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1. Introduction

We consider the convex quadratic program

(QP )

{
maximize q(x) ≡ 1

2x
TQx+ cTx

subject to x ∈ P ≡ {x | aTi x ≥ bi, i = 1, 2, . . .m},
(1.1)

where x ∈ Rn, c ∈ Zn, ai ∈ Zn and Q ∈ Zn×n is a symmetric negative semidefinite

matrix. We assume that m = O(n) to simplify our presentation.

Several methods have been proposed to solve the above (QP). Among these

methods the active set methods are computationally most effective [5]. Unfortu-

nately, however, in the worst case the amount of work required to solve (QP) by

active set methods may grow exponentially in n. Kozlov et. al. [15] proposed

the first polynomial-time algorithm to solve (QP). They showed that the ellipsoid

method of Iudin and Nemirovskii [10] and Shor [23] can be modified to solve (QP)

in polynomial time. However, after Karmarkar’s method for linear programming

[12], the interior methods have caught the attention of many researchers.

One key notion that has emerged from the studies [1,16] on Karmarkar’s al-

gorithm is the notion of analytic centers. Let intP ≡ {x ∈ Rn | aTi x > bi, i =

1, 2, . . .m} and consider the convex set

Pz ≡ {x ∈ Rn | q(x) ≥ z, x ∈ P}. (1.2)

Let us assume that P is bounded, and intPz = {x ∈ Rn | q(x) > z, x ∈ intP} is

nonempty.

A point ω ∈ Rn is called the analytical center of Pz if it maximizes

F (x, z) ≡ m ln(q(x)− z) +
m∑
i=1

ln(aTi x− bi) (1.3)
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subject to x ∈ intPz. The function F (x, z) defined in (1.3) is called the potential

function. Note that F (x, z) is a strictly concave function of x and the analytic

center ω ∈ intPz is unique. The concept of centers introduced by Huard [9] and

the notion of logarithmic barrier function [2,3] are related to analytic centers.

The first algorithm for (QP) that is based upon ideas of Karmarkar [12] for

solving linear programs (LP) was due to Kapoor and Vaidya [11]. Their algorithm

requires O(n3.67 lnn L lnL) arithmetic operations, where

L = n2 +mn+ ln |P |

is the input length of (QP). P is the product of the nonzero integer coefficients

appearing in Q, c, and ai, bi, i = 1, 2, . . .m. Several authors have recently proposed

new algorithms for improving the worst case bound for solving (QP). All of these

algorithms are motivated by a logarithmic barrier function approach [2,3]. Kojima

Mizuno and Yoshise [14] developed an algorithm for solving a linear complementar-

ity problem, in which they extended their previous work on linear programming [13].

Monteiro and Adler [21] proposed algorithms that work in a primal-dual framework.

The algorithms in [14] and [21] take a Newton step to approximately solve for the

KKT optimality conditions for the logarithmic barrier problem with a choice of

barrier parameter. These algorithms appear to have been motivated from the work

of Megiddo [16]. In a yet another development Ye [27] extended the results of Gon-

zaga [8] for solving (QP). Ye works directly with the logarithmic barrier problem.

The worst case bound on (QP) that is proved by Ye is of the same order as ours.

Goldfarb and Liu [7] also developed an algorithm that is similar to the one given by

Ye [27]. However, Goldfarb and Liu [7] showed that Karmarkar’s idea of using rank

one updates can be incorporated in their analysis to get an O(
√
n) improvement in
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the worst case bound for solving (QP). Similar idea is also used by Kojima Mizuno

and Yoshise [14] and Monteiro and Adler [21] to prove improved bounds for their

algorithms.

One feature that is common to all the above mentioned algorithms is that they

explicitly maintain primal and dual feasibility. The duality relationship is used in

proving convergence and the improved bounds in these algorithms. In this paper

we propose an algorithm for (QP) that does not depend on duality analysis and

has a clear geometric interpretation. In our algorithm we construct a sequence

Pz0, Pz1 , . . . , Pzk , . . . of nested convex sets that shrink towards the set of optimal

solution(s). During iteration k we take a partial Newton step to move from an

approximate analytic center of Pzk−1 to an approximate analytic center of Pzk . A

system of linear equations is solved at each iteration to find the step direction. The

solution that is available after O(
√
mL) iterations can be converted to an optimal

solution. Our work is influenced by the work of Bayer and Lagarias [1] Renegar [22],

Sonnevend [24], and Vaidya [25] in their study of methods of analytical centers for

linear programming.

Although the worst case bound of our algorithm is not the best in comparison

with the ones in [7], [14] and [21] (O(
√
n) slower), we feel that it is valuable in the

following sense. It is the only primal algorithm that reaches the order of O(
√
mn3L)

operations without explicitly requiring dual feasibility; and its analysis is based on

estimating the Taylor expansion of the log-quadratic function (1.3). In our continu-

ing research on interior point methods this approach has provided us an extremely

useful framework for analyzing interior point methods in more general settings. The

results obtained by us are reported in [17,19] for quadratically constrained convex

quadratic programs and in [18] for convex programming problems. Furthermore,
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as a consequence of our analysis we also get a theoretical framework for comput-

ing inexact search directions. The ability to compute inexact search directions is

desirable for efficient implementations of interior point methods.

This paper is organized as follows. In the next section we provide some basic

properties of the potential function F (x, z). In Section 3 we state our basic al-

gorithm and give several results to establish its convergence. Several lemmas are

proved in Section 4. Section 5 discusses an approach to satisfy the initial assump-

tions.

2. Analytic Centers and Potential Functions

Let F (x, z) be as in (1.3) and ω be the corresponding analytic center. Let

f(x, z) ≡ F (ω, z)− F (x, z).

The function f(x, z) is called the normalized potential function. Note that the

function f(x, z) is convex in x and its minimizer over Pz is also ω. In this section

we give several properties of the normalized potential function and the analytic

center that are used frequently in our paper. Let ∇f(x, z) and ∇2f(x, z) represent

the gradient and Hessian of f(x, z) with respect to x. It is easy to see that

∇f(x, z) = −m∇q(x)

q(x)− z
−

m∑
i=1

ai
aTi x− bi

(2.1)

and

∇2f(x, z) =
m

(q(x)− z)2
∇q(x)(∇q(x))T +

m∑
i=1

1

(aTi x− bi)2
aia

T
i −

m

q(x)− z
Q. (2.2)
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Note that the gradient of f(x, z) vanishes at ω, i.e., ∇f(ω, z) = 0. The following

lemma gives the complete Taylor’s expansion of f(y′, z) at y. A proof of this lemma

is provided in Section 4.

Lemma 2.1 Let y′ ∈ intPz and h = y′ − y. The Taylor expansion of f(y′, z) at y is

given by

f(y′, z)− f(y, z) =
∞∑
j=1

[1
j

m∑
i=1

(Ci(y))j +
m

j!

bj/2c∑
i=0

αji(A(y))j−2i(B(y))i
]
,

where A(y), B(y) and Ci(y) are obtained by evaluating

A(x) = −∇q(x)Th

q(x)− z
, B(x) = − hTQh

q(x)− z
, Ci(x) = − aTi h

aTi x− bi
,

at x = y respectively. The coefficients αji are defined by the following recursive

relationships:


α1,0 = 1
αj+1,0 = jαj,0 j = 1, 2, ...
αj+1,i = (j − i)αji + (j − 2i+ 2)αj,i−1 j = 1, 2, ..., i = 1, 2, ..., bj/2c
αji = 0 j = 1, 2, ..., i > bj/2c.

bj/2c is the largest integer that is less than or equal to j/2.

Let E(y, r) ≡ {x | (x − y)T∇2f(y, z)(x − y) ≤ r2} be the ellipsoid of radius

r around y. This choice of ellipsoid provides us with several desirable properties.

It can be shown that E(y, 1) ⊂ Pz ⊂ E(ω, 2m). The next lemma shows that the

normalized potential function is well behaved on points in ellipsoid E(y, .5). A proof

of this lemma is given in Section 4.

Lemma 2.2 If x ∈ E(y, r), 0 ≤ r < 0.5, then

∣∣∣f(x, z)− f(y, z)−∇f(y, z)T (x− y)− 1

2
(x− y)T∇2f(y, z)(x− y)

∣∣∣ ≤ 5r3

3(1− 2r)
.
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The following are simple estimations of the objective function value and slacks in

the constraints at x ∈ E(y, r).

Lemma 2.3 If x ∈ E(y, r), then

∣∣∣aTi (x− y)

aTi y − bi

∣∣∣ ≤ r, 1 ≤ i ≤ m (2.3)

and ∣∣∣q(y)− q(x)
∣∣∣

q(y)− z
≤ r√

m
+

r2

2m
. (2.4)

Proof: Since x ∈ E(y, r), we have

m
((∇q(y))T (x− y)

q(y)− z
)2

+
m∑
i=1

(aTi (x− y)

aTi y − bi

)2
− m

q(y)− z
(x− y)TQ(x− y) ≤ r2. (2.5)

Since Q is symmetric negative semidefinite, (2.3) follows. In order to prove (2.4),

note that

∣∣∣q(y)− q(x)
∣∣∣

q(y)− z
≤

∣∣∣∇q(y)T (x− y)
∣∣∣

q(y)− z
+

1

2

∣∣∣(x− y)TQ(x− y)
∣∣∣

q(y)− z
,

∣∣∣∇q(y)T (x− y)
∣∣∣

q(y)− z
≤ r√

m
, (by using (2.5))

and ∣∣∣(x− y)TQ(x− y)
∣∣∣

q(y)− z
≤ r2

m
. (by using (2.5))

(Q.E .D.)

We now provide a lemma that shows that the analytical center ω is a “good

representative” of the convex set Pz.
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Lemma 2.4 The analytic center ω of the convex set Pz ensures that,

q(x)− z
q(ω)− z

≤ 2, ∀x ∈ Pz, (2.6)

and

q(x)− z
q(ω)− z

≥ 1− δ√
m
− δ2

2m
, ∀x ∈ E(ω, δ). (2.7)

Proof: Note that

q(x)− q(ω) = ∇q(ω)T (x− ω) +
1

2
(x− ω)TQ(x− ω). (2.8)

By using (2.8) and the fact that ∇f(ω, z) = 0, we have

1

m

m∑
i=1

aTi x− bi
aTi ω − bi

+
q(x)− z
q(ω)− z

=
1

m

m∑
i=1

(1 +
aTi (x− ω)

aTi ω − bi
) +

1

q(ω)− z
[
q(ω)− z +∇q(ω)T (x− ω) +

1

2
(x− ω)TQ(x− ω)

]

=1− ∇f(ω, z)T (x− ω)

m
+ 1 +

1

2

(x− ω)TQ(x− ω)

q(ω)− z

=2 +
1

2

(x− ω)TQ(x− ω)

q(ω)− z
.

Since Q is symmetric negative semidefinite, (2.6) follows. The inequality (2.7) is a

simple consequence of Lemma 2.3.

3. Development of the Basic Algorithm
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In this section we first study the following basic algorithm for (QP).

Algorithm 3.1

Input: z0, x0 ∈ intPz0 .

For k = 0, 1, 2, . . . , until a termination criterion is satisfied do:

Starting from xk find ωk the analytic center of Pzk ;

xk+1 ← ωk;

zk+1 ← zk + βk+1, 0 < βk+1 < q(xk+1)− q(xk).

The Algorithm 3.1 is a restatement of the method of centers [9]. For a choice of

βk+1 that is arbitrarily close to q(xk+1) − q(xk), it can be shown from Lemma 2.4

that Algorithm 3.1 would require at most O(L) iterations to produce a “good ap-

proximation” to the optimal solution of (QP). However, the problem of finding the

analytic center (or a good approximation to it) at each iteration is “difficult”. On

the contrary the problem of finding the analytic center (or a good approximation to

it) is “relatively easy” if βk+1 is close to zero but then Algorithm 3.1 would require

a much larger number of steps to converge to the optimal solution.

The algorithm that we develop in this paper makes a compromise between

these two extreme situations. At the beginning of iteration k we have a good

approximation xk of the analytic center ωk of the convex set Pzk . The normalized

potential function provides the metric that is used to measure the distance. We

take a partial Newton step at xk and move to xk+1. The point xk+1 is closer to

ωk than xk. Finally zk is appropriately increased to zk+1 to obtain Pzk+1 such that

xk+1 also serves as a good approximation to ωk+1.

Let z∗ denote the optimal objective function value of (QP). We make the fol-

lowing assumptions.
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A1. P is a bounded polytope;

A2. intP is nonempty;

A3. A lower bound z0 on the objective value of (QP) is available such

that z∗ − z0 ≤ 2O(L);

A4. A solution x0 ∈ intPz0 is known and f(x0, z0) ≤ .003.

An approach to cast any given (QP) to the problem form that satisfies these

assumptions is given in Section 5. We now outline our algorithm.

Algorithm 3.2

Initialization:

z0 ← z0 and x0 ← x0.

For k = 0, 1, . . . until termination criterion is satisfied do:

Determine a step direction p by solving

∇2f(xk, zk) p = −∇f(xk, zk).

Let

xk+1 ← xk +
ε√

pT∇2f(xk, zk)p
p,

where ε = .03, and

zk+1 ← zk +
α√
m

(q(xk+1)− zk),

with α = .001,
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The values ε = .03 and α = .001 are chosen for our analysis. In practice ε

may be obtained by doing a one dimensional line search to maximize the potential

function F (xk, zk).

We now prove the following convergence theorem for Algorithm 3.2.

Theorem 3.3 Let z∗ denote the optimal objective value of (QP), then at iteration k

of Algorithm 3.2 we have

z∗ − zk+1

z∗ − zk
≤ (1− .0004√

m
). (3.1)

We need to state several lemmas that are used to prove Theorem 3.3. Proofs for all

these lemmas are provided in the next section. Let us fix iteration k in Algorithm 3.2

and represent xk, xk+1, zk and zk+1 by x, x+, z and z+ respectively.

The Lemma 3.4 shows that if at a given point x the value of the normalized

potential function is “small”, then x is “close to” ω. Lemma 3.5 shows that whenever

x is “close to” ω, the value of the normalized potential function can be reduced by

a “sufficient” amount, by taking a partial Newton step at x and moving to x+.

Lemma 3.6 shows that if x+ is “sufficiently close” to ω then it remains “close to”

the analytic center ω+ that is defined for the convex set Pz+ . The improved lower

bound z+ is obtained by adding a fraction of q(x+)− z to z.

Lemma 3.4 Let 0 ≤ δ < 0.5, and

f(x, z) ≤ δ2

2
− 5δ3

3(1− 2δ)
,

then x ∈ E(ω, δ).
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Lemma 3.5 Let x ∈ E(ω, δ), 0 ≤ δ < .243 and ε be a parameter such that

0 ≤ ε < 0.5. The point x+ that minimizes ∇f(x, z)T y over E(x, ε) ≡ {y |

(y − x)T∇2f(x, z)(y − x) ≤ ε2} satisfies,

f(x+, z) ≤ f(x, z)− ε
√
f(x, z)

(
1− 7δ

2
− 5δ2

2

)
+
ε2

2
+

5ε3

3(1− 2ε)
. (3.2)

Lemma 3.6 Let z+ = z + α√
m

(q(x+)− z), 0 < α <
√
m and x+ ∈ intPz+. If

f(x+, z) ≤ δ+2

2
− 5δ+3

3(1− 2δ+)
,

where 0 ≤ δ+ < 0.5, then we have

f(x+, z+) ≤ f(x+, z) +
mα√
m− α

( δ+

√
m

+
δ+2

2m

)
+

α2(1 + δ+√
m

+ δ+
2

2m )2

1− α√
m

(1 + δ+√
m

+ δ+2

2m )
.

Figure 3.1 graphically represents ellipsoids E(ω, δ), E(ω+, δ) and E(x, ε) used in

Lemma 3.5, Lemma 3.6 and in the proof of Theorem 3.3.

Proof of Theorem 3.3 Without loss of generality let us assume that f(xk, zk) ≤ .003.

Since f(xk, zk) ≤ .003 from Lemma 3.4 it is easy to see that xk ∈ E(ωk, .2). For

the choice of ε = .03, from Lemma 3.5 we can show that f(xk+1, zk) ≤ .00277. This

implies that xk+1 ∈ E(ωk, δ+), δ+ < .2. Let us take α = 0.001. Since m ≥ 2 for

a bounded polytope, Lemma 3.6 implies that f(xk+1, zk+1) ≤ .003. Now since by

Lemma 2.4,

q(xk+1)− zk ≥ (1− δ+

√
m
− δ+2

2m
)(q(ωk)− zk) ≥ .84(q(ωk)− zk) ≥ .42(z∗ − zk),
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we have

z∗ − zk+1 = z∗ − zk − α√
m

(q(xk+1)− zk) ≤ (1− 0.001× 0.42√
m

)(z∗ − zk).

The proof of Theorem 3.3 is now complete.

(Q.E .D.)

Algorithm 3.2 finds the search direction at each iteration by solving a system

of linear equations. This can be done in O(n3) arithmetic operations. From Theo-

rem 3.3 and the fact that z∗− z0 ≤ 2O(L) it follows that z∗− zk ≤ 2−θL in O(
√
mL)

iterations for a given constant θ. From this point we may jump to an exact optimal

solution of (QP) by using continued fractions (see e.g., [11,15]).

The main computational work in the implementation of the Algorithm 3.2 in-

volves solving a system of linear equation:

Mp = −∇f(x, z), (3.3)

where

M =
m∑
i=1

1

(aTi x− bi)2
aia

T
i +

m

(q(x)− z)2
∇q(x)∇q(x)T − m

(q(x)− z)
Q.

The matrix M defining the system of linear equation (3.3) is symmetric and posi-

tive definite. Direct (e.g., symmetric Gaussian elimination) and iterative methods

(e.g., preconditioned conjugate gradient method) may be used to find the solution

of (3.3). The detailed implementation of these methods would be much in the spirit

of implementations of Karmarkar’s algorithm (and related interior point methods)

for linear programming. In particular, the fact that the system of equations that
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are solved at each iteration are symbolically and numerically related should be used

for developing efficient implementations.

If iterative methods are used, it is computationally expensive to solve (3.3)

exactly. The following lemma is important for developing implementations of Al-

gorithm 3.2 that use iterative methods. In this lemma we observe that inexact

solutions of (3.3) also provide search directions along which the normalized poten-

tial function is reduced by the desired amount.

Lemma 3.7 Let x ∈ E(ω, δ), 0 ≤ δ < .243 and ε be a parameter such that 0 ≤ ε <

0.5. Let x̄ be the point where the line joining x to the analytic center ω intersects

with the boundary of ellipsoid E(x, ε). Let x+ be a point that satisfies

∇f(x, z)Tx+ ≤ ∇f(x, z)T x̄.

Then we have,

f(x+, z) ≤ f(x, z)− ε
√
f(x, z)

(
1− 7δ

2
− 5δ2

2

)
+
ε2

2
+

5ε3

3(1− 2ε)
.

The above lemma is a restatement of Lemma 3.5 under a weaker condition. The

proof of Lemma 3.7 is same as that of Lemma 3.5. The proof of Theorem 3.3 does

not change if Lemma 3.5 is replaced by Lemma 3.7.
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4. Analysis

We now provide several lemmas and their proofs that were stated in Section 2 and

Section 3. At our convenience we list these lemmas in their logical order. However,

if a lemma or a theorem was stated before, its old number is bracketed immediately

after its new number.

Lemma 4.1 [Lemma 2.1] Let y′ ∈ intPz and h = y′ − y. The Taylor expansion of

f(y′, z) at y is given by

f(y′, z)− f(y, z) =
∞∑
j=1

[1
j

m∑
i=1

(Ci(y))j +
m

j!

bj/2c∑
i=0

αji(A(y))j−2i(B(y))i
]
,

where A(y), B(y) and Ci(y) are obtained by evaluating

A(x) = −∇q(x)Th

q(x)− z
, B(x) = − hTQh

q(x)− z
, Ci(x) = − aTi h

aTi x− bi
,

at x = y respectively. The coefficients αji are defined by the following recursive

relationships:


α1,0 = 1
αj+1,0 = jαj,0 j = 1, 2, ...
αj+1,i = (j − i)αji + (j − 2i+ 2)αj,i−1 j = 1, 2, ..., i = 1, 2, ..., bj/2c
αji = 0 j = 1, 2, ..., i > bj/2c.

Proof: Since

f(y′, z)− f(y, z) =
∞∑
j=1

1

j!
(
∂

∂x1
h1 + · · ·+ ∂

∂xn
hn)jf(x, z)

∣∣∣
x=y

and

(
∂

∂x1
h1 + · · ·+ ∂

∂xn
hn)j [− ln(aTi x− bi)] = (j − 1)!(Ci(x))j j = 1, 2, ..., (4.1)
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we only need to show that

(
∂

∂x1
h1 + · · ·+ ∂

∂xn
hn)j ln(q(x)− z) = −

bj/2c∑
i=0

αji(A(x))j−2i(B(x))i. (4.2)

We prove this by induction. It can be easily verified that (4.2) is valid for j = 1

and j = 2. Now suppose that (4.2) is valid for j. We have

(
∂

∂x1
h1 + · · ·+ ∂

∂xn
hn)j+1 ln(q(x)− z)

=(
∂

∂x1
h1 + · · ·+ ∂

∂xn
hn)(−

bj/2c∑
i=0

αji(A(x))j−2i(B(x))i).

The identities

(
∂

∂x1
h1 + · · ·+ ∂

∂xn
hn)A(x) = (A(x))2 +B(x)

and

(
∂

∂x1
h1 + · · ·+ ∂

∂xn
hn)B(x) = A(x)B(x)

are used in the sequel.
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If j = 2k, we get

(
∂

∂x1
h1 + · · ·+ ∂

∂xn
hn)[−

bj/2c∑
i=0

αji(A(x))j−2i(B(x))i]

=− α2k,0(2k)(A(x))2k−1(A2(x) +B(x))

−
k−1∑
i=1

α2k,i

[
(2k − 2i)(A(x))2k−2i−1(B(x))i((A(x))2 +B(x))

+ i(A(x))2k−2i(B(x))i−1A(x)B(x)
]
− k(B(x))k−1A(x)B(x)

=− 2kα2k,0(A(x))2k+1

−
k∑
i=1

[
(2k − i)α2k,i + (2k − 2i+ 2)α2k,i−1

]
(A(x))2k−2i+1(B(x))i

=−
b(j+1)/2c∑

i=0

αj+1,i(A(x))j+1−2i(B(x))i,
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and if j = 2k + 1, we get

(
∂

∂x1
h1 + · · ·+ ∂

∂xn
hn)(−

bj/2c∑
i=0

αji(A(x))j−2i(B(x))i)

=− α2k+1,0(2k + 1)(A(x))2k(A2(x) +B(x))

−
k∑
i=1

α2k+1,i

[
(2k + 1− 2i)(A(x))2k−2i(B(x))i(A2(x) +B(x))

+ i(A(x))2k+1−2i(B(x))i−1A(x)B(x)
]

=− (2k + 1)α2k+1,0(A(x))2k+2

−
k∑
i=1

[
(2k + 1− i)α2k+1,i + (2k + 1− 2i+ 2)α2k+1,i−1

]
(A(x))2k−2i+2(B(x))i

− α2k+1,k(B(x))k+1

=−
k∑
i=0

α2k+2,i(A(x))2k+2−2i(B(x))i − α2k+1,k(B(x))k+1

=−
b(j+1)/2c∑

i=0

αj+1,i(A(x))j+1−2i(B(x))i.

This completes the induction. The proof of Lemma 4.1 follows by combining (4.1)

and (4.2).

(Q.E .D.)

Lemma 4.2 Let αji’s be defined by the recursive relationship in Lemma 4.1, then

bj/2c∑
i=0

αji ≤ 2j−1(j − 1)!

.
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Proof: If j = 2k, we have

k∑
i=0

α2k,i =
k−1∑
i=1

[(2k − 1− i)α2k−1,i + (2k − 2i+ 1)α2k−1,i−1] + (2k − 1)α2k−1,0 + α2k−1,k−1

=
k−1∑
i=0

(4k − 2− 3i)α2k−1,i

≤ (4k − 2)
k−1∑
i=0

α2k−1,i (because all αji ≥ 0).

Otherwise j = 2k + 1, and we have

k∑
i=0

α2k+1,i =
k∑
i=1

[(2k − i)α2k,i + (2k + 2− 2i)α2k,i−1 + α2k,i−1] + 2kα2k,0

=
k∑
i=0

(4k − 3i)α2k,i

≤4k
k∑
i=0

α2k,i.

Hence, by letting βj =
∑bj/2c
i=0 αji, we have

βj ≤ (2j − 2)βj−1.

Therefore,

βj ≤ 2j−1(j − 1)!β1 = 2j−1(j − 1)!

(Q.E .D.)

Lemma 4.3 [Lemma 2.2] If x ∈ E(y, r), 0 ≤ r < 0.5, then

∣∣∣f(x, z)− f(y, z)−∇f(y, z)T (x− y)− 1

2
(x− y)T∇2f(y, z)(x− y)

∣∣∣ ≤ 5r3

3(1− 2r)
.
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Proof: Since from Lemma 4.1 one has

f(x, z)− f(y, z) =
∞∑
j=1

[1
j

m∑
i=1

(Ci(y))j +
m

j!

bj/2c∑
i=0

αji(A(y))j−2i(B(y))i
]
,

it is sufficient to show that

∣∣∣ ∞∑
j=3

[1
j

m∑
i=1

(Ci(y))j +
m

j!

bj/2c∑
i=0

αji(A(y))j−2i(B(y))i
]∣∣∣ ≤ 5r3

3(1− 2r)
,

where

A(y) = −∇q(y)T (x− y)

q(y)− z
, B(y) = −(x− y)TQ(x− y)

q(y)− z
, Ci(y) = −a

T
i (x− y)

aTi y − bi
.

Now since x ∈ E(y, r), we have

m∑
i=1

(Ci(y))2 ≤ r2, m(A(y))2 ≤ r2 and mB(y) ≤ r2.

Thus ∣∣∣ ∞∑
j=3

[1
j

m∑
i=1

(Ci(y))j +
m

j!

bj/2c∑
i=0

αji(A(y))j−2i(B(y))i
]∣∣∣

≤
∞∑
j=3

rj−2

j

m∑
i=1

(Ci(y))2 +
∣∣∣m ∞∑

j=3

[ 1

j!

bj/2c∑
i=0

αji(A(y))j−2i(B(y))i
]∣∣∣

≤
∞∑
j=3

rj

j
+m

∞∑
j=3

[ 1

j!

bj/2c∑
i=0

αji(
r√
m

)j−2i(
r2

m
)i
]

≤
∞∑
j=3

rj

j
+m−

1
2

∞∑
j=3

rj

j
(2j−1) (by Lemma 4.2)

≤ r3

3(1− r)
+

(2r)3

6(1− 2r)
≤ 5r3

3(1− 2r)
.
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(Q.E .D.)

Lemma 4.4 [Lemma 3.4] Let 0 ≤ δ < 0.5, and

f(x, z) ≤ δ2

2
− 5δ3

3(1− 2δ)
,

then x ∈ E(ω, δ).

Proof: Since f(x, z) is a non-negative, strictly convex function, and f(ω, z) = 0,

its minimum value over the region {x ∈ Rn|x ∈ Pz, x /∈ intE(w, δ)} occurs on the

boundary of E(ω, δ). It is therefore sufficient to show that

f(x, z) ≥ δ2

2
− 5δ3

3(1− 2δ)

for all the points on the boundary of E(ω, δ). The Taylor’s expansion of f(x, z) at

ω and Lemma 4.3 gives,

f(x, z) ≥ f(ω, z) +∇f(ω, z)T (x− ω) +
1

2
(x− ω)T∇2f(ω, z)(x− ω)− 5δ3

3(1− 2δ)

≥ δ2

2
− 5δ3

3(1− 2δ)
.

The last inequality follows by using the facts that f(ω, x) = 0, ∇f(ω, x) = 0 and x

is on the boundary of E(ω, δ).

(Q.E .D.)

Lemma 4.5 Let x ∈ E(ω, δ), and let 0 < δ < 0.243. Then

|f(x, z)| ≤ 1 (4.5.a)

∇f(x, z)T (x− ω) ≥ f(x, z) ≥ 0 (4.5.b)

∇f(x, z)T (x− ω) ≥ (1− 7

2
δ − 5

2
δ2)(x− ω)T∇2f(x, z)(x− ω) (4.5.c)

∇f(x, z)T (x− w) ≥
[
(1− 7

2
δ − 5

2
δ2)f(x, z)(x− ω)T∇2f(x, z)(x− ω)

] 1
2 (4.5.d)
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Proof of (4.5.a). Since f(ω, z) = 0 and ∇f(ω, z) = 0, from Lemma 4.1 and

Lemma 4.3 we have

|f(x, z)| ≤1

2

∣∣∣(x− ω)T∇2f(ω, z)(x− ω)
∣∣∣

+
∣∣∣ ∞∑
j=3

1

j

m∑
i=1

(Ci(ω))j +m
∞∑
j=3

1

j!

bj/2c∑
i=0

αjiA
j−2i(ω)Bi(ω)

∣∣∣
≤1

2
δ2 +

5δ3

3(1− 2δ)
(by Lemma 4.3)

=
3 + 4δ

6(1− 2δ)
δ2 < 1.

(Q.E .D.)

Proof of (4.5.b). Since f(ω, z) = 0 and f(x, z) is convex, we have

0 ≤ f(x, z) = f(x, z)− f(ω, z) ≤ ∇f(x, z)T (x− ω).

(Q.E .D.)

Proof of (4.5.c). The following three relationships together with (2.6) and (2.7) are

frequently used in our proof of (4.5.c). Let Di(x) =
aTi (x−ω)

aTi ω−bi
, then Di(x) ≥ −1 for

all i,

Di(x)

1 +Di(x)
=
aTi (x− ω)

aTi x− bi
, (4.3)

and

q(x)− q(ω) = ∇q(ω)T (x− ω) +
1

2
(x− ω)TQ(x− ω), (4.4).
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Now,

∇f(x, z)T (x− ω) = −
m∑
i=1

aTi (x− ω)

aTi x− bi
− m∇q(x)T (x− ω)

q(x)− z

=−
m∑
i=1

Di(x)

1 +Di(x)
− m∇q(x)T (x− ω)

q(x)− z

=
m∑
i=1

D2
i (x)

1 +Di(x)
− m∇q(x)T (x− ω)

q(x)− z
+
m∇q(ω)T (x− ω)

q(ω)− z
(by using ∇f(ω, z)(x− ω) = 0)

=
m∑
i=1

D2
i (x)

1 +Di(x)
− m

q(x)− z
[∇q(ω)T (x− ω) + (x− ω)TQ(x− ω)] +

m∇q(ω)T (x− ω)

q(ω)− z

=
m∑
i=1

D2
i (x)

1 +Di(x)
− m(x− ω)TQ(x− ω)

q(x)− z
+m

[q(x)− q(ω)][∇q(ω)(x− ω)]

[q(x)− z][q(ω)− z]
.
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Thus,

1

m
∇f(x, z)T (x− ω)

=
1

m

m∑
i=1

( Di(x)

1 +Di(x)

)2
(1 +Di(x))− (x− ω)TQ(x− ω)

q(x)− z

+
q(x)− z
q(ω)− z

(
1 +

1

2

(x− ω)TQ(x− ω)

∇q(ω)T (x− ω)

)(∇q(ω)T (x− ω)

q(x)− z
)2

(by (4.4))

=
1

m

m∑
i=1

( Di(x)

1 +Di(x)

)2
(1 +Di(x))− (x− ω)TQ(x− ω)

q(x)− z

+
q(x)− z
q(ω)− z

(∇q(ω)T (x− ω)

q(x)− z
)2

+
1

2

∇q(ω)T (x− ω)

q(ω)− z
(x− ω)TQ(x− ω)

q(x)− z

≥1− δ
m

m∑
i=1

( Di(x)

1 +Di(x)

)2
− (x− ω)TQ(x− ω)

q(x)− z

+
q(x)− z
q(ω)− z

(∇q(x)T (x− ω)− (x− ω)TQ(x− ω)

q(x)− z
)2

+
δ

2
√
m

(x− ω)TQ(x− ω)

q(x)− z
(because x ∈ E(ω, δ))

≥(1− δ − δ2

2
)
[ 1

m

m∑
i=1

( Di(x)

1 +Di(x)

)2
− (x− ω)TQ(x− ω)

q(x)− z
+
(∇q(x)T (x− ω)

q(x)− z
)2]

+
(−2∇q(x)T (x− ω)

q(ω)− z
+

δ

2
√
m

)(x− ω)TQ(x− ω)

q(x)− z
(by Lemma 2.4)

=
1

m
(1− δ − δ2

2
)(x− ω)T∇2f(x, z)(x− ω)

+
[
2
(∇q(ω)T (ω − x)

q(ω)− z
− (x− ω)TQ(x− ω)

q(ω)− z
)

+
δ

2
√
m

](x− ω)TQ(x− ω)

q(x)− z

≥
[ 1

m
(1− δ − δ2

2
)− 2

m

( δ√
m

+
δ2

m
+

δ

4
√
m

)]
(x− ω)T∇2f(x, z)(x− ω)

(because
∣∣∣(x− ω)TQ(x− ω)

q(x)− z
∣∣∣ ≤ 1

m
(x− ω)T∇2f(x, z)(x− ω))

≥ 1

m
(1− 7δ

2
− 5δ2

2
)(x− ω)T∇2f(x, z)(x− ω).

(Q.E .D.)

Proof of (4.5.d). For 0 ≤ δ < 0.243, we have 1 − 7δ
2 −

5δ2

2 > 0. Thus multiplying

(4.5.b) with (4.5.c), we get (4.5.d).
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(Q.E .D.)

Lemma 4.6 Let z+ ≥ z and let f(x, z+) = F (ω+, z+)− F (x, z+), where

F (x, z+) =
m∑
i=1

ln(aTi x− bi) +m ln(q(x)− z+),

and ω+ is the point that maximizes F (x, z+) over the convex set

Pz+ = {x ∈ Rn|aTi x ≥ bi ∀i and q(x) ≥ z+}.

Then

0 ≤ q(ω+)− q(ω) ≤ z+ − z.

Proof. Let z(t) = z+t(z+−z) and let ω(t) be the point that maximizes the function

F (x, z(t)) =
m∑
i=1

ln(aTi x− bi) +m ln(q(x)− z(t)).

Since the gradient of F (x, z(t)) vanishes at ω(t), we have

0 =
d

d t

[ m∑
i=1

ai
aTi ω(t)− bi

+m
∇q(ω(t))

q(ω(t))− z(t)
]

=
m∑
i=1

−aiaTi
(aTi ω(t)− bi)2

dω(t)

d t

+
m

(q(ω(t))− z(t))2

[d∇q(ω(t))

dω(t)

dω(t)

d t
(q(ω(t))− z(t))−∇q(ω(t))

(d q(ω(t))

d t
− d z(t)

d t

)]
=

m∑
i=1

−aiaTi
(aTi ω(t)− bi)2

dω(t)

d t

+
m

(q(ω(t))− z(t))2

[
(q(ω(t))− z(t))Qdω(t)

d t
−∇q(ω(t))

(d q(ω(t))

d t
− d z(t)

d t

)]
.
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Because −aiaTi and Q are negative semidefinite, and q(ω(t))− z(t) > 0, we have

0 ≥
(dω(t)

d t

)T
∇q(ω(t))

(d q(ω(t))

d t
− d z(t)

d t

)
=
d q(ω(t))

d t

(d q(ω(t))

d t
− d z(t)

d t

)
,

so (d q(ω(t))

d t

)2
≤ d q(ω(t))

d t

d z(t)

d t
=
d q(ω(t))

d t
(z+ − z).

This implies that

0 ≤ d q(ω(t))

d t
≤ z+ − z.

Hence,

0 ≤ q(ω+)− q(ω) =
∫ 1

0

d q(ω(t))

d t
d t ≤ z+ − z.

(Q.E .D.)

Lemma 4.7 [Lemma 3.5] Let x ∈ E(ω, δ), 0 ≤ δ < .243 and ε be a parameter such

that 0 ≤ ε < 0.5. The point x+ that minimizes ∇f(x, z)T y over

E(x, ε) ≡ {y | (y − x)T∇2f(x, z)(y − x) ≤ ε2} satisfies,

f(x+, z) ≤ f(x, z)− ε
√
f(x, z)

(
1− 7δ

2
− 5δ2

2

)
+
ε2

2
+

5ε3

3(1− 2ε)
.

Proof: The Taylor’s expansion of f(x+, z) at x and Lemma 4.3 gives,

f(x+, z) ≤ f(x, z) +∇f(x, z)T (x+ − x) +
1

2
(x+ − x)T∇2f(x, z)(x+ − x) +

5ε3

3(1− 2ε)

≤ f(x, z) +∇f(x, z)T (x+ − x) +
ε2

2
+

5ε3

3(1− 2ε)
. (4.5)

Let x̄ be the point where the straight line joining x to the analytic center ω intersects

with the boundary of the ellipsoid E(x, ε). Since ∇f(x, z)Tx+ ≤ ∇f(x, z)T x̄, from
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(4.5) we have

f(x+, z) ≤ f(x, z) +∇f(x, z)T (x̄− x) +
ε2

2
+

5ε3

3(1− 2ε)

= f(x, z) +
ε∇f(x, z)T (ω − x)√

(ω − x)T∇2f(x, z)(ω − x)
+
ε2

2
+

5ε3

3(1− 2ε)

≤ f(x, z)− ε
√
f(x, z)

(
1− 7δ

2
− 5δ2

2

)
+
ε2

2
+

5ε3

3(1− 2ε)
.

The last inequality follows by using (4.5.d).

(Q.E .D.)

Lemma 4.8 [Lemma 3.6] Let z+ = z+ α√
m

(q(x+)−z),
√
m > α > 0 and x+ ∈ intPz+.

If

f(x+, z) ≤ δ+2

2
− 5δ+3

3(1− 2δ+)
,

where 0 ≤ δ+ < 0.5, then we have

f(x+, z+) ≤ f(x+, z) +
mα√
m− α

( δ+

√
m

+
δ+2

2m

)
+

α2(1 + δ+√
m

+ δ+
2

2m )2

1− α√
m

(1 + δ+√
m

+ δ+2

2m )
. (4.6)

Proof: We may write

f(x+, z+) = f(x+, z) + f(ω, z+) +m ln
(q(x+)− z)(q(ω)− z+)

(q(x+)− z+)(q(ω)− z)
. (4.7)

Since,

(q(x+)− z)(q(ω)− z+)

(q(x+)− z+)(q(ω)− z)
= 1 +

(z+ − z)(q(ω)− q(x+))

(q(x+)− z+)(q(ω)− z)

= 1 +
α(q(x+)− z)(q(ω)− q(x+))√
m(q(x+)− z+)(q(ω)− z)

= 1 +
α√
m− α

q(ω)− q(x+)

q(ω)− z
,
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by using (2.4) we have,

(q(x+)− z)(q(ω)− z+)

(q(x+)− z+)(q(ω)− z)
≤ 1 +

α√
m− α

( δ+

√
m

+
δ+2

2m

)
. (4.8)

We need the following to upper bound the value of f(ω, z+).

q(ω+)− z+

q(ω)− z+
=
q(ω+)− z
q(ω)− z

(
1 +

(z+ − z)(q(ω+)− q(ω))

(q(ω+)− z)(q(ω)− z+)

)
.

Now by using Lemma 4.6 in the above equation we have

q(ω+)− z+

q(ω)− z+

≤q(ω
+)− z

q(ω)− z
+

(z+ − z)2

(q(ω)− z)(q(ω)− z+)

=
q(ω+)− z
q(ω)− z

+
α2(q(x+)− z)2

m(q(ω)− z)(q(ω)− z+)

=
q(ω+)− z
q(ω)− z

+
α2

m

(q(x+)− q(ω)

q(ω)− z
+ 1

)( q(x+)− z
q(ω)− z − α√

m
(q(x+)− z)

)

=
q(ω+)− z
q(ω)− z

+
α2

m

(q(x)− q(ω)

q(ω)− z
+ 1

)2( 1

1− α(q(x+)−z)√
m(q(ω)−z)

)

≤q(ω
+)− z

q(ω)− z
+

α2

m (1 + δ+√
m

+ δ+
2

2m )2

1− α√
m

(1 + δ+√
m

+ δ+2

2m )
. (4.9)

The inequality (4.10) below follows by using (4.9), and (4.11) follows from the fact
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that ∇f(ω, z) = 0. Now,

f(ω, z+) =
m∑
i=1

ln
aTi ω

+ − bi
aTi ω − bi

+m ln
q(ω+)− z+

q(ω)− z+

≤
m∑
i=1

(aTi ω+ − bi
aTi ω − bi

− 1
)

+m
(q(ω+)− z+

q(ω)− z+
− 1

)

≤
m∑
i=1

aTi ω
+ − aTi ω

aTi ω − bi
+m

[q(ω+)− z
q(ω)− z

+

α2

m (1 + δ+√
m

+ δ+
2

2m )2

1− α√
m

(1 + δ+√
m

+ δ+2

2m )
− 1

]
(4.10)

=
m

2

(ω+ − ω)TQ(ω+ − ω)

q(ω)− z
+

α2(1 + δ+√
m

+ δ+
2

2m )2

1− α√
m

(1 + δ+√
m

+ δ+2

2m )
(4.11)

≤
α2(1 + δ+√

m
+ δ+

2

2m )2

1− α√
m

(1 + δ+√
m

+ δ+2

2m )
. (4.12)

The proof of Lemma 4.8 is complete by combining (4.7), (4.8) and (4.12).

(Q.E .D.)

5. Initial Problem Transformation

In this section we discuss an approach to cast any given convex quadratic program

into the problem form that is desired in Algorithm 3.2. Let us consider the problem

(QP )

maximize xT Q̄x+ c̄Tx
subject to āTi x ≥ b̄i, i = 1, 2, . . . , m̄,

x ≥ 0,

where āi ∈ Z n̄, c ∈ Z n̄ and Q̄ ∈ Z n̄×n̄ is a negative semidefinite matrix. Let L̄

represent the input length of (QP ). The problem form (QP ) is general enough,

since in any given convex quadratic program the free variables can be replaced by

two non-negative variables.
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The unboundedness of (QP ) may be verified by checking feasibility of the system

of linear equations corresponding to the dual of (QP )(see e.g., [15]). A feasible point

for (QP ) and its dual can be obtained by using the algorithms of Gonzaga [8] or

Vaidya [25]. Therefore, without loss of generality we assume that a feasible solution

x̂ and an upper bound z̄ of (QP ) are available. Given a feasible point x̂ it is easy

to find (x̂, x̂a) which is an interior feasible solution to the following problem:

(QP1)

maximize xT Q̄x+ c̄Tx−Maxa
subject to āTi x+ xa ≥ bi, i = 1, 2, . . . , m̄.

x ≥ 0, xa ≥ 0,

where xa is an artificial variable and Ma is a cost that is large enough so that xa = 0

for all the optimal solutions of (QP 1). Ma = 2O(L̄) is sufficient. The fact that at

least one optimal solution y∗ = (x, xa)
∗ of (QP 1) must be a constrained minimizer

and hence ‖(x, xa)∗‖ ≤ 2O(L̄) may be used to generate a large number M1 such

that at least one optimal solution for (QP 1) satisfies x1 + · · ·+ xn̄ + xa ≤M1. The

modified problem

(QP 2)


maximize xT Q̄x+ c̄Tx−Maxa
subject to āTi x+ xa ≥ bi, i = 1, 2, . . . , m̄.

−x1 − · · · − xn̄ − xa ≥ −M1,
x ≥ 0, xa ≥ 0,

has the following form:

(QP )

{
maximize xTQx+ cTx
subject to P ≡ {x | aTi x ≥ bi, i = 1, 2, . . . ,m},

where P is bounded and a point x̂0 ∈ intP is known. The input length L of (QP)

is O(L̄). We now discuss how to find a point x0 ∈ int (P ) and a lower bound z0 on

the objective value of (QP) such that f(x0, z0) ≤ .003.
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The analytic center ξ of a bounded polytope P with a nonempty interior is the

point that solves the problem

maximize g(x) ≡
m∑
i=1

ln(aTi x− bi)

subject to x ∈ intP.

In [26], Vaidya developed an algorithm that efficiently calculates the analytic cen-

ter ξ starting from any interior feasible solution x̂0 of P . If g(ξ) − g(x̂0) ≤ K

then Vaidya’s algorithm would find a point x0 such that g(ξ) − g(x0) ≤ .001 in

O(n2.5K) arithmetic operations. We note that the initial point x̂0 constructed as

above satisfies g(ξ)− g(x̂0) ≤ O(mL). Since
∑m
i=1 ln(aTi x− bi) is maximized at ξ we

have,

f(x0, z0) = m ln(q(ω)− z0) +
m∑
i=1

ln(aTi ω − bi)−m ln(q(x0)− z0)−
m∑
i=1

ln(aTi x0 − bi)

≤ .001 +m ln(q(ω)− z0)−m ln(q(x0)− z0)

≤ .001 +m ln(z̄ − z0)−m ln(q(x0)− z0)

We can now easily find a z0 such that f(x0, z0) ≤ .003 and z̄ − z0 = 2O(L).
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