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Contained in this supplementary document is:4

Appendix A A table giving formulae for the gliding box lacunarity (GBL) of various

transformations of stationary RACS.

Appendix B An explicit relation between pLGB and the traditional covariance estima-

tor.

Appendix C A brief report on Mandelbrot’s LM1 index and its relation to GBL and

contact distributions.

Appendix D Detailed methods, results and analysis for the simulation study sum-

marised in Section 5.

Appendix E Additional information, including the data and R code, for our appli-

cation of GBL estimators to a time series of meso-scale forest maps in

Section 6.1.

Appendix F Further results for the application to decimetre resolution tree canopy

maps in Section 6.2.

Appendix G A description of the asymptotic computational cost of the GBL estima-

tors.
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Other supplementary material is stationaryracsinference_0.4-01.tar.gz, which6

contains an R package with the functions and related tools for computing every GBL es-7

timator that we investigated, and the following files related to our demonstration of GBL8

estimators on meso-scale forest maps (see Appendix E for details): satelliteimages, fi-9

nalcloudandshadowmasks.RData, finalmaskedforests.RData, manualforrepeating-10

analysis.Rnw, gbltrads.RData, gblcs.RData, gblccs.RData, and gblgs.RData.11
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A GBL of Intersections, Unions and Invertible Lin-35

ear Transformations36

Pattern Coverage Probability Covariance GBL

T pX1q p1 C1pT´1pvqq
1

p21|B|
2

ż

γBpvqC1pT
´1pvqqdv

X1 X X2 p1p2 C1pvqC2pvq
1

p21p
2
2|B|

2

ż

γBpvqC1pvqC2pvqdv

X1 Y X2 p1 ` p2 ´ p1p2 C1pvq`C2pvq`2p1p2´
2C1pvqp2 ´ 2C2pvqp1 `
C1pvqC2pvq

1

pp1 ` p2 ´ p1p2q2|B|2

ż

γBpvq
´

C1pvq`C2pvq`

2p1p2 ´ 2C1pvqp2 ´ 2C2pvqp1 ` C1pvqC2pvq
¯

dv

Table 1: The coverage probability, covariance and GBL of RACS derived from an in-
vertible linear transformation T with inverse T´1, intersection or union of independent
stationary RACS, X1 and X2. The RACS, X1 and X2, have coverage probability p1, p2
and covariance C1, C2 respectively.

B The Relation Between pLGB and Covariance37

The exact relation between pLGBpBq and Ĉpvq can be obtained using reasoning similar to38

that used to prove (33) and might be used to bound the difference between pLGBpBq and39

pLCpBq with a function of p̂ and Ĉpvq.40

Theorem 3 Suppose that a set X with positive volume is observed in an observation41

window W and that the region of interest, Z, is taken to be W . Then the moments (15)42

and (16) used in pLGB are43

1

|W a qB|

ż

Wa qB

|X X pB ‘ tyuq|dy “ p̂|B|
|W |

|W a qB|
´

1

|W a qB|

ż

XXW

fpxqdx (B.1)

and44

1

|W a qB|

ż

Wa qB

|X X pB ‘ tyuq|2dy “

ż

Rd

γW pzq

|W a qB|
γBpzqĈpzqdz

´
1

|W a qB|

ż

XXW

ż

Rd

gpx, zq1XXW pz` xqdzdx,

(B.2)
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where fpxq “ |B| ´ |pW a qBqX p qB‘txuq| and gpx, zq “ γBpzq´ |pW a qBqX p qB‘txuqX

p qB ‘ tz` xuq|, which are such that

x P W a p qB ‘Bq ùñ fpxq “ 0 and gpx, zq “ 0, and (B.3)

x` z P W a p qB ‘Bq ùñ gpx, zq “ 0. (B.4)

45

Proof We start with the proof of (B.1). Recall that the mass |X X pB ‘ tyuq| can be

written as an integral of indicator functions

|X X pB ‘ tyuq| “

ż

Rd

1XXW pxq1B‘tyupxqdx “

ż

Rd

1XXW pxq1Bpx´ yqdx.

Thus the first moment (15) is

1

|W a qB|

ż

Wa qB

|X X pB ‘ tyuq|dy “
1

|W a qB|

ż

Wa qB

ż

Rd

1XXW pxq1Bpx´ yqdxdy

“
1

|W a qB|

ż

Rd

ż

Rd

1Wa qBpyq1XXW pxq1Bpx´ yqdxdy

“
1

|W a qB|

ż

Rd

ż

Rd

1XXW pxq1Wa qBpyq1 qB‘txupyqdxdy

“
1

|W a qB|

ż

Rd

1XXW pxq|pW a qBq X p qB ‘ txuq|dx

If we define the function fpxq as

fpxq :“ |B| ´ |pW a qBq X p qB ‘ txuq|
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then

1

|W a qB|

ż

Wa qB

|X X pB ‘ tyuq|dy “
1

|W a qB|

ż

Rd

1XXW pxqp|B| ´ fpxqqdx

“
|B||X XW |

|W a qB|
´

1

|W a qB|

ż

Rd

1XXW pxqfpxqdx

“ p̂|B|
|W |

|W a qB|
´

1

|W a qB|

ż

XXW

fpxqdx.

This proves (B.1).46

The volume |pW a qBq X p qB ‘ txuq| is the volume of the set of box centres, y, such

that the corresponding box, B ‘ tyu, both contains x and is completely contained in W .

When x is away from the edge of W then this volume is simply |B| and fpxq “ 0,

x P W a p qB ‘Bq ùñ x‘B ‘ qB Ď W

ùñ qB ‘ txu Ď W a qB

ùñ |pW a qBq X p qB ‘ txuq| “ | qB ‘ txu| “ |B|

ùñ fpxq “ 0.

This proves the required property for fpxq.47

Using similar techniques the second moment (16) is

1

|W a qB|

ż

Wa qB

|X X pB ‘ tyuq|2dy

“
1

|W a qB|

ż

Wa qB

ż

Rd

1XXW pxq1Bpx´ yqdx

ż

Rd

1XXW pzq1Bpz´ yqdzdy

“
1

|W a qB|

ż

Rd

ż

Rd

ż

Rd

1Wa qBpyq1Bpx´ yq1Bpz´ yq1XXW pxq1XXW pzqdxdzdy

“
1

|W a qB|

ż

Rd

ż

Rd

ż

Rd

1Wa qBpyq1Bpx´ yq1Bpz` x´ yq1XXW pxq1XXW pz` xqdxdzdy.

(B.5)
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Note that

ż

Rd

1Wa qBpyq1Bpx´ yq1Bpz` x´ yqdy “

ż

Rd

1Wa qBpyq1 qB‘txupyq1 qB‘tz`xupyqdy

“ |pW a qBq X p qB ‘ txuq X p qB ‘ tz` xuq|.

We will denote the difference between the above and γBpzq as

gpx, zq “ γBpzq ´ |pW a qBq X p qB ‘ txuq X p qB ‘ tz` xuq|.

The function gpx, zq is zero if either x or z` x are in W a p qB ‘Bq as x P W a p qB ‘Bq

implies that pW a qBq X p qB ‘ txuq “ qB ‘ txu and

|pW a qBq X p qB ‘ txuq X p qB ‘ tz` xuq| “ |p qB ‘ txuq X p qB ‘ tz` xuq|

“ |p qB ‘ tzuq X qB|

“ γBpzq,

and similarly for z` x.48

Continuing from (B.5) we get

1

|W a qB|

ż

Wa qB

|X X pB ‘ tyuq|2dy

“
1

|W a qB|

ż

Rd

ż

Rd

pγBpzq ´ gpx, zqq1XXW pxq1XXW pz` xqdxdz

“
1

|W a qB|

ˆ
ż

Rd

γBpzqγXXW pzqdz´

ż

Rd

ż

Rd

gpx, zq1XXW pxq1XXW pz` xqdxdz

˙

“

ż

Rd

γW pzq

|W a qB|
γBpzqĈpzqdz´

1

|W a qB|

ż

XXW

ż

Rd

gpx, zq1XXW pz` xqdzdx.

This is the result claimed in (B.2).49

C Mandelbrot’s LM1 Index50

Here we relate LM1, which we defined in (18), to GBL and spatial statistics’ contact51

distributions (Section C.3). We then compare estimates of LM1 for a binary map of52
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forest locations to results from the FracLac package for ImageJ (Karperien, 2015). Our53

estimates agreed up to an offset of 1 with results from one of the methods in FracLac and54

suggest that users of FracLac, such as Dàvila and Parés (2007), have used LM1.55

In the following we give additional background (Section C.1), and introduce contact56

distributions of stationary RACS (Section C.2). We then derive the relation between LM1,57

GBL and contact distributions (Section C.3), and compare LM1 estimates to FracLac58

results (Section C.4).59

C.1 Background60

Mandelbrot (1983, p315) in a section called ‘lacunarity as second-order effect concerning61

the mass prefactor’ described a possible lacunarity index as E
“

pM{ErM s ´ 1q2
‰

where62

ErM s was the expected mass of a random fractal within a fixed region, assuming that63

the random fractal intersected the fixed region. If we replace the random fractal with a64

stationary RACS that produces topologically regular1 closed sets then we get65

LM1pBq :“
Var

`

|B X X|
ˇ

ˇ |B X X| ą 0
˘

E
“

|B X X|
ˇ

ˇ |B X X| ą 0
‰2 , (C.1)

where B denotes a fixed region.66

The manual for the FracLac package (Karperien, 2005, p26) describes an estimator67

of a lacunarity index as using all boxes that are tested and an estimator of another68

lacunarity index as ‘counting only boxes having pixels’. Since the former represents all69

possible box locations, the latter must be a subset of the box locations and it seems likely70

that the latter uses only boxes that contain foreground pixels, which would correspond71

to an estimator of LM1.72

FracLac has been used by a number of authors, including Dàvila and Parés (2007)73

(and Dàvila et al. (2007)), who used a lacunarity index to study plasma protein gels.74

Dàvila and Parés suggest that the lacunarity index that they used was closely related75

to a coefficient of variation, however the index was not GBL as Figure 5 of (Dàvila and76

Parés, 2007) contains estimates that approach zero for small boxes whilst estimates of77

1A subset A of Rd is called topological regular if it is equal to the closure of its interior, A “ Ao.
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GBL approach 1{p̂ for small boxes, where p̂ is the coverage probability estimate. It seems78

likely that the index estimated by Dàvila and Parés was LM1.79

C.2 Spatial Statistics’ Contact Distribution80

Given a convex set B containing the origin, the unconditional contact distribution of81

stationary RACS, X, is defined as (Hansen et al., 1999)82

F u
B prq :“

$

’

&

’

%

P pXX px‘ rBq ‰ Hq if r ě 0

0 if r ă 0,
(C.2)

where B is called the gauge body, rB “ trx : x P Bu is the gauge body scaled by r, H is83

the empty set, and the location x P Rd is arbitrary due the stationarity of X. Estimators84

of F u
B prq are described by Chiu et al. (2013, §6.4.5) and are available in the spatstat85

package in R (Baddeley et al., 2015).86

C.3 Relation to GBL and Contact Distributions87

The following gives a relation between LM1prBq, LprBq and F u
B prq. As contact distri-88

butions are infinite order properties of RACS the relation shows that LM1 is also an89

infinite order property. The usual estimators of F u
B prq are closely related to box-counting90

dimension estimators2 and so from a purely empirical perspective estimates of LM1 are91

confounded with both GBL estimates and box-counting dimension estimates.92

Theorem 4 Suppose X is a stationary RACS with positive coverage probability and that93

B is a convex set with positive volume such that o P B, then94

LM1prBq “ LprBqF u
B prq ´ 1. (C.3)

95

2this seems to be rarely stated and will be discussed elsewhere
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Proof Let Y “ |B X X|. Then

ErY s “ P pY ą 0qErY |Y ą 0s ` 0 (C.4)

and

ErY 2
s “ P pY ą 0qErY 2

|Y ą 0s. (C.5)

The following completes the proof

LM1prBq “
Var

`

|B X X|
ˇ

ˇ |B X X| ą 0
˘

E
“

|B X X|
ˇ

ˇ |B X X| ą 0
‰2 (C.6)

“
VarpY |Y ą 0q

ErY |Y ą 0s2
(C.7)

“
ErY 2|Y ą 0s ´ ErY |Y ą 0s2

ErY s2{P pY ą 0q2
(C.8)

“

ErY 2s

P pYą0q
´

´

ErY s
P pYą0q

¯2

ErY s2{P pY ą 0q2
(C.9)

“
ErY 2sP pY ą 0q ´ ErY s2

ErY s2
(C.10)

“
ErY 2s

ErY s2
P pY ą 0q ´ 1 (C.11)

“ LprBqF u
B prq ´ 1. (C.12)

C.4 Comparison to FracLac96

We estimated GBL given square boxes from the binary map in Figure 1 using pLGB and97

also estimated F u
B prq for a square gauge body using a Kaplan-Meier estimator (Hansen98

et al., 1999). These estimates, which we denote pLGBprBq and F̂ u
B prq respectively, were99

plugged into (C.3) to estimate LM1,100

L̂KprBq “ F̂ u
B prq

pLGBprBq ´ 1. (C.13)

To the same map we applied FracLac’s sliding box (SLAC) methods (Karperien, 2005,101

p25-26) for lacunarity indices (Karperien, 2015). For this computation the parameters in102
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Figure 1: A presence-absence map of forest. FracLac’s ‘SLAC’ computations and es-
timators of LM1, GBL and F u

B prq were applied to this map. Black: Forest. White:
Non-forest.

FracLac were chosen such that the box location shifted 1 pixel width at a time and 58103

box sizes were used, ranging from 2 pixels to 25% of the image size.104

The estimated L̂KprBq, F̂ u
B prq and pLGBprBq are shown in Figure 2 with some of the105

results of the FracLac computations. Note that the estimated F̂ u
B prq contains steps due106

to the discrete pixel size in the binary map which is a likely cause of the saw-like features107

in L̂KprBq. The lacunarity indices reported by FracLac with columns titled ‘pσ{µq2 ` 1108

for LΩ’ and ‘pσ{µq2`1 for F pmassq’ matched our pLGBprBq and L̂KprBq`1, respectively.109

Furthermore the estimates L̂KprBq here have a similar form to Figure 5 of (Dàvila and110

Parés, 2007) and support our suspicion that Dàvila and Parés used LM1prBq estimates.111

D Simulation Study of GBL Estimators112

In this section we use simulations of a stationary RACS to compare the performance of113

GBL estimators under different scenarios.114
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Figure 2: Our estimates (solid lines) of F u
B prq (left), LprBq (centre) and LM1prBq (right)

with results from FracLac (circles). Here B is a square of unit width centred on the origin;
further details in main body of text. In centre: FracLac results are from the column titled
‘pσ{µq2 ` 1 for LΩ’. In right: FracLac results are from the column titled ‘pσ{µq2 ` 1 for
F pmassq’ and offset by 1.
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D.1 Methods115

We used simulated raster binary maps of a 200 unit ˆ 200 units study region, denoted116

Z. The pixels in these binary maps were 0.1 units wide. The foreground was created117

by discretising realisations of a stationary RACS, X, to the pixel grid. In many cases118

we applied a pattern of occlusions so that the study region Z was not fully observed. If119

we denote a pattern of occlusions by A Ă Rd, discretised to the pixel grid, then in these120

cases the observation window, W , of the binary map was W “ ZzA.121

The stationary RACS X that we simulated for the foreground of the binary maps was122

a Boolean model3 with 0.005 expected germs per unit area and grains that were discs123

centred on the origin. The radius of the discs was distributed according to the discrete124

approximation, at integer units of radius, of the probability density function,125

fprq “

$

’

’

’

’

’

&

’

’

’

’

’

%

0 if r ă 1,

k
r2

if 1 ď r ď 50,

0 if r ą 50,

(D.1)

where r is the radius and k is a normalising constant. This distribution for the radius126

was similar to the size distribution of discs in Mandelbrot’s disc tremas (Mandelbrot,127

1983, §33) and was chosen so that X exhibited some multiscale behaviour. The coverage128

probability of X was about p “ 0.44. The covariance of X can be calculated using the129

set covariance of the discs (Chiu et al., 2013, eq. 1.58, 3.18) and the pair-correlation of X130

(Figure 3) was such that the probability of points being covered by X was independent for131

points further than 100 units from each other. Note that the width of the study region,132

Z, was twice this distance. The RACS X was simulated using the function rbpto in the133

attached R package. Due to time restriction we do not investigate foreground simulated134

by other RACS.135

We considered three scenarios for which GBL estimators might be used:136

� Scenario 1: Realisations of X were observed in fixed windows. These observation137

3A Boolean model is a stationary RACS that is a union of identically distributed independent random
sets (called grains) centred on the points (called germs) of a stationary Poisson point process (Chiu
et al., 2013, §3).
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Figure 3: The pair-correlation gprq of the foreground process, X, for points separated by
a distance r.

windows were the full study region Z, Z excluding given various patterns of occlu-138

sions, and a square 40 units wide. The occlusion patterns used covered 2%, 31%,139

50%, 70%, and 90% of the study region. The 40 units wide observation window140

was included to investigate the performance of the estimators when the observation141

window is much smaller than the spatial interaction distance of the RACS observed.142

For each observation window 1000 realisations of X were simulated.143

The occlusion pattern that covered 2% of the study region was a realisation of a144

Boolean model with grains that were discs of radius 2.5 and germ intensity of 0.001.145

The occlusion patterns that covered 31%, 50%, 70%, and 90% of Z were realisations146

of Boolean models with a germ intensity of 0.005 germs per unit area and grains147

that were discs of deterministic radius equal to 5, 6.8, 8.8, and 12, respectively. The148

observation windows given by these occlusions, along with the full study region and149

the 40 units wide observation window are shown with example realisations of X in150

Figure 4.151

� Scenario 2: A realisation, X, of X was fixed and observed in the study region Z152

excluding random patterns of occlusions. The occlusion patterns were generated153

according to a Boolean model, O, that had a germ intensity of 0.001 germs per unit154

area, grains that were discs with radius equal to 5, and a coverage probability of155

about 0.076. For this scenario 1000 patterns of occlusions were simulated and the156

realised coverage fraction of the occlusions ranged from 4.4% to 12% of Z.157

� Scenario 3: A collection of binary maps with foreground given by X and observation158

13



window given by ZzO were simulated, where O was the same Boolean model for159

occlusions used in Scenario 2. This scenario thus combined the sources of variability160

in Scenario 1 and Scenario 2. Here X and the occlusion pattern O were simulated161

1000 times.162

The estimators pLGB, pLC , pLκH , pLκI , pLκM , pLgI and pLgM , defined in (14) and (25) - (30),163

were applied to the simulated binary maps using functions in the attached R package.164

Note that, following conventional procedure, pLGB was applied by replacing the region of165

interest in (15) and (16) with the observation window.166

200 200200 200 200 200 200 40

Figure 4: The observation windows used in Scenario 1 with example simulations of X.
Red: Occlusions - these were not part of the observation window. Black: Foreground.
White: Background. From left: Study region without occlusions, the patterns of occlusion
that covered 2%, 31%, 50%, 70% and 90% of the study region, the square observation
window 40 units wide.

D.2 Results and Analysis167

In the following results for each scenario a discussed individually. For Scenario 1 and168

Scenario 2 (22) enables the GBL of X to be computed from the covariance of X and169

allows us to assess the bias of the GBL estimators.170

D.2.1 Scenario 1171

The pointwise mean and pointwise variance of the estimators using the fixed observation172

windows of Scenario 1 are shown in Figure 5. Figure 6 shows the pointwise bias of the173

estimators and the pointwise variance relative to the pointwise variance of pLκH .174

Fully Observed Study Region When the study region was fully observed all esti-175

mators had similar small bias. The variance of pLGB and the balanced covariance-based176

estimators, pLgM , pLgI , pLκM , pLκI , and pLκH , were very similar to each other, and were sub-177

stantially smaller than the variance of the pLC estimator for box widths greater than 15.178
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The larger variance observed for pLC seems likely to be related to correlations between179

the numerator and denominator in each estimator; Figure 7 shows that pLC given boxes180

wider than 15 had smaller Pearson correlation between estimated variance of |B X X|181

(numerator) and estimated mean of |B X X| (the square root of the denominator) than182

pLGB, pLκH , pLκI and pLκM . Estimates for the variance in box mass and mean of box mass183

are not easy to extract for pLgI and pLgM and are not shown in Figure 7.184

Square Observation Window 40 Units Wide All the estimators applied to binary185

maps with the small square observation window showed very large bias. No estimator was186

able to give GBL estimates for boxes wider than 40 units as pLGB could not place boxes187

of this size within the observation window and the covariance-based estimators required188

estimates of covariance that were not possible with such a small observation window.189

The balanced pair-correlation based estimators, pLgM and pLgI , applied to binary maps190

with the small square observation window both have a sharp rise in bias and variance at191

a box width of 35 units. In the case of pLgI this was caused by two of the 1000 realisations192

of X; due to the modified denominator in pLgI these two realisations leaped to values on193

the order of 106 at box widths of 35. The increment size of 1 for box widths could have194

caused estimates from both realisations to appear to sharply rise at the same box width.195

It is a bit puzzling that the bias and variance of pLgM experienced a sharp rise at exactly196

the same box width as pLgI .197

Except for the sharp rise in the variance of pLgI and pLgM , the unbalanced covariance198

estimator, pLC , had the largest variance for boxes wider than 12, whilst pLGB had the199

smallest variance and largest bias for boxes wider than 12. A box and whisker plot of the200

distribution of pLGB, pLC , pLκH and pLgI is shown in Figure 8. Box widths wider than 12201

appear to correspond with pLgI and pLC producing estimates that were below 1 (occassional202

estimates from pLκH also apppear below 1 for boxes wider than 28).203

Note that the apparent divergence between estimators at box width of about 12 in204

Figure 5 is due to the plotted scale of the GBL estimates; the pointwise variance of GBL205

estimators relative to the pointwise variance of pLκH have large differences for boxes with206

widths smaller than 12 (Figure 6 lower right).207
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Partial Occlusions of the Study Region The bias and variance of the balanced208

covariance-based estimators were not noticeably affected by the occlusions that covered209

50% or less of the study region with pointwise variance increasing by a factor of 0.5210

at most. The pattern of occlusions covering 70% of Z increased the variance of these211

balanced covariance-based estimators by a factor of 1.6 for some boxes. The occlusion212

pattern covering 90% of Z caused a much larger increase in the bias and variance of these213

estimators, with variance increased by a factor of 5.7 for some boxes.214

Relative to the balanced covariance-based estimators, pLGB was greatly affected by any215

level of occlusions, for example the pattern of occlusion covering 50% of Z increased the216

variance of pLGB by a factor of 14 for some box widths and decreased the box widths for217

which pLGB was defined to between 0 and less than 22.218

In most cases as box size increased the mean of pLGB dropped to one and the variance219

of pLGB first increased above the variance of the other estimators, and then eventually220

dropped to zero. This occured, for example, for the study region with 31% occlusion for221

box widths starting from 10 with mean pLGB estimates dropping to one for a box width of222

27. This behaviour is explained by the reduced box locations available to pLGB for larger223

box sizes in complicated observation windows: As box width increases the set of box224

centre locations used by pLGB, which is W a qB where B is the box (see (15) and (16)),225

becomes comprised of smaller (and eventually fewer) regions. Boxes located with centres226

very close to each other overlap almost entirely, and it follows that the second moment box227

mass estimates for pLGB (16) behave like estimates from increasingly correlated samples.228

When the box is sufficiently large that W a qB is comprised by a single small region then229

the observed variance in box mass within any binary map is close to zero as the mass230

of boxes centred in W a qB is highly correlated, and the resulting pLGB estimate is nearly231

one.232

The unbalanced covariance-based estimator, pLC , performed better than pLGB for the233

partially occluded observations of Z, but had substantially higher variance than the234

balanced covariance-based estimators.235
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Further Notes Excluding estimates from the small square observation window, the236

variance of each of the estimators had a local minima near box widths of 15; we are not237

sure of the cause for this local minima. Local minima in the variance of centred covariance238

and pair-correlation estimators were also observed by Picka (1997).239

In Figure 6 there is a jump in pointwise bias at box widths of about 12, this seems240

to be caused by our numerical quadrature as it corresponds to a jump in the GBL of241

X, which was computed from the model parameters and altering the resolution of the242

computed covariance of X created additional jumps.243
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Figure 5: Results of Scenario 1. Top: The pointwise mean of each estimator for each
observation window. Bottom: The pointwise variance of estimates from each estimator
for each observation window. From left: Study region Z without occlusions; Z excluding
the patterns of occlusion that covered 2%, 31%, 50%, 70% and 90% of the study region;
the square observation window 40 units wide. Note that the variance and mean of the
balanced covariance-based estimates were very similar in most cases and are difficult to
distinguish from each other in these figures.

D.2.2 Scenario 2244

The pointwise mean and variance of the GBL estimators for Scenario 2 are shown in245

Figure 9 with examples of the simulated binary maps. Also shown for each box width246

is the proportion of realisations for which there were no locations, y, such that a box247
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Figure 8: Distributions of estimators for the small square observation window in Scenario
1. Shown are box and whisker plots for the distributions of pLC , pLGB, pLκH and pLgI at box
widths of 10, 13, 16, 19, 22, 25, 28, 31, 34, and 37. The whiskers either mark the 1st
and 3rd quartiles of the distributions, or are a maximum length of 1.5 of the interquartile
range. The GBL of X is the solid blue line.

centred on y was fully contained in W (i.e. W a qB “ H); for these realisations pLGB248

for the given box width was undefined. The variance of the balanced covariance-based249

estimators observed here is 25 times smaller than the variance observed in Scenario 1.250

For boxes wider than about 20 the balanced covariance-based estimators were closer251

to the result that pLGB would have obtained if Z was fully observed (Figure 9, top right)252

and the balanced covariance-based estimators had much smaller variance than pLGB even253

for small boxes. For box widths above 40 pLGB was increasingly unable to produce an254

estimate (Figure 9 centre row, right column) and was more likely to give estimates close255

to one, which is consistent with the low variance observed for pLGB given large boxes in256

Scenario 1.257

The pointwise variance pLC , pLκH , pLκI , pLκM and pLGB have a local miminma for box258

widths between 1 and 12, most prominently for pLC and pLGB. We are not sure of the cause259

for these local minima.260
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D.2.3 Scenario 3261

Example binary maps, and the pointwise mean and variance of GBL estimators for Sce-262

nario 3 are shown in Figure 10. Also shown for each box width is the proportion of263

realisations for which there were no locations, y, such that a box centred on y was fully264

contained in W (i.e. W a qB “ H); for these realisations pLGB for the given box width was265

undefined. As with the previous studies the bias and variance of the covariance-based266

estimators were very similar to each other. The bias of pLGB, which diverges from the267

covariance-based estimators at box widths of about 27, and the variance of pLGB, which268

is first high and then drops to zero, are consistent with the behaviour of pLGB in Sce-269

nario 1. For boxes wider than approximately 50 pLGB was often unable to produce an270

estimate (Figure 5 centre row, right column), which has caused some sharp features in271

the pointwise variance at box widths of about 70.272

E Supplement to GBL Estimators Applied to Meso-273

Scale Forest Maps274

This section describes the satellite data used Section 6.1, and then describes the method275

used to obtain forest presence-absence maps (Sections E.2 - E.3) and estimate GBL276

(Section E.4). The R code used in each step is included. Section E.5 provides R code for277

recreating the figures found in the main body of the text. Intermediate data is included278

so that the reader may skip to any section without performing earlier processing (see279

comments in R code).280

Related files are listed in Table 2.281

To execute the R code provided in this section you will need to282

1. Install R: Follow the instructions on https://www.r-project.org/ to install R.283

2. Install the R packages spatstat, raster, RcppRoll and maptools from CRAN: In284

R run285

> install.packages(c("spatstat", "raster", "maptools", "RcppRoll"))
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stationaryracsinference_0.4-01.tar.gz An R package containing the GBL estima-
tors.

satelliteimages A directory containing the satellite images in
ERMapper raster format

finalcloudandshadowmasks.RData The cloud and shadow masks used to correct
the forest masks

finalmaskedforests.RData The final forest masks in a format provided
by R’s raster package

manualforrepeatinganalysis.Rnw The source code for this section. To recreate
this document run R Sweave on manualfor-

repeatinganalysis.Rnw. It takes less than
10 minutes on a 3.6Ghz Ubuntu desktop.

gbltrads.RData The gliding box estimates in spatstat’s fv

format
gblcs.RData The unbalanced covariance-based estimates

in spatstat’s fv format
gblgs.RData The pair-correlation based estimates in

spatstat’s fv format
gblccs.RData The centred covariance-based estimates in

spatstat’s fv format

Table 2: Auxiliary files to this document

3. Install stationaryracsinference: From inside R run:286

> install.packages("<PATH TO PACKAGE>", repos = NULL, type = "source")

where <PATH TO PACKAGE> is the path to the file stationaryracsinference_0287

.4-01.tar.gz.288

E.1 Data289

The satellite imagery used in Section 6.1 was part of the ARG25 (Australian Reflectance290

Grid 25m resolution) dataset which is a time series of calibrated multispectral 25m resolu-291

tion imagery of Australia derived by Geoscience Australia from USGS’s Landsat imagery292

(Geoscience Australia, 2015). More information on ARG25 can be found at: http://293

www.ga.gov.au/metadata-gateway/metadata/record/75062/ The ARG25 data is un-294

der the Creative Commons Attribution 4.0 International Licence https://creativecommons.295

org/licenses/by/4.0/.296

Images captured from December 2015 to the end of March 2016 of a region (Geoscience297
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Australia tile SI50) near Albany, Western Australia, were extracted from ARG25. The298

seven available ARG25 images were captured on299

December 12th 2015

December 16th 2015

December 24th 2015

January 9th 2016

February 10th 2016

February 26th 2016

March 29th 2016.

300

Only the December 16th image was captured by Landsat 7; all other images were captured301

by Landsat 8.302

A subregion that contained a multiscale forest pattern and for which the imagery303

contained a range of cloud occlusions was chosen to demonstrate the estimators of GBL.304

The extent of this subregion was (in GDA94 coordinates)305

Top Left: 504835.17E 6195582.10N

Bottom Right: 523585.17E 6176832.10N.
306

The imagery can be found in ERMapper format in the satelliteimages directory. Each307

image contains the following six bands: blue, green, red, near-infrared, shortwave infrared308

1 and shortwave infrared 2. This corresponds to the Landsat 7 band numbers of 1, 2,309

3, 4, 5 and 7, and the Landsat 8 band numbers of 2, 3, 4, 5, 6 and 7 (U. S. Geological310

Survey, 2018).311

The following R code will load and plot the imagery in false colour.312

> library(raster)

> #read in the ers files using the raster package

> i1208 <- brick("satelliteimages/l8region02_20151208.ers")

> i1216 <- brick("satelliteimages/l7region02_20151216.ers")

> i1224 <- brick("satelliteimages/l8region02_20151224.ers")

> i0109 <- brick("satelliteimages/l8region02_20160109.ers")

> i0210 <- brick("satelliteimages/l8region02_20160210.ers")

24



> i0226 <- brick("satelliteimages/l8region02_20160226.ers")

> i0329 <- brick("satelliteimages/l8region02_20160329.ers")

> #for convenience make into a list

> #chronologically ordered

> raslist.sptrl <- list(

+ s1208 = i1208,

+ s1216 = i1216,

+ s1224 = i1224,

+ s0109 = i0109,

+ s0210 = i0210,

+ s0226 = i0226,

+ s0329 = i0329)

> #plot the spectral data

> par(mfrow = c(1, 7))

> a <- lapply(raslist.sptrl, plotRGB,

+ b = 2, g = 3, r = 4, stretch = "lin")

Figure 11: The satellite photographs in false colour in chronological order from left to
right.

E.2 Extracting of Forest Masks313

Forest masks were created from the satellite imagery by applying thresholds to combina-

tions of spectral values. For the Landsat 8 images any pixel satisfying

2700 ă i4 ` 3i5 ă 10000 (E.1)

i4 ´ i2 ą 1273 (E.2)
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was classified as forest where i2, i4 and i5 were the spectral values of the green, near-314

infrared and shortwave infrared 1 bands respectively.315

For the Landsat 7 image (December 16th’s) any pixel satisfying

2700 ă i4 ` 2i5 ă 10000 (E.3)

i4 ´ 2i2 ą 690 (E.4)

was classified as forest, where i2, i4 and i5 were the spectral values of the green, near-316

infrared and shortwave infrared 1 bands respectively.317

These two sets of conditions were chosen to closely approximate the true forest cover318

and give similar forest presence-absence maps from each image. The following code applies319

the above conditions to the images.320

> #function for classifying an individual pixel as forest in a

> #landsat 8 photograph

> l8fmasker.ppixel <- function(x) {

+ #x is a pixel, input is in b2,b4,b5

+ if (any(is.na(x))) {return(NA)}

+ else if ( (x %*% c(0, 1, 3)) > 2700 &&

+ (x %*% c(0, 1, 3)) < 10000 &&

+ x %*% c(-1, 1, 0) > 1273 ) {

+ return(TRUE)

+ }

+ else {return(FALSE)}

+ }

> #function for extracting the mask from an array of pixels

> l8fmasker <- function(x) {

+ #x is a raster object

+ l8.fm <- calc(subset(x, c(2, 4, 5)), l8fmasker.ppixel)

+ return(l8.fm)

+ }
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> #function for classifying an individual pixel as forest in

> #Landsat 7 photograph

> l7fmasker.ppixel <- function(x) {

+ #x is a pixel, input is in b2,b4,b5

+ if (any(is.na(x))) {return(NA)}

+ else if ( (x %*% c(0, 1, 2)) > 2700 &&

+ (x %*% c(0, 1, 2)) < 8000 &&

+ x %*% c(-2, 1, 0) > 690 ) {

+ return(TRUE)

+ }

+ else {return(FALSE)}

+ }

> #function for extracting the mask from an array of pixels

> l7fmasker <- function(x) {

+ #x is a raster object

+ l7.fm <- calc(subset(x, c(2, 4, 5)), l7fmasker.ppixel)

+ return(l7.fm)

+ }

> #apply the above masking functions to each image

> #Landsat 8 images

> raslist.fm.raw <- lapply(raslist.sptrl[

+ names(raslist.sptrl) != "s1216"],

+ l8fmasker)

> #Landsat 7 image

> raslist.fm.raw <- c(raslist.fm.raw,

+ s1216 = l7fmasker(raslist.sptrl$s1216))

> #chronologically order list again

> raslist.fm.raw <- raslist.fm.raw[names(raslist.sptrl)]

> #plot

> par(mfrow = c(1, 7), mar = c(0, 0, 0, 0), oma = c(0, 0, 0, 0))
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> a <- lapply(raslist.fm.raw, plot,

+ axes = FALSE, legend = FALSE, box = FALSE)

Figure 12: Raw forest masks derived from the photographs in chronological order from
left to right. Green: Forest. Grey: Not-forest.

E.3 Correcting Forest Masks321

The above forest masks were corrected using cloud and shadow masks, which can be322

can be found in the objects cmks.final and sms.final respectively in the R data file323

finalcloudandshadowmasks.RData. The cloud masks were created by thresholding of324

spectral values and dilating the results mask by 175m. Additional locations wispy cloud325

were added manually. Clouds were not noticed in the images captured on December 16th326

and February 26th. A mask of shadows due to clouds was created using thresholding of327

spectral values and dilating by 75m. Dark lakes and other errors in the shadow mask328

were manually excluded before the dilation. The remaining differences between the final329

forest masks were relatively small compared to the size of the study region and were not330

corrected.331

The following code loads and applies the cloud and shadow masks to the forest masks332

and then plots the final forest masks. Each final forest mask is a RasterLayer object with333

forest represented as a 1, not forest represented as 0 and unobserved locations represented334

as NA. For convenience these final forest masks, raslist.fm.m, have been prepared earlier335

in finalmaskedforests.RData.336

> load(file = "finalcloudandshadowmasks.RData")

> raslist.fm.m <- raslist.fm.raw

> #applying the cloud mask:

> raslist.fm.m[names(cmks.final)] <- mapply(mask,

+ x = raslist.fm.m[names(cmks.final)],
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+ mask = cmks.final,

+ maskvalue = 1,

+ updatevalue = NA,

+ SIMPLIFY = FALSE)

> #applying the shadow mask:

> raslist.fm.m[names(sms.final)] <- mapply(mask,

+ x = raslist.fm.m[names(sms.final)],

+ mask = sms.final,

+ maskvalue = 1,

+ updatevalue = NA,

+ SIMPLIFY = FALSE)

> #plot masks

> par(mfrow = c(1, 7), mar = c(0, 0, 0, 0), oma = c(0, 0, 0, 0))

> a <- lapply(raslist.fm.m, plot, colNA = "gray", axes = FALSE,

+ legend = FALSE, box = FALSE)

> #save

> save(raslist.fm.m, file = "finalmaskedforests.RData")

Figure 13: Final forest masks derived from the photographs in chronological order from
left to right. Green: Forest. White: Not-forest. Grey: Missing data (due to cloud, cloud
shadow or SLC-off).

E.4 Estimating GBL337

Functions in the attached R package, stationaryracsinference, were used to compute338

GBL estimates using all covariance-based estimators and the traditional gliding box esti-339

mator. The following R code coverts the final forest masks into an appropriate format and340

applies the GBL estimators. We will use the maptools package to convert the Raster-341
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Layer objects (raslist.fm.m) into im objects (the im format comes from the spatstat342

package, which stationaryracsinference heavily depends on).343

> #uncomment the following if want to skip earlier processing:

> #load("finalmaskedforests.RData")

> #

> library(spatstat)

> library(stationaryracsinference)

> library(maptools)

> #

>

> #first convert the forest masks to spatstat images

> fm.im <- lapply(raslist.fm.m, as.im)

> #

> #specify the box widths of interest

> #(implies boxes will be squares)

> sidel <- seq(25, 6000, by = 100)

> #

> #estimate GBL with the traditional estimator

> gbltrads <- mapply(gbltrad,

+ xiim = fm.im,

+ SIMPLIFY = FALSE,

+ MoreArgs = list(boxwidths = sidel))

> save(gbltrads, file = "gbltrads.RData")

> #

> #estimate GBL using the unbalanced covariance-based estimator

> gblcs <- mapply(gblc,

+ boxes = list(sidel),

+ xiim = fm.im,

+ SIMPLIFY = FALSE)

> names(gblcs) <- names(fm.im)
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> save(gblcs, file = "gblcs.RData")

> #

> #estimate GBL using the centred covariance estimator

> #(estimating centred covariance first as this will be

> # faster for multiple estimators)

> phats <- lapply(fm.im, coverageprob)

> ccvcsims <- lapply(fm.im, cencovariance, estimators = "all")

> allgblccsscene <- function(scenename){

+ out <- mapply(gblcc,

+ boxes = list(sidel),

+ cencovar = ccvcsims[[scenename]],

+ p = phats[[scenename]],

+ SIMPLIFY = FALSE)

+ names(out) <- names(ccvcsims[[scenename]])

+ return(out)

+ }

> gblccs <- lapply(names(phats), allgblccsscene)

> names(gblccs) <- names(phats)

> rm(ccvcsims)

> save(gblccs, file = "gblccs.RData")

> # estimates using pair-correlation

> pclnhats <- lapply(fm.im, paircorr, estimators = "all")

> allgblgsscene <- function(scenename){

+ out <- mapply(gblg,

+ boxes = list(sidel),

+ paircor = pclnhats[[scenename]],

+ SIMPLIFY = FALSE)

+ names(out) <- names(pclnhats[[scenename]])

+ return(out)

+ }
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> gblgs <- lapply(names(pclnhats), allgblgsscene)

> names(gblgs) <- names(pclnhats)

> rm(pclnhats)

> save(gblgs, file = "gblgs.RData")

E.5 Preparing of Figures344

The following R code recreates the figures in Section 6.1 that contain GBL estimates.345

First prepare the estimates for easy plotting.346

> ####

> #uncomment following if want to skip to here:

> # library(stationaryracsinference)

> # library(spatstat)

> # library(maptools)

> #a <- lapply(c("gblcs.RData", "gbltrads.RData",

> # "gblccs.RData", "gblgs.RData"), load)

> ####

>

>

> #first convert estimates for each scene

> # to one large spatstat function object

> #(class `fv') for easy plotting

> #a function for doing this:

> joinests <- function(fvlist, ylab = expression(hat(L))){

+ fvlist <- lapply(fvlist,

+ function(fvsingle) {fvsingle[, c(fvnames(fvsingle, ".x"),

+ fvnames(fvsingle, ".y")), drop = FALSE]})

+ #next change the name of the function value to be the scene name

+ fvlist <- mapply(tweak.fv.entry, fvlist,

+ new.labl = names(fvlist),

+ new.tag = names(fvlist),
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+ MoreArgs = list(current.tag = "GBL"),

+ SIMPLIFY = FALSE)

+ fvcomb <- do.call(cbind, fvlist)

+ fvcomb <- fv(fvcomb, argu = "s", valu = "s0226",

+ ylab = ylab,

+ labl = c("Sidelength", names(fvcomb)[-1]),

+ desc = NULL)

+ return(fvcomb)

+ }

> #applying above function:

> gblcs.fv <- joinests(gblcs, ylab = expression(hat(L)[C]))

> gbltrads.fv <- joinests(gbltrads, ylab = expression(hat(L)[GB]))

> gblccs.pickaH.fv <- joinests(

+ lapply(gblccs, "[[", "pickaH"),

+ ylab = "GBL by Centred Covaraince: Picka's H")

> gblccs.pickaint.fv <- joinests(

+ lapply(gblccs, "[[", "pickaint"),

+ ylab = "GBL by Centred Covaraince: Picka's Intrinsic")

> gblccs.mattfeldt.fv <- joinests(

+ lapply(gblccs, "[[", "mattfeldt"),

+ ylab = "GBL by Centred Covaraince: Mattfeldt-Stoyan Inspired")

> gblgs.pickaH.fv <- joinests(

+ lapply(gblgs, "[[", "pickaH"),

+ ylab = "GBL by Pair-Correlation: Picka's H")

> gblgs.pickaint.fv <- joinests(

+ lapply(gblgs, "[[", "pickaint"),

+ ylab = "GBL by Pair-Correlation: Picka's Intrinsic")

> gblgs.mattfeldt.fv <- joinests(

+ lapply(gblgs, "[[", "mattfeldt"),

+ ylab = "GBL by Pair-Correlation: Mattfeldt-Stoyan Inspired")
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> #

> # make a list of the above estimates

> r2_gbl_byestimator <- list(

+ gbltrad = gbltrads.fv,

+ gblc = gblcs.fv,

+ gblcc.pickaH = gblccs.pickaH.fv,

+ gblcc.pickaint = gblccs.pickaint.fv,

+ gblcc.mattfeldt = gblccs.mattfeldt.fv,

+ gblg.pickaint = gblgs.pickaint.fv,

+ gblg.mattfeldt = gblgs.mattfeldt.fv

+ )

> #

> #

> chronoscenenames <- list(

+ s1208 = "Dec. 8th",

+ s1216 = "Dec. 16th",

+ s1224 = "Dec. 24th",

+ s0109 = "Jan. 9th",

+ s0210 = "Feb. 10th",

+ s0226 = "Feb. 26th",

+ s0329 = "Mar. 29th")

Now plot by estimator.347

> pltfmla.str <- paste0('cbind(',

+ paste(names(chronoscenenames), collapse = ', '),

+ ')', " ~ ", "s")

> par(mfrow = c(2, 7),

+ oma = c(6, 3, 1.5, 0.5),

+ cex.axis = 1.4,

+ mar = c(0.5, 0.5, 1, 0.5),

+ xpd = FALSE)
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> #function to build plot region and axis

> preptoplot <- function(){

+ plot.new()

+ plot.window(xlim = c(0, 5000), ylim = c(0 + 1, 1.3 + 1))

+ #axis(1, at = seq(0, 5000, by = 1000), labels = seq(0,5, by = 1))

+ box()

+ }

> #function for plotting lines from an fv object containing GBL estimates

> linesgblest.fv <- function(fvobj){

+ plot(add = TRUE, fvobj, fmla = pltfmla.str, lty = c(rep("solid", 3),

+ rep("dotdash", 2), rep("longdash", 2)), lwd = 2,

+ col = rainbow(7)[c(1, 2, 6, 5, 4, 3, 7)])

+ }

> # now using above functions to do the plots

> preptoplot()

> title(main = expression(hat(L)[GB]), line = 1, xpd = NA)

> linesgblest.fv(gbltrads.fv)

> axis(2, at = seq(0, 1.3, by = 0.1) + 1,

+ labels = c(seq(0, 1.3, by = 0.1)) + 1)

> mtext("GBL Estimate", side = 2,

+ outer = TRUE, adj = 0.8, line = 1.5)

> preptoplot()

> title(main = expression(hat(L)[C]), line = 1, xpd = NA)

> linesgblest.fv(gblcs.fv)

> preptoplot()

> title(main = expression(hat(L)[kappa * H]), line = 1, xpd = NA)

> linesgblest.fv(gblccs.pickaH.fv)

> preptoplot()

> title(main = expression(hat(L)[kappa * I]), line = 1, xpd = NA)

> linesgblest.fv(gblccs.pickaint.fv)
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> preptoplot()

> title(main = expression(hat(L)[kappa * M]), line = 1, xpd = NA)

> linesgblest.fv(gblccs.mattfeldt.fv)

> preptoplot()

> title(main = expression(hat(L)[g * I]), line = 1, xpd = NA)

> linesgblest.fv(gblgs.pickaint.fv)

> preptoplot()

> title(main = expression(hat(L)[g * M]), line = 1, xpd = NA)

> linesgblest.fv(gblgs.mattfeldt.fv)

> #parameters for plot

> pltfmla.str <- paste0('cbind(',

+ paste(names(chronoscenenames[-6]), collapse = ', '),

+ ')', " - s0226", " ~ ", "s")

> #plot region and furniture setup

> preptoplot <- function(){

+ plot.new()

+ plot.window(xlim = c(0, 5000), ylim = c(-0.6, 0.6))

+ axis(1, at = seq(0, 5000, by = 1000), labels = seq(0, 5, by = 1))

+ box()

+ abline(h = 0, lty = "dashed")

+ }

> #For adding lines from an fv object containing GBL estimates

> linesgblest.fv <- function(fvobj){

+ plot.fv(add = TRUE,

+ fvobj,

+ fmla = pltfmla.str,

+ lty = c(rep("solid", 3), rep("dotdash", 2), rep("longdash", 1)),

+ lwd = 2,

+ col = rainbow(7)[c(1, 2, 6, 5, 4, 3, 7)][-6])

+ }

36



> #plot difference of covaiance-based estimates

> #to s0226 covariance-based estimate

> preptoplot()

> linesgblest.fv(gbltrads.fv)

> mtext("Box Width (km)", side = 1,

+ outer = TRUE, line = 1.5)

> mtext("Difference to Feb. 26th", side = 2,

+ outer = TRUE, adj = 0.1, line = 1.5)

> #title(main = expression(hat(L)[GB]))

> axis(2, at = seq(-0.6, 0.6, by = 0.2),

+ labels = c(seq(-0.6, 0.6, by = 0.2)))

> preptoplot()

> #title(main = expression(hat(L)[C]))

> linesgblest.fv(gblcs.fv)

> preptoplot()

> #title(main = expression(hat(L)[kappa * H]))

> linesgblest.fv(gblccs.pickaH.fv)

> preptoplot()

> #title(main = expression(hat(L)[kappa * I]))

> linesgblest.fv(gblccs.pickaint.fv)

> preptoplot()

> #title(main = expression(hat(L)[kappa * M]))

> linesgblest.fv(gblccs.mattfeldt.fv)

> preptoplot()

> #title(main = expression(hat(L)[g * I]))

> linesgblest.fv(gblgs.pickaint.fv)

> preptoplot()

> #title(main = expression(hat(L)[g * M]))

> linesgblest.fv(gblgs.mattfeldt.fv)

> par(fig = c(0, 1, 0, 1),
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+ oma = c(0, 0, 0, 0),

+ mar = c(0, 0, 0, 0),

+ new = TRUE)

> plot(0, 0, type = "n", bty = "n", xaxt = "n", yaxt = "n")

> legend("bottom",

+ xpd = TRUE,

+ ncol = 4,

+ seg.len = 3,

+ legend = chronoscenenames,

+ col = rainbow(7)[c(1, 2, 6, 5, 4, 3, 7)],

+ lty = c(rep("solid", 3), rep("dotdash", 2), rep("longdash", 2)),

+ lwd = 2

+ )
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Figure 14: Results from each GBL estimator applied to the forest maps in Figure 5. Top:
GBL estimates given square boxes. Bottom: The differences between estimates from the
February 26 scene and estimates from the other scenes.
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Now plotting estimates by scene:348

> #parameters for plot

> par(mfrow = c(2, 7),

+ oma = c(5, 3, 1.5, 0.5),

+ mar = c(1, 0.5, 1, 0.5),

+ cex.axis = 1.4,

+ xpd = FALSE)

> #

> #set line styles

> linecols <- c(

+ gblg.none = "turquoise",

+ gblc = "turquoise",

+ gbltrad = "black",

+ gblcc.pickaH = "red",

+ gblcc.pickaint = "green",

+ gblcc.mattfeldt = "blue",

+ gblg.pickaint = "purple",

+ gblg.mattfeldt = "orange"

+ )

> linewd <- c(

+ gblg.none = 2,

+ gblc = 2,

+ gbltrad = 2,

+ gblcc.pickaH = 2,

+ gblcc.pickaint = 2,

+ gblcc.mattfeldt = 3,

+ gblg.pickaint = 2,

+ gblg.mattfeldt = 3

+ )

> linetypes <- c(
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+ gblg.none = "solid",

+ gblc = "solid",

+ gbltrad = "dashed",

+ gblcc.pickaH = "dotted",

+ gblcc.pickaint = "dotted",

+ gblcc.mattfeldt = "dotted",

+ gblg.pickaint = "twodash",

+ gblg.mattfeldt = "twodash"

+ )

> linenames <- c(

+ gblg.none = expression(hat(L)[C]),

+ gblc = expression(hat(L)[C]),

+ gbltrad = expression(hat(L)[GB]),

+ gblcc.pickaH = expression(hat(L)[kappa * H]),

+ gblcc.pickaint = expression(hat(L)[kappa * I]),

+ gblcc.mattfeldt = expression(hat(L)[kappa * M]),

+ gblg.pickaint = expression(hat(L)[g * I]),

+ gblg.mattfeldt = expression(hat(L)[g * M]),

+ gbl.th = expression(L)

+ )

> plotstyles <- data.frame(col = linecols,

+ lty = linetypes,

+ lwd = linewd,

+ stringsAsFactors = FALSE)

> lines.special <- function(fvobject, scenename, abbrv){

+ do.call(lines, args = c(list(

+ x = fvobject$s,

+ y = fvobject[[scenename]]),

+ plotstyles[abbrv, c("col", "lty", "lwd")])

+ )
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+ }

> #a customised plot function

> plotsceneGBL <- function(scenename, scenelabel){

+ plot.new()

+ plot.window(xlim = c(0, 5000), ylim = c(0 + 1, 1.3 + 1))

+ title(main = scenelabel, font.main = 1, line = 0.5, xpd = NA)

+ axis(1, at = seq(0, 5000, by = 1000), labels = seq(0, 5, by = 1))

+ if (scenename == "s1208"){axis(2, at = seq(0, 1.3, by = 0.1) + 1,

+ labels = c(seq(0, 1.3, by = 0.1)) + 1)

+ }

+ box()

+ out <- lapply(names(r2_gbl_byestimator),

+ function(x) lines.special(r2_gbl_byestimator[[x]],

+ scenename,

+ x))

+ }

> lines.special.loglog <- function(fvobject, scenename, abbrv){

+ do.call(lines, args = c(list(

+ x = log(fvobject$s),

+ y = log(fvobject[[scenename]])),

+ plotstyles[abbrv, c("col", "lty", "lwd")])

+ )

+ }

> #customised plot function for log log

> plotsceneGBL.loglog <- function(scenename, scenelabel){

+ plot.new()

+ plot.window(xlim = log(c(100, 5000)), ylim = log(c(1, 2.5)))

+ #title(main = scenelabel, font.main = 1)

+ axis(1, at = log(c(100, 200, 400, 800, 1600, 3200)),

+ labels = c(0.1, 0.2, 0.4, 0.8, 1.6, 3.2))
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+ if (scenename == "s1208"){axis(2,

+ at = log(1.2 ^ (0:5)),

+ labels = round(1.2 ^ (0:5), 2))

+ }

+ box()

+ out <- lapply(names(r2_gbl_byestimator),

+ function(x) lines.special.loglog(r2_gbl_byestimator[[x]],

+ scenename,

+ x))

+ }

> plotsceneGBL("s1208", "Dec. 8th")

> plotsceneGBL("s1216", "Dec. 16th")

> plotsceneGBL("s1224", "Dec. 24th")

> plotsceneGBL("s0109", "Jan. 9th")

> plotsceneGBL("s0210", "Feb. 10th")

> plotsceneGBL("s0226", "Feb. 26th")

> plotsceneGBL("s0329", "Mar. 29th")

> plotsceneGBL.loglog("s1208", "")

> plotsceneGBL.loglog("s1216", "")

> plotsceneGBL.loglog("s1224", "")

> plotsceneGBL.loglog("s0109", "")

> plotsceneGBL.loglog("s0210", "")

> plotsceneGBL.loglog("s0226", "")

> plotsceneGBL.loglog("s0329", "")

> mtext("Box Width (km)", side = 1,

+ outer = TRUE, line = 1.5)

> mtext(c("L(B) Estimate", "L(B) Estimate"), side = 2,

+ outer = TRUE, line = 1.5,

+ adj = c(0.2, 0.78))

> par(fig = c(0, 1, 0, 1),
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+ oma = c(0, 0, 0, 0),

+ mar = c(0, 0, 0, 0),

+ new = TRUE)

> plot(0, 0, type = "n", bty = "n", xaxt = "n", yaxt = "n")

> legend("bottom",

+ xpd = TRUE,

+ ncol = 7,

+ seg.len = 3,

+ legend = linenames[names(r2_gbl_byestimator)],

+ lwd = plotstyles[names(r2_gbl_byestimator), "lwd"],

+ col = plotstyles[names(r2_gbl_byestimator), "col"],

+ lty = plotstyles[names(r2_gbl_byestimator), "lty"]

+ )

E.6 R Session Information349

� R version 3.5.1 (2018-07-02), x86_64-pc-linux-gnu350

� Locale: LC_CTYPE=en_AU.UTF-8, LC_NUMERIC=C, LC_TIME=en_AU.UTF-8,351

LC_COLLATE=en_AU.UTF-8, LC_MONETARY=en_AU.UTF-8,352

LC_MESSAGES=en_AU.UTF-8, LC_PAPER=en_AU.UTF-8, LC_NAME=C, LC_ADDRESS=C,353

LC_TELEPHONE=C, LC_MEASUREMENT=en_AU.UTF-8, LC_IDENTIFICATION=C354

� Running under: Ubuntu 16.04.5 LTS355

� Matrix products: default356

� BLAS: /usr/lib/libblas/libblas.so.3.6.0357

� LAPACK: /usr/lib/lapack/liblapack.so.3.6.0358

� Base packages: base, datasets, graphics, grDevices, methods, stats, utils359
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Figure 15: GBL estimates from each map in Figure 5 given square boxes. Top: Linear
axes. Bottom: Log-log axes.

� Other packages: devtools 1.13.6, extrafont 0.17, maptools 0.9-3, nlme 3.1-137,360

raster 2.6-7, rpart 4.1-13, sp 1.3-1, spatstat 1.56-1.006, spatstat.data 1.3-1,361

stationaryracsinference 0.4-01, testthat 2.0.0362

� Loaded via a namespace (and not attached): abind 1.4-5, compiler 3.5.1,363

deldir 0.1-15, digest 0.6.15, extrafontdb 1.0, foreign 0.8-71, goftest 1.1-1,364

grid 3.5.1, lattice 0.20-35, magrittr 1.5, Matrix 1.2-14, memoise 1.1.0, mgcv 1.8-24,365

polyclip 1.9-1, R6 2.2.2, Rcpp 0.12.18, RcppRoll 0.3.0, rgdal 1.3-3, rlang 0.2.1,366

Rttf2pt1 1.3.7, spatstat.utils 1.9-0, tensor 1.5, tools 3.5.1, withr 2.1.2367
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F GBL Estimators applied to Local Scale Tree Canopy368

Maps369

An indication of the computational speed of the balanced covariance-based estimators370

compared to pLGB is shown in Figure 16 for the tree canopy maps described in Section 6.2371

(see Appendix G for discussion of asymptotic computation time). The estimates were372

computed with functions in the attached stationaryracsinference R package using373

Intel Xeon 2.20 GHz cores on a Linux machine with 65 GB of RAM. Square boxes of374

widths up to 1000 pixels were requested with a greater frequency at small widths and 125375

different box sizes in total.376

Shown in Figure 17 are GBL estimates from pLGB, pLC , pLκH , pLκI , pLκM , pLgI and pLgM

applied to the tree canopy maps described in Section 6.2. The estimates are shown

transformed by T pL̂q “ pL̂ ´ 1qp̂{p1 ´ p̂q, which standardises the estimates to have a

value of 1 and 0 for, respectively, arbitrarily small and arbitrarily large boxes. This

transformation may be justified by considering a stationary RACS with a covariance

Cpvq that is continuous at the origin and is such that
ş

Rd Cpvq ´ p2dv is finite. Given a

box rA that is a compact set scaled by r then for small r,

ż

Rd

γrApvqCpvq dv « p

ż

Rd

γrApvqdv,

and for large r,

ż

Rd

γrApvqCpvq dv « |rA|

ż

Rd

Cpvq ´ p2dv ` p2
ż

Rd

γrApvqdv.

It follows from (22) and
ş

Rd γrApvqdv “ |rA|
2 that limrÑ0 LprAq “ 1{p and limrÑ8 LprAq “377

1. If the RACS is mixing then the results of GBL estimators applied to an observation378

window expanding in all directions (e.g. a ball with increasingly large radius) will also379

converge to 1{p and 1 for small and large r respectively.380

For some parcels the estimates given by pLC , pLgI and pLgM contain large vertical features381

at a box width of 25 and after standarisation a number of estimates are negative for larger382

box widths. This is briefly investigated below and seems related to discrepancies between383
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these estimates and the estimates from the complement binary map.384

Relation to Estimates from the Complement Map The GBL of a stationary385

RACS, X, is related to the the GBL of the complement of X, denoted LcpBq, by386

LpBq “

ˆ

1´ p

p

˙2

LcpBq ´

ˆ

1´ p

p

˙2

` 1, (F.1)

where, as usual, p is the coverage probability of X. If we use a superscript ‘c’ to denote

an estimator applied to the binary map after swapping foreground with background then

the estimators pLGB, pLκH , pLκI and pLκM are such that

pLGBpBq “

ˆ

1´ p̂

p̂

˙2

pLcGBpBq ´

ˆ

1´ p̂

p̂

˙2

` 1, (F.2)

pLκHpBq “

ˆ

1´ p̂

p̂

˙2

pLcκHpBq ´

ˆ

1´ p̂

p̂

˙2

` 1, (F.3)

pLκIpBq “

ˆ

1´ p̂

p̂

˙2

pLκ
c
IpBq ´

ˆ

1´ p̂

p̂

˙2

` 1, (F.4)

pLκMpBq “

ˆ

1´ p̂

p̂

˙2

pLκ
c
MpBq ´

ˆ

1´ p̂

p̂

˙2

` 1, (F.5)

repectively, and the estimators pLC , pLgI and pLgM are such that,

pLCpBq ‰

ˆ

1´ p̂

p̂

˙2

pLcCpBq ´

ˆ

1´ p̂

p̂

˙2

` 1 (F.6)

pLgIpBq ‰

ˆ

1´ p̂

p̂

˙2

pLg
c
IpBq ´

ˆ

1´ p̂

p̂

˙2

` 1 (F.7)

pLgMpBq ‰

ˆ

1´ p̂

p̂

˙2

pLg
c
MpBq ´

ˆ

1´ p̂

p̂

˙2

` 1. (F.8)

Standardised results of pLgI and
´

1´p̂
p̂

¯2
pLg

c
IpBq´

´

1´p̂
p̂

¯2

`1 are shown for some parcels387

in Figure 18. It appears that parcels that have better behaved pLgI results also have little388

discrepancy between the pLgI results and the
´

1´p̂
p̂

¯2
pLg

c
IpBq ´

´

1´p̂
p̂

¯2

` 1 results.389
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Figure 16: Computation time to estimate GBL for each parcel. Dark: Represents the
time taken by any of the balanced covariance-based estimators. Light: Time taken by
pLGB.
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Figure 18: Results of pLgI and
´

1´p̂
p̂

¯2
pLg

c
IpBq ´

´

1´p̂
p̂

¯2

` 1 for selected parcels. Each is

standardised by the transformation T
`

L̂pBq
˘

“ pL̂pBq ´ 1qp̂{p1´ p̂q.

G Asymptotic Computational Complexity390

In the attached R package, stationaryracsinference, the method for computing pLGB391

for a given square box B used Opnq box locations, where n was the number of pixels in392

the binary map, and required Op
?
bq operations, where b was the number of pixels within393

B, to calculate the box mass for each successive location (the number of operations is394

proportional to the perimeter of the box). The asymptotic complexity of pLGB could thus395

be written OpnqOp
?
bq.396

To compute pLCpBq the total operations for a single box size was Opn logpnqq `397

Opb logpbqq as each piece of the pLC algorithm used the following number of operations:398

� The covariance estimates, Ĉpvq, used a spatial convolution to calculate γXXW and399

another convolution to calculate γW . Division of these gave Ĉpvq for all loca-400

tions v within W ‘|W on a grid with spatial resolution equal to the input binary401

map. The convolutions were calculated using three fast Fourier transforms and an402

image multiplication. The multiplication was an Opnq operation whilst the fast403

Fourier transforms were each Opn logpnqq operations making estimating covariance404

an Opn logpnqq operation.405

� The coverage probability estimator, p̂, was the mean pixel value and thus required406

Opnq operations.407
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� The set covariance of the box B, γBpvq, was computed using Fourier transforms,408

and was thus an Opb logpbqq operation. For situations that require faster computa-409

tions and when B is a rectangle or disc then the set covariance can be computed410

analytically instead (Chiu et al., 2013, §1.7.2).411

� The integral of γBpvqĈpvq required Opbq operations.412

For the balanced estimators an additional convolution for the numerator of Picka’s413

reduced window coverage probability estimator, p̂Rpvq, defined in (8), was required. A414

further convolution was used to compute the denominator, γW , of (8), which could be415

avoided in the future as γW was already computed for Ĉpvq. In total computation of416

p̂Rpvq was thus than Opn logpnqq operation and estimates of GBL using the balanced417

covariance-based estimators required Opn logpnqq `Opb logpbqq operations.418

The covariance-based estimators will scale better than pLGB with increasing resolution419

if the box sizes of interest are independent of resolution (e.g. linked to a physical under-420

standing of the observed phenomena) as the number of pixel’s in each box, b, will scale421

with n and computing covariance-based estimates and pLGB estimates will be, respectively,422

Opn logpnqq and Opn3{2q operations. Furthermore the covariance-based estimators scale423

better with increasing numbers of different box sizes as the Opn logpnqq operations were424

performed once for each binary map. However if the box size scales with resolution or425

the observation window extent increases then computing pLGB will be an Opnq operation426

and will scale better than the covariance-based estimators.427
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Dàvila, E., Toldrà, M., Saguer, E., Carretero, C., and Parés, D. (2007), “Characterization435

of plasma protein gels by means of image analysis,”LWT - Food Science and Technology,436

40(8), 1321–1329.437

Geoscience Australia (2015), Australian Reflectance Grid (ARG25) Product Description
”

438

Technical report, Commonwealth of Australia.439

Hansen, M. B., Baddeley, A. J., and Gill, R. D. (1999), “First Contact Distributions440

for Spatial Patterns: Regularity and Estimation,” Advances in Applied Probability,441

31(1), 15–33.442

Karperien, A. (2015), “FracLac for ImageJ,”. Version 2015Sep090313a9330.443

URL: http://rsb.info.nih.gov/ij/plugins/fraclac/FLHelp/Introduction.htm444

Karperien, A. L. (2005), FracLac’s Advanced User Manual
”

Technical report, Charles445

Sturt University. Version 2.0f.446

Mandelbrot, B. B. (1983), Fractals and the Geometry of Nature, New York: W. H. Free-447

man and Company.448

Picka, J. D. (1997), Variance-reducing modifications for estimators of dependence in449

random sets, Ph.D., The University of Chicago, United States – Illinois.450

U. S. Geological Survey (2018), “What are the band designations for the Landsat451

satellites?”.452

URL: https://landsat.usgs.gov/what-are-band-designations-landsat-satellites Ac-453

cessed: 18 September 2018.454

50


	GBL of Intersections, Unions and Invertible Linear Transformations
	The Relation Between GB and Covariance
	Mandelbrot's LM1 Index
	Background
	Spatial Statistics' Contact Distribution
	Relation to GBL and Contact Distributions
	Comparison to FracLac

	Simulation Study of GBL Estimators
	Methods
	Results and Analysis
	Scenario 1
	Scenario 2
	Scenario 3


	Supplement to GBL Estimators Applied to Meso-Scale Forest Maps
	Data
	Extracting of Forest Masks
	Correcting Forest Masks
	Estimating GBL
	Preparing of Figures
	R Session Information

	GBL Estimators applied to Local Scale Tree Canopy Maps
	Asymptotic Computational Complexity

