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Abstract

Soil fungi are vital for ecosystem functioning, but an understanding of their1

ecology is still growing. A better appreciation of their ecological preferences2

and the controls on the composition and distribution of fungal communities3

at macroecological scales is needed. Here, we used one of the most extensive4

continental-scale datasets on soil fungi and modelled the relative abundance5

of dominant fungal phyla and community diversity in Australian soils from6

forests, grasslands, shrublands, woodlands, and croplands. Across these di-7

verse ecosystems, the Ascomycota and Basidiomycota dominate Australian8

soils, and fungal diversity declines as climates become more arid. Climate9

and the water balance exert dominant control on soil fungal abundance and10

diversity, mediated by interactions between ecosystem type, the ensuing vege-11

tation and edaphic factors, such as organic matter, clay and iron-oxide miner-12

alogy, pH and nutrients. Soil organic matter and mineralogy, represented by13
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absorptions of visible–near-infrared (vis–NIR) radiation, helped to improve14

characterisation of the abiotic controls on soil fungi. This better represen-15

tation of edaphic factors improved the predictability of the models by up to16

40 %. Our findings contribute to the understanding of fungal ecology at a17

macroecological scale. They help to appreciate better the links between fungi,18

soil and the environment, which underpin ecosystem stability and resilience19

and have implications for developing strategies for preservation, adaptation20

and mitigation of global change.21

Keywords: soil fungi, fungal diversity, macroecology, water balance,

modelling, biogeography

1. Introduction22

Soil fungi are decomposers, mutualists, plant symbionts and pathogens.23

They drive the cycling of all essential nutrients, which affect soil functions and24

their ability to provide ecosystem services (Vĕtrovský et al., 2019; Delgado-25

Baquerizo et al., 2016; Li et al., 2019). For example, fungi are some of the26

decomposers of soil organic matter, including lignin and ligno-cellulose, which27

are often resistant to bacterial decomposition. They do this by producing28

a wide variety of extra-hyphal enzymes that work to release carbon and29

nutrients into the soil solution. Fungi also contribute to carbon sequestration30

and thus act as crucial regulators of the soil carbon balance (Treseder and31

Lennon, 2015; Nicolas et al., 2019).32

Mycorrhizal fungi form mutualistic associations with more than 90% of33

land plants. These associations enhance nutrient uptake, protect plants34

against pathogens and toxic elements, improve resistance to biotic and abiotic35
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stresses and mediate interactions with the soil microbiome, including nitrogen36

fixation and hormone production (Baum et al., 2015). Importantly, fungi,37

unlike any other soil microbes, can form extensive networks that physically38

connect plant species to facilitate community-level nutrient exchange (Frac39

et al., 2018). Fungal exudates also promote the formation of soil aggregates,40

thereby improving soil structure and supporting plant growth, especially un-41

der environmental stress (Lehmann et al., 2017).42

Given the involvement of fungi in soil functions, their critical role in soil43

ecosystems, and concern over the growing loss of biodiversity make it increas-44

ingly necessary to improve understanding of soil fungal communities across45

different habitats and at different scales. Research that attempts to eluci-46

date the soil and environmental controls on fungal community abundance47

and diversity have shown that climate and soil physicochemical properties48

play essential roles (Fierer et al., 2009; Maestre et al., 2015; Vĕtrovský et al.,49

2019; Delgado-Baquerizo et al., 2018; Tedersoo et al., 2014; Sernachavez et al.,50

2013; Siciliano et al., 2014; Ramirez et al., 2020). However, comprehensive51

datasets on soil fungi are few and often limited to at most a few hundred52

soil samples for global-scale studies (Fierer et al., 2009; Tedersoo et al., 2014;53

Maestre et al., 2015).54

Soil microbiological surveys are practically and methodologically chal-55

lenging, particularly over large scales. Therefore, datasets are few, sparse56

and often underrepresent regional, biome and larger (country-, continental-57

and global-) scales (Tedersoo et al., 2014; Vĕtrovský et al., 2019). Conse-58

quently, studies often report only two-way relationships rather than multi-59

property interactions (Andrew et al., 2018), or responses along environmental60
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gradients (Maestre et al., 2015; Delgado-Baquerizo et al., 2018), which tend61

to over-emphasis the relationship of the fungal communities with the con-62

trasting environmental property (e.g., precipitation). But, the response of63

soil fungi to climatic, edaphic and other environmental controls is complex.64

Therefore, we need to simultaneously consider the interactive effects of differ-65

ent climates, ecosystem types, and soil conditions to evaluate their combined66

impact on the composition, abundance, and diversity of fungal communities.67

Changes in soil fungi and community diversity from ongoing environ-68

mental and anthropogenic change will have significant impacts on ecosystem69

resilience and function (Sernachavez et al., 2013; Tedersoo et al., 2014). Yet,70

responses of the dominant soil fungi and diversity to climate, edaphic, and71

other environmental factors at macroecological scales are not well-understood72

(Maestre et al., 2015; Delgado-Baquerizo et al., 2018; Sheik et al., 2011). The73

importance of ecosystem type in controlling microbial communities was em-74

phasised by Szoboszlay et al. (2017) and Terrat et al. (2017), but we know75

little about the ecological preferences of soil-inhabiting fungi over large scales.76

The predicted increased drying and desertification of most semi-arid and arid77

regions in Australia and globally (Huang et al., 2016) will have profound and78

lasting consequences on soil microbial functioning and ecosystem sustain-79

ability (Pointing and Belnap, 2012). However, the effects of aridification on80

fungal species and the diversity of their communities are poorly understood81

(Maestre et al., 2015; Delgado-Baquerizo et al., 2018; Sheik et al., 2011).82

Gaining an understanding of fungal ecology is essential because fungi play a83

vital role in our environment.84

Considering the importance of climatic and edaphic factors on soil fungi85
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at a macroecological scale, we pose two hypotheses. First, climate and the86

water balance significantly influence fungal community diversity and struc-87

ture in Australian ecosystems. Improved knowledge of how climate affects88

soil fungal communities and their interaction with other edaphic and en-89

vironmental controls is essential for managing and mitigating the effects of90

ongoing global climate change and for maintaining the stability and function-91

ing of ecosystems. Second, soil visible–near infrared (vis–NIR) spectroscopy,92

which provides integrated measures of the soil’s mineral-organic composi-93

tion (Viscarra Rossel et al., 2016), can be used to explain the diversity and94

composition of soil fungal communities. The frequencies recorded in the vis–95

NIR spectrum encode information on the soil’s minerals, organic compounds96

and water. Broad absorptions at wavelengths smaller than 1000 nm can97

result from chromophores and iron oxides; narrow, well-defined absorptions98

near 1400 and 1900 nm are due to hydroxyl bonds and water; absorptions99

near 2200 nm arise from clay minerals; organic matter absorbs at various100

wavelengths throughout the vis–NIR spectrum. Spectroscopy also provides101

information on soil particle size and thus information on the soil matrix (Vis-102

carra Rossel et al., 2016). Hence vis–NIR spectra can be used to estimate103

functional soil physicochemical (Viscarra Rossel et al., 2006; Shi et al., 2015)104

and biological properties (Yang et al., 2019).105

Here, we apply machine learning and structural equation modelling to106

a DNA-based continental-scale characterisation of soil fungi to test our hy-107

potheses. Thus, we aim to: (i) determine the interactive effects of climatic,108

edaphic and other environmental factors on the distribution, relative abun-109

dance and diversity of soil fungi in forests, grasslands, shrublands, wood-110
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lands, and croplands, which extend across arid, semi-arid, semi-humid and111

humid climates across Australia, and (ii) supplement the representation of112

edaphic factors in the modelling with soil visible–near-infrared (vis–NIR)113

spectra since the frequencies recorded in the vis–NIR range (400–2500 nm)114

encode information on the soil’s iron oxides, clay minerals, organic matter,115

water and particle size (Viscarra Rossel et al., 2016).116

Materials and Methods117

Soil samples, laboratory analyses and datasets118

We used 577 soil samples from the Biomes of Australian Soil Environ-119

ments (BASE) project (Bissett et al., 2016). The soil samples were col-120

lected from a diverse array of plant communities as described by (Bissett121

et al., 2016). They originated from two soil layers (0–0.1 m and 0.2–0.3 m)122

and covered four representative Australian ecosystems comprising forests,123

grasslands, shrublands, woodlands, and croplands (Fig. 1). Each sample124

was divided into sub-samples for DNA sequencing, and physicochemical and125

spectroscopic analyses (see below). The subsamples for physicochemical and126

spectroscopic analyses were air-dried and crushed to a particle size of ≤2 mm.127

Fungal abundance and diversity128

The soil DNA extraction and sequencing are described in detail in (Bissett129

et al., 2016). Briefly, all soil DNA was extracted in triplicate according to the130

methods used by the Earth Microbiome Project1. Sequencing was performed131

1http://www.Earthmicrobiome.Org/emp-standard-protocols/dna-extraction-

protocol/
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using an Illumina MiSEQ, as described in detail by the BASE protocols2.132

In summary, amplicons targeting the fungal ITS region were prepared and133

sequenced for each sample. The ITS amplicons were sequenced using 300 bp134

paired end sequencing. ITS1 regions were extracted using ITSx (Bengtsson-135

Palme et al., 2013). Sequences comprising full and partial ITS1 regions were136

passed to the Operational Taxonomic Units (OTU) picking and assigning137

workflow (Bissett et al., 2016).138

The selection and assignment of OTU followed guidelines described in139

the BASE protocols3 and in (Bissett et al., 2016), which are based on the140

most current version of UNITE database (version 8.2, updated 15-01-2020)141

for molecular identification of fungi (Nilsson et al., 2018). We used the final142

sample-by-OTU data matrix and annotated taxonomy file for the analyses143

of fungal diversity and composition.144

In total, there were more than 60 million quality sequences across the145

samples, with 11,090–2,177,737 sequences per sample (mean 107,310). Se-146

quences clustered into 202,200 OTUs at 97% similarity, with an average of147

666 OTUs per sample. We removed the bias that results from unbalanced148

sequencing by re-sampling each sample at a depth of 11 000 sequences, which149

represents the median number of sequences in the samples. At this depth,150

rarefaction curves for all 577 samples were starting to level (Supplementary151

Fig. S1). Community diversity was then calculated with the abundance-152

based coverage estimator (ACE) index (Lozupone and Knight, 2008) from153

the resampled sample-by-OTU matrix. The relative abundance of fungal154

2https://ccgapps.Com.Au/bpa-metadata/base/information
3https://ccgapps.com.au/bpa-metadata/base/information
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taxa at the phylum, class and genus level was then determined using the155

ratio of sequences classified at individual taxa to the rarefied number of se-156

quences for each sample. We performed the resampling and computation of157

the ACE index with functions of the RAM library in the R software (R Core158

Team, 2020)159

Soil physicochemical properties160

The soil properties analysed in the BASE project (Bissett et al., 2016) in-161

clude total organic carbon, ammonium, nitrate, phosphorus, potassium, sul-162

phur, pH, electrical conductivity, exchangeable cations (aluminium, sodium,163

magnesium, calcium), available trace elements (zinc, manganese, iron, cop-164

per, boron) and texture (sand, silt and clay) (Supplementary Table S1).165

Soil visible–near-infrared spectra166

We measured the diffuse reflectance spectra of all air-dried ≤ 2 mm167

soil samples with the Labspec R© vis–NIR spectrometer (Malvern Panalyti-168

cal, Boulder, Colorado, USA) following the protocols described in (Viscarra169

Rossel et al., 2016). The spectrometer has a spectral range from 350 to170

2500 nm. Because of a low signal-to-noise at the start and end of each171

spectrum, for our analysis, we retained spectra in the range between 380172

and 2450 nm. The measurements were made with its high intensity con-173

tact probe (PaNalytic, Boulder, Colorado, USA), and a Spectralon R© white174

reference panel was used for calibration once every 10 measurements. We175

converted the vis–NIR reflectance spectra (R) to apparent absorbance (A)176

using A = log10(1/R). The spectra were then pre-processed with a Savitzky-177

Golay filter and first derivative (Savitzky and Golay, 1964) to remove baseline178
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effects and to enhance the signal. Absorptions at wavelengths smaller than179

1000 nm can result from chromophores and iron oxides; narrow, well-defined180

absorptions near 1400 and 1900 nm are due to hydroxyl bonds and water;181

absorptions near 2200 nm arise from clay minerals; organic matter absorbs182

at various wavelengths throughout the vis–NIR spectrum. We selected only183

the most relevant wavelengths for further analyses, using the Boruta variable184

selection algorithm (Kursa et al., 2010).185

Climatic and other environmental datasets186

We assembled a set of readily available environmental variables that rep-187

resent climate, terrain, vegetation and parent material. To represent climate,188

we used data on mean annual temperature (MAT), mean annual precipita-189

tion (MAP), solar radiation, and evapotranspiration (Xu and Hutchinson,190

2011) and the Prescott index (PI) (Prescott, 1950). We used the PI, which191

is calculated as the ratio of precipitation to evapotranspiration, as a measure192

of water balance, and an inverse proxy for aridity, i.e., decreasing values of193

PI represent increasingly arid environments.194

A digital elevation model (DEM) from the 3-arc second shuttle radar195

topographic mission (SRTM) and derived terrain attributes (Gallant et al.,196

2011) were used to capture functional landscape characteristics. To repre-197

sent vegetation, we used data on net primary productivity (NPP) (Haverd198

et al., 2013), and on the fraction of photosynthetically active radiation inter-199

cepted by the sunlit canopy of the evergreen (Fpar-e) and woody (Fpar-r)200

vegetation (Donohue et al., 2009). To represent parent material, we used201

gamma radiometrics, which comprises data on potassium, uranium, and tho-202

rium (Minty et al., 2009). Supplementary Table S1 lists these data and their203
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main characteristics.204

Controls on the relative abundance and diversity of fungi in Australia205

To determine the controls on the relative abundance and diversity of soil206

fungi, we modelled the data using a conceptual state-factor model similar207

to that described by (Jenny, 1994). In our model, the soil state (i.e. fungal208

abundance and diversity) is a function of climatic, edaphic, biotic, and other209

environmental controls. To proxy the factors in the model, we used the set210

of climatic, soil, vis–NIR, vegetation, terrain and environmental variables,211

described above (and listed in Supplementary Table S1). The function that212

we used to relate soil fungal abundance and diversity to those variables is213

the machine-learning method cubist (Quinlan, 1992).214

Machine learning with cubist215

cubist is a piece-wise linear regression tree (Quinlan, 1992) that uses216

recursive if-then partitioning of the predictor variable space and partitions217

the data into subsets that are more similar with respect to the predictors in218

the data. When the conditions in each rule are satisfied, piecewise linear least219

squares regressions are used to predict the response within each partition.220

The advantage of having conditions in the rules is that they enable the models221

to capture the non-linearity in different parts of the predictor variable space,222

leading to smaller, more interpretable trees with robust predictability. The223

method has been used for different applications (Viscarra Rossel et al., 2019;224

Liang et al., 2019; Viscarra Rossel and Bui, 2016).225

After centering and scaling the variables, we used a grid search approach226

(Hastie et al., 2005) for optimising the cubist hyper-parameters, which in-227
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clude the number of rules in the model, an extrapolation factor, the en-228

semble of rule-based models, called ‘committee models’ and the number of229

nearest neighbouring observations to use (Quinlan, 1992). The optimisation230

results in a tuple of hyperparameters that yields an optimal model with the231

smallest root-mean-squared-error (RMSE). To assess the models of fungal232

relative abundance and diversity we report the coefficient of determination233

(R2), which expresses the proportion of the variance that is explained by234

the independent variables in the model. For the interested reader, we detail235

our implementation of cubist and the hyperparameter optimisation in the236

Supplementary Information linked to this article.237

To determine the controls, we report the relative importance of the vari-238

ables, which we measured by calculating the frequency that each individual239

variable is used in the conditions and linear models of cubist. For this,240

we used the varImp function of the caret library (Kuhn et al., 2008) in the241

software R.242

To determine the contribution of the selected vis–NIR data in the mod-243

elling, we set up additional the state-factor models, as above, but excluded244

the vis–NIR data from the predictor set.245

Characterising the interactions between variables that control the relative246

abundance and diversity of fungi in Australia247

To test our hypotheses and to evaluate the direct and indirect effects of248

the controls on fungal abundance and diversity we established an a priori249

model (Supplementary Fig. S2 ) based on the results from cubist and our250

understanding of Australian ecology. We used structural-equation modelling251

(see below) to study the interactions and developed a model (Supplementary252
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Fig. S2) with five latent variables that represent water balance (measured253

with the PI), ecosystem type (Fig. 1a), above-ground biomass (measured254

with NPP), the mineral and organic composition of the soil (measured with255

the vis–NIR spectra) and soil condition and fertility (measured with soil pH,256

organic carbon, nitrogen, phosphorus, exchangeable ions).257

Structural-equation modelling (SEM)258

SEM is an extension of factor analysis and is a methodology designed259

primarily to test substantive theory from empirical data. It allows a parti-260

tioning of the associations among multiple variables included in the model261

as well as the separation of their direct and indirect effects, which can sug-262

gest causal relationships (Grace, 2006; Murdoch et al., 2019). Essentially,263

SEM is a system of linear equations among a set of predictor variables (or264

constructs) and the responses. It is composed of two parts: a structural265

part, linking the constructs to each other, and a measurement part, linking266

those constructs to the observed responses. We used maximum-likelihood267

to fit the SEM model (Grace, 2006) and the Chi-square test and RMSE to268

assess the goodness of fit (Schermelleh-Engel et al., 2003). Further details269

on our implementation are provided in the Supplementary Information. We270

displayed the SEMs in visual form using path diagrams and calculated the271

standardised total effects of each variable on fungal abundance and diversity272

by summing all direct and indirect pathways. The SEM was performed using273

the sem function from lavaan package in R.274
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Results275

We analysed 577 soil samples collected from a diverse array of plant276

communities (Bissett et al., 2016), and covered four representative Aus-277

tralian ecosystems: forests, grasslands, shrublands, woodlands, and crop-278

lands (Fig. 1a).279

Figure 1 near here280

Fungal community composition and variation281

A total of sixteen phylotypes were identified, which represented 88% of282

the sequences. Five phyla (> 2% of the total number of sequences) were283

present in most soil samples. The relative abundance of these five phyla var-284

ied across ecosystem types (Fig. 1b). The Ascomycotawere more abundant in285

croplands, grasslands, shrublands and woodlands, respectively, than in forest286

soils, while the Basidiomycota were more abundant in forests, woodlands and287

shrublands than in grasslands and croplands, respectively (Fig. 1b). The rel-288

ative abundance of the Mortierellomycota, Glomeromycota and Mucoromy-289

cota were smaller in Australian soils. However, the Mortierellomycota were290

relatively more abundant in soils under cropping compared to grasses and291

forests, and they were least abundant in soils under woodlands and shrub-292

lands, respectively. The Glomeromycota were relatively more abundant in293

cropland and grassland soils and the Mucoromycota were relatively more294

abundant in forests, shrublands, and woodlands (Fig. 1b).295

Overall, the two dominant phyla were the Ascomycota(average 43% rel-296

ative abundance) and the Basidiomycota (average 37% relative abundance).297

The Basidiomycota tended to be more abundant in humid and dry sub-humid298
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environments, while the Ascomycotawere more abundant in drier, semi-arid299

and arid environments (Fig. 2).300

Figure 2 near here301

Environmental controls on the relative abundance and diversity of fungi in302

Australia303

The cubist regression trees models derived with the climatic, soil, spec-304

tral, vegetation, terrain and other environmental variables explained between305

40 and 65% of the variation in fungal abundance and diversity (Table 1). In-306

clusion of the vis–NIR spectra in the modelling, whose frequencies represent307

organic matter composition, iron and clay mineralogy, resulted in 5% to 40%308

improvement in the variance explained (Table 1).309

Table 1 near here310

The climatic, edaphic and environmental controls on the relative abun-311

dance of fungal phyla and diversity across Australia differed, but climate,312

soil properties, the organic matter of the soil and NPP were the most domi-313

nant explanatory variables. Terrain attributes and parent material were less314

important in the models (Fig. 3). The vis–NIR spectra, which represent the315

Fe-oxide and clay mineralogy as well as the organic matter in the soil, were316

important explanatory variables of fungal relative abundance and diversity317

(Fig. 3).318
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Figure 3 near here319

The dominant controls of community diversity were total organic car-320

bon (TOC), the Prescott Index (PI), which represent an ecosystem’s wa-321

ter balance, nitrate-N and the mineralogy and organic matter of the soil322

(represented by the vis–NIR spectra) (Fig. 3). The controls on the relative323

abundances of Ascomycota and Basidiomycota are similar, with the water324

balance, soil pH and the mineral-organic composition of the soil being the325

most dominant (Fig. 3). Net primary productivity (NPP) and total P (TP)326

appear to also exert some control over the relative abundance of Ascomycota,327

while exchangeable Ca (Exc.Ca), exchangeable Al (Exc.Al) and silt content328

influence the Basidiomycota (Fig. 3). Climatic factors had smaller effects329

on the Mortierellomycota, Mucoromycota and Glomeromycota. However,330

the soil’s mineralogy and organic matter (represented by the vis–NIR spec-331

tra), and vegetation exert control on them. Other controls on the relative332

abundance of Glomeromycota are soil pH, total K (TK) and Exc.Ca, and on333

Mortierellomycota and Mucoromycota is TP (Fig. 3).334

Given that the water balance across Australia’s diverse ecosystems has335

a dominant effect on the two most relatively abundant phyla, the Ascomy-336

cota and Basidiomycota, and community diversity, its individual effects are337

shown in Fig. 4. The Ascomycotawere generally more abundant in arid, semi-338

arid and dry sub-humid environments across the different ecosystems, while339

Basidiomycota were more abundant in humid environments under mainly340

forests (Fig. 4). More arid and semi-arid environments, largely under crop-341

lands, hosted less diverse fungal communities, and diversity increased with342

increasing humidity, largely under forests (Fig. 4).343
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Figure 4 near here344

Interactive relationships between the controls on the relative abundance and345

diversity of fungal communities346

The a priori structural equation model (SEM) that we used to study the347

interactive effects of the environment on soil fungi (Fig. S2) is based on our348

results from cubist (Fig. 3) and the dominant role that the water balance349

plays in ecosystems (Fig. 4). Thus, we parameterised the SEM with five la-350

tent variables that test the interactive effects of an ecosystem’s water balance,351

ecosystem types, aboveground biomass, the soil’s organic matter and mineral352

composition and soil fertility and pH, on the relative abundance and diver-353

sity of soil fungi in Australia (Supplementary Fig. S2). The SEM explained354

40–55% of the variation in the relative abundances of the Ascomycota and355

Basidiomycota, and community diversity (Fig. 5).356

Figure 5 near here357

As expected, ecosystem type has a direct effect on relative abundances358

of fungal phyla, but the effect is relatively small (Fig. 5). Generally, the359

water balance indirectly affects the relative abundance of the two phyla and360

diversity through its action on ecosystem type, vegetation, the mineral and361

organic composition of the soil and via its regulation of soil nutrients and pH362

(Fig. 5). The effect of the water balance on ecosystem type is strong; however,363

the effect of ecosystem type on the relative abundances of the two phyla and364

community diversity is relatively weak and insignificant, respectively (Fig. 5).365

The total effect of water balance on the Ascomycotais strong and negative,366

but positive on the Basidiomycota, which is consistent with our observation367
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in Fig. 4. The effect is via its influence on soil fertility, pH and the organic368

and mineral composition of the soil. A more humid environment (that is less369

arid) with more weathered mineralogy and higher organic matter turnover370

can result in more acidic soil, and vice versa. Soil pH and organic matter371

show a positive effect on Ascomycota, but negative effect on Basidiomycota372

(Fig. 5). Total phosphorus affects the relative abundance of the Ascomycota,373

while the effect of exchangeable calcium was negative on the Basidiomycota374

(Fig. 5). The water balance in ecosystems had a positive effect on fungal375

diversity through its regulation of above-ground biomass, soil organic matter376

and consequently, soil carbon, available nitrogen and pH (Fig. 5). More377

humid environments are conducive to the production of more biomass, larger378

rates of mineralisation and organic matter turnover, leading to more fertile379

soils with more organic carbon and nitrogen.380

Wavelengths that represent clay minerals (Viscarra Rossel, 2011) were di-381

rectly associated with the water balance, likely via their effect on soil texture382

(type) and the soil’s water holding capacity. Clay minerals had direct but op-383

posite effects on the relative abundances of Ascomycota and Basidiomycota,384

and with Fe-oxides (Viscarra Rossel et al., 2010b), had direct and positive385

effects on fungal diversity. The wavelengths corresponding to soil organic386

matter and its functional groups (Viscarra Rossel and Hicks, 2015) were also387

directly associated with the water balance and overall had positive effects on388

the relative abundance of Ascomycota and Basidiomycota. In contrast, its389

effect on diversity was negative (Fig. 5).390
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Discussion391

Soil fungal communities in Australia’s ecosystems392

Our results show that in the ecosystems sampled, the Ascomycota and393

Basidiomycota, respectively, are the most dominant fungi in Australian soils.394

Their dominance over the continental scale may be due to the abundance of395

wind-dispersed spores, their functional attributes as common mycorrhizal or-396

ganisms and their habits. Our results show that ecosystem type has a signif-397

icant direct effect on the relative abundances of Ascomycota and Basidiomy-398

cota, indicating clear environmental preferences. The ecosystem type has399

an insignificant (direct) effect on community diversity. More Basidiomycota400

tend to inhabit native forests, shrublands and woodlands, possibly because401

of the symbiotic relationship between mycobionts and the roots of woody402

plants that are dominant in native ecosystems. More Ascomycota tend to403

inhabit croplands and grasslands in Australia. Their endophytic lifestyles404

play a crucial role in agriculture because of their effect on the habitat adap-405

tation of plants. They can help to improve plant performance and plant406

protection against biotic and abiotic stresses. Although less abundant, the407

Mucoromycota tended to prefer forest, shrublands and woodlands, while the408

Mortierellomycota and Glomeromycota were more abundant in croplands and409

grasslands. Members of the Glomeromycota form endomycorrhizae with the410

roots of roughly 70% of the world’s plants, including many crops, in which411

they help improve plant nutrient uptake and productivity (Brundrett and412

Tedersoo, 2018). The dominance of the Ascomycota and Basidiomycota in413

Australian soils might suggest that they are better equipped to use exist-414

ing resources and withstand environmental stresses than the other identified415
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species.416

Aridity controls soil fungi in Australia417

Climate is an important factor controlling fungal community composition418

and diversity over larger scales (Maestre et al., 2015; Tedersoo et al., 2014;419

Delgado-Baquerizo et al., 2018). We found that climate, particularly the wa-420

ter balance, also indirectly controls the relative abundance of the two domi-421

nant phyla and community diversity via its strong effect on ecosystem type,422

the ensuing vegetation and soil. The climate and water balance effects were423

opposite on the Ascomycota and Basidiomycota. The Basidiomycota tend424

to prefer more humid environments, while the Ascomycota showed a clear425

preference for drier environments. Unlike other similar studies that report426

only minor effects of edaphic properties on soil fungi (Maestre et al., 2015;427

Tedersoo et al., 2014), we found that an ecosystem’s water balance indirectly428

affects the relative abundance of these two dominant phyla and community429

diversity via their influence on edaphic characteristics. Soil organic matter430

directly affects the relative abundance of the two dominant phyla studied,431

but it inversely affects community diversity, possibly because the addition432

of labile substrates provides a readily available source of carbon and other433

nutrients for microbial growth. Reducing the type of carbon available to mi-434

croorganisms will tend to homogenise microbial communities (Ramirez et al.,435

2020; Murphy et al., 2011). We also found that soil pH has a dominant and436

opposite effect on the relative abundance of Ascomycota and Basidiomycota,437

most of which are saprophytes. Although most fungi do not require specific438

soil pH ranges for colonisation, habitation and growth (Rousk et al., 2009),439

some basophilic or acidophilic fungi are sensitive to changes in pH (Gai et al.,440
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2006). Compared to other fungi, saprophytes are more susceptible to soil pH441

(Kivlin and Hawkes, 2016).442

vis–NIR spectra are useful edaphic controls on soil fungi443

Soil organic matter, iron-oxides and clay mineralogy, measured by vis–444

NIR spectra, were important controls of the relative abundance of the As-445

comycota and Basidiomycota and community diversity. They markedly im-446

proved the explanatory power of the models. Overall, our models explained447

40–64% of the variation in the relative abundance and diversity of fungi448

in Australian soil. The soil information contained in the spectra provided449

additional and relevant information on the functional groups of different450

forms of organic matter (Viscarra Rossel and Hicks, 2015), clay minerals451

(Viscarra Rossel, 2011) and Fe-oxides (Viscarra Rossel et al., 2010b), which452

supply elements (e.g. iron, calcium, magnesium) needed for fungal growth453

(Müller, 2015). The quantity and the quality of organic matter are both im-454

portant for microbial growth and activity (Baldock et al., 1992). Thus, mod-455

els with the spectra as additional explanatory variables were markedly better456

(by up to 40%) than models based solely on soil properties and environmen-457

tal covariates. Hence, compared to other large-scale studies, on average, our458

models explained around 20% more of the variation in community diversity459

and around 10% more of the variation in relative phyla abundance (Tedersoo460

et al., 2014; Vĕtrovský et al., 2019). Although vis–NIR spectra successfully461

explained bacterial abundance and diversity (Zornoza et al., 2008; Yang et al.,462

2019), we found no published research that uses soil spectra as explanatory463

variables of soil fungi.464
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The data used465

We used one of the most extensive and inclusive continental-scale datasets466

on soil fungi and, for the first time, used climatic, edaphic and other envi-467

ronmental data in combination with vis–NIR spectra to help explain the468

variation and distribution of dominant fungi and community diversity in469

Australian soils, and to elucidate their interactive controls. The dataset cov-470

ers all of Australia, its four most extensive ecosystems and climates (Bissett471

et al., 2016). We obtained 60 million sequences across all samples, an average472

of 107,310 sequences and 666 OTUs per sample, mainly resulting in saturated473

rarefaction curves (Supplementary Fig. S1), which indicates an adequate rep-474

resentation of the most common species in those soils. Thus, although we475

have likely underestimated the actual diversity of soil fungi, the dataset and476

methodology that we used are suitable for the research presented.477

Future considerations478

Here, we focused on modelling the relative abundance of the dominant soil479

fungal phyla and community diversity in Australia’s main ecosystems with a480

wide range of environmental covariates, including vis–NIR spectra, to ascer-481

tain their environmental controls and interactions. But, we acknowledge that482

the BASE dataset (Bissett et al., 2016) has a limited representation of the483

highly diverse tropical ecosystems in northern Queensland, which restricted484

the number of fungal taxa characteristics of those biomes. Future research485

should include samples of soils from tropical regions in Australia to identify486

common and, therefore, potentially functionally significant members of the487

soil mycobiome. An expanded sampling campaign would also improve the488

modelling. It could help to resolve the effects of those environmental factors489
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on different fungal ecological guilds to understand better the importance of490

fungal adaptation, migration and acclimatisation to global change and to491

test whether fungi can track changes in climate (Bidartondo et al., 2018).492

Our results indicate the potential for developing more rapid and cost-493

efficient methods to estimate the relative abundance and diversity of soil494

fungi. Therefore, our findings could also guide methodological development495

towards more rapid and cost-efficient characterisation of soil fungi. Although496

such estimates might not be as precise as sequencing technologies, spectro-497

scopic measurements integratively characterise the soil’s mineral and organic498

composition. They are also inexpensive so that one can make many mea-499

surements across space and in time. Such an approach might complement500

molecular techniques for the assessment, characterisation and improved un-501

derstanding of soil fungal communities and their associated functions (Hart502

et al., 2020).503

Final remarks504

Disentangling the interactive environmental controls of soil fungi and their505

diversity to understand their distributions over large scales better is an im-506

portant goal in fungal ecology: soil fungi are among the most ecologically507

relevant organisms. The research presented here improves understanding of508

the links and interactions between the dominant soil fungi, their diversity,509

and soil, plants and other environment properties at a macroecological scale.510

In addition, it helps to explain what the environmental controls of soil fungi511

are and their interactions across Australia’s diverse ecosystems and climates.512

Exploring such interactive effects is essential for understanding ecosystem513

stability and resilience and for developing management strategies to conserve514
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these organisms and their functions, including the adaptation and mitigation515

of global change. Our findings might serve as a baseline against which to mon-516

itor possible shifts in the dominant soil fungi in Australia, which we need for517

developing strategies to preserve soil microbial diversity and functionality.518
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Tables763

Table 1: The coefficient of determination (R2) of models for fungal abundance and diversity

derived by a 10-fold cross-validation using all data (n = 577). The last column indicates

the % improvement in the models by additionally including the vis–NIR spectra.

Fungal phyla Model without the Model with the %

and diversity vis–NIR variables vis–NIR variables improvement

Ascomycota 0.42 0.50 19

Basidiomycota 0.51 0.60 18

Mortierellomycota 0.60 0.63 5

Glomeromycota 0.31 0.40 29

Mucoromycota 0.59 0.64 8

Diversity 0.30 0.42 40
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Figures764

Figure 1: (a) Sample locations across Australia and the range of Australian ecosystem

types and climate zones. (b) Relative abundances of dominant soil fungal phylotypes in

five major Australian ecosystem types.
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Figure 2: Taxonomic tree for the phyla Ascomycota and Basidiomycota. The grey tree

on the lower left provides a key for the unlabelled, coloured tree matrix. Each of the

smaller (coloured) trees represent a comparison between climate zones. A taxon coloured

orange is more abundant in the climate zone depicted in the columns and a taxon coloured

blue is more abundant in the climate zone of the rows. For example, the Ascomycotaare

generally more abundant in the arid and semi-arid zones, while the Basidiomycota are

geberally more abundant in the humid zone. The tree was drawn using the metacoder

library in R (Foster et al., 2017) by first filtering out rare and unclassified and unknown

taxa.
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Figure 3: Important controls on the relative abundance of fungal phyla and diversity of

soil fungi in Australia, described by the variable importance of the cubist models (n =

577). Diversity is measured with the abundance-based coverage estimator (ACE) index

(Lozupone and Knight, 2008). The vis–NIR wavelengths were aggregated to represent

Fe-oxides, clay mineral, and organics (Viscarra Rossel et al., 2010a; Viscarra Rossel, 2011;

Viscarra Rossel and Hicks, 2015).

Figure 4: Relationship between the Prescott index, which represents water balance, and

the relative abundance of the most dominant fungal phyla and diversity, measured with

the ACE index. Significance level was shown with ***P ≤ 0.001.
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Figure 5: Path diagrams of the effects of water balance, ecosystem type (C = Cropland;

F = Forest), above-ground biomass, the mineral and organic composition of soil, and soil

pH and fertility, on the relative abundance and diversity of soil fungi in Australia. Solid

and dotted lines indicate significant and insignificant paths respectively (P < 0.05). Line

width is proportional to the strength of path coefficients. Numbers are the standardized

effects, and negative effects are indicated by minus signs. The standardized total effects

are the sum of direct and indirect effects from each predictor on a particular response.
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