q = R. Thus this type of problems is essentially a monotropic piecewise

quadratic programming problem. Of course, it can also be solved by other decom-

position techniques, e.g. the one recently proposed by Han (Ref. 12).

4. Conclusions

Convex piecewise quadratic functions can be divided into two classes — difference-

definite and difference-indefinite ones. The expressions of a difference-definite CPQF

are determined by its expression on one polyhedron plus a linear combination of

[(ai)T x − bi]2 and (ai)T x − bi, where (ai)T x − bi = 0, i = 1, · · · , t, are equations of the

common boundaries between the neighboring polyhedra in its domain. The same

is true for a difference-indefinite CPQF, but with additional terms of the form
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[(ai)T x − bi][(āi)T x − b̄i], where āi is linearly independent from ai. The existence of

such āi makes a difference-indefinite CPQF inseparable under any nonsingular affine

transformation of the variables. The different-definite class is important for appli-

cations because it includes the monitoring function as a special case. If, in addition,

a difference-definite CPQF is defined on boxes, then it can be expressed as the sum

of a convex quadratic function and a separable CPQF. Therefore their minimization

problems can be reduced to monotropic piecewise quadratic programs.

References

1. ROCKAFELLAR, R.T., Large-Scale Extended Linear-Quadratic Programming and Multi-

stage Optimization, University of Washington, Department of Mathematics, Preprint,

1989.

2. ROCKAFELLAR, R.T., Linear-Quadratic Programming and Optimal Control, SIAM

Journal on Control and Optimization, Vol.25, pp. 781-814, 1987.

3. ROCKAFELLAR, R.T., and WETS, R.J.-B., Generalized Linear-Quadratic Problems

of Deterministic and Stochastic Optimal Control in Discrete Time, SIAM Journal on Control

and Optimization, Vol.28, pp. 810-822, 1990.

4. LOUVEAUX, F., A Solution Method for Multi-Stage Stochastic Programs with Recourse with

Applications to an Energy Investment Problem, Operations Research, Vol.28, pp. 889-902,

1980.

5. PEROLD, A.F., Large Scale Portfolio Optimization, Harvard University, Graduate

School of Business Administration, Report HBS 82-24, 1981.

6. SUN, J., A Study on Monotropic Piecewise Quadratic Programming, The Australian

Society for Operations Research Special Publication on Mathematical Programming,

Edited by S. Kumar, Gordon & Breach, Melbourne, To appear in 1991.

7. SUN, J., Tracing the Characteristic Curve of a Quadratic Black Box, Networks, Vol.19,

pp. 637-650, 1989.

8. WILDE, D.J. and ACRIVOS, A., Minimization of a Piecewise Quadratic Function Arising

in Production Scheduling, Operations Research, Vol.8, pp. 652-674, 1960.

9. SUN, J., On Monotropic Piecewise Quadratic Programming, University of Washington,

10



Ph.D Thesis, 1986.

10. ROBINSON, S.M., Some Continuity Properties of Polyhedral Multifunctions, Mathe-

matical Programming Study, Vol.14, pp. 206-214, 1981.

11. ROCKAFELLAR, R.T., and SUN, J., A Simplex-Active-Set Algorithm for Monotropic

Piecewise Quadratic Programming, Northwestern University, Department of Industrial

Engineering and Management Sciences, Technical Report 86-10, 1986.

12. HAN, S.P., A Decomposition Method and its Application to Convex Programming, Math-

ematics of Operations Research, Vol.14, pp. 237-248, 1989.

11


