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ABSTRACT 

A 1932 editorial in Poultry Science stated that sampling theory, or experimental power, could be useful for “the 

investigator to know how many … birds to put into each experimental pen”. Nevertheless, in the past 90 years, 

appropriate experimental power estimates have rarely been applied to research with poultry. To estimate the 

overall variation and appropriate use of resources with animals in pens, a nested analysis should be conducted. 
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Bird to bird and separate pen to pen variances were separated for two datasets, one from Australia and one from 

North America. The implications of using variances for birds per pen and pens per treatments are detailed. With 

5 pens per treatment, increasing birds per pen from 2 to 4 decreased the SD from 183 to 154, but increasing 

birds/pen from 100 to 200 only decreased the SD from 70 to 60. With 15 birds per treatment, increasing 

pens/treatment from 2 to 3 decreased SD from 140 to 126, but increasing pens/treatment from 11 to 12 only 

decreased the SD from 91 to 89. Choosing the number of birds to include in any study should be based on 

expectations from historical data and the amount of risk investigators are prepared to accept. Too little 

replication will not allow relatively small differences to be detected. On the other hand, too much replication is 

wasteful in terms of birds and resources, and violates the fundamental principles of the ethical use of animals in 

research. Two general conclusions can be made from this analysis. Firstly, it is very difficult to detect 1 to 3% 

differences in broiler chicken body weight with only one experiment consistently because of inherent genetic 

variability. Secondly, increasing either birds per pen or pens per treatment decreased the SD in a diminishing 

returns fashion.  The example presented here is body weight, of primary importance to production agriculture, 

but it is applicable whenever a nested design is used (multiple samples from the same bird or tissue, etc.). 

Keywords 

Experimental design; Experimental power; Nested design; Ethical animal use  

INTRODUCTION 

Institutional Animal Ethics Committees are entrusted by the public to approve the use of animals in 

teaching and research only when it is deemed ethical, humane and responsible (e.g., Australian Government, 

2013; Rose and Grant, 2013). In most countries, legislation dictates that researchers are required to justify their 

use of animals in scientific research, including the number of experimental animals (Ibrahim, 2006). Typically, 

a power analysis is performed to calculate experimental power and justify the use of animals in proposed 

experiments.  The chance of determining a given response difference in a future experiment is called 

experimental power. In the case of poultry, the choice of the number of birds in an experiment usually involves 
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the number of pens to use for each treatment and the number of birds to put in each pen. This is particularly true 

for nutrition and behaviour studies. Because of genetic diversity between birds and environmental differences 

between pens, experimental conclusions are always based on probabilities. To estimate the overall variation and 

appropriate use of resources with animals in pens, a nested analyses should be conducted (Krzywinski et al., 

2014). Nested designs are “A class of experimental design in which every level of a given factor appears with 

only a single level of any other factor. Factors which are not nested are said to be crossed. If every level of one 

appears with every level of the others, the factors are said to be completely crossed: if not, they are partly 

crossed” (Marriott, 2002). 

The objective of planning experiments should be to have adequate numbers of birds to ensure a high 

probability of finding real differences, without using excessive or unethical amounts of resources, be they birds 

or money. An editorial in Poultry Science (Hays, 1932) summarized statistical analytical techniques that could 

be useful in research with poultry: “Among the most useful applications of biometrics to poultry research may 

be mentioned: 1. The theory of sampling which enables the investigator to know how many and what kind of 

birds to put into each experimental pen”. However, as Roush and Tozer (2004) observed:  “With some 

exceptions, the power of tests is rarely formally considered or mentioned in poultry research.”  Upon searching 

literature in poultry research following 2004, it is evident that the situation has not changed significantly; there 

is scarce use of test power in poultry research, and a lack of detail presented when it is used (Sadurni et al, 

2022). The important pieces of information needed to predict experimental power for a future experiment are 

the expected means and standard deviations from past experiments. The terms that need to be added to the 

Schroedek and Lawrence (1932) ANOVA are the variances due to the birds within a pen (the genetic variation) 

and the variances between the physical pens themselves. Pen-to-pen environmental variation can result from 

differences in ventilation within a house, lack of lighting uniformity, differences in noise, humidity, and 

arbitrary human disruptions. 
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It is always important to assess if the experiment is relevant to the intended application. Birds kept 

solely indoors usually have decreased exposure to many stressors, but more exposure to coccidiosis due to 

oocyst build up in the litter. Birds with outside access are more likely to be exposed to a variety of climatic 

conditions and other stressors:  These stressors include predators and any number of diseases due to contact 

with wild birds and their excrements. Experiments conducted with more controlled conditions are more 

repeatable. Is an experiment under closely controlled (inside) conditions relevant to birds grown with outside 

access and subject to a variety of uncontrolled conditions and stressors?  No, and this question raises another:  Is 

there value in conducting an experiment with birds with access to the outside with uncontrolled conditions that 

is not likely to be repeated? If the experiment is not strictly repeatable, how can its value (validity) be assessed? 

If the outcomes of subsequent experiments are to be repeated from preliminary ones, great care must be taken to 

assure that the preliminary experiments’ conditions are consistent with the application of the intended research.  

 Since the very beginning of trials with poultry to compare different feeds, there has been an interest in 

the statistical interpretation of experimental results (Parker, 1925), and in determining the optimum number of 

birds required to find significant differences (Schroedek and Lawrence, 1932). Schroedek and Lawrence (1932) 

demonstrated how to calculate analysis of variance (ANOVA) for results when males and females were kept in 

the same pens. The ANOVA was based on individual variation within a single pen per treatment. They used 

paired t-tests for individual mean separation between 4 dietary treatments, the same procedure used currently 

with Proc LSMeans of the Statistical Analysis System (SAS, 2012). Schroedek and Lawrence (1932) 

emphasized the need to keep birds under identical conditions, presenting pictures of seemingly identical pens 

with identical sunporches. At that time, physical separation of birds on different treatments, whilst ensuring pen 

environments were as similar as possible, was considered adequate. The practice of keeping birds in replicate 

pens that are randomized, and including this information in the ANOVA, did not become common practice for 

several decades. 
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In the early 1930’s, the concept of experimental power was brand new (Neyman and Pearson, 

1928,1933). Titus and Hammond (1935) published the first paper on power analyses for poultry experiments. 

Their discussion centers around the reasons experimental results are often not repeatable: a) The variability of 

feed ingredients making replicating diets nearly impossible, and b) an insufficient number of individuals used in 

a trial. They believed that it was necessary to have enough individuals in each treatment for the frequency plot 

of the data to appear normal. These conclusions were based on outputs from rudimentary simulations, many of 

which were insightful for the time and quite correct: “In a very general way, the accuracy of the results tends to 

increase as the square root of the number of individuals.” 

The basic concepts needed to estimate treatment replication before conducting an experiment were 

detailed in Poultry Science (Demetrio et al., 2013). The expected variation in measured responses (e.g., growth, 

feed utilization efficiency) between experimental units (tissues, individuals, pens of individuals, etc.) is used to 

estimate experimental power. Figure 1 is from a Microsoft Excel application, where the user can input the mean 

and standard deviation expected for a future experiment and calculate what the expected power would be with 

different numbers of replications (Pesti et al., 2018). This example is from an experiment with 3 treatments and 

seven pens of five 36-day old broilers per treatment (Appendix A). The standard deviation (SD) is based on pen 

means. The usual way to express experimental power is the number of replicates necessary to detect a real 5% 

difference 80% of the time (while declaring a false significant difference no more than 5% of the time). Such 

representation of experimental power may be misleading since it only represents one point of the sigmoidal line 

for each number of replicates. In this example, 20 replicate pens would be necessary to find a 10% difference in 

9 of 10 identical experiments (the orange line in Figure 1 crosses the 0.9 horizontal line just below 10% on the 

horizontal axis). From the graph it can be seen that: a) it is practically impossible to detect a 5 % difference with 

such a mean and SD from only 1 experiment more than 40 % of the time; b) the effect of increasing replication 

is a diminishing-returns phenomena; and c) with 14 to 20 replicates and a real difference of 10%, a significant 

difference could be expected almost every time. 
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In explaining basic power concepts, Demetrio et al. (2013) wrote:  “Determining the sample size is 

complicated because it involves 2 sources of uncontrolled variation:  i. between-pen variation, σM
2 , and ii. 

between-bird within-pen variation, σS
2, and requires a guess of the values of these 2 variances”. The guess is 

only required if individual bird responses are not measured or no other estimate of bird-to-bird variation is 

available. The difficulty in estimating the two variances is due to the fact that birds are most often measured 

together as group within a pen, so the bird-to-bird variation is not commonly known. Similarly, when birds are 

sub-sampled the pen mean is typically used as the experimental unit, so variation between individual birds is 

rarely known. A limitation of the results in Figure 1 is that the SD was only based on pen means. To estimate 

the overall variation and apply appropriate use of resources with animals in pens, a nested analysis should be 

conducted (Krzywinski et al., 2014). The observed variation in the presented example is among pens containing 

fixed numbers of birds, and so contains both sources of variation, as explained by Demetrio et. (2013). That is 

appropriate for comparing treatment means from past experiments, but not for estimating variance for future 

experiments, in which there is possibility of changing both pens/treatment and birds/pen. 

The objective of this paper is to demonstrate how to partition variances into bird-to-bird within pen 

(genetic) and pen-to-pen (micro-environmental) sources. Data from two experiments with growing broilers is 

used to show the practical application of the results. Growth, or body weight, was used in the example as it is 

the most important attribute for production agriculture. The principles apply for any experiment where birds are 

kept in pens, or multiple samples are taken from the same bird or tissue, etc. (nested design). 

MATERIALS AND METHODS 

The first example dataset was derived from the Rob Cumming Poultry Innovation Centre at The 

University of New England (Armidale, NSW, Australia). Broiler chickens were raised from hatch to 35 days of 

age in 21 pens. There were 3 treatments (2 therapeutic agents and a control) with a one-way nested design. 

There were 7 replicate pens of 10 birds each per treatment. Final body weight was the response variable 
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investigated. By 35 days of age the pens contained different numbers of males, due to sexing errors at 

placement and random mortality. To simplify this example, the first 5 male broilers from each pen were chosen 

on the assumption that they were randomly recorded and thus remained random (210 birds total). 

The second example dataset is from J-House at the University of Georgia Poultry Research Center (Da 

Costa et al., 2017). Broiler chickens were raised from hatching to 48 days of age in 48 pens (28 broilers per pen, 

nested in pens at hatching). There were 4 treatments with a 2 × 2 factorial nested design (two genetic strains and 

males versus females). Responses of the two strains were very similar and strain differences were not 

considered in this analysis. Body weight at 12, 17, 25, 32, 41, and 48 days of age was the response variable 

investigated.  For hypothesis testing this experiment should be analysed with a repeated measures design.  Our 

purpose was to estimate variances at each age, so the data were analyzed separately for each time. 

The response model is: 

Response (Y) = µ + Ti + Pj(i) + ijk  , 

k = 1, …, b, j = 1, …, p, i=1, …t, 

where Yijk = kth observation from the jth bird in the ith pen, 

  Ti ~ N(0,2
2) 

     Pj(i) ~ N(0,1
2)   -Random Model 

ijk ~ N(0,2) 

i.e.,  2
2 is the variation between treatments Ti , 

 1
2 is the variation between pens within treatments Pj(i) , 

 2 is the experimental error; 
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or, effectively, Ti is the effect of the ith treatment and Pj(i)  is the effect of the jth pen within the ith treatment, and 

ijk is the observed error within replicate pens (between birds). 

Then the total Sum of Squares = ∑∑∑ (Yijk – 𝑌̅)2 

     = Between Treatments SS + Between Pen within Treatment SS + Residual SS (see 

Table 1) where the Between Treatment SS = 𝑏𝑝 ∑ (𝑌̅𝑖·· − 𝑌̅)2𝑡
𝑖=1  =  ∑

𝑌𝑖··
2

𝑏𝑝𝑖··  - CF  =   ∑
𝑇𝑖

2

𝑏𝑝𝑖  −  𝐶𝐹 

with CF = (∑∑∑ Yijk)2/tpb. 

 

Between Pens within Treatment SS  = b ∑ ∑ (𝑌̅𝑖𝑗· − 𝑌̅𝑖··)
2

𝑗𝑖  

      = ∑ ∑
𝑃𝑖𝑗

2

𝑏𝑗𝑖 −  ∑
𝑇𝑖

2

𝑏𝑝𝑖  

      = ∑ ∑ 𝑃𝑖𝑗
2

𝑗𝑖 −  ∑
𝑇𝑖

2

𝑏𝑝𝑖  

      = ∑ ∑
𝑃𝑖𝑗

2

𝑏𝑗𝑖 − 𝐶𝐹 − Between Treatment SS 

 where   Pij = jth pen total in ith treatment =Yij. , 

     Ti = total of ith treatment = Yi··  , 

     and Residual SS = ∑ ∑ ∑ (𝑌𝑖𝑗𝑘 − 𝑌̅𝑖𝑗·)
2 𝑘𝑗𝑖 . 

The residual SS can also be thought of as between birds.   

It can be shown that: 

 Between Pens SS = b ∑ ∑ (𝑌̅𝑖𝑗 − 𝑌̅)2
𝑗𝑖  
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   = ∑ ∑ (𝑌̅𝑖𝑗· − 𝑌̅𝑖··)
2

𝑗𝑖   +  ∑ (𝑌̅𝑖.. −  𝑌̅)2
𝑖  

   = Between Pens within Treatments SS + Between Treatments SS. 

Between Pens Mean Square (MS) was calculated from the Between Treatments MS (2 + b1
2+ bp2

2) minus 

the Between Pens within treatments MS (2 + b1
2). 

Further, SDs for future experiments were estimated as follows:  √((( MSP2P × √ph)/√pf) + √(( MSB2B × √ph)/(√pf 

× bf))), where p = number of pens/treatment, b = number of birds/pen, MS = Mean Square, P2P = Pen-to-Pen, 

B2B = Bird-to-Bird, subscripts h and f indicate from historical (h) and future (f) experiments. Sample size to 

detect a given difference between two means was estimated by Lehr’s Method (Lehr, 1992, van Belle, 2008). 

RESULTS 

The MS for Between Pen variation in the first dataset was found to be: (MS Between Pens within 

Treatments – MS Between Birds)/Pens per Treatment) = 182.578 (Table 2). The Between Pen and Between 

Bird MSs were used to create Table 3. Table 3 demonstrates the relative importance of the number of pens and 

the number of birds per pen in this particular facility.   

Increasing either birds per pen or pens per treatment decreased the SD in a diminishing returns fashion 

(Table 3, Figure 3). With 5 pens per treatment, increasing birds per pen from 2 to 4 decreased the SD from 183 

to 154, but increasing birds/pen from 100 to 200 only decreased the SD from 70 to 60. With 15 birds per 

treatment, increasing pens/treatment from 2 to 3 decreased SD from 140 to 126, but increasing pens/treatment 

from 11 to 12 only decreased the SD from 91 to 89. More than approximately 5 pens/treatment gave relatively 

little difference between SDs, and the total number of birds was the most important factor in reducing SDs. 

There was little difference in SDs from 5 pens of 100 or 10 pens of 50 (70.19 versus 69.74).   

The same phenomena in diminishing returns for increasing birds/pen and pens/treatment was observed 

for the second facility, where measurements from a larger experiment were taken over time (Table 4, Figures 5 
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and 6). Body weights and predicted SDs increased over time, with males exhibiting higher levels of both. The 

slopes of the lines depicting the effects of using the standard method of analyzing pen means versus individuals 

nested within pen means are quite different (Figure 3).  Twenty simulated experiments with an experimental 

power of 0.8 resulted in probabilities between p = 0.000 and p = 0.125 (Figure 6). Twenty simulated 

experiments with an experimental power of 0.8 resulted in probabilities between p = 0.003 and p = 0.717 

(Figure 7). 

DISCUSSION 

The primary goal of experimental power analyses is to balance the number of experimental units, birds 

in this case, with the risk of not finding a real difference if one exists, or declaring a significant difference when 

none exists. The cost of the experiment, both monetary and animal lives, has to be weighed against the value of 

the expected outcome. The process of estimating experimental power is clearly very complex. Without 

considering nesting, it is a 4-dimensional mathematical problem with four variables: 1) The previously observed 

mean and SD;  2)  The proportion of experiments with p < 0.05;  3)  The potential number of replicates; and 4)  

The detectable difference (Figure 1). Partitioning the variance into bird to bird and pen to pen portions adds an 

additional dimension to interpret (Figures 4 and 5). Figures 4 and 5 are only two of n possible figures with n = 

number of birds per pen. It would take n such figures to illustrate all the possible choices of the number of birds 

per pen and pens per treatment and their effects on the probabilities of detecting differences of various sizes.  

The choice of 25 and 50 birds per pen was not entirely arbitrary.  They were chosen to illustrate the relatively 

small effect of doubling the size of an experiment can have on experimental power.  Had lower numbers of 

birds per pen been chosen, say 2 versus 4 birds in each of 3 pens per treatment, the number of samples to detect 

a specified difference would be much greater, 50 versus 35 (Table 3).  

A tabular presentation, like Table 3, may be helpful for comparing the effects of birds per pen and pens 

per treatment versus sample size. Such a presentation could be helpful for budgeting purposes, by including 

                  



 11 

costs for birds, pen space, feed  and labor, for example. The estimate of sample size (sz) in Table 3 is only an 

estimate of one arbitrarily chosen point on the lines presented in Figures 1-3, presenting an 80% chance of 

detecting a real 5% difference in body weight (ß = 0.20), with a 5% chance of declaring a difference significant 

when none exists (𝛼 = 0.05). For practical purposes, it may be prudent to consider some arbitrary difference 

(d) that could be detected some proportion of the time with some alpha and beta errors for each cell. After such 

an initial screening, plots of probability lines (Figures 4 and 5) versus costs in money or birds could then be 

considered.   

For the predicted experimental power illustrated in Figures 3 and 4, the mean squares for the number of 

birds per pen were changed independently of the number of pens, conversely, theoretically resulting in an 

increase in accuracy versus simply the pen mean approach in Figure 1. The question is: by how much? This is 

answered by the slope of the lines presented in Figure 3, which shows the magnitude of the differences in the 

two approaches for this example. This demonstrates that the two approaches lead to different numbers of 

replicates being proposed. In this example, the effects on predicted variation were much greater with fewer than 

5 or 6 pens/treatment compared with more than 8 pens/treatment. 

The same general patterns were found with the second dataset over time (Table 4 versus Table 3). The 

pen-to-pen variation was greater at similar ages for the experiment in Table 4 than Table 3. The estimated SDs 

were very similar for 10 pens of 50 birds versus 5 pens of 100 birds for both datasets (69.9 versus 70.3 in Table 

3, and 238 versus 225 for male birds at day 32 in Table 4).   

The ethical considerations for the use of animals in research dictate that a minimal number of animals 

should be used whilst ensuring the validity of the results (e.g., Australian Government, 2013). The reality of 

research involving sampling populations of animals with inherent variability is that there is no “minimal 

number of animals … to ensure the validity of results.”  There are only different numbers of birds that lead to 

different probabilities of declaring results significant. Appropriate experimental designs can be chosen to 
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increase the odds of making suitable statistical inferences, but the conclusions should only be stated in terms of 

the odds that conclusions are correct, not binary concepts like valid or invalid. Results should never be regarded 

as valid or invalid, only likely or unlikely to be repeatable to some specified degree or probability. Researchers 

are always faced with the dilemma of balancing Type I versus Type II error; using more animals decreases the 

chances of declaring real differences not significant if they exist, and also decreases the chances of declaring 

significant differences if none exist.  

From Figures 4 and 5, we show that predicting power considering the number of birds per pen is a 

critical exercise to meet the ethical requirements for the use of animals in research. However, the practicality of 

this approach can be problematic, as the number of birds that can be housed in a pen is dictated by the facilities 

available. For example, to detect a 10% difference 500 birds are required for two treatments; either 5 replicates 

of 50 birds per pen, or 10 replicates of 25 birds per pen. Housing these birds in a way that practices ‘refinement’ 

must then be considered. Refinement takes into consideration the space available for appropriate pen size and 

stocking densities, social dynamics related to group size, and the ease of managing 25 birds compared to 50. 

Should the researcher require detection of a 5% difference, 18 replicates pens of 25 birds per pen is needed 

(Figure 4), or 14 replicate pens of 50 birds per pen. This results in a total of 450 birds versus 700 birds, 

respectively. Calculating the error based on individual birds, that is, predicting power based on individual bird 

variation in addition to pen variation, ensures the appropriate amount of birds are used, considering the 

researchers adversity to risk. It is difficult to interpret risk assessment in terms of legislative standards required 

for ethical research using terms like “valid” results. As such, this analysis demonstrates considering individual 

bird data is best to predict the sample size required for ethical research in the future by clarifying just what the 

risks involved are. 

The sampling of normally distributed measurements of experimental subjects, such as chickens, results 

in power curves that are sigmoidal in nature, as presented in Figures 2-4. This makes determining the optimum 
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number of animals difficult. Choosing one arbitrary point on one of the lines in Figures 4 or 5 to be the standard 

for experimental power decisions is obviously a great over-simplification of the problem. It might be helpful if 

the mean difference between treatments was known, but in this scenario outcomes will not be known, because 

we are dealing with research. Knowing a minimum difference for economic importance of mean differences 

could be helpful to decision makers in some cases.   

There are ways to decrease variation amongst sampled birds. One method is to choose only one sex to 

study greatly decreases within pen (genetic) variation. The drawback of this approach is that it is then applicable 

to industries that house mixed-sex flocks (i.e. meat chickens) as it is not known if the results are also applicable 

to the other sex. Another way is to truncate distributions and choose only birds close to the mean. However, 

then it is not known the results are applicable to large and small birds in mixed flock scenarios.    

There are two situations in practical experiments with poultry that would especially benefit from 

attempts to estimate, experimental power. The first is when the treatments being compared are feed additives 

and the objective is to show that one additive, or diet, is just as good as the other. In this case, experimental 

power should be linked to the level of difference that is economically important. Conclusions of no statistical 

difference should not be the result of inadequate bird numbers and replication (Greenland, 2011). Consider, for 

example, if Treatment A were declared to be just as good as Treatment B (no significant difference), but the 

actual mean difference was 50 g body weight per bird. If 50 g per bird meant a very significant increase or 

decrease in profits to a company, the declaration of no significant statistical difference would be entirely 

misleading. The second case is in determining responses to an input such as an environmental constraint or 

nutrient level in the feed. It is important to have small confidence limits on any response to make further 

economic modeling meaningful. For instance, in many nutritional requirement experiments the requirement is 

listed without a confidence interval. However, an estimate of the confidence interval (CI) for the requirement is 

absolutely necessary to understand the value of the requirement, and apply it to feed formulation in a 

                  



 14 

meaningful way.  While experimental power may be considered for funding and animal care committees, it is 

not often discussed in published papers where it would be helpful to readers.  When experimental power has 

been considered, in our experience it has always been with commonly accepted, and arbitrary, levels of 

significance.  

Commonly accepted levels of significance for  and  error are 0.05 and 0.80 (Hartnell, 2007, 

FEEDAP, 2011). That is, researchers would expect to wrongly declare significant differences when none exist 

about 5% of the time, but only detect real differences (of a specified size) 80% of the time. These values were 

arbitrarily chosen at a time when calculating actual probabilities was very time consuming. The actual 

calculations of experimental power are now based on the significance levels and the differences that the 

researcher would like to be declared significant in the experiment. With modern computing capacity, it is 

possible to perform many thousands of such calculations each second, allowing researchers to visualize 

experimental power as a three-dimensional surface instead of a static point (Figure 1). It is tempting to conclude 

that experimental conclusions of no significant differences are justified based on power considerations from 

previous research. Any such conclusions are not valid.  The conclusions from each experiment should be based 

solely on the probabilities calculated from the actual variation observed in that experiment (Greenland, 2011). 

A limitation of the prediction presented in Figure 1 is that the SD was based on pen means. Since 

poultry scientists changed the experimental unit from individual birds on a treatment in one pen to the mean of 

several birds in multiple pens there is little data available on the individual variation of birds within 

experimental pens. From the perspective of geneticists, all variation in responses is either due to genetics or the 

environment. The genetic component of our experiments is straight forward, it is the bird (or animal) that we 

choose to use. The choice of genetic strain determines the amount of inherent genetic variability. The remainder 

of the variation, the environmental factors, include the imposed treatments and the microenvironment (the pens) 

in which our birds are kept.   
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From the traditional statistical perspective, experiments have been conducted with the pen average as the 

experimental unit in poultry studies, with the average responses of birds in each pen providing the experimental 

observations (body weight (BW) in the present example). In this scenario, variation not attributed to the 

treatment is considered to be random error. When planning future experiments, the error mean square is 

regarded as the Standard Deviation squared for the purpose of describing and estimating experimental variation. 

The SD of pens of n replicate birds, being normally distributed, is then proportional to n0.5. For example, if a 

historical experiment had 5 birds per pen, and an SD = 7, then the SD of experiments with 10 birds per pen 

would be predicted to be SDx = (7 × 5^0.5)/10^0.5 = 4.95. This assumption is based on the birds not becoming 

crowded, limited by feeder space, altering their own micro-environment by producing heat, presence of 

ammonia build up in the house, or becoming subject to social stressors. 

With this traditional approach, the error that should be attributed to pen-to-pen variation is not totally 

ignored, it is simply included within the random error. This is entirely appropriate for hypothesis testing of an 

experiment that has already been conducted. However, it may not be appropriate for estimating variation in 

future experiments if there is a possibility of having different numbers of observations per pen and/or different 

numbers of pens per treatment. For future planning purposes, the error attributable to pens and the random error 

should be separated. Just as increasing the number of birds per pen decreases the error mean square relative to 

any observed mean differences, increasing the number of pens decreases the error mean square relative to any 

observed mean differences. By determining the contribution of pen-to-pen variation independent of bird-to-bird 

variation, the accuracy of predicting overall SDs for future experiments should be improved. Demetrio et al. 

(2013) wrote that bird-to-bird and pen-to-pen variations had to be guessed. For many response variables, there 

are historical data on bird-to-bird variation that could and should be used when estimating future responses.   

Ethical decisions are often said to be underpinned by the Three Rs framework, which state: 1. Where 

possible the use of animals should be replaced (i.e., in vitro experiments);  2. Methods should be refined to 
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safeguard animal welfare;  and 3. The minimum number of animals should be used to produce a valid result 

(Fenwick et al., 2009). First, regarding point 1. Above, the quote often attributed to Albert Einstein should be 

considered "If we knew what it was we were doing, it would not be called research, would it?". Computer 

simulations can be very helpful in refining (planning) research, as evidenced by the power graphs in Figures 1 

and 4-5, however, they cannot replace it. Computer modeling must be based on what we know, and projections 

made from our current knowledge base. Even when we have an excellent understanding of current 

interrelationships, we may not know if the projections should be linear, log transformed, or sine wave. It is only 

research if it is  trying to understand the unknowns yet to be solved and modeled. Computer-based techniques 

like holo- and meta-analyses can be very helpful in refining experiments. They can indicate where researchers 

should look for cause and effect relationships,  make experiments more meaningful, and reduce the number of 

animals used, based on accurate test power predictions.   

Second, only by using nested designs when the data are nested, can refinements be made for future 

experiments and the appropriate balance be struck.  Refining experiments is the real key to safeguarding or 

improving animal welfare and use of resources. Very thoughtful consideration should be given prior to running 

each experiment regarding how the resulting data will be analyzed (Shim et al., 2013), the potential outcomes, 

and their interpretations. Third, the latter R (reduction) suggests that too many animals used in an experiment is 

unethical, but too few animals will result in incorrect conclusions, which is also unethical (i.e. a type I error of 

no effect found when an effect is present). Therefore, R’s for Replace and Reduction should be replaced by B 

for Balance. Research efforts have to use a balanced approach, accounting for numbers of birds and pens, 

acceptable Type I and Type II errors, economic costs, potential outcomes, and chances of improving bird 

welfare whilst improving food production efficiency.  

The implications of various experimental designs are often hard to predict because of the complexity of 

biological systems.  It may be tempting to over-simplify experimental power considerations for experiments 
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where careful consideration of nested designs and proper calculation of the sources of variation involved can be 

most helpful.  For instance, cost and benefit analysis decision making is particularly difficult for animal 

experiments. Many problems are multi-dimensional, like maximizing the bone health of growing broiler 

chickens. The interacting factors and interrelationships that must be understood include dietary calcium and 

calcium solubility, dietary phosphous and its chemical form, dietary vitamin D, ultraviolet light exposure, bird 

activity, genetics (which are constantly changing), and exogenous dietary enzymes. There is great potential to 

exaggerate the importance of any single experiment on the bone health and welfare of billions of birds grown 

world-wide each month. Computer simulations and projections of experimental power can only help answer 

these questions. 

Another aspect of research where computers can be particularly helpful is in aiding researchers to 

visualize and understand the different aspects of experimental power. Experiments can be simulated to illustrate 

the magnitude of different outcomes obtained from identical experiments (Figures 6 and 7). The proportion of 

experiments finding p < 0.05 with a real difference of 18.8% is 16 of 20, indicating a power of 0.80 (Figure 6). 

If the real difference is 13.0%, only half the experiments result in p < 0.05, indicating an experimental power of 

0.50 (Figure 7). These figures show examples of the ranges of typical simulations, presenting a range of P < 

0.001 to 0.144 with a real difference of 18.8%, and p < 0.003 to 0.717 with a real difference of 13.0%.  When 

10,000 simulations were conducted, the range for both real differences was p < 0.000 to 0.998. When 

conducting such simulations with Microsoft Excel running on Windows the operator need only press the <F9> 

to almost immediately create another set of 10,000 randomly generated samples based on the mean and standard 

deviations inputted.  

Many variables need to be considered when planning for future experiments. Decisions have to be made 

based on the probability of finding differences, meaning there is no single correct answer to how many birds per 

pen and pens per treatment should be used. Decisions must be based on the risk of finding differences that the 
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experimenter finds acceptable. An 80% chance of finding a real difference of 5% seems to be acceptable for 

many trials, but it is totally arbitrary, albeit accepted practice. Therefore, the level of difference to be detected 

must be determined by the purpose of the experiment, with its impact and application in mind. Experimental 

power considerations should also include costs. Since researchers do not know the expected outcome of their 

experiments, it would be prudent to look at the slopes of the lines for different numbers of replicates depicting 

possible real differences versus the chances of declaring a difference significant. In different intervals of these 

curves, it may or may not be deemed valuable to increase sample sizes to decrease the chances of a wrong 

conclusion.   

Different and perfectly valid outcomes can result from seemingly identical experiments. This is due to 

random sampling from the same population (Pesti et al., 2018). When researchers accept the null hypothesis 

that there are no differences (p<0.05) when they expect to find some, they are faced with choices. They may re-

examine their hypothesis and determine that it was incorrect in the first place. Alternatively, they may still think 

that their hypothesis was correct and the p > 0.05 was the result of random error. They can therefore repeat the 

experiment, often with increased replication. The choice between these two approaches will be influenced by 

the actual probability of real differences, and not by reliance on an arbitrary standard like 0.05 (1 chance in 20). 

If the probability that there were real differences was 0.99, the researcher’s conclusion may be the opposite had 

the probability been 0.051. The response would be different if the probability of real differences was 0.10 or 

0.20, or even 0.50 (half a chance of a real difference). Because different outcomes can come from seemingly 

identical experiments, many researchers will not accept the results of one “valid” experiment, be they positive 

or negative, and insist on replicating experiments twice, or several times, before making conclusions that they 

deem “valid” for their application. Adding covariates, such as sex or feed intake, is another possibility when 

attempting to design experiments to maximize experimental power (Bloom et al., 2007). 
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The need to repeat experiments comes from several sources. Research is always a matter of chance 

when randomly choosing experimental subject samples from a large population. There are also other possible 

sources of variation that are not perfectly controlled, especially dietary composition. For instance, chicks may 

come from different breeder flocks of different ages and be fed different feeds.  Similarly, feed ingredients may 

be sourced from widely different localities and their compositions cannot be perfectly controlled for different 

experiments. Simply repeating (doubling the amount of birds) an experiment greatly decreases the chances of 

Type I error, declaring significance when none exists. If P < 0.05 is the standard for one experiment, then 

repeating the experiment decreases the odds of declaring significance by mistake twice to 0.05 × 0.05 = 0.0025. 

Similarly, simply repeating an experiment could decrease the chance of not finding a difference twice if one 

really exists (Type II error) from (1-0. 𝛽) to (1- 𝛽)2 = 0.04 for 𝛽 = 0.2 or 0.01 for 𝛽 = 0.1.   

 From the example datasets examined here, there are broad conclusions that can be drawn. Firstly, with a 

single experiment it is practically impossible to consistently declare small differences significant.  Of course 

this depends on the means and SDs.  For the body weight example, up to approximately 3% differences in 

broiler chicken growth were impossible to consistently declare significant, because of inherent bird-to-bird 

individual variation. Secondly, as illustrated in Figures 1, 4 and 5 (with example means and SD’s) there are 

great differences in the slopes of the response lines and thus great differences in how changing the number of 

birds in a nest or nests in a treatment will affect SD’s and experimental outcomes.  

It is important to note that these examples have been for comparing multiple means with a one-way 

design, not mean separation.  When further tests to separate multiple means are being applied, or there are 

repeated measures, the same general assumptions apply. However, consideration must be given to the nature of 

the particular design being used.  Particularly, when multiple comparisons need to be made, whether the 

researchers are willing to accept liberal or conservative tests must be considered.  
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Table 1. Analysis of variance table for partitioning variances between pens and birds. 

 

Source df SS MS 

Between Treatments t-1 ∑
𝑇𝑖

2

𝑝𝑏𝑖
− 𝐶𝐹  

Between Pens Within Treatments t(p-1) ∑ ∑
𝑃𝑖𝑗

2

𝑝𝑏𝑗𝑖
− ∑

𝑇𝑖
2

𝑝𝑏𝑖
  =- 

Between Pens tp-1 ∑ ∑
𝑇𝑖𝑗

2

𝑝𝑏𝑗𝑖
− 𝐶𝐹  

Residual tp(b-1) Difference   

Total tpb ∑∑∑ Yijk
2 - CF   

 

  

                  



 24 

 

Table 2. Analysis of variance table showing calculation of the variation from individuals nested within pens for 

an experiment with a one-way Analysis of variance table showing calculation of the variation from individuals 

nested within pens for an experiment with a one-way design, three treatments, 7 pens per treatment and 5 birds 

per pen. The response variable is 35-day body weight.  

 

Source df SS MS E(MS) 

Between Treatments 2 796057.62 398028.81 2 + b1
2+ bp2

2 

Between Pens within Treatments 18 864397.14 48022.06 2 + b1
2 

Between Pens 20 1660454.76 83022.74  

Between Birds 84 3957170.00 47109.17 2 

Total SS  104 5617624.76 54015.62  
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Table 3. The influence of observed bird to bird mean squares (MSB2B) and pen to pen (MSP2P) variations on the predicted variation (SDTOTAL) and 

total numbers of birds per treatment for future experiments. The average body weight was 2353, SD = 220 grams. Sample size (Samples) was 

estimated by Lehr’s method (Lehr, 1992) to have an 80% chance of detecting a real 5% difference in body weight (ß = 0.20) and with a 5% chance of 

declaring a difference significant when none exists (𝛼 = 0.05). 

   Pens per Treatment 

   1 2 3 4 5 6 7 8 9 10 11 12 

Birds 

/Pen 
MSB2B MSP2P … 69.01 48.80 39.84 34.50 30.86 28.17 26.08 24.40 23.00 21.82 20.81 19.92 

1 105339 SDTOTAL 8.31 6.99 6.31 5.87 5.56 5.31 5.11 4.94 4.80 4.67 4.56 4.46 

   Birds 324.67 273.01 246.69 229.57 217.12 207.44 199.60 193.05 187.45 182.57 178.27 174.44 

   Samples 1 2 3 4 5 6 7 8 9 10 11 12 

2 74486 SDTOTAL 122 86 70 61 54 50 46 43 41 39 37 35 

   Birds 273.05 229.60 207.47 193.07 182.60 174.46 167.87 162.36 157.64 153.55 149.93 146.70 

   Samples 2 4 6 8 10 12 14 16 18 20 22 24 

4 52670 SDTOTAL 86 61 50 43 39 35 33 30 29 27 26 25 

   Birds 229.65 193.11 174.50 162.39 153.58 146.73 141.19 136.55 132.59 129.14 126.10 123.39 

   Samples 4 8 12 16 20 24 28 32 36 40 44 48 

8 37243 SDTOTAL 61 43 35 30 27 25 23 22 20 19 18 18 

   Birds 193.16 162.43 146.77 136.59 129.18 123.42 118.75 114.86 111.52 108.62 106.07 103.78 

   Samples 8 16 24 32 40 48 56 64 72 80 88 96 

10 33311 SDTOTAL 43 30 25 22 19 18 16 15 14 14 13 12 

   Birds 182.70 153.63 138.82 129.19 122.18 116.74 112.32 108.64 105.48 102.74 100.32 98.16 

   Samples 10 20 30 40 50 60 70 80 90 100 110 120 
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15 27198 SDTOTAL 39 27 22 19 17 16 15 14 13 12 12 11 

   Birds 165.13 138.86 125.47 116.76 110.43 105.51 101.52 98.19 95.34 92.86 90.67 88.72 

   Samples 15 30 45 60 75 90 105 120 135 150 165 180 

20 23555 SDTOTAL 32 22 18 16 14 13 12 11 11 10 10 9 

   Birds 153.70 129.25 116.79 108.68 102.79 98.21 94.49 91.39 88.74 86.43 84.40 82.58 

   Samples 20 40 60 80 100 120 140 160 180 200 220 240 

25 21068 SDTOTAL 27 19 16 14 12 11 10 10 9 9 8 8 

   Birds 145.39 122.25 110.47 102.80 97.22 92.89 89.38 86.45 83.94 81.76 79.83 78.11 

   Samples 25 50 75 100 125 150 175 200 225 250 275 300 

30 19232 SDTOTAL 24 17 14 12 11 10 9 9 8 8 7 7 

   Birds 138.93 116.82 105.56 98.24 92.91 88.77 85.41 82.61 80.21 78.13 76.29 74.64 

   Samples 30 60 90 120 150 180 210 240 270 300 330 360 

50 14897 SDTOTAL 22 16 13 11 10 9 8 8 7 7 7 6 

   Birds 122.34 102.87 92.96 86.51 81.81 78.17 75.21 72.74 70.63 68.79 67.18 65.73 

   Samples 50 100 150 200 250 300 350 400 450 500 550 600 

100 10534 SDTOTAL 17 12 10 9 8 7 7 6 6 5 5 5 

   Birds 102.97 86.59 78.24 72.81 68.86 65.79 63.31 61.23 59.45 57.90 56.54 55.32 

   Samples 100 200 300 400 500 600 700 800 900 1000 1100 1200 

200 7449 SDTOTAL 12 9 7 6 5 5 5 4 4 4 4 4 

  Birds 86.70 72.91 65.88 61.31 57.98 55.40 53.30 51.55 50.06 48.76 47.61 46.58 

  Samples 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 
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Table 4. Descriptive statistics and prediction of Standard Deviations (SD) for use in estimating experimental power for future experiments. Data from 

an experiment at the University of Georgia’s Poultry Research Center (Da Costa et al., 201?) 

Age 

(days) 

Pens 

(ph) 

Birds/Pen 

(bh) 

Avg. 

BW 

(grams

) 

Bird

s 

Mean Square Predicted SD (Pens × Birds/Pen) 

Pens + 

Birds 

Birds 

(MSB2B) 

Pens 

(MSP2P) 

2 × 

10 

4 × 

10 

4 × 

25 

4 × 

50 

10 × 

50 

5 × 

100 

Females 

0 8 28.0 41 448 6 10 N/A N/A N/A N/A N/A N/A 
N/

A 

12 8 27.8 301 444 3952 1060 2892 83 74 52 49 43 40 

17 8 27.9 522 446 9443 2255 7188 129 113 80 76 65 61 

25 8 27.9 1156 445 24123 8821 15302 205 185 134 123 110 101 

32 8 27.8 1793 445 62614 19968 42646 331 295 213 198 174 161 

41 8 23.9 2613 382 69377 43061 26316 337 316 239 211 198 175 

48 8 19.6 3260 314 141024 59323 81701 479 432 314 289 258 236 

Males 

0 8 28.0 42 448 16 11 N/A N/A N/A N/A N/A N/A 
N/

A 

12 8 28.0 306 448 5698 1042 4656 100 87 61 58 49 47 

17 8 27.8 541 445 8447 2734 5713 122 109 78 73 64 59 

25 8 27.7 1255 443 33058 10959 22098 240 215 155 144 127 117 

32 8 27.3 1985 437 129672 26966 102705 478 418 294 279 238 225 

41 8 22.9 2613 366 138271 69086 69185 478 438 324 293 267 240 

48 8 18.4 3830 294 309657 94863 214795 716 633 450 423 367 343 
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N/A: Not Available, birds were weighed prior to being placed in pens. 

SDs for future experiments were estimated as follows:  √((( MSP2P × √ph)/√pf) + √(( MSB2B × √ph)/(√pf × bf))), where p= pens/treatment, b= birds/pen, 

MS = Mean Square, P2P = Pen to Pen, B2B = Bird to Bird, subscripts h and f indicate from historical and future experiments. 
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Figure 1. The proportions of experiments expected to have significant differences with different numbers of 

replicates and different real differences between two means. The historical mean =2353 and bird to bird 

standard deviation within a pen = 217. 
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Figure 2. A diagram showing nesting of birds within pens and cells nested within tissues, nested within pens. 
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Figure 3. Comparison of the effects of changing the number of replicates when the variances are based only on 

pen means (pen to pen and bird to bird variation not partitioned) versus partitioning variation so that only pen to 

pen variation is considered. 
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Figure 4. The proportions of experiments expected to have significant differences with different numbers of 

replicates and different real differences between two means. The historical mean =2353 and bird to bird 

standard deviation within a pen = 217. 
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Figure 5. The proportions of experiments expected to have significant differences with different numbers of 

replicates and different real differences between two means. The historical mean =2353 and bird to bird 

standard deviation within a pen = 217. 
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Figure 6.  Twenty simulated experiments comparing Treatments A and B by Student’s t-test at p < 0.05. The 

number of simulated “Experiments” with H0: Treatment A ≠ Treatment B were summed to estimate 

experimental power for experiments with mean body weights of 2353 and 1911 g and standard deviations of 

217 g (18.8 % difference). Responses were simulated with Microsoft Excel’s random number generator (Pesti et 

al., 2018)   
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Figure 7.  Twenty simulated experiments comparing Treatments A and B by Student’s t-test at p < 0.05. The 

number of simulated “Experiments” with H0: Treatment A ≠ Treatment B were summed to estimate 

experimental power for experiments with mean body weights of 2353 and 2047 g and standard deviations of 

217 g (13.0 % difference). Responses were simulated with Microsoft Excel’s random number generator (Pesti et 

al., 2018).   
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