
Semismooth Homeomorphisms and Strong Stability of

Semidefinite and Lorentz Complementarity Problems

Jong-Shi Pang∗, Defeng Sun†, and Jie Sun‡

Published in Mathematics of Operations Research, 28 (2003) 39-63.

Abstract

Based on an inverse function theorem for a system of semismooth equations, this paper

establishes several necessary and sufficient conditions for an isolated solution of a complemen-

tarity problem defined on the cone of symmetric positive semidefinite matrices to be strongly

regular/stable. We show further that for a parametric complementarity problem of this kind,

if a solution corresponding to a base parameter is strongly stable, then a semismooth implicit

solution function exists whose directional derivatives can be computed by solving certain affine

problems on the critical cone at the base solution. Similar results are also derived for a com-

plementarity problem defined on the Lorentz cone. The analysis relies on some new properties

of the directional derivatives of the projector onto the semidefinite cone and the Lorentz cone.

1 Introduction

The concept of a strongly regular solution to a generalized equation introduced by Robin-
son [39] and the related concept of a strongly stable stationary point of a differentiable
nonlinear program (NLP) introduced by Kojima [18] are two of the most important ideas
in contemporary perturbation analysis of mathematical programming problems. Beginning
with Jongen, Mobert, Rückermann, and Tammer [12], many authors have established the
equivalence between these two concepts for the Karush-Kuhn-Tucker (KKT) system of a
nonlinear program with finitely many twice differentiable functions. The article by Klatte
and Kummer [17] presents a unified framework that handles both concepts simultaneously
and contains a brief bibliographical note. For an excellent survey of perturbation analysis of
optimization problems, see the review by Bonnans and Shapiro [3] and their comprehensive
monograph [4].

Extending the seminal work of Robinson and Kojima mentioned above, many authors
have investigated the solution stability of variational inequalities (VIs); see, e.g., [9], which
characterizes strong stability in linearly constrained VIs in terms of the “Aubin property”.
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For a comprehensive treatment of the subject of solution stability of VIs, we refer the reader
to Chapter 4 in [10]. As explained in the paper [27], there are substantial differences be-
tween the sensitivity and stability analysis of an NLP and that of a VI. Most importantly,
the lack of symmetry in the defining function of a VI invalidates a straightforward opti-
mization approach for such analysis. Focusing on an NLP, Kojima was the first person to
utilize degree theory on a nondifferentiable system of equations to derive stability results
in mathematical programming. Kojima’s equation approach turns out to be very fruitful
for the sensitivity and stability study of the VI and the related complementarity problem
(CP). The forthcoming monograph [10] contains a long chapter on this subject, which is
developed based on the equation approach and degree theory; there are many references in
the bibliography therein. Among its many applications, the strong stability of a solution to
a VI plays a very important role in the derivation of optimality conditions for mathematical
programs with equilibrium constraints; see [29, 34].

As evidenced in Kojima’s classic paper, the strong stability and strong regularity con-
cepts are intimately related to inverse and implicit function theorems for systems of non-
smooth equations. This connection was further illustrated in the work of Robinson [41]
who obtained an implicit function theorem of a B-differentiable equation under a crucial
strong B-differentiability assumption. Prior to Robinson, Clarke [8] established an implicit
function theorem for a locally Lipschitz continuous function under a nonsingularity as-
sumption on the generalized Jacobian matrices that he championed. Kummer [22, 23, 24]
obtained a complete characterization of a locally Lipschitz homeomorphism in terms of a
set of directional-derivative-like vectors and applied the results to nonsmooth parametric
optimization. To date, the application of Kummer’s implicit function theorem to the VI
has not been fruitfully explored.

Nonsmooth implicit/inverse function theorems

While the assumption in Clarke’s implicit function theorem is very restrictive, the orignal
application of Robinson’s implicit function theorem for a strongly B-differentiable function
to the VI was essentially restricted to a linearly constrained problem [39]. The restrictiveness
of the strong B-differentiability was first noted by Kuntz and Scholtes [26] who wrote that
“strong B-differentiability is a rather restrictive requirement for piecewise differentiable
functions”; in the same paper, Kuntz and Scholtes also showed that “generically a piecewise
differentiable function can be locally transformed into a B-differentiable function by means
of a piecewise differentiable homeomorphism”. These results allow these two authors to
obtain “structural inverse function theorems for piecewise differentiable functions”. When
applied to a VI defined by finitely many differentiable convex functions, Kuntz and Scholtes
assumed that “every collection of at most n of the (active constraint gradients) are linearly
independent”.

About the same time as the above work of Kuntz and Scholtes, Pang and Ralph [36] em-
ployed degree theory to obtain an implicit function theorem for a piecewise smooth function
and applied it to the parametric analysis of normal maps defined on non-polyhedral sets
satisfying Janin’s constant-rank constraint qualification (CRCQ). The latter CQ is much
broader than the assumption used by Kuntz and Scholtes (e.g., linear constraints natu-
rally satisfy the CRCQ but not necessarily the Kuntz-Scholtes condition). Subsequently,
Ralph and Scholtes [38] extended the Pang-Ralph theorem to a composite piecewise smooth
function.

Ideally, a complete inverse (or implicit) function theorem should contain the following
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two ingredients: (a) conditions on a “first-order approximation” of the base function that
are necessary and sufficient for the existence and uniqueness of the inverse (or implicit)
function, and (b) inheritance of continuity and differentiability properties of the inverse
(or implicit) function from the given function. The Pang-Ralph implicit/inverse function
theorem for piecewise differentiable functions is complete in this sense. Our main contri-
bution in this paper is twofold. One, to provide such a theorem for the class of vector
semismooth functions [30, 37]; and two, more importantly, to apply the theorem to comple-
mentarity problems defined on the cone of symmetric positive semidefinite matrices and on
the Lorentz cone, thereby obtaining necessary and sufficient conditions for the strong sta-
bility/regularity of a solution to such a complementarity problem in terms of a canonically
linearized complementarity subproblem of the same kind. The latter application is made
possible by recent results that establish the semismoothness of metric projections onto these
cones: For the cone of symmetric positive semidefinite matrices, see Sun and Sun [49]; for
the Lorentz cone, see Chen, Sun, and Sun [5].

The inverse function Theorem 6 and the implicit function Corollary 8 for semismooth
functions that we establish in this paper are a synthesis of various known results in the
literature, which by themselves are not complete in the aforementioned sense. Specifi-
cally, in his habilitation thesis, Scholtes [45, part 1 of Theorem 3.2.3] showed that if a
“B-differentiable” vector function Φ is a “locally Lipschitz homeomorphism” at a point x,
then its “B-derivative” is a Lipschitz homeomorphism”; moreover the local inverse of Φ
is B-differentiable at Φ(x) and its B-derivative is the inverse of the directional derivative
Φ ′(x; ·). (The latter result is contained in the earlier paper by Kummer [25, Lemma 2].)
Scholtes’ result is not a complete inverse function theorem because it does not provide suffi-
cient conditions on the B-derivative Φ ′(x; ·) (which is a pointwise first-order approximation
of a B-differentiable function) for Φ to be a locally Lipschitz homeomorphism. To be fair,
the converse of Scholtes’ result (i.e., the Lipschitz homeomorphism of Φ ′(x; ·) implying the
locally Lipschitz homeomorphism of Φ at x) does not hold in general. In fact, a major
contribution of our work is to show that if Φ is semismooth in the sense of Definition 4,
then the converse in question is valid under a certain technical assumption relating the
B-subdifferential ∂BΦ(x) of Φ at x to that of Φ ′(x; ·) at the origin; see (8) in Theorem 6.
This assumption first appears in [36] for the class of piecewise differentiable functions.

Within the class of “H-differentiable” functions introduced in [50], Gowda [13] obtained
inverse and implicit functions theorems that are in the spirit of [36] but not quite complete
in the aforementioned sense. Specifically, for the subclass of “G-semismooth” functions Φ
considered in [13], (see the discussion immediately following Theorem 5 for the definition
of such a function) the author shows that a G-semismooth local inverse exists at a point
x if and only if ∂BΦ(x) consists of positively (negatively) oriented matrices and the index
of Φ at x is equal to 1 (-1, respectively). While Gowda has not published his manuscript,
a recent short note of Sun [48] establishes the same G-semismoothness of the local inverse
function, assuming that the latter exists. It should be noted that the G-semismoothness
property used by Gowda and Sun deviates from the original definition of [37] in that they
do not impose directional differentiability on the function. For semismooth functions in
the original sense of Qi and Sun [37], which are directionally differentiable, one has to
combine the previous results of Scholtes with those of Gowda and Sun in order to deduce
the directional differentiability of the implicit/inverse function. Yet, such a combined result
is still not complete without the technical assumption (8) on the B-subdifferentials ∂BΦ(x)
and ∂BΦ ′(x; ·)(0).
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2 The Finite-Dimensional VI/CP

We begin with a brief review of the VI/CP, followed by the formal definition of strong
stability and strong regularity. The section ends with a result that establishes several
equivalent ways of describing these two solution concepts. We refer the reader to the
monograph [10] for a comprehensive study of the finite-dimensional variational inequality
and complementarity problem.

Given a closed convex set K ⊆ <n, a mapping F : <n → <n, the VI (K,F ) is to find a
vector x ∈ K such that

( y − x )TF (x) ≥ 0, ∀ y ∈ K.

The solution set of this problem is denoted SOL(K,F ). Of fundamental importance to the
VI is its normal map [42, 43, 44]:

Fnor
K (z) ≡ F (ΠK(z)) + z −ΠK(z), ∀ z ∈ <n,

where ΠK denotes the Euclidean projector onto K. It is well known that if x ∈ SOL(K,F ),
then z ≡ x−F (x) is a zero of Fnor

K ; conversely, if z is a zero of Fnor
K , then x ≡ ΠK(z) solves

the VI (K,F ). When K is in addition a cone, the VI (K,F ) is equivalent to the CP (K,F ):

K 3 x ⊥ F (x) ∈ K∗,

where K∗ is the dual cone of C; i.e., K∗ ≡ {y ∈ <n : yTx ≥ 0, ∀x ∈ K}. For a positive
scalar ε, we let IB(0, ε) denote the open Euclidean ball with center at the origin and radius
ε. For any subset S of <n, we write clS to denote the closure of S. We formally define
strong stability and strong regularity as follows.

Definition 1 A solution x∗ of the VI (K,F ) is said to be

(a) strongly regular if for every open neighborhood N of x∗ satisfying

SOL(K,F ) ∩ clN = {x∗ }, (1)

there exist a positive scalar ε and a Lipschitz continuous function xN : IB(0, ε) → K such
that, for every q ∈ IB(0, ε), xN (q) is the unique solution of the VI (K, q + F ) that belongs
to N ;

(b) strongly stable if for every open neighborhood N of x∗ satisfying (1), there exist two
positive scalars c and ε such that for every continuous function G satisfying

sup
x∈K∩clN

‖G(x)− F (x) ‖ ≤ ε,

the set SOL(K,G)∩N is a singleton; moreover, for another continuous function G̃ satisfying
the same condition as G, it holds that

‖x− x ′ ‖ ≤ c ‖ [F (x)−G(x) ]− [F (x ′)− G̃(x ′) ] ‖,

where x and x ′ are the unique elements in the sets SOL(K,G) ∩ N and SOL(K, G̃) ∩ N ,
respectively.
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In essence, strong regularity pertains to small, constant perturbations of F whereas
strong stability pertains to small, continuous perturbations of F . Thus it is clear that
strong stability implies strong regularity. Interestingly, the converse turns out to be also
true. Before formally stating this result (see Theorem 3), we note that Definition 1 is
certainly applicable to a VI (<n, H), which corresponds to the system of equations H(x) = 0
where H is a mapping from <n into itself. Thus we say that x ∈ H−1(0) is strongly regular
if for every open neighborhood N of x satisfying H−1(0) ∩ clN = {x}, a scalar ε > 0 and
a Lipschitz continuous function xN : IB(0, ε) → <n exist such that, for every q ∈ IB(0, ε),
xN (q) is the unique zero of q + H(x) = 0 in N . A similar statement can be made for
a strongly stable zero of H. In particular, we can speak about the strong regularity and
strong stability of a zero of the normal map Fnor

K . Since the latter map involves a change of
variables (from x to z) and since the domain of the original VI (K,F ), which is the set K,
is different from the domain of the equation Fnor

K (z) = 0, which is the entire space <n, it is
not immediately obvious how the strong regularity (stability) of a solution x∗ ∈ SOL(K,F )
is related to the strong regularity (stability) of the zero z∗ ≡ x∗ − F (x∗) of the normal
map Fnor

K . Again, it can be shown that the two descriptions are equivalent. Let us consider
another concept.

Definition 2 A function H : <n → <n is said to be a locally Lipschitz homeomorphism
near a vector x if there exists an open neighborhood N of x such that the restricted map
H|N : N → H(N ) is Lipchitz continuous and bijective, and its inverse is also Lipschitz
continuous.

We can now state the following result, whose proof can be found in [10]. The significance
of this result is that the strong stability/regularity of a solution to a VI can be deduced
from an inverse function theorem for the normal map.

Theorem 3 Let F : K ⊆ <n → <n be locally Lipschitz continuous on the closed convex
set K. Let x∗ ∈ SOL(K,F ) be given. Let z∗ ≡ x∗ − F (x∗). The following statements are
equivalent:

(a) x∗ is a strongly stable solution of the VI (K,F );

(b) x∗ is a strongly regular solution of the VI (K,F );

(c) z∗ is a strongly regular zero of Fnor
K ;

(d) z∗ is a strongly stable zero of Fnor
K ;

(e) Fnor
K is a locally Lipschitz homeomorphism near z∗

(f) There exist an open neighborhood Z of z∗ and a constant c > 0 such that

‖Fnor
K (z)− Fnor

K (z′) ‖ ≥ c ‖ z − z ′ ‖, ∀ z, z ′ ∈ Z.

The equivalence of statements (d), (e) and (f) in the above theorem remains valid for all
locally Lipschitz continuous functions, of which the normal map Fnor

K is a special instance;
see [10].
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3 Semismooth Homeomorphisms

Extending Mifflin’s definition for a scalar function [30], Qi and Sun [37] introduced the
semismoothness property for a vector function. There are several equivalent ways to define
this property. We first give a definition and then summarize the equivalent conditions in
Theorem 5 below.

Definition 4 Let G : D ⊆ <n → <m be a locally Lipschitz continuous function on the open
set D. We say that G is semismooth at a point x̄ ∈ D if G is directionally differentiable
near x̄ (thus G is B-differentiable near x̄) and

lim
x̄ 6=x→x̄

‖G ′(x;x− x̄)−G ′(x̄;x− x̄) ‖
‖x− x̄ ‖

= 0.

If the above requirement is strengthened to

lim sup
x̄ 6=x→x̄

‖G ′(x;x− x̄)−G ′(x̄;x− x̄) ‖
‖x− x̄ ‖2

< ∞, (2)

we say that G is strongly semismooth at x̄.

For a locally Lipschitz continuous function G : D ⊆ <n → <m, with D open, the B-
subdifferential of G at x̄ ∈ D, denoted ∂BG(x̄), is the set of all m × n matrices V such
that

V = lim
k→∞

JG(xk),

where {xk} ⊂ D is a sequence of F(réchet)-differentiable points of G converging to x̄ and
JG(xk) denotes the F-derivative of G at xk, which is a linear operator mapping <n into <m.
The convex hull of ∂BG(x̄) yields Clarke’s generalized Jacobian of G at x̄, denoted ∂G(x̄)
[8]. For a piecewise smooth function G, ∂BG(x̄) is a finite set, see [36, 38]. Nevertheless,
if G is semismooth but not piecewise smooth, ∂BG(x̄) generally can have infinitely many
elements, but it must be a nonempty compact set; moreover, as a set-valued map, ∂BG is
upper semicontinuous.

In terms of the elements in the B-subdifferential, we have the following result whose
proof can be found in [37, 10].

Theorem 5 Let G : D ⊆ <n → <m, with D open, be B-differentiable; i.e., G is locally Lips-
chitz continuous and directionally differentiable near x̄ ∈ D. The following three statements
are equivalent:

(a) G is semismooth at x̄;

(b) the following limit holds:

lim
x̄ 6=x→x̄
∀V ∈∂G(x)

‖G ′(x̄;x− x̄)− V (x− x̄) ‖
‖x− x̄ ‖

= 0; (3)

(c) the following limit holds:

lim
x̄ 6=x→x̄
∀V ∈∂G(x)

‖G(x) + V (x̄− x)−G(x̄) ‖
‖x− x̄ ‖

= 0. (4)
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If G is strongly semismooth at x̄, then

lim sup
x̄ 6=x→x̄

‖G(x)−G(x̄)−G ′(x̄, x− x̄) ‖
‖x− x̄ ‖2

< ∞, (5)

lim sup
x̄ 6=x→x̄
∀V ∈∂G(x)

‖G(x) + V (x̄− x)−G(x̄) ‖
‖x− x̄ ‖2

< ∞. (6)

Gowda [13] called a locally Lipschitz continuous function Φ that satisfies (4) “semis-
mooth” at x̄. In order to distinguish this kind of semismoothness, which does not require
Φ to be directionally differentiable, we attach the letter G (for Gowda) and say that Φ is
G-semismooth at x̄ if (4) holds.

Theorem 3 has reduced the strong stability/regularity of a solution to the VI to the lo-
cally Lipschitz homeomorphism property of the normal map near a zero. By the next result,
Theorem 6, we obtain several necessary and sufficient conditions for the latter property to
hold. Most important among these conditions is a globally Lipschitz homeomorphism prop-
erty of the directional derivative of the normal map. It is the latter property that enables us
to obtain the ultimate necessary and sufficient conditions for the strong stability/regularity
of a solution to a CP on two special non-polyhedral, self-dual cones that will be discussed
in the next section.

The following result is the promised inverse function theorem for semismooth functions.
It uses degree theory and the index of a continuous function Φ at its zero x∗, denoted
ind(Φ, x∗). The reader who is unfamiliar with this theory can consult many excellent refer-
ences, e.g. [28, 33]. As mentioned in the Introduction, the theorem is a synthesis of various
existing results in the literature; as such, we only give the sources of the proofs.

Theorem 6 Let Φ : <n → <n be Lipschitz continuous in an open neighborhood D of a
vector x∗ ∈ Φ−1(0). Consider the following three statements:

(a) every matrix in ∂Φ(x∗) is nonsingular;

(b) Φ is a locally Lipschitz homeomorphism near x∗;

(c) for every V ∈ ∂BΦ(x∗), sgn detV = ind(Φ, x∗) = ±1.

It holds that (a) ⇒ (b) ⇒ (c). Assume in addition that Φ is directionally differentiable at
x∗. Consider the following two additional statements:

(d) Ψ ≡ Φ ′(x∗; ·) is a globally Lipschitz homeomorphism;

(e) for every V ∈ ∂BΨ(0), sgn detV = ind(Ψ, 0) = ind(Φ, x∗) = ±1.

It holds that (b) ⇒ (d) ⇒ (e). Moreover, if (b) holds and Φ is directionally differentiable
at x∗, then the local inverse of Φ near x∗, denoted Φ−1, is directionally differentiable at the
origin; and

(Φ−1) ′(0;h) = Ψ−1(h), ∀h ∈ <n. (7)

If Φ is semismooth on D then (b) ⇔ (c); in this case, the local inverse of Φ near x∗ is
semismooth near the origin. Finally, if Φ is semismooth on D and

∂BΦ(x∗) ⊆ ∂BΨ(0), (8)

then the four statements (b), (c), (d), and (e) are equivalent.
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Proof. (a) ⇒ (b) is proved by Clarke [8]. (b) ⇒ (c) is proved by Gowda [13, Theorem
3]. (b) ⇒ (d) is proved by Kuntz and Scholtes [26]. (d) ⇒ (e) is a special case of (b) ⇒
(c). Suppose that Φ is directionally differentiable at x∗ and (b) holds. The formula (7)
can be found in [25]. If Φ is semismooth on D and (c) holds, then by [13, Corollary 4], it
follows that the local inverse of Φ at x∗ exists and is G-semismooth, hence locally Lipschitz
continuous, in a neighborhood of the origin. Therefore, (b) ⇔ (c) if Φ is semismooth on
D. In this case, the semismoothness of Φ−1 follows from results of Scholtes and Gowda.
Finally, if Φ is semismooth on D and (8) holds, then clearly (e) implies (c). Hence, we have
established (b) ⇒ (d) ⇒ (e) ⇒ (c) ⇒ (b); the four statements (b), (c), (d), and (e) are
therefore equivalent. Q.E.D.

The inclusion (8) plays an essential role for the statements (b) and (c) in Theorem 6,
which pertain to the original function Φ, to be equivalent to the corresponding statements
(d) and (e), which pertain to the directional derivative Ψ. This inclusion is not used by
either Sun or Gowda in their papers. In what follows, we state and prove a result pertaining
to this inclusion for a composite function.

Proposition 7 Let Φ : D ⊆ <n → <m, with D open, be B-differentiable on D. Suppose
that for every x ∈ D,

∂BΦ(x) = ∂BΨ(0), (9)

where Ψ ≡ Φ ′(x; ·). Let F : <m → <` be continuously differentiable in an open neighbor-
hood of Φ(x̄), where x̄ ∈ D. With Ξ ≡ (F ◦ Φ) ′(x̄; 0) it holds that

∂B(F ◦ Φ )(x̄) = JF (Φ(x̄)) ◦ ∂BΦ(x̄) = ∂BΞ(0). (10)

Proof. To prove the first equality in (10), observe that if y ∈ D is a F-differentiable
point of Φ that is sufficiently close to x̄, then y is also a F-differentiable point of F ◦ Φ;
moreover, we have J(F ◦ Φ)(y) = JF (Φ(y)) ◦ JΦ(y). Consequently, JF (Φ(x̄)) ◦ ∂BΦ(x̄) ⊆
∂B(F ◦Φ )(x̄). Conversely, let V ∈ ∂B(F ◦Φ)(x̄). There exists a sequence of F-differentiable
points {xk} ⊂ D of F ◦ Φ converging to x̄ such that V = lim

k→∞
J(F ◦ Φ)(xk). For each fixed

k, L ≡ J(F ◦ Φ)(xk) is a linear operator from <n into <`. We have, for each y ∈ <n,
L(y) = JF (Φ(xk))◦Φ ′(xk; y). As a linear operator, we have L = JL(y) for any y ∈ <n; i.e.,
L is the F-derivative of itself at every vector in the whole space <n. In particular, taking
any sequence {yν} of F-differentiable points of Ψk ≡ Φ ′(xk; ·) that converges to zero, we
then have J(F ◦ Φ)(xk) = JL(yν) = JF (Φ(xk)) ◦ JΨk(yν). Since the sequence {JΨk(yν)}
(indexed by ν with k fixed) is bounded and every accumulation point of this sequence
belongs to ∂BΨk(0), it follows that J(F ◦Φ)(xk) ∈ JF (Φ(xk))◦∂BΨk(0). By (9), we deduce
J(F ◦ Φ)(xk) ∈ JF (Φ(xk)) ◦ ∂BΦ(xk). Passing to the limit k → ∞, using the continuous
differentiability of F and the upper semicontinuity of ∂B, we deduce V ∈ JF (Φ(x̄))◦∂BΦ(x̄).
Consequently ∂B(F ◦ Φ)(x̄) = JF (Φ(x̄)) ◦ ∂BΦ(x̄). Since Ξ(y) = JF (Φ(x̄)) ◦ Φ ′(x̄; y), it
follows that Ξ is the composition of the linear transformation JF (Φ(x̄)) : <m → <` and the
directional derivative Ψ = Φ ′(x̄; ·) : <n → <m. We can therefore apply the previous proof
to Ξ and deduce that ∂BΞ(0) = JF (φ(x̄))◦∂BΨ(0), provided that ∂BΨ(0) = ∂BΥ(0), where
Υ ≡ Ψ ′(0; ·). Since Ψ is a positively homogeneous function, its directional derivative at the
origin is equal to Ψ itself; i.e., Ψ = Υ. Consequently, the last displayed equality holds. By
(9), (10) follows readily. Q.E.D.

We make two remarks regarding the above proposition. First, without assuming the
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directional differentiability of Φ, Clarke [8, page 75] showed that for any v ∈ <n,

∂(F ◦ Φ )(x̄)v = JF (Φ(x̄))( ∂Φ(x̄)v ).

This, however, does not imply either

∂(F ◦ Φ )(x̄) = JF (Φ(x̄)) ◦ ∂Φ(x̄), or ∂B(F ◦ Φ )(x̄) = JF (Φ(x̄)) ◦ ∂BΦ(x̄) .

Second, it is natural for the reader to wonder why it is necessary to give the detailed
proof for the first equality in (10) as we did above, because after all it seems that the set
of F-differentiable points of the composite function F ◦ Φ would naturally coincide with
that of the function Φ. A moment’s thought reveals that this is false in general; an easy
counterexample is to let F be the zero function. Therefore, our proof, while not difficult, is
needed.

We apply Theorem 6 to the following situation. Let G : <N+m → <n be a function
of two arguments (w, p) ∈ <N+m, and let Φ : <n → <N be a nonsmooth function. Let
G(Φ(x∗), p∗) = 0; suppose that Φ is semismooth at x∗ and G is continuously differentiable
in an open neighborhood of (Φ(x∗), p∗). Consider the mapping Ξ : <n+m → <n+m defined
by

Ξ(x, p) ≡

[
G(Φ(x), p)

p− p∗

]
, (x, p ) ∈ <n+m,

which vanishes at (x∗, p∗). We have

Ξ ′((x∗, p∗); (dx, dp)) =

[
JwG(Φ(x∗), p∗)Φ ′(x∗; dx) + JpG(Φ(x∗), p∗)dp

dp

]

=

[
JwG(Φ(x∗), p∗) JpG(Φ(x∗), p∗)

0 I

][
Φ ′(x∗; dx)

dp

]
,

where JwG and JpG denote the partial F-derivative of G with respect to the w and p
argument respectively. We have the following implicit function theorem for the parametric
composite equation G(Φ(x), p) = 0, which does not require a proof.

Corollary 8 Assume that ∂BΦ(x∗) ⊆ ∂BΦ ′(x∗; ·)(0) and that JwG(Φ(x∗), p∗) ◦Φ ′(x∗; ·) is
a globally Lipschitz homeomorphism. There exist a neighborhood U of p∗, a neighborhood
V of x∗, and a Lipschitz continuous function x : U → V that is semismooth at p∗ such that
for every p ∈ U , x(p) is the unique vector in V satisfying G(Φ(x(p)), p) = 0. Moreover, for
every vector dp ∈ <m, x ′(p∗, dp) is the unique solution dx of the following equation:

JwG(Φ(x∗), p∗)Φ ′(x∗; dx) + JpG(Φ(x∗), p∗)dp = 0.

The normal map: general discussion

Consider the VI (K,F ), where K is a closed convex set in <n and F : <n → <n is contin-
uously differentiable in an open neighborhood of a solution x∗ of the problem. We wish to
apply Theorem 6 to the normal map:

Fnor
K (z) = F (ΠK(z)) + z −ΠK(z), z ∈ <n,

9



at the zero z∗ ≡ x∗ − F (x∗). For this purpose, we need to establish the semismoothness of
Fnor
K at z∗ and to verify the key equality:

∂BFnor
K (z∗) ≡ ∂B( (Fnor

K ) ′(z∗; ·) )(0). (11)

If F is continuously differentiable, the semismoothness of Fnor
K follows easily from that of

the projector ΠK . The verification of (11) is easy provided that we can establish

∂BΠK(u) = ∂BΠ ′K(u; ·)(0), ∀u ∈ <n. (12)

This is due to the fact that Fnor
K is the composite map G ◦Φ, where G : <2n → <n is given

by G(u, v) ≡ F (u) + v − u and Φ(u) ≡ (ΠK(u), u). Assuming that ΠK is directionally
differentiable, we have Φ ′(u; du) = (Π ′K(u; du), du). Moreover, Φ is F-differentiable at u if
and only if ΠK is F-differentiable at u; at such a vector, we have

JΦ(u) =

[
JΠK(u)

I

]
.

Consequently, ∂BΦ(u) = ∂BΠK(u)×{I}. Hence ∂BΦ(u) = ∂BΦ ′(u; ·)(0) if and only if (12)
holds.

In summary, we see that Theorem 6 is applicable to the normal map Fnor
K provided that

we can establish two things: (i) the projector ΠK is semismooth, and (ii) (12) holds. For
the special cones K we are interested in, the semismoothness of ΠK follows from existing
results. So the main task in the next section is the verification of (12) for these cones. This
turns out to be not an easy task. After completing this technical task, we then study the
strong stability/regularity of a solution to the associated CPs in Section 5.

4 Projections on Two Self-Dual Cones

In this section, we focus on two special self-dual cones: the cone of symmetric positive
semidefinite matrices and the Lorentz cone. For the purpose of verifying (12) for these
cones, we first establish several new properties of the projections onto them, extending
some recent results in [1, 49] for the positive semidefinite cone and [5] for the Lorentz cone.

4.1 The semidefinite cone

Let Sn denote the space of n × n symmetric matrices; let Sn+ and Sn++ denote the cone of
n×n symmetric positive semidefinite and positive definite matrices, respectively. We write
A � 0 to mean that A is a symmetric positive semidefinite matrix. For any two matrices A
and B in Sn, we write

A • B ≡
n∑

i,j=1

aijbij = tr(AB)

for the Frobenius inner product between A and B, where “tr” denotes the trace of a matrix.
We note that for any orthogonal matrix Q,

(QAQT ) • (QBQT ) = A • B.
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The Frobenius norm on Sn is the norm induced by the above inner product:

‖A ‖ ≡
√
A • A =

√√√√ n∑
i,j=1

a2
ij .

Under the Frobenius norm, the projection ΠSn+(A) of a matrix A ∈ Sn onto the cone Sn+ is
the unique minimizer of the following convex program in the matrix variable B:

minimize ‖A−B ‖
subject to B ∈ Sn+.

Throughout the following discussion, we let A+ denote the (Frobenius) projection of A ∈ Sn
onto Sn+. This projection satisfies the following complementarity condition:

Sn+ 3 A+ ⊥ A+ −A ∈ Sn+, (13)

where the ⊥ notation means “perpendicular under the above matrix inner product”; i.e.,
C ⊥ D ⇔ C • D = 0 for any two matrices C and D in Sn. The projection A+ has an
explicit representation. Namely, if

A = PΛP T , (14)

where Λ is the diagonal matrix of eigenvalues of A and P is a corresponding orthogonal
matrix of orthonormal eigenvectors, then

A+ = PΛ+P
T ,

where Λ+ is the diagonal matrix whose diagonal entries are the nonnegative parts of the
respective diagonal entries of Λ. Define three fundamental index sets associated with the
matrix A:

α ≡ { i : λi > 0 }, β ≡ { i : λi = 0 }, γ ≡ { i : λi < 0 };

these are the index sets of positive, zero, and negative eigenvalues of A, respectively. Write

Λ =

 Λα 0 0

0 Λγ 0

0 0 0

 and P = [ Wα Wγ Z ]

with Wα ∈ <n×|α|, Wγ ∈ <n×|γ|, and Z ∈ <n×|β|. Thus the columns of Wα, Wγ , and Z are
the orthonormal eigenvectors corresponding to the positive, negative, and zero eigenvalues
of A, respectively. Let κ ≡ α ∪ γ and define three diagonal matrices of order |κ|:

D ≡

[
Λα 0

0 Λγ

]
D+ ≡

[
Λα 0

0 0

]
and |D | ≡

[
Λα 0

0 |Λγ |

]
.

Define the matrix U ∈ Sn with entries

uij ≡
max{λi, 0}+ max{λj , 0}

|λi |+ |λj |
, i, j = 1, . . . , n,
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where 0/0 is defined to be 1. Define the linear transformation LA : Sn → Sn as follows: for
H ∈ Sn,

LA(H) ≡ P


W T
αHWα Uαγ ◦W T

αHWγ W T
αHZ

W T
γ HWα ◦ UTαγ W T

γ HWγ W T
γ HZ

ZTHWα ZTHWγ ZTHZ

P T ,
where ◦ denotes the Hadamard product.

Associated with the projection problem (13) is the critical cone of Sn+ at A ∈ Sn defined
as:

C(A;Sn+) ≡ T (A+;Sn+) ∩ (A+ −A )⊥,

where T (A+;Sn+) is the tangent cone of Sn+ at A+ and (A+ −A)⊥ is the subset of matrices
in Sn that are orthogonal to (A+ − A) under the matrix inner product. The importance
of the critical cone in the local analysis of constrained optimization is well known. In the
present context, this cone can be completely described [4, 10]:

C(A;Sn+) = {C ∈ Sn : W T
γ CWγ = 0, W T

γ CZ = 0, ZTCZ � 0 }. (15)

The affine hull of C(A;Sn+), which we denote L(A;Sn+), is easily seen to be the linear
subspace:

{C ∈ Sn : W T
γ CWγ = 0, W T

γ CZ = 0 }.

Directional derivatives of A+

Based on the theory of second order regular sets [2], Bonnans, Cominetti, and Shapiro [1]
has shown that ΠSn+ is directionally differentiable and that for any H ∈ Sn, Π ′Sn+

(A;H) is

the unique minimizer of the following convex program in the matrix variable X:

minimize 1
2 (X −H ) • (X −H ) + tr(B−XB+X)

subject to X ∈ C(A;Sn+),
(16)

where
B− ≡ Wγ |Λγ |W T

γ and B+ ≡ Wα Λ−1
α W T

α

with B+ taken to be the vacuous matrix if α is empty. Sun and Sun show in the recent
paper [49] that ΠSn+ is a strongly semismooth matrix-valued function and give an explicit
formula for the directional derivative of the absolute value function

|A |Sn+ ≡ ΠSn+(A) + ΠSn+(−A).

(See [6] for some extended results on more general matrix-valued functions). Such a formula
immediately yields a corresponding formula for the directional derivative Π ′Sn+

(A;H); see

(17). The convex program (16) suggests that Π ′Sn+
(A;H) can be viewed as a “skewed

projection” of a certain matrix onto the critical cone C(A;Sn+). In (18), we make this view
precise by showing that the directional derivative of the projector ΠSn+ at a matrix A ∈ Sn
along the direction H ∈ Sn is equal to the projection of the image of the direction H under
the linear transformation LA onto the critical cone C(A;Sn). This interpretation generalizes
a similar but much simpler result for the Euclidean projector onto a polyhedral set [16, 35]
whose directional derivative is equal to the projection onto the critical cone.
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Proposition 9 For any two matrices A and H in Sn,

Π ′Sn+(A;H) = P


W T
αHWα Uαγ ◦W T

αHWγ W T
αHZ

W T
γ HWα ◦ (Uαγ )T 0 0

ZTHWα 0 ΠS|β|+

(ZTHZ )

 P T ,(17)

and
Π ′Sn+(A;H) = ΠC(A;Sn+)(LA(H)). (18)

Proof. Write f(A) ≡ |A|Sn+ for A ∈ Sn. By a result in [49], we have

f ′(A;H) = P

[
L−1
|D| (DH̃κκ + H̃κκD ) |D |−1DH̃κβ

H̃T
κβD|D |−1 | H̃ββ |

]
P T ,

for any H ∈ Sn, where H̃ ≡ P THP and LX : Sn → Sn is the Lyapunov operator:

LX(Y ) ≡ XY + Y X, ∀Y ∈ Sn.

Since ΠSn+ = (I + | · |Sn+)/2, the identitity (17) follows easily from the above expression for
f ′(A;H) and a simple manipulation. Since ∇(tr(B−XB+X)) = B−XB+ + B+XB−, the
unique minimizer of (16), denoted X̄, satisfies

C(A;Sn+) 3 X̄ ⊥ X̄ −H +B−X̄B+ +B+X̄B̄− ∈ C(A;Sn+)∗.

Using (17) for X̄ = Π ′Sn+
(A;H), we can easily verify that H−B−X̄B+−B+X̄B̄− = LA(H).

This establishes the desired second equality in (18). Q.E.D.

The following corollary is stated for ease of reference later.

Corollary 10 The following two statements hold.

(a) The functions | · |Sn+ and ΠSn+ are F-differentiable at A ∈ Sn if and only if A is nonsin-

gular. In this case, Π ′Sn+
(A; ·) = L−1

|A|Sn+
◦ LA+ .

(b) For any A ∈ Sn, the directional derivative Π ′Sn+
(A; ·) is F-differentiable at H ∈ Sn if

and only if H̃ββ is nonsingular.

(c) For any A,H ∈ Sn

Π ′Sn+(A;H) = P

 L−1
|D|LD+H̃κκ |D|−1D+H̃κβ

( H̃κβ )TD+|D|−1 ΠS|β|+

(H̃ββ)

 P T . (19)

The next technical result establishes the equality (9) that paves the way for the appli-
cation of Proposition 7.
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Lemma 11 Let A ∈ Sn be arbitrary. Let Ψ ≡ Π′Sn+
(A; ·). It holds that

∂BΠSn+(A) = ∂BΨ(0). (20)

Moreover, for any V ∈ ∂BΠSn+(A), there exist two index sets α ′ and γ ′ that partition β and
a matrix Γα ′γ ′ with entries in [0, 1] such that for any H ∈ Sn,

V (H) = P


W T
αHWα Uαγ ◦W T

αHWγ W T
αHZ

W T
γ HWα ◦ (Uαγ )T 0 0

ZTHWα 0 S(ZTHZ)

 P T ,
where

S(ZTHZ) ≡

[
(ZTHZ )α ′α ′ Γα ′γ ′ ◦ (ZTHZ )α ′γ ′

(ZTHZ )γ ′α ′ ◦ ( Γα ′γ ′ )
T 0

]
.

Thus V (H) belongs to the linear subspace

Lγ ′(A;Sn+) ≡ {C ∈ L(A;Sn+) : ZTγ ′CZγ ′ = 0 },

where L(A;Sn+) is the affine hull of the critical cone C(A;Sn+).

Proof. Let V ∈ ∂BΠSn+(A). By Corollary 10 and the definition of the elements in

∂BΠSn+(A), it follows that there exists a sequence of nonsingular matrices {Ak} in Sn con-

verging to A such that V = lim
k→∞

JΠSn+(Ak), where JΠSn+(Ak) denotes the F-derivative of

ΠSn+ at Ak. Let Ak ≡ P kΛk(P k)T be the orthogonal decomposition of Ak, where Λk is

the diagonal matrix of eigenvalues of Ak and P k is a corresponding matrix of orthonormal
eigenvectors. Writing each Λk in the same form as Λ:

Λk =


Λkα 0 0

0 Λkγ 0

0 0 Λkβ

 ,
we have Λ = lim

k→∞
Λk, which implies that Λkκ is a nonsingular matrix for all k sufficiently

large and lim
k→∞

Λkβ = 0. For any H ∈ Sn with H̃k = (P k)THP k, we have

JΠSn+(Ak)(H) = P k
[
L−1
|Λk| L(Λk)+

(H̃k)
]

(P k)T .

Without loss of generality, by taking a subsequence if necessary, we may assume that {P k}
is a convergent sequence with limit P∞ ≡ lim

k→∞
P k, which implies that

A = lim
k→∞

Ak = lim
k→∞

P kΛk(P k)T = P∞Λ(P∞)T .

Therefore, P∞ can be identified with the matrix P that we have been using all along for
diagonalizing A. We will simply use P , rather than P∞, in the remainder of the proof. Let
Zk ≡ JΠSn+(Ak)(H). We have

Z̃k ≡ (P k)T [ JΠSn+(Ak)(H) ]P k = L−1
|Λk| L(Λk)+

(H̃k),
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which implies that |Λk|Z̃k + Z̃k|Λk| = (Λk)+H̃
k + H̃k(Λk)+. Writing this out, we have[

|Λkκ |Z̃kκκ + Z̃kκκ|Λkκ| |Λkκ|Z̃kκβ + Z̃kκβ|Λkβ|

|Λkβ|Z̃kβκ + Z̃kβκ|Λkκ| |Λkβ|Z̃kββ + Z̃kββ |Λkβ|

]

=

[
(Λkκ)+H̃

k
κκ + H̃k

κκ(Λkκ)+ (Λkκ)+H̃
k
κβ + H̃k

κβ(Λkβ)+

(Λkβ)+H̃
k
βκ + H̃k

βκ(Λkκ)+ (Λkβ)+H̃
k
ββ + H̃k

ββ(Λkβ)+

]
.

Hence, it follows that Z̃kκκ = L−1
|Λkκ|

L(Λkκ)+
(H̃k

κκ), Z̃kββ = L−1
|Λkβ |

L(Λkβ)+
(H̃k

ββ) and

lim
k→∞

[ Z̃kκβ − |Λkκ|−1(Λkκ)+(H̃k
κβ) ] = 0.

Again, by taking a subsequence if necessary, we may assume that {Z̃kββ} is a convergent
sequence. Hence, for any H ∈ Sn, it holds that

P TV (H)P =

 L−1
|D|LD+(H̃κκ) |D|−1D+H̃κβ

(H̃κβ)TD+|D|−1 lim
k→∞

{
L−1
|Λkβ |

L(Λkβ)+
(H̃k

ββ)

}
 , (21)

where H̃ = P THP. For each k, define

Mk ≡ P

[
0 0

0 Λkβ

]
P T .

Let M̃k ≡ P TMkP . Then

M̃k =

[
0 0

0 Λkβ

]
.

Since M̃k
ββ is nonsingular, it follows that Ψ is F-differentiable at Mk and for any H ∈ Sn,

JΨ(Mk)(H) = lim
τ↓0

{
Ψ(Mk + τH)−Ψ(Mk)

τ

}

= P


L−1
|D| LD+(H̃κκ) |D |−1D+ H̃κβ

(H̃κβ)TD+ |D |−1 lim
τ↓0

ΠS|β|+

( Λkβ + τ H̃ββ )−ΠS|β|+

(Λkβ)

τ

 P T

= P

 L−1
|D| LD+(H̃κκ) |D |−1D+ H̃κβ

(H̃κβ)TD+|D |−1 L−1
|Λkβ |

L(Λkβ)+
(H̃ββ)

 P T ,
where we have used (19) and part (a) of Corollary 10 applied to ΠS|β|+

at the F-differentiable

point Λkβ in the bottom right block in the last equality. Comparing with (21), we conclude

that V (H) = lim
k→∞

JΨ(Mk)(H). Since H is arbitrary in Sn, it follows that V ∈ ∂BΨ(0).

Conversely, let V ∈ ∂BΨ(0). We know that Ψ is F-differentiable at M ∈ Sn if and
only if M̃ββ is nonsingular, where M̃ = P TMP . Hence there exists a sequence of matrices
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{Mk} ⊂ Sn converging to 0 such that M̃k
ββ is nonsingular for every k and V = lim

k→∞
JΨ(Mk),

where M̃k = P TMkP . For any H ∈ Sn, we have

JΨ(Mk)(H) = lim
τ↓0

Ψ(Mk + τH)−Ψ(Mk)

τ

= P


L−1
|D|LD+(H̃κκ) |D |−1D+ H̃κβ

(H̃κβ)TD+ |D |−1 lim
τ↓0

ΠS|β|+

( M̃k
ββ + τ H̃ββ )−ΠS|β|+

(M̃k
ββ)

τ

P T

= P

 L−1
|D| LD+(H̃κκ) |D |−1D+ H̃κβ

(H̃κβ)T D+ |D |−1 L−1
|M̃k

ββ |S|β|+

LΠ
S|β|+

(M̃k
ββ)(H̃ββ)

P T ,
where H̃ = P THP . Define

Ak ≡ A+ P

[
0 0

0 M̃k
ββ

]
P T

and Ãk ≡ P TAkP . We have,

Ãk =

 D 0

0 M̃k
ββ

 ,
which is nonsingular. It is easy to see that

|Ak |Sn+ = P

 |D | 0

0 | M̃k
ββ |S|β|+

P T and ΠSn+(Ak) = P

 D+ 0

0 ΠS|β|+

(M̃k
ββ)

P T .
The nonsingularity of Ãk implies the nonsingularity of Ak. Thus, ΠSn+ is differentiable at

Ak and
Zk ≡ JΠSn+(Ak)(H) = L−1

|Ak|Sn+
LΠSn+

(Ak)(H),

which implies that

|Ak |Sn+ Z
k + Zk |Ak |Sn+ = ΠSn+(Ak)H +HΠSn+(Ak).

Therefore,

P T |Ak |Sn+P Z̃
k + Z̃k P T |Ak |Sn+P = P T ΠSn+(Ak)P H̃ + H̃ P TΠSn+(Ak)P,

where Z̃k ≡ P TZkP and H̃ ≡ P THP . Hence, |D | Z̃kκκ + Z̃kκκ |D | |D | Z̃kκβ + Z̃kκβ | M̃k
ββ |S|β|+

| M̃k
ββ |S|β|+

Z̃kβκ + Z̃kβκ |D | | M̃k
ββ |S|β|+

Z̃kββ + Z̃kββ | M̃k
ββ |S|β|+



=

 D+ H̃
k
κκ + H̃k

κκD+ D+ H̃
k
κβ + H̃k

κβ M̃
k
ββ

ΠS|β|+

(M̃k
ββ) H̃k

βκ + H̃k
βκD+ ΠS|β|+

(M̃k
ββ) H̃k

ββ + H̃k
ββ ΠS|β|+

(M̃k
ββ)

 ,
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which implies

Z̃kκκ = L−1
|D| LD+(H̃k

κκ), Z̃kββ = L−1
|M̃k

ββ |S|β|+

LΠ
S|β|+

(M̃k
ββ)(H̃

k
ββ).

and
lim
k→∞

[ Z̃kκβ − |D |−1D+ H̃
k
κβ ] = 0.

Consequently, V (H) = lim
k→∞

JΠSn+(Ak)(H), which implies V ∈ ∂BΠSn+(A). Hence (20)

follows.
Let Ψ be F-differentiable at E ∈ Sn. Let ZTEZ = QΘQT be the orthogonal decompo-

sition of ZTEZ, where Q ∈ <|β|×|β| is an orthogonal matrix of eigenvectors of ZTEZ and
Θ is the diagonal matrix of eigenvalues θi of the same matrix; for any H ∈ Sn,

JΨ(E)(H) = P


W T
αHWα Uαγ ◦W T

αHWγ W T
αHZ

W T
γ HWα ◦ (Uαγ )T 0 0

ZTHWα 0 G

 P T ,
where with Y ≡ ZTHZ,

G ≡ Q

[
QTα ′Y Qα ′ Γα ′γ ′ ◦QTα ′Y Qγ ′

QTγ ′Y Qα ′ ◦ ΓTα ′γ ′ 0

]
QT ∈ <|β|×|β|,

α ′ ≡ {i ∈ β : θi > 0} and γ ′ ≡ {i ∈ β : θi < 0} are disjoint subsets of β whose union is β
and

Γij ≡
θi

θi + | θj |
, ( i, j ) ∈ α ′ × γ ′.

Based on such an F-derivative, it follows that for any element V in ∂BΨ(0), there exists a
sequence {Ek} ⊂ Sn converging to the zero matrix such that Ψ is F-differentiable at every
Ek and for any H ∈ Sn, V (H) is the limit of the sequence {JΨ(Ek)(H)}. Without loss
of generality, we may assume that there exists a partition of β = α ′ ∪ γ ′ into two disjoint
subsets α ′ and γ ′ such that

α ′ ≡ { i ∈ β : θki (ZTEkZ) > 0 } and γ ′ ≡ { i ∈ β : θki (ZTEkZ) < 0 }

for all k, that the sequence {Qk} ⊂ <|β|×|β| of orthogonal matrices in the decomposition
ZTEkZ = (Qk)TΘkQk converges to the identity matrix of order |β|, and that the sequence
{Γkij}, where

Γkij ≡
θi(Z

TEkZ)

θi(ZTEkZ) + | θj(ZTEkZ) |
, ( i, j ) ∈ α ′ × γ ′

converges to some scalar Γ∞ij in the interval [0, 1] for all (i, j) ∈ α ′×γ ′. From this description,
the desired formula for V (H) follows easily. The last assertion about the membership of
V (H) in the linear subspace Lγ ′(A;Sn+) is obvious. Q.E.D.

Remark. By distinguishing the zero and nonzero entries in the matrix Γα ′γ ′ , it is possible
to show that the range of V belongs to a certain linear subspace of Lγ ′(A;Sn+). We omit
such fine details.

Combining Proposition 7, Lemma 11 and the discussion at the end of the last section,
we immediately obtain the following result, which does not require further proof.
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Proposition 12 Let F : Sn → Sn be continuously differentiable. For any A ∈ Sn,

∂BFnor
Sn+ (A) ≡ ∂B(Fnor

Sn+ ) ′(A; ·)(0) = ( JF (ΠSn+(A))− I ) ◦ ∂BΠSn+(A) + I.

4.2 The Lorentz cone

We next consider the Lorentz cone, also known as the second-order cone (SOC):

Kn ≡
{

(x, t) ∈ <n ×< :
√
xTx ≤ t

}
.

The Euclidean projection ΠKn(x, t) of a vector (x, t) ∈ <n+1 is the unique minimizer of the
following convex program in the variable (y, τ) ∈ <n+1:

minimize ( y − x )T ( y − x ) + ( τ − t )2

subject to
√
yT y ≤ τ.

(22)

By a direct calculation, it is not difficult to show that

ΠKn(x, t) ≡


1
2

(
1 +

t

‖x ‖2

)
(x, ‖x‖2 ) if |t| < ‖x ‖2

(x, t ) if ‖x ‖2 ≤ t

0 if ‖x ‖2 ≤ −t.

Recently, the strong semismoothness of this projector is established in [5]. In what follows,
we show that the directional derivative Π ′Kn((x, t); (dx, dt)) along the direction (dx, dt) ∈
<n+1 can again be interpreted as a certain skewed projection of (dx, dt) onto the critical
cone of Kn at (x, t). There are two cases for which this interpretation is known to be true:
one is the classic case where the base point (x, t) belongs to the cone Kn (see [52]); and the
other case is when the first n-components of the projected vector ΠKn(x, t) are not all zero
(see [46, 36]). We write (x̄, t̄) ∈ <n+1 for the projection ΠKn(x, t) and C(x, t) for the critical
cone

C((x, t);Kn) ≡ T ((x̄, t̄);Kn) ∩ (x̄− x, t̄− t)⊥ .

Also define the symmetric positive definite matrix A(x, t) ∈ <(n+1)×(n+1) to be I if t ≤
−‖x‖2 and

A(x, t) =


(

1 +
λ

‖ x̄ ‖

)
I − λ

‖ x̄ ‖
x̄x̄T

x̄T x̄
0

0 1


otherwise, where λ ≡ max

{
0, 1

2(‖x‖2 − t)
}

.

Proposition 13 For any (x, t) and (dx, dt) in <n+1, Π ′Kn((x, t); (dx, dt)) is the unique
minimizer of the convex program in the variable (y, τ):

minimize 1
2

[
y

τ

]T
A(x, t)

[
y

τ

]
−

[
y

τ

]T [
dx

dt

]

subject to ( y, τ ) ∈ C(x, t).

(23)
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Proof. If (x, t) ∈ Kn, then A(x, t) is the identity matrix. This case is due to Zarantonello
[52]. If (x, t) 6∈ Kn and x̄ 6= 0, then the square root function

√
yT y is continuously dif-

ferentiable at y = x̄. In this case, λ is the unique Karush-Kuhn-Tucker multiplier of the
single constraint in the projection program (22) and the matrix A(x, t) = I + λ∇2g(x̄, t̄),
where g(y, τ) ≡

√
yT y − τ is the convex function that defines the Lorentz cone, which can

be written as Kn = {(y, τ) ∈ <n+1 : g(y, τ) ≤ 0}. The result is proved by Shapiro [46].
Finally, if (x, t) 6∈ Kn and x̄ = 0, then (x, t) must belong to −Kn. In this case, by making
use of the fact that

Π ′Kn((x, t); (dx, dt)) = (dx, dt)−Π ′(−Kn)((x, t); (dx, dt))

and the proof for the first case, we have

Π ′Kn((x, t); (dx, dt)) = (dx, dt)−ΠC((x,t);−Kn)((dx, dt)),

where

C((x, t);−Kn) ≡ T (Π(−Kn)((x, t));−Kn) ∩
[
Π(−Kn)((x, t))− (dx, dt)

]⊥
.

Since T ((0, 0);Kn) = Kn, we have

C((x, t);Kn) =

{
{(0, 0)} if ‖x‖ < −t,
{α(x, ‖x‖) : α ≥ 0} if − t = ‖x‖

and

C((x, t);−Kn) =

{
<n+1 if ‖x‖ < −t,
{(y, τ) ∈ <n+1 : yTx+ τ‖x‖ ≤ 0} if − t = ‖x‖.

Hence, after direct calculations, for (x, t) 6∈ Kn and x̄ = 0, we have

Π ′Kn((x, t); (dx, dt)) = ΠC((x,t);Kn)((dx, dt)).

Thus the claim also holds in this remaining case. Q.E.D.

Letting [
d̂x

d̂t

]
≡ A(x, t)−1

[
dx

dt

]
,

we see that the program (23) is equivalent to

minimize 1
2

[
y − d̂x

τ − d̂t

]T
A(x, t)

[
y − d̂x

τ − d̂t

]

subject to ( y, τ ) ∈ C(x, t),

which shows that Π ′Kn((x, t); (dx, dt)) is the projection of (d̂x, d̂t) onto the critical cone
C(x, t) under the matrix norm induced by the symmetric positive definite matrix A(x, t).
Thus unlike the previous case of the cone Sn where only the direction is linearly transformed,
the directional derivative of the projector onto the Lorentz cone involves both a linear
transformation of the direction and a norm change in defining the projection onto the
critical cone.

The proof of Proposition 13 enables us to establish the following technical result analo-
gous to Lemma 11.
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Lemma 14 Let (x, t) ∈ <n+1 be given. Let Ψ ≡ Π ′Kn((x, t); ·). It holds that ∂BΠKn(x, t) =
∂BΨ(0).

Proof. There are several cases that we can dispense of easily. These are (i) |t| < ‖x‖2;
(ii) t > ‖x‖2, (iii) −t > ‖x‖2, and (iv) (x, t) = (0, 0). In the first three cases, ΠKn is a
continuously differentiable function in a neighborhood of (x, t); thus the equality between the
two B-subdifferentials is immediate. In the fourth case, Ψ = ΠKn and the desired equality
is obvious. There are two remaining cases: (a) t = ‖x‖2 > 0 and (b) −t = ‖x‖2 > 0. Since
the proof of these two cases are similar, we prove only case (a). In this case, for (x ′, t ′)
sufficiently close to (x, t), we have

ΠKn(x ′, t ′) ≡


1
2

(
1 +

t ′

‖x ′ ‖2

)
(x ′, ‖x ′ ‖2 ) if | t ′ | < ‖x ′ ‖2

(x ′, t ′ ) if ‖x ′ ‖2 ≤ t ′.

Thus, for (h, τ) ∈ <n ×<,

Ψ(h, τ) =




τx

2‖x‖
+ h− xxT

2‖x‖2
h

xTh

2‖x‖
+
τ

2

 if


t τ < xTh

or

t τ = xTh and |τ | < ‖h ‖2

[
h

τ

]
if


t τ > xTh

or

t τ = xTh and |τ | ≥ ‖h ‖2.

Obviously,

∂BΨ(0) ⊆

I,

I − xxT

2‖x‖2
x

2‖x‖

xT

2‖x‖
1

2


 = ∂BΠKn(x, t).

Next, we prove the reverse inclusion: ∂BΨ(0) ⊇ ∂BΠKn(x, t). Let hk ≡ x and τk ≡ (1+1/k)t.
Then tτk > xThk. Hence, lim

k→∞
JΨ(hk, τk) = I. Similarly, we can construct a sequence

{(h̃k, τ̃k)} also converging to (x, t) such that

lim
k→∞

JΨ(h̃k, τ̃k) =


I − xxT

2‖x‖2
x

2‖x‖

xT

2‖x‖
1

2

 .
Thus, in this case ∂BΨ(0) = ∂BΠKn(x, t). Q.E.D.

Let Anor
C(x,t) denote the normal map of the pair (C(x, t), A(x, t)); i.e., for all (z, τ) ∈ <n+1,

Anor
C(x,t)(z, τ) = A(x, t)ΠC(x,t)(z, τ) + (z, τ)−ΠC(x,t)(z, τ).
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We then have
Π ′Kn((x, t); (dx, dt)) ≡ ΠC(x,t) ◦ ( Anor

C(x,t) )−1(dx, dt).

Since the matrix A(x, t) is positive definite, Anor
C(x,t) is a globally Lipschitz homeomorphism

from <n+1 onto itself; moreover, its inverse is given by

( Anor
C(x,t) )−1 = ( I −A(x, t) ) Π

A(x,t)
C(x,t) + I,

where Π
A(x,t)
C(x,t) is the operator that maps (dx, dt) ∈ <n+1 onto the unique solution of the

convex program (23); see [36, Lemma 8].

5 CPs on Two Self-Dual Cones

In this section, we investigate the application of Theorem 6 to CPs on the cone of symmetric
positive semidefinite matrices and on the Lorentz cone. As in the last section, we first deal
with the former problem and then with the latter problem in the subsequent subsection.
Since the treatment of these two problems are rather similar, we omit some final details for
the Lorentz CP.

5.1 CPs in SDP matrices

The linear complementarity problem in symmetric positive semidefinite matrices, abbre-
viated as SDLCP, was introduced by Kojima, Shindo, Hara [21] and further studied in
[19, 20] where interior-point methods for solving this problem were investigated. Analytic
properties of the SDLCP are derived by Gowda and his collaborators [14, 15]. The non-
linear extension of the SDLCP is considered by Monteiro and Pang [31, 32] who treat the
problem as a constrained equation. Computational methods for solving the semidefinite
complementarity problem (SDCP) can be found in [6, 7, 51]. Shapiro [47] studied first- and
second-order perturbation analysis of nonlinear semidefinite optimization problems.

The SDCP can be identified as a special VI (K,F ) where the set K is the cone of sym-
metric positive semidefinite matrices and the inner product is the Frobenius inner product.
We formally define this problem as follows. Let F : X ∈ Sn 7→ F (X) ∈ Sn be a mapping
from Sn into itself. The SDCP is to find a matrix X satisfying

Sn+ 3 X ⊥ F (X) ∈ Sn+. (24)

Let X∗ be a solution of (24) and define Z∗ ≡ X∗ − F (X∗). We have ΠSn+(Z∗) = X∗. We
assume that F is continuously differentiable in an open neighborhood of X∗; it follows that
the normal map of the problem (24):

Fnor
Sn+ (Z) ≡ F (ΠSn+(Z)) + Z −ΠSn+(Z), Z ∈ Sn+

is semismooth near Z∗. Let Z∗ ≡ PΛP T be the orthogonal decomposition of Z∗. Using the
same notation as in Subsection 4.1, we define

LZ∗(H) = P


W T
αHWα Uαγ ◦W T

αHWγ W T
αHZ

W T
γ HWα ◦ UTαγ W T

γ HWγ W T
γ HZ

ZTHWα ZTHWγ ZTHZ

P T .
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We then have Π ′Sn+
(Z∗;H) = ΠC(Z∗;Sn+)(LZ∗(H)). Note that the critical cone C(Z∗;Sn+)

coincides with the critical cone of Sn+ at the solution X∗ of the CP (24); i.e.,

C(Z∗;Sn+) = T (X∗,Sn+) ∩ F (X∗)⊥.

Writing C ≡ C(Z∗;Sn+) and S ≡ LZ∗(H), we have

( Fnor
Sn+ ) ′(Z∗;H) = JF (X∗)ΠC(S) +H −ΠC(S)

= JF (X∗)ΠC(S) + (H − S ) + S −ΠC(S);

furthermore,

H − S = P


0 Ũαγ ◦W T

αHWγ 0

W T
γ HWα ◦ ŨTαγ 0 0

0 0 0

P T ,
where

ũij ≡ 1− uij =
|λj |

|λi |+ |λj |
, ( i, j ) ∈ α× γ

Recalling that

ΠC(S) = P


W T
αHWα Uαγ ◦W T

αHWγ W T
αHZ

W T
γ HWα ◦ (Uαγ )T 0 0

ZTHWα 0 ΠS|β|+

(ZTHZ )

P T ,
we may construct a linear transformation AZ∗ : Sn → Sn that maps ΠC(S) onto H − S.
Specifically, for a matrix

C ≡


Cαα Cαγ Cαβ

Cγα Cγγ Cγβ

Cβα Cβγ Cββ

 ∈ Sn,
let

AZ∗(PCP T ) ≡ P

 0 Σαγ ◦ Cαγ 0

Cγα ◦ ΣT
αγ 0 0

0 0 0

P T ,
where

σij ≡
ũij
uij

=
|λj |
λi

, ( i, j ) ∈ α× γ;

we then have AZ∗(ΠC(S)) = H − S. Hence

( Fnor
Sn+ ) ′(Z∗;H) = ( JF (X∗) +AZ∗ )(ΠC(S)) + S −ΠC(S).

Consequently, letting Gnor
C denote the normal map of the CP:

C 3 S∗ ⊥ −Q+ ( JF (X∗) +AZ∗ )(S∗) ∈ C∗, (25)
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we may conclude that
( Fnor
Sn+ ) ′(Z∗; ·) = Gnor

C ◦ LZ∗ ; (26)

in other words, (Fnor
Sn+ ) ′(Z∗;H) = Q if and only if with S∗ = ΠC(S) being a solution of the

CP (25),

H = (LZ∗ )−1(S) = (LZ∗ )−1[S∗ +Q− ( JF (X∗) +AZ∗ )(S∗) ) ].

Based on the above derivation, we obtain the following result that connects the globally
Lipschitz homeomorphism of the directional derivative (Fnor

Sn+ ) ′(Z∗; ·) with the solution of

the SDLCP (25). Part of the significance of this result is that the latter CP depends only on
the given solution X∗ of the original SDCP (24) and is independent of the linear operator
LZ∗ that is used in the above derivation and the proof below.

Lemma 15 The directional derivative (Fnor
Sn+ ) ′(Z∗; ·) is a globally Lipschitz homeomorphism

if and only if for every Q ∈ Sn, the SDLCP (25) has a unique solution S∗(Q) that is Lipschitz
continuous in Q.

Proof. Since LZ∗ is a nonsingular linear transformation, it follows that (Fnor
Sn+ ) ′(Z∗; ·) is

a globally Lipschitz homeomorphism if and only if Gnor
C = (Fnor

Sn+ ) ′(Z∗; ·) ◦ (LZ∗)−1 is so.

In turn, from VI/CP theory, we know that the normal map Gnor
C is a globally Lipschitz

homeomorphism if and only if the claimed unique and Lipschitz solvability of the CP (25)
is valid. Q.E.D.

The following result gives a further application of the formula (26).

Lemma 16 The following three statements are equivalent.

(a) The directional derivative (Fnor
Sn+ ) ′(Z∗; ·) has the origin as the unique zero.

(b) The normal map Gnor
C has the origin as the unique zero.

(c) The SDLCP (25) with Q = 0 has zero as the unique solution.

Moreover, if any one of these statements holds, then ind
(

(Fnor
Sn+ ) ′(Z∗; ·), 0

)
= ind(Gnor

C , 0).

Proof. The proof of the equivalence of statements (a), (b), and (c) is similar to the proof
of Lemma 15. We prove the index equality. Assume any one of the three statements (a),
(b), and (c). By the homotopy invariance of the degree, it suffices to show that for every
t ∈ (0, 1),

Gnor
C ◦ [ tLZ∗ + ( 1− t ) I ](H) = 0 ⇒ H = 0. (27)

Clearly,

[ tLZ∗ + ( 1− t ) ](H) = P


W T
αHWα U tαγ ◦W T

αHWγ W T
αHZ

W T
γ HWα ◦ (U tαγ )T W T

γ HWγ W T
γ HZ

ZTHWα ZTHWγ ZTHZ

P T ,
where U tαγ is the matrix whose entries are given by

utij ≡ t uij + ( 1− t ) =
λi + ( 1− t ) |λj |

λi + |λj |
, ( i, j ) ∈ α× γ.
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Since each utij is positive, it can be proved that tLZ∗+(1−t)I is a nonsingular transformation
on Sn; see the proof for t = 1 at the end of Subsection 4.1. By (b), the implication (27)
holds readily. Q.E.D.

For a nonsingular linear transformation from Sn into itself, the sign of the determinant of
this transformation is equal to the index of the transformation at the origin. This extended
notion of the determinant is used in the theorem below, which provides several necessary
and sufficient conditions for a solution of the SDCP (24) to be strongly stable/regular. Its
proof follows easily from Lemmas 15 and 16 and Theorems 3 and 6.

Theorem 17 Let F : Sn → Sn be continuously differentiable in a neighborhood of a
solution X∗ of the SDCP (24). The following three statements are equivalent.

(a) X∗ is strongly stable/regular;

(b) for every Q ∈ Sn, the SDLCP (25) has a unique solution that is Lipschitz continuous
in Q;

(c) for every V ∈ ∂BΠSn+(Z∗), sgn det((JF (X∗) +AZ∗) ◦ V + I − V ) = ind(Gnor
C , 0) = ±1.

Calculation of directional derivatives

We may apply Corollary 8 to a parametric CP in SPSD matrices:

Sn+ 3 X ⊥ F (X, p) ∈ Sn+, (28)

where F : Sn × <m → Sn is a given mapping. In what follows, we show how to calculate
the directional derivative of an implicit solution function of the above problem at a base
parameter vector p∗ ∈ <m. For this purpose, let X∗ be a strongly stable solution of the
above problem at p∗. Assume that F is continuously differentiable in a neighborhood of the
pair (X∗, p∗). It follows that there exist open neighborhoods V ⊆ Sn+ of X∗ and P ⊆ <m
of p∗ and a locally Lipschitz continuous function X : P → V such that for every p ∈ P,
X(p) is the unique matrix in V that solves (28); moreover, the implicit solution function
X is semismooth at p∗. We wish to compute X ′(p∗; dp) for dp ∈ <m. For each p ∈ P, let
Z(p) ≡ X(p)− F (X(p), p). We have X(p) = ΠSn+(Z(p)) and

F (ΠSn+(Z(p)), p) + Z(p)−ΠSn+(Z(p)) = 0.

Taking the directional derivative of the above normal equation at p∗ along the direction dp
and writing dZ ≡ Z ′(p∗; dp), we obtain

JxF (X∗, p∗)Π ′Sn+(Z∗; dZ) + JpF (X∗, p∗)dp+ dZ −Π ′Sn+(Z∗; dZ) = 0.

Note that X ′(p∗; dp) = Π ′Sn+
(Z∗; dZ). By the previous derivation, we deduce that X ′(p∗; dp)

is the unique solution S∗ of the CP:

C 3 S∗ ⊥ JpF (X∗, p∗)dp+ ( JxF (X∗, p∗) +AZ∗ )(S∗) ∈ C∗,

where C ≡ T (X∗;Sn+) ∩ F (X∗, p∗)⊥ is the critical cone of the CP (Sn+, F (·, p∗)) at the
solution X∗.
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5.2 The Lorentz CP

Given a function F : <n+1 → <n+1, we call the complementarity problem [5, 11]:

Kn 3 (x, t ) ⊥ F (x, t) ∈ Kn

the Lorentz CP. Since Kn is self-dual, this CP is equivalent to the VI (Kn, F ). Assume
that F is continuously differentiable in an open neighborhood of a solution (x∗, t∗) of the
Lorentz CP. It follows that the normal map

Fnor
Kn (z, τ) ≡ F (ΠKn(z, τ)) + (z, τ)−ΠKn(z, τ), ( z, τ ) ∈ <n+1

is semismooth near (z∗, τ∗) ≡ (x∗, t∗)− F (x∗, t∗). Using the notation in Subsection 4.2, let(
d̂z, d̂τ

)
≡
(

Anor
C(z∗,τ∗)

)−1
(dz, dτ);

we have

(dz, dτ) = A(z∗, τ∗)ΠC(z∗,τ∗)(d̂z, d̂τ) +
(
d̂z, d̂τ

)
−ΠC(z∗,τ∗)(d̂z, d̂τ).

Consequently,

(Fnor
Kn )′((z∗, τ∗); (dz, dτ))

= JF (x∗, t∗)Π
′
Kn((z∗, τ∗); (dz, dτ)) + (dz, dτ)−Π′Kn((z∗, τ∗); (dz, dτ))

= JF (x∗, t∗)ΠC(z,τ∗)(d̂z, d̂τ) + (dz, dτ)−ΠC(z∗,τ∗)(d̂z, d̂τ)

= GΠC(z∗,τ∗)(d̂z, d̂τ) +
(
d̂z, d̂τ

)
−ΠC(z∗,τ∗)(d̂z, d̂τ),

where G ≡ JF (x∗, t∗) + A(z∗, τ∗)− I. Hence if we let Gnor
C be the normal map of the pair

(C(z∗, τ∗), G), it follows that

Fnor
Kn = Gnor

C ◦
(

Anor
C(z∗,τ∗)

)−1
.

From this point on, the analysis of the Lorentz CP is very similar to that of the SDCP. The
details are not repeated.

6 Conclusion

In this paper, we have established a complete inverse function theorem for semismooth
equations and deduced from the theorem an implicit function theorem for such equations
that depend on a parameter. We have shown how the inverse/implicit function theorem
can be used to obtain necessary and sufficient conditions for the strong stability/regularity
of solutions to CPs on the cone of SPSD matrices and on the Lorentz cone. We have
further shown how the directional derivatives of a strongly stable parametric solution can
be calculated by differentiating the parametric equation. Our development relies on certain
directional derivative formulas for the projections on the cone of SPSD matrices and on the
Lorentz cone.

Acknowledgements. The authors are grateful to two referees and the Associate Editor for
their valuable comments, which have significantly improved the presentation of the paper.
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In particular, the Associate Editor remarks that our analysis of the Lorentz cone is based on
the “smoothness of the boundary at every boundary point except its vertex” and he expects
that we can frame our results for a larger class of cones with such a boundary property.
While we agree with the Associate Editor’s remark, we have not pursued according to his
suggestion herein because we believe that there are other possible extensions, which we
intend to pursue altogether and present any new findings in a separate report.
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