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Abstract5

We consider a spatial binary coverage map (binary pixel image) which might6

represent the spatial pattern of presence and absence of vegetation in a landscape.7

“Lacunarity” is a generic term for the nature of gaps in the pattern: a popular8

choice of summary statistic is the “gliding box lacunarity” curve (GBL). GBL is9

potentially useful for quantifying changes in vegetation patterns, but its application10

is hampered by difficulties with missing data. In this paper we find a mathematical11

relationship between GBL and spatial covariance. This leads to new estimators12

of GBL that tolerate irregular spatial domains and missing data, thus overcoming13

major weaknesses of the traditional estimator. The relationship gives an explicit14

formula for GBL of models with known spatial covariance and enables us to predict15

the effect on GBL of changes in the pattern. Using variance reduction methods16

for spatial data, we obtain statistically efficient estimators of GBL. The techniques17

are demonstrated on simulated binary coverage maps, and remotely-sensed maps of18

local-scale disturbance and meso-scale fragmentation in Australian forests. Results19

show in some cases a four-fold reduction in mean integrated squared error and a20

twenty-fold reduction in sensitivity to missing data. Online supplementary material21

includes additional detail and a software implementation in the R language.22

Key Words: forest disturbance; fractal; gliding box; image analysis; random23

set; spatial statistics.24
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1 Introduction25

Figure 1 is a spatial binary coverage map, a binary-valued pixel image showing the pres-26

ence and absence of vegetation in a study region (Diggle, 1981). Statistical analysis of27

spatial coverage maps have important applications in biology, ecology, geography, food28

science, materials science and other fields (Serra, 1982; Stoyan and Stoyan, 1994; Chiu29

et al., 2013).30

[Figure 1 about here.]31

Lacunarity is a generic term for ‘the nature of gaps’ in the pattern (Mandelbrot, 1983,32

§34). One popular choice of summary statistic for lacunarity is the gliding box lacunarity33

(GBL) curve introduced by Allain and Cloitre (1991) and popularised by Plotnick et al.34

(1993, 1996). For two-dimensional spatial patterns X with positive coverage fraction,35

such as Figure 1, the GBL index is36

LpBq :“
E
“

|XXB|2
‰

E r|XXB|s2
“

Var
`

|XXB|
˘

E r|XXB|s2
` 1, (1)

where B is a test set of given shape and size, and | ¨ | denotes the area of a set. Typically37

B is chosen to be a square of side length s, and the index LpBq is plotted as a function38

of s. The expectation and variance in (1) are averages over possible outcomes of the39

random spatial pattern X, or equivalently, averages over random positions of B relative40

to an observed pattern X, as explained in Section 2.2.41

GBL has been applied to soil moisture (Cumbrera et al., 2012), radar echos (Azzaz42

and Haddad, 2017), urban land cover (Myint and Lam, 2005), ham quality (Valous et al.,43

2009), ecosystem services (Roces-Dı́az et al., 2014), landscape evapotranspiration (Liu44

and Zhang, 2010), deforestation (Pintilii et al., 2017), urbanisation (Sung et al., 2013),45

racial segregation (Sui and Wu, 2006), biological tissues (Gould et al., 2011; Shah et al.,46

2016), and crystallisation (Velazquez-Camilo et al., 2010).47

A major limitation of all existing techniques for GBL is the difficulty of applying48

them when the observation window W is not a rectangle (Sui and Wu, 2006) or when49

data are missing for some pixels. In order for the intersection area |X X B| to be mea-50
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sured, the test set B must lie entirely inside the region W where X is observed. The51

gliding-box algorithm of Allain and Cloitre (1991) involves placing a translated copy of52

B at every possible position inside W . If W is not a rectangle, valid positions of B53

may be rare or nonexistent, so that LpBq cannot be computed reliably. However, ob-54

servation windows with complicated geometry arise frequently. Administrative regions,55

property ownership, mining leases, and land management areas are demarcated by irreg-56

ular polygonal boundaries. Irregular shapes are typical of human settlements (Owen and57

University, 2011; Owen, 2012; Sui and Wu, 2006) and slices of physical materials and58

food. Observation windows may have holes caused by natural phenomena such as lakes,59

fire scars in forests, mineral inclusions in rocks, and blood vessels in histological sections.60

Data may be missing because of pixel noise, specular reflections, preparation artefacts in61

microscopy, or cloud occlusions in satellite images. This problem is widely recognised;62

proposed solutions include reconstruction of missing data (Shah et al., 2016).63

In this paper we derive a mathematical relation between GBL and spatial covariance,64

for random sets with positive coverage fraction. This relation leads to new estimators65

of GBL that tolerate extremely complicated observation windows and missing data, thus66

overcoming a major weaknesses of the traditional gliding-box estimator. The relation67

also provides insight into the behaviour of GBL, and assists with interpreting GBL esti-68

mates. For some spatial models, the relation provides explicit expressions for GBL as a69

function of model parameters. Using variance reduction ideas (Picka, 2000), we develop70

statistically efficient estimators of GBL. The differences between our estimators and the71

traditional gliding-box estimator are due to different treatment of data near the edges72

of the observation window, suggesting that our methods, regardless of the particular73

model assumptions, summarise binary maps in the same way as the traditional estima-74

tor. We demonstrate our estimators on simulated binary maps; on a time-series of forest75

maps derived from Landsat satellite images that contain clouds and missing data; and on76

decimetre-resolution tree canopy maps of fragmented forest parcels.77

There are at least seven other indices of lacunarity available in the literature (surveyed78

in Section 2.3 below). While many of these alternative indices are superficially similar to79

GBL, they do not have a direct relationship to the spatial covariance, and therefore do80
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not enjoy the benefits described above.81

The plan of the paper is as follows. In Section 2 we state essential background on82

random sets, give formal definitions of spatial covariance and GBL, and survey other83

lacunarity indices in the literature. In Section 3 we establish that GBL is a function of84

the spatial covariance, and explore its properties. In Section 4 we define new covariance-85

based estimators of GBL and investigate their mathematical relationship to the gliding86

box estimator. In Sections 5 and 6 we apply our estimators to simulated binary maps87

and forest maps, respectively. The online supplementary material includes estimates of88

the computational cost of the estimators, further details relevant to Sections 2–6, and a89

software implementation in the R language.90

2 Background91

2.1 Random Closed Sets92

A random closed set (RACS) X in Rd is a random element of the set of closed subsets93

of Rd such that the probability of X intersecting any given compact subset of Rd is94

well defined. For formal definitions of RACS and their properties, see Matheron (1975),95

Molchanov (2005) or Chiu et al. (2013). The probability distribution of a RACS X is96

completely determined by its capacity functional TXpKq “ P pXXK ‰ Hq defined for all97

compact subsets K of Rd (Molchanov, 2005).98

2.1.1 Properties of RACS99

The vector shift (translation) of a set A Ď Rd by a vector v P Rd is denoted100

A‘ v “ ta` v : a P Au.

A random closed set X is called stationary if, for every v in Rd, the distribution of X‘v101

is the same as the distribution of X. Stationary RACS are flexible models; a single102

realisation of a stationary RACS can appear complex and spatially irregular.103
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For a stationary RACS X, the coverage probability

p :“ P px P Xq (2)

does not depend on the choice of the point x P Rd. Likewise the spatial covariance104

function Cpvq of a stationary random closed set X in Rd is defined (Serra, 1982, §9) as105

the probability that two given points, separated by a vector v, will both lie inside X:106

Cpvq :“ P px P X,x` v P Xq, x,v P Rd, (3)

where this probability does not depend on x. Note that Cpoq “ p, where o is the ori-107

gin of Rd. The spatial covariance function, also known as the two-point phase probability108

(Quintanilla, 2008), is closely related to the semivariogram of a random field (Serra, 1982,109

p280). Spatial covariance has been applied to numerous phenomena (Kautz et al., 2011;110

Nott and Wilson, 2000; Quintanilla et al., 2007; Serra, 1982), including the heather pat-111

tern in Figure 1 (Diggle, 1981). It is fundamental to determining macroscale properties112

of two-phase random media from microscale properties (Quintanilla, 2008) and can some-113

times be computed from model parameters (Nott and Wilson, 2000; Chiu et al., 2013;114

Quintanilla, 2008). Interpretation, estimation and applications of covariance of RACS115

are discussed in detail by Serra (1982, §9).116

Second-order moment properties of RACS closely related to covariance are the centred117

covariance κpvq :“ Cpvq ´ p2 and the pair correlation function, gpvq :“ Cpvq {p2. In118

Section 4 we will use estimators for covariance, pair correlation and centred covariance119

to define new estimators of GBL.120

It is often reasonable to assume that a stationary RACS is mixing in the sense that121

lim
|v|ÝÑ8

P pXX pAY pB ‘ vqq “ Hq “ P pXX A “ HqP pXXB “ Hq (4)

for any two compact subsets, A and B, of Rd, where v P Rd, and |v| is the length of122

v (Schneider and Weil, 2008, §9). Loosely speaking the mixing property is a sufficient123

condition for spatial averages over increasingly large observation windows to converge124
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almost surely to their corresponding statistical moments (Chiu et al., 2013, §6.1.4).125

2.1.2 Estimators of RACS Properties126

For a set A in Rd we will call the d-dimensional volume of A, which is the area of A in127

R2 and the (usual) volume of A in R3, the volume of A, denoted by |A|. We will also128

use qA “ t´a : a P Au to denote the reflection of A in the origin and 1A to denote the129

indicator function of A, defined as 1Apyq “ 1, if y is in A, and 1Apyq “ 0, otherwise.130

The set covariance of a set A is defined as the volume of A intersected with a translated131

copy of A,132

γApvq :“ |AX pA‘ vq| “

ż

Rd

1Apyq1Apy ´ vq dy, (5)

where v P Rd is the translation vector. The set covariance, γApvq, can be computed133

quickly using the Fast Fourier Transform as the right-hand side of (5) is the convolution134

of 1A with 1
qA. In many ways set covariance is the analogue of Cpvq for deterministic sets135

(Serra, 1982, p272).136

For a binary map with observation window W we consider the foreground to be XXW

where X is a realisation of a stationary RACS X. Pixellation effects are ignored. The

traditional estimators of p and Cpvq from such a binary map observation are (Chiu et al.,

2013, §6.4.2, §6.4.3)

p̂ “
|X XW |

|W |
(6)

Ĉpvq “
|X XW X ppX XW q ‘ vq|

|W X pW ‘ vq|
“
γXXW pvq

γW pvq
. (7)

The numerator of Ĉpvq is the volume of the set of points x such that both x and x ` v137

are observed to lie in X, whilst the denominator is the volume of the set of points w138

for which both w and w ` v lie in the observation window. Since the numerator and139

denominator of (7) are set covariance functions, Ĉpvq can be computed quickly using the140

Fast Fourier Transform (Koch et al., 2003).141

Picka (1997, 2000) proposed ‘balanced’ estimators of centred covariance and pair cor-142

relation that have smaller variance than the traditional estimators, κ̂Tpvq :“ Ĉpvq ´ p̂2143
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and ĝTpvq :“ Ĉpvq {p̂2, respectively. If we define144

p̂Rpvq :“
|X XW X pW ‘ vq|

γW pvq
and Ĥpvq :“ p̂pp̂Rpvq ` p̂Rp´vq ´ 2p̂q, (8)

where p̂Rpvq is an unbiased coverage probability estimator of X that depends only on the

binary map within W X pW ‘ vq, then the ‘additively balanced’ estimators of κpvq and

gpvq proposed by Picka are

κ̂Hpvq :“ Ĉpvq ´ Ĥpvq ´ p̂2 and ĝHpvq :“
Ĉpvq ´ Ĥpvq

p̂2
, (9)

respectively. Picka also proposed ‘intrinsically balanced’ estimators,

κ̂Ipvq :“ Ĉpvq ´ p̂Rpvq p̂Rp´vq (10)

ĝIpvq :“
Ĉpvq

p̂Rpvq p̂Rp´vq
(11)

ĝMpvq :“
Ĉpvq

`

1
2
pp̂Rpvq ` p̂Rp´vqq

˘2 , (12)

asserting that ĝMpvq has larger variance than ĝHpvq and ĝIpvq. Later Mattfeldt and145

Stoyan (2000) studied an isotropic estimator similar to ĝMpvq. The form of ĝMpvq suggests146

to us another estimator of centred covariance,147

κ̂Mpvq :“ Ĉpvq ´

ˆ

1

2
pp̂Rpvq ` p̂Rp´vqq

˙2

. (13)

The additional computational costs of these balanced estimators over that of Ĉpvq are not148

high, because the numerator of p̂Rpvq can be computed using the Fast Fourier Transform,149

and the denominator of p̂Rpvq is identical to that of Ĉpvq.150

2.2 Gliding Box Lacunarity151

GBL can be formally defined in two different ways, according to whether the binary map152

is assumed to be a fixed set or a random set (Allain and Cloitre, 1991). This duality is153

familiar in stochastic geometry (Chiu et al., 2013) and stereology (Baddeley and Jensen,154
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2005, Ch. 1). In this section we give definitions of GBL from both standpoints. The155

majority of the paper uses the random set standpoint, for convenience.156

2.2.1 Fixed Set Scenario157

Definition 1 Suppose X is a set with positive volume within a bounded region of in-158

terest, Z, in Rd. Given a compact set B, with |B| ą 0, define the empirical gliding box159

lacunarity of X as160

pLGBpBq :“
Var p|X XB|q

E r|X XB|s2
` 1 “

E r|X XB|2s

E r|X XB|s2
, (14)

where B “ B ‘Y Ď Z denotes a randomly translated copy of B by a random vector Y161

uniformly distributed in the set of feasible vectors162

Z a qB “ ty : B ‘ y Ď Zu.

termed the erosion of Z by B. If the erosion has zero volume, GBL is undefined.163

Typically B is termed a ‘box’ and is often a square, although Allain and Cloitre noted164

that any shape is permitted. We have used a ‘hat’ here as we will see later (Section 2.2.2)165

to indicate that this version of GBL is an estimator of the random set GBL.166

The first and second moment on the right hand side of (14) can be decomposed as

E r|X XB|s “
1

|Z a qB|

ż

Za qB

|X X pB ‘ yq| dy (15)

E
“

|X XB|2
‰

“
1

|Z a qB|

ż

Za qB

|X X pB ‘ yq|2 dy. (16)

In practice, these integrals will be approximated by sums over a grid of pixels or167

sample points. The gliding box algorithm (Allain and Cloitre, 1991) computes (15) and168

(16) numerically using a fine lattice of box centres, y, in Za qB. The tug-of-war algorithm169

for lacunarity, proposed by Reiss et al. (2016), is a computationally efficient algorithm170

that approximates pLGBpBq. Fixed-grid lacunarity in the frac2D package (Reiss, 2016)171

is the exponent of a power-law approximation to estimates of pLGBpBq that use non-172

overlapping box locations (Helmut Ahammer, personal communication 31 July 2018).173
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For raster binary maps, many authors use box widths ranging between 1 pixel wide and174

half the shortest side length of the binary map (Plotnick et al., 1993). It is also common175

to have shorter maximum box widths, or to use boxes equal to the extent of the binary176

map (Roces-Dı́az et al., 2014; McIntyre and Wiens, 2000; Valous et al., 2009; Gould et al.,177

2011; Reiss et al., 2016).178

Observation Window Difficulties In applications it is often the case that the region179

of interest, Z, is replaced by the observation window, W . However, using W “ Z leads180

to unequal treatment of data, as some locations close to the boundary of W are less likely181

to be inside B than locations in the interior of W , and some locations in W may have182

zero probability of being in B. When the observation window geometry is complicated,183

especially when this is caused by sporadically missing data, or when B is large relative184

to the observation window, there are very few available locations for B, and this unequal185

treatment of data can have a large impact on pLGBpBq. Modifications to pLGB to solve this186

problem for rectangular observation windows and a limited class of observation windows187

were proposed by Feagin et al. (2007) and Sui and Wu (2006), respectively.188

2.2.2 Random Set Scenario189

Definition 2 Suppose X is a stationary RACS in Rd with a positive coverage probability190

and B is a fixed compact set with positive volume. Define the GBL of X given B as191

LpBq :“
Var p|XXB|q
E r|XXB|s2

` 1 “
E r|XXB|2s
E r|XXB|s2

, (17)

where |XXB| is the volume of X within B.192

The above definition is analogous to that of fixed-set GBL, with random translations193

of X instead of random translations of the box B as |X XB| can be written |X XB| “194

|pX ‘´Yq X B|. The fixed set GBL definition is not quite redundant here as Y is such195

that B is always inside the region of interest Z and so X “ X ‘´Y is not stationary in196

Rd.197
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pLGBpBq as an Estimator of LpBq If X is a realisation of a stationary and mixing198

RACS X, then the spatial averages (15) and (16) over increasingly large regions of interest,199

Z, converge almost surely to their theoretical expectations E r|XXB|s and E r|XXB|2s,200

respectively. Thus pLGBpBq converges to LpBq almost surely and pLGBpBq is a consistent201

estimator of LpBq.202

In this paper we adopt the random set scenario; however, our main contributions203

still hold if we had instead used the fixed set scenario. In Section 4 we prove that204

our new methods approximate the fixed-set GBL, and it follows that fixed set GBL is205

approximately a function of set covariance. The results of Sections 5 and 6 show that206

our new methods produce better approximations to fixed-set GBL than the traditional207

method when the region of interest is partially observed.208

2.3 Other Lacunarity Indices209

The definition of the lacunarity of a pattern as the ‘nature of gaps’ in the pattern (Man-210

delbrot, 1983, §34) allows many mathematically distinct quantitative indices of lacunarity.211

The two most popular of these are GBL (Section 2.2) and sandbox lacunarity (described212

below) (Baveye et al., 2008), and have been compared by Allain and Cloitre (1991) and213

Pendleton et al. (2005). In some cases lacunarity indices have been named ‘the lacunar-214

ity’ in the literature, leading to confusion (Baveye et al., 2008). Applications can depend215

crucially on the choice of the lacunarity index and we suggest that the term ‘lacunarity’216

should not be used as if it were a single quantity.217

Many lacunarity indices use the mass of a set of interest within user-defined test sets,218

where the precise meaning of mass depends on the set of interest and the test set, usually219

denoted B below, is typically either a square or a disc centred on the origin, o. For sets220

that are patterns of points, patterns of curves or have positive volume, the appropriate221

measure of mass is likely to be, respectively, the numbers of points, length or volume of222

the set of interest within the test set. For sets that are iteratively constructed fractals the223

mass at each step of the construction might also be used to compute a lacunarity index224

(Lin and Yang, 1986). Lacunarity indices for functions mapping R2 to R1 have also been225

proposed (Diaz et al., 2009; Dong, 2000; Myint and Lam, 2005).226
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In the following we summarise many existing lacunarity indices that appear to be227

suitable for describing sets with positive volume. We denote by X a stationary RACS228

with positive coverage probability and assume that the measure of mass is volume.229

Initially Mandelbrot (1983, §34) appears to have suggested the lacunarity indices

LM1pBq :“
Var

`

|B X X|
ˇ

ˇ |B X X| ą 0
˘

E
“

|B X X|
ˇ

ˇ |B X X| ą 0
‰2 and LM2pBq :“

E
”

|XXB|
ˇ

ˇ

ˇ
o P X

ı

Er|XXB|s
, (18)

and a third index that may only be relevant to self-similar sets. We have demonstrated230

that LM1, defined in (18), is a combination of GBL and a spatial statistical contact231

distribution (Section C of the supplementary material). Later Mandelbrot and Stauffer232

(1994) proposed the index233

LApr, θq “
E
“

|XX S||XX qS|
ˇ

ˇo P X
‰

´ E
“

|XX S|
ˇ

ˇo P X
‰

E
“

|XX qS|
ˇ

ˇo P X
‰

Var
`

|XX S|
ˇ

ˇo P X
˘ , (19)

where S is a given sector, with angular size θ, of a disc of radius r centred on the origin.234

Sandbox lacunarity (Chappard et al., 2001), which resembles the index proposed by235

Voss (1986), can be interpreted as the average of236

LSpBq :“
var

“

|XXB|
ˇ

ˇo P X
‰

E
“

|XXB|
ˇ

ˇo P X
‰2 (20)

over a user-specified range of test set sizes. Borys et al. (2008) suggested an index that237

corresponds to238

LBpBq :“ 1`
Var

`

|B X X|
ˇ

ˇ |B| ą |B X X| ą 0
˘

E
“

|B X X|
ˇ

ˇ |B| ą |B X X| ą 0
‰2 (21)

in the random set scenario. The FracLac plugin appears to report estimates of LpBq,239

LM1pBq`1, and two other lacunarity indices that use binned and reweighted distributions240

of box mass (Karperien, 2005, p13, §Lacunarity).241

Applications of lacunarity indices beyond those already mentioned for GBL include242

description of the structure of protein gels (Dàvila and Parés, 2007) (appears to use243

LM1 - Section C of the supplementary material), the vacuole of lungs suffering from244

cancer (Borys et al., 2008), microglia (Karperien et al., 2013), urban settlements (Owen245
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and University, 2011), biofilms (Anderson et al., 2015), porous rocks (Anovitz and Cole,246

2015), coral reefs (Rankey, 2016), the effect of high-pressure treatments on rabbit sausage247

(Xue et al., 2017), orange juice cloudiness (Aghajanzadeh et al., 2017), and handwriting248

of patients taking antipsychotic drugs (Aznarte et al., 2014). Applications of lacunarity249

indices usually focus on differences given by different test set sizes (Mandelbrot, 1983;250

Plotnick et al., 1993), the average across a range of test set sizes (Chappard et al., 2001;251

Karperien, 2005), or the exponent of a power-law approximation of the lacunarity index252

(Allain and Cloitre, 1991; Cheng, 1997). Lacunarity indices appear to be popular for253

analysis of multiscale phenomena, perhaps due to the origins of lacunarity as a fractal254

analysis tool (Plotnick et al., 1996).255

3 GBL as a Function of Covariance256

The first key contribution of this paper is the following relation (22) between GBL and257

the covariance of a stationary RACS. We will prove the relation at the end of this section.258

Theorem 1. Suppose X is a stationary RACS in Rd with positive coverage probability259

and that B is a compact subset of Rd with positive volume. Then the GBL given by the260

‘box’ B is equal to261

LpBq “
1

p2|B|2

ż

Rd

γBpvqCpvq dv, (22)

where Cpvq is the covariance of X and p is the coverage probability of X.262

This relation leads to improved estimators of GBL (Section 4) and shows that all the263

information summarised in the GBL of a stationary RACS X is contained in the covariance264

of X. Furthermore, using (22), GBL can be easily calculated for intersections, unions and265

invertible linear transformations of independent stationary RACS with known covariance266

(Table 1 in supplementary material), and computed for a few parametric RACS models,267

such as Boolean models (Chiu et al., 2013, §3) (and the closely related random trema268

models (Mandelbrot, 1983, §33) with finite scale), impenetrable particles (Quintanilla,269

1999), excursion sets of stationary Gaussian random and others (Torquato, 2002). The270

latter property potentially makes it possible to use GBL for model diagnostics, or for271

fitting models through minimum contrast (Chiu et al., 2013, §3.4.3), which is similar to272
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the method of moments.273

Proof of (22) We start with a relation for the first moment in (17). By Robbins’ for-

mula, an application of Fubini’s Theorem (Robbins, 1944, 1947; Kolmogoroff and Leon-

towitsch, 1933; Kolmogorov and Leontovitch, 1992),

Er|XXB|s “ E
„
ż

Rd

1Xpxq1Bpxq dx



“

ż

Rd

E r1Xpxq1Bpxqs dx

“

ż

Rd

P px P Xq1Bpxq dx “

ż

Rd

p1Bpxq dx “ p|B|, (23)

where p is the coverage probability of X.274

Using the second order Robbins’ formula (Robbins, 1944) and similar arguments, the

variance of |XXB| is (Molchanov, 1997, eq. 3.5),

Var
`

|XXB|
˘

“

ż

Rd

ż

Rd

pCpx´ yq ´ p2q1Bpxq1Bpyq dx dy

“

ż

Rd

γBpvqCpvq dv ´ p2|B|2. (24)

Substituting (23) and (24) into the (random set) definition of GBL (17) gives (22) and275

completes the proof.276

4 New Estimators of GBL277

Here we use relation (22) to develop estimators of GBL that avoid the difficulties of278

the gliding box estimator with the observation window, mentioned in Section 2.2. Our279

estimators are also trivial to implement for non-rectangular ‘boxes’ B and can be com-280

putationally competitive with pLGB (see Section G of the supplementary material).281

Definition 3 Suppose X is a stationary RACS with positive coverage probability and a

realisation, X, of X is observed in a window W . We define the following GBL estimators

by substituting estimators of coverage probability, covariance, centred covariance and pair
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correlation (Section 2.1.2) into (22),

pLCpBq :“
1

p̂2|B|2

ż

Rd

γBpvqĈpvq dv “
|W |2

|X XW |2|B|2

ż

Rd

γBpvq
γXXW pvq

γW pvq
dv (25)

pLκIpBq “
1

p̂2|B|2

ż

Rd

γBpvqκ̂Ipvq dv ` 1 (26)

pLκHpBq “
1

p̂2|B|2

ż

Rd

γBpvqκ̂Hpvq dv ` 1 “
1

|B|2

ż

Rd

γBpvqĝHpvq dv (27)

pLκMpBq “
1

p̂2|B|2

ż

Rd

γBpvqκ̂Mpvq dv ` 1 (28)

pLgIpBq “
1

|B|2

ż

Rd

γBpvqĝIpvq dv (29)

pLgMpBq “
1

|B|2

ż

Rd

γBpvqĝMpvq dv. (30)

We call pLκH , pLκI , pLκM , pLgI and pLgM , balanced covariance-based estimators as each is282

based on Picka’s balanced estimators.283

284

These estimators do not require the box B to be placed entirely within the observation285

window. Thus these estimators use data near the boundary of the observation window286

more efficiently than pLGB, and, for complicated observation windows, are able to produce287

GBL estimates for boxes much larger than pLGB.288

In Section 5 we investigate the bias and variance of these estimators using simula-289

tions, because the variance, which is a fourth-order property of X, is difficult to assess290

analytically. It is possible that our new estimators will give values less than 1 for large291

box sizes in some situations, although we have only observed this occurring significantly292

for pLC , pLgI and pLgM .293

294

A counterpart to (22) for the fixed set scenario is the property that, in the absence of

window edge effects, our new estimators give the same results to pLGB as it then follows

that pLGB is approximately a function of Ĉpvq. We show this by defining the estimators,

pL˚CpB,Xq :“
1

p̂2|B|2

ż

Rd

γBpvq
γXXW pvq

|W |
dv (31)
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and

pL˚GBpB, Xq :“

ş

Rd |X X pB ‘ yq|2 dy{|W |
`ş

Rd |X X pB ‘ yq| dy{|W |
˘2 , (32)

which are equivalent to pLC and pLGB, respectively, in the absence of window edge effects.295

These estimators can be obtained from pLC and pLGB by replacing γW pvq, and the first and296

second moment, (15) and (16), with |W |,
ş

Rd |X X pB ‘ yq| dy{|W | and
ş

Rd |X X pB ‘297

yq|2 dy{|W |, respectively. It is then sufficient to show that pL˚C and pL˚GB are mathematically298

equivalent for an arbitrary set X with positive finite volume. The relation extends to pLκH ,299

pLκI , pLκM , pLgI and pLgM because p̂Rpvq is equivalent to p̂ in the absence of window edge300

effects. In the supplementary material we provide an exact relation between pLGB and the301

estimators (6) and (7).302

Theorem 2 Suppose that the set X Ď Rd has positive volume and that B is a bounded303

subset of Rd, also with positive volume, then304

pL˚GBpBq “
pL˚CpBq “

1

p̂2|B|2

ż

Rd

γBpvq
γXXW pvq

|W |
dv. (33)

305

The proof of (33) proceeds similarly to the proof of (22). We include it in the appendix306

for completeness.307

5 Simulation Study308

The variance of a GBL estimator is a complicated fourth-order property that is difficult to309

compute analytically. Previous studies into the variance of GBL estimators (Feagin et al.,310

2007; Kirkpatrick and Weishampel, 2005), centred covariance estimators and pair corre-311

lation estimators (Picka, 1997, 2000; Mattfeldt and Stoyan, 2000) have used simulations,312

although some asymptotic results were achieved by Picka.313

In this simulation study we consider three scenarios: in Scenario 1 the observation314

window is fixed and the foreground is random; in Scenario 2 the foreground is fixed and315
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the observation window is random; and in Scenario 3 both the foreground and observation316

window are random. Examples of these scenarios are, respectively, (Scenario 1) studies317

that have a predetermined observation window, like an urban area excluding water bodies318

(Sui and Wu, 2006), (Scenario 2) a time series of presence-absence maps with different319

patterns of occlusions affecting the observations, and (Scenario 3) a tissue sample that320

contains randomly located blood vessels and other items that are not of interest.321

A brief description of the methods and a summary of the results are given below.322

Further details and analyses are available in Section D of the supplementary material.323

Results of the simulation study suggest that our balanced covariance-based estimators324

outperform pLGB in all scenarios.325

5.1 Methods and Selected Results326

The foreground random set was taken to be a Boolean model of discs in R2, that is, the327

union of randomly-sized discs centred at the points of a homogeneous Poisson point pro-328

cess with an intensity of 0.05 points per unit area (Chiu et al., 2013, §2,§3), (Molchanov,329

1997). The disc radii were independent and identically distributed with probability den-330

sity fprq “ k{r3 for 1 ă r ă 50 and fprq “ 0 otherwise, where k “ 5000{2499 is the331

normalising constant. This model, X, was similar to the disc tremas of Mandelbrot (1983,332

§33) and thus exhibited some multiscale behaviour.333

The simulations generated realisations of X inside a square study region Z of side334

length 200 units, with various levels of occlusions that prevented full observation of X in335

Z. For Scenario 1 we considered the case when Z was fully observed and multiple cases336

of Z partially occluded. For Scenario 2 we observed a single realisation, X, of X subject337

to random occlusions, O, that covered on average 7.6% of Z. For Scenario 3 we simulated338

both X and O. The study region Z with different patterns of occlusions is shown with339

example realisations of X in Figure 2.340

Shown in Figure 3 is the pointwise mean and pointwise variance of pLGB, and each of341

our estimators given square boxes, B, for Scenario 3 and for selected fixed observation342

windows in Scenario 1. The pointwise mean and pointwise variance of the estimators for343

Scenario 2 (fixed foreground scenario) are shown in Figure 4. In Figure 3 and Figure 4 the344
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GBL of X was computed from model parameters using (22) and covariance formulae for345

Boolean models (Chiu et al., 2013, eq. 3.18). Note that, following conventional procedure,346

pLGB was applied by replacing the region of interest in (15) and (16) with the observation347

window.348

[Figure 2 about here.]349

5.2 Summary of Results350

The balanced covariance-based estimators, pLκH , pLκI , pLκM , pLgI and pLgM , were indistin-351

guishable in most cases. In every scenario that involved occlusions, these estimators were352

well-defined over a much larger range of box widths than pLGB, had the smallest bias,353

and, except for small intervals of box widths, the smallest variance. The variance of these354

estimators in fixed observation windows (Scenario 1) increased by at most a factor of 0.5355

in the presence of occlusions that covered up to 50% of the study region; this variance356

was roughly 25 times the variance of the same estimators in Scenario 2 (fixed foreground357

and random occlusions), and did not substantially increase in Scenario 3 (random fore-358

ground and random occlusions). In comparison, for example, the occlusion pattern that359

covered 50% of the study region increased the variance of pLGB for some boxes by a factor360

of 14. When Z was fully observed there were minimal differences between pLGB and these361

balanced covariance-based estimators.362

No estimators performed well when the study region was 90% covered by occlusions,363

nor on a square observation window with width substantially shorter than the maximum364

interaction distance of X (see Section D of the supplementary material).365

[Figure 3 about here.]366

[Figure 4 about here.]367

6 Applications to Fragmented Forest Cover368

According to Griffith (2004), summaries of changes in land-cover proportions (which are369

coverage probability estimates) do not adequately capture important changes in ecological370
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functions such as forest connectivity and species movement, and landscape pattern change371

should be part of any land cover change monitoring program. Griffith further suggests372

that there is a practical need to focus on the dominant land cover type, for example forests,373

of any ecoregion. An example of such analysis was provided by Pintilii et al. (2017) who374

examined the fragmentation of forests as an indication of the extent of deforestation375

at a county level using multi-year global forest presence-absence classifications derived376

from Landsat satellite data. They found that applying a lacunarity index which was a377

summary of GBL1, provided information for forest management strategies additional to378

the information provided by simply considering deforestation rates. Niemelä (1999) note379

that forest disturbances occur at different scales and can differ substantially in ecological380

effect.381

Here we present examples of the use of our GBL estimators at two different scales.382

In the first example we examine the stability of GBL estimators as they would be ap-383

plied in meso-scale forest fragmentation studies that use time-series data obtained from384

optical spaceborne sensors, such as the Landsat satellites. Patterns of missing ground385

observations due to occlusions by clouds are normal for these sensors, with further omis-386

sions created by some sensors with documented hardware problems, such as Landsat 7387

(U. S. Geological Survey, 2016). Robustness or resistance to these effects is crucial to388

applications.389

In the second example, we consider localised forest degradation by examining the GBL390

of tree canopies at the interface of natural forest systems and urban development. Here391

the forests are subject to disturbance through removal for urban development, natural392

fires, planned burns to reduce fuel loads, and disease (Shearer et al., 2007).393

6.1 Stability of estimators applied at meso-scale in the presence394

of missing data395

We applied pLGB, defined in (14), and our new GBL estimators (25)–(30) to presence-396

absence maps of forest (Figure 5 bottom) extracted from seven satellite photographs397

(Figure 5 top) captured by Landsat 7 and Landsat 8 of the same 18.8kmˆ 18.8km study398

1Ion Andronache, Personal communication, August 3 2018
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region in South-West Australia. The photographs were captured from December 2015399

to March 2016 within the same hot dry summer so that the forest cover pattern of the400

region was close to identical at each date of capture. Differences in the GBL estimates401

between the forest maps can thus be attributed to differences in the observation windows402

caused by clouds and a sensor malfunction.403

The study region was only fully observed in the photograph captured on February404

26th; all other photographs contained cloud or suffered periodic missing data due to405

Landsat 7’s SLC-off hardware issue (U. S. Geological Survey, 2016). The same procedure,406

which used spectral values, was used to convert all photographs except December 16th’s407

into forest maps. The December 16th photograph was the only photograph captured408

by Landsat 7 and received a comparable procedure designed to minimise the differences409

between the forest maps.410

The balanced covariance-based estimates from the different maps were substantially411

more alike than estimates using either pLC or pLGB, and produced estimates for much larger412

box widths than pLGB for all partial observations of the study region (Figure 6). Exclud-413

ing estimates from the December 8th and December 16th maps, the average integrated414

squared discrepancy (ISD) of pLGB for boxes from 25m (1 pixel) to 1.8km (1/10th of the415

width of the study region) was more than four times the average ISD of each balanced416

covariance-based estimator, and three times the average ISD of pLC (Table 1). The average417

ISD was computed relative to the GBL estimates from the fully observed study region418

(February 26th map), and estimates from the December 8th and December 16th maps419

were excluded as pLGB did not produce estimates for all boxes up to 1.8km wide for these420

maps.421

For each map the GBL estimates given square boxes with widths from 1 pixel (25m)422

to just over a quarter of the region’s width (5km) are shown in Figure 7. Log-log plots423

of estimated LpBq, favoured by Plotnick et al. (1996), are included. Slight differences424

between the centred covariance-based estimates, from pLκH , pLκI and pLκM , and the pair425

correlation based estimates, from pLgI and pLgM , can be seen for most maps. The estimators426

produced results most similar to each other for the fully observed study region (February427

26th map), which had the largest, simplest observation window and thus the smallest428
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observation window edge effects.429

The data and R code used for this example are included in the supplementary material.430

[Figure 5 about here.]431

[Figure 6 about here.]432

[Table 1 about here.]433

[Figure 7 about here.]434

6.2 Estimators applied to forest disturbance at local scale435

We estimated the GBL of tree canopy cover for 33 forested land parcels subject to dis-436

turbance through fire and development. Of the 33 parcels, 27 were selected from native437

forest, and 6 ‘settlement’ parcels were selected from the boundary of native forest and438

human development. These ‘settlement’ parcels were subject to partial removal of forest439

for dwellings and grassed areas. The native forest cover is dynamic, in large part be-440

cause it is subject to prescribed burning for management of fuel load (Boer et al., 2009),441

and the 27 native forest parcels were labelled according to whether they were decreasing,442

recovering or increasing in cover for the period 1990-2016. The labels were made pos-443

sible through cover trend information derived from the Landsat sensor (Wallace et al.,444

2006). Tree canopy presence-absence maps with 20cm spatial resolution were generated445

for each parcel from aerial photography captured in February 2016 following the methods446

described by Caccetta et al. (2015).447

The densities in the native forest parcels overlap with those of the ‘settlement’ parcels,448

providing an opportunity to compare the metrics for sites undergoing different distur-449

bances but having similar densities. Illustrating this the pLκH estimates of GBL from the450

tree canopy presence absence maps of the 33 parcels are provided in Figure 8 and selected451

parcels of comparable density are depicted in Figure 9. The estimates are presented in452

Figure 8 transformed to
`

pLκHpBq´1
˘

p̂{p1´ p̂q, which standardised the estimates to 1 for453

arbitrarily small boxes and 0 when the box equals the observation window. From Figure 8454

(right), we observe much overlap in the range of curves for parcels labelled as decreasing,455
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recovering and increasing (in cover), which is not so surprising given that these labels are456

based on all cover (including non-tree ground covers) as opposed to tree cover, which we457

are examining. We further observe some separation of curves for the native forests with458

various levels of disturbance from the curves for the settlements parcels. From Figure 8,459

left and centre, we observe a similar separation of the settlement parcels from native460

forest parcels having comparable tree canopy densities, reflecting the change in spatial461

tree arrangement in settlement versus native forested regions and a possible metric for462

assessing or detecting settlements and their level of impact.463

Estimates using the other GBL estimators are in Section F of the supplementary464

material. For these parcels, and the given box widths, we found that our new esti-465

mators were computationally competitive with the gliding box estimator. The centred466

covariance-based estimates, from pLκH , pLκI and pLκM , were nearly identical to each other,467

and the differences to the pLGB estimates did not affect interpretation. For some parcels468

the estimates from pLC , pLgI and pLgM were poorly behaved. This seemed related to an469

incompatibility, unique to pLC , pLgI and pLgM , of GBL estimates from the presence-absence470

maps where the foreground is swapped with the background and may warrant further471

investigation.472

[Figure 8 about here.]473

[Figure 9 about here.]474

7 Conclusion475

In this paper we showed that the GBL of a stationary random closed set (RACS) with476

positive coverage probability is related to its covariance. We used this relation to propose477

new estimators of GBL that operate seamlessly in complicated observation windows.478

These estimators remove the obligation of the scientist to reconstruct occluded sections479

of patterns and, for example, enable estimates of GBL from Earth observation data that480

contains many clouds. We tested and demonstrated our new GBL estimators on simulated481

binary maps, forest maps derived from satellite photography, and decimetre resolution482

tree canopy maps.483
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The best-performing GBL estimators were our new balanced, centred covariance-based484

estimators, pLκH , pLκI and pLκM . These estimators operated on binary maps with irregular485

observation windows for much larger boxes than the traditional gliding box estimator486

pLGB, produced estimates with average integrated squared discrepancies less than a quarter487

that of the pLGB estimates for our satellite photography example, increased variance by at488

most a factor of 0.5 for simulated observations with 50% occlusions, where as in the same489

situation the variance of the pLGB increased by a factor of 14 for some box sizes, had smaller490

variance than pLC in nearly all situations, and produced estimates with better behaviour491

than our balanced pair correlation based estimators, pLC , pLgI and pLgM , in the decimetre492

resolution tree canopy example. Estimators with further reductions in variance might be493

obtained for stationary RACS with rotation invariant distributions using isotropic centred494

covariance and pair correlation estimators (Picka, 2000; Mattfeldt and Stoyan, 2000).495

Our relationship between GBL and covariance enables the GBL of intersections and496

unions of stationary RACS to be calculated from the covariance of the original sets, and497

allows the GBL of some RACS models to be calculated directly from parameters without498

simulation, which, for example, allowed us to easily assess the bias of GBL estimators in499

our simulation study.500

The relation between GBL and covariance, and the analogous relation between pLGB501

and pLC in the absence of window edge effects, show that GBL and covariance are closely502

related in theory and in applications. Covariance may be a good alternative to GBL503

as covariance (or estimated covariance) contains all the information about a process (or504

pattern) that GBL contains, covariance is easily interpretable as the probability of a pair505

of points being in the set, and the covariance of sets created by intersections, unions and506

invertible linear transformations may be calculated from the covariance of the original507

sets. However GBL has wide existing applications, and our high resolution tree canopy508

example suggested that GBL estimates could be useful for investigating local scale forest509

disturbance. Further research is needed to determine whether covariance could equal the510

performance of GBL in these applications.511

Relations between fractal analysis tools and non-fractal analysis tools, such as the re-512

lation between GBL and covariance that this paper contributes, are valuable for applying513
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spatial pattern analysis tools (Sun et al., 2006). There are other relations between popular514

fractal tools and spatial statistics that do not appear to be widely used, such as a charac-515

terisation of common Rényi dimension estimators as using power-law approximations to516

the results of reduced moment measure estimators of spatial point processes (Vere-Jones,517

1999) and common box-counting dimension estimators using power-law approximations518

to the results of contact distribution estimators.2519

An R package for computing our new estimators and the gliding box estimator is520

included in the supplementary material.521

Appendix522

Proof of (33) The volume |X X pB ‘ yq| can be written as an integral of indicator

functions

|X X pB ‘ yq| “

ż

Rd

1XXW pxq1B‘ypxq dx “

ż

Rd

1W pxq1Xpxq1Bpx´ yq dx.

so the first moment is (using the Fubini-Tonelli theorem)

1

|W |

ż

Rd

|X X pB ‘ yq| dy “
1

|W |

ż

Rd

ż

Rd

1W pxq1Xpxq1Bpx´ yq dx dy

“
1

|W |

ż

Rd

1W pxq1Xpxq

ż

Rd

1Bpx´ yq dy dx

“
|X XW |

|W |
|B| “ p̂|B|. (34)

2The latter does not appear to be explicitly noted in the literature and will be discussed fully elsewhere
- it seems likely that authors such as Serra (1982, p151) and Vere-Jones (1999) were aware of the
connection
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With similar arguments the second moment is

1

|W |

ż

Rd

|X X pB ‘ yq|2 dy

“
1

|W |

ż

Rd

ż

Rd

1W pxq1Xpxq1Bpx´ yq dx

ż

Rd

1W pzq1Xpzq1Bpz´ yq dz dy

“
1

|W |

ż

Rd

ż

Rd

1W pxq1Xpxq1W pzq1Xpzq

ż

Rd

1Bpx´ yq1Bpz´ yq dy dx dz

“
1

|W |

ż

Rd

ż

Rd

1W pxq1Xpxq1W pzq1XpzqγBpz´ xq dx dz

“
1

|W |

ż

Rd

|ppX XW q ‘ vq X pX XW q|γBpvq dv

“
1

|W |

ż

Rd

γXXW pvqγBpvq dv “

ż

Rd

γXXW pvq

|W |
γBpvq dv. (35)

Substitution of (34) and (35) into (32) proves statement (33).523
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Niemelä, J. (1999), “Management in relation to disturbance in the boreal forest,” Forest629

Ecology and Management, 115(2), 127–134.630

Nott, D. J., and Wilson, R. J. (2000), “Multi-phase image modelling with excursion sets,”631

Signal Processing, 80(1), 125–139.632

Owen, K. K. (2012), Geospatial and Remote Sensing-based Indicators of Settlement Type633

– Differentiating Informal and Formal Settlements in Guatemala City, PhD thesis,634

George Mason University.635

Owen, K., and University, G. M. (2011), Settlement Indicators of Wellbeing and Eco-636

nomic Status - Lacunarity and Vegetation
”

in Proceedings of the Pecora 18 Symposium,637

American Society for Photogrammetry and Remote Sensing, Virginia, USA.638

Pendleton, D. E., Dathe, A., and Baveye, P. (2005), “Influence of image resolution and639

evaluation algorithm on estimates of the lacunarity of porous media,” Physical Review640

E, 72(4), 041306.641

Picka, J. D. (1997), Variance-reducing modifications for estimators of dependence in642

random sets, Ph.D., The University of Chicago, United States – Illinois.643

28



Picka, J. D. (2000), “Variance Reducing Modifications for Estimators of Standardized644

Moments of Random Sets,” Advances in Applied Probability, 32(3), 682–700.645

Pintilii, R., Andronache, I., Diaconu, D. C., Dobrea, R. C., Zeleňáková, M., Fensholt,646
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Figure 1: Presence (black) and absence (white) of the heather plant Calluna vulgaris
in a 20 ˆ 10 metre study region in Jädråas, Sweden (Diggle, 1981). The binary image,
1570ˆ 778 pixels, was scanned and cleaned by Chris Jonker, Henk Heijmans and Adrian
Baddeley from the original hand-drawn map. Data available in the spatstat package.
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Figure 2: Example realisations of X in different observation windows. From left: The
full study region Z; the study region Z with the fixed occlusion patterns that covered
2%, 50% and 70% of the study region; and Z with an example of the random occlusion
process, O, used in Scenario 2 and 3. Black: Foreground. White: Background. Red:
Occlusions.
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Dec. 8th Dec. 16th Dec. 24th Jan. 9th Feb. 10th Feb. 26th Mar. 29th

Figure 5: Top: The satellite photographs in false colour (specifically the displayed red,
green and blue intensity corresponds to near-infrared, red and green light, respectively).
Bottom: Forest masks derived from the photographs. Green: Forest. White: Not-forest.
Grey: Missing data (due to cloud, cloud shadow or SLC-off).
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Figure 6: Results from each GBL estimator applied to the forest maps in Figure 5. Top:
GBL estimates given square boxes. Bottom: The differences between estimates from the
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Figure 8: Standardised GBL estimates of disturbed forest parcels using pLκH . Left: The
example parcels in Figure 9 observed to have between 37% and 40% tree canopy. Centre:
The example parcels in Figure 9 observed to have between 65% and 67% tree canopy.
Right: Estimates of GBL for all 33 parcels.
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Figure 9: Forest Disturbance at Local Scales. Top: Parcels that are between 37% and
40% tree canopy. Bottom: Parcels that are between 65% and 67% tree canopy. From left
to right: Parcels annotated as decreasing in cover, increasing in cover or subject to tree
removal for urban development.
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pLGB
pLC pLκH pLκI pLκM pLgI pLgM

78.93 26.00 16.30 16.31 16.28 17.14 17.11

Table 1: Average of the integrated squared discrepancy (ISD) of the GBL estimates rela-
tive to estimates from the February 26th map and excluding estimates from the December
8th and December 16th maps.
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