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Abstract 

In vibration based structural health monitoring (SHM), measurement noise inevitably exists in 

the vibration data, which significantly influences the usability and quality of measured vibration 

signals for structural identification and condition monitoring. As a result, there is a high demand for 

developing effective methods to reduce noise effect, especially in harsh and extreme environment. 

This paper proposes a vibration signal denoising approach for SHM based on a specialized Residual 

Convolutional Neural Networks (ResNet). Dropout, skip connection and sub-pixel shuffling 

techniques are used to improve the performance. The effectiveness and robustness of this developed 

approach are validated with acceleration data measured from Guangzhou New TV Tower. The results 

show that the proposed approach is effective in improving the quality of the acceleration data with 

varying levels of noises and different types of noises. Modal identifications based on signals 

contaminated with intensive noise and de-noised signals are conducted. Modal information of the 

weakly excited modes masked by noise and the closely spaced modes can be clearly and accurately 

identified from the de-noised signals, which could not be reliably identified with the original signal, 

indicating the effectiveness of using this developed approach for SHM. Besides white noise, a group 

of data contaminated with pink noise, which is not included in the training data, is also tested. Good 

results are obtained. The developed ResNet extracts high-level features from the vibration signal and 

learns the modal information of structures automatically, therefore it can well preserve the most 

important vibration characteristics in vibration signals, and can assist in distinguishing the physical 
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modes from the spurious modes in structural modal identification. 
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1. Introduction 

Ensuring a high degree of availability, reliability and safety of civil infrastructure is critical for 

the society to well function. With the ageing of structures, the strength of current structures may 

degrade below the designed safety strength which threatens the public safety and may even cause 

catastrophic failure of structures.  The degradation can be caused by the progressive deterioration 

and the accumulated damage induced by adverse operating conditions and extreme events. Vibration 

based Structural Health Monitoring (SHM) technology has attracted significant attention in recent 

decades. SHM systems permanently or periodically measure the dynamic responses of structures for 

early warning of abnormal status and assist engineers and asset owners to make better decisions on 

maintenance and operation. An increasing number of vibration based SHM systems have been 

installed on infrastructures such as large scale bridges [1, 2] and high rise buildings [3, 4]. Measured 

dynamic responses containing crucial information of structures are further processed to obtain 

structural vibration characteristics, extract damage sensitive features for assessing conditions and 

detecting local damages in structures.  

Effective and accurate condition assessment of structures usually demands high-quality data that 

contain significant vibration information of structures and low-level noises in measurements. 

However, the in-field testing condition of civil structures is difficult to control. Measured dynamic 

responses can be easily contaminated by strong noise from various sources such as environmental 

noise, measurement noise and instrumental noise. Strong noise may mask changes induced by minor 

damages in structural responses, leading to modal identification or damage detection inaccurate or 

virtually impossible in such cases. Consequently, noise immunity ability is one of the critical criteria 

for evaluating the effectiveness of vibration based SHM methods. It has been reported that 10-20% 

noise injected into vibration signals was considered as a high noise level in numerical studies [5, 6] 

when validating damage detection methods. Considering substantial uncertainties during in-field tests, 

measurement noise may exceed 20% noise level easily in situations with some poor testing conditions. 

Therefore, besides improving noise immunity of SHM methods for modal analysis or damage 

detection, another important research topic named vibration signal denoising, which aims to remove 
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noise components or mitigate noise effect from measurements without affecting quality of vibration 

signals, has gained significant attention. Signal denoising can improve the usability and quality of the 

measured signals before any specific analysis. 

Recent researches have been conducted to perform the vibration signal denoising in the time, 

frequency and time-frequency domains for different types of data [7]. Conventional time domain 

averaging methods are more suitable for periodic signals [8]. The denoising effect on other kinds of 

signals may be limited due to the varying vibration frequency or amplitude of signals. Filtering 

methods, such as low-pass filtering and band-pass filtering, etc., are typical frequency domain 

methods that eliminate noise outside the user-defined frequency band of interest. The prior knowledge 

of structures including modal frequencies and the corresponding variation ranges induced by 

operational and environmental condition changes needs be known, which limits the application of 

those methods. Time-frequency domain methods, such as wavelet transform based denoising 

techniques have been widely investigated [9, 10]. Those techniques consider both time and frequency 

characteristics, which are suitable for both stationary and nonstationary signals. However, wavelet 

transform based methods require manually selected and tuned optimal parameters such as the suitable 

wavelet basis regarding target signals, the proper threshold value of wavelet transform layers and 

packets to discriminate and remove noise while avoid losing useful components [7, 11]. Other 

methods based on singular value decomposition [12], empirical mode decomposition [13] and global 

projection [14] have also been developed to conduct specific denoising tasks. Among all of the 

abovementioned methods, different parameters are required for optimizing, resulting in the 

effectiveness of signal denoising closely dependent on engineers’ empirical experiences. Recently, 

machine learning especially deep learning based techniques such as deep Artificial Neural Network 

(ANN), Denoising Auto-Encoder (DAE) [15] and Convolutional Neural Networks (CNN) [16] have 

been extended to denoise image [17, 18], audio [19, 20] and medical domain signals [21] in the time, 

frequency or time-frequency domains with its original waveform or selected features. These networks 

learn nonlinear relationships between noisy and original signals from training data, and then map the 

newly obtained noisy signals to denoised ones. Compared with existing methods, deep learning based 
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techniques for signal denoising automatically extract the noise insensitive features from measured 

signals to realize the denoising, which effectively avoid manual selecting and fine-tuning of the 

abovementioned parameters.  

Currently, deep learning techniques are widely applied in the SHM community [22] such as 

damage and crack detection using images [23-25], vibration signals [26-31] and vibrational 

characteristics [32, 33], abnormal measurement diagnosis [34] and vibration lost data recovery [35]. 

Even there are applications of deep learning techniques for denoising signals in other fields, however, 

to the authors’ best knowledge, researches on developing vibration signal denoising method for SHM 

using deep learning techniques have not been reported. Real-time SHM systems continuously 

measure and record a large amount of vibration data, which fit well with the concept of “big data”, 

that is a crucial requirement of applying deep learning techniques.  

This paper presents the development and application of Residual Convolution Neural Networks 

(ResNet) with a bottleneck structure incorporated with skip connection, dropout and sub-pixel 

shuffling techniques for denoising measured vibration signals. The proposed ResNet is trained in a 

supervised manner using training datasets, which consist of paired originally measured and synthetic 

noisy signals. Through training, the important features of training data are learned and network 

parameters including weights and biases of convolutional layers are tuned. The trained network is 

then used to map extracted features from input noisy signals to the denoised ones for realizing the 

denoising. It should be highlighted that the exact noise-free vibrational signal is not required for 

training the network. The proposed approach requires less prior knowledge of the structure and human 

intervention and is very applicable in practice. Validations of the proposed method by using the 

measured vibration data from Guangzhou New TV Tower are conducted to investigate the accuracy 

and performance of the proposed approach.  

In the following sections of this paper, the architecture, selected hyperparameters of the designed 

ResNet and the involved techniques to enhance the effectiveness of the developed approach will be 

introduced in Section 2. Experimental studies on a super-high slender structure, namely Guangzhou 

New TV Tower, are conducted for evaluating the effectiveness and performance of using the proposed 
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method for denoising the vibration signals with weakly excited and closely spaced modes. The details 

of the structure, the procedure to implement the denoising and the evaluation of the denoised results 

with comparison to a classic wavelet transform based method will also be introduced in Section 3. To 

further verify the robustness of the proposed method, Section 4 presents an evaluation of the trained 

network by using noisy signal contaminated with pink noise that is not included in the training data. 

Finally, the conclusions made from the denoising results and the recommendations for further studies 

are discussed in Section 5. 

 

2. Methodology 

CNN as one of the most remarkable progresses in machine learning is gaining significant research 

interest recently. Instead of extracting features by fully connection layers as traditional ANN, CNN 

formed by stacked convolutional layers can automatically extract higher-level features of input data 

using convolutional kernels. Without fully connection, CNN has much fewer trainable parameters 

and minor overfitting. The proposed ResNet inspired by a previous study on audio super resolution 

[36] is a fully convolutional feedforward network. The developed ResNet has a bottleneck structure 

which originates from Deep Auto-Encoder [37] and is named as Convolutional Encoder-Decoder 

Network [38]. The bottleneck structure encourages models to gradually extract higher-level features 

of input data by reducing the length of encoder features. Meanwhile, the reduction of dimension leads 

layers to only keep robust features and sift noise components. The proposed ResNet utilizes 

advantages of both bottleneck structure and convolutional layers by replacing all the fully connected 

encoder and decoder layers by convolutional layers. Therefore, compared to Auto-Encoder, 

convolutional layers consisted of multiple convolutional kernels can extract more abundant and 

comprehensive features with minor overfitting effect. 

The main contribution of this work is the sophisticatedly designed ResNet which is specialized 

in performing the denoising task of vibration signals. It is fully convolutional so that the network can 

process input data with different lengths. All the convolutional layers are modified as one-

dimensional which is very adaptable for one-dimensional vibration signals. Furthermore, all these 
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embedded techniques are carefully designed with the following features: 

 Skip connection greatly improves the training efficiency of ResNet.  

 Dropout technique mitigates the overfitting of ResNet.  

 Sub-pixel shuffling technique upscales feature maps and also effectively realizes the 

function of deconvolution. 

Using deep learning techniques to denoise vibration signals has many advantages, such as less 

human intervention on parameter selection of filters and automated feature extraction. Previous 

studies utilized the deep learning technique to denoise photos, speeches and electrocardiograms. 

However, these techniques have not been developed and applied to vibration signal denoising in SHM. 

This paper proposes a vibration signal denoising approach based on deep learning techniques, i.e. 

ResNet, to remove the noise in the vibration measurement data. The feasibility and effectiveness of 

the proposed technique on vibration signal denoising are demonstrated. This is the first attempt of 

using a deep learning technique in denoising the vibration signals. 

 

2.1 The Architecture of the proposed ResNet 

The architecture of the proposed ResNet consists of an input layer, eight convolutional layers and 

one output layer, as shown in Figure 1. The input and output layers have the same number of neurons, 

equal to the sampling points of input signals to be denoised. Among the convolutional layers, there 

are three compression layers, one bottleneck layer, three reconstruction layers and a final resize layer. 

The number of bottleneck and resize layers is fixed according to the bottleneck structure. The depth 

of the network is determined by testing the performance of ResNet with 1 to 6 pairs of compression 

and reconstruction layers. 3 pairs of layers are selected since the performance stops gaining after 

using 3 pairs of layers, while the computational burden continues increasing. The compression and 

bottleneck layers reduce the dimension of feature maps and extract the higher-level representation of 

input signals gradually by using convolution kernels with a stride of two. Meanwhile, the number of 

feature maps are doubled to enrich the higher-level features. The output feature maps of the bottleneck 

layer possess the smallest dimensionality but represent the highest level of features of input data. 
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Then, ResNet turns to reconstruct output denoised signals only considering the representative 

information of input signals by the reconstruction layers. The reconstruction layers gradually enlarge 

the dimension and reduce the number of feature maps.  

One special operation named skip connection is implemented in the reconstruction layers that 

concatenate output features of reconstruction layers with output features of compression layers in 

mirrored positions as shown in Figure 1. The paired original and noisy signals are quite similar 

especially when only a low level of noise exists in the noisy signal. Due to the symmetric architecture 

of ResNet, the layers in the mirrored position are sharing a large number of features such as the 

waveform and structural frequencies information. It has also been observed that it is easier to learn 

residual between the output and input, rather than only the input. The skip connections between each 

pair of layers effectively shuttle the features extracted in bottom layers to top layers to provide 

supplementary information that is lost during convolution [39]. It also allows gradients to be back-

propagated to bottom layers directly, which mitigates the gradient vanishing and provides the ability 

to train deeper networks efficiently [40]. On the other hand, skip connections or residual connections 

can be used to skip the training of a few layers. One common issue of deep learning based techniques 

is that if the depth of networks keeps increasing, the accuracy will start to saturate at one point and 

even degrade. In general, the optimal number of layers required for a neural network might depend 

on the complexity of the datasets which is hard to determine. Therefore, instead of treating the number 

of layers as an important hyperparameter to tune, by adding skip connections to the network, allowing 

the network to skip training for the layers that are not useful and do not add value in overall accuracy 

is beneficial and may optimally tune the number of layers during training. 

The configurations of the used ResNet are shown in Table 1. The kernel number and kernel size 

are initialized similarly as Ref. [36] and determined by final turning. Currently, there are no certain 

rules for selecting hyperparameters of deep learning models. Most of studies tune hyperparameters 

by trial and error. It should be noticed that designing an adaptive architecture is much more important 

than optimizing hyperparameters. In this study, it is found that the effectiveness can be guaranteed by 

simply initializing a large model that contains a considerable number of neurons. The model with 
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optimized hyperparameters as shown in Table 1 has a minor improvement than the initial ones. The 

number of kernels starts from 128 which is a multiple of 2. The kernel number is doubled among the 

compression layers and halved among the reconstruction layers to keep the symmetry of the network 

by using sub-pixel shuffling (will be introduced in Section 2.4). Since the feature maps are shrunken 

and then enlarged among the layers, the kernel sizes of layers also change to fit with the corresponding 

size of the feature maps. To guarantee the output of bottleneck layer as an integer, the input size 

should be a multiple of 23, that is 8. Owning to the fully convolutional and symmetric architecture, 

the input length can be any times of 8. However, it is recommended to use input data which is larger 

than 64 points for utilizing the full capability of the network. In this study, the dimension of feature 

maps in Figure 1 and the input and output shapes of each layer are listed in Table 1, based on the 

input size of 1024 points, which is the same as that of the training data samples used in the subsequent 

experimental studies.  
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Table 1. The detailed configurations of the used ResNet. 

Layer 
Kernel 

number 

Kernel 

size 
Stride Padding Input shape Output shape 

sub-pixel 

shuffling 

Input - - - - (1, 1024) (1, 1024) - 

C1 128 64 2 Same (1, 1024) (128, 512) N 

C2 256 32 2 Same (128, 512) (256, 256) N 

C3 512 16 2 Same (256, 256) (512, 128) N 

Bottleneck 1024 8 2 Same (512, 128) (1024, 64) N 

R3 1024 16 1 Same (1024, 64) (1024, 128) Y 

R2 512 32 1 Same (1024, 128) (512, 256) Y 

R1 256 64 1 Same (512, 256) (256, 256) Y 

Final 2 8 1 Same (256, 512) (1, 1024) Y 

Output - - - - (1, 1024) (1, 1024) - 
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Input (1x1024) Output (1x1024)

Bottleneck
(1024x64)

C1 (128x512)

C2 (256x256)

C3 (512x128) R3 (1024x128)

R2 (512x256)

R1 (256x512)

Final (2x512)

Sub-pixle Shuffling

Convolution

Skip connection

 
Figure 1. The architecture of the used ResNet with a bottleneck structure. 

 

The compression layers, bottleneck layer, reconstruction layers and the final resize layer have 

different functions with different operations. The compression layers and bottleneck layer involve 

two operations: (1) Convolution of the input; and (2) Nonlinear activation of the output using a Leaky 

rectifier. The Leaky rectifier will be introduced in Section 2.3. The reconstruction layers involve four 

operations which are: (1) Convolution of the input features; (2) Nonlinear activation of the output 

using a Leaky rectifier; (3) Resizing of the activated output by the sup-pixel shuffling operation 

detailed in Section 2.4; and (4) Final concatenation of the activated output with the features from the 

compression layer in the mirrored position (skip connection). In addition, the last layer contains the 

convolution and resizing operations.  
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The ResNet is trained in a supervised manner using paired of noisy and original signals as input 

and output. Hence, the objective of the used ResNet is to minimize the discrepancy between predicted 

denoised signal fϕ(x) and the corresponding original signal yk. The objective function selected to 

optimize the parameters of ResNet is defined as the mean of L2-norm error of each sample in a mini 

batch. The objective function is expressed as 

𝐿𝑜𝑠𝑠 =
1

𝑁
𝑦 − 𝑓 (𝑥 )  (1)

where N is the number of samples in each mini batch. The ResNet is simply depicted as a nonlinear 

model fϕ (x) that is parameterized by ϕ. Consequently, the target of the training process is to determine 

ϕ by minimizing the Loss function based on the entire training datasets. 

 

2.2 Dropout technique 

Overfitting is a common issue in training deep neural networks, which means the tuned 

parameters of networks are too closely fitted with training data. Dropout technique is a recently 

developed training strategy which is embedded in the training process of this study to address the 

overfitting issue. Dropout means dropping out neurons and disconnecting those neurons with the 

adjacent input and output layers [41]. Neurons in networks are dropped randomly when training with 

a different batch of samples to break up the co-adapted sets of neurons. Those remained neurons are 

trained more robustly and the generalization capacity of the network is enhanced. Dropout technique 

in signal denoising tasks also omits the particular relationships concealed in noisy signals by 

introducing perturbations [42]. Each neuron has an independent probability p to be dropped. p=0.5 is 

suggested by the inventors and used in this study [41].  

 

2.3 Leaky Rectified Linear Unit (Leaky ReLU) 

The relationship between noisy and original signals is undoubtedly complex. Linear functions 

are insufficient to model this relationship. Therefore, an activation function that transfers the mapping 

from linear to nonlinear is added after the convolution operation to support ResNet to model such a 
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sophisticated nonlinear relationship. Leaky ReLU [43] as an improved version of ReLU [44] is an 

advanced activation function. Leaky ReLU has a nonlinear gradient over its whole domain as follows 

𝑓(𝑥) =
𝑥,        𝑖𝑓 𝑥 > 0

0.01𝑥, otherwise
 (2) 

Compared with ‘sigmoid’ or ‘tanh’ activation functions which squash input into a very narrow output 

range ([0 -1] for ‘sigmoid’, and [-1 1] for ‘tanh’), Leaky ReLU has a broad range of output which 

prevents the gradient vanishing. Meanwhile, it allows a non-zero small gradient to overcome the 

defect of ReLU, that is, a neuron is potentially not be activated once a large gradient passes it [43]. 

 

2.4 Sub-pixel Shuffling Operation 

To implement the skip connection, the lengths of feature maps in bottom layers to higher layers 

should be consistent. As shown in Figure 1, the output feature maps of the reconstruction layer have 

half of the length but double the number of the output of the corresponding compression layer. The 

sub-pixel shuffling operation is involved to resize the output feature maps from the reconstruction 

layers. Figure 2 demonstrates an example of the sub-pixel shuffling with four feature maps consisting 

of 6 features each. It divides the feature maps into two groups and combines two feature maps in the 

same order of each group as one by interpolating one to another. It is a one-dimensional case of a sub-

pixel convolution layer [45]. This is an efficient operation for shuffling, which costs less computation 

than deconvolution. It has also been attested to have strong workability that introduces less artefact 

in the output [46].  

 

1-1 3-1 1-2 3-2 1-3 3-3 1-4 3-4 1-5 3-5 1-6 3-6

2-1 4-1 2-2 4-2 2-3 4-3 2-4 4-4 2-5 4-5 2-6 4-6

Divide as 
two groups Shuffling1-1 1-2 1-3 1-4 1-5 1-6

2-1 2-2 2-3 2-4 2-5 2-6

3-1 3-2 3-3 3-4 3-5 3-6

4-1 4-2 4-3 4-4 4-5 4-6

1-1 1-2 1-3 1-4 1-5 1-6

2-1 2-2 2-3 2-4 2-5 2-6

3-1 3-2 3-3 3-4 3-5 3-6

4-1 4-2 4-3 4-4 4-5 4-6
 

Figure 2. An example of the one-dimensional sub-pixel shuffling with 4 feature maps and 6 

elements in each map. 
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2.5 Evaluation criteria 

 The direct evaluation of the quality of denoised signals is conducted by using Signal to Noise 

Ratio (SNR). Given the original signal y and the noisy signal y', noise is estimated as the difference 

between two signals as y - y'. SNR in decibels (dB) is expressed as, 

where n is the total number of sampling points. SNRs of noisy and denoised signals are computed 

against the corresponding original signals, respectively. Furthermore, the quality of noisy and 

denoised signals in the frequency domain is also considered. Original, noisy and denoised signals are 

transferred to the frequency domain by using Fast Fourier Transform (FFT). The discrepancy of 

signals in the frequency domain is evaluated by using L2-norm, and is calculated as 

ξ =
‖𝑓 − 𝑓 ‖

‖𝑓‖
=

∑ (𝑓 − 𝑓 )

∑ 𝑓

 (4) 

where f is the original signal in the frequency domain, and f' is the noisy or denoised signals in the 

frequency domain. 

Modal parameters including natural frequencies, damping ratios and mode shapes are widely 

used in vibration-based SHM for damage detection and condition assessment. This study also 

evaluates the effectiveness of using the proposed approach for signal denoising by comparing the 

identification accuracy of modal parameters from noisy and denoised signals. Modal analysis of 

vibration signals is conducted by using a frequency domain non-parametric method named Frequency 

Domain Decomposition (FDD) [47], which is a mature operational modal analysis method that has 

been successfully applied in many studies on civil structures. Modal analysis by using FDD method 

demands engineering experiences to distinguish physical modes with spurious modes caused by noise 

and weakly excited local modes. In this case, signals with a low-level noise can produce clearer output 

diagrams and therefore promote users to select structural modes more accurately with less false 

identifications. The comparison of identification results is performed from both qualitative and 

quantitative analyses. The qualitative evaluation of the proposed approach is conducted by observing 

the output of FDD, which shows decomposed singular values of power spectral matrix. On the other 

SNR = 10 × log
𝑃

𝑃
= 10 × log

∑ 𝑦

∑ (𝑦 − 𝑦 )
 (3) 
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hand, quantitative evaluation of results is based on the identification accuracy of using noisy, denoised 

and original signals for modal identification. The accuracies of frequencies and damping ratios are 

evaluated by relative error and absolute error, respectively. Modal Assurance Criterion (MAC) is used 

to investigate the accuracy of identified mode shapes, which measures the similarity between two 

mode shape vectors. 

 

3. Experimental Validations  

To demonstrate the effectiveness and robustness of using the proposed approach based on ResNet 

for vibration signal denoising, experimental studies using the in-situ acceleration data measured from 

a long-term SHM system on Guangzhou New TV Tower are conducted. The vibration signals of 

Guangzhou New TV Tower contain weakly excited and closely spaced vibration modes. Improving 

quality of signals and removing noise components without compromising the identification accuracy 

of these two kinds of modes are challenging for conventional signal denoising methods, especially 

for selecting bandwidths of filters for the frequency domain methods and selecting wavelet basis and 

noise eliminating thresholds for the time-frequency domain methods. In this experimental study, 

instead of training multiple networks for denoising signals of each channel, two ResNets for denoising 

acceleration responses of Guangzhou New TV Tower in the short and long-axis directions are trained 

separately for improving efficiency. These two ResNets have the same architecture and 

hyperparameters but are trained separately with specific datasets to achieve the signal denoising tasks 

in two directions. 

 

3.1 Guangzhou New TV Tower and its SHM system 

Guangzhou New TV Tower is a 604 meters tall slender structure located in Guangzhou, China. 

It was completed in 2009 and started operation from 2010. As shown in Figure 3(a), Guangzhou New 

TV Tower is a supertall tube-in-tube structure, which consists of a reinforced concrete inner tube and 

a steel outer tube with concrete-filled-tube (CFT) columns. Totally 37 floors connecting the inner 

tube and the outer tube are constructed for different functions such as offices, entertainment, catering 
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and especially for emission of television signals. A comprehensive SHM system including more than 

600 sensors such as accelerometers, strain gauges and other types of sensors, has been installed on 

the tower for real-time monitoring to acquire the vibration responses and environmental conditions 

of the structure at both construction and in-service stages. Figure 3(b) shows the deployment of 

accelerometers and data acquisition system for the in-service stage. The installed accelerometers 

measure the acceleration responses of the tower in both short-axis direction with sensors numbers 1, 

3, 5, 7, 8, 11, 13, 15, 17 and 18, and long-axis direction with sensors numbers 2, 4, 6, 9, 10, 12, 14, 

16, 19 and 20. The sensor directions are properly aligned before measurement. The sampling 

frequency of the data acquisition system is set as 50 Hz and raw measurements are filtered by a high-

pass filter with a 0.05 Hz cutoff frequency. More details of the structure and the installed SHM system 

can be found in Ref. [4]. The previous studies have shown the effectiveness of the SHM system [48, 

49] and it has become a benchmark platform for high-rise structures.  

 

 

(a) 
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(b) 

Figure 3. (a) Guangzhou New TV Tower; (b) Sensor deployment and data acquisition [49]. 

 

3.2 Preparation of the datasets for training and testing the network 

Quality of datasets significantly affects training performance of networks. An abundant dataset 

can properly fine-tune trainable parameters and provides a robust neural network. Long-term SHM 

systems continuously collect a massive amount of vibration responses, such as strain and acceleration 

data. In this study, totally 24 hours of the long-term monitoring acceleration data from the in-service 

stage are processed as the datasets to validate the proposed approach. Measured acceleration data 

from two directions are separated but processed with the same procedure. These 24 hours data are 

split as 18 hours, 3 hours and 3 hours (75%, 12.5% and 12.5%) for training, validation and testing of 

the network. The training data are used to train and fine-tune the trainable parameters of the network. 

The validation data are used to evaluate the network during training process for real-time checking 

the convergence and overfitting. It should be mentioned that the validation data will not be involved 
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in tuning the parameters. The testing data are prepared to test the performance of trained networks. 

When considering the lifetime of the SHM system, it is practical and effective to train a robust ResNet 

for denoising incoming data by using only 18 hours of measured data 

Pre-processing of the original measurements is based on the modal analysis results of the 

structure in a previous study [49] using field measurements and a calibrated finite element model. 

Vibration modes of this structure are closely spaced, where 15 modes can be observed from 0 Hz to 

2 Hz [50]. In general, the first several modes contribute most of structural vibrations. Hence, the 

frequency bandwidth to be considered in this study is selected as 0 Hz and 2 Hz. To eliminate the 

redundant information merged in original measured signals, low-pass filtering with a cut-off 

frequency of 2.5 Hz is first implemented. After filtering, signals are processed by downsampling the 

sampling frequency from 50 Hz to 5 Hz. These two pre-processing steps are not compulsory but are 

important for efficient training of the used ResNet. The filtering process eliminates high frequency 

noise components and the very high order local vibration modes that beyond the consideration. The 

filtered signal contains the most important information, which means that a relatively simple 

nonlinear relationship needs to be constructed to map the input to the output in the training process. 

Since the architecture of ResNet remains unchanged, the training time mainly depends on the size of 

training datasets. The downsampling process reduces the size of datasets by ten times and 

consequently improves the training efficiency significantly. After the data are properly pre-processed, 

the training and validation datasets are generated in pairs of input and output data corresponding to 

the noisy and original acceleration signals. Since collecting purely clean acceleration signals is 

impossible for any practical vibration test, the original signal used as output of the network has been 

already contaminated with varying levels and different kinds of noises in experimental tests. The 

noisy signals are generated by further injecting white noise to the corresponding pre-processed 

original signals as  

𝑆𝑖𝑔𝑛𝑎𝑙 = 𝑆𝑖𝑔𝑛𝑎𝑙 + 𝑁𝑜𝑖𝑠𝑒 × 𝑁  (5) 

where Noise is a normally distributed random vector with zero mean and standard deviation of the 

original vibration signals [51], and Nl is the noise level. When generating the training and validation 
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datasets, an original signal will be paired with 9 noisy signals respectively. These 9 noisy signals are 

contaminated by a certain level of noise from 10% to 90% with a 10% increase step. In addition, the 

Noise vector for each noisy signal and each channel is random and different, which is realistic for in-

field measurements. The paired acceleration signals are finally normalized to the range from -1 to 1 

to facilitate training stability following the below equation 

𝑎𝑐𝑐𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 =
𝑎𝑐𝑐𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑚𝑎𝑥 (|𝑎𝑐𝑐𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛|)
 (6) 

The paired normalized original signal and noisy signals are depicted in Figure 4. The parameters 

of a network may not be properly tuned and the computational demand will be significant if all the 

training data are served as input to the network at the same time. Therefore, the training and validation 

samples (one-hour long each) are formed as small patches, that are segmented from full-time histories 

of the processed acceleration data and are then grouped as small batches to train the networks in turn. 

To generate the training and validation samples, a window with a length of 1024 points is 

implemented for scanning all the training or validation data from the beginning to the end with a 50% 

overlap. All the generated samples are mixed together with a random order to form the training or 

validation datasets. Testing datasets are generated using three hours of acceleration data. These three 

hours data are processed as three groups of testing data named Testing data 1 to 3. Each group contains 

9 testing samples that are 9 one-hour-long noisy signals with different random white noises and noise 

levels. As a result, two sets of training, validation and testing datasets for short-axis and long-axis 

directions are produced respectively. 
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Figure 4. Original and noisy signals with different noise levels. In the time domain: (a) 10%, (c) 

30%, (e) 50%, (g) 70% and (i) 90% and in the frequency domain: (b) 10%, (d) 30%, (f) 50%, (h) 

70%, (j) 90%. 

 

3.3 Results from testing data with white noise 

The computer used for training these networks has a GTX1060 GPU, an i7-6700K CPU and 

16GB memory. With the abundant datasets, the network converges very fast. The size of the mini 

batch is 64 and the whole training datasets are repetitively used to turn the trainable parameters of the 

network 10 times. Two ResNets are trained individually and the training time for each ResNet is 

around 3 hours. The testing datasets are then used to validate the trained networks. It takes around 4 
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seconds for each testing sample to produce the denoised signal. It should be mentioned that a testing 

sample is one-hour long acceleration data from ten channels, however, only a short processing time 

is needed. 

 

3.3.1 Evaluation of results in time and frequency domains 

SNRs of the input noisy and output generated denoised signals are computed based on Equation 

(3). The comparison of SNRs for the noisy and denoised signals of each group in the short-axis and 

long-axis directions are shown in Figure 5. With the increasing level of noise, the SNR of the noisy 

signals decreases, which confirms that the noise has been correctly injected into the original signal. 

The SNRs of the denoised signals reduce with the increase of noise level monotonously, but are larger 

than those of the noisy signals for most noise levels of the testing data. The SNR of the denoised 

signals is up to 8 times better than the corresponding noisy ones. These results indicate that noise 

components are effectively eliminated from the noisy signals and the denoised signals become closer 

to the corresponding original signals. The effectiveness of the proposed approach is also validated by 

evaluating the signals in the frequency domain using Equation (4). The results as shown in Figure 6 

demonstrate that the errors significantly decrease by using the proposed approach for the signal 

denoising, especially when the noise level is high. The errors in the frequency domain reduce more 

than 30% when the noise level reaches 90% for Testing data 1 in both directions and Testing data 2 

in the short-direction as shown in Figures 6(a) – (c). 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 5. Comparison of SNRs of noisy and denoised signals. Results for short-axis 

direction: (a) Testing data 1; (c) Testing data 2 and (e) Testing data 3. Long-axis direction: 

(b) Testing data 1; (d) Testing data 2 and (f) Testing data 3. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 6. Comparison of errors of noisy and denoised signals in the frequency domain. 

Results for short-axis direction: (a) Testing data 1; (c) Testing data 2 and (e) Testing data 3. 

Long-axis direction: (b) Testing data 1; (d) Testing data 2 and (f) Testing data 3. 

 

The trained ResNet remarkably enhances the quality of signals in both the time and frequency 
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domains. However, denoising of the signals with 10% noise is an exception where the SNRs decrease 

and the spectral errors increase by the denoising process. The measured acceleration data from 

channel 18 of Testing data 1 in the long direction is selected to explain this phenomenon. The pre-

processed original signal of the selected data is used as input to the trained ResNet. PSD spectra of 

the input original and the output denoised signals, as well as the PSD errors, are shown in Figure 7. 

The PSD errors are the discrepancy of amplitudes for each frequency interval. It can be observed that 

the structural frequency components of the denoised signal remain highly consistent with those of the 

original signal, while the power of noise components in non-structural frequency bandwidths are 

decreased. That means the proposed method can not only reduce the manually injected noise but also 

mitigate the measurement noise. 

Therefore, the potential reason for the decrease of SNR and the increase of frequency spectra 

error when denoising noisy signals with 10% injected noise can be attributed to that the proposed 

approach reduces the artificially injected noise as well as the measurement noise existed in the 

original signal at the same time. The reduction of the noise in the original signal, which is used as the 

bench mark for comparison, enlarges the discrepancy between the original and the denoised signals 

and causes a decrease of SNR when the injected noise is less significant. It has to be mentioned that 

the purpose of this study is not to recover but denoise the original signal, reduction of the noise in the 

original signal in practice improves the quality. These results indicate that the proposed ResNet can 

accurately extract the important features from the training datasets, which are the vibrational 

characteristics of the Guangzhou New TV Tower. The finding corresponds well with that in a previous 

study [26] where the stacked convolutional layers can automatically extract the features of vibration 

data, which are very similar to the natural frequencies and mode shapes of the structure. Therefore, 

the proposed approach operates as an auto-adaptive filter to denoise signals regardless of the noise 

level and source. 



25 

 

 

Figure 7. PSD spectra of the pre-processed original and denoised signals, and the errors in PSD. 

 

3.3.2 Comparison of results with wavelet transform based method 

Wavelet transform based method is one of the most popular and most researched methods for 

vibration signal denoising in the current literature, therefore it is selected for comparing the 

performance with the proposed method. Wavelet transform decomposes signals into different scales 

by using a selected mother wavelet function. It concentrates features of signals in a few scale 

components with large wavelet coefficients. Scale components with small wavelet coefficients that 

are lower than a defined threshold are categorized as noise and would be removed. With the defined 

threshold of the coefficients, a signal is then reconstructed as a denoised one using the remained scale 

components by conducting inverse wavelet transform. Parameters including the mother wavelet 

function, level of wavelet decomposition and threshold are carefully chosen. In this study, for 

denoising measured acceleration data of Guangzhou New TV Tower, Symlet wavelet with 8 vanishing 

moments (Sym8) is used as the mother wavelet function. The level of decomposition is tested from 1 

to log2N (14), where N is the total number of sampling points. By comparing SNR value of denoised 

signals with different levels of decomposition, level 1 decomposition is finally applied. The threshold 

is defined by using an empirical Bayesian method with a Cauchy prior and a posterior soft threshold 

rule [52]. PSD spectra of the original signal, noisy signal with 90% noise and denoised signals by 

using the trained ResNet and wavelet transform based method are also computed and compared in 
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Figure 8. Figures 8(a) and (d) show that the injected noise seriously contaminates the original signal. 

More than half of natural frequencies with relatively low power existing in the considered frequency 

bandwidths are masked by the intensive noise. In this case, natural frequencies are difficult to be 

identified from the noisy signals without denoising. In contrary, PSDs of the denoised signals by the 

trained ResNet as shown in Figures 8(b) and (e) have much clearer spectra, where noises existed in 

the non-structural frequency bandwidths are effectively eliminated, leading to a fact that natural 

frequencies can be identified accurately. Comparing PSDs of the noisy and denoised signals, the noise 

level is effectively reduced and there is a very limited influence on using the power spectrum for 

natural frequency identification based on the denoised signals. The proposed approach automatically 

learns the vibration features of the structure through training. Recalling the results demonstrated in 

Figure 6, the errors in the frequency domain between the original and denoised signals is evaluated 

by considering the entire frequency bandwidth. The performance of the proposed approach is in fact 

even better if only the most useful information, i.e. the frequency intervals around natural frequencies 

are considered.  

By observing the PSDs of the denoised signals by using the trained ResNet and wavelet transform 

based method as shown in Figures 8(c), (d), (e) and (f), it is obvious that the proposed approach 

outperforms the wavelet transform based method on denoising vibration signals. Wavelet transform 

has a minor improvement in signal quality on denoising the injected and measurement noises. It can 

be explained that with heavy noise contamination in signals, the wavelet transform based method 

becomes ineffective to localize the vibration features. Only the information in the selected scales is 

stored and recovered, therefore it could be difficult to eliminate noise by simply defining a threshold 

for the wavelet transform based method for signal denoising. 
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(e) 

 

(f) 

Figure 8. Comparison of PSD spectra of signals in Testing data 1, Short-axis direction: (a) Original and noisy 

signals with 90% noise; (b) Original and ResNet denoised signals; (c) Original and wavelet denoised signals. 

Long-axis direction: (c) Original and noisy signals with 90% noise; (d) Original and ResNet denoised 

signals. (f) Original and wavelet denoised signals. 
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spurious modes are observed. Figures 9(b) and 10(b) show that under such strong noise, the usability 

of signals is significantly affected with most of the modes submerged by the noise except several 

strongly excited modes as marked with green dash arrows. In addition, the noise effect at some 

frequencies is very pronounced as marked with the red arrows in Figures 9(b) and 10(b), which may 

confuse the engineers’ judgement and lead to false identification results. Noisy signals with such a 

low quality are potentially discarded if no efficient denoising process is conducted. To mitigate the 

noise effect, the noisy signals are used as input to the corresponding trained ResNets for denoising. 

Modal analysis of the output denoised signals is conducted. Figures 9(c) and 10(c) present the singular 

value spectra from FDD analysis with the denoised signals in both directions, respectively. The 

excellent performance of the proposed approach is obvious on denoising signals contaminated by 

such severe noises. All those 15 natural frequencies of the structure can be clearly identified from the 

denoised signals. Both the manually injected and the measurement noise with frequencies outside the 

natural frequency bandwidths are effectively eliminated. It should be mentioned that these two 

ResNets are trained with noisy signals containing a maximum of 90% noise. The results demonstrate 

that the proposed approach can denoise signals with much more severe noise than the training samples. 

Comparing Figures 9(b) and (c) and Figures 10(b) and (c), the singular value spectra of the denoised 

signals are much clearer than those of noisy signals, indicating that the quality of the signal is 

enhanced significantly. It should be highlighted that the noise within five very closely spaced modes 

between 0.36 Hz and 0.56 Hz is successfully cleaned without affecting the adjacent structural 

vibration modes. Moreover, these five modes in the denoised signals are accurately separated without 

any false identification, which is difficult for the traditional methods to define the bandwidths of 

filters if no prior information of those four modes is provided. The previous findings confirm that 

ResNets can automatically extract the most important features of the vibrational signals from the 

noisy signals and mapping the noisy input to a cleaner one. The results demonstrate that the proposed 

approach is effective and reliable for vibration signal denoising. 
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(a)  

 

(b)  

 

(c) 

Figure 9. Singular value spectra of: (a) original; (b) noisy; and (c) denoised signals of 

Testing data 1 in the short-axis direction. 
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(a) 

 

(b)  

 

(c) 

Figure 10. Singular value spectra of: (a) original; (b) noisy; and (c) denoised signals of 

Testing data 1 in the long-axis direction.  
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original signals show good consistency with those in Ref. [50]. Regardless of the spurious modes and 

submerged weakly excited modes, most of the identified natural frequencies from the noisy signal are 

very similar to those from the original signals as presented in Tables 2 and 3. Large frequency errors 

of the 11th mode in the short-axis direction and the 13th mode in the long-axis direction are observed 

and classified as false identifications, where the spectrum of the noise is stronger than the adjacent 

natural frequencies. In contrast, all the identified natural frequencies from the denoised signal are 

very accurate. Minor differences can be found in the weakly excited modes such as the 2nd, 4th and 

9th modes in the short-axis direction. Five closely spaced modes i.e. the 3rd to 7th modes of the 

structure are well separated and the identification of these five modes is highly accurate in both 

directions. These results indicate that the used ResNet has mined and memorized different features 

for these five modes consisted in the vibration signals without any manual intervention. In addition, 

by comparing the errors in the identified natural frequencies of the noisy and denoised signals, it can 

be found that the vibration signal denoising process slightly improves the identification accuracy of 

those strongly excited modes as well. 

As shown in Tables 2 and 3, the identification of the damping ratios is not as accurate as the 

natural frequencies. The injected serious noise leads to estimation of damping ratios very tough. As a 

result, the identified damping ratios from the noisy and denoised signals have relatively large 

differences compared with those obtained from the original signals. No clear relationship can be 

found between the estimation accuracy of damping ratios and the denoising process. However, with 

the denoised signals, the damping ratios of all those 15 modes can be successfully identified. It should 

be noted that the damping ratios can only be identified for a limited number of modes if noisy signals 

are used. 
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Table 2. Identified natural frequencies and damping ratios from original, noisy and denoised 

signals in the short-axis. 
 

Original signal Noisy signal Denoised signal 

mode 
f 

(Hz) 

ξ 

(%) 

f 

(Hz) 

Error 

(%) 

ξ 

(%) 

Error 

(%) 

f 

(Hz) 

Error 

(%) 

ξ 

(%) 

Error 

(%) 

1 0.094 0.62 0.094 0.00 0.33 0.29 0.094 0.00 0.40 0.22 

2 0.139 0.35 - - - - 0.139 0.32 0.78 0.43 

3 0.367 0.16 0.365 0.66 0.54 0.38 0.367 0.12 0.20 0.04 

4 0.424 0.11 - - - - 0.425 0.29 0.13 0.02 

5 0.475 0.22 0.475 0.00 0.23 0.01 0.475 0.00 0.36 0.13 

6 0.505 0.12 - - - - 0.507 0.24 0.49 0.37 

7 0.522 0.09 0.522 0.00 0.21 0.12 0.522 0.00 0.15 0.06 

8 0.796 0.19 - - - - 0.796 0.00 0.51 0.32 

9 0.968 0.25 - - - - 0.967 0.13 0.36 0.11 

10 1.151 0.11 1.151 0.00 0.15 0.04 1.151 0.00 0.11 0.00 

11 1.191 0.07 1.213 1.84 1.67 1.60 1.191 0.00 0.12 0.05 

12 1.249 0.16 - - - - 1.250 0.10 0.13 0.03 

13 1.388 0.28 1.388 0.00 0.48 0.20 1.388 0.00 0.31 0.03 

14 1.641 0.30 - - - - 1.639 0.07 0.23 0.07 

15 1.945 0.50 - - - - 1.948 0.19 0.55 0.05 

Note: f: frequency; ξ: damping ratio. 
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Table 3. Identified natural frequencies and damping ratios from original, noisy and denoised 

signals in the long-axis. 
 

Original signal Noisy signal Denoised signal 

mode 
f 

(Hz) 

ξ 

(%) 

f 

(Hz) 

Error 

(%) 

ξ 

(%) 

Error 

(%) 

f 

(Hz) 

Error 

(%) 

ξ 

(%) 

Error 

(%) 

1 0.094 2.12 0.094 0.09 1.55 0.57 0.094 0.00 1.72 0.40 

2 0.139 0.66 0.139 0.00 0.76 0.10 0.139 0.00 0.49 0.18 

3 0.367 0.23 - - - - 0.368 0.12 0.40 0.16 

4 0.424 0.07 0.424 0.00 0.03 0.03 0.424 0.00 0.02 0.04 

5 0.475 0.21 0.475 0.00 0.51 0.30 0.475 0.00 0.68 0.47 

6 0.505 0.16 0.507 0.24 1.36 1.20 0.506 0.04 0.12 0.03 

7 0.522 0.10 0.522 0.00 0.17 0.07 0.522 0.00 0.12 0.02 

8 0.796 0.28 - - - - 0.795 0.15 0.32 0.04 

9 0.968 0.24 0.968 0.00 0.71 0.47 0.968 0.00 0.22 0.02 

10 1.151 0.13 - - - - 1.151 0.00 0.14 0.01 

11 1.191 0.05 1.191 0.00 0.05 0.00 1.191 0.00 0.28 0.22 

12 1.249 0.18 - - - - 1.250 0.10 0.73 0.55 

13 1.388 0.30 1.464 5.45 2.08 1.78 1.388 0.00 0.50 0.20 

14 1.641 0.22 1.641 0.00 0.33 0.11 1.641 0.00 0.62 0.40 

15 1.945 0.60 - - - - 1.947 0.13 1.20 0.60 

Note: f: frequency; ξ: damping ratio.       

 

To evaluate the accuracy of the identified mode shapes, for those true mode shapes of the 

structure, MAC values between the mode shapes from the original signal and those from the noisy 

signals with 90% and 500% noises, and MAC values between the mode shapes from the original 

signals and those from the denoised signals, for short and long-axis directions, are shown in Figures 

11 and 12, respectively. It can be observed that the proposed approach can assist in extracting the 

modes buried in noise effectively. A relatively large discrepancy can be observed between the original 

and the ones identified from the noisy and denoised signals when the noise level reaches 500%. The 

identified mode shapes of the noisy and denoised signals are similar for the strongly excited modes. 

It is noted that the injected significant noise is random for each channel. The inaccuracy in mode 

shapes can be attributed to that for each channel, the signal components with the same frequencies as 

the structural natural frequencies are affected by the noise effect in varying extents. When denoising 

the noisy signal, the proposed approach is mainly concentrated on denoising the noise outside the 
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natural frequency bandwidths. To the best of the authors’ knowledge, to distinguish and eliminate the 

measurement noise on structural vibration frequencies is a very difficult problem for all the state-of-

the-art denoising methods to address. In practice, 500% noise can rarely happen during the field 

measurements. As can be seen in Figures 11 and 12, mode shapes identified from the noisy signals 

with 90% noise and the corresponding denoised signals are very accurate, where the MAC values of 

most of the vibration modes are higher than 0.99. This is because white noise has limited influences 

on the mode shapes, therefore even 90% white noise is injected into the signal, the mode shape can 

still be well extracted. These results demonstrate that the vibrational characteristics, such as 

frequencies and mode shapes, can be preserved after vibration signal denoising by the proposed 

approach. 

 

  

Figure 11. MAC values of the identified mode shapes in the short-axis direction. 
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Figure 12. MAC values of the identified mode shapes in the long-axis direction. 

 

4. Discussion on the Effect of Pink Noise 

In the above studies, the performance of the proposed method is proved to be effective to denoise 

signals with serious white noises. However, field measurements could be contaminated by different 

types of noises. A signal denoising method that is only capable of eliminating one kind of noise is 

impractical for SHM. To further evaluate the applicability of the proposed method in practice, a group 

of testing data contained with increasing levels of pink noise is generated using the same original 

signal as Testing data 1. Different from white noise with energy intensity equally distributed in the 

whole frequency bandwidths, PSD of pink noise is inversely proportional to the frequency 𝑓 which 

can be expressed as, 

𝑃𝑆𝐷  ∝
1

𝑓
 (7) 

The means to generate a noisy signal with pink noise is similar to that of white noise using Equation 

(5). The difference is that Noise vector becomes a time sequence of pink noise with zero mean and 

standard deviation of the original signal. 

Figure 13 shows the denoised results of both short and long-axis directions in time and frequency 

domains. The increase of SNR and the decrease in the errors of the frequency spectrum of denoised 

signals indicate that the injected pink noise is effectively mitigated by the proposed approach. The 

performance of denoising pink noise is close to that for white noise, which demonstrates the 

robustness of the proposed method. The error in the frequency domain is higher than that of the white 

noise cases, because the original signal is high-pass filtered by 0.05Hz while the pink noise has the 

strongest power in this frequency interval. This notable discrepancy in this non-target frequency range 

causes a large error, as shown in Figure 14. From this figure, it can also be observed that the quality 

of PSD spectra of the denoised signals is much higher than that of the noisy signal. The merged natural 

frequencies by the pink noise can be clearly identified and the spurious modes are much fewer after 

denoising. The results of denoising pink noise in vibration signals show that the proposed approach 

is robust for eliminating different types of noise, indicating the feasibility and broad application range 
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of the proposed method for denoising vibration signals. 
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(c) (d) 

Figure 13. Comparison of errors of the noisy and denoised signals in the time and frequency 

domains. Results for short-axis direction in: (a) Time domain and (c) Frequency domain; 

Long-axis direction in: (b) Time domain and (d) Frequency domain. 
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Figure 14. Comparison of PSD spectra for original, noisy and denoised signals. Short-

axis direction: (a) Original signal and noisy signal with 90% noise; (b) Original and 

denoised signals; Long-axis direction: (c) Original signal and noisy signal with 90% 

noise; (d) Original and denoised signals. 
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5. Conclusions 

This paper proposes a ResNet based vibration signal denoising approach to remove noise in 

vibration measurement data. The details of the sophisticatedly designed ResNet and involved 

techniques to improve the capability of the network are elaborated. The effectiveness and robustness 

of the developed approach are demonstrated by using recorded data on Guangzhou New TV Tower. 

Testing results demonstrate that the proposed approach effectively improves the quality of noisy 

signals injected with varying levels and types of noises. Modal identification of noisy and denoised 

signals shows that natural frequencies of the weakly excited modes submerged by the noise effect 

and the closely spaced modes can be clearly identified after denoising. These results indicate that the 

used networks extract the most important features from the training datasets, namely vibrational 

characteristics of the structure. The results also demonstrate that the proposed approach has a strong 

robustness to eliminate another type of noise, i.e. pink noise, although it is not included in training 

datasets. On the other hand, the networks learn the features such as natural frequencies of the structure 

automatically and can help to distinguish physical modes from spurious modes to a certain degree. 

The improvement in the identification of damping ratios and mode shapes is limited. Future studies 

can be conducted to address the limitation by using improved deep learning networks and objective 

functions. 
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