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A Heat kernel in a rectangle

On a a one-dimensional interval [A,B], the heat kernel has the expansion

κ
[A,B]
t (x | y) =

∑
k∈Z

[ϕt(x− y + 2kL) + ϕt(−x− y + 2kL+ 2A)]

where L = B − A and ϕt is the probability density of the standard normal distribution. See, e.g. Boyce
& DiPrima (1969, pp. 456–458).

For the two-dimensional rectangle W = [A,B]× [C,D], the heat kernel is the product of 1-dimensional
heat kernels: for a source point y = (uy, vy) and query point x = (ux, vx),

κt(x | y) = κ
[A,B]
t (ux | uy)κ

[C,D]
t (vx | vy)

It can be verified directly (i.e. by differentiating the expression above) that this satisfies the heat equation
(4) and the Neumann boundary condition (5) in the main paper.

B Behaviour of the heat kernel in special cases

B.1 Behaviour near the boundary

Suppose W is the infinite half-plane H = {(u, v) : u ≥ 0}. For data location x0 = (u0, v0) and query
location x = (u, v), the heat kernel is

κt(x | x0) = φt(x− x0) + φt(x− x∗0)

where φt is the 2-dimensional isotropic Gaussian density, and x∗0 = (−u0, v0) is the mirror image of x0
reflected in the y axis.
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Figure A1: Behaviour of kernels near an infinite straight line boundary. Left: Gaussian kernel renor-
malised as in Jones-Diggle correction. Right: heat kernel. The domain W is the infinite half-plane to the
right of the vertical axis (thick solid line). The source point (•) is at location (1, 0). Bandwidth is σ = 1.

The corresponding contribution to the Jones-Diggle corrected fixed-bandwidth estimate is φt(x −
x0)/cW (x0), where cW (x0) =

∫
W
φt(x − x0) dx = 1 − Φt(−u0) in which Φt is the c.d.f. of the 1-

dimensional Gaussian. These expressions coincide when u0 = 0, that is, when the data location lies
exactly on the boundary of the window, when they both equal 2φt(x − x0). They also coincide when
the data location is far away from the window, when they both approach φt(x − x0). At intermediate
locations there are discrepancies: an example is shown in Figure A1.

B.2 Performance in a square

The heat kernel can be evaluated rapidly when the domain W is a rectangle, as shown in Appendix A.
This allows us to compare the performance of the edge-corrected Gaussian kernel estimators (2)–(3) and
the diffusion estimator (7) of the main paper.
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Lemmas 3, 5 and 6 of the main paper were stated for the diffusion estimator but generalise to the
edge-corrected Gaussian estimators (2)–(3), because each estimator takes the form λ̂(u) =

∑
iG(u, xi)

where G(u, v) is a known function. Namely, G(u, v) = e(u)ϕσ(u − v) for the uniform correction, and
G(u, v) = e(v)ϕσ(u − v) for the Jones-Diggle correction, where ϕ is the Gaussian kernel and e(u) =
1/

∫
W
ϕσ(v − u) dv. See Baddeley et al. (2015, p. 173).

Consider a homogeneous Poisson process with intensity λ > 0. The pointwise bias Bλ(x) = E[λ̂(x)]−λ
and pointwise variance Vλ(x) = var[λ̂(x)] are proportional to λ, so that Bλ(x) = λB1(x) and Vλ(x) =
λV1(x). The functions B1(x) and V1(x) can be evaluated numerically for each of the estimators mentioned.
The pointwise mean square error is Mλ(x) = Vλ(x) +Bλ(x)2 = λV1(x) + λ2B1(x).
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Figure A2: Relative bias Bλ(x)/λ = B1(x) of the Jones-Diggle-corrected Gaussian kernel estimator of
point process intensity for a homogeneous Poisson process in the unit square. Bandwidth σ = 0.1.
Thickened line is contour for zero bias.

Figure A2 shows the relative bias function B1 for the Jones-Diggle corrected Gaussian kernel estimator,
and Figure A3 shows the normalised variance functions V1 for each estimator, calculated for W = [0, 1]2

using bandwidth σ = 0.1.
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Figure A3: Normalised variance Vλ(x)/λ = V1(x) for the uniform-corrected Gaussian (Left), Jones-Diggle-
corrected Gaussian (Middle) and diffusion kernel (Right) estimators. Unit square domain. Bandwidth
σ = 0.1. Homogeneous Poisson point process.

The uniform corrected Gaussian kernel estimator and the diffusion estimator have qualitatively similar
performance, with a steep increase in pointwise variance close to the corners of the domain. The Jones-
Diggle correction has a different, more complicated pattern of performance. The range of the variance
term V1(x) is [7.96, 30.69] for the uniform correction, [7.96, 18.13] for the Jones-Diggle correction and
[7.96, 31.78] for the diffusion estimator. The uniform corrected estimator and the diffusion estimator have
zero bias, while the Jones-Diggle correction has bias term B1(x) with range [−0.49, 0.15]. For σ = 0.1,
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Table A1: Terms involved in the Integrated Mean Squared Error (IMSE) for each estimator. Poisson
process with uniform intensity in the unit square.
Estimator Term σ = 0.1 σ = 0.2 σ = 0.3
Uniform I(V1) 10.599 3.406 1.908
Jones–Diggle I(V1) 10.599 3.406 1.908

I(B2
1) 0.011 0.024 0.036

Diffusion I(V1) 11.029 3.645 2.075

the maximum value of pointwise mean square error over the domain is smallest for the Jones-Diggle
estimator when λ < 80, and for the uniform correction when λ > 80.

If instead we compare performance using the Integrated Mean Square Error

IMSE =

∫
W

Mλ(x) dx =

∫
W

Vλ(x) dx+

∫
W

Bλ(x)2 dx = λ

∫
W

V1(x) dx+ λ2
∫
W

B1(x)2 dx,

then the uniform correction is the most efficient for all values of λ. Table A1 shows the terms I(V1) =∫
W
V1(x) dx and I(B2

1) =
∫
W
B2

1(x) dx for each estimator. It can be verified directly that the integrated
variances for the uniform and Jones-Diggle corrections are equal in this case.

Overall, the diffusion estimator combines the advantages of the Gaussian kernel estimator with uniform
correction (namely unbiasedness for the uniform) and Jones-Diggle correction (namely conservation of
mass); its performance is closest to the former.

C Algorithms and software implementation

This section gives details of the algorithms described in Sections 4 and 6 of the main paper for computing
the fixed-bandwidth, variable-rate and lagged-arrival diffusion estimates. The specifications should be
sufficient for users wishing to code their own implementation.

We have implemented these algorithms in the R language using the package spatstat (Baddeley &
Turner 2005, Baddeley et al. 2015) for spatial data. The transition matrix P is represented efficiently as
a sparse matrix (Pissanetzky 1984), using the Matrix package (Bates & Maechler 2017).

C.1 Fixed-bandwidth algorithm

Algorithm 1 below specifies the procedure for discretising continuous data, and Algorithm 2 specifies the
calculation of the diffusion estimator.

These algorithms are given for rectangular grids. For a regular hexagonal grid, the essential modifi-
cations are that, for hexagons of side length ∆c, the maximum permitted value of ∆t is ((1− ε)/2)(∆c)2,
and the corresponding value of the transition probability is q = (∆t)/(3(∆c)2).

Algorithm 1: Discretisation procedure onto a 4-connected or 8-connected rectangular grid.

Given the spatial domain W ⊂ R2, the point pattern dataset x = {x1, . . . , xn}, pixel dimensions ∆x,∆y
and grid connectivity v ∈ {4, 8}:

1. Let G = {(i∆x, j∆y) : i, j ∈ Z} be the infinite rectangular grid with the desired spacing. Find the set
C = W ∩G of grid nodes inside W . Let N = #(C) be the total number of nodes and A = (∆x)(∆y) the
area of one grid cell.

2. For each data point xi, define its discretised counterpart x∗i to be the element of C closest to xi.
Construct the N × 1 column vector s =

[
sc
]
c∈C where sc =

∑
i 1{x

∗
i = c} is the number of discretised

data points located at node c.

3. Declare two points a = (i∆x, j∆y) and b = (i′∆x, j′∆y) to be horizontal neighbours if j = j′ and
|i− i′| = 1; vertical neighbours if i = i and |j − j′| = 1; and diagonal neighbours if |i− i′| = |j − j′| = 1.

Construct the sparse matrix Mhorz =
[
m

(horz)
a,b

]
a,b∈C

with binary entries m
(horz)
a,b equal to 1 whenever a

and b are horizontal neighbours. Similarly construct Mvert for vertical neighbors, and if v = 8, construct
Mdiag for diagonal neighbors.
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Algorithm 2: Constant-rate diffusion smoothing on a 4-connected or 8-connected rectangular
grid.

Given the inputs W,x,∆x,∆y, v required for Algorithm 1, together with a smoothing bandwidth σ > 0
and minimum stayput probability ε > 0:

1. Discretise the data as described in Algorithm 1.

2. Determine the largest permitted value of ∆t as ∆tmax = (1− ε) (∆x)2(∆y)2

(∆x)2+(∆y)2
if v = 4, and

∆tmax = (1−
√
ε) min{∆x,∆y}2 if v = 8.

3. Calculate the number of iterations τ =
⌈

h2

∆tmax

⌉
where dxe is the smallest integer m ≥ x.

4. Calculate the single-step variance ∆t = σ2/τ .

5. Infer the jump probabilities qx = (∆t)/(2(∆x)2) and qy = (∆t)/(2(∆y)2).

6. Construct the transition matrix P as follows. First set

U =

{
qxMhorz + qyMvert if v = 4,

qx(1− 2qy)Mhorz + qy(1− 2qx)Mvert + qxqyMdiag if v = 8.

Then set P = U + I − diag(U1N ) where diag(z) is the diagonal matrix with diagonal entries z1, . . . , zN .
That is, pa,b = ua,b for a 6= b, and pa,a = 1−

∑
k∈C uak.

7. Define the initial state as the N × 1 vector f0 = s/A. Recursively compute fk+1 = fkP for
k = 1, . . . , τ − 1. Return fτ as the intensity estimate.

A slight modification of Algorithm 2 makes it possible to compute the general solution of the heat
conduction problem in equation (11) of the main paper, simply by initialising f0 = λ.
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C.2 Adaptive estimator, variable rate

Algorithm 3 below specifies our algorithm for the variable-rate diffusion estimator. This is a modification
of Algorithm 2 in which transition probabilities are adjusted to produce the required spatial variation in
diffusion speed while still satisfying the constraints of a probability distribution. Numerical underflow
can occur if the smoothing bandwidth function σ(x) has a wide range of values.

Algorithm 3: Variable-rate diffusion smoothing on a 4-connected or 8-connected rectangular
grid.

Given the inputs W,x,∆x,∆y, v required for Algorithm 1, together with a smoothing bandwidth function
σ(x), x ∈W and minimum stayput probability ε > 0:

1. Discretise the data as described in Algorithm 1.

2. Evaluate the bandwidth function at each grid node, giving the bandwidth vector σ =
[
σ(c)

]
c∈C . Find

the maximum σmax = max{σ(c) : c ∈ C}.
3. Compute the required number of steps τ = d(σmax)2/De where

D = (1− ε) (∆x)2(∆y)2

(∆x)2+(∆y)2
if v = 4 and D = (1−

√
ε) min{∆x,∆y}2 if v = 8.

4. Calculate the column vector of single-step variances ∆t =
[
σ(c)2/τ

]
c∈C .

5. Calculate column vectors of node-specific horizontal and vertical jump probabilities px =
(∆t)/(2(∆x)2) and py = (∆t)/(2(∆y)2).

6. Replicate px,py across rows to obtain square matrices p̃x = px1>N , p̃y = py1>N .

7. Compute transition matrix P = U + I − diag(U1N ) where

U =

{
p̃x ◦Mhorz + p̃y ◦Mvert if v = 4
p̃x ◦ (J − 2p̃y) ◦Mhorz + p̃y ◦ (J − 2p̃x) ◦Mvert + p̃x ◦ p̃y ◦Mdiag if v = 8

where ◦ is the Hadamard product and J = 1N1>N is the N ×N matrix with all entries equal to 1.

8. Define the initial state as the N × 1 vector f0 = s/A. Recursively compute fk+1 = fkP for
k = 1, . . . , τ − 1. Return fτ as the intensity estimate.

C.3 Adaptive estimator, lagged-arrival algorithm

Algorithm 4 below specifies the implementation of the new observation-specific adaptive diffusion smoother.
It is almost identical to the implementation of the fixed-bandwidth estimator described in Algorithm 2,
except that data points are introduced progressively during the iterations.

Algorithm 4: Lagged-arrival algorithm for observation-specific diffusion smoothing.

Given the inputs W,x,∆x,∆y, v required for Algorithm 1, together with smoothing bandwidth values
σ1, . . . , σn and minimum stayput probability ε > 0:

1. Discretise the data as described in Algorithm 1.

2. Construct the indicator vector for each discretised observation, ζi =
[
1{x∗i = c}

]
c∈C .

3. Find the maximum bandwidth σmax = max{σ1, . . . , σn}.
4. Calculate the transition matrix P for fixed-bandwidth smoothing with bandwidth σ = σmax by

following steps 2–6 of Algorithm 2.

5. Associate each observation xi with an arrival time ai ≤ τ by ai = max

{
1, τ − bτ

(
σi

σmax

)2

e
}

where

bxe is the integer closest to x.

6. Define the initial state to be empty, f0 = 0N . Find the final estimate f̃τ by recursion with lagged
arrivals:

f̃τ = f̃τ−1P +A−1
n∑
i=1

1{ai = τ}ζi.
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D Accuracy of discrete random walk approximation

The Euler scheme for numerical approximation of ordinary differential equations is described and analysed
in Butcher (2003, Sections 20–21, pp. 55–89). It is classified as a first order method and is expected to
have numerical errors of the same order as the grid step size (Butcher 2003, p. 73). Butcher (2003, p.
59) states that it is “not feasible to estimate the total accumulated error” of approximation in the Euler
scheme; however, the following calculation gives an upper bound on the error for a special case.

Lemma 1 Consider the pseudosymmetric random walk on the 8-connected infinite square grid, with space
and time rescaled so that the grid spacing is ∆x, the time step is ∆t, and the variance per unit time is 1.
Let Ht(x, y) be the bivariate cumulative distribution function of the location of the random walk at time
t = σ2, given that it started at the origin. Then

sup
x,y
|Ht(x/σ, y/σ)− Φ(x)Φ(y)| ≤ ∆c

σ
(A1)

where Φ is the cdf of the standard Normal distribution.

Proof 1 Each step (∆X,∆Y ) in the random walk is such that ∆X and ∆Y are independent random
variables with the same distribution,

∆X =

 ∆c with probability p
−∆c with probability p
0 with probability 1− 2p

We have E(∆X) = 0 and var(∆X) = 2p(∆c)2 = a2, say. The assumption of unit variance per unit time
implies that a2 = ∆t so p = (∆t)/(2(∆c)2).

At time t = σ2 there have been n = t/∆t steps (assuming henceforth that t is an integer multiple of
∆t) and the position of the random walk is Vn = (Xn, Yn) where Xn, Yn are independent. Each of the
coordinates Xn and Yn is the sum of n independent copies of ∆X, and has mean zero and variance t. By
independence Ht(x, y) = Fn(x)Fn(y) where Fn(x) is the cdf of the x-coordinate.

Applying the Berry-Esséen Theorem to Fn, we have

sup
x
|Fn(x/σ)− Φ(x)| ≤ C E[|∆X|3]

n1/2(var(∆X))3/2
(A2)

where C is a universal constant, known to be less than 1/2. By direct calculation E[|∆X|3] = 2p(∆c)3 =
∆c ∆t and since var(∆X) = ∆t and n = t/∆t = σ2/∆t, the bound (A2) becomes

sup
x
|Fn(x/σ)− Φ(x)| ≤ C ∆c

σ
≤ ∆c

2σ
. (A3)

Returning to the bivariate distributions, we use the fact that, if a1, a2, b1, b2, ε are probabilities satisfying
|a1−a2| < ε and |b1−b2| < ε, then |a1b1−a2b2| < 2ε. Applying this bound with a1 = Fn(x/σ), a2 = Φ(x),
b1 = Fn(y/σ), b2 = Φ(y) and ε = (∆c)/(2σ) yields the result.

This lemma provides an estimate of L∞ error, at least in the infinite plane, and an argument why p
should be made as large as possible subject to the constraints.

For example, consider approximating the cumulative distribution function of the heat kernel for the
unit square W , with the source point located at the centre of the square, and bandwidth σ = 0.1, using
the 8-connected grid with spacing ∆c = 1/128. The rough bound (A1) above is (∆c)/σ = (1/128)/0.1 =
0.0781. Table SUP-3 of the supplementary material gives the corresponding actual value of L∞ error as
0.019.

E Equations for a general diffusion

Here we collect some general results from stochastic process theory which were used (in special cases)
in Section 6.2 of the main paper. Consider a diffusion Xt in d-dimensional space (for d ≥ 1) with Itô
stochastic differential equation

dXt = b(Xt) dt+ Σ(Xt) dBt, t ≥ 0, (A4)
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where b(x) = (b1(x) . . . bd(x)), x ∈ Rd is a d-dimensional vector valued function (“drift”), Σ(x), x ∈ Rd
is a d × m matrix-valued function and Bt is m-dimensional standard Brownian motion in Rm, where
m ≥ d. Under conditions ensuring existence and differentiability (Gihman & Skorohod 1972, Theorems
3 and 5, pp. 288–300), the Kolmogorov forward equation for this diffusion is (Elliott 1982, eq. (18.5)) the
Fokker-Planck equation

∂

∂t
pt(x | y) = −

d∑
i=1

∂

∂xi
[bi(x)pt(x | y)] +

d∑
i=1

d∑
j=1

∂2

∂xi∂xj
[Dij(x)pt(x | y)], (A5)

where pt is the transition density, i.e. pt(· | y) is the probability density of Xt given X0 = y. Here Dij(x)
is the (i, j) entry of the d × d matrix B(x) = 1

2Σ(x)Σ(x)>. The diffusion kernel estimator with kernel
pt(x | y) can be computed by solving (A5).

The Kolmogorov backward equation is (Elliott 1982, eq. (18.2); Gihman & Skorohod 1972, p. 297)

∂

∂t
pt(x | y) =

d∑
i=1

bi(y)
∂

∂yi
pt(x | y) +

d∑
i=1

d∑
j=1

Dij(y)
∂2

∂yi∂yj
pt(x | y). (A6)

Bias in the diffusion kernel estimator for small bandwidth can be characterised using (A6) in the same
manner as in Theorem 1 of Botev et al. (2010).

For this general diffusion, the formal definitions and results in Section 3 of the main paper are modified
as follows. Redefine κt(x | y) as the probability density of the state of this diffusionXt at time t evaluated
at query location x given the starting location was X0 = y. In Definition 1 of the main paper, the heat
equation (4) is replaced by the forward equation (A5). Theorem 1 of the main paper remains true. In
Lemma 1 of the main paper, properties (2)–(4) remain true.
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