Citation:

SUN, J. 1992. On the Structure of Convex Piecewise Quadratic Functions. Journal of Optimization Theory and Applications. 72 (3): pp. 499-510.
http://doi.org/10.1007/BF00939839

Journal of Optimization Theory and Application, 72 (1992) 499-510.
On the Structure of Convex Piecewise Quadratic Functions ${ }^{1}$
J. SUN ${ }^{2}$

Communicated by F. Zirilli

Abstract

Convex piecewise quadratic functions (CPQF) play an important role in mathematical programming, and yet their structure has not been fully studied. In this paper these functions are categorized into difference-definite and differenceindefinite types. We show that, for either type, the expressions of a CPQF on neighboring polyhedra in its domain can differ only by a quadratic function related to the common boundary of the polyhedra. Specifically, we prove that the monitoring function in extended linear- quadratic programming is difference-definite. We then study the case where the domain of the difference-definite CPQF is a union of boxes, which arises in many applications. We prove that any such function must be a sum of a convex quadratic function and a separable CPQF. Hence, their minimization problems can be reformulated as monotropic piecewise quadratic programs.

Key Words. Convex polyhedra, extended linear-quadratic programs, monotropic programming, separability of functions, piecewise quadratic functions.

[^0]
1. Introduction

A convex function $f: R^{n} \mapsto R \cup\{ \pm \infty\}$ is piecewise quadratic if its domain (i. e. the set $\left.\operatorname{dom} f=\left\{x \in R^{n} \mid f(x)<\infty\right\}\right)$ is a union of finitely many convex polyhedra, on each of which the function is given by a quadratic formula (including affine formula as a special case). Due to continuity of the convex piecewise quadratic function (CPQF) on its domain, the expressions of f on different polyhedra can not be arbitrary. Our concern in this paper are the relationship between these expressions and the overall structure of a CPQF .

The interest of studying the CPQF is stimulated by recent research of Rockafellar and Wets (Refs. 1-3) on stochastic programming and optimal control problems. In their theoretical framework constraints are separated into two classes; one should be satisfied exactly and another may be violated. A "monitoring" term in the objective function is used to reduce the violation. Based on this formulation, a clear duality relationship can be derived and new algorithms are proposed for previously unsolvable problems. At the center of their model is a linear-quadratic minimax problem
(E) $\quad \operatorname{minimax} L(x, y)=p^{T} x+q^{T} y+\left(x^{T} P x\right) / 2-\left(y^{T} Q y\right) / 2-y^{T} R x, \quad x \in U, y \in V$,
where " T " designates the transpose of a vector. Problem (E) induces the primal-dual pair of extended Linear-quadratic programs:
(P) $\quad \min _{x \in U} f(x)$, where $f(x)=\sup _{y \in V} L(x, y)$,
(D) $\quad \max _{y \in V} g(y)$, where $g(y)=\inf _{x \in U} L(x, y)$,
where $U\left(\subset R^{n}\right)$ and $V\left(\subset R^{m}\right)$ are convex polyhedra, representing the constraints that should be satisfied exactly; p and q are fixed vectors, P (positive semidefinite), Q (positive semidefinite), and R are fixed matrices. Then we have

$$
f(x)=p^{T} x+\left(x^{T} P x\right) / 2+\rho_{V, Q}(q-R x) \quad \text { and } \quad g(y)=q^{T} y-\left(y^{T} Q y\right) / 2-\rho_{U, P}\left(R^{T} y-p\right),
$$

where

$$
\rho_{V, Q}(v)=\sup _{y \in V}\left\{y^{T} v-\left(y^{T} Q y\right) / 2\right\} \quad \text { and } \quad \rho_{U, P}(u)=\sup _{x \in U}\left\{x^{T} u-\left(x^{T} P x\right) / 2\right\} .
$$

The functions $\rho_{V, Q}$ and $\rho_{U, P}$ are the monitoring terms characterizing deviations of $R x$ from q and $R^{T} y$ from p, respectively. In Ref. 2, it is shown that both $\rho_{V, Q}$ and $\rho_{U, P}$ are CPQF in our sense. Of course, there are other applications of CPQFs, some of which are described in Refs. 4-8.

The structure problem of the CPQF has been studied from another angle. In Ref. 9 it is proved that a function is convex piecewise quadratic if and only if its subdifferential mapping is polyhedral in Robinson's (Ref. 10) sense. This property is used in analyzing the duality and parametric properties of convex piecewise quadratic programming. From the viewpoint of algorithmic development, however, it is convenient to know how the expressions of a CPQF are interrelated and under what conditions a CPQF can be decomposed into simpler functions. Especially, if a CPQF is separable, i.e. the function is of the form $f(x)=f_{1}\left(x_{1}\right)+\cdots+f_{n}\left(x_{n}\right)$, where $x_{i}, i=1, \cdots, n$ are components of x and $f_{i}\left(x_{i}\right)$ are one-dimensional convex piecewise quadratic functions, then, even if additional linear constraints exist, we may solve the corresponding minimization problem (the so-called monotropic piecewise quadratic program) quite efficiently (Ref. 11). Naturally one wants to know the possibility of changing a general CPQF into a separable CPQF by a certain transformation of variables. Since the original function is linear-quadratic, affine transformation is preferable. This problem is tightly related to the structure problem to be investigated in this paper.

In the next section we categorize the CPQF into two types (difference-definite and difference-indefinite) and derive the relationship between expressions on neighboring polyhedra for both types. The result implies that the difference-indefinite type is not separable under any nonsingular affine transformation. On the other hand, we prove that the monitoring functions in problem (P) and (D) are differencedefinite. In Section 3 we analyze the difference-definite CPQF whose domain is a union of boxes and show that any such function must be a sum of a convex quadratic function and a separable CPQF. Consequently, we point out that the problem of minimizing this function is equivalent to solving a monotropic piecewise quadratic program.

2. Structure of General Convex Piecewise Quadratic Functions

In the following derivations, without loss of generality, we assume that the CPQF under discussion satisfies the following conditions:
(C1) The dimension of $\operatorname{dom} f$ is n. Otherwise, we could discuss the problem in a lower dimensional space by changing the coordinate system.
(C2) $\operatorname{dom} f=P_{1} \cup \cdots \cup P_{m}$, where all $P_{i}, \quad i=1, \cdots, m$ are convex polyhedra of dimension n and $\operatorname{int} P_{i} \cap \operatorname{int} P_{j}=\emptyset(i \neq j)$. This assumption is reasonable because all lower-dimensional polyhedra in $\operatorname{dom} f$ must be contained in some of the n -dimensional P_{i} 's, therefore, the removal of those lower dimensional polyhedra from $\operatorname{dom} f$ does not change f due to continuity of f in $\operatorname{dom} f$. Furthermore, if two polyhedra have a common internal point, then the quadratic expressions on them must be identical
and it is a trivial case pertaining to our purposes.
Definition 2.1. Let $P_{i}, P_{j}(i \neq j) \subset \operatorname{dom} f . P_{i}$ and P_{j} are neighboring with each other if the affine hull of $P_{i} \cap P_{j}$ is of dimension $n-1$. The affine hull of $P_{i} \cap P_{j}$ (a hyperplane) is called their common boundary.

Definition 2.2. A CPQF is said to be of difference-definite type if all of the differences between its expressions on neighboring polyhedra have positive or negative semidefinite Hessian. Otherwise it is said to be of difference-indefinite type.

Proposition 2.1. Let $f(x)$ be a CPQF. Let P_{1} and P_{2} be two neighboring polyhedra in $\operatorname{dom} f$ with common boundary $\left\{x \mid a^{T} x=b\right\}$. Let $f_{1}(x)$ and $f_{2}(x)$ be the quadratic expressions of f on P_{1} and P_{2}, respectively. Then there exist a vector \bar{a} and a constant \bar{b} such that

$$
\begin{equation*}
f_{2}(x)=f_{1}(x)+\left[a^{T} x-b\right]\left[\bar{a}^{T} x-\bar{b}\right] . \tag{1}
\end{equation*}
$$

Moreover, a and \bar{a} is linearly dependent if f is difference-definite, whereas if f is difference-indefinite, there exists at least a pair of P_{1} and P_{2}, such that \bar{a} is linearly independent of a.

Proof. Let $x^{0} \in P_{1} \cap P_{2}$ and let Q be an orthogonal matrix such that $Q^{T} R Q$ is diagonal, where R is the Hessian of $f_{2}-f_{1}$. Under the affine transformation $x=Q y+x^{0}$, the function $f(x)=f\left(Q y+x^{0}\right)$ has expressions $f_{1}\left(Q y+x^{0}\right)$ and $f_{2}\left(Q y+x^{0}\right)$ respectively on $\mathcal{P}_{1}=Q^{-1}\left(P_{1}-x^{0}\right)$ and $\mathcal{P}_{2}=Q^{-1}\left(P_{2}-x^{0}\right)$, and the common boundary of \mathcal{P}_{1} and \mathcal{P}_{2} passes zero. Without loss of generality let $H \equiv\left\{y \mid h(y) \equiv y_{1}-c_{2} y_{2}-\cdots-c_{n} y_{n}=0\right\}$ be this common boundary and let $f_{3}(y) \equiv f_{2}\left(Q y+x^{0}\right)-f_{1}\left(Q y+x^{0}\right)=\left(d_{1} y_{1}^{2}+s_{1} y_{1}\right)+\cdots+$ $\left(d_{n} y_{n}^{2}+s_{n} y_{n}\right)$. By continuity of f in $\operatorname{dom} f, f_{3}(y) \equiv 0$ on H. Then one of the following must be true:
(i) $f_{3}(y)=s_{1} h(y)$;
(ii) $f_{3}(y)=d_{1} h(y)^{2}+s_{1} h(y)$ and $h(y)=y_{1}$.
(iii) $f_{3}(y)=h(y)\left[d_{1}\left(y_{1}+c_{j} y_{j}\right)+s_{1}\right], d_{1} \neq 0$ and $h(y)=y_{1}-c_{j} y_{j}, c_{j} \neq 0$.

To prove this, denote $\{2, \cdots, n\}$ by J and notice that $f_{3}(y) \equiv 0$ on H implies that

$$
0 \equiv \sum_{j \in J}\left(d_{j} y_{j}^{2}+s_{j} y_{j}\right)+d_{1}\left(\sum_{j \in J} c_{j} y_{j}\right)^{2}+s_{1} \sum_{j \in J} c_{j} y_{j} .
$$

A quadratic form identically equals zero only if all of its coefficients are zero. Therefore we get

$$
\begin{gather*}
d_{j}+d_{1} c_{j}^{2}=0, \quad \forall j \in J, \tag{2}\\
d_{1} c_{j} c_{k}=0, \quad \forall j, \quad k \in J, j \neq k, \tag{3}\\
s_{j}+s_{1} c_{j}=0, \quad \forall j \in J . \tag{4}
\end{gather*}
$$

We consider the following three cases separately:

Case 1. $d_{1}=0$;
Case 2. $d_{1} \neq 0$ and for all $j \in J c_{j}=0$;
Case 3. $d_{1} \neq 0$ and there exists a $j \in J$ such that $c_{j} \neq 0$.
Case 1. We have $d_{1}=0$. Then $d_{j}=0 \forall j \in J$ because of (2). From (4) we get $s_{j}=-s_{1} c_{j}, \forall j \in J$. Thus $f_{3}(y)=s_{1} h(y)$. This is (i).

Case 2. We have $d_{1} \neq 0$ and $c_{j}=0$ for all $j \in J$. Then from (2) and (4) we get $d_{j}=s_{j}=0$, for all $j \in J$. This implies (ii).
Case 3. From (2)- (4) we get $d_{k}=s_{k}=c_{k}=0, \forall k \in J-\{j\}$. Hence we have

$$
f_{3}(y)=d_{1} y_{1}^{2}+d_{j} y_{j}^{2}+s_{1} y_{1}+s_{j} y_{j}, \quad h(y)=y_{1}-c_{j} y_{j}
$$

and

$$
d_{j}+d_{1} c_{j}^{2}=0, \quad s_{j}+s_{1} c_{j}=0
$$

Thus

$$
\begin{equation*}
f_{3}(y)=d_{1}\left(y_{1}^{2}-c_{j}^{2} y_{j}^{2}\right)+s_{1}\left(y_{1}-c_{j} y_{j}\right)=h(y)\left[d_{1}\left(y_{1}+c_{j} y_{j}\right)+s_{1}\right] . \tag{5}
\end{equation*}
$$

This is (iii). Notice that in this case f_{3} is indefinite.
Now the inverse transformation $y=Q^{-1}\left(x-x^{0}\right)$ will make $h(y)$ back to a multiple of $a^{T}\left(x-x^{0}\right)=a^{T} x-b$ and $f_{3}(y)$ to $f_{2}(x)-f_{1}(x)$. If f is difference-definite, only (i) and (ii) can happen, then we have $f_{2}(x)=f_{1}(x)+\alpha\left(a^{T} x-b\right)^{2}+\beta\left(a^{T} x-b\right)$, where α and β are certain constants. Thus (1) is valid with \bar{a} being a multiple of a. If f is difference-indefinite, either cases (i), (ii) or case (iii) could happen, but there is at least a pair of P_{1} and P_{2} such that case (iii) is valid. In addition, from (5) the normal vectors of $h(y)=y_{1}-c_{j} y_{j}=0$ and $d_{1}\left(y_{1}+c_{j} y_{j}\right)+s_{1}=0$ should be linearly independent because $c_{j} \neq 0$. This implies (1) and the linear independence of a and \bar{a}.

Remark 2.1. When a and \bar{a} are independent, the images of a and \bar{a} under a nonsingular linear transformation of variables should be still independent. Thus the term $\left[a^{T} x-b\right]\left[\bar{a}^{T} x-\bar{b}\right]$ will not be separable under the transformation. Therefore the difference-indefinite CPQF is not separable under any nonsingular affine transformation of variables. Moreover, the following corollary says that, if f is difference-indefinite, then there exists two neighboring polyhedra P_{1} and P_{2} such that the restriction of f on $P_{1} \cup P_{2}$ naturally belongs to a nonconvex function.

Corollary 2.1. (Extensible Convexity) A CPQF is difference-definite if and only if for any neighboring $P_{1}, P_{2} \subset \operatorname{dom} f$, the function

$$
\bar{f}(x) \equiv \begin{cases}f_{1}(x), & \text { if } x \text { is on } P_{1} \text { 's side of the common boundary, } \\ f_{2}(x), & \text { if } x \text { is on } P_{2} \text { 's side of the common boundary }\end{cases}
$$

is convex, where f_{1} and f_{2} are the quadratic formulae of f on P_{1} and P_{2} respectively.
Proof. \bar{f} is convex if and only if for any $x \in \operatorname{dom} f, w \in R^{n}$, the function $\phi(\alpha)=$ $\bar{f}(x+\alpha w)$ is convex, where $\alpha \in R$. The latter is true if and only if $\phi^{-}(\alpha) \leq \phi^{+}(\alpha)$,
where ϕ^{-}and ϕ^{+}are the ordinary left and right derivatives of ϕ. It is obvious that we only have to consider such α that $x+\alpha w$ is on the common boundary. Since affine transformation does not change convexity, it suffices to show that for any $y \in H=\{y \mid h(y)=0\}$ and z pointing to the \mathcal{P}_{2} 's side of the hyperplane H, the directional derivatives of $f_{3}^{\prime}(y, z) \geq 0$. (If z is the opposite direction, we can show $f_{3}^{\prime}(y, z) \leq 0$ similarly.) Here $f_{3}(y)$ and $h(y)$ are same as in the proof of Proposition 2.1. Note that $f_{3}^{\prime}(y, z)=\nabla f_{3}(y)^{T} z$. For case (i), $\nabla f_{3}(y)^{T} z$ is independent of y. Thus, if for some $y^{0} \in H$ we have $f_{3}^{\prime}\left(y^{0}, z\right) \geq 0$, then there holds $f_{3}^{\prime}(y, z) \geq 0$ for all $y \in H$. According to the convexity of f, such y^{0} certainly exists. For case (ii), $\nabla f_{3}(y)$ only depends on y_{1}. However, $y_{1}=0$ for all $y \in H$, so $\nabla f_{3}(y)^{T} z$ is also independent of y on the boundary. In summary, if f is difference-definite, the (local) convexity of \bar{f} around some $x^{0} \in P_{1} \cup P_{2}$ implies the (global) convexity of \bar{f}.

On the other hand, if f is difference-indefinite, then there exist P_{1} and P_{2} such that the case (iii) in the proof of Proposition 2.1 is valid. Hence we have

$$
f_{3}(y)=h(y)\left[d_{1}\left(y_{1}+c_{j} y_{j}\right)+s_{1}\right]=h(y)\left(2 d_{1} y_{1}+s_{1}\right) \quad \text { on } H=\left\{y \mid y_{1}-c_{j} y_{j}=0, c_{j} \neq 0\right\} .
$$

Therefore $\nabla f_{3}(y)^{T} z=\left(z_{1}-c_{j} z_{j}\right)\left(2 d_{1} y_{1}+s_{1}\right)$, for $y \in H$. However, because $z \notin H$, we have $z_{1}-c_{j} z_{j} \neq 0$. Thus $\nabla f_{3}(y)^{T} z$ can not keep the same sign for all $y \in H$ due to $d_{1} \neq 0$. Thus \bar{f} is not convex.

A simple example of the difference-indefinite CPQF is

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}x_{1}^{2}+x_{2}^{2}, & \text { if } x_{1} \leq 0, x_{2} \geq 0, \\ x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}, & \text { if } x_{1} \geq 0, x_{2} \geq 0, \\ +\infty, & \text { if } x_{2}<0\end{cases}
$$

If we extend the formula $x_{1}^{2}+x_{2}^{2}$ to the second and third quadrants and the formula $x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}$ to the first and fourth quadrants, the resulting function \bar{f} is convex on the upper half of the plane but not on the lower half of the plane.

An important CPQF is the monitoring function $\rho_{V, Q}(u)$ in problem (P) (similarly, $\rho_{U, P}(v)$ in (D)). We now show that this function is difference-definite. For briefness we only discuss the case of Q being positive definite. The discussion on semidefinite Q can be reduced to this case, see Ref. 2.

Proposition 2.2. The function

$$
\rho_{V, Q}(x)=\sup _{y \in V}\left\{y^{T} x-\left(y^{T} Q y\right) / 2\right\}
$$

is a CPQF of difference-definite type, where V is a convex polyhedron and Q is a positive definite symmetric matrix.

Proof. Since nonsingular linear transformation of variables does not change difference-definiteness, without loss of generality, we assume that $y \in R^{n}, y^{T} Q y=$ $y_{1}^{2}+\cdots+y_{n}^{2}$. Then

$$
\rho_{V, Q}(x)=\sup _{y \in V}\left\{y^{T} x-\left(y^{T} y\right) / 2\right\}=\left(x^{T} x\right) / 2-\inf _{y \in V}\|y-x\|^{2} / 2 .
$$

We need to show that the function $d(x) \equiv \inf _{y \in V}\|y-x\|^{2}$ has the difference-definite property. (In Ref. 2, it is already shown that $\rho_{V, Q}(x)$ is a CPQF.) Note that $d(x)$ is the square Euclidean distance from x to V. It may change its expression only if the projection of x on V changes from one face of V to another face of different dimension. The neighboring expressions of f, say f_{1} and f_{2} correspond to two faces of V, say F_{1} and F_{2}, such that one (say F_{1}) is contained in the boundary of another (say F_{2}). Since F_{1} is on the boundary of F_{2}, the square Euclidean distance from x to F_{1} is not less than that from x to F_{2}. The corresponding expressions $d_{1}(x)$ and $d_{2}(x)$ of $d(x)$ then have the following property: $d_{1}(x)-d_{2}(x) \geq 0$ for all $x \in R^{n}$. This is only possible if $d_{1}(x)-d_{2}(x)$ has a positive semidefinite Hessian.

3. Separability of the Difference-Definite CPQF

Now we would like to know whether the difference-definite CPQF can be decomposed into a separable form for computational purposes. We notice that if a CPQF is separable, then the quadratic formula on each of the polyhedra in its domain has the form $x^{T} D x+q^{T} x+r$, where D is a diagonal n by n matrix. (Of course, D, q, and r may vary on different polyhedra.) Such a CPQF is said to be diagonal. On the other hand, the diagonality of a difference-definite CPQF on two neighboring polyhedra implies by Proposition 2.1 that their common boundary should be parallel to a coordinate hyperplane unless these expressions differ only by a linear function. Hence, for a difference-definite CPQF, diagonality suggests a box structure of its domain. In this section we show that the opposite is almost true. Namely, if all $P_{i} \subset \operatorname{dom} f$ are of the form $\left\{x \mid \epsilon_{j} \leq x_{j} \leq \delta_{j}, j=1, \cdots, n\right\}\left(\epsilon_{j}\right.$ may be $-\infty$ and δ_{j} may be $+\infty$,), then such $f(x)$, called the CPQF defined on boxes, must be a sum of a convex quadratic function and a separable CPQF. It should be mentioned that this type of domain structure often arises in practice (e.g. Refs. 2, 4, 6 and 9) and that it is not too narrow to make this assumption in theory as one might have imagined.

Proposition 3.1. If a diagonal CPQF is defined on boxes, then this function must be separable. Namely, there exist one-dimensional convex piecewise quadratic functions $f_{j}\left(x_{j}\right), j=1, \cdots, n$, so that $f(x)=f_{1}\left(x_{1}\right)+\cdots+f_{n}\left(x_{n}\right)$.

Proof. The common boundaries of the polyhedra in $\operatorname{dom} f$ are parallel to coordinate hyperplanes. These boundaries, together with coordinate hyperplanes, partition $\operatorname{dom} f$ into boxes: $\operatorname{dom} f=B_{1} \cup \cdots \cup B_{m} . f(x)$ has a diagonal expression on each of B_{i} for $i=1, \cdots, m$. Let us call a vertex of B_{i} the southwest corner of B_{i} if each component of the vertex is not greater than each corresponding component of other vertices of B_{i}. Without loss of generality we assume that
(A) $0 \in \operatorname{dom} f$ and $f(0)=0$, for otherwise the same arguments below can be made for the function $f\left(x+x^{0}\right)-f\left(x^{0}\right)$, where $x^{0} \in \operatorname{dom} f$.
(B) The southwest corner of B_{1} is the origin and there is a vertex of $B_{i}(i>1)$, $\left(d_{1}, \cdots, d_{n}\right)$, such that the n edges of B_{i} initiated from $\left(d_{1}, \cdots, d_{n}\right)$,

$$
\left\{x \in B_{i} \mid x_{j}=d_{j} \forall j \neq 1,1 \leq j \leq n\right\}, \cdots,\left\{x \in B_{i} \mid x_{j}=d_{j} \forall j \neq n, 1 \leq j \leq n\right\},
$$

are contained either by boxes $B_{k}(k<i)$ or by a coordinate axis.
To achieve (B), we can order B_{i} 's in this way: First, label boxes in R_{+}^{n} according to the lexicographic order of their southwest corner; then we reflect the second quadrant into R_{+}^{n} and do the same for its boxes, then reflect the third quadrant into the second and so on.

We now prove that

$$
\begin{equation*}
f(x)=f\left(x_{1}, 0, \cdots, 0\right)+f\left(0, x_{2}, 0, \cdots, 0\right)+\cdots+f\left(0, \cdots, 0, x_{n}\right) \tag{6}
\end{equation*}
$$

for $x \in \operatorname{dom} f$ by induction. The formula is true on box B_{1} and all coordinate axes by (A) and direct verification. Now suppose that this formula is valid for all $B_{k}(k<i)$ and consider box B_{i}. By assumption (B), each edge of box B_{i} that goes through the vertex $\left(d_{1}, \cdots, d_{n}\right)$ either belongs to some box $B_{k}(k<i)$ or belongs to some coordinate axis, hence this formula is valid on these edges of B_{i}. Since f is diagonal on B_{i}, direct verification shows that for any $x \in B_{i}$ the following formula is valid:

$$
f(x)=f\left(x_{1}, d_{2}, \cdots, d_{n}\right)+\cdots+f\left(d_{1}, \cdots, d_{n-1}, x_{n}\right)-(n-1) f\left(d_{1}, \cdots, d_{n}\right)
$$

By the validity of formula (6) on the mentioned edges, for $x \in B_{i}$ we have

$$
\begin{aligned}
& f\left(x_{1}, d_{2}, \cdots, d_{n}\right)+\cdots+f\left(d_{1}, \cdots, d_{n-1}, x_{n}\right)-(n-1) f\left(d_{1}, \cdots, d_{n}\right) \\
= & {\left[f\left(x_{1}, 0, \cdots, 0\right)+f\left(0, d_{2}, 0, \cdots, 0\right)+\cdots+f\left(0, \cdots, 0, d_{n}\right)\right]+\cdots } \\
& +\left[f\left(d_{1}, 0, \cdots, 0\right)+\cdots+f\left(0, \cdots, 0, d_{n-1}, 0\right)+f\left(0, \cdots, 0, x_{n}\right)\right] \\
& -(n-1)\left[f\left(d_{1}, 0, \cdots, 0\right)+\cdots+f\left(0, \cdots, 0, d_{n}\right)\right] \\
= & f\left(x_{1}, 0, \cdots, 0\right)+f\left(0, x_{2}, 0, \cdots, 0\right)+\cdots+f\left(0, \cdots, 0, x_{n}\right) .
\end{aligned}
$$

Thus (6) is true in B_{i}. This completes the induction.
Corollary 3.1. For any difference-definite CPQF $f(x)$ defined on boxes, if it is diagonal on one of these boxes, then it is diagonal on all the boxes, hence $f(x)$ must be separable.

Proof. Assume that $\operatorname{dom} f=B_{1} \cup \cdots \cup B_{m}$ and $f(x)$ is diagonal on B_{1}, where the order of B_{i} 's satisfies the same condition as in the proof of Proposition 3.1. By repeatedly using Proposition 2.1, we imply the diagonality of f_{i+1} from $f_{i}, i=$ $1, \cdots, m-1$. Proposition 3.1 then ensures the separability.

Corollary 3.1 says that the inseparability of a CPQF defined on boxes might be caused by a "bad expression" on a single box. The following result confirms this observation.

Proposition 3.2. Any difference-definite CPQF defined on boxes can be expressed as the sum of a convex quadratic function and a separable CPQF. Moreover, the quadratic function in the sum is exactly the expression on one of the boxes in $\operatorname{dom} f$.

Proof. Let B_{1}, \cdots, B_{m} and f_{1}, \cdots, f_{m} be the boxes in $\operatorname{dom} f$ and the expressions associated with them. Consider the auxiliary function $g(x) \equiv f(x)-f_{1}(x)+\lambda\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)$ where $\lambda \geq 0$ is large enough to ensure the convexity of g. Because g is a differencedefinite CPQF defined on Boxes and is diagonal on B_{1}, By Corollary 3.1, there exist one-dimensional CPQFs g_{1}, \cdots, g_{n} such that $g(x)=g_{1}\left(x_{1}\right)+\cdots+g_{n}\left(x_{n}\right)$. Suppose that for $j=1, \cdots, n$,

$$
g_{j}\left(x_{j}\right)= \begin{cases}+\infty, & \text { if } x_{j}<c_{j 0} \\ p_{j 1} x_{j}^{2}+q_{j 1} x_{j}+r_{j 1}, & \text { if } c_{j 0} \leq x_{j} \leq c_{j 1} \\ \cdots & \text { in } \\ p_{j k_{k}} x_{j}^{2}+q_{j k_{j}} x_{j}+r_{j k_{j}}, & \text { if } c_{j k_{j}-1} \leq x_{j} \leq c_{j k_{j}} \\ +\infty . & \text { if } x_{j}>c_{j k_{j}}\end{cases}
$$

Let $p_{j}=\min \left\{p_{j k} \mid k=1, \cdots, k_{j}\right\}$ for $j=1, \cdots, n$. Then the n-tuple (p_{1}, \cdots, p_{n}) corresponds to at least one box, say B_{2}, so that the expression of g on B_{2} is $G(x)=p_{1} x_{1}^{2}+\cdots+$ $p_{n} x_{n}^{2}+\cdots$. Here ". . " denotes the nonquadratic terms. Now we show that $f-f_{2}$ is convex and separable. Note that
$f(x)-f_{2}(x)=g(x)-\left[f_{2}(x)-f_{1}(x)+\lambda\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)\right]=g(x)-G(x)=\sum_{j=1}^{n}\left[g_{j}\left(x_{j}\right)-p_{j} x_{j}^{2}\right]-\cdots$.
Since $p_{j k} \geq p_{j}$ for $k=1, \cdots, k_{j}, f-f_{2}$ is a (separable) convex function. This completes the proof.

Remark 3.1. Proposition 3.2 says that minimizing any difference-definite CPQF defined on boxes can be reduced to minimizing the sum of a separable CPQF and a smooth convex quadratic function. The problem of minimizing such a function $x^{T} R x+q^{T} x+\sum_{i} f_{i}\left(x_{i}\right)$ can in turn be reformulated as: $\min \left\{y^{T} y+q^{T} x+\sum_{i} f_{i}\left(x_{i}\right) \mid y=Q x\right\}$, where $Q^{T} Q=R$. Thus this type of problems is essentially a monotropic piecewise quadratic programming problem. Of course, it can also be solved by other decomposition techniques, e.g. the one recently proposed by Han (Ref. 12).

4. Conclusions

Convex piecewise quadratic functions can be divided into two classes - differencedefinite and difference-indefinite ones. The expressions of a difference-definite CPQF are determined by its expression on one polyhedron plus a linear combination of $\left[\left(a^{i}\right)^{T} x-b_{i}\right]^{2}$ and $\left(a^{i}\right)^{T} x-b_{i}$, where $\left(a^{i}\right)^{T} x-b_{i}=0, i=1, \cdots, t$, are equations of the common boundaries between the neighboring polyhedra in its domain. The same is true for a difference-indefinite CPQF, but with additional terms of the form
$\left[\left(a^{i}\right)^{T} x-b_{i}\right]\left[\left(\bar{a}^{i}\right)^{T} x-\bar{b}_{i}\right]$, where \bar{a}^{i} is linearly independent from a^{i}. The existence of such \bar{a}^{i} makes a difference-indefinite CPQF inseparable under any nonsingular affine transformation of the variables. The different-definite class is important for applications because it includes the monitoring function as a special case. If, in addition, a difference-definite CPQF is defined on boxes, then it can be expressed as the sum of a convex quadratic function and a separable CPQF. Therefore their minimization problems can be reduced to monotropic piecewise quadratic programs.

References

1. ROCKAFELLAR, R.T., Large-Scale Extended Linear-Quadratic Programming and Multistage Optimization, University of Washington, Department of Mathematics, Preprint, 1989.
2. ROCKAFELLAR, R.T., Linear-Quadratic Programming and Optimal Control, SIAM Journal on Control and Optimization, Vol.25, pp. 781-814, 1987.
3. ROCKAFELLAR, R.T., and WETS, R.J.-B., Generalized Linear-Quadratic Problems of Deterministic and Stochastic Optimal Control in Discrete Time, SIAM Journal on Control and Optimization, Vol.28, pp. 810-822, 1990.
4. LOUVEAUX, F., A Solution Method for Multi-Stage Stochastic Programs with Recourse with Applications to an Energy Investment Problem, Operations Research, Vol.28, pp. 889-902, 1980.
5. PEROLD, A.F., Large Scale Portfolio Optimization, Harvard University, Graduate School of Business Administration, Report HBS 82-24, 1981.
6. SUN, J., A Study on Monotropic Piecewise Quadratic Programming, The Australian Society for Operations Research Special Publication on Mathematical Programming, Edited by S. Kumar, Gordon \& Breach, Melbourne, To appear in 1991.
7. SUN, J., Tracing the Characteristic Curve of a Quadratic Black Box, Networks, Vol.19, pp. 637-650, 1989.
8. WILDE, D.J. and ACRIVOS, A., Minimization of a Piecewise Quadratic Function Arising in Production Scheduling, Operations Research, Vol.8, pp. 652-674, 1960.
9. SUN, J., On Monotropic Piecewise Quadratic Programming, University of Washington,

Ph.D Thesis, 1986.
10. ROBINSON, S.M., Some Continuity Properties of Polyhedral Multifunctions, Mathematical Programming Study, Vol.14, pp. 206-214, 1981.
11. ROCKAFELLAR, R.T., and SUN, J., A Simplex-Active-Set Algorithm for Monotropic Piecewise Quadratic Programming, Northwestern University, Department of Industrial Engineering and Management Sciences, Technical Report 86-10, 1986.
12. HAN, S.P., A Decomposition Method and its Application to Convex Programming, Mathematics of Operations Research, Vol.14, pp. 237-248, 1989.

[^0]: ${ }^{1}$ This research was supported by Grant DDM-8721709 of the National Science Foundation.
 ${ }^{2}$ Assistant Professor, Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, Illinois.

