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Abstract

We review recent research on statistical methods for analysing spatial patterns
of points on a network of lines, such as road accident locations along a road net-
work. Due to geometrical complexities, the analysis of such data is extremely
challenging, and we describe several common methodological errors. The intrin-
sic lack of homogeneity in a network militates against the traditional methods
of spatial statistics based on stationary processes. Topics include kernel density
estimation, relative risk estimation, parametric and non-parametric modelling
of intensity, second-order analysis using the K -function and pair correlation
function, and point process model construction. An important message is that
the choice of distance metric on the network is pivotal in the theoretical devel-
opment and in the analysis of real data. Challenges for statistical computation
are discussed and open-source software is provided.
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1. Introduction1

This paper reviews recent research on the spatial analysis of events that2

occur along a network of lines. Figure 1 displays a motivating example, in which3

the locations of traffic accidents in a city are mapped together with the road4

network. Such data require the development of novel statistical methodology5

and computational techniques (Okabe and Sugihara, 2012; Ver Hoef et al., 2006;6

Baddeley et al., 2015, Chapter 17).7
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Figure 1: Traffic accidents recorded in 2011 in the central business district (CBD) of the city
of Perth, Western Australia. Black dots are accident locations; grey lines are state roads.

Spatial patterns of points along a network of lines are found in many other8

applications. The network might reflect a map of railways, rivers, electrical9

wires, nerve fibres, airline routes, irrigation canals, geological faults or soil10

cracks. Observations of interest could be the locations of traffic accidents, bicy-11

cle incidents, vehicle thefts or street crimes (Yamada and Thill, 2004; Lu and12

Chen, 2007; Xie and Yan, 2008; Ang et al., 2012; Vandenbulcke-Plasschaert,13

2011); roadside trees or invasive species (Spooner et al., 2004; Deckers et al.,14

2005); retail stores, roadside kiosks or urban parks (Okabe and Kitamura, 1996;15

Okabe and Okunuki, 2001; Okunuki and Okabe, 2003; Comber et al., 2008);16

insect nests (Voss, 1999; Voss et al., 2007; Ang et al., 2012); neuroanatomical17

features (Yadav et al., 2012; Jammalamadaka et al., 2013; Baddeley et al., 2014)18

or sample points along a stream (Ver Hoef et al., 2006; Ver Hoef and Peterson,19

2010; Som et al., 2014). John Snow’s pioneering observations of cholera cases20

in London (Snow, 1855) could also be described as a point pattern on a linear21

network. Spatial analysis of such data can have immediate practical value, as22

it did when Snow’s analysis suggested the cause of cholera transmission.23

Statistical analysis of network data presents severe challenges. A network is24

not spatially homogeneous, which creates geometrical and computational com-25

2



plexities and leads to new methodological problems, with a high risk of method-26

ological error. Real network data can also exhibit an extremely wide range of27

spatial scales. These problems pose a significant and far-reaching challenge to28

the classical methodology of spatial statistics based on stationary processes,29

which is largely inapplicable to data on a network.30

Analysis of point patterns on linear networks has been a focus of recent re-31

search in Geographical Information Systems (GIS) (Borruso, 2005, 2008; Downs32

and Horner, 2007a; Okabe and Yamada, 2001; Okabe et al., 2009, 2008, 2000;33

Shiode, 2008; Okabe and Satoh, 2006; Okabe et al., 1995, 2006b,a; Okabe and34

Satoh, 2009; Shiode and Shiode, 2009; Warden, 2008; Yamada and Thill, 2007).35

For surveys, see Okabe and Satoh (2009); Okabe and Sugihara (2012). In re-36

cent years there has been increased interest from the spatial statistics community37

(Ang et al., 2012; Baddeley et al., 2014; McSwiggan et al., 2016; Baddeley et al.,38

2017; Anderes et al., 2017; Rakshit et al., 2017; Moradi et al., 2018; Briz-Redón39

et al., 2019; Rakshit et al., 2019a,b; McSwiggan et al., 2019; Moradi et al., 2019;40

McSwiggan, 2019, Baddeley et al., 2015, Chap. 17). Spatial analysis on a net-41

work of rivers or streams is also a highly active research topic in spatial ecology42

and spatial statistics, although this is more focused on geostatistical techniques43

for spatial variables (Cressie and Majure, 1997; Cressie et al., 2006; Isaak et al.,44

2014; O’Donnell et al., 2014; Ver Hoef et al., 2006; Ver Hoef and Peterson, 2010).45

Section 2 presents a range of example datasets and applications. Section 346

surveys the main statistical challenges for analysis of point patterns on a net-47

work. Section 4 gives some basic technical definitions. Section 5 discusses kernel48

smoothing on a network. Section 6 discusses nonparametric estimation of in-49

tensity as a function of covariates. Section 7 discusses parametric modelling50

of point processes, model-fitting and variable selection. Section 8 discusses the51

analysis of clustering using the K –function and related tools. Section 9 describes52

the fundamental problem of existence of models with specified properties. Sec-53

tion 10 presents alternative ways of measuring the distance between locations54

on a network, and the implications for statistical analysis and modelling.55

2. Data examples56

In this section we present datasets from several different applications, il-57

lustrating different features and challenges. Various techniques will be demon-58

strated on these datasets throughout the paper. Where possible, the datasets59

are publicly available in the R packages spatstat (Baddeley and Turner, 2005;60

Baddeley et al., 2015) or spatstat.Knet (Rakshit et al., 2019a).61

2.1. Western Australia traffic accidents62

The traffic accident pattern shown in Figure 1 is part of a much larger63

dataset giving the locations of all traffic accidents recorded in the State of64

Western Australia over several years. The data, curated by the state government65

agency Main Roads WA, include spatial coordinates of each road segment; the66

spatial location of each accident; properties of the road, such as speed limit and67

curvature; and attributes of each accident, such as severity and time of day.68

Figure 2 shows the accidents recorded in the Perth metropolitan area for69

the year 2011, delimited by a 59× 67 km rectangle, comprising 12,408 accident70

locations on a road network of total length 10,319 km.71

3
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Figure 2: Accidents recorded in the Perth metropolitan area.

The full dataset for the year 2011 is shown in Figure 3; it gives the locations72

of 14,562 traffic accidents for the entire state of Western Australia on a road73

network of 115,169 segments with total length 97,166 km. This is available in74

the spatstat.Knet package as the dataset WAcrashes. Both the network and75

the accident observations are extremely dense in the urban area along the west76

coast; the raw data also reveal major arterial highways.77

Questions of interest include the spatial variation of accident risk, the rela-78

tionship between accident risk and road characteristics, and the effect of safety79

management interventions such as the installation of traffic lights.80

2.2. Chicago crimes81

Figure 4 is a record of 116 crimes (classified into 7 types) reported in a neigh-82

bourhood of the University of Chicago. The locations are the street addresses83

associated with each crime report.84

Questions of interest include whether there are spatial concentrations of85

crime, and whether the spatial pattern is different for different types of crime86

(Johnson, 2010).87
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Figure 3: Traffic accidents (black dots) recorded in the year 2011 on the state road network
(grey lines) of the southern half of Western Australia.
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Figure 4: Chicago crimes data, classified by type of crime (Chicago Weekly News).

2.3. Spider shelter webs — replicate observations88

Figure 5 shows the positions of spider webs of the urban wall spider Oecobius89

navus on the mortar lines of a brick wall, observed on six successive Thursdays,90

recorded by Voss (1999); Voss et al. (2007) and digitised by Mark Handcock.91
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Observations were confined to a square of side 1.125 metres; the linear network92

has 156 vertices and a total length of 20.22 metres. Questions concern the93

spiders’ habitat preferences (Voss et al., 2007) and interaction between nearby94

individuals. The spiders are free to roam over the wall surface, but the mortar95

spaces provide the only opportunity for constructing webs (Voss, 1999).96
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Figure 5: Spider shelter webs on a brick wall, observed once a week for six weeks.

The data in the top left panel of Figure 5 were analysed in Ang (2010); Ang97

et al. (2012); Rakshit et al. (2017), Baddeley et al. (2015, Chap. 17) and are98

available in the spatstat package as the dataset spiders. The full sequence of99

observations shown in Figure 5 was analysed in Voss (1999); Ang (2010); Voss100

et al. (2007). The availability of replicated observations of a point pattern allows101

a more searching analysis; methods for this purpose are well-developed for two-102

dimensional point patterns (Baddeley et al., 1993; Bell and Grunwald, 2004;103

Diggle et al., 1991, 2000; Mateu, 2001; Myllymäki et al., 2013; Webster et al.,104

2005; Baddeley et al., 2015, Chap. 16) but for linear networks we demonstrate105

them for the first time in this paper.106

2.4. Dendritic spines107

Figure 6 shows the locations of small protrusions called spines on part of the108

dendrite network of a neuron (nerve cell) recorded by the Kosik Lab (UCSB) and109

Aruna Jammalamadaka. The spines are also classified into three types, based110

on their shape. This neuron was grown in vitro, lying almost flat, and Figure 6111

shows a two-dimensional projection. Questions of interest include whether the112

spines are uniformly distributed; whether different spine types have different113
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Figure 6: Dendritic spine locations on the dendrite network of a neuron. Grey lines show
dendrite network. Coloured tickmarks show spine locations; tickmarks are not to scale. The
root of the dendritic tree is at the top right.

distributions; and whether spines are clustered or randomly located. These114

data were analysed by Jammalamadaka et al. (2013); Baddeley et al. (2014)115

and are available in the spatstat package as the dataset dendrite.116

2.5. Geelong road accidents117

The upper panel of Figure 7 shows the locations of high-severity road traffic118

accidents in the Australian regional city of Geelong. The lower panel shows119

the traffic volume along each road segment, measured as the average daily total120

number of cars that triggered a counting device on the road segment. The traffic121

volume is an example of an explanatory variable (spatial covariate) that should122

be included in any realistic analysis of accident risk (McSwiggan, 2019).123

2.6. Subtleties and differences between applications124

To avoid methodological errors, it is important that network data should125

not be viewed simply as a “type of data” for which we can develop software126

solutions. Each application has its own characteristics and exigencies requiring127

attention.128

Spatial point process methods are appropriate only when the spatial loca-129

tions are recorded. In road accident research, the precise spatial locations of130

accidents are recorded only for high-severity accidents, which are investigated by131

authorities; low-severity accidents are often self-reported (and under-reported)132

at a much lower spatial precision, often suitable only for use as aggregated count133

data.134

An important question about all network data is to understand the relevance135

of the space “outside” the network. This varies between applications. The136
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Figure 7: Geelong accident data. Top: High severity traffic accidents on state-declared
roads in Geelong, Australia, 2009–2011. Bottom: traffic volume (vehicles per day) along
the network; line widths are proportional to traffic volume according to the scale at right,
in the style of Xie and Yan (2008). Downloaded from CrashStats interactive database at
www.vicroads.vic.gov.au.

spider webs in Figure 5 are built in the mortar lines of the brick wall, but the137

spiders are otherwise free to roam across the wall, unlike road vehicles, which138

are constrained to stay on the road network. River ecology depends on the139

surrounding landscape ecology; dendritic spines are electrical connections into140

the surrounding tissue. This information could be used for better inference141

(Rakshit et al., 2017).142

Point locations recorded on a network may be the true locations of events143

(such as severe road accidents) or they may be the projections of the true spatial144

locations onto the network (such as the street addresses of crime reports in the145

Chicago data, Figure 4).146
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Figure 8: Road accidents in the inner city of Fremantle, Western Australia.

Road traffic accidents frequently occur at a road intersection. Figure 8,147

provided by Mr Isaac Gravestock, displays traffic accident locations in the port148

city of Fremantle, Western Australia showing a high proportion of accidents149

at intersections. In many point process models, there is zero probability that150

a random point will occur at a predetermined fixed location. Point process151

models need to be modified to allow points to occur exactly at a vertex of the152

network (McSwiggan, 2019). Alternatively, count regression models can be used153

by introducing a separate accident count at each intersection (Briz-Redón et al.,154

2019).155

Most networks are constantly changing through engineered, biological or156

ecological processes. Existing techniques treat the network as fixed, which is157

a reasonable approximation for short periods, but a spatio-temporal approach158

would be more powerful.159

There are methodological challenges with the data sources. Institutional160

spatial databases have constraints such as inclusion criteria, privacy and record-161

keeping laws, which can introduce subtle biases of Berkson’s (1946) type. Changes162

in a network often depend on the events of interest, such as road improvements163

in response to accident patterns. When a dangerous road intersection is modi-164

fied to improve safety, some authorities delete the old accident records, because165

they are associated with a road segment that no longer exists. This introduces166

confounding (making it impossible to demonstrate the benefit of the road mod-167

ification) or Berkson bias (producing spurious associations). Spatio-temporal168

analysis could resolve these problems, provided the old data are retained.169

Linkage of data in different databases is needed. Road networks are typically170

partitioned into several sub-networks, administered by different levels of gov-171

ernment. Accident databases are often separate from databases recording the172

road network and road condition. Traffic volume is an important explanatory173

variable which is often available only for one class of road.174

River and stream networks, and other branching networks such as the den-175

drite network in Figure 6, raise a different class of questions, and are amenable176

to different kinds of analysis, from the general network. Typical questions in-177

clude whether different branches of the network have different characteristics,178

and whether statistical properties change progressively downstream.179
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3. Overview of problems and significance180

In this section we survey the main problems for analysis of point patterns181

on a linear network. For concreteness we shall often use terms that would be182

appropriate to road traffic accident analysis.183

3.1. The need for truly spatial analysis184

For agencies which build and manage road networks, the main question of185

interest in traffic accident analysis is the relationship between accident risk and186

road design characteristics such as speed limit, road curvature, road width, num-187

ber of lanes, presence of a kerb, and presence of traffic lights. These questions188

require some kind of spatial analysis.189

A pragmatic strategy is to aggregate the data by counting the number of190

accidents that occurred along each segment of road. The road network may be191

divided into segments in any arbitrary fashion, but ideally in such a way that the192

accident risk is approximately constant along a given segment. Count regression193

models can then be used to model the dependence of accident frequency on194

explanatory variables, provided these data are available for each road segment195

(Lord and Mannering, 2010).196

Potential weaknesses of this crash frequency approach include substantial197

bias due to aggregation (the “ecological fallacy” or “modifiable unit area prob-198

lem”) and the loss of spatial information needed to assess evidence for clustering.199

It has been reported that accident count data are often over-dispersed and zero-200

inflated, relative to Poisson regression (Lord et al., 2005). This could be partly201

attributable to aggregation bias. A more subtle problem is that the crash fre-202

quency approach favours the use of covariates which are approximately constant203

along each road segment, to the exclusion of potentially important covariates204

such as sighting distance or distance to the nearest road intersection (McSwig-205

gan, 2019). It could be argued that current crash frequency methodology is not206

capable of correctly identifying “black spots” of high localised accident risk.207

When the available data include the exact spatial location of each road208

accident, it would be highly desirable to have techniques for spatial analysis of209

the accident locations, analogous to existing methods for analysing spatial point210

patterns in two dimensions (Baddeley et al., 2015; Diggle, 2014; Gelfand et al.,211

2010; Illian et al., 2008). This is the topic of this paper.212

3.2. Taking account of the network213

The core problem is that — since traffic accidents can only occur on roads214

— a correct spatial analysis of traffic accident locations must take account of215

the layout of the road network.216

It would clearly be incorrect to simply ignore the road network, retaining217

only the spatial coordinates of the accident locations, and analysing them as218

a spatial point pattern in two-dimensional space using the standard methods219

of spatial statistics (Baddeley et al., 2015; Diggle, 2014; Gelfand et al., 2010;220

Illian et al., 2008). Using only the two-dimensional point locations, a kernel221

estimate of the spatially-varying density of accidents in two dimensions (Diggle,222

1985; Bithell, 1990) would give spuriously high density values in areas where223

the road network is more dense. An estimate of Ripley’s K-function for two-224

dimensional point patterns (Ripley, 1977) could give spurious evidence of short-225

range clustering (due to concentration of points along each road) and long-range226
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regularity (due to spatial separation of different roads). This has been observed227

in real data on traffic accidents (Yamada and Thill, 2004) and urban crime (Lu228

and Chen, 2007).229

A linear network is not a homogeneous space: the geometry of the network is230

different at each location. Consequently, even elementary statistical tools can be231

difficult to implement, and must be “adjusted” to compensate for the spatially-232

varying geometry of the network. Kernel smoothing of point events, which is233

simple to define and very fast to compute in two dimensions (Diggle, 1985; Sil-234

verman, 1982), is mathematically complicated and time-consuming to perform235

on a network (Okabe et al., 2009, Okabe and Sugihara, 2012, Chap. 9, McSwig-236

gan et al., 2016). The correlation analysis of point patterns is straightforward237

in two dimensions using Ripley’s K –function or the pair correlation function238

(Baddeley et al., 2015, Sec. 7.6, Illian et al., 2008, pp. 218–244) but on a net-239

work, the definition of the K –function is more intricate (Okabe and Yamada,240

2001; Ang et al., 2012; Baddeley et al., 2014) and its theoretical justification is241

weaker (Baddeley et al., 2017).242

The problems of spatial analysis on a network have far-reaching relevance for243

the discipline of spatial statistics. Many spatial phenomena, although observed244

in two- or three-dimensional space, are confined to a subset of the space, either245

by preference for a supportive “substrate”, or by a physical constraint. A linear246

network is the simplest non-trivial example of a substrate.247

3.3. Methodological errors and challenges248

A popular strategy for data analysis of point patterns on a linear network249

is to take existing computational procedures, originally developed in statistical250

science for analysing point patterns in two-dimensional space, and adapt or251

transfer them directly to the new setting of a linear network.252

This approach implicitly assumes that the statistical basis for such proce-253

dures is also transferable from the two-dimensional plane to the linear network.254

Unfortunately, this is not always established. Consequently, the practical inter-255

pretation and statistical validity of these techniques are open to question. In256

the worst case, they could lead to fallacious conclusions (Yule, 1903; Berkson,257

1946; Andersen, 1990).258

3.3.1. Kernel density estimation259

A natural first step in analyzing road accident locations is to form a kernel260

density estimate (Silverman, 1986) of the spatially-varying accident rate. How-261

ever, this is not straightforward on a linear network. A common fallacy is to262

take the kernel density estimate on the one-dimensional real line263

f̂(u) =
1

n

n∑
i=1

k(u− xi), (1)

and translate it directly to the linear network as264

f̂(u) =
1

n

n∑
i=1

k(dL(u, xi)), (2)

where u is any location on the network, x1, . . . , xn are the observed data loca-265

tions, dL(u, xi) is the shortest-path distance in the network from u to xi, and k266

is a smoothing kernel (probability density) on the real line.267
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Okabe et al. (2009), Okabe and Sugihara (2012, p. 180) and McSwiggan et al.268

(2016) pointed out that (2) is a fallacious estimate, because it does not conserve269

mass: the induced kernel K(·, xi) = k(dL(·, xi)) is not a probability density on270

the linear network; the density estimate (2) is not a probability density. The271

true probability density will be grossly overestimated in the denser parts of the272

network, leading to artefacts. We discuss this in Section 5.273

3.3.2. K–function274

Spatial clustering of points in two dimensions is often investigated using es-275

timates of Ripley’s K –function (Ripley, 1977) or the pair correlation function276

(see e.g. Illian et al., 2008). The K –function of a completely random pattern is277

easily recognisable; two datasets from different survey regions can be compared278

using their K –functions. For point patterns on a network, Yamada and Thill279

(2004); Lu and Chen (2007) drew attention to the “false alarm” (spurious evi-280

dence of clustering) which may occur if these computational tools are applied to281

the spatial coordinates ignoring the network. Okabe and Yamada (2001) pro-282

posed a modification of (29) in which distances between pairs of points xi, xj are283

measured using the shortest-path distance dL(xi, xj) along the network, instead284

of the Euclidean distance ‖xi − xj‖. This accounts for the geometry at small285

scales, but does not adjust for the fact that different spatial locations on the286

network are surrounded by different configurations of lines. The Okabe-Yamada287

K –function is highly dependent on the network geometry and cannot be used288

to compare the spatial pattern of road accidents in two different cities.289

A correction for the local configuration of the network was proposed by Ang290

et al. (2012) and some basic statistical properties were established. This is291

discussed in Section 8.292

3.4. Inapplicability of classical tools293

A point pattern can be modelled as the outcome of a random point process.294

Probability theory for point processes on any space is highly-developed and295

highly flexible (Daley and Vere-Jones, 2003, 2008). Statistical methodology for296

spatial point processes is also available (Diggle, 2014; Gaetan and Guyon, 2009;297

Gelfand et al., 2010; Møller and Waagepetersen, 2004). This would suggest that298

the analysis of point patterns on a network can easily be handled by adapting299

existing statistical tools. Unfortunately that is not the case.300

The most popular statistical techniques for spatial point patterns in two301

dimensions rely heavily on assuming that the random point process which gen-302

erated the pattern is stationary, meaning that statistical properties are the303

same at all spatial locations (Illian et al., 2008). For example, Ripley’s function304

K(r) is defined as (a multiple of) the expected number of random points falling305

within a distance r of a “typical point” (Ripley, 1977; Baddeley et al., 2015,306

Sec. 7.3.2). In order for this definition to be meaningful, the expected number307

must not depend on spatial location, so we are implicitly assuming that the308

underlying point process is stationary, at least for the first and second moments309

(Ripley, 1976, 1977, 1981, 1988; Illian et al., 2008). Similar comments apply to310

the pair correlation function (Illian et al., 2008).311

In two dimensions, the assumption of a stationary point process is often a312

reasonable working approximation, and is not very restrictive. The class of sta-313

tionary point processes in two dimensions is large; there are many simple devices314
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for constructing them; and they arise in many plausible scenarios. This richness315

justifies the use of the K –function and allows us to call it a “non-parametric”316

property (Diggle, 2010). The scope of application of the K –function has been317

extended even further, to inhomogeneous point processes with stationary corre-318

lation structure (Baddeley et al., 2000).319

Unfortunately, it is not possible to define stationary processes on a linear320

network (in the strict sense). The network itself is not homogeneous, that is,321

different neighbourhoods have different geometry. This cuts off one of the main322

routes to developing statistical methodology. For example, there is no ana-323

logue for linear networks of the empty space function F and nearest-neighbour324

distance function G (Illian et al., 2008, Baddeley et al., 2015, Chap. 8).325

Some progress is possible for first and second moment statistics. Okabe326

and Yamada (2001) and Ang et al. (2012) adapted the K –function and pair327

correlation function to point patterns on a linear network. Distance between328

points is measured by the shortest path in the network. Just as in the two-329

dimensional case, in order for the K –function and pair correlation function to330

be well-defined, the point process is required to have a stationary correlation331

structure, in the sense that the pair correlation is a function of shortest-path332

distance (Baddeley et al., 2015, Chapter 17).333

However, we recently discovered that it may be unreasonable to assume334

that a point process on a network has stationary correlation structure, unless335

the network is a tree. Baddeley et al. (2017) consider some of the standard336

recipes for constructing point process models, and show that many of these337

constructions do not produce a stationary correlation structure. The findings338

suggest that such processes may be quite rare on a general network. Indeed339

Anderes et al. (2017) prove that stationary correlation structures do not exist340

on any network which contains certain kinds of loops. This severely weakens the341

rationale for using the K –function and pair correlation function on a network in342

real applications. Modelling and inference also become much more complicated.343

This calls for a fundamental shift in statistical methodology for spatial point344

processes. We must abandon the cherished assumption of stationarity — which345

means relinquishing about half of all existing statistical techniques for spatial346

point patterns — and develop a fundamentally new approach that applies to347

nonstationary point processes on inhomogeneous spaces.348

3.5. Multiple scales and local analysis349

The analysis of real network data often involves a wide range of spatial scales350

— which is another argument against the assumption of stationarity.351

The Western Australian road accidents shown in Figure 3 are highly concen-352

trated in the city of Perth, in a few regional towns, and along major highways.353

A novel complication is that the road network itself has huge spatial variation,354

being highly concentrated around metropolitan Perth and the west coast. This355

makes it much more difficult to assess patterns by eye. It also causes compu-356

tational difficulties, since a much finer spatial resolution is required in urban357

areas than in the remote desert. The data in Figures 1, 2 and 3 have average358

densities of 11 km, 2.6 km and 0.09 km (respectively) of road per sq km of359

land area. There are, respectively, 5.4, 3.1 and 0.15 accidents per km of road.360

Different accident processes are happening in a city block, on a busy freeway,361

and on a remote highway. The three regions shown in by Figures 1–3 deserve to362
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be analysed separately, or the entire dataset should be analysed using localised363

methods such as adaptive smoothing (Abramson, 1982; Hall and Marron, 1988;364

Davies and Hazelton, 2010; Davies and Baddeley, 2018; Davies et al., 2016), Lo-365

cal Indicators of Spatial Association (Anselin, 1995; Cressie and Collins, 2001;366

Yamada and Thill, 2007), or geographically weighted regression and local likeli-367

hood (Fotheringham et al., 2003; Baddeley, 2017). Pragmatic alternatives may368

include constructing spatial covariates which describe the local configuration of369

the network, such as the spatial density of lines (Borruso, 2008).370

3.6. Space-time371

Network point patterns often evolve over time, and their analysis should372

include the time coordinates (Cressie and Wikle, 2011; Diggle, 2014). The time373

of day at which a road accident occurred is an important covariate; it determines374

the speed limit and road rules applicable at the time, and is a surrogate for375

unobserved variables such as traffic conditions and weather. The calendar date376

is likewise a surrogate for seasonal effects. Accident risk changes over short time377

scales due to changes in traffic conditions. Spatio-temporal analysis of network378

data is a highly fertile research area.379

3.7. Computational challenges380

The geometrical complexity of networks causes many computational chal-381

lenges. Data structures and algorithms must be designed for efficient and382

correct computation of geometrical quantities, shortest-path distances between383

data points, identification of nearest neighbours, statistical summaries, numer-384

ical integrals on the network, subdivisions or modifications of the network, and385

stochastic simulation. Software for these purposes includes SANET (Okabe et al.,386

2006b,a; Okabe and Sugihara, 2012) and the open-source R packages spatstat387

(Baddeley et al., 2015, Chap. 17) and spatstat.Knet (Rakshit et al., 2019a).388

The effort required to develop such code has been very substantial.389

Point pattern data on a network may involve a very large number of variables,390

both explanatory spatial variables and attributes of individual points. There are391

growing opportunities to collect real-time data on traffic flow through crowd-392

sourcing apps, along with real-time contextual information such as weather393

radar. Consequently the analysis of network data is increasingly viewed through394

the lens of “big data” and predictive analytics.395

3.8. Distance metrics396

The analysis of spatial clustering and correlation on a linear network also397

depends crucially on how we measure the distance between points. Standard398

practice is to measure distance by the length of the shortest path. However,399

this is not obligatory, and may be inappropriate in some applications (Okabe400

and Sugihara, 2012, p. 9).401

Other choices of distance metric include Euclidean distance, weighted met-402

rics (with a separate cost factor for each edge), directed distances (one-way403

roads, river systems) and flow-based metrics (river systems, traffic flows, elec-404

trical resistance). The choice of distance metric involves implicit model assump-405

tions and should be considered carefully.406

Choosing a metric other than the shortest-path distance may help to resolve407

many technical difficulties. Rakshit et al. (2017) developed versions of the K –408

function on a network with respect to any distance metric. There is a rich supply409
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of point processes on a network which have stationary correlation structure with410

respect to Euclidean distance (Baddeley et al., 2017; Anderes et al., 2017) and411

possibly with respect to electrical resistance distance (Bapat, 2004).412

4. Technical definitions413

Here we collect a few technical definitions and preliminaries.414

4.1. Point patterns on a network415

Define a linear network L as the union of N line segments li such that416

L = ∪Ni=1li and N < ∞. Each line segment takes the form li = [ui, vi] = {w :417

w = tui + (1 − t)vi, 0 ≤ t ≤ 1}, where ui, vi ∈ R2 are the endpoints of li.418

The intersection of any two segments li and lj for i 6= j is assumed to be either419

empty or an endpoint of both segments. We denote by |B| the total length of a420

subset B ⊆ L.421

A finite point pattern x on a linear network L is a finite unordered set422

x = {x1, . . . , xn}, where each point xi represents a location on L, and the423

number of points n is not fixed in advance.424

4.2. Random point processes425

An observed point pattern x will be regarded as the outcome of a random426

point process X on L. For general definitions, see Daley and Vere-Jones (1988).427

We assume that the total number of points is finite with probability 1, that the428

total number of points has finite mean and finite variance, and that there are429

no multiple coincident points (Daley and Vere-Jones, 2003, Chap. 5).430

The point process X has intensity function λ(u), u ∈ L, if431

E[N(X ∩B)] =

∫
B

λ(u) du, (3)

for all closed subsets B ⊂ L, where N(X∩B) is the number of points of X falling432

in B, and du denotes integration with respect to arc length on the network.433

Thus an intensity function on the network has values with dimension length−1,434

points per unit length of network, and we may interpret λ(u) as yielding the435

expected number of points per unit length of network in the vicinity of location436

u.437

4.2.1. Shortest-path distance438

Distances in a network will often be measured by the shortest path in the439

network. A path between two points u and v in a linear network L is a sequence440

x0, x1, . . . , xm of points in L such that x0 = u, xm = v and [xi, xi+1] ⊂ L, for441

each i = 0, . . . ,m − 1. The length of the path x0, x1, . . . , xm is defined to be442 ∑m−1
i=0 ‖xi+1 − xi‖, where ‖ · ‖ denotes Euclidean distance. The shortest path443

distance dL(u, v) between u and v in L is the minimum of the lengths of all444

paths from u to v.445

The disc (in the shortest-path metric), with radius r > 0 and centre point446

u, in the network L is the set of all points v in the network that lie no more447

than a distance r from the location u, in the shortest path distance:448

bL(u, r) = {v ∈ L : dL(u, v) ≤ r}.
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Figure 9: A “disc” of radius r = 2 km in the Perth CBD road network defined using the
shortest-path distance metric. Filled circle: centre point u. Thick lines: disc dL(u, r). Open
circles: points counted in the circumference m(u, r).

An important quantity in this paper is the circumference m(u, r), which is the449

number of points v on the network satisfying dL(u, v) = r. These concepts are450

illustrated in Figure 9.451

5. Kernel density estimation452

Estimation of the spatially-varying density of events is crucially important in453

practice. In studying road safety or transport planning, for example, such esti-454

mates are essential for accident research, the formulation of emergency response455

strategies, urban modelling and other purposes. Even when it is not the main456

focus of interest, we may need to adjust for spatially-varying density in order to457

study other properties. Non-uniform density can easily be confounded with clus-458

tering between points, (Baddeley et al., 2015, Chaps. 7, 8, 12) as demonstrated459

by the analysis of the dendritic spines data (Baddeley et al., 2014).460

The goal of density estimation is to statistically estimate the spatially-461

varying density from an observed point pattern x with only minimal assump-462

tions about the underlying point process. Kernel density estimation (Silverman,463

1985; Wand and Jones, 1995) is arguably the most popular technique. For spa-464

tial point pattern data in two dimensions, kernel estimates are conceptually465

simple (Diggle, 1985; Bithell, 1990), and can be computed rapidly using the466

Fast Fourier Transform (FFT) (Silverman, 1982). However, kernel estimation467

on a network is mathematically and computationally intricate; many different468

techniques have been proposed (Borruso, 2003, 2005, 2008; Downs and Horner,469

2007a,b, 2008; Xie and Yan, 2008; Okabe et al., 2009; Sugihara et al., 2010;470
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Okabe and Sugihara, 2012, Chap. 9; Anderson, 2009; McSwiggan et al., 2016;471

Moradi et al., 2018; Rakshit et al., 2019b).472

5.1. Kernel sums473

For real-valued observations x1, . . . , xn the classical (fixed-bandwidth) kernel474

estimator of probability density is given in (1). The corresponding estimator for475

the intensity function λ(u) is obtained by omitting the normalising factor 1/n:476

λ̂(u) =

n∑
i=1

k(u− xi). (4)

For point events x1, . . . , xn on a linear network L, it may seem plausible that477

we could adapt the kernel estimation procedure to the network by replacing478

the vector difference u − xi by the shortest path distance dL(u, xi), giving an479

intensity estimate480

λ̂(u) =

n∑
i=1

k(dL(u, xi)), (5)

where k is still a smoothing kernel on the real line (e.g. Xie and Yan, 2008).481

This implicitly assumes that the statistical basis for kernel estimation can be482

transferred from the real line to the linear network. Unfortunately, that is483

not true. The estimator (5) is severely biased. The total contribution from a484

point xi to the intensity estimate is the integral
∫
L
k(dL(u, xi)) du, which may485

be substantially different from 1. Thus (5) is highly susceptible to artefacts486

(Okabe et al., 2009; Sugihara et al., 2010; Okabe and Sugihara, 2012, p. 180;487

McSwiggan et al., 2016). These problems can be avoided on river and stream488

networks (Cressie and Majure, 1997; Ver Hoef et al., 2006; Cressie et al., 2006;489

Ver Hoef and Peterson, 2010; O’Donnell et al., 2014) where there is a unique490

shortest path between any two points which are connected.491

5.2. Corrected kernel sums492

Several modifications of the naive estimator (5) have been proposed in order493

to reduce its severe bias (Borruso, 2005, 2008; Okabe et al., 2009, Sec. 3).494

Moradi et al. (2018) and McSwiggan (2019) pointed out that the bias can495

be removed by adapting classical edge corrections from spatial statistics. For a496

two-dimensional spatial point pattern observed inside a restricted survey region497

W ⊂ R2, Diggle (1985) proposed the edge-corrected estimator of intensity498

λ̂U(u) =
1

cW (u)

n∑
i=1

ζ(u− xi), u ∈W, (6)

where ζ is a two-dimensional kernel (a probability density on the two-dimensional499

plane), and500

cW (u) =

∫
W

ζ(u− v) dv, u ∈W, (7)

is the mass of the kernel centred at u that falls inside the window (see also501

Bithell, 1990). This ensures that λ̂U is an unbiased estimator when the true502

intensity is constant. Jones (1993) proposed the alternative estimator503

λ̂JD(u) =

n∑
i=1

ζ(u− xi)
cW (xi)

, u ∈W, (8)
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which conserves total mass, that is,
∫
W
λ̂JD(u) du = n.504

These statistically-principled edge corrections can be adapted to a linear505

network and applied to the biased estimator (5). For points x1, . . . , xn observed506

on a network L, the analogue of Diggle’s (1985) uniform correction is507

λ̂U(u) =
1

cL(u)

n∑
i=1

k(dL(u, xi)) u ∈ L, (9)

and the analogue of Jones’s (1993) correction, proposed by Moradi et al. (2018),508

is509

λ̂JD(u) =

n∑
i=1

k(dL(u, xi))

cL(xi)
, u ∈ L, (10)

where510

cL(u) =

∫
L

k(dL(v, u)) dv. (11)

In the special case where k is the uniform density on an interval [0, h], we find511

cL(u) = |bL(u, r)| is the total length of the disc of radius h in the shortest path512

metric, centred at u. Unfortunately, computation of the correction factor cL(u)513

or cL(xi) is expensive, even in this simple case. Moradi et al. (2018) develop an514

algorithm for computing (10).515

5.3. Path enumeration methods516

Kernel density estimators on a general network were first investigated sys-517

tematically by Okabe et al. (2009); Sugihara et al. (2010), summarised in Okabe518

and Sugihara (2012, Chap. 9). They considered computational algorithms which519

start with a kernel k on the real line, and progressively redistribute the mass520

of this kernel over the network. Desirable properties of a kernel estimator were521

listed. Two kernel estimators were found to satisfy many of the desired proper-522

ties: the “equal-split discontinuous” and “equal-split continuous” rules (Okabe523

and Sugihara, 2012, Sec. 9.2.2 and 9.2.3).524

The “continuous” rule has excellent properties: it is symmetric, conserves525

mass, and is unbiased when the true intensity is uniform. In comparison, the526

edge-correction estimator (9) is unbiased, but does not conserve mass; while527

(10) conserves mass, but is not unbiased; neither (9) nor (10) is symmetric.528

Unfortunately, the “continuous” rule is extremely slow to compute by the orig-529

inal algorithm of Sugihara et al. (2010); see McSwiggan et al. (2016, Table530

1). The “discontinuous” rule is faster, but has less desirable properties (Okabe531

and Sugihara, 2012, Sec. 9.3.2). On a general network, both methods require532

a kernel on the real line with bounded support (i.e. such that k(x) = 0 when533

|x| > h for some value h), which excludes the Gaussian kernel. Computational534

cost increases exponentially with the bandwidth, so that automatic bandwidth535

selection is computationally prohibitive.536

The “equal-split discontinuous” algorithm is described in Okabe and Sugi-537

hara (2012, Algorithms 9.1 and 9.2, Sec. 9.3.2) and equivalently in McSwiggan538

et al. (2016, Appendix, Algorithm 1). Effectively, the algorithm constructs a539

copy of the kernel k for each data point xi on the network L. For locations540

u on the same line segment as the starting point xi, the kernel estimate is541

k(dL(u, xi)). At each fork in the network, the kernel’s remaining tail mass542

is divided equally over the outgoing line segments, preserving the total mass.543
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Essentially the same rationale was proposed independently by Ver Hoef and544

Peterson (2010) for nonparametric regression on a network of rivers or streams.545

On a network without loops, the equal-split discontinuous kernel at location546

u due to a data point at x takes the value547

KD(u | x) =
k(dL(x, u))

(m1 − 1)(m2 − 1) . . . (mP − 1)
, (12)

where m1,m2, . . . ,mP are the degrees of each vertex (excluding u and x) along548

the shortest path from x to u. On a general network,549

KD(u | x) =

∗∑
π

k(`(π))aD(π), (13)

(McSwiggan et al., 2016, Thm. 1), where the sum is over all paths π = (x, v1, . . . , vP−1, u),550

of length less than or equal to h, from x to u that are non-reflecting (i.e.551

ei+1 6= ei, with ei as the edge containing vi−1 and vi), and `(π) is the length of552

the path, and aD(π) = 1/((m1 − 1)(m2 − 1) . . . (mP−1 − 1)), where mi is the553

degree of vi.554

The more expensive “equal-split continuous” algorithm is formally described555

in Okabe and Sugihara (2012, Algorithm 9.3, Sec. 9.3.3) and an equivalent556

version is given in McSwiggan et al. (2016, Appendix, Algorithm 2). It traverses557

all paths of length less than the kernel width h, including the self-intersecting558

paths that reflect at a vertex. When a path reaches a vertex of degree m,559

there are m−1 outgoing branches and one incoming branch which the path has560

just traversed. Each outgoing branch receives a weighted copy of the tail with561

equal weight 2/m, and the incoming branch receives a weighted copy of the tail562

with negative weight (2/m)− 1. The result of this algorithm has the path sum563

representation, analogous to (13),564

KC(u | x) =
∑
π

k(`(π))aC(π), (14)

(McSwiggan et al., 2016, Thm. 2), where the sum is now over all paths from x565

to u, and aC(π) = c1 . . . cP−1, where cj = 2

deg(vj)
− δj , in which δ1 = δP = 0566

and δj = 1{ej = ej−1} is the indicator that equals 1 if the path reverses at step567

j, and 0 otherwise.568

5.4. Heat kernel569

McSwiggan et al. (2016) developed a statistically principled kernel estimator570

on a linear network by exploiting the connection between kernel smoothing and571

diffusion (Chaudhuri and Marron, 2000; Botev et al., 2010). On a network, the572

counterpart of the Gaussian kernel is the heat kernel, the function in classical573

physics which describes the diffusion or propagation of heat along the network.574

A kernel estimator based on the heat kernel can be visualised by imagining that575

the network is a physical structure made of steel wire; heat is applied to the576

network at the locations of the observed events xi (with a unit amount of heat577

applied at each xi instantaneously); after a time t has elapsed, the distribu-578

tion of temperature over the network is recorded. The kernel estimate can be579

computed rapidly by imitating this process, that is, by numerically solving the580
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time-dependent Fourier heat equation over the network, with initial condition581

given by the observed event locations. Computation is fast, indeed fast enough582

to allow data-based bandwidth selection. Many statistical properties of the heat583

kernel estimator can be established.584

The time-dependent heat equation on the network is the partial differential585

equation586

∂f

∂t
= β

∂2f

∂x2
(15)

which is well-defined everywhere except at a vertex of the network. The solution587

of (15) with initial condition f0(x) = g(x) is588

ft(u) =

∫
L

g(x)κt(u | x) dx, (16)

where κt(u | x) is the “heat kernel” or heat transfer function from source x to589

destination u over time t. There is typically no closed-form expression for the590

heat kernel.591

The diffusion estimator of intensity λ̂H(u) can be defined as a sum of heat592

kernels (McSwiggan et al., 2019)593

λ̂H(u) =

n∑
i=1

κt(u | xi), u ∈ L, (17)

where elapsed time t = σ2 is the squared bandwidth. This expression would594

not be used in computation. Rather, one can use the fact that the diffusion595

estimator is a solution of the time-dependent heat equation (15), and solve this596

numerically up to the desired time t = σ2. Numerical solution of the heat597

equation is many orders of magnitude faster than path-enumeration algorithms598

(McSwiggan et al., 2016, Table 1). Computation time increases quadratically599

with bandwidth. Figure 10 shows a diffusion estimate of accident intensity in600

the Perth CBD.601
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Figure 10: Estimate of traffic accident intensity in the Perth CBD using the heat kernel algo-
rithm with bandwidth 330 metres. Intensity values (accidents per km per year) proportional
to line widths.
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Statistical properties of the diffusion estimator can be deduced from the602

heat kernel representation (16). The heat kernel is symmetric; the diffusion603

estimator conserves mass, and is unbiased if and only if the true intensity is604

uniform (McSwiggan et al., 2019).605

Surprisingly, the heat kernel estimator is mathematically equivalent to the606

“equal-split continuous” estimator extended to the Gaussian kernel. In stochas-607

tic process theory there are theorems which express the heat kernel on a network608

as an infinite sum, over all paths in the network, of weighted contributions in-609

volving the Gaussian probability density (Kostrykin et al., 2007, 2012). It was610

shown by McSwiggan et al. (2016) that the representation of the heat kernel611

in Kostrykin et al. (2007, Corollary 3.4) is formally equivalent to the path-sum612

representation (14) for the equal-split continuous algorithm if k is taken to be613

the Gaussian kernel and an infinite sum over all paths in the network is permit-614

ted. Accordingly, the heat kernel estimator is the unique estimator of intensity615

which satisfies the long list of desirable properties given by Okabe et al. (2009);616

Sugihara et al. (2010) as well as agreeing locally with the Gaussian kernel.617

5.5. Bandwidth selection618

Kernel methods require a choice of bandwidth. Classical univariate meth-619

ods for bandwidth selection (Silverman, 1986; Wand and Jones, 1995; Jones620

et al., 1996b) have been extended to spatial data (Sain et al., 1994; Duong and621

Hazelton, 2003, 2005; Davies et al., 2018, Section 3) and to data on a linear net-622

work (McSwiggan et al., 2016; Rakshit et al., 2019b). They include likelihood623

cross-validation in which we maximise the criterion624

cv(σ) =

n∑
i=1

log(λ̂−iσ (xi))−
∫
L

λ̂σ(u) du, (18)

based on the Poisson point process likelihood, where λ̂σ(u) is one of the kernel625

estimators described here, and λ̂
(−i)
σ (xi) is the corresponding “leave-one-out”626

kernel estimate at xi, defined by omitting the contribution from xi. For kernel627

estimators which conserve mass, such as the diffusion estimator, the integral628

term in (18) is constant and can be omitted. The leave-one-out estimates for the629

diffusion estimate (17) are hard to compute (McSwiggan et al., 2016, Section630

7.1) although a workable fast approximation is simply to truncate the series631

expansion (14) of the heat kernel (McSwiggan et al., 2019).632

We may also turn to simple rules of thumb for bandwidth selection. While633

crude, they are fast and easy to calculate and remain useful for initial explo-634

ration, provided of course that they are adaptable to linear network data. Ana-635

logues of Scott’s rule of thumb (Scott, 1992, p. 152), for example, perform well636

on a network in our experience (McSwiggan et al., 2016; Rakshit et al., 2019b).637

However, the same cannot be said for all such selection methods: It is unclear,638

for example, how to apply the oversmoothing principle of Terrell (1990) to data639

on a network.640

5.6. Euclidean kernel641

Density can also be estimated using two-dimensional geometry. Borruso642

(2003, 2005, 2008) described several ad hoc techniques for kernel density esti-643
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mation including the “Euclidean, divide-by-length” estimator (Borruso, 2008)644

λ̂B(u) =
N(x ∩ b(u, r))
|L ∩ b(u, r)|

, u ∈ R2, (19)

where b(u, r) = {v ∈ R2 : ‖v−u‖ ≤ r} is the two-dimensional Euclidean disc of645

fixed radius r > 0 centred at the query location u. That is, (19) is the number646

of data points, divided by the total network length, within a Euclidean disc of647

radius r.648

Rakshit et al. (2019b) provided a rigorous justification and generalisation649

of (19). The point locations, and the network itself, are convolved with a two-650

dimensional smoothing kernel, then combined into an intensity function on651

the network. Let ζ denote a bivariate kernel function, that is, a probability652

density on R2. The convolution kernel estimator of intensity is, with the uniform653

correction,654

λ̂U(u) =
1

aL(u)

n∑
i=1

ζ(u− xi), u ∈ L, (20)

and with the Jones-Diggle correction655

λ̂JD(u) =

n∑
i=1

ζ(u− xi)
aL(xi)

, u ∈ L, (21)

where656

aL(u) =

∫
L

ζ(v − u) dv, u ∈ L. (22)

Statistical properties are analysed by Rakshit et al. (2019b). The estimator657

can be computed rapidly using the Fast Fourier Transform, even on large net-658

works and for large bandwidths. The estimator is consistent and its statistical659

efficiency is only slightly sub-optimal.660

In the special case where ζ is the uniform density on a disc of fixed radius661

r > 0, the uniform-correction estimator (20) reduces to Borruso’s estimator (19),662

but now restricted to query locations u lying on the network. The Jones-Diggle663

correction estimator (21) reduces to664

λ̂JD(u) =
∑

xi∈b(u,r)

1

|L ∩ b(xi, r)|
, u ∈ L. (23)

This corresponds to associating, with each data point xi, a unit mass which665

is then uniformly spread over the part of the network lying within Euclidean666

distance r of xi.667

Unlike estimators of intensity based on path distances in the network, the668

convolution estimators (20)–(21) are robust against errors in the geometry of669

the network Rakshit et al. (2019b). Leave-one-out estimates are also easy to670

compute, so that bandwidth selection using likelihood cross-validation is feasi-671

ble.672

Figures 11 and 12 show the Euclidean kernel estimates of accident intensity673

for the Perth CBD and for the Perth metropolitan area, using bandwidths of674

91 and 357 metres, respectively, selected by leave-one-out cross-validation.675
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Figure 11: Kernel estimate of accident intensity for Perth CBD, using Euclidean kernel with
fixed bandwidth 91 metres selected by leave-one-out cross-validation. Uniform correction (20).
Line thickness proportional to intensity values.
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Figure 12: Kernel estimate of accident intensity for Perth metropolitan area, using Euclidean
kernel with fixed bandwidth 357 metres selected by leave-one-out cross-validation. Jones-
Diggle correction (21). Intensity values represented as colours according to the colour scale
at right.

5.7. Adaptive estimators676

The Western Australian road accident data, shown in Figure 3, exhibit huge677

spatial variation in the concentration of data points. In such situations it is well678
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known that fixed-bandwidth kernel estimation can perform poorly. Dense con-679

centrations of accidents in the urban areas will be over-smoothed, and sparse680

accidents in the remote desert will be under-smoothed. Adaptive (variable-681

bandwidth) kernel estimation can perform substantially better in this context682

(Abramson, 1982; Hall and Marron, 1988). This has been investigated for net-683

works by Rakshit et al. (2019b).684

Following Marshall and Hazelton (2010) one may construct a spatially-685

varying bandwidth function σ(u), u ∈ L and estimate the intensity by686

λ̂U(u) =
1

cL(u, σ(u))

n∑
i=1

κσ(xi)(u− xi), u ∈ L, (24)

analogous to the uniform correction (20). Alternatively, each data point xi may687

be assigned its own smoothing bandwidth σi, and we estimate the intensity by688

λ̂JD(u) =

n∑
i=1

κσi(u− xi)
cL(xi, σi)

, u ∈ L, (25)

analogous to the Jones-Diggle correction (21). The higher computational cost689

can be reduced by partitioning (Davies and Baddeley, 2018, Section 4).690

The adaptive bandwidths σi may be assigned, following the prescription of691

Abramson (1982), by first computing a pilot estimate of intensity λ̃(·), then692

computing initial bandwidths ai =
√

(n/λ̃(xi)), and finally assigning band-693

widths σi = (ai/a)σ, where a = (
∏
i ai)

1/n is the geometric mean of the initial694

bandwidths, and σ is the “global” bandwidth.695

Figure 13 shows two panels representing the fixed-bandwidth and adap-696

tive estimates, respectively, as three-dimensional surfaces. We refer to these697

as “heightened network” (HEN) plots. They are similar in style to those of698

Borruso (2008), where they portray a function defined on the two-dimensional699

plane as a surface viewed in perspective. In our case, the function is simply the700

extension of the estimator (20), (21), (24) or (25) to all locations u ∈ R2, which701

is an intermediate result in the convolution method calculations. The surface702

height is proportional to this function value; the surface colour also represents703

the function value; and the network itself is overlaid onto the surface.704

Figure 13 is a screenshot of an interactive 3D graphics tool which can be705

viewed at http://www.stats.otago.ac.nz/~tdavies/wacbd_hen.html. Char-706

acteristically, we see a smoother adaptive estimate in areas of relatively low point707

density when compared to the fixed bandwidth estimate, with taller peaks than708

the fixed bandwidth estimate in the most dense areas.709

5.8. Piecewise constant estimators710

Several recently-developed methods for linear networks produce intensity711

estimates which are piecewise constant, with the aim of improving behaviour.712

The Voronoi estimator (Barr and Schoenberg, 2010; Moradi et al., 2019) assigns713

a constant intensity value on each tile of the Dirichlet-Voronoi tessellation in-714

duced by the data points. It is highly adaptable to changes of spatial scale, but715

has unacceptably high variance, which can be reduced by a bootstrap resample716

smoothing procedure (Moradi et al., 2019).717

Fused density estimates (Bassett and Sharpnack, 2019) are defined as the718

solution of a mathematical extremal problem. They are constant except for719
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Figure 13: A screenshot of the fixed and adaptive intensity estimates of the Perth CBD data
shown as interactive HEN plots. Accessible at the URL noted in the text.

discontinuities at the data points and the network vertices. To our knowledge,720

fused density estimation is the only technique which prevents kernel mass from721

“leaking” between adjacent network segments. For example, in Figures 10 and722

11 the high density of accidents along the freeway running through the Perth723

CBD is partly leaking into neighbouring streets which are much quieter. This724

would not occur with a fused density estimate.725

5.9. Relative risk726

If x and y are two point patterns on the same network L, it may be important727

to estimate the ratio of intensities r(u) = λY(u)/λX(u) of the underlying point728

processes X and Y. This ratio could represent the spatially-varying relative risk729

of two different types of crimes, the relative abundance of two types of trees, and730

so on. Estimates of r(u) are typically computed by applying one of the kernel731

smoothing methods listed above to both patterns, and plugging-in to obtain732

r̂(u) = λ̂Y(u)/λ̂X(u). Bandwidth selection methods are studied in McSwiggan733

et al. (2019) with the strong advice that the two estimates λ̂Y(u), λ̂X(u) should734

be computed using identical bandwidths.735

In the Chicago data of Figure 4, due to the small sample size, we grouped736

the crime types into “personal” (assault, robbery) and “property” (burglary, car737

theft, damage, theft and trespass) crimes. Figure 14 shows a plug-in estimate738

of relative risk for “personal” versus “property” crimes, normalised by total739

counts. There is a hint of spatial variation in the type of crime.740

Adaptive estimation of relative risk for two-dimensional point patterns was741

developed by Davies and Hazelton (2010), including asymptotic tolerance con-742

tours. Davies et al. (2016) advocated the use of equal bandwidths in estimating743

the numerator and denominator of risk, extending Kelsall and Diggle (1995) to744

the adaptive case. These results were extended to linear networks by Rakshit745

et al. (2019b).746

6. Intensity depending on a covariate747

The effect of an explanatory variable on the density of points can be inves-748

tigated using nonparametric curve estimation techniques.749
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Figure 14: Estimated relative risk of crimes against the person versus property crimes for the
Chicago crimes data, normalised.

Suppose that Z is a spatial covariate function, and we believe that the in-750

tensity of the points depends only on Z through a relationship751

λ(u) = ρ(Z(u)) (26)

where ρ(z) is an unknown function that is to be estimated. For example if ρ(z)752

is a decreasing function of z, the relationship (26) specifies that the density753

of points will be lower in those parts of the network where Z(u) has a larger754

value. In ecological applications, Z(u) could measure the local concentration of755

a resource such as water, and ρ(z) is a ‘resource selection function’ indicating756

a species’ habitat preferences (Manly et al., 2004). In geology, Z(u) could757

be a geochemical variable, and ρ(z) is a ‘prospectivity index’ representing the758

predicted spatial density of gold deposits as a function of geochemistry.759

Nonparametric techniques for estimating the function ρ(z) have been dis-760

cussed by Manly et al. (2004); Guan (2008); Baddeley et al. (2012). These761

techniques compare the relative distribution (Handcock and Morris, 1999) of762

the values of Z at the observed data points with the values of Z at all loca-763

tions. Although the techniques were developed for spatial point patterns in two764

dimensions, they depend only on the space of values of Z, so they apply to765

point patterns in any space (Baddeley et al., 2012), in particular to networks766

(Baddeley et al., 2015, Sec. 17.4.3).767

The left panel of Figure 15 shows an estimate of intensity for the “thin”768

dendritic spines (Figure 6) as a function of shortest-path distance to the root769

of the dendritic tree, using the “ratio” method of Baddeley et al. (2012). It770

suggests that the thin spines have higher density at the far reaches of the tree,771

which is consistent with current understanding of dendrite growth (Baddeley772

et al., 2014).773

The right panel of Figure 15 shows an estimate of intensity for the Geelong774

road accidents (Figure 7) as a function of traffic volume, using the “reweighted”775
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Figure 15: Estimates of intensity depending on a covariate. Left: Intensity of dendritic spines
(“thin” type) as a function of distance from the root of the dendritic tree. Right: Intensity of
traffic accidents in Geelong as a function of traffic volume. Solid lines: estimate of ρ(z); grey
shading: pointwise 95% confidence interval for ρ(z).

method of Baddeley et al. (2012). This is broadly consistent with the expected776

relationship that accident intensity should increase with the square root of traffic777

volume (Jurewicz and Bennett, 2010).778

Hypothesis tests for the (non-)dependence of intensity on a spatial covariate,779

such as Berman’s tests and spatial cumulative distribution tests (Baddeley et al.,780

2015, Sec. 6.7.2, 10.5.2) likewise depend only on the values of the covariate; so781

they can also be applied to data on a linear network.782

7. Parametric models and model-fitting783

A major goal of statistical analysis is to formulate and fit parametric models784

to point pattern data on a network. The models are point processes which de-785

pend on explanatory spatial variables. The primary aim is usually to model the786

dependence of the intensity on the covariates, taking into account any stochastic787

dependence between different points.788

The general theory of point processes (Daley and Vere-Jones, 2003) easily789

handles the definition, construction and characterisation of parametric point790

process models on a linear network, as well as space-time point processes. How-791

ever, geometrical inhomogeneity hampers the construction of models with de-792

sired properties. Consequently, explicit point process modelling on a network is793

somewhat under-developed.794

7.1. Poisson models795

The simplest and most important reference model is the Poisson point pro-796

cess which effectively assumes that individual random points are independent797

of each other. The Poisson process with intensity function λ(u) is formally798

characterised by the properties that for any line segment B ⊂ L, the number799

of points falling in B has a Poisson distribution with mean µ(B) =
∫
B
λ(u) du,800

while events occurring in disjoint line segments B1, . . . , Bm ⊂ L are indepen-801

dent. Simulated realisations of the Poisson point process can be generated using802

these properties, or using the thinning algorithm of Lewis and Shedler (1979).803
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A parametric model would postulate that the point process is Poisson with804

an intensity λθ(u) which depends explicitly on a parameter θ to be estimated,805

according to any desired functional form, which may depend implicitly on spatial806

covariates. For example, the log-linear model807

λθ(u) = exp(θ>Z(u)) = exp(θ1Z1(u) + . . .+ θpZp(u)) (27)

specifies the intensity as a function of p explanatory variables Z1(u), . . . , Zp(u)808

and a p-dimensional vector of parameters θ = (θ1, . . . , θp).809

The Poisson process with a parametrically specified intensity λθ(u) can be810

fitted to point pattern data by maximising the log likelihood811

logL(θ) =

n∑
i=1

log λθ(xi)−
∫
L

λθ(u) du (28)

as a function of the model parameter θ. McSwiggan (2019) developed algorithms812

for maximum likelihood estimation on a linear network, using versions of the813

Berman-Turner device (Berman and Turner, 1992; Baddeley and Turner, 2000).814

Models have been fitted to traffic accident data including covariates such as815

traffic volume, speed limit, and distance to nearest road intersection (McSwig-816

gan, 2019). Results include predicted accident rate, confidence intervals for the817

parameters and for the fitted accident rate, and model selection using analysis818

of deviance.819

Figure 16 shows the fitted intensities of Poisson point process models fitted820

separately to each panel of the spider webs data (Figure 5) assuming the log821

intensity is a quadratic function of the Cartesian coordinates.822

Even when the Poisson process is not an appropriate model, experience with823

two-dimensional point pattern data suggests that the Poisson likelihood may824

still be an appropriate tool for estimating the intensity (Guan et al., 2015;825

Waagepetersen and Guan, 2009).826

Model selection or variable selection methods are needed when there are827

many explanatory variables under consideration. Some methods of variable se-828

lection are available for point process models in two dimensional space, including829

sufficient dimension reduction (Guan and Wang, 2010) and penalised maximum830

likelihood (Yue and Loh, 2015) as well as classical hypothesis tests and Akaike831

information criteria (Baddeley et al., 2015, pp. 335–338, 371–378, 512–513). Re-832

cently Rakshit et al. (2019c) adapted penalised maximum likelihood methods,833

including the lasso, ridge regression and elastic net, to point process models on834

a linear network.835

7.2. Clustered point process models836

Point process models which exhibit clustering (positive association between837

points), such as Poisson cluster processes and Cox processes (Møller and Waagepetersen,838

2004, Chap. 5, Baddeley et al., 2015, Chap. 12), can easily be constructed on a839

linear network, and moment properties can be calculated by standard means.840

The standard methods for fitting Cox and cluster models to point patterns in841

two dimensions are based on first and second moments (Diggle, 1978; Diggle and842

Gratton, 1984; Waagepetersen, 2007; Jalilian et al., 2013; Guan, 2006; Tanaka843

et al., 2008). The pair correlation function of the model must be invariant under844

translation so that it may be estimated nonparametrically from data (Baddeley845
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Week 1 Week 2 Week 3

Week 4 Week 5 Week 6

Figure 16: Fitted intensities of Poisson models for the spider webs data assuming a different
log-quadratic intensity for each pattern.

et al., 2000), and it must be explicitly known as a function of the parameters,846

so that the model can be fitted to the nonparametric estimate by curve fitting847

(Diggle and Gratton, 1984).848

It is more complicated to adapt these model-fitting methods to a linear net-849

work. The concept of translation invariance is not applicable; instead we assume850

that the pair correlation function depends only on distance between points. On851

many networks there do not exist Cox processes with a pair correlation function852

which depends only on shortest-path distance (Anderes et al., 2017). However,853

there do exist Cox processes whose pair correlation depends only on Euclidean854

distance (Baddeley et al., 2017) and these could be fitted to data using appro-855

priate estimators of the pair correlation function (Rakshit et al., 2017).856

7.3. Negatively associated point processes857

Two-dimensional point process models which exhibit negative association858

between points include dependent thinnings of a Poisson process, such as the859

Matérn models (Matérn, 1986), and Markov and Gibbs point processes (van860

Lieshout, 2000, Møller and Waagepetersen, 2004, Chap. 6, Baddeley et al., 2015,861

Chap. 13). Counterparts of these models on a linear network can be defined,862

subject to technical conditions such as integrability and stability, which can863

be difficult to verify for some models (Geyer, 1999). Some nearest-neighbour864

Markov processes have been developed (van Lieshout, 2018). Existing model-865

fitting techniques for Gibbs models could also be adapted to linear networks.866
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7.4. Replicated point patterns867

The successive panels in the spider web data, Figure 5, can be treated as868

replicated observations of the same spatial point process on a linear network.869

Replication allows a much wider range of statistical tools to be applied (Bad-870

deley et al., 2015, Chap. 16; Baddeley et al., 1993; Bell and Grunwald, 2004;871

Diggle et al., 1991, 2000; Mateu, 2001; Myllymäki et al., 2013; Wager et al.,872

2004; Webster et al., 2005).873

We have recently extended the model-fitting algorithm described in Sec-874

tion 7.1 to apply to replicated point patterns on a network. We fitted a Poisson875

point process model to the six spider web patterns assuming that the log in-876

tensity is a quadratic function of the Cartesian coordinates. This implicitly877

assumes that the patterns in successive weeks can be treated as independent878

but not necessarily identically distributed. We tested the null hypothesis that879

all six panels had the same coefficients of the quadratic function, against the880

alternative that the coefficients may be different in different panels (represented881

by the separate fitted intensities in Figure 16). Differences were not significant882

according to the Likelihood Ratio Test (deviance difference 36.9 on 30 degrees of883

freedom; p-value 0.18 using asymptotic χ2 approximation). That is, our analy-884

sis suggests the spiders’ habitat preferences are not changing over time. Details885

will be reported elsewhere.886

8. K–function and pair correlation function887

Correlation is a widely-used statistical measure of “dependence” or “associ-888

ation” between variables. For spatial point patterns, the K –function and the889

pair correlation function are correlation measures of association between points890

in the pattern. They have served a valuable role in the analysis of spatial point891

patterns in two and three dimensions. The task is to adapt these methods to a892

linear network.893

In the last two decades, substantial research effort has been addressed to this894

problem by Prof. A. Okabe and collaborators (Okabe and Yamada, 2001; Shiode895

and Shiode, 2009; Warden, 2008; Yamada and Thill, 2007; Okabe et al., 2009,896

2008, 2000; Shiode, 2008; Okabe and Satoh, 2006; Okabe et al., 1995, 2006b,a).897

Their work is surveyed in Okabe and Satoh (2009). Related work is by Borruso898

(2005, 2008); Downs and Horner (2007a); Jones et al. (1996a). More recently899

the statistical community has made contributions (Ang et al., 2012; Baddeley900

et al., 2014; Rakshit et al., 2017, 2019a).901

8.1. K–function in two-dimensional space902

The usual estimate of the K –function from an observed pattern of points903

x1, . . . , xn in a two-dimensional study region W is (Ripley, 1976, 1981, 1988)904

K̂(r) =
|W |

n(n− 1)

∑
i

∑
j 6=i

eij1{‖xi − xj‖ ≤ r}, r ≥ 0, (29)

where |W | is the area of the study region, eij is a correction for boundary effects,905

and 1{‖xi − xj‖ ≤ r} is equal to 1 if the Euclidean distance between the points906

xi and xj is at most r, and equal to 0 otherwise.907
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We emphasise that (29) is not the definition of the K –function. Rather, (29)908

is an estimate, from the observed point pattern, of the true K –function of the909

point process which generated the pattern (in the same way that an average910

of observed numbers is an estimate of the true population mean). The true911

K –function K(r) of a stationary point process X is defined as the (normalised)912

expected number of random points lying within a distance r of a typical random913

point (Ripley, 1977; Baddeley et al., 2015, Sec. 7.3.2, eq. (7.4), (7.6)):914

K(r) =
1

λ
E[
∑
xi∈X

1{0 < ‖xi − x0‖ ≤ r} | x0 ∈ X], r ≥ 0, (30)

where λ is the intensity of X, and x0 is any fixed location. The assumption of915

a stationary process is needed in order for this definition to be meaningful, and916

it also guarantees that (29) is a good estimate of the true value K(r).917

The K –function is a useful index of association between points in the pat-918

tern. A completely random pattern would have K(r) = πr2. Values of K̂(r)919

exceeding this benchmark value suggest that the pattern is clustered. Statisti-920

cally significant departures from a completely random pattern can be detected921

by comparing the empirical estimate K̂(r) with the envelopes of K –functions922

obtained from simulated completely random point patterns (Ripley, 1977; Bad-923

deley et al., 2015, Sec. 7.8, 10.7).924

Some writers advocate using the pair correlation function g(r) instead of the925

K –function (Illian et al., 2008). The pair correlation function is related to the926

K –function through g(r) = K ′(r)/(2πr), where K ′(r) is the derivative of K(r).927

A completely random pattern would have g(r) = 1. The pair correlation has928

an appealing interpretation in terms of the probability of observing a pair of929

random points separated by a distance r (Baddeley et al., 2015, p. 226).930

The K –function and pair correlation function have been extended to two-931

dimensional point processes which have inhomogeneous intensity λ(u), but have932

a stationary correlation structure (Baddeley et al., 2000; Baddeley et al., 2015,933

Sec. 7.10).934

8.2. Two-dimensional K–function of points on a network935

For a point pattern on a network, it would be feasible to ignore the network,936

extract the spatial coordinates of the points, and calculate K̂(r) according to937

(29). However, the interpretation of K̂(r) would now be different. It would not938

be correct to declare the pattern to be “clustered” if we find that K̂(r) > πr2,939

the benchmark for a completely random point process in two dimensions. A940

completely random point pattern on the network could produce values K̂(r) >941

πr2 for small r, because nearby points are constrained to lie on the same one-942

dimensional line. Real data examples are given by Yamada and Thill (2004);943

Lu and Chen (2007).944

Indeed, in this context it would no longer be correct to refer to K̂(r) as an945

“estimate” of a well-defined quantity. Ripley’s K –function formally assumes the946

point process is stationary in two dimensions, and this requirement is violated947

by point processes on a network, so the K –function is not well-defined.948

It would nevertheless be possible to use K̂(r) as a summary statistic, and to949

perform simulation-based inference by comparing the value of K̂(r) calculated950

from the data with the envelopes of K̂(r) computed from simulated patterns951

generated according to a null model on the network. A similar argument is often952
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used for two-dimensional data. The main problem is that K̂(r) no longer has a953

clear interpretation if the null hypothesis is rejected.954

8.3. Network K–function955

Okabe and Yamada (2001) introduced a modification of the K –function956

procedure in which the Euclidean distance is replaced by the shortest-path dis-957

tance. Suppose events have been observed to occur at the locations x1, . . . , xn958

on a network L. The ‘network K function’ is (Okabe and Yamada, 2001)959

K̂net(r) =
|L|

n(n− 1)

n∑
i=1

∑
j 6=i

1{dL(xi, xj) ≤ r}, r ≥ 0 (31)

where |L| denotes the total length of the linear network.960

Note that K̂net is an estimated K –function (29). The corresponding ‘theo-961

retical’ curve — the expected value of K̂net(r) for a completely random point962

process on the network — is not a simple function of r, and depends on the net-963

work geometry. In a homogeneous Poisson process on the network, the expected964

number of points which fall within a distance r of the location u (measured by965

the shortest path) is proportional to the total length of all line segments within966

distance r — that is, the total length of the segments making up the disc bL(u, r).967

See Figure 9. The ‘theoretical’ expected value of K̂net(r) is the average, over all968

locations u on the network, of the length of the disc of radius r centred at u:969

E
[
N(N − 1)K̂net(r)

]
E[N(N − 1)]

=
1

|L|

∫
L

|bL(u, r)|du. (32)

That is, for a completely random point pattern, the expected value of the Okabe-970

Yamada network K –function is approximately equal to the average length of the971

balls of radius r centred at all possible locations on the network. Calculation972

of this ‘theoretical’ curve is a complicated task in itself. Network K –functions973

obtained from different networks are not directly comparable. For example, it974

is difficult to compare the spatial patterns of crime in two different cities using975

the respective network K –functions.976

Nevertheless it is possible to perform simulation-based inference using the977

Okabe-Yamada empirical K –function (31).978

8.4. Geometrically corrected K–function979

Ang (2010); Ang et al. (2012) developed an adjusted network K –function980

that intrinsically corrects for the inhomogeneous geometry of the network. The981

geometrically-corrected empirical K –function is982

K̂L(r) =
|L|

n(n− 1)

n∑
i=1

∑
j 6=i

1{dL(xi, xj) ≤ r}
m(xi, dL(xi, xj))

, (33)

where m(u, t) = #{v ∈ L : dL(u, v) = t} is the number of points of the network983

lying at path distance t exactly from the location u. That is, the contribution984

to (33) from each pair of points (xi, xj) is weighted by the reciprocal of the985

number of points u ∈ L that are situated at the same distance from xi as xj is.986
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The weighting factor compensates exactly for the geometry of the network:987

for a completely random point pattern, on any network, the corrected K –988

function is always K(r) = r. This provides a simple benchmark for completely989

random point patterns on a linear network. It also permits comparison between990

the corrected K –functions obtained from different point patterns on different991

networks.992

Ang’s geometrical correction is formally analogous to the isotropic edge cor-993

rection of Ripley (1977, 1981), which removes geometry-dependent bias in the994

two-dimensional case. The geometrical correction restores many natural prop-995

erties of K, including its direct relationship to the pair correlation function.996

The corrected K –function estimator has approximately constant variance as a997

function of r. Bias and variance are calculated by Ang et al. (2012).998

This approach extends to the spatially inhomogeneous case, yielding a K –999

function for inhomogeneous point processes on a network (Ang et al., 2012):1000

K̂LI(r) =
1

|L|

n∑
i=1

∑
j 6=i

1{dL(xi, xj) ≤ r}
λ̂(xi)λ̂(xj)m(xi, dL(xi, xj))

, (34)

where λ̂(u) is an estimate of the intensity function. Statistical performance1001

is improved if the denominator |L| is replaced by a data-dependent estimate1002 ∑
i 1/λ̂(xi), which is positively correlated with the double sum in (34).1003
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Figure 17: Estimated inhomogeneous K–function of the first spider web pattern assuming a
log-quadratic intensity.

Figure 17 shows the estimated inhomogeneous K –function of the spider webs1004

pattern in the top left panel of Figure 5, using the fitted intensity of the log-1005

quadratic Poisson model described in Section 7. There is no evidence of depar-1006

ture from an inhomogeneous Poisson process — that is, no evidence that the1007

individual spider web locations are dependent on each other, after allowing for1008

location preferences.1009

For the investigation of spatial interaction, the geometrically corrected K –1010

function (33) and pair correlation function have the strong advantage that they1011

permit the range of interaction to be identified.1012

For “multitype” point patterns in which the points are classified into several1013

different categories, such as the Chicago data (Figure 4) and dendritic spines1014
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data (Figure 6), extensions of the geometrically corrected K –function (33)–(34)1015

were developed by Baddeley et al. (2014) and applied to the dendritic spines1016

data. When investigating the dependence between types, it may also be useful1017

to estimate the network version of the mark connection function (Illian et al.,1018

2008) which is a combination of these functions (Baddeley et al., 2014).1019

9. Construction problem and non-existence1020

Many standard methods for analysing spatial point patterns assume that the1021

underlying point process is stationary. This gives access to a powerful statistical1022

methodology, embracing nonparametric characteristics such as the K –function1023

and pair correlation function (Illian et al., 2008), as well as parametric modelling1024

and inference (Møller and Waagepetersen, 2004; Baddeley et al., 2015).1025

Much of this methodology cannot be extended to a linear network, because1026

the network itself is not homogeneous. Different neighbourhoods have different1027

geometry, so there are no non-trivial geometrical transformations which preserve1028

the network, and it is not possible to define stationary processes (in the strict1029

sense) on a linear network. This creates a fundamental problem for the standard1030

methodology.1031

A fallback strategy is to analyse only the first and second moments. In two1032

dimensions, the K –function and pair correlation function g remain well-defined1033

if the point process is only second order stationary, i.e. if its first two moments1034

are invariant under translation.1035

The K –function and pair correlation function have been adapted to point1036

patterns on a linear network, as discussed in Section 8 above. The point pro-1037

cess is required to be correlation-stationary, meaning that the pair correlation1038

function depends only on the shortest-path distance between points (Ang et al.,1039

2012).1040

Baddeley et al. (2017) described some simple constructions of point processes1041

on a network which are correlation-stationary as defined above. However, the1042

findings suggest that such processes may be quite rare, except when the network1043

is a tree (a graph without cycles). Anderes et al. (2017) subsequently proved1044

that stationary correlation functions (with respect to the shortest-path distance)1045

do not exist on networks which contain certain kinds of loops.1046

This severely weakens the rationale for using the K –function and pair cor-1047

relation function on a network (based on shortest-path distance) in real appli-1048

cations. Modelling and inference also become much more complicated.1049

The exception is when the network is a tree (acyclic graph), which is highly1050

relevant in applications to river and stream networks (O’Donnell et al., 2014;1051

Ver Hoef et al., 2006; Ver Hoef and Peterson, 2010) and to the dendritic trees1052

of neurons (Baddeley et al., 2014; Jammalamadaka et al., 2013). A simple con-1053

struction in Baddeley et al. (2017) shows that point processes with exponential1054

pair correlation, g(r) = α exp(−βr), exist on any tree.1055

10. Alternative distance metrics1056

Okabe and Sugihara (2012, pp. 7–8) explain carefully that, while it is often1057

sensible to measure distances in a network by the shortest path, this is not1058

obligatory, and may occasionally be inappropriate to the application.1059
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Alternative metrics include the Euclidean distance between points in two-1060

dimensional space, and the “resistance distance” defined by treating the lines1061

of the network as electrical resistors (Klein and Randić, 1993; Bapat, 2004).1062

Shortest-path distance may be modified by assigning a different cost per unit1063

length on each segment of the network, where cost is determined by stream flow1064

in a river network (Ver Hoef et al., 2006), by landscape topography (Foltête1065

et al., 2008) or by expected travel time across a road network.1066

The Euclidean distance, for example, may be appropriate when studying the1067

influence of weather on road accident risk. Locations on different roads which1068

are spatially close together will have similar weather.1069

Amongst the metrics mentioned, the Euclidean distance is the only met-1070

ric which is not affected by changes to the network, including clipping to an1071

observation region and addition of new segments to an existing network.1072

Baddeley et al. (2017); Rakshit et al. (2017) investigated the statistical im-1073

plications of using a distance metric other than the shortest-path distance. For1074

any given metric δ, a point process is defined to be δ-correlated if its pair cor-1075

relation function depends only on δ-distance, g(2)(u, v) = gδ(δ(u, v)), for some1076

function gδ. Baddeley et al. (2017) showed there is a rich class of point process1077

models which are δ-correlated with respect to Euclidean distance: this includes1078

Cox processes driven by any stationary random field on the plane, counterparts1079

of Switzer’s (1965) model and the cell process of Baddeley and Silverman (1984),1080

and many others.1081

Rakshit et al. (2017) adapted the K –function and pair correlation function1082

to a general distance metric δ. If the point process is δ-correlated, then a version1083

of the K –function based on δ distances is well-defined. In order to estimate it1084

from data, we need the Jacobian1085

Jδ(u, v) =

∣∣∣∣∂δ(u, v)

∂v

∣∣∣∣ , (35)

the rate of change of the δ-distance between u and v as v moves along the1086

network at unit speed. For the shortest-path metric, J = 1. For the Euclidean1087

metric, J(u, v) = | sin θ| where θ is the angle of incidence between the segment1088

containing v and the Euclidean circle centred at u that passes through v.1089

An empirical estimator of the K –function Kδ(r) is1090

K̂δ(r) =
|L|

n(n− 1)

n∑
i=1

∑
j 6=i

1{δij ≤ r}
J̃δ(xi, δij)

mδ(xi, δij)
, (36)

where δij = δ(xi, xj) for i 6= j and1091

J̃δ(u, r) =

 1

mδ(u, r)

∑
v∈bδ(u,r)

1

Jδ(u, v)

−1 , (37)

where mδ(u, r) is the circumference of the disc bδ(u, r) of radius r in the metric1092

δ. That is, J̃δ(u, r) is the harmonic mean of the Jacobian values Jδ(u, v) at all1093

locations v lying exactly r units away from u according to the metric δ.1094

Using this estimator and the corresponding estimator for the pair correlation1095

function, Rakshit et al. (2017, Sec. 7) re-analysed several datasets, and reported1096
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conflicting conclusions from analysis of the dendritic spines data using different1097

metrics.1098

The Poisson process is δ-correlated for any metric δ. Thus, whatever the1099

choice of metric δ, we may use the same functional form K(r) = r as the1100

benchmark of “complete randomness”. While this result is very useful for data1101

analysis, it also indicates that there is no right or wrong choice of the metric1102

δ when the point process is completely random. The metric is “unidentifiable”1103

under the null hypothesis of complete randomness, cf. Davies (1977, 1987).1104

Software1105

All analyses were performed using the libraries spatstat (Baddeley and1106

Turner, 2005; Baddeley et al., 2015) and spatstat.Knet (Rakshit et al., 2019a)1107

which are contributed extension packages for the R statistical software system (R1108

Development Core Team, 2018). They can be downloaded from cran.r-project.org.1109

Acknowledgements1110

This article includes summaries of the results of joint research with the1111

Perth Spatial Point Processes Group (Adrian Baddeley, Gopalan Nair, Suman1112

Rakshit), with former members (Ya-Mei Chang, Andrew Hardegen, Thomas1113

Lawrence, and Yong Song) and with Spatial Analysis Group Otago (Tilman1114

Davies, Martin Hazelton, Adrian Baddeley), as well as collaborators Ege Rubak,1115

Rob Foxall and Rolf Turner.1116

This work was supported by Australian Research Council grant DP130102322,1117

“Statistical methodology for events on a network, with application to road1118

safety” in which Mark Handcock, Martin Hazelton, Jakob Gulddahl Rasmussen1119

and Valerie Isham participated. We thank CSIRO Data61 for computing re-1120

sources and related support.1121

References1122

Abramson, I., 1982. On bandwidth estimation in kernel estimates – a square1123

root law. Annals of Statistics 10, 1217–1223.1124

Anderes, E., Møller, J., Rasmussen, J., 2017. Isotropic covariance functions on1125

graphs and their edges. Technical Report. Centre for Stochastic Geometry1126

and Bioimaging. Aalborg, Denmark.1127

Andersen, B., 1990. Methodological Errors in Medical Research. Blackwell1128

Scientific, Oxford.1129

Anderson, T., 2009. Kernel density estimation and K-means clustering to profile1130

road accident hotspots. Accident Analysis and Prevention 41, 359–364.1131

Ang, Q., 2010. Statistical methodology for events on a network. Master’s thesis.1132

School of Mathematics and Statistics, University of Western Australia.1133

Ang, Q., Baddeley, A., Nair, G., 2012. Geometrically corrected second order1134

analysis of events on a linear network, with applications to ecology and crim-1135

inology. Scandinavian Journal of Statistics 39, 591–617.1136

Anselin, L., 1995. Local indicators of spatial association – LISA. Geographical1137

Analysis 27, 93–115.1138

36



Baddeley, A., 2017. Local composite likelihood for spatial point processes. Spa-1139

tial Statistics 22, 261–295. doi: 10.1016/j.spasta.2017.03.001.1140

Baddeley, A., Chang, Y., Song, Y., Turner, R., 2012. Nonparametric estimation1141

of the dependence of a spatial point process on a spatial covariate. Statistics1142

and its Interface 5, 221–236.1143

Baddeley, A., Jammalamadaka, A., Nair, G., 2014. Multitype point process1144

analysis of spines on the dendrite network of a neuron. Applied Statistics1145

(Journal of the Royal Statistical Society, Series C) 63, 673–694. doi:10.1111/1146

rssc.12054.1147

Baddeley, A., Møller, J., Waagepetersen, R., 2000. Non- and semiparametric1148

estimation of interaction in inhomogeneous point patterns. Statistica Neer-1149

landica 54, 329–350.1150

Baddeley, A., Moyeed, R., Howard, C., Boyde, A., 1993. Analysis of a three-1151

dimensional point pattern with replication. Applied Statistics 42, 641–668.1152

Baddeley, A., Nair, G., Rakshit, S., McSwiggan, G., 2017. ‘Stationary’ point1153

processes are uncommon on linear networks. STAT 6, 68–78.1154

Baddeley, A., Rubak, E., Turner, R., 2015. Spatial Point Patterns: Methodology1155

and Applications with R. Chapman and Hall/CRC, London.1156

Baddeley, A., Silverman, B., 1984. A cautionary example on the use of second-1157

order methods for analyzing point patterns. Biometrics 40, 1089–1094.1158

Baddeley, A., Turner, R., 2000. Practical maximum pseudolikelihood for spatial1159

point patterns (with discussion). Australian and New Zealand Journal of1160

Statistics 42, 283–322.1161

Baddeley, A., Turner, R., 2005. Spatstat: an R package for analyzing1162

spatial point patterns. Journal of Statistical Software 12, 1–42. URL:1163

www.jstatsoft.org, ISSN: 1548-7660.1164

Bapat, R., 2004. Resistance matrix of a weighted graph. Communications in1165

Mathematical and in Computer Chemistry 50, 73–82.1166

Barr, C., Schoenberg, F., 2010. On the Voronoi estimator for the intensity of1167

an inhomogeneous planar Poisson process. Biometrika 97, 977–984.1168

Bassett, R., Sharpnack, J., 2019. Fused density estimation: theory and methods.1169

Journal of the Royal Statistical Society, Series B In press.1170

Bell, M., Grunwald, G., 2004. Mixed models for the analysis of replicated spatial1171

point patterns. Biostatistics 5, 633–648.1172

Berkson, J., 1946. Limitations of the application of fourfold table analysis to1173

hospital data. Biometrics Bulletin 2, 47–53.1174

Berman, M., Turner, T., 1992. Approximating point process likelihoods with1175

GLIM. Applied Statistics 41, 31–38.1176

Bithell, J., 1990. An application of density estimation to geographical epidemi-1177

ology. Statistics in Medicine 9, 691–701.1178

37



Borruso, G., 2003. Network density and the delimitation of urban areas. Trans-1179

actions in GIS 7, 177–191.1180

Borruso, G., 2005. Network density estimation: Analysis of point patterns1181

over a network, in: Gervasi, O., Gavrilova, M., Kumar, V., Laganà, A., Lee,1182
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