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This paper onsiders multi-period warehousing ontrats under random spae de-

mand. A typial ontrat is spei�ed by a starting spae ommitment plus a ertain

number of times at whih the ommitment an be further modi�ed. Three forms of

ontrats are analyzed: (1) There is a restrition on the range of ommitment hanges

and the shedule for the hanges is pre-set by the warehouser; (2) the same as form 1

but there is no restrition on the range; (3) the same as form 2 but the shedule for

the hanges is hosen by the user. We explore properties and algorithms for the three

problems from the user's perspetive. Solutions of simple form are obtained for the �rst

two models and an eÆient dynami programming proedure is proposed for the last.

A numerial omparison of the total expeted leasing osts suggests that under ertain

demand patterns, ontrat forms 2 and 3 ould be ost e�etive.
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1 Introdution

Sine the late 1980s logistis outsouring has been reognized as a strategi weapon that

an provide ompetitive advantages and help urtail distribution osts. The sales �gures of

major third-party-logistis (3PL) servie providers in the US reeted this trend: Annual

growth rates of 20% to 40% are ommon. As part of the 3PL servie, third party warehous-

ing (3PW) also enjoys a parallel growth and has advaned from being a form of reative

tati to beoming an integral soure of ompetitive advantages. This growth is augmented

by the trend towards the expansion of stoking loations in order to have produts posi-

tioned loser to end ustomers beause of new servies suh as ontinuous replenishment,

just-in-time deliveries, vendor-managed inventories and ustomization postponement (Co-

paino [2℄). It has been estimated that the warehousing ost urrently represents the greatest

share of total Asia-Pai� logistis osts, about 39 perent, and logistis itself aounts for

up to 25 perent of total operating osts in the region (see MAdam [6℄).

The 3PW proess generally involves a user entering a ontrat with the 3PW provider for

spei� servies at agreed pries over a �xed ontrat duration, normally overing multiple

periods. The long-term ommitment in a ontrat reates many issues that have signi�ant

impats on management praties and researh. One of the important deisions is how

large spae the user should ommit to. On one hand, the 3PW provider would like the user

to ommit the same size of spae over the ontrat duration so as to ensure stable sales.

To entie suh a response from the user, the warehouser will provide disinentives so that

there will be a premium harge for any requirement of spae above the ommitted size.

On the other hand, due to the unertainty on storage spae requirement, it is in the best

interest of the user that it makes no �rm ommitment before the demand realizes in eah

period. The ommon ground stands therefore in the middle: During the multiple periods

of ontrat duration the user �rm may obligate to ertain ommitments of spae sizes but

enjoys some degree of exibility in that adjustments may be exerised. In this paper we

analyze one, perhaps the most important, type of the 3PW ontrat | warehousing lease

with size ommitments and ertain exibilities.
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The motivation for onsidering ommitments with ertain degree of exibility arises from

our experiene with an atual ontrat of this type used by a division of a multi-national

orporation (MNC) in Singapore. Currently, the MNC ontrats its warehousing operations

to a loal 3PW. The 3PW bills to the MNC with respet to oupany harge aording to

a ontrat with ommitments. The ontrat an be desribed as follows: Fairly ahead of

the beginning of the year the MNC �rm makes an annual ommitment (base ommitment)

but an make up to a ertain perentage of up-/down-ward adjustment on the quarterly

basis. For instane, if the base ommitment is 10; 000 pallets and an adjustment ap is

25%, then eah of the 4 quarterly ommitments an vary between 7; 500 and 12; 500 pallets.

The harge on spae is essentially aording to the peak usage: The daily usage of spae is

traked by the end-of-day net spae taken by the ompany and the monthly harge is then

determined by the highest daily usage. If the highest usage is greater than the ommitment,

the extra spae is billed at a premium rate, and if it is at or below the ommitment, the

ompany is only harged for a basi fee.

The MNC attempts to remove the basi ommitment as well as to have exible om-

menements for individual ommitments. They are onerned with the inexibility of the

present ontrat beause the quarterly adjustment does not neessarily reet the pattern of

its warehousing demand. This leads to the two objetives of this researh: First, we investi-

gate the impat of the base ommitment in the urrent ontrat; i.e., we evaluate the osts

of the ontrats with/without a base ommitment. Seond, we investigate a new ontrat

whih allows the user to hoose the optimal timings to adjust the previous ommitment and

see the saving potential from suh an additional exibility. These exibilities | removing

the base ommitment and relaxing the �xed shedule for individual ommitments | may

be pursued, however, at higher ost rates. Evaluation proedures are therefore essential for

omparing the alternatives.

The literature in warehousing operations is vast. Cormier and Gunn [3℄ provide a

omprehensive review of analytial researh on warehouse models from the warehouser's

perspetive. The work by Lowe, Franis and Reinhardt [5℄ is probably most relevant to our
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problem in the warehouse management literature. In their model hanges in storage apa-

ity are allowed from period to period, e.g., by leasing additional storage spae, prouring

additional storage raks or losing a setion of the warehouse. The hange from one size in

one period to a di�erent size in the next period inurs either (linear) \expansion" or \on-

tration" osts. The urrent researh is also motivated by the work of Hum and Ngoh [4℄.

Hum and Ngoh provide a �rst de�nition of the ontrat problem and provide insights into

the nature of the problem using numerial examples. However, only deterministi demand

is onsidered in [4℄.

The reader familiar with inventory literature may relate the problems onsidered here to

inventory models. While warehouse spae resembles to perishable inventory and ommitting

on a spae size is similar to ommitting on an order-up-to inventory level, the ontrat for

warehouse spae is like take-or-pay. In addition, under the inventory management ontext,

it does not make sense for a buyer to ommit on any order-up-to level. Finally, the optimal

timings for starting individual ommitments are not addressed in the literature (For non-

perishable inventory models with order quantity ommitments and exibilities, the reader

might refer to Tray [8℄ and Bassok and Anupindi [1℄).

The rest of the paper is organized as follows. In the �rst part of the next setion we

de�ne the problem and formulate the model. We then disuss the evaluation proedure

for eah of the three models. We report our omputational experiene and observations in

Setion 3 and onlude the paper in Setion 4 with a brief summary and some diretion for

possible future researh.

2 Formulation of Models

We �rst present assumptions and basi notation, then de�ne the ost struture whih un-

derlies the interested models.

Demand for spae in period t = 1; 2; :::; N is a non-negatively valued random variable,

denoted by �

t

, with a known probability distribution �

t

(�

t

). We require �

t

to be independent

but not neessarily stationary over time. Though it is tempting to inlude orrelation
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between demands of di�erent periods, here we onsider only the independent ase. This

simpli�ation makes it easier to gain insight into the impat of the hanges in the ontrat

sine the independene assumption makes the problem omputationally more tratable.

The ost inurred in period t onsists of the following omponents:

� A �xed harge S is paid if the ommitment size for the period is S and the ost of

per-unit ommitted spae is .

� The variable { \overow" { leasing ost is pmax(0; �

t

� S), where p is the premium

harge per-unit spae and �

t

is the demand. Let

G

t

(S) = E[max(0; �

t

� S)℄ =

Z

1

S

(�

t

� S)d�

t

(�

t

): (1)

Then pG

t

(S) is the expeted variable leasing ost when the size of S is ommitted in

period t. Note that G

0

t

(S) = �

t

(S)� 1; whih shows that G

t

(S) is onvex in S:

Let m denote the number of adjustment opportunities and k

i

be the period at the beginning

of whih the ith adjustment is to be made: 2 � k

1

< k

2

< � � � < k

m

� N . (Hene there

are total of m + 1 ommitments.) Assoiated with k

i

is the ommitment size S

i

. For

onveniene of notations, de�ne k

0

= 1, k

m+1

= N + 1, and two vetors K = (k

1

; � � � ; k

m

)

and S = (S

0

; S

1

; � � � ; S

m

). Then the total expeted osts is:

f(K;S) = 

m

X

i=0

(k

i+1

� k

i

)S

i

+ p

m

X

i=0

k

i+1

�1

X

t=k

i

G

t

(S

i

): (2)

2.1 Model FSB - Fixed Shedule for Commitments around a Base Level

Suppose that the ontrat requires a base ommitment Q, a deision variable, and eah

ommitment should be set within [(1 � �)Q; (1 + �)Q℄, where 0 � � � 1; � � 0. The

shedule for adjustment, K, is set by the warehouser. That is, the user wants to determine

Q for minimum ost given �; � and vetor K. In eah ommitment duration, let C

i

(S

i

) =

(k

i+1

�k

i

)S

i

+p

P

k

i+1

�1

t=k

i

G

t

(S

i

): Note that C

i

(S

i

) is onvex in S

i

. Then the minimum-ost
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ontrat problem an be formulated as

(FSB) min

Q;S

m

X

i=0

C

i

(S

i

) (3)

s.t. (1� �)Q � S

i

� (1 + �)Q:

A remark is in order. The user an hoose optimal base size Q

�

and ommitment sizes S

�

i

although the latter are not neessarily doumented in the ontrat. The ommitment sizes

are in fat set \dynamially" in pratie. Sine demands for spae are serially independent,

knowing demands in periods 1; 2; � � � ; i� 1, does not improve hoosing S

�

i

, whih means all

S

�

i

an be determined \up-front", suggesting that FSB is a stati multiple period problem.

Proposition 1 Problem FSB is equivalent to

(FSB

0

) min

Q

�(Q); (4)

where

�(Q) =

m

X

i=0

min

(1��)Q�S

i

�(1+�)Q

C

i

(S

i

):

Furthermore, �(Q) is onvex in Q.

Proof. The equivalene between FSB and FSB

0

is evident beause

P

m

i=0

C

i

(S

i

) is sepa-

rable. It is well known that if C

i

(S

i

) is onvex in S

i

, then min

(1��)Q�S

i

�(1+�)Q

C

i

(S

i

) is

onvex in Q. As a result, �(Q) is onvex in Q.

Now we show how to obtain C

�

i

(Q) = min

(1��)Q�S

i

�(1+�)Q

C

i

(S

i

). Let us assume that

all values of C

i

(y) are available and y

i

is the minimizer of C

i

(y) without the onstraint

(1� �)Q � y � (1 + �)Q. If Q is between

�

y

i

1 + �

;

y

i

1� �

�

;

then C

�

i

(Q)=C

i

(y

i

); if Q is below

y

i

1+�

, then C

�

i

(Q)=C

i

(Q + �Q); and if Q is above

y

i

1��

,

then C

�

i

(Q)=C

i

(Q � �Q). Therefore one we have all values of C

i

(y

i

), we automatially

have all the values of C

�

i

(Q). Moreover, the omputation of y

i

is not diÆult. It redues to

the solution of equation
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k

i+1

�1

X

t=k

i

�

t

(y

i

) =

p� 

p

(k

i+1

� k

i

); (5)

for i = 0; :::;m; whih is obtained by taking derivative of (2) and setting it to zero.

Equation (5) is quite easy to solve. Thus, a simple linear searh proedure for �(Q) will

suÆe to �nd the optimal ommitment size Q

�

.

2.2 Model FSNB { Fixed Shedule without Base Commitment

Suppose that the shedule of adjustments is predetermined as in FSB but there is no

restrition on the range of hanges, i.e., no base ommitment. Then the problem an be

formulated as

(FSNB) min

S

m

X

i=0

C

i

(S

i

) =

m

X

i=0

min

S

i

C

i

(S

i

) (6)

for i = 0; :::;m: Hene we minimize C

i

(S

i

) separately by letting S

i

= y

i

, where y

i

is the

solution to (5), i = 0; :::;m.

2.3 Model P

m

- Fixed Number of Commitments with Flexible Shedule

The last model is the most exible, denoted by P

m

:

(P

m

)

8

>

<

>

:

min f(K;S) = 

P

m

i=0

(k

i+1

� k

i

)S

i

+ p

P

m

i=0

P

k

i+1

�1

t=k

i

G

t

(S

i

)

s.t.

k

i�1

< k

i

; i = 1; 2; � � � ;m:

The di�erene between FSNB and P

m

is that, in addition to S, the latter further allows

the user to optimally hoose the shedule K for all ommitments.

2.3.1 Nature of the General Problem

ProblemP

m

is hard to solve sine there are potentially total of

�

N � 1

m

�

di�erent shedules

in designing the ontrat. The solution proedure now inludes a searh for the optimal

shedule. We had hoped to �nd some monotoniity property so that the searh an proeed

in a ertain pattern rather than going through an enumeration of all hoies. However, it

turns out that suh a property may not exist, making the solution of P

m

diÆult.
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Period

1 2 3 4

Demand Level

4

14

12

20

0

Figure 1. An Example

Consider an example of P

1

with four periods and deterministi demands : Demands for

warehouse spae in the four periods are 4, 14, 12 and 20, respetively (see Figure 1). Suppose

 = 1 and p is arbitrarily large. There is one adjustment option provided for between period

2 and period 4, and there is no restrition on the two ommitment sizes. If the adjustment

period is hosen as period 2 (L = 1, k

L

= 2), then S

0

= 4 and S

1

= 20 (sine p >> ) is

optimal and the total ost for suh a solution is 4 + 3 � 20 = 64. Now onsider k

L

= 3, then

S

0

= 14 and S

1

= 20 is optimal and the resulting total ost is 2 � 14 + 2 � 20 = 68, greater

than the ost in the former ase. Finally, let k

L

= 4. Then S

0

= 14 and S

1

= 20 is optimal;

the total ost equals 3 � 14 + 20 = 62, whih is the minimum ost. To summarize, the osts

assoiated with the adjustments in periods 2, 3 and 4 are 64, 68 and 62, respetively. We

see a non-monotoni pattern in terms of osts. This suggests the same diÆulty for the

general ase (i.e., problem P

m

) where multiple adjustment options are provided.

We therefore resort to a dynami programming (DP) solution proedure that is the

subjet of the next subsetion. A nie property of the problem, whih makes the DP

approah a reasonable hoie, is that optimal ommitment sizes are uniformly bounded as
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desribed by the following proposition.

Proposition 2 Let y

t

be the minimizer of y + pG

t

(y), t = 1; 2; � � � ; N;

y

min

= minfy

1

; y

2

; � � � ; y

N

g; and y

max

= maxfy

1

; y

2

; � � � ; y

N

g: Then an optimal solution to

P

m

satis�es y

min

� S

�

j

� y

max

, j = 0; 1; � � � ;m.

Proof. Note that y + pG

t

(y) is dereasing in y when y < y

min

. Suppose that, to the

ontrary, S

�

j

< y

min

for some period k

j

. We raise S

�

j

to S

�

j

+ �, where � is a small positive

number. We keep all other S

�

k

unhanged. As a result, the total ost will be redued or at

least remains the same beause y+ pG

t

(y) is dereasing when y < y

min

. If we keep raising

the S

�

j

, then either it will reah y

min

or it will reah some S

�

i

. In the latter ase we then

raise S

�

j

and S

�

i

together until both of them reah y

min

or some third S

�

k

join the team.

Obviously, when all S

�

j

in the team reah y

min

, whih is neessarily the ase after a �nite

number of adjustments, the total ost will be pulled down or at least \stand still" in the

proess. Thus, an optimal solution must be found to have all S

�

j

� y

min

:

Noting that y + pG

t

(y) is inreasing over y � y

max

, the relationship y

max

� S

�

t

an be

established analogously.

2.3.2 The Solution Proedure

Now we reformulate P

m

as a dynami programming problem. To this end, we need to de�ne

the state at the beginning of any period. Assume that after a deision has been made on

whether the ommitment size should be adjusted at the beginning of period t, the number

of adjustment options available from periods t + 1 to period N is `

t

and the ommitment

size beomes S

t

. Denote by (`

t

; S

t

) the state of period t (after the deision on adjustment

has been made but before the demand is observed), where `

t

� 0. Note now that the state

of period 1 is (m;S

0

). Let f

t

(`

t

; S

t

) denote the ahievable minimum ost if period t begins

with state (`

t

; S

t

) (after possible adjustment). Then for t = 1; 2; :::; N � 1

f

t

(`

t

; S

t

) = pG

t

(S

t

) + S

t

+min

(

f

t+1

(`

t

; S

t

); min

S

t+1

2[y

min

;y

max

℄

f

t+1

(`

t

� 1; S

t+1

)

)

;
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where if the outside minimum is attained by f

t+1

(`

t

; S

t

), then the best strategy is not to

adjust the spae at time t. Otherwise, the best is to adjust, so we have `

t

= `

t+1

+ 1 and

S

t+1

is the minimizer of the inside minimum.

To initialize the algorithm we have

f

N

(`

m

; S

m

) = pG

N

(S

m

) + S

m

for any given `

m

and S

m

: The algorithm will end with

f

0

(m;S

�

0

) = min

S

0

2[y

min

;y

max

℄

f

1

(m;S

0

):

Thus, the minimum total expeted leasing ost and optimal ommitment sizes S

t

an be

found by solving f

0

(m;S

�

0

) through the standard DP bakward searh algorithm. We denote

by fS

�

0

; S

�

1

; � � � ; S

�

N

g the sequene of optimal ommitment sizes.

The omplexity of the DP solution proedure an easily be estimated as follows. Suppose

we divide interval [y

min

; y

max

℄ intoM points. Assume that values of G

t

(y) are available for y

at all theseM points, and t = 1; 2; � � � ; N . The omplexity of the bakward searh algorithm

is thus bounded by O(N

2

m

2

M

2

).

It should be noted that the algorithm an also inorporate range restritions over possible

hanges in ommitment. For example,

(1� �

i

)S

i�1

� S

i

� (1 + �

i

)S

i�1

i = 1; � � � ;m;

where 0 � �

i

< 1 and �

i

� 0 are the downward and upward proportions that bound

the hange of spae ommitment, respetively. From the warehouser's perspetive, suh a

restrition is to avoid a sudden hange in any two onseutive ommitments. Thus it may

be inorporated into the ontrat terms.

2.3.3 A Speial Case: Stohastially Inreasing/Dereasing Demands

At the end of this setion we disuss a speial, yet interesting ase, whih an further redue

the amount of omputation in the DP algorithm. A demand sequene f�

1

; �

2

; � � � ; �

N

g is

said to be stohastially inreasing if 1 � �

1

(y) � 1 � �

2

(y) � � � � � 1 � �

N

(y) for any
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�nite y. Evidently, a stohastially inreasing demand sequene means that the sequene

of orresponding demand means is inreasing (see Ross [7℄). That is, when the sequene

of demand means is denoted by f�

1

; �

2

; � � � ; �

N

g, then �

1

� �

2

� � � � � �

N

if the demand

sequene is stohastially inreasing. For a stohastially dereasing demand sequene, all

the above relationships are just reversed.

Proposition 3 If the demand over the ontrat duration is stohastially inreasing (de-

reasing), then S

�

1

� S

�

1

� � � � � S

�

m

( S

�

0

� S

�

1

� � � � � S

�

m

), where S

�

i

is the optimal

ommitment size, i = 0; � � � ;m.

Proof. We only prove the ase with stohastially inreasing demands sine the proof for

stohastially dereasing demand ase an be arried out similarly.

Suppose the optimal solution partitions N periods into m+1 segments with breakpoints

k

1

; k

2

; � � � ; k

m

. That is, for the �rst k

1

� 1 periods, the optimal ommitment size is S

�

0

; for

periods from k

1

+ 1 to k

2

, the optimal ommitment size is S

�

1

; � � �, for periods from k

m

+ 1

to N , the optimal ommitment size is S

�

m

.

There might be the ase in whih the number m of adjustment options is more than

what is atually needed. That is, the atual number of adjustments in the optimal solution

is less thanm. In this ase, we arbitrarily insert a point between k

i

and k

i+1

if k

i

+1 < k

i+1

.

Repeat the insertion until we have obtained m time points.

Aording to (5) we have

k

i+1

�1

X

t=k

i

�

t

(S

�

i

) =

p� 

p

(k

i+1

� k

i

): (7)

Note that when the demand is inreasing over time, �

t

(y) � �

t+1

(y) for any y � 0. Thus

from (7) we obtain

�

k

i

+1

(S

�

i

) � (p� )=p:

Similarly by onsidering the time interval [k

j�1

+ 1; k

j

℄ we obtain

�

k

i

(S

�

i�1

) � (p� )=p:
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Hene we have

�

k

i

(S

�

i�1

) � �

k

i

+1

(S

�

i

) � �

k

i

(S

�

i

);

whih implies S

�

i�1

� S

�

i

; i = 1; :::;m.

Obviously, if the demand is stohastially inreasing, then the upper bound y

max

of S

�

i

an be replaed by S

�

i+1

in the DP algorithm. Similarly, the lower bound of S

�

i

an be

improved if the demand is stohastially dereasing.

3 Computational Experiene and Disussion

To evaluate the three forms of ontrats, we tested them on three di�erent data sets repre-

senting ordinary, divergent and seasonal demand senarios.

The set of experiments reported here used realisti input data as follows:

p= = 1:5; � = 0:25; � = :25:

We arbitrarily hose  = 10:0. All ontrats were assumed to over 12 periods during

whih 4 ommitments ould be made. In Model FSB and Model FSNB, eah ommitment

overed a quarter, while in Model P

m

, the timing to start eah of the four ommitments

was optimally hosen.

Demands of spae for 12 periods follow the normal distribution. We show three demand

senarios in Table 1, where the numbers without parenthesizes are the mean demands and

those in parenthesizes are the orresponding standard deviations. In the ase of Ordinary

Demand, spae requirements over time are relatively steady; in the ase of Divergent De-

mand, they vary signi�antly but not-seasonally over time, while in the ase of Seasonal

Demand, they exhibit both divergene and seasonality (as well as stohasti inrease). In

the ase of Divergent Demand, the degree of divergeny - the ratio of the highest mean

to the lowest mean is: 110=50 = 2:2, while in the ase of Seasonal Demand, this ratio

is: 120=30 = 4:0. The ost evaluation is summarized in Table 2, where the �gures in

parenthesizes are perentage saving as ompared with Model FSB.
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The DP algorithm is implemented on a Pentium II-300 PC. For eah setting, our DP

program takes only a fration of a seond in searhing for the optimal solution. The same

problems were also solved by an integer programming approah. We found that the DP algo-

rithm is substantially faster than the branh-and-bound algorithm used by the ommerial

integer programming pakage we used.

Period 1 2 3 4 5 6 7 8 9 10 11 12

Ordinary 50 50 80 75 80 52 52 80 53 53 60 70

(15) (15) (15) (15) (15) (15) (15) (15) (15) (15) (15) (15)

Divergent 50 50 60 80 110 50 60 80 70 50 110 110

(15) (15) (20) (25) (30) (10) (20) (20) (15) (15) (30) (30)

Seasonal 30 30 30 50 50 50 80 80 80 120 120 120

(6) (6) (6) (8) (8) (8) (15) (15) (15) (30 ) (30) (30)

Table 1 Demand Senarios

Ordinary Divergent Seasonal

Model FSB 8792 11294 12897

Model FSNB 8792 11294 12312

Improvement over FSB 0% 0% 4.5%

Model P

m

8615 10902 12312

Improvement over FSB 2.0% 3.4% 4.5%

Table 2 Cost Evaluation of 3 Contrat Forms

In general, Model P

m

ould result in saving in warehousing ost. In the ase of Seasonal

Demand, Model FSNB also leads to sizable saving due to the restrition imposed in Model

FSB (the range for adjustments). The impat of the base ommitment is reeted in the

ase of Seasonal Demand: As it was removed, we observe a ost redution of 4:5% (from

FSB to FSNB). Comparing between Models FBNB and P

m

, we an see the impat of

the �xed time shedule for adjustments on ost. For example, under Divergent Demand,

the exible shedule (P

m

) osts 3:4% less than FSNB. The saving potential provides the

base for negotiating the terms of new ontrats.

12



We also ondut sensitivity analysis for the ase of Divergent Demand. For example,

we raise the degree of divergeny from 2.2 to 3, whih is not unusual from our observation

of the MNC data. The hanged demand data is as follows:

Period 1 2 3 4 5 6 7 8 9 10 11 12

Divergent 50 50 60 50 150 150 110 80 60 70 120 120

(15) (15) (20) (15) (45) (40) (10) (20) (15) (15) (40) (30)

Table 3 Demand Senarios

Then the resulted ost for eah model: Model FSB: 12984; Model FSNB: 12972; Model

P

m

: 12276. The saving from swithing ontrat form of either FSB or FSNB to form of

P

m

is as high as 5:5%.

4 Conlusions

In this paper we provide a framework for analyzing three forms of warehousing ontrats

with spae ommitments and adjustment options, whih were motivated by a pratial

situation. The �rst form allows a number of ommitments for prespei�ed time intervals but

imposes that the ommitments must fall within a ertain range around a base ommitment.

The next ontrat form removes the restrition on the range of adjustments (hene also

removes the base ommitment), while the last goes a step even further by relaxing the

times for adjustments as well.

Various proedures are proposed for evaluating di�erent forms of ontrat. The prelimi-

nary omputational experiene suggests that if requirement for spae is highly seasonal and

variant, the user �rm should pursue the seond ontrat form, while if it varies onsiderably

over time but without lear seasonality, then it is the interest of the user to go after the last

ontrat form. Of ourse, the ultimate hoie depends also on the ost struture assoiated

with eah ontrat alternative. Evaluation proedures ould then be applied to aid the

seletion of the optimal ontrat.

There is a possible topi for future researh. In this study we onsidered only one

type of spae while in reality, multiple types of spae may be available, for example, non-

13



air-onditioned and air-onditioned storage. Then substitution between di�erent types of

storage may exist. It will be of pratial interest to know how to ontrat for eah type of

spae under this situation.
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