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ABSTRACT
Detecting a signal from the Epoch of Reionization (EoR) requires an exquisite understanding
of Galactic and extragalactic foregrounds, low-frequency radio instruments, instrumental
calibration, and data analysis pipelines. In this work, we build upon existing work that aims
to understand the impact of calibration errors on 21-cm power spectrum (PS) measurements.
It is well established that calibration errors have the potential to inhibit EoR detections by
introducing additional spectral features that mimic the structure of EoR signals. We present a
straightforward way to estimate the impact of a wide variety of modelling residuals in EoR PS
estimation. We apply this framework to the specific case of broken dipoles in Murchison Wide-
field Array (MWA) to understand its effect and estimate its impact on PS estimation. Combining
an estimate of the percentage of MWA tiles that have at least one broken dipole (15–40 per cent)
with an analytic description of beam errors induced by such dipoles, we compute the residuals
of the foregrounds after calibration and source subtraction. We find that that incorrect beam
modelling introduces bias in the 2D-PS on the order of ∼ 103 mK2 h−3 Mpc3. Although this
is three orders of magnitude lower than current lowest limits, it is two orders of magnitude
higher than the expected signal. Determining the accuracy of both current beam models and
direction-dependent calibration pipelines is therefore crucial in our search for an EoR signal.

Key words: instrumentation: interferometers – methods: statistical – techniques: interfero-
metric – dark ages, reionization, first stars.

1 IN T RO D U C T I O N

Detecting a redshifted neutral hydrogen signal from the Epoch
of Reionization (EoR) is one of the most promising probes into
formation history of structure in the Universe. The signal enables us
to directly observe the state of the intergalactic medium (IGM) over
a wide range of cosmic time and indirectly study the sources that
impact it. As the very first luminous sources light up the Universe,
they heat up the IGM and subsequently reionize it. The redshifted
21-cm line gives us direct insight into the evolution of the IGM
temperature and the morphology of the ionization structures carved
out by the first sources of light (Morales & Wyithe 2010; Pritchard &
Loeb 2012; Furlanetto 2016; McQuinn 2016).

However, despite a large international effort by various telescope
collaborations around the world, e.g the Murchison Widefield Array
(MWA; Tingay et al. 2013; Wayth et al. 2018), the LOw Frequency
ARray (van Haarlem et al. 2013) and the Donald C. Backer Precision
Array for Probing the EoR (Parsons et al. 2010), the signal has
continued to elude a 21-cm power spectrum (PS) detection. The
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challenges faced by this experiment are large; foregrounds are 4–5
orders of magnitude brighter (Jelic et al. 2008) and the instruments
have a complex signal chain. Understanding the behaviour of
the latest instruments is ongoing work, and continues to provide
crucial input to our calibration strategies. There already exists a
large body of work on the residuals after direct subtraction of
galactic and extragalactic foregrounds, and their impact on the
21-cm PS. Most of this work treats the residuals of subtracted
foregrounds as a source of Gaussian noise and studies how they
affect the 21-cm PS assuming calibration leaves them unchanged
(Liu & Tegmark 2011; Trott, Wayth & Tingay 2012; Dillon, Liu &
Tegmark 2013; Dillon et al. 2015; Trott et al. 2016; Murray, Trott &
Jordan 2017). However, it has been well studied that unmodelled
foreground noise is non-Gaussian and that outliers in the tail-end
of the noise distribution impact calibration on a non-negligible
levels (Kazemi & Yatawatta 2013; Ollier et al. 2017, 2018). In
particular, Barry et al. (2016) and Patil et al. (2016) show that
sky-based calibration in the presence of unmodelled foregrounds
imparts additional spectral structure on to data, further inhibiting
the detection of an EoR signal. Ewall-Wice et al. (2017) study this
effect rigorously with a Gaussian approximation, and derive the
imparted spectral structure on residual foregrounds due to modelling
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errors and found similar results. Similarly for redundant calibration,
we know that non-redundancies impart bias on to the calibration
solutions. In Joseph, Trott & Wayth (2018), we study this for
position errors on calibration solutions, and Orosz et al. (2019) study
the impact of positions errors and beam errors on the 21-cm PS and
find that indeed non-redundancies also impart spectral structure that
contaminates EoR detections. On top of that, redundant calibration
needs external information set by sky-based calibration to determine
overall calibration parameters, hence the limitations of sky-based
calibration set a fundamental limit on the calibration accuracy of
redundant calibration. This yet again introduces additional spectral
structure (Byrne et al. 2019).

In this paper, we build on existing work to further study the
impact of modelling errors on sky model calibration, and on 21-cm
PS estimation. We derive a framework that enables rather simple
propagation of errors into calibration solutions and the EoR PS.
We focus our attention on what is undoubtedly the next challenge
in the EoR experiment: the performance of individual elements.
We describe the errors introduced by broken dipoles in the MWA
and make an informed estimate on the contamination we expect.
In Section 2, we discuss calibration, source subtraction, and signal
estimation; in Sections 3, 5, and 6 we derive the covariance matrices
that describe our errors, propagate those forward to our gain
solutions, and combine the two to derive the frequency structure of
the calibrated residuals, respectively. In Section 7, we present results
from the derived framework, we compare sky and beam modelling
errors, compare the results to a fiducial EoR signal, and we estimate
the impact of broken dipoles in the MWA EoR experiment. We
discuss the applicability of this framework to other sources of error,
and the implications of these results in an EoR context in Section 8.

Throughout this paper, our notation is as follows: lowercase bold
letters v describe vectors, uppercase bold letters C describe matrices,
† denotes the Hermitian transpose, ∗ denotes complex conjugation,
and i is the imaginary unit.

2 EOR SIGNAL ESTIMATION W ITH GAIN
C A L I B R AT I O N ER RO R S

The aim of calibration is to mitigate all effects that inhibit us
from estimating the true sky intensities I (l, ν), where l is the sky
coordinate vector and ν is the observing frequency. In the flat
sky approximation, we can relate the sky intensity I (l, ν) to the
complex visibilities V (u, ν) measured by a pair of antennas in an
interferometer with baseline separation u through

V (u, ν) =
∫

gpg
∗
q bp(l, ν)b∗

q(l, ν) I (l, ν) e−2πiu·l d2l, (1)

where gp is the complex-valued gain of antenna p, and bp(l, ν) is
the corresponding beam voltage response. There are currently two
popular methods of calibration: sky-based calibration and redundant
calibration.

Sky-based calibration uses a model of the beam and the sky
intensity to predict the visibilities Vpq measured by a pair of antennas
p and q, and uses these model visibilities to solve for the unknown
antenna gains gp by minimizing the squared differences (L2-norm)
between the model and the data:

χ2 =
∑

pq

∣∣∣V data
pq − gpg

∗
qV

model
pq

∣∣∣2
. (2)

Redundant calibration relies on having multiple identical base-
lines in arrays with a regular layout. These copies measure the
same visibility, and therefore minimizing the difference between

the visibilities by varying the antenna gains in such groups allows us
to find both the unknown antenna gains gp and unknown redundant
visibilities V true

α without the need for a sky model.

χ2 =
∑

α

∑
pq,α

∣∣∣V data
pq − gpg

∗
qV

true
α

∣∣∣2
. (3)

In general, these gains, or antenna responses, are direction
dependent, i.e. they can capture deviations from the beam model or
distortions by the ionosphere. A direction-dependent calibration
approach is, however, limited by the number of directions it
can solve for. This limit is set by the number of bright sources
available for calibration and computational costs. The number of
directions ranges from 5 to 100 for current calibration pipelines.
Throughout this work, we focus on the direction independent gains
as a simplification of the problem, noting that we can describe
uncorrected directions by the same perturbative approach we are
taking. The direction independent gains describe the global response
of the antenna and signal chain. Redundant calibration is inherently
unable to solve for direction dependent effects.

In general, sky models are incomplete, redundant arrays have
position errors, and there are variations in the antenna response. We
can write our measured complex visibilities V, in the most general
way, as a sum of a model m, residuals r that encompass errors on
our model due to unmodelled sources, beam response variations,
or even low-level Radio Frequency Interference (Wilensky et al.
2019), EoR signal s, and thermal noise n;

Vpq = gpg
∗
q

(
mpq + rpq + spq

) + npq. (4)

When we have data of the form in equation (4) and we calibrate
using an incomplete model m, we inherently get incorrect gain
estimates ĝp = gp + δgp due to the presence of the residuals. When
we apply these gain estimates to the data, see equation (5), we get
corrected visibilities V̂ that contain corruptions that inhibit us from
detecting the EoR signal (Barry et al. 2016; Patil et al. 2016; Ewall-
Wice et al. 2017). In general, we can ignore the EoR signal at the
calibration step because it is several orders of magnitude weaker
than the noise and the foreground residuals:

V̂pq = gpg
∗
q

(
mpq + rpq + spq

) + npq

ĝpĝ∗
q

. (5)

After correcting the data, we subtract the sky model. In practice, it
is subtracted as part of an iterative calibration process, i.e. ‘peeling’
(Noordam 2004). This leaves us with estimated data residuals r̂ that
contain, amongst others, the EoR signal

r̂pq = gpg
∗
q

(
mpq + rpq + spq

) + npq

ĝpĝ∗
q

− mpq. (6)

From these residuals, we estimate the 21-cm PS. However,
equation (6) contains more than the cosmological signal of interest
and we will derive the covariance matrix of the additional residuals
to understand their impact on our estimate of the 21-cm PS. We
will study these errors from a PS perspective and our approach is
as follows:

(i) We first compute the data residual covariance matrix
Cr(u, ν, ν ′) within a PS bin u over different frequencies. Specifically,
we derive the contribution of beam errors due to broken dipoles (see
Section 3).

(ii) We then use this to compute an approximation of the gain
error covariance matrix Cg. Instead of computing the gain error per
antenna, we compute averaged gain error covariance matrix for each
PS bin (see Section 5).
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(iii) Finally, we combine the two results to derive the covariance
matrix of the gain-calibrated and source-subtracted residuals Cr̂ (see
Section 6).

To estimate how each error contributes to a bias in the EoR PS,
we propagate these covariances from frequency–space forward to
PS space. A Fourier transform over frequency is a linear operation
that can be described by a complex matrix F applied to our complex
data vector containing frequency data. Hence, the covariance of
the Fourier transformed data can be computed using standard linear
error propagation: FyCF. The variance of this propagated covariance
matrix describes the added power due to these errors. The off-
diagonals describe how this power correlates between different
Fourier modes.

3 TH E R E S I D UA L C OVA R I A N C E M AT R I X

In this section, we derive the different contributions to the residual
covariance matrix Cr. To derive these matrices, we start with the
general covariance of visibilities:

Cr = Cov[V (u, ν), V (u′, ν ′)]. (7)

To derive the residual covariance Cr, we assume we can separate
this into a covariance between different baselines, and a covariance
within a given baseline between different frequencies (Liu, Par-
sons & Trott 2014). In general, baselines with a separation |u1 − u2|
larger than the size of the Fourier transform of the primary beam
decorrelate, and it suffices to compute the frequency covariance
alone per u-bin.

We consider three contributions to the residual covariance: the
covariance due to the sky Csky that describes the error due to
unmodelled sources, the noise covariance Cn that describes the error
due to thermal noise, and the beam covariance Cbeam that describes
the error due to deviations from the ideal beam model:

Cr = Csky + Cbeam + Cn. (8)

The noise covariance is independent from all other terms, and its
structure is well known. We will not discuss it further in this paper.

3.1 Sky covariance matrix

The sky covariance matrix Csky for a baseline at different frequencies
has been well studied (Liu & Tegmark 2011; Dillon et al. 2013;
Trott et al. 2016; Murray et al. 2017). It describes the noise due to
unmodelled sources and how this noise correlates between different
frequency channels. We assume that an infinitesimal patch of sky
d2l contains a number of sources drawn from a Poisson distribution
Ñ ∼ Poisson(dN/dSdSd2l). The intensity of this patch is given by
the first moment μ1 of the source count distribution:

μn =
∫ Smax

0
Sn dÑ

dS
dS. (9)

We model the differential source counts dÑ/dS with a broken
power-law model (Di Matteo et al. 2002; Ewall-Wice et al. 2017;
Murray et al. 2017) to match observations in different flux regimes
at low frequencies (Gervasi et al. 2008; Intema et al. 2011; Franzen
et al. 2016; Williams et al. 2016):

dN

dS
=

⎧⎨
⎩

k1S
−β1 if Slow ≤ S < Smid

k2S
−β2 if Smid ≤ S < Shigh

. (10)

With this broken power-law model, we want to capture the differ-
ence between the distribution of modelled and unmodelled sources.

We use k1 = k2 = 4100, β1 = 1.59, β2 = 2.5, Slow = 100 mJy,
Smid = 1 Jy, and Shigh = 10 Jy. For this model, we assume all
sources above 1 Jy are used in calibration and all sources below that
threshold are unmodelled. This results in the following expression
for the sky covariance matrix:

Csky = 2π
(
f0f

′
0

)−γ
μ2


2 exp (−2π2u2�f 2
2). (11)

Here, μ2 is the second moment of the source count distribution, γ
is the power-law index that models the spectral energy distribution
of each source, f0 = ν/ν0 where ν0 is some reference frequency, e.g.
the lowest frequency in the bandwidth, �f = f0 − f ′

0. Following
the notation of Murray et al. (2017), 
 contains products of the
beam widths σ at different frequencies:


2 = σ 2σ ′2

σ 2 + σ ′2 . (12)

3.2 Beam covariance matrix

Here, we derive the beam perturbation covariance matrix. Similar
to the derivation of the sky covariance, we start out by taking
equation (1) under ideal gains g = 1, and assume we have a modelled
sky intensity I and an unmodelled component δI. We extend this by
adding a perturbation δb to the response of one antenna bp, i.e. bp =
b + δbp. We leave the other antenna responses as perfect:

V (u, ν) =
∫

b(b + δb)∗(I + δI ) × e−2πiu·l d2l. (13)

We have implicitly written the sky, the beam, and their per-
turbations as functions of sky coordinate l and frequency ν for
brevity. The extra source of noise δV (u, ν) is the sum of unmodelled
components in the visibility:

δV (u, ν) =
∫ (

bδb∗I + bb∗δI + bδb∗δI
)

e−2πiu·l d2l. (14)

In this derivation, we assume the beam perturbation δb, the
modelled sky intensity I, and unmodelled sky δI are random
variables. We rewrite equation (7) by dividing the sky in voxels
and write equation (14) as

δV (u, ν) =
∑

p

(
bpδb

∗
pIp + bpb

∗
pδIp + bpδb

∗
pδIp

)
e−2πiu·lp d2lp.

(15)

Combining equations (7) and (15), we rewrite the covariance
as the sum of the covariances between the Fourier transforms of
different sky voxels p and q:

Cr =
∑

p

∑
q

Cpq, (16)

where the covariance between different voxels is given by

Cij = Cov
[ (

bpδb
∗
pIp + bpb

∗
pδIp + bpδb

∗
pδIp

)
e−2πiu·lp d2lp,

×
(
b′

qδb
′∗
q I ′

q + b′
qb

′∗
q δI ′

q + b′
qδb

′∗
p δI ′

q

)
e−2πiu′ ·lq d2lq

]
. (17)

If we extract the constant terms from the covariance, we can focus
on the stochastic terms, i.e. the modelled and unmodelled fluxes,
and the beam perturbations.

Cij = bpb
′∗
q e−2πi(u·lp−u′ ·lq) × Cov

[
δb∗

pIp + b∗
pδIp

+ δb∗
pδIp, δb

′∗
p I ′

p + b′∗
p δI ′

p + δb′∗
p δI ′

p

]
. (18)
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Using the formal definition of the covariance, Cov[X, Y] = 〈XY〉
− 〈X〉〈Y〉, and assuming δb, I, and δI are independent we can expand
this further and simplify (see Appendix B):

Cij = bpb
′∗
q e−2πi(u·lp−u′ ·lq) ×

(〈
δb∗

pδb
′
q

〉
Cov

[
Ip, I

′
q

]

+
(
b∗

pb
′
q + b∗

p

〈
δb′∗

q

〉
+

〈
δb∗

p

〉
b′∗

q +
〈
δb∗

pδb
′
q

〉)

× Cov
[
δIp, δI

′
q

]
+ (〈Ip〉〈Iq〉 + 〈Ip〉

〈
δI ′

q

〉
+ 〈δIp〉

〈
I ′

q

〉

+ 〈
δIp〉〈δIq〉

)
Cov

[
δb∗

p, δb′∗
q

] )
. (19)

Using the source count distribution that describes the number of
sources in a flux bin, we can write Cov[Ip, Iq] as

Cov[Ip, Iq] = (
f0f

′
0

)−γ

∫
SpSqCov[Np, Nq]dS. (20)

However, because different parts of the sky are independent
realizations of a Poisson distribution, Cov[Np, Nq] reduces to
the mean for the same sky voxel (δijdN/dS). The third term in
equation (19) then results in the unmodelled sky covariance Csky,
see equation (11). The remaining terms will be grouped in the beam
covariance matrix Cbeam.

Combining equations (16) and (15), and integrating this over the
sky and all fluxes S we get

Cr = Csky + Cbeam, (21)

where the full form of the beam covariance matrix is given by

Cbeam = (
f0f

′
0

)−γ
μ2,m

∫ 〈
δb∗(l, ν)δb(l, ν ′)

〉
× b(l, ν)b∗(l, ν ′)e−2πi(u−u′)·l d2l

+ (
f0f

′
0

)−γ
μ2,r

∫ (
b∗ 〈δb′∗〉 + 〈

δb∗〉 b′∗ +
〈
δb∗δb

′〉)

× b(l, ν)b∗(l, ν ′)e−2πi(u−u′)·l d2l

+ (
f0f

′
0

)−γ
(μ1,m + μ1,r)

2

“
Cov[δb∗(l, ν), δb∗(l ′, ν ′)]

× b(l, ν)b∗(l ′, ν ′)e−2πi(u·l−u′ ·l ′)d2ld2l ′. (22)

To summarize, the beam covariance has three contributions:

(i) The first contribution comes from the modelled sources and
effectively describes the residuals due to subtraction of those
sources with an incorrect beam model.

(ii) The second term describes how the noise from the unmod-
elled sources Csky is modified by the beam perturbations.

(iii) The last term describes the added covariance due to correla-
tions between different parts of the beam.

The flux density of the sky is uncorrelated between different
locations on the sky. However, because changes in the beam are
in general correlated up to some correlation length, this introduces
additional noise set by the mean flux of the sky. This last term is only
important on |u|-scales on the order of this correlation length, i.e
the diameter of the antenna. In general, Cbeam is zero if the antenna
response is ideal or more generally when the modelled response
is equal to the actual response. The solution to the integrals in
equation (22) depends strongly on the form of beam perturbation.

Figure 1. The number of MWA tiles with one broken dipole in a po-
larization, and the number of tiles with two broken tiles in two different
polarizations over several years of MWA EoR data.

4 TH E P H A S E D A R R AY B E A M MO D E L

We now derive the beam covariance matrix Cbeam for the ‘missing’
dipole case in an MWA tile. The MWA consists of 128 tiles, and
each tile is a 4 × 4 array of dipoles on a ground screen. The detailed
steps of the derivation can be found in Appendix C. Here, we will
only discuss the important steps for brevity. To derive the covariance
of visibilities due to beam perturbations, we start out with the formal
description of the beam response of a phased array btile consisting
of N dipoles on a ground screen:

btile = bdipole ×
N∑

n=0

wn exp [−2πixn · l/λ] . (23)

In this description, we assume that the individual element electric
field responses bdipole are identical, and we can then multiply this
single element beam with the array factor to create a compound
beam. In this array, factor wn is the element weight. For the zenith
pointings considered in this work, these weights range from 0 to 1,
however, in general these weights are complex. xn is the location
of the nth element with respect to the centre of the phased array.
For simplicity, we approximate the full tile beam as a frequency-
dependent Gaussian, following

btile = exp[−|l|2/2σ 2(ν)]. (24)

We define the width of the voltage beam as σ = √
2εc/Dν with

ε = 0.42. We re-scale an Airy disc to a Gaussian width using ε and
assume an MWA tile diameter of D = 4 m. The factor

√
2 ensures

that the square of the voltage beam is consistent with descriptions
of the beam used in the literature.

4.1 A broken MWA dipole

Although there are many ways in which we can perturb the beam
response, a common and relatively straightforward perturbation
is the broken dipole case. Fig. 1 shows the number of tiles with
either one broken dipole in the X- or Y-polarizations, or two broken
dipoles, one in each polarization, for EoR observations over the
past years. MWA tiles that have more than one broken dipole in the
same polarization will be flagged and their data are not used. At
most 50 of 128 tiles have been marked as having one broken dipole.
Throughout this paper, we choose a lower limit in this, adopting 25
broken dipoles that corresponds to ∼ 30 per cent of the visibility
data.

We describe the broken dipole perturbation to the beam δb by
subtracting the contribution of a missing dipole:1

δb = −bdipole × wbroken exp [−2πixbroken · l/λ] . (25)

1We explicitly consider phase offsets due to missing dipoles.
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We approximate the response of the missing dipole towards the
sky by a Gaussian, with a diameter D that is one-fourth of the full
tile, and a weight wbroken = 1. This is equivalent to completely
removing the dipole. To appropriately account for the contribution
of a single dipole relative to the response of an N-element phased
array, we normalize the dipole response by N:

δb = 1

N
e−2πixn·l/λbdipole. (26)

We now have all the tools to derive the specific structure of
Cbeam for the missing dipole case. We refer interested readers to
Appendix C for details of this derivation, here we discuss results
and implications for the 2D-PS.

Fig. 2 shows the 2D-PS for a 30 MHz bandwidth centred at
150 MHz with 251 frequency channels of the unmodelled sky
variance, the beam variance, and the total variance in cosmological
units (see Appendix A for the conversion between frequency
covariance matrices and the PS). To show all effects due to beam
modelling errors, we have extended the range of k⊥ beyond the
conventional EoR range. The overall structure of the foreground
wedge has not changed drastically, but if we look at the beam
covariance component alone, we see that including beam modelling
errors changes the noise in three regions. At small k⊥, corresponding
to baseline lengths shorter than the physical dimensions of an MWA
tile, we see the contribution due to the correlations from different
parts in the beam. We also see that there is overall less power in
the wedge because the missing dipoles decrease the sensitivity of
the array as a whole, and we therefore see less of the foregrounds.
Finally, we see the residuals of the modelled foregrounds on the
edge of the foreground wedge. The largest relevant change due to
missing dipoles is in this region, and is dominated by sources in
the sidelobes. Note: beam errors do not intrinsically contaminate
the EoR window, any visible excess is leakage due to the first
sidelobe of the Fourier transform of the Blackman–Harris window
(see Appendix A).

5 TH E G A I N E R RO R C OVA R I A N C E M AT R I X

Now that we have expressions for the data residuals, we explore
how they propagate to the gain solutions during calibration. We
derive the covariance matrix of the averaged gain error δg within a
PS bin u. Sky model based calibration aims to solve

ĝpĝ
∗
qmpq = gpg

∗
q (mpq + rpq). (27)

We can rearrange this to solve2 for the ratios of true and estimated
gain solutions ĝp = gp + δgp on the left-hand side, and total signal
over model visibilities on the right-hand side:

ĝpĝ
∗
q

gpg∗
q

= (mpq + rpq)

mpq
. (28)

We assume ideal gains gp = 1, and that the gain error is small
δgp � gp = 1 for all p. Most of the signal is contained in the sky
model, and the residuals are much smaller, and we can therefore
expect small gain errors:

δgp + δg∗
q = rpq

mpq
. (29)

2To solve this system, we need to split each entry into its imaginary and real
component, and set a reference antenna. We compute all errors relative to
that reference antenna, implying that the reference antenna should be error
free or close to.

Applying this to all baselines and corresponding antenna gain
errors yields a system of equations that can be rewritten in matrix
form Ax = y. The vector y contains the residual-to-model ratios
rpq/mpq, and the vector x contains the gain errors δgp. The array
matrix A relates a baseline to the antennas that it is made up from.
Its (pseudo-)inverse A−1 tells us how much each ratio rpq/mpq in a
baseline contributes to an error in a gain solution δgp. It also implies
that the gain error δgp is a weighted sum of the residual-to-signal
ratio in each baseline:

δgp =
∑

n

1

wpn

rn

mn

. (30)

Here, the weights win are the entries of the inverse of the array
matrix A−1, where the index n runs over each baseline (instead
of ij). To compute the gain error covariance matrix Cg , we need
to compute Cov[δg, δg

′
]. Noting that equation (30) is a sum over

different baselines, which in general fall in different u-bins, and
assuming the covariance between different baselines is zero leaves
us with

Cg =
∑

n

1

w2
n

Cov

[
rn

mn

,
r ′
n

m′
n

]
. (31)

Instead of computing the covariance of a ratio of random
variables, we approximate equation (31) by replacing the model
signal m with the r.m.s. of the modelled sky f

−γ

0
√

μ2,m. This
simplifies the expression for the gain error covariance matrix Cg.
Fig. 3 shows 10 000 visibility amplitude realizations of a stochastic
sky, the amplitude of the mean visibility, the mean of the realized
visibility amplitudes, and the sky r.m.s. From this we conclude that
the sky r.m.s. provides a reasonable approximation to the modelled
visibility mn. We replace the modelled visibility mn with f

−γ

0
√

μ2,m,
yielding

Cg =
(
f0f

′
0

)γ

μ2,m

∑
n

1

w2
n

Cov
[
rn, r

′
n

]
. (32)

We study how data in one bin u1 contributes to the error in a
calibrated bin u2; knowing that each baseline contributes to some
gain solutions, each gain solution is applied to the data, and finally
these data are binned into |u|-bins. Instead of deriving what the gain
error is on a single baseline, we derive how all uncalibrated PS bins
change the structure of a calibrated bin through the ‘averaged gain
covariance’.

In our linearized approximation, each antenna gain error is a
sum of (N − 1) baseline errors, i.e. all baselines in which that
antenna participates. Each baseline therefore contributes ∼1/(N −
1) to the gain solutions of the antennas it participates in. We smear
this contribution out over all baselines, assuming each baseline
contributes ∼1/Nb(N − 1) to all gain solutions. Two of these antenna
errors then propagate to a calibrated baseline. We compute the
number of baselines in an uncalibrated bin that see baselines in a
calibrated bin and relate that to the error weights w(u), following:

w(u) = 1

N − 1

Nb(u)

Nb(total)
. (33)

For an unrealistic array with perfect uniform uv-coverage, the
number of baselines drops out, and the weights are w = 1/Nbins(N −
1). For the MWA, we compute the actual distribution of baselines
binned in the same way we bin all k⊥.

In Fig. 4, we show the binned MWA baselines, the variance of the
Fourier transformed gain covariance assuming a uniform baseline
distribution, and the Fourier transformed gain covariance for MWA
Phase II Compact. For a uniform baseline distribution, the variance
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Figure 2. The unmodelled sky covariance (left), the change in the covariance due to addition of beam perturbations to the covariance (middle), and the
resulting total covariance (right). We show the 2D-PS for a 30 MHz bandwidth centred at 150 MHz with 251 frequency channels. Removing dipoles primarily
takes away power from the wedge because the array is less sensitive. However, this leaves us with modelled foreground residual power as those sources are
incorrectly subtracted. This effect manifests itself primarily at the edge of the primary beam (or in the sidelobes of realistic phased arrays). This indicates
contamination comes primarily from broken dipoles at the edge of a tile. The changing shape of the beam due to broken dipoles is a fairly large-scale effect,
both spatially and in frequency. Hence, it introduces power only at the the smallest k⊥ and k�.

Figure 3. 10 000 realizations of a stochastic sky and their amplitude
across different u-scales. The average amplitude of all realization (blue),
the amplitude of the average visibilities (orange), the amplitude of each
individual realization (black), and the expected sky r.m.s. for a power-
law distributed poisson sky (the dashed green). On average all baseline do
measure some signal, which is reasonably approximated the expected sky
r.m.s.

is the same for each k⊥-bin; however, for the MWA the structure
of the variance is different depending on how much it is coupled to
other scales. In the next section, we demonstrate that this variance of
the gain error effectively becomes a convolution window that smears
out power from the foreground wedge into the EoR window.

6 TH E G A I N C O R R E C T E D R E S I D UA L
C OVA R I A N C E M AT R I X

After obtaining our gain estimates ĝ, we apply them to the data
and subtract our model visibilities m. This leaves us with our
residual estimates r̂ from which we aim to detect the EoR signal, see
equation (6). We assume the errors on our gains solutions are small

δgp/gp � 1, enabling us to Taylor-expand ratios between our true
gain solutions and the estimates gp/ĝp. Grouping terms in products
with either the model m or the residuals r results in

r̂pq = −
(
δgp + δg∗

q

)
mpq +

(
1 − δgp − δg∗

q

)
rpq. (34)

When we estimate the EoR signal, we grid and average these
residual visibilities on to a uv-grid before Fourier transforming along
the frequency direction. We now want to compute the covariance of
the averaged gridded residuals to understand the full impact of sky
and beam modelling errors on the 21-cm PS:

Cr̂(u, ν) = Cov[r̂, r̂ ′]

= 〈r̂ r̂ ′y〉 − 〈r̂〉〈r̂ ′〉y . (35)

Equation (34) keeps track off individual antenna p and q and
how they impact a baseline. However, we are interested in the
covariance of calibrated and model-subtracted data binned at scale
u. The details of these final steps can be found in Appendix D. Here,
we only describe the general assumptions we made. To derive the
covariance structure, we see the gains gp and gq as two realizations
of a random variable within a |u|-bin, i.e. the two gain errors are
independent. We also assume the gain error is independent of the
model and data residuals of a certain u-bin. We justify the latter
assumption because the gain error on a baseline or a u-bin is a linear
combination of the residuals of different baselines. We already
assumed that residuals in different u-bins are uncorrelated. This
implies that a sum of residuals over different u-bins decorrelates
with the residuals of a single u-bin (if we include sufficiently
independent residuals). We therefore assume that the gain error
is independent of the residuals of the u-bin in which are computing
the covariance of the calibrated residuals Cr̂ . When we combine
equations (34) and (35), we can safely drop the expectation values
of the estimated residuals 〈r̂〉 because they integrate to zero for
baselines longer than the tile diameter. Under these assumptions,
the covariance of calibrated data residuals reduces neatly to

Cr̂ = 2Cg � Cm + (1 + 2Cg) � Cr . (36)

This final equation compactly describes how calibration propagates
errors on our data model into the data product from which we
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Figure 4. (left) A histogram of MWA Phase II compact baselines binned into power spectrum bins. The spikes arise from the redundant hexagons that produce
many multiples of the same baselines. (middle) The Fourier transformed gain variance for an array with uniform uv-coverage with sky-only, and sky and beam
errors. (right) The Fourier transformed gain variance for an MWA Phase II compact uv-coverage for sky model errors only.

estimate an EoR signal. A product of covariance matrices is a fairly
unusual expression. In this specific case, Cg describes how much
of the original covariances – the model or residual covariance –
remain and how the correlation between different frequencies is
changed. It is a product in PS space, and therefore becomes a
convolution, between the gain error and either the model covariance
Cm or Cr, in the PS and that smears out power from the foreground
wedge throughout the PS. How much power is actually smeared out
depends strongly on the errors that cause this correlation in the gain
estimates.

7 R ESULTS

Now that we have a relatively simple expression that describes the
covariance of calibrated data residuals Cr̂ , we first apply this to
an array with identical tile beams, i.e we consider unmodelled sky
noise only, to compare with earlier studies on this problem. We then
include beam errors to study how this extra source of modelling
errors introduces contamination into the EoR window. We then
compare these results to a fiducial EoR signal. We have taken a 1D-
PS for a faint galaxy driven model at redshift z ∼ 8 from Mesinger,
Greig & Sobacchi (2016), and deprojected it into a 2D-PS assuming
spherical symmetry, see Fig. 5. The code that generated the results
presented here is publicly available, see Joseph (2019).

7.1 Sky model errors

Fig. 6 shows the data residuals after calibration and model subtrac-
tion on the left, the difference between uncalibrated and calibrated
residuals in the middle, and the ratio between that difference and our
fiducial EoR signal on the right. The difference plot clearly shows
the contamination into the EoR window introduced by the structure
of the calibration errors. The additional bias we reproduce is similar
to the results by Barry et al. (2016) and Ewall-Wice et al. (2017),
demonstrating that our formalism neatly reproduces earlier results.
Here, we have only reproduced the results that describe the impact of
unmodelled sources on a per frequency channel calibration strategy.
We have not incorporated the mitigation strategies proposed to
suppress excess noise due to these unmodelled sources. However,
we note that the expected signal is strongest at the lowest k-modes
hence mitigating leakage due to calibration is particularly important
at these scales.

Figure 5. Fiducial EoR PS at redshift 8. We create this 2D-PS by
deprojecting a 1D EoR PS, where the reionization process is driven by
faint galaxies (Mesinger et al. 2016).

7.2 Comparing sources of error

We now apply this to data residuals including the beam covariance
matrix Cbeam. Fig. 7 shows the variance of the sum of calibrated
residuals, the difference with calibrated sky model only errors (the
left most PS in Fig. 6), and the ratio of this difference with a fiducial
EoR signal. We see that the introduction of beam modelling errors
adds power to the edge of the wedge as noted earlier in Fig. 2. Now
that we also include calibration, it smears out power further into the
EoR window, causing a relative drop in power in the EoR window.
This is not too surprising because Fig. 4 shows that beam errors
changes the structure of the gain errors, such that they extend to
larger k�.

Ultimately, we want to estimate the expected contamination in
the EoR window due to these errors under realistic circumstances.
Fig. 1 shows the number of broken MWA tiles during EoR obser-
vations, and from this we estimate ∼ 30 per cent of our visibility
measurements to be contaminated. We appropriately down weight
the beam covariance term Cbeam with a factor of 0.32; one factor for
both frequencies. We also use the baseline distribution in Fig. 4 to
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Figure 6. Comparing calibrated and uncalibrated residuals. Left: Calibrated and subtracted residuals with unmodelled sky noise only. Middle: Difference
between calibrated and uncalibrated residuals. Right: Ratio between the difference and a fiducial EoR PS.

Figure 7. Comparing calibrated residuals with sky only and both sky and beam errors. Left: Calibrated Sky and Beam error residuals. Middle: Difference
with Calibrated sky only residuals. Right: Ratio between difference and a fiducial EoR PS. Calibration in the presence of unmodelled sources adds significant
contamination into the EoR window.

properly weight the covariance of each u-scale when we compute the
gain error covariance matrix. Fig. 8 shows the expected results for an
MWA-like data set. Down weighting the beam covariance changes
the structure of the gain covariance in a way that the leakage does not
extend that far into the EoR window. Nevertheless, the additional
contamination is still on the order of the expected EoR signal.

8 D ISCUSSION

The structure of the beam errors presented here is dominated
by incorrectly subtracted sources towards the horizon. This hints
that frequency structure mitigating techniques should rid us of
most of the additional power due to beam modelling errors.
Barry et al. (2016) discussed these techniques after finding that
incomplete sky models cause foreground power to be convolved
with erroneous calibration solutions. They compute an expected
level of contamination due to sky modelling error consistent with
their simulation on the order of ∼ 107mK2 h−3 Mpc−3. We estimate
contamination due to beam modelling errors to be 3 orders of
magnitude lower than this. Patil et al. (2016) suggest multifrequency
calibration as a way around this. Multifrequency calibration can
enforce spectral smoothness on the solutions through a smoothness
reguliser (Yatawatta 2015), and subsequently decrease the variance

reducing contamination of the EoR window. However, using all
frequency information is computationally challenging and requires
appropriate software architecture to overcome limited compute
power (Yatawatta et al. 2017).

Ewall-Wice et al. (2017) derived the structure of the gain
corrected residuals by keeping track of the baseline ordering. This
leads them to directly relate the contamination from the longest
baselines into the shorter baselines. When we compute the averaged
gain covariance (equation 30), we take the average of the residuals
covariances at different k⊥ bins to describe the same effect. They
suggest down weighting the longer baselines during calibration,
as these baselines are the source of spectral contamination. On
the other hand, Patil et al. (2016) suggest excluding the shortest
baselines for which we currently lack accurate models of the
diffuse foregrounds. However, they also demonstrate that excluded
baselines suffer from enhanced noise after calibration. Creating
diffuse sky maps similar to Eastwood et al. (2018) for the southern
sky between ν ∼ 35–70 MHz is therefore crucial for accurate
calibration. However, in future work we should also consider
contamination from short baselines on which diffuse emission from
the galaxy dominates due to the lack of such models.

This framework we derived can also be used to study the impact
of non-redundancies on redundant calibration, i.e. the antenna
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Figure 8. Expected MWA data contamination: Comparing calibrated residuals with sky only and both sky and beam errors. Left: Calibrated Sky and Beam
error residuals. Middle: Difference with Calibrated sky only residuals. Right: Ratio between difference and a fiducial EoR PS.

position errors and beam variations. However, redundant calibration
ultimately needs some external information to set overall gain
parameters, e.g. absolute amplitudes and phase gradients (see
Wieringa 1992; Liu et al. 2010) for more details. Byrne et al.
(2019) show that incomplete sky models fundamentally limit the
accuracy of redundant calibration solutions due to limitations in
sky-model-based calibration. We expect this to be exacerbated by
beam modelling errors that push power further into the window.
Orosz et al. (2019) simulate redundant calibration for HERA
including non-redundancies. They find that beam variations severely
contaminate the EoR window. In future work, we will study what
actually poses the largest hurdle to redundant arrays: inherent non-
redundancies or incomplete sky models.

Li et al. (2018) study for the first time how redundant calibration
and sky model calibration can be used optimally in MWA Phase
II compact. They demonstrate that adding redundant calibration
improves their results. In an effort to bridge the gap between
redundant and sky-based calibration, Sievers (2017) developed the
‘correlation calibration’ framework that incorporates uncertainties
on calibration models, e.g. sky model incompleteness, position
offsets, and beam variations. There are currently tentative re-
sults that this is a very promising path forward; however, more
work is required to properly compare this to current calibration
techniques.

Similar to earlier theoretical work we have not considered the
non-Gaussian nature of the noise discussed by Kazemi & Yatawatta
(2013), Ollier et al. (2017), and (Ollier et al. 2018). In this work,
we study the impact of the variance as the PS only sensitive to that.
It is therefore not unreasonable to expect that the results presented
here underestimate the level of contamination. We have also not
considered mitigation strategies for EoR window contamination.
In our estimation of added contamination due to beam modelling
errors, we overestimate the expected errors for the MWA EoR
experiment. Both MWA EoR pipelines RTS/CHIPS (Mitchell et al.
2008; Trott et al. 2016) and FHD/εppsilon (Sullivan et al. 2012;
Jacobs et al. 2016; Barry et al. 2019) incorporate direction-
dependent calibration. RTS/CHIPS uses information about broken
dipoles explicitly to better model individual MWA tile beams. Simi-
larly, many other calibration pipelines perform direction-dependent
calibration. However, we need to further quantify how much the
responses vary from across an array similar to Line et al. (2018),
and how well direction-dependent calibration captures variations in

the beam to better estimate the expected contamination due beam
modelling errors. Given the order of magnitude in which beam
modelling errors manifests themselves, it seems very plausible that
these errors are potentially our next systematic.

9 C O N C L U S I O N S

Inspired by earlier theoretical work in this field, we have derived a
relatively intuitive framework that neatly describes contamination
in the EoR window due to calibration. We have reproduced earlier
results and computed expected errors introduced by beam modelling
errors. In this work, we have specifically focused on broken dipoles
in the MWA as a perturbation to the model beam because this a
relatively straightforward example. However, our results are appli-
cable to a wide range of modelling errors, e.g. more complex beam
variations and signal path variations, if analytic descriptions exists
for these. We estimate that ∼ 15–40 per cent of the MWA tiles have
at least one broken dipole. We have made a rough estimate on the
order of magnitude ∼ 103 mK2 h−3 Mpc3 in which contamination
by beam modelling errors manifests itself. These numbers are only
indicative and we need to further quantify beam variations in situ
and determine how well current calibration techniques are able to
account for this. However, we expect that these beam errors could
potentially be our next limiting factor in the EoR experiment.
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A P P E N D I X A : PRO PAG AT I N G C OVA R I A N C E
MATRI CES TO POWER SPECTRU M SPACE

In this paper, we derive covariance matrices that describe residuals
in PS space. However, we are interested in the structures of residuals
in PS space (u, η). Normally, we apply a frequency taper � to
our data before Fourier Transforming our data. To compute the
covariance in PS space, we use the following transformation:

C̃ = Fy�(ν)C�(ν ′)F. (A1)

In this work, we use a Blackmann–Harris function as a taper.
Despite performing extremely well at supressing sidelobes in PS
space. It still has a non-neglible sidelobe within the EoR window,
see Fig. 2. This window function is also used in current MWA EoR
pipelines.

A P P E N D I X B: TH E B E A M C OVA R I A N C E
MATRI X

Starting from equation (18), we can write out the cross-terms in the
covariance matrix Cij .

Cij = bpb
′∗
q e−2πi(u·lp−u′ ·lq ) ×

(
b∗

pb
′
qCov

[
δIp, δI

′
q

]

+ b∗
pCov

[
δIp, δb

′∗
q I ′

q

]
+ b∗

pCov
[
δIp, δb

′∗
q δI ′

q

]

+ b′
qCov

[
δb∗

pIp, δI
′
q

]
+ Cov

[
δb∗

pIp, δb
′∗
q I ′

q

]

+ Cov
[
δb∗

pIp, δb
′∗
q δI ′

q

]
+ b′

qCov
[
δb∗

pδIp, δI
′
q

]

+ Cov
[
δb∗

pδIp, δb
′∗
q I ′

q

]
+ Cov

[
δb∗

pδIp, δb
′∗
q δI ′

q

])
. (B1)

Using the formal definition of the covariance and the properties
of the modelled component of the stochastic sky I, the unmodelled
component of the sky δI, and our beam perturbations δb, i.e. the
sources that contribute to the intensity about the noise level are
independent of the unmodelled sources. So, we can further write
out equation (B1).

The first term results into the unmodelled sky covariance matrix
Csky in equation (11). The second term becomes zero because we
can separate the averages over the modelled sky, the unmodelled
sky, and the beam perturbation, which then cancel each other out:

b∗
pCov

[
δIp, δb

′∗
q I ′

q

]
= b∗

p

(〈
δIpδb

′∗
q I ′

q

〉
− 〈δIp〉

〈
δb′∗

q I ′
q

〉)

= b∗
p

(
〈δIp〉

〈
δb′∗

q

〉〈
I ′

q

〉
− 〈δIp〉

〈
δb′∗

q

〉〈
I ′

q

〉)
= 0. (B2)
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The third term describes a contribution to the modified sky
noise because the shape of the beam has been changed by a
perturbation:

b∗
pCov

[
δIp, δb

′∗
q δI ′

q

]
= b∗

p

(〈
δIpδb

′∗
q δI ′

q

〉
− 〈δIp〉

〈
δb′∗

q δI ′
q

〉)

= b∗
p

〈
δb′∗

q

〉
Cov

[
δIp, δI

′
q

]
. (B3)

The fourth term becomes zero similar to the second term:

b′
qCov

[
δb∗

pIp, δI
′
q

]
= 0. (B4)

The fifth term describes the covariance between different
parts of the beam, i.e. a beam perturbation generally changes
large portions of the beam, which couples different parts of the
sky:

Cov
[
δb∗

pIp, δb
′∗
q I ′

q

]
=

〈
δb∗

pδb
′
q

〉
Cov[Ip, I

′
p] + 〈Ip〉〈Iq〉

× Cov
[
δb∗

p, δb′∗
q

]
. (B5)

The sixth term describes can also be rewritten as the covariance
between different parts of the beam:

Cov
[
δb∗

pIp, δb
′∗
q δI ′

q

]
= 〈Ip〉

〈
δI ′

q

〉
Cov

[
δb∗

p, δb′∗
q

]
. (B6)

The seventh term describes the modification to the sky noise due
the perturbation of first frequency:

b′
qCov

[
δb∗

pδIp, δI
′
q

]
=

〈
δb∗

p

〉
b′∗

q Cov
[
δIp, δI

′
q

]
. (B7)

The eight’ term describes the added covariance due the beam
perturbations, similar to the sixth term:

Cov
[
δb∗

pδIp, δb
′∗
q I ′

q

]
= 〈δIp〉

〈
I ′

q

〉
Cov

[
δb∗

p, δb′∗
q

]
. (B8)

And finally the last term, similar to the fifth term, describes the
added covariance due to different parts of the beam and how it
couples different parts of the unmodelled sky together:

Cov
[
δb∗

pδIp, δb
′∗
q I ′

q

]
=

〈
δb∗

pδb
′
q

〉
Cov

[
δIp, δI

′
q

]

+〈δIp〉
〈
δI ′

q

〉
Cov

[
δb∗

p, δb′∗
q

]
. (B9)

This leaves us with six additional terms on top of the well-
understood unmodelled sky noise:

Cij = bpb
′∗
q e−2πi(u·lp−u′ ·lq) ×

(〈
δb∗

pδb
′
q

〉
Cov

[
Ip, I

′
q

]

+
(
b∗

pb
′
q + b∗
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〈
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〉
+ 〈
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p

〉
b′∗
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′
q

〉)

× Cov
[
δIp, δI

′
q

]
+

(
〈Ip〉

〈
I ′

q

〉
+ 〈Ip〉

〈
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q

〉
+ 〈δIp〉

〈
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q

〉

+ 〈δIp〉
〈
δI ′

q

〉)
Cov

[
δb∗

p, δb′∗
q

] )
. (B10)

A P P E N D I X C : B E A M VA R I AT I O N S D U E TO
MISSING DIPOLES

First, we need to compute the averaged beam perturbation 〈δb(l, ν)〉
and the averaged product of perturbations 〈δb(l, ν)b(l ′, ν ′)〉. We can
calculate the averaged beam perturbation by simply averaging over
the 16 different beam perturbations, in equation (26). Although it
is possible to write a single expression for these averages using

the geometry of a square MWA tile, however, when we Fourier
transform this we will end up with a sum over the different broken
dipole realizations. Hence, we keep this simple formulation that
describes a general tile layout:

〈δb(l, ν)〉 = − 1

N2
bd

N∑
n=1

e−2πixn·l/λ. (C1)

We can calculate the averaged product of beam perturbations at
different frequencies in a similar fashion:

〈δb(l, ν)δb∗(l ′, ν ′)〉 = 1

N3
bd(l, ν)b∗

d(l ′, ν ′)
N∑

n=1

e2πixn·l/λe2πixn·l ′/λ′

= 1

N3
bd(l, ν)b∗

d(l ′, ν ′)
N∑

n=1

e−2πixn·(l/λ−l ′/λ′).

(C2)

Combining equations (C1), (C2), and (22), we get

Cbeam = CA − CB − CC + CD − CE, (C3)

where all individual covariance components are given by

CA = (μ2,m + μ2,r)
(
f0f

′
0

)−γ

∫ 〈
δb∗(l, ν)δb(l, ν ′)

〉
× b(l, ν)b∗(l, ν ′)e−2πi(u−u′)·l d2l

CB = μ2,r

(
f0f

′
0

)−γ

∫
b∗(l, ν)

〈
δb′∗(l, ν ′)

〉
b(l, ν)b∗(l, ν ′)

× e−2πi(u−u′)·l d2l

CC = μ2,r

(
f0f

′
0

)−γ

∫ 〈
δb∗(l, ν)

〉
b′∗(l, ν ′)b(l, ν)b∗(l, ν ′)

× e−2πi(u−u′)·l d2l

CD = (μ1,m + μ1,r)
2
(
f0f

′
0

)−γ

“ 〈
δb∗(l, ν)δb(l, ν ′)

〉
× b(l, ν)b∗(l ′, ν ′)e−2πi(u·l−u′ ·l ′)d2ld2l ′

CE = (μ1,m + μ1,r)
2
(
f0f

′
0

)−γ

“ 〈
δb∗(l, ν)

〉 〈
δb(l, ν ′)

〉
× b(l, ν)b∗(l ′, ν ′)e−2πi(u·l−u′ ·l ′)d2ld2l ′. (C4)

This leaves us with six integrals to solve. We combine the
covariance terms A − D in equation (C4) with (C1) and (C2), and
write the product of beams, into one single Gaussian. This enables
us to use the Hankel transform for each broken dipole realization:

CA = 2π
2
A(μ2,m + μ2,r )

(
f0f

′
0

)−γ

N3

×
N∑

n=0

exp
(
−2π2
2

A

∣∣u − u′ + xn(1/λ − 1/λ′)
∣∣2
)
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CB = −2π
2
Bμ2,r

(
f0f

′
0

)−γ

N2

×
N∑

n=0

exp
(
−2π2
2

B

∣∣u − u′ + xn/λ
′∣∣2
)

CC = −2π
2
Cμ2,r

(
f0f

′
0

)−γ

N2

×
N∑

n=0

exp
(
−2π2
2

C

∣∣u − u′ + xn/λ
∣∣2
)
. (C5)

Here, we define


2
A = σ 2σ ′2σ 2

d σ ′2
d

σ ′2σ 2
d σ ′2

d + σ 2σ 2
d σ ′2

d + σ 2σ ′2σ 2
d + σ 2σ ′2σ ′2

d


2
B = σ 2σ ′2σ ′2

d

2σ ′2σ ′2
d + σ 2σ ′2

d + σ 2σ ′2


2
C = σ 2σ ′2σ 2

d

σ ′2σ 2
d + 2σ 2σ 2

d + σ 2σ ′2 . (C6)

The fourth and fifth integral require us keep the primed and
unprimed coordinates separate; we then solve the integrals sepa-
rately using the same procedure. Rewrite all beams that observe
the same sky, either l or l

′
into a single Gaussian and perform two

Hankel transforms one over the unprimed and one over the primed
coordinates.

CD = (μ1,m + μ1,r)
2
(
f0f

′
0

)−γ 2π
2
D
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D
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×
N∑

n=0

exp
(−2π2
2

D |u − xn/λ|2)

× exp
(
−2π2
′2

D

∣∣u′ − xn/λ
′∣∣2
)

CE = (μ1,m + μ1,r)
2
(
f0f
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)−γ 2π2
D
′
D

N4

×
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exp
(−2π2
2
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)
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(
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exp
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, (C7)

where


2
D = σ 2σ 2

d

σ 2 + σ 2
d

. (C8)

These six terms together, effectively averaging the error over 16
dipoles form the covariance for a single baseline between different
frequencies. It quantifies the error and how this is error is correlated.

APPENDI X D : LI NEARI ZED G AI N ERRO R
C OVA R I A N C E M AT R I X

Starting from the definition of covariance, we compute 〈r̂ r̂ ′〉 and
〈r̂〉〈r̂ ′〉 to form the residual covariance matrix. Taking equation (34;
we can work out the averaged product assuming the gain error δg is
independent of both m and r within the same u-bin. This is strictly
not true, but because the gain error is a linear combination of several
independent u-bins this is a reasonable approximation:

〈r̂ r̂ ′〉 = 〈(δg + δg∗)(δg′ + δg∗′)〉〈mm∗′〉
− 〈(δg + δg∗)(1 − δg′ − δg∗′)〉〈m〉〈r∗′〉
− 〈(1 − δg − δg∗)(δg′ + δg∗′)〉〈m∗′〉〈m〉
+ 〈(1 − δg − δg∗)(1 − δg′ − δg∗′)〉〈rr∗′〉. (D1)

The product of averages is fairly straight forward to compute, when
we combine both to get the covariance we notice that many terms
will drop out leaving us with

Cr̂ = 〈(δg + δg∗)(δg′ + δg∗′)〉〈mm∗′〉
− 〈(δg + δg∗)〉〈(δg′ + δg∗′)〉〈m〉〈m∗′〉
+ 〈(1 − δg − δg∗)(1 − δg′ − δg∗′)〉〈rr∗′〉
− 〈(1 − δg − δg∗)〉〈(1 − δg′ − δg∗′)〉〈r〉〈r∗′〉. (D2)

This expression looks fairly similar to the product of gain
covariance Cg with either the model covariance Cm or the residual
covariance Cr . Because the mean model visibilities 〈m〉 integrate to
zero at u-scales beyond the diameter of a tile, and similarly for the
residuals 〈r〉 we can all terms that contain these means. Following
a similar argument, we can say that Cg ∼ 〈δgδg′〉, Cm ∼ 〈δmδm′〉,
and Cr ∼ 〈δrδr ′〉. Assuming the gain errors from two antennas are
independent, we can write 2Cg = 〈(δg + δg′)(δg + δg′)∗.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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