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Diffusion Smoothing for Spatial
Point Patterns
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Abstract. Traditional kernel methods for estimating the spatially-varying
density of points in a spatial point pattern may exhibit unrealistic arte-
facts, in addition to the familiar problems of bias and over- or under-
smoothing. Performance can be improved by using diffusion smoothing,
in which the smoothing kernel is the heat kernel on the spatial domain.
This paper develops diffusion smoothing into a practical statistical
methodology for two-dimensional spatial point pattern data. We clarify
the advantages and disadvantages of diffusion smoothing over Gaussian
kernel smoothing. Adaptive smoothing, where the smoothing band-
width is spatially-varying, can be performed by adopting a spatially-
varying diffusion rate: this avoids technical problems with adaptive
Gaussian smoothing and has substantially better performance. We in-
troduce a new form of adaptive smoothing using lagged arrival times,
which has good performance and improved robustness. Applications
in archaeology and epidemiology are demonstrated. The methods are
implemented in open-source R code.
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1. INTRODUCTION

In the statistical analysis of spatial point pattern data [31, 43, 3], an important
task is to estimate the spatially-varying density or occurrence rate of points. The
standard nonparametric method is kernel estimation [30, 10, 63], typically using
a Gaussian kernel. This paper develops an alternative methodology based on
diffusion smoothing [18, 12, 6] in which the observed distribution of data points
is smoothed by imitating the physical process of diffusion.

Diffusion smoothing resolves several important problems encountered in Gaus-
sian kernel smoothing. These include failure to conserve mass; bias near the
boundary of the spatial domain [30, 10, 44, 50]; the need for adaptive smooth-
ing to avoid simultaneous over- and under-smoothing artefacts [1, 41, 70]; and
physically impossible or implausible results [6].
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Fig 1. Left: a synthetic pattern of points in a polygonal region. Middle: Gaussian kernel estimate
of intensity (with uniform edge correction), showing tunnelling of mass. Right: diffusion estimate
of intensity with equivalent bandwidth.

The latter problem is illustrated in Figure 1. In the left panel is a synthetic
point pattern dataset in an irregular domain W , extracted from real coastline
data. The middle panel is a Gaussian kernel estimate of intensity. Although all
the data points lie in the upper right half of W , the Gaussian kernel estimate
has quite large values on the lower left half as well: about 36% of the mass has
been transferred to the lower left half. Kernel mass has effectively “leapt” or
“tunnelled” across the gulf between the two halves. Indeed about 2.5% of mass
has been transferred to the small island where there were no data points. This
behaviour would be unrealistic if the points represent terrestrial animals [6].

The right panel of Figure 1 shows the diffusion estimate of intensity for the
same point pattern using an equivalent bandwidth. Very little mass (only about
5%) has migrated to the lower left half of the domain, and no mass has migrated
to the island. This estimate would be much more realistic for terrestrial wildlife
monitoring.

Use of the physical process of diffusion as a paradigm for smoothing is already
well-developed in computer vision [71, 20] where it is inherent in the “scale space”
approach [46, 47]. The benefits of this approach to statistical curve estimation
were set out by Chaudhuri and Marron [18]. Otherwise the statistical literature on
kernel smoothing does not frequently mention diffusion kernels; but the “reflected-
kernel correction” for density estimation on the positive half-line ([42, 59, 32, 40],
[63, p. 26]) is a special case of a diffusion kernel.

Botev et al. [12] developed formal statistical theory for diffusion kernel es-
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timation of a probability density, mainly in one dimension. They argued that
diffusion smoothing is an intrinsic solution to the problems of density estimation
in a bounded domain. Edge corrections are unnecessary because the heat kernel
is inherently tailored to the domain. They also showed that adaptive estimation,
in which the amount of smoothing is spatially-varying, can be performed intrin-
sically by using a diffusion with spatially-varying speed and drift. They demon-
strated that adaptive diffusion smoothing has substantially better performance
than adaptive Gaussian smoothing.

Independently, Barry and McIntyre [6] drew attention to the “tunnelling” arte-
fact illustrated in the middle panel of Figure 1, and proposed an estimator of
point process intensity using random walks on a lattice. Their procedure can be
regarded as a discrete approximation to a fixed-bandwidth diffusion smoother.

In this paper we reconcile and extend these approaches, with the goal of devel-
oping diffusion smoothing into a practical methodology for spatial point pattern
data. We elucidate the correspondence between the “lattice-based” smoother of
[6] and the continuous diffusion smoother of [12] — which is required, for ex-
ample, to ensure that the two density estimates in Figure 1 are obtained using
equivalent bandwidths. These results also show how to generalise the computa-
tional algorithm of [6] to non-square rectangular and hexagonal grids. Detailed
algorithms are given, and implemented in open-source software. We study the
sample behaviour of the diffusion estimate, including its behaviour at the bound-
ary of the study region, and statistical properties of the diffusion estimator, and
compare them with the Gaussian kernel estimator.

Corrections for boundary effects become more important in higher dimensions.
The diffusion estimator does not require edge correction because it is intrinsically
tailored to the study region. Indeed it is both unbiased for the uniform density and
mass-conserving, whereas the Gaussian kernel estimator requires edge correction
to satisfy either of these properties, and cannot satisfy them both simultaneously.

Spatial point pattern data sometimes exhibit very strong heterogeneity, for
which fixed-bandwidth smoothing is profoundly unsatisfactory [1, 63, 41, 69, 26].
We develop spatially adaptive versions of diffusion smoothing. An elegant ap-
proach, advocated by Botev et al. [12], is to allow the diffusion parameters to vary
over the spatial domain; we develop the special case of “variable-rate diffusion”,
where the diffusion has spatially-varying speed and zero drift. We also propose
a new form of adaptive diffusion smoothing, “lagged-arrival diffusion”, in which
the diffusion process parameters are constant across the domain, but the data
points enter the diffusion at different starting times, according to the smoothing
bandwidths assigned to them. Lagged-arrival diffusion smoothing corresponds
closely to sample-point-adaptive Gaussian smoothing. In both the variable-rate
and lagged-arrival methods, the spatially-varying smoothing bandwidth must be
determined by a suitable rule, such as the square-root rule of Abramson [1] based
on a reference density such as a pilot estimate of the density. We find that misspec-
ification of the reference density has far less effect on the lagged-arrival estimate
than on the variable-rate estimate. The lagged-arrival method may be useful even
for one-dimensional density estimation.

We complete our investigation by implementing and applying diffusion smooth-
ing in practical contexts. Performance is evaluated using simulations, real-data
examples, and special cases. Bandwidth selection is discussed. We measure the
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discretisation error in the “lattice” approximation and show how it can be vastly
reduced using numerical techniques. All the algorithms developed here are im-
plemented in open-source R software in the package spatstat [4, 5].

The article is structured as follows. In Section 2 we provide brief background
on kernel smoothing estimators of spatial intensity functions. We define the fixed-
bandwidth diffusion estimator in Section 3, stating its key properties. Section 4
explains the discrete approximation to the diffusion: this is useful for exposition,
necessary for practical implementation (including the ability to accommodate
different grid geometries), and reconciles the estimators developed independently
in the literature. Section 5 applies the diffusion estimator to a novel dataset of
ancient Māori sites in New Zealand. Adaptive diffusion is tackled in Section 6, be-
ginning with the theory of [12] for the variable-rate estimator, and subsequently
introducing the new lagged-arrival estimator. Section 7 applies the adaptive dif-
fusion estimators to an epidemiological dataset. Section 8 reports on a simulation
study evaluating the diffusion estimators and bandwidth selection methods. We
end with a discussion and commentary on future research avenues in Section 9.

2. BACKGROUND

The methods described here can be applied in d-dimensional Euclidean space
Rd for any d ≥ 1, but for simplicity we consider only the two-dimensional plane
R2. A typical spatial location in R2 will be denoted by a single letter x. We will
usually avoid explicit mention of spatial coordinates, but when necessary, the
Cartesian coordinates will be denoted u and v, so that x = (u, v).

The observed data consist of a spatial point pattern x = {x1, . . . , xn} in a
spatial domain W ⊂ R2, where n ≥ 0 is not fixed in advance, and xi ∈ W
for i = 1, . . . , n. We regard x as a realisation of a spatial point process X in
W assumed to have an intensity function λ(x), x ∈ W , defined so that the
number N(B) = n(X ∩ B) of points falling in any given Borel set B ⊆ W has
expectation E[N(B)] =

∫
B λ(x) dx. See [24, 25] or [31, 43, 3]. An important and

often-used model for X is a Poisson process, implying that N(B) has a Poisson
distribution and that given N(W ) = n, the locations of the n points in W are
independent and identically distributed with probability density f(x) = λ(x)/Λ,
where Λ =

∫
W λ(x) dx. Estimation of the intensity function λ(x) is effectively

equivalent to density estimation.
Kernel estimators of f(x) or λ(x) for two-dimensional spatial point patterns

were described in [30, 10, 63]. The “fixed-bandwidth” kernel estimator of intensity
is

(1) λ̂σ(x) =

n∑
i=1

kσ(x− xi), x ∈W,

where σ > 0 is the smoothing bandwidth, kσ(x) = σ−2k(x/σ) is the kernel
with bandwidth σ, and k(x) is the template kernel, a probability density on
R2, often taken to be the bivariate standard normal density. This estimator is
biased because of edge effects. Bias-corrected estimators include the “uniform”
correction [30]

(2) λ̂(U)
σ (x) =

1

cW (σ, x)

n∑
i=1

kσ(x− xi), x ∈W,
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and the Jones or “Jones-Diggle” correction [44]

(3) λ̂(J)σ (x) =
n∑
i=1

kσ(x− xi)
cW (σ, xi)

, x ∈W,

where in both cases cW (σ, x) =
∫
W kσ(y − x) dy is the mass of the kernel cen-

tred at x which lies within W . The Jones-Diggle correction preserves total mass,∫
W λ̂

(J)
σ (x) dx = n, while the uniform correction is unbiased for the uniform den-

sity, E[λ̂
(U)
σ (x)] = λ if the true intensity is constant λ(x) ≡ λ. The corrections (2)

and (3) are workable solutions to edge effect bias, but are not entirely satisfac-
tory, because both properties cannot be satisfied at the same time, and because
such corrections also inflate the estimator variance.

Variances of these estimators can be calculated using point process methods.
For a Poisson process with intensity function λ(x), the variance of

∑n
i=1 g(xi) is∫

g(x)2λ(x) dx (by first principles; see [24, p. 188] or [3, p. 173]). Calculations for
a special case are given in Appendix B. For a general, non-Poisson point process
there is an explicit formula for the estimator variance in terms of the first and
second moment intensities (cf. Lemma 6 below).

Adaptive estimation, where the amount of smoothing is spatially-varying, is
discussed in Section 6.1.

3. DIFFUSION ESTIMATORS (FIXED-BANDWIDTH)

This section provides a formal definition of the diffusion estimator of point
process intensity, and states its main properties.

The key fact motivating the definition is that the Gaussian kernel satisfies the
Fourier heat equation on the infinite plane R2. This suggests that, when data are
observed in a bounded window W , we should replace the Gaussian kernel by a
solution of the heat equation in W [18, 12].

3.1 The heat kernel

Unless otherwise stated, the domain W ⊂ R2 is assumed to be a regular com-
pact set, that is, W is bounded and is the closure of its interior. For simplicity,
we also assume W has piecewise-differentiable boundary ∂W , although more ir-
regular boundaries can be permitted.

The heat kernel can be defined as the transition probability density of a Brow-
nian motion on W with reflecting boundary [39, 67]. That is, for each y ∈ W ,
the function κt(· | y) is the probability density of the location Bt at time t of
a standard Brownian motion in W , with reflecting boundary at ∂W , started at
position B0 = y. Here it is useful to give an equivalent definition in the language
of differential equations.

Definition 1 (Heat Conduction Problem) Suppose g is a real-valued func-
tion on W . The heat conduction problem on W with initial condition g is the
problem of finding a solution ft(x), t ≥ 0, x ∈W to

1. the classical Fourier time-dependent heat equation

(4)
∂

∂t
ft(x) =

1

2
∇2 ft(x), t > 0,
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at every location x in the interior of W , where ∇2 = ∂2/∂u2 + ∂2/∂v2 is
the Laplacian operator with respect to coordinates x = (u, v);

2. the Neumann boundary condition

(5) (∇ ft(x)) · ν(x) = 0, x ∈ ∂W, t > 0

at each boundary location x ∈ ∂W , where ∇ = (∂/∂u, ∂/∂v) is the gradient
operator and ν(x) is the normal vector to the boundary of W at x; and

3. the initial condition f0(x) = g(x) for all x ∈W .

Here it is required that ft(x) be differentiable with respect to t and twice-differentiable
with respect to x, for t > 0.

The heat kernel can now be defined as the Green’s function for the heat con-
duction problem. That is,

Theorem 1 The solution ft(x) of the heat conduction problem on W with any
initial condition g can be expressed as

(6) ft(x) =

∫
W
κt(x | y)g(y) dy

where κt(x | y), t ≥ 0, x, y ∈ W , is a unique function called the heat kernel on
W , which is differentiable with respect to t and twice-differentiable with respect
to x and y for t > 0.

See [13, Chap. 10]. By the principle of superposition we can regard the heat
kernel κt(x | y) as the impulse response, that is, the unique solution of the heat
conduction problem with initial condition f0(x) = δ(x− y), where δ is the Dirac
delta function.

A simple analytic expression for the heat kernel onW is not available in general.
Infinite series expansions are available [13, Chap. 10] and they are computable for
simple shapes such as rectangles, studied in Appendix A. For spatial domains of
general shape, the heat kernel can be evaluated by numerically solving the heat
equation, and we shall follow this approach in Section 4.

3.2 The diffusion estimator

The diffusion estimator of intensity can now be defined, in the case of a fixed
smoothing bandwidth.

Definition 2 Let x = {x1, . . . , xn} be a point pattern in W . For any location
x ∈ W , the (fixed-bandwidth) diffusion estimate of the intensity function λ(x),
with bandwidth σ, is

(7) λ̂t(x) =

n∑
i=1

κt(x | xi),

where t = σ2, and κt is the heat kernel defined in Theorem 1.

The diffusion estimator (7) is the solution at time t of the heat conduction
problem with initial condition f0(x) =

∑n
i=1 δ(x − xi), corresponding to unit

masses at the data points.
It is appropriate to define the bandwidth as σ =

√
t, because the heat kernel κt

is closely connected to the isotropic Gaussian density ϕσ with standard deviation
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σ =
√
t. If W is the infinite plane, then κt(x | y) = ϕσ(x−y). If W is a rectangle,

then κt(x | y) is an infinite sum of terms of the form ϕσ(x − y + z) given in
Appendix A.

In this paper we focus on estimation of the intensity λ(x), but the estimator
(7) divided by n is precisely the diffusion estimator of probability density defined
by Botev et al. [12]. It is also closely related to the random walk estimate of
intensity described by Barry and McIntyre [6], as we elucidate in Section 4.1.

Note especially that it is not necessary to introduce edge corrections for the
diffusion estimate, in contrast to the situation for Gaussian kernel estimates. We
show below that edge correction is “intrinsic” to the diffusion estimate.

If the data points xi have weights wi ∈ R, the weighted version of (7) is
λ̂t(x) =

∑n
i=1wi κt(x | xi), following the usual rationale [3, pp. 173–174].

3.3 Properties of the diffusion estimate

Sample properties of the diffusion estimate (7) can be deduced from analytic
properties of the heat kernel. They would also be expected from the intuition
that the heat kernel is the transition probability density of Brownian motion.

Lemma 1 The heat kernel κt(x | y) in W defined in Theorem 1 satisfies

1. symmetry, κt(x | y) = κt(y | x) for all x, y ∈W ;
2. conservation of mass,

∫
W κt(x | y) dx = 1 for all y ∈W ;

3. the semigroup property

(8) κt+s(y | x) =

∫
W
κs(y | z)κt(z | x) dz,

for any s, t > 0 and x, y ∈W ;
4. reliance on paths: if x, y ∈ W are not connected by a path in W , then

κt(x | y) = 0 for all t;
5. convergence to uniform: if the interior of W is path-connected, then κt(x |

y)→ 1/|W | as t→∞, uniformly in x and y, where |W | is the area of W .

Here a path in W between two points x, y ∈ W is a continuous curve (i.e. a
continuous image of the unit interval), lying entirely in W , whose endpoints are
x and y. A set W is path-connected if every pair of points x, y ∈W can be joined
by a path in W .

Sample properties of the diffusion estimate follow directly:

Lemma 2 The diffusion estimate (7) satisfies:

1. conservation of mass,
∫
W λ̂t(x) dx = n for all t > 0;

2. the reproductive property

(9) λ̂t+s(x) =

∫
W
κs(x | z)λ̂t(z) dz,

for any s, t > 0 and x ∈W ;
3. convergence to uniform: if the interior of W is path-connected, then λ̂t(x)→

n/|W | as t→∞, uniformly in x.
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If the interior ofW is not path-connected, but consists of several path-connected
components or “islands” W1, . . . ,Wm, then the results above apply to each com-
ponent Wj . The diffusion estimator preserves total mass on each component:

(10)

∫
Wj

λ̂t(x) dx = n(x ∩Wj) for all t.

As t → ∞ the diffusion estimator converges to a uniform density on each path-
connected component of W with value λj = n(x ∩Wj)/|Wj | on Wj . In contrast,
the fixed-bandwidth kernel estimates with a continuous kernel, using the uniform
correction or Jones-Diggle correction, converge as σ → ∞ to a uniform density
with constant value over W , namely λ = n(x)/|W |.

Appendix B.1 examines the behaviour of the heat kernel near the boundary of
the window, in a special case.

3.4 Statistical properties of the diffusion estimator

Statistical properties of the diffusion estimator can now be derived using basic
theorems for point processes [24, 25].

Lemma 3 If the true point process intensity is λ(x), then the expectation of the
diffusion estimator (7) is

(11) E[λ̂t(x)] =

∫
W
κt(x | y)λ(y) dy.

This is a simple application of Campbell’s theorem [25, p. 163] to (7). Note that
the right hand side of (11) is the solution of the heat conduction problem with
initial condition f0(x) = λ(x), x ∈W .

Lemma 4 If the true intensity is uniform, λ(x) ≡ λ > 0, then the diffusion
estimator is unbiased, E[λ̂t(x)] ≡ λ for all t.

To prove this, substitute λ(x) ≡ λ in (11), invoke the symmetry property of the
heat kernel, and apply conservation of mass.

The preceding results serve to highlight a unique and powerful practical con-
sequence of the diffusion estimator—that it simultaneously satisfies both conser-
vation of mass and unbiasedness for uniform intensities. In the classical fixed-
bandwidth kernel estimator these desiderata are incompatible and we use a dif-
ferent edge correction to achieve each of them (‘uniform’ correction (2) for the
latter and ‘Jones-Diggle’ correction (3) for the former).

Lemma 5 For a Poisson point process with true intensity λ(x), the pointwise
variance of the diffusion estimator is

(12) vt(x) = var[λ̂t(x)] =

∫
W
κt(x | y)2λ(y) dy.

An unbiased estimator of this variance is

(13) v̂t(x) =
n∑
i=1

κt(x | xi)2.
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Equation (12) follows from the formula for the variance of a sum over a Poisson
process [24, p. 188]. The unbiasedness of (13) follows from Campbell’s theorem.
These results can also be established from first principles.

Edge effects can be ignored when bandwidth is small with respect to the size
of the domain. For any points x, y in the interior of W , as t→ 0, the heat kernel
κt(y | x) is asymptotically equivalent to the Gaussian density with the same
bandwidth. Consequently, the asymptotics of bias and variance as t→ 0 are the
same for the diffusion estimator as they are for the fixed-bandwidth Gaussian
kernel estimator. This argument is familiar from other contexts; cf. [12].

Appendix B.2 analyses the statistical performance of the diffusion estimator
when W is a square.

For any point process (not necessarily Poisson), the following formula gives the
covariance of the diffusion estimator at any spatial lag, and hence the variance.

Lemma 6 Consider a point process on W with intensity function λ(u), u ∈ W
and second moment intensity λ2(u, v), u, v ∈ W , so that the pair correlation
function is g(u, v) = λ2(u, v)/(λ(u)λ(v)). Then

cov[λ̂t(u), λ̂t(v)] =

∫
W
κt(u | x)κt(v | x)λ(x) dx

+

∫
W

∫
W
κt(u | x)κt(v | y) [g(x, y)− 1]λ(x)λ(y) dx dy.(14)

This is a consequence of the second moment Campbell theorem [3, pp. 242,
250–251]. The variance of λ̂t(u) is obtained by setting u = v in (14). If X is a
Poisson process, then g ≡ 1 and the double integral term in (14) vanishes, and
we recover (12). In general, the double integral term could be either positive or
negative. For large values of diffusion bandwidth, the mean square error of λ̂(x)
will be dominated by the squared bias due to smoothing, rather than the variance
due to smaller-scale clustering.

3.5 Methods for bandwidth selection

The bandwidth σ for the diffusion estimator must be chosen to avoid over-
or under-smoothing. Data-driven procedures for bandwidth selection in kernel
estimation include cross-validation and asymptotically efficient methods [63, 17,
70, 45]. These have been extended from univariate to multivariate data [57, 36,
37, 38, 72, 29], but may require further modification for spatial data. Bandwidth
selection for spatially-adaptive smoothers is even more challenging [1, 27, 28].

Asymptotically efficient bandwidth selection is based on a large-sample limit,
in which the point process intensity increases and the bandwidth decreases at a
rate justifying a normal approximation to the distribution of the kernel estimate.
The bandwidth is chosen to minimise the asymptotic mean integrated square
error of the kernel estimator. For the diffusion estimator, the asymptotic mean
and variance are identical to those obtained for the Gaussian kernel estimator,
so the asymptotically optimal bandwidth selection rule is the same for the two
estimators. This justifies using Silverman’s [63, eq. 3.31, p. 48] and Scott’s [60, eq.
6.42, p. 152] rules of thumb for bandwidth selection for the diffusion estimator.
More complicated alternatives include plug-in methods [36, 38].

Cross-validation methods of bandwidth selection minimise a data-based esti-
mate of disagreement between data and estimator [48, Sec. 5.3, pp. 87–95]. For the
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estimation of point process intensity λ(x), the likelihood cross-validation criterion
is [48, eq. (5.12), p. 90]

(15) LCV(σ) =
n∑
i=1

log λ̂[−i]σ (xi)−
∫
W
λ̂σ(x) dx

where λ̂
[−i]
σ (xi) is the “leave-one-out” estimate of intensity at the data point

xi, computed by applying the estimator to the point pattern with xi removed.
Typically the integral in (15) is omitted since it is usually approximately equal
to the total number of data points (and therefore not dependent on bandwidth).
The bandwidth is chosen to maximise LCV(σ).

The likelihood cross-validation criterion (15) can be applied to the diffusion
estimator. A drawback is the cost of calculating the leave-one-out estimates

λ̂
[−i]
σ (xi). For the Gaussian kernel estimator, the leave-one-out estimates satisfy

λ̂
[−i]
σ (xi) = λ̂σ(xi) − kσ(0) and can be computed very quickly from the intensity

estimate λ̂σ(x). No such short-cut seems to exist for the diffusion smoother in gen-
eral. Except for rectangular and circular domains W where there is a computable
expression for the heat kernel, the only available option seems to be brute-force

computation. That is, λ̂
[−i]
σ (xi) must be computed by applying the diffusion al-

gorithm to the point pattern x \ {xi}. The diffusion algorithm will be executed
n+1 times to compute LCV(σ). On the other hand, an advantage of the diffusion
estimator is that the computation of λ̂σ(x) involves the computation of λ̂τ (x) for
a sequence of smaller bandwidths τ ≤ σ. Total computation time is proportional
to nσ2max, where σmax is the largest bandwidth value under consideration.

Alternatives to likelihood cross-validation include least-squares cross-validation
[9, 49] and the Cronie-Van Lieshout moment method [23].

The high computational costs of the diffusion estimator at large bandwidths
(and for large n) could be circumvented by using the Gaussian kernel estimator
for bandwidth selection, then simply using the resulting bandwidth in the diffu-
sion smoother. Alternatively, one could use the faster Gaussian kernel estimator
to first obtain a reasonable value for σ2max, since this is the main control on the
computational cost, and then calibrate the diffusion-based bandwidth selection
procedure thereafter. These shortcuts come with obvious drawbacks; their appro-
priateness in practice will be partially dependent on the window geometry and
the data at hand. They are viable for exploratory purposes, as shown in Section 8.

4. DISCRETE APPROXIMATION AND IMPLEMENTATION

In this section we describe a discrete approximation to the diffusion estima-
tor, which forms the basis of our numerical implementation as described in Ap-
pendix C.1. This generalises the results of Barry and McIntyre [6], and serves
to unify their approach with the theory of Botev et al. [12]. It clearly highlights
the connection between spatial smoothing bandwidth and diffusion “time”. The
details are useful for expository purposes and aid intuitive interpretation. Our
generalisation is applicable to lattices commonly encountered in image process-
ing software and is readily extensible to adaptive smoothing as we investigate in
Section 6. We also measure the discretisation error and show how it can be vastly
reduced using numerical techniques.



DIFFUSION SMOOTHING 11

4.1 Discretisation of the Gaussian kernel estimator

First we establish the principle and the notation by discretising the Gaussian
kernel estimator of intensity on the infinite plane.

Consider a time-homogeneous Markov chain (Yτ ) in discrete time τ = 0, 1, 2, . . .
with discrete (finite or countable) state space C and transition probability matrix

P =
[
pab
]
a,b∈C where pab = Pr{Yτ+1 = b | Yτ = a}. Let P (τ) =

[
p
(τ)
ab

]
a,b∈C be

the matrix of τ -step transition probabilities p
(τ)
ab = Pr{Yτ+t = b | Yt = a}. The

Chapman-Kolmogorov equations state that P (τ+1) = P (τ) P by considering the
(τ + 1)th step (“forward equation”), and that P (τ+1) = P P (τ) by considering
the first step (“backward equation”). Either of these equations can be used to
evaluate P (τ) recursively for τ = 2, 3, . . ..

Let the probability distribution of the state Yτ at time τ be represented by the
vector vτ =

[
Pr{Yτ = a}

]
a∈C . Then we have the forward recursion vτ+1 = vτP

with solution vτ = v0P
τ . Note that successive steps of the chain correspond to

right-multiplication by P .
Now consider a graph whose nodes (vertices) are the points of C, with a ∼ b

denoting that a, b ∈ C are joined by an edge of the graph. The degree of a
node a is the number of neighbours, deg(a) = #{b ∈ C : a ∼ b}. Suppose the
maximum degree v = maxa∈C deg(a) is finite. Let 0 < q < 1/v and consider the
quasi-symmetric random walk on the graph, with transition probabilities

(16) pab = Pr{Yτ+1 = b | Yτ = a} =


q if a ∼ b
1− q deg(a) if a = b

0 otherwise.

Importantly this ensures that the transition probabilities are symmetric, pab =

pba, and p
(k)
ab = p

(k)
ba . The chain is aperiodic because there is a positive probability

of “staying put”, paa > 0 at any vertex a. If C is finite, the random walk is
time-reversible and converges in distribution to the uniform distribution on C.

We caution that many probabilists use the term “random walk on a graph”
exclusively for the chain that, from a given vertex a, always jumps to one of
the neighbouring vertices, with equal probability 1/deg(a) for each neighbour
[35]. This chain has undesirable properties: it may be periodic, and it does not
converge to the uniform distribution on a finite graph; it is not useful here.

Next let C be the infinite square grid consisting of all points (i, j) in two-
dimensional space with integer coordinates i and j. Make C a graph by joining
every pair of horizontal neighbours (i, j) ∼ (i + 1, j) and joining every pair of
vertical neighbours (i, j) ∼ (i, j+1) so that every vertex has degree 4. Consider a
quasi-symmetric random walk on this graph, so that the transition probabilities
between two sites a, b ∈ C are pab = q if a ∼ b, paa = 1− 4q, and pab = 0 if a 6∼ b,
where 0 < q < 1/4 is fixed. The transition matrix is symmetric. The position of
the random walk is the sum of independent and identically distributed random
vector increments ∆Yτ = Yτ − Yτ−1 for τ = 1, 2, . . ., with mean E[∆Y1] = 0
and variance-covariance matrix var[∆Y1] = 2qI2. Hence, E[Yτ ] = τE[∆Y1] and
var[Yτ ] = τ var[∆Y1].

Now let us rescale space and time so that the grid spacing is ∆c and the time
step is ∆t. The left panel of Figure 2 sketches the possible transitions from a
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Fig 2. Transition diagrams for a quasi-symmetric random walk on the infinite square grid. Left:
4-connected grid. Right: 8-connected grid. Arrows show permitted transitions from the currently-
occupied node (�) to other nodes that are reachable in one step (�) with the transition probability
shown.

given state. A single step occurs in time ∆t and has variance-covariance matrix
2q(∆c)2I2. Let ∆c → 0 and ∆t → 0 with ∆t ∼ 2q(∆c)2. In brief, the Central
Limit Theorem implies that the probability distribution of the rescaled particle
location at time t is approximately Gaussian with mean 0 and variance tI2.
The rescaled random walk converges weakly to standard Brownian motion. This
provides the key connection between the approaches of Barry and McIntyre [6]
and Botev et al. [12].

The forward equation for the random walk on the integer lattice, vτ+1 = vτP ,
can be rewritten as a difference equation vτ+1−vτ = vτ (P −IN ). In the rescaled
limit, this yields the classical Fourier time-dependent heat equation: for a grid
location x = (u, v) = (i∆c, j∆c) with i, j ∈ Z, write fτ (u, v) for the probability
of occupying site x at time t = τ∆t. The rescaled difference equation is

fτ+1(u, v)− fτ (u, v) = q fτ (u+ ∆c, v) + q fτ (u−∆c, v)

+ q fτ (u, v + ∆c) + q fτ (u, v −∆c)− 4q fτ (u, v)

= q [fτ (u+ ∆c, v) + fτ (u−∆c, v)− 2fτ (u, v)]

+ q [fτ (u, v + ∆c) + fτ (u, v −∆c)− 2fτ (u, v)] .(17)

On the right-hand side of (17), the first and second brackets contain the discrete
second differences of the function f(u, v) in the horizontal and vertical directions,
respectively. Dividing both sides by ∆t = 2q(∆c)2 yields a discrete approximation
to the heat equation (4). This also determines the correspondence between the
number of iterations τ of the discrete approximation and the bandwidth σ of the
Gaussian kernel, namely τ = σ2/∆t.

The results above apply to the distribution of the location of a single particle
undergoing a random walk. For the diffusion estimator of point process intensity
we may simply consider n particles, at initial positions x1, . . . , xn. Particle j
executes a random walk (Yjt, t ≥ 0) as described above. Then the intensity of
the point process {Y1t, . . . , Ynt} at time t is the discrete approximation of the
Gaussian kernel smoother with bandwidth σ =

√
t.

The derivation above used the “4-connected” rectangular grid. One could
equally use the “8–connected grid” discussed by Barry and McIntyre [6]. This
graph also joins diagonal neighbours, (i, j) ∼ (i+1, j+1) and (i, j) ∼ (i−1, j+1)
for all integers i, j [22, p. 383 ff.]. The rescaled 8-connected graph transitions are
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depicted in the right panel of Figure 2. The random walk increments ∆Yτ are
i.i.d. random vectors with mean 0 and variance-covariance matrix 6qI2. The 4-
connected and 8-connected grids lead to essentially equivalent estimators, which
can be reconciled by matching the covariance structures as explained above.

4.2 Discretisation of the heat kernel

The previous results can be adapted to a given, bounded spatial domain W ⊂
R2 by simply restricting the random walk to remain inside W at all times. The
state space C is replaced by C∩W , and we restrict the graph edges to those which
join vertices inside W . An illustrative example is shown in Figure 3. Vertices near
the boundary of W have few neighbours than the maximum possible degree v.

Fig 3. Illustrative example of regular discretisation of an irregular polygonal domain (bold solid
line) using a perfectly square lattice of nodes (open dots). The neighbour networks defining
possible jumps in a random walk from node to node are given as solid lines (4-connected network
left; 8-connected network right), and the equally-sized square pixels formed by taking each node
as a centroid are visible as a grid of grey dashed lines.

The quasi-symmetric random walk on C ∩ W has transition probabilities
Pr{Yτ+1 = b | Yτ = a} = q if a ∼ b and Pr{Yτ+1 = a | Yτ = a} = 1 − q degW (a),
where degW (a) = #{b ∈ C ∩W : b ∼ a} is the degree of node a in the graph
restricted to W . For nodes a near the boundary of W , the stayput probability
Pr{Yτ+1 = a | Yτ = a} is increased, compared to the walk on the infinite grid.

This construction ensures that the transition matrix P is symmetric, and that
the equilibrium distribution of the chain is the uniform distribution on C ∩W .
In brief, the Kolmogorov forward equation at an interior point gives the discrete
analogue of the heat equation (4), and at a boundary point gives a discrete
analogue of the Neumann boundary conditions (5).

Given an observed point pattern x = {x1, . . . , xn} in W , we effectively assume
that each point follows a random walk. For i = 1, . . . , n let (Yiτ ) be a quasi-
symmetric random walk on C ∩W . Defining the total counting measure Zτ (a) =∑

i 1{Yiτ = a} for these random walks on a ∈ (C ∩W ), we consider the expected
number of individuals at each site a,

sτ (a) = E[Zτ (a)] =
∑
i

Pr{Yiτ = a}, a ∈ C ∩W.

The vector sτ =
[
sτ (a)

]
a∈C∩W satisfies the forward recursion

(18) sτ+1 = sτP .
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The solution of the discretised heat equation is computed by initialising s0 to the
counting measure of the point pattern x, then iteratively applying (18) for the
required number of steps.

For the rescaled Markov chain with mesh size ∆c and time step ∆t, we would
convert the expected counting measure sτ to an intensity λτ = a−1sτ where a =
(∆c)2 is the area of one grid cell (“pixel”). Full details are given in Appendix C.1.

The iterative procedure is numerically stable, because P is a stochastic ma-
trix, so that its eigenvalues all have magnitude less than or equal to 1. Similar
calculations are performed for the 8-connected grid.

4.3 General regular grid

For practical purposes it is important to deal with pixel grids which are rect-
angular but not square, such as camera image rasters with a 3 : 2 aspect ratio,
and with hexagonal pixel grids used in image analysis [61].

This can be achieved with minor modifications to the calculations above. To
determine the appropriate scaling and transition probabilities, one simply needs
to determine the variance of each increment in the random walk. The numerical
stability argument still holds.

Figure 4 sketches the case of a general rectangular lattice with horizontal and
vertical step sizes ∆x and ∆y respectively, using either the 4-connected or 8-
connected graph.
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Fig 4. Transition diagrams for quasi-symmetric random walks on a non-square rectangular
lattice. Left: A 4-connected network. Right: An 8-connected network.

For the 4-connected grid, transitions between horizontal neighbours will be
assigned probability qx, and transitions between vertical neighbours have proba-
bility qy, where 0 < qx, qy < 1 are fixed numbers to be determined. We constrain
2qx + 2qy < 1 so that there is nonzero probability of staying put, paa > 0.

In the infinite rectangular grid, the vector increments ∆Yτ are easily calculated
to have mean 0 and variance-covariance matrix

(19) var∆Y1 =

(
2qx(∆x)2 0

0 2qy(∆y)2

)
in the notation of Section 4.1, where the off-diagonal covariances are zero because
horizontal and vertical jumps are mutually exclusive. For an isotropic covariance
matrix, we should set qx(∆x)2 = qy(∆y)2. The remainder of the derivation is
identical to that in the previous section.

For an 8-connected rectangular grid, we let the horizontal and vertical jumps
be independent. The vector increment ∆Yτ has coordinates (∆Uτ ,∆Vτ ) which are
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independent random variables, ∆Uτ taking values ∆x, 0,−∆x with probabilities
qx, 1 − 2qx, qx respectively, and ∆Vτ taking values ∆y, 0,−∆y with probabili-
ties qy, 1 − 2qy, qy respectively. Here 0 < qx, qy < 1/2 so that there is nonzero
probability of staying put. The transition diagram is shown in the right panel of
Figure 4. The vector increment ∆Yτ has mean 0 and variance-covariance matrix
of the same form (19), in which the off-diagonal entries are zero because of in-
dependence. Thus we should again set qx(∆x)2 = qy(∆y)2 to obtain an isotropic
covariance matrix.

For a regular hexagonal grid, in which each node is connected to 6 neighbours
with distance ∆c, the random walk with equal transition probability q between
any pair of neighbours (where q < 1/6) has E[∆Y1] = 0 and var∆Y1 = 3q(∆c)2I2.

Algorithm 2 of Appendix C.1 gives a detailed specification of the preceding al-
gorithm for computing the fixed-bandwidth diffusion estimator. Software is avail-
able (Section 9).

4.4 Accuracy of discrete approximation

The discrete random walk calculation presented above is an instance of the
Euler scheme for numerical approximation of differential equations [16, Sections
20–21, pp. 55–89]. More accurate approximations are available, but are typically
more complicated to implement and more computationally demanding than the
Euler scheme. We use the Euler scheme because it provides intuitive parallels to
the underlying theory, and clarifies connections to existing work. We also describe
a simple technique for improving accuracy.

The approximation error of the Euler scheme is of the same order of conver-
gence as the grid step size [16, loc. cit.]. In Appendix D we use the Berry-Esséen
Theorem to obtain the more specific result that, for a quasi-symmetric random
walk on the 8-connected grid, the maximum absolute error in the bivariate cu-
mulative distribution function is less than ∆c/σ. A good rule of thumb is that
the approximation is adequate when ∆c < σ/20.

Table 1 shows the maximum absolute error in the discrete approximation to
the heat kernel itself (that is, to the density value rather than the cumulative
probability) in one example. The window is the unit square and the source point
is at the centre of the window. The bandwidth is σ = 0.1 and the maximum
value of the (true) heat kernel is 15.53. The discrete approximation is computed
using our software implementation and the exact value is computed as described
in Appendix A. The error is roughly halved when the grid step ∆c = δ is halved,
which is consistent with the expected order of convergence O(δ1).

Since the approximation error in the Euler scheme has a known convergence
rate, it can be improved using Richardson extrapolation, a classical technique of
numerical analysis ([55, 56], [15, p. 72 ff.]). For the Euler scheme with step size
∆c = δ, let A(δ) be the calculated value of the heat kernel at a given location for a

Table 1
Maximum absolute pointwise error of discrete approximation to heat kernel. Window is the

unit square. Single source point at (0.5, 0.5). Bandwidth σ = 0.1.

Grid size
32 64 128 256 512

4-connected 2.08 1.07 0.53 0.27 0.13
8-connected 2.15 1.07 0.53 0.27 0.13
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Table 2
Maximum absolute pointwise error of discrete approximation to heat kernel using Richardson
extrapolation. Window is the unit square. Single source point at (0.5, 0.5). Bandwidth σ = 0.1.

Finest grid size
32 64 128 256 512

4-connected 1.00 0.57 0.15 0.04 0.01
8-connected 1.31 0.41 0.10 0.03 0.01

given bandwidth. Performing the calculation again for the grid with coarser spac-
ing rδ where r > 1, we combine the two estimates in the Richardson extrapolant
of order k ≥ 1

(20) Rr,k(δ) =
rkA(δ)−A(rδ)

rk − 1
= A(δ) +

A(δ)−A(rδ)

rk − 1
.

When A(δ) = O(δk) as δ → 0, the Richardson extrapolant (20) with the same
exponent k converges at the faster rate O(δk+1) or faster. For the Euler scheme,
A(δ) = O(δ1) and we expect Rr,1(δ) to converge at rate O(δ2).

Table 2 shows the counterpart of Table 1 when the estimates are improved using
Richardson extrapolation. To obtain estimates on the n×n grid, the Euler scheme
was applied to the n × n (“fine”) and n/2 × n/2 (“coarse”) grids. The results
on the coarse grid were bilinearly interpolated to the fine grid. The Richardson
extrapolant (20) with r = 2 and k = 1 was computed to obtain estimates on the
n×n grid. In Table 2 each halving of the grid step reduces the errors by roughly
a factor of 4, which is consistent with the expected O(δ2) error rate.

Tables 1 and 2 also show that the Richardson-extrapolated Euler scheme at
step size δ is often more accurate than the un-extrapolated Euler scheme at the
finer step size δ/2. The former is also faster to compute; since the number of
grid points is quadrupled when the step size is halved, computation of the former
requires a fraction (1 + 1/4)/4 = 31% of the computation time for the latter.

Tables 1 and 2 measure performance by the maximum pointwise discrepancy in
the density estimate. Similar results are found when performance is measured by
the total variation distance, or by the maximum discrepancy between bivariate
cumulative distribution functions, as reported in the supplementary material.

Although other methods for solving the heat equation may be preferred on
theoretical grounds, they can be less satisfactory in practice. Implicit-solution
methods are more difficult to implement for sparse matrices. Increasing the grid
resolution will increase computation time, and may paradoxically increase error,
due to numerical underflow. We recommend the use of Richardson extrapolation
here, because it avoids these problems and is simple to implement. We recommend
using the 4-connected grid, which requires less time than the 8-connected grid,
and achieves similar accuracy.

5. APPLICATION: NEW ZEALAND PĀ SITES

Figure 5 shows the recorded locations of 854 historic Māori sites called pā in
a region of the North Island of New Zealand (the present-day city of Auckland
lies in the bottom-right quadrant of the dashed rectangle). Pā are loosely defined
as sites that are enclosed or possess defensive features such as earthworks. These
observations are part of a larger dataset documented for archaeological research
into Māori land use by the University of Otago [64, 65].
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Fig 5. New Zealand pā sites. Left: simplified polygon representing the North Island of New
Zealand showing the region of interest as a dashed box. Middle: locations of pā sites in the
region of interest. A smaller, dotted box delineates a region for closer inspection, centred on
the water body of Kaipara Harbour. Right: the zoomed-in area around Kaipara Harbour, with
harbour entrance indicated. Data provided by the Department of Anthropology and Archaeology,
University of Otago, with thanks to Baylee Smith and Tim Thomas.

Figure 6 shows estimates of the spatial point process intensity, using both the
fixed-bandwidth Gaussian kernel estimator with Jones-Diggle correction (3) and
the diffusion estimator (7). The estimates were computed for the full region of
interest in the middle panel of Figure 5 using the full dataset, but are shown
only within the zoomed-in region around Kaipara Harbour. In both estimates we
purposely choose the relatively generous bandwidth of σ = 12.6, calculated using
the oversmoothing principle of [68] for the Gaussian kernel estimator.
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Fig 6. Estimates of the inhomogeneous spatial intensity of pā sites around Kaipara Harbour.
Left: fixed-bandwidth Gaussian kernel estimator. Middle: fixed-bandwidth diffusion smoother.
Right: pointwise difference, Gaussian minus diffusion. Intensity values are numbers per square
km.

There is a compelling contrast between the two estimates. The Gaussian kernel
estimate exhibits the tunnelling artefact discussed in the Introduction (regardless
of the choice of edge correction) and has the appearance of a smooth function
clipped to an irregular domain. The diffusion estimate, on the other hand, is
highly responsive to the coastline, and assigns very different masses to the indi-
vidual peninsulas around the harbour. The discrepancy is particularly striking
on the southern side of the entrance to the Kaipara Harbour, where the diffusion
estimate is twice as high as the Gaussian kernel estimate. Additional commentary
and analysis is provided in the supplementary materials.
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6. ADAPTIVE SMOOTHING

In some applications, data are so severely inhomogeneous that a fixed-bandwidth
kernel estimate is unsatisfactory, exhibiting both under- and over-smoothing in
different areas. Adaptive kernel estimation [63, Chap. 5], [70, 41] mitigates this
problem by applying different amounts of smoothing to different areas.

6.1 Sample-point-adaptive Gaussian kernel estimate

In sample-point adaptive kernel smoothing [63, Chap. 5], each data point xi
is assigned its own individual bandwidth σi. The adaptive estimate takes the
general form

(21) λ̂(x) =
n∑
i=1

kσi(x− xi)
e(x, xi, σi)

,

where kσ is typically the Gaussian kernel, and e(x, xi, σi) is an edge-correction
term. Edge corrections are not discussed in the early literature, but by analogy
with the fixed-bandwidth case, one could use the “uniform” correction e(x, xi, σi) =
cW (σi, x) analogous to (2), or the “Jones” correction e(x, xi, σi) = cW (σi, xi)
analogous to (3). See [50, 26].

The typical procedure for assigning adaptive bandwidths is the rule of Abram-
son [1]. Starting with a pilot estimate f̃ of the normalised probability density
f(x) = λ(x)/

∫
W λ(y) dy, we calculate bandwidth factors bi = f̃(xi)

−1/2, com-

pute the geometric mean γ = (
∏
i bi)

1/n, and take bandwidths

(22) σi = σ0 min

{
bi
γ
,B

}
,

where σ0 > 0 is the global bandwidth and B > 1 is a truncation constant [41]. This
reduces the task of selecting the adaptive bandwidths σi to the one-dimensional
problem of choosing the global bandwidth σ0.

6.2 Adaptive smoothing with a non-uniform diffusion

6.2.1 Concept A spatially non-uniform version of diffusion smoothing was pro-
posed by Botev et al. [12]. Brownian motion Bt is replaced by another diffusion
Xt whose properties are spatially varying. Correspondingly, the discrete random
walk (Section 4.1) would be modified so that its transition probabilities depend
on spatial location. The classical Fourier heat equation (4) is replaced by the
more general Fokker-Planck heat equation for a physical material with spatially-
varying thermal properties.

Spatially-varying transition probabilities lead to a non-uniform equilibrium
distribution. Equivalently, in a physical material with non-uniform thermal prop-
erties, the equilibrium distribution of heat is non-uniform.

Write pt for the transition kernel of the diffusion Xt. That is, pt(· | y) is the
probability density ofXt givenX0 = y. Then the non-uniform diffusion estimator
of intensity is λ̂t(x) =

∑n
i=1 pt(x | xi), the analogue of (7) using the non-uniform

kernel pt. Here the elapsed time t is a smoothing parameter, which determines
the overall amount of smoothing, analogous to the squared global bandwidth σ20
in Section 6.1.
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The approach of [12] is to nominate a target density f for which it is de-
sired that the estimator should be unbiased. The properties of the diffusion are
then chosen so that the equilibrium distribution of the diffusion is f . In fact the
diffusion will satisfy detailed balance

(23) f(y)pt(x | y) = f(x)pt(y | x).

Botev et al. [12] developed this technique mainly in one dimension and showed
that it enjoys the same good properties as the original diffusion smoother asso-
ciated with the heat equation.

We use the term “non-uniform smoothing” when the target equilibrium density
f is fixed and chosen by the researcher in advance, and “adaptive smoothing”
when the target density f is a data-based pilot estimate of the intensity. Botev et
al. [12] note that many previous studies of the performance of adaptive smoothers
actually involve non-uniform rather than adaptive smoothing.

6.2.2 Non-uniform diffusion equations Following [12] we consider a diffusion
in the two-dimensional plane, a stochastic processXt indexed by one-dimensional
time t ≥ 0, whose states are spatial locations in R2, with Itô stochastic differential
equation

(24) dXt = b(Xt) dt+ σ(Xt) dBt,

where at any location x ∈ R2, the numerical value σ(x) is the instantaneous
variance or “speed”, and the vector b(x) = (b1(x), b2(x)) is the instantaneous
bias or “drift”.

The discrete random walk which approximates the diffusion (24) is a modifi-
cation of the random walk described in Section 4. If the time step is ∆t and the
current state is x, the next vector increment of the random walk has mean value
b(x)∆t and variance-covariance matrix σ(x)2(∆t)I.

In physical terms, the diffusion (24) describes thermodynamics in a material
with spatially-varying thermal diffusivity σ(x)2, such as an alloy with spatially-
varying composition, and advection gradient b(x), such as a fluid (or a solid which
is melting) which transports heat as it flows.

The classical Fourier heat equation (4) is replaced by the Fokker-Planck heat
equation (Kolmogorov forward equation)

(25)
∂

∂t
pt(x | y) = −∇x·(pt(x | y)b(x)) +

1

2
∇2
x(σ(x)2pt(x | y))

(cf. equation (11) of [12]), and the Kolmogorov backward equation

(26)
∂

∂t
pt(x | y) = ∇y·(pt(x | y)b(x)) +

σ(x)2

2
∇2
y pt(x | y),

(cf. equation (10) of [12]). Here ∇x· is the divergence operator, and ∇2
x the Lapla-

cian operator, with respect to the coordinates of x, and similarly ∇y· and ∇2
y are

the divergence and Laplacian with respect to y. Technical details and references
are given in Appendix E.

There are now two “heat equations” instead of one. Analogously the discrete
random walk satisfies two recurrence equations, corresponding to left and right
multiplication by the transition matrix P , because P is no longer symmetric.
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Definition 3 The non-uniform diffusion estimate of the intensity function λ(x)
based on the diffusion (24) is

(27) λ̂t(x) =

n∑
i=1

pt(x | xi),

where the kernel pt is the solution of (25) and (26), and t > 0 is the global
smoothing parameter.

Given a target density f for which it is desired that (27) should be unbiased,
the goal is to choose the diffusion characteristics σ(x) and b(x) such that the
resulting kernel pt satisfies detailed balance (23).

Identifying valid choices of σ(x) and b(x) is not simple, because pt depends on
σ(x) and b(x) through the differential equations (25) and (26). This problem is
familiar from Markov chain Monte Carlo methods, where the goal is to construct
a Markov chain sampler for a given target density f . Typically there will be
no comprehensive characterisation of all possible valid choices for the sampler;
instead there will be a handful of recipes for valid choices, involving a tradeoff
between computational complexity and statistical efficiency.

Botev et al. [12] described several valid choices for the diffusion terms. In the
remainder of this section, we consider the two simplest choices.

6.2.3 Adaptive smoothing by variable-speed diffusion A simple choice for the
non-stationary diffusion is that which has zero drift, b(x) ≡ 0, and spatially-
varying speed σ(x). The Itô equation of this diffusion is

(28) dXt = σ(Xt) dBt.

The Fokker-Planck-Kolmogorov forward equation (25) reduces to

(29)
∂

∂t
pt(x | y) =

1

2
∇2
x

(
σ(x)2pt(x | y)

)
and the backward equation (26) reduces to

(30)
∂

∂t
pt(x | y) =

σ(x)2

2
∇2
y pt(x | y).

The resulting diffusion estimate (27) is called the variable-rate diffusion estimate.
Define f(x) = 1/σ(x)2; then instead of the symmetry property (1) of Lemma 1,

the kernel satisfies detailed balance (23), so that the equilibrium density of the
diffusion is proportional to f(x) (cf. equation (15) of [12]). In Lemma 2, properties
(1) and (2) remain true, while the convergence property (3) is modified so that
p̂t(x) converges uniformly to c f(x) where c = n/

∫
W f(x) dx. Lemma 3 remains

true. Lemma 4 is modified so that the diffusion estimator is unbiased for any
intensity proportional to f(x). Lemma 5 remains true.

In order to implement the estimator with kernel pt satisfying (29) and (30),
we need to discretise one of these equations. The generator (29) is locally just
a rescaled version of the Laplacian, so the discretisation is very similar to that
sketched in Section 4.

Algorithm 3 in Appendix C.2 describes our implementation of the variable-
bandwidth smoother. It is similar to the implementation of the simpler fixed-
bandwidth estimator described in Algorithm 2 of Appendix C.1, with the main
difference being the dependence of the transition probabilities on spatial location.
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6.2.4 Langevin diffusion The other simple choice is a diffusion with constant
speed and nonzero drift, the Langevin diffusion

(31) dXt = b(Xt) dt+ dBt.

This has been studied in one dimension by Botev et al. [12]. They show that de-
tailed balance (23) is achieved if b(x) = 1

2∇ log f(x). The approximating random
walk would have increments (∆U,∆V ) satisfying E[∆U ] = 1

2∆t(∂/∂u) log f(x),
E[∆V ] = 1

2∆t(∂/∂v) log f(x), var((∆U,∆V )) = ∆t I2. The forward equation is
(∂/∂t)pt(x | y) = 1

2 ∇
2
x(pt(x | y)− f(x)). Botev et al. show that the correspond-

ing estimator λ̂(x) has good statistical properties, and recommend the use of this
estimator.

The Langevin diffusion is also a mainstay of modern Markov chain Monte Carlo
methods, where it often produces very efficient samplers. This deserves further
investigation in spatial applications. Implementation is slightly more complicated,
and for lack of space, we do not consider this further, apart from some comments
in the Discussion.

6.3 Adaptive diffusion smoothing — observation-specific bandwidths

The variable-speed diffusion smoother of Section 6.2.3 is mathematically ele-
gant, and has theoretical advantages, but practical drawbacks remain. In appli-
cations, the spatially-varying rate σ(x) will usually be determined from a pilot
estimate of intensity, f̃(x). The diffusion is constructed so that its equilibrium
density is f̃(x) by setting σ(x) ∝ (f̃(x))−1/2. The overall amount of smoothing
is determined by the elapsed time t. However, larger values of t do not lead to
greater over-smoothing, but to greater conformity with the pilot estimate, since
the diffusion converges to its equilibrium distribution f̃ . This is undesirable when
the pilot estimate is poor.

These weaknesses occur because the variable-rate diffusion smoother is not a
direct counterpart of the sample-point adaptive kernel estimator (21), in which
individual data points xi are assigned different bandwidths σi.

Here we explore a new alternative for spatially adaptive diffusion smoothing,
which may be useful even for one-dimensional kernel estimation. The key idea is to
modify the fixed-bandwidth diffusion smoother so that each data point xi enters
the diffusion process at a different starting time. Consequently, different data
points are subjected to different amounts of smoothing, and the result closely
resembles (21). This estimator is less sensitive to misspecification of the pilot
density than is the variable-rate smoother.

Definition 4 The lagged-arrival adaptive diffusion estimate of intensity λ(x) is

(32) λ̂(x) =

n∑
i=1

κti(x | xi),

where ti = σ2i is the observation-specific smoothing variance for data point xi, and
κt(x | y) is the classical Fourier heat kernel corresponding to standard Brownian
motion, that is, with unit speed and zero drift, given in Theorem 1.

This is the formal analogue of (21). In the estimator (32) all data points un-
dergo diffusion smoothing according to the same diffusion process but for different
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durations of time ti. This is equivalent to assigning to each observation a differ-
ent “starting time” in the overall diffusion process: points associated with larger
bandwidths will be introduced earlier than those associated with less smoothing.
More precisely, let tmax = max ti = maxσ2i . Suppose that, for each data point xi,

a standard Brownian motion B
(i)
t begins at time si = tmax − ti from the initial

location xi. The expected total density of the Brownian motionsB
(1)
t , . . . ,B

(n)
t at

time t is `(t, x) =
∑n

i=1 1{t > si}κt−si(x | xi) so that, at time t = tmax, we have
`(tmax, x) =

∑n
i=1 κti(x | xi), identical to (32). In line with this interpretation we

call (32) the lagged-arrival adaptive estimator.
The observation-specific variances σ2i can be chosen in the same way as for the

Gaussian sample-point-adaptive kernel estimator (Section 6.1), using Abramson’s
rule (22) applied to a pilot estimate f̃ of the normalised probability density.

Our implementation of the lagged-arrival adaptive diffusion estimator is de-
scribed in Algorithm 4 in Appendix C.3. This resembles the implementation of
the fixed-bandwidth estimator described in Algorithm 2, except that data points
are introduced progressively during the iteration sequence. Numerical stability of
the iterative procedure is easily established.
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Fig 7. Comparison of adaptive smoothers in a synthetic example. Left: bandwidth surface is
a linear ramp. Middle: variable-rate smoother. Right: lagged-arrival smoother. Data points are
superimposed on each panel.
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Fig 8. Comparison of adaptive smoothers in a synthetic example. Left: bandwidth surface with
sharp cliff. Middle: variable-rate smoother. Right: lagged-arrival smoother. Data points are su-
perimposed on each panel.

Figures 7 and 8 compare the variable-rate adaptive and lagged-arrival adaptive
smoothers on synthetic examples where the bandwidth is a function of spatial
location. If the bandwidth function is smooth, as in Figure 7, the two methods
give similar results. However if the bandwidth function has a sharp discontinuity,
as in Figure 8, the discontinuity will remain clearly visible in the variable-rate
smoother, but not the lagged-arrival smoother. Conversely, the output of the
lagged-arrival smoother will be more sensitive to small changes in the input data
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coordinates, if these changes give rise to large changes in smoothing bandwidth.
For greater computational efficiency, one could follow the partitioning strategy

of [26] in which the n individual bandwidths σi are grouped into m = O(
√
n)

quantiles and the contribution from each quantile is computed in a single instance
of the heat equation solver. For further efficiency one could use coarser time step
sizes and coarser grid spacings for larger bandwidths.

7. APPLICATION: UNITED KINGDOM PBC CASES

Figure 9 displays the domicile locations of 761 cases of primary biliary cholan-
gitis (PBC, formerly known as primary biliary cirrhosis) recorded between 1987
and 1994 in a region of northeast England comprising six adjacent health dis-
tricts. A primary aim of the original presentation of these data in [53] was to
understand the spatial variation in PBC cases across the study region. The east-
ern border of the study region is the North Sea coastline, beyond which there are
no cases, so that the diffusion estimator is likely to perform better than the edge-
corrected Gaussian kernel estimators. There is a heavy concentration of cases in
the urban area of Newcastle close to the coastline, and a far lower density of cases
elsewhere, so that this dataset is likely to require adaptive smoothing.
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Fig 9. Cases of Primary Biliary Cholangitis/Cirrhosis in a region of northeast England, first
presented and analysed by Prince et al. [53]. Data are available as pbc in the sparr package [29]
with thanks to Peter Diggle.

Adaptive estimates of the spatially-varying intensity of cases are shown in
Figure 10. The three estimates are Gaussian-adaptive (GA) with Jones-Diggle
edge-correction; diffusion-variable-rate (VR); and diffusion-lagged-arrival (LA).
We employ Abramson adaptation [1], using Terrell’s oversmoothing rule-of-thumb
[68]—an asymptotic result providing the maximal amount of smoothing compati-
ble with the estimated scale of the data—to set both global and pilot bandwidths
to 3.2 km (the pilot densities for each estimate are found using the correspond-
ing fixed-bandwidth estimators). Recent work in [28] showed that good practical
performance is obtained if the global and pilot bandwidths are chosen to be equal.

The top row of Figure 10 shows the three estimates of intensity of PBC cases,
using a common, logarithmic colour scale. The bottom row shows the ratios
of each pair of estimates, again on a common, logarithmic scale. We note an
overall similarity between the lagged-arrival diffusion and the Gaussian estimates,



24 A. BADDELEY ET AL.

attributable to their similarity in structure. The three estimates differ most at the
region boundary, with the lagged-arrival estimate exhibiting a generally higher
intensity close to the edges. This is a natural consequence of the behaviour of
the diffusion, which spreads mass along the boundary rather than losing mass.
Given that human settlements tend to spread along coastlines, this may be more
realistic than the GA estimate.

The variable-rate estimate is markedly different from the other estimates, due
to its tendency to reproduce the appearance of the pilot density. This highlights
a critical practical consideration: The lagged-arrival adaptive estimator, based
only on the values of the pilot estimate at the observation locations, is less prone
than the variable-rate estimator to adverse effects arising from misspecification
of the pilot density. We amplify this finding in the supplementary materials.
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Fig 10. Adaptive intensity estimates of the PBC case data (top row) and pairwise difference
surfaces (bottom row); logarithmic colour scales; common colour scales in each row.

8. SIMULATION EXPERIMENTS ON BANDWIDTH SELECTION

We conducted simulation experiments to measure the performance of likelihood
cross-validation (15) for bandwidth selection. The spatial domain W was taken
to be the Kaipara Harbour region in the right panel of Figure 5, because this
produced such striking differences between the Gaussian and diffusion kernel
estimates of the pā data.

The top row of Figure 11 shows five synthetic intensity functions on W , each
scaled to integrate to exactly 500. Scenario S1 is a mixture of Gaussian densities
with a small uniform constant. Scenario S2 is a function taking large values
near the region boundary, and defined as a quadratic function of distance to
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the boundary. Scenario S3 is a rescaled version of the Gaussian kernel density
estimate (with Jones-Diggle edge-correction) of the original pā observations in
this window. Scenario S4 is a rescaled version of the diffusion kernel density
estimate of the same data, with bandwidth equivalent to that used in S3. The
final scenario S5 is a single realisation of a stationary and isotropic log-Gaussian
Random Field with exponential correlation. This realisation is held fixed for the
entire experiment — that is, a new intensity is not generated at each iteration
of the simulations, only a new dataset is sampled. Full details of these functions
are given in the online supplementary material.
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Fig 11. Synthetic scenarios S1 to S5 for the simulation study; S5 is shown on a log-colour scale
for visibility. Top row: Intensity functions. Bottom row: Correspondingly generated example
datasets.

We run the simulation study for 1000 iterations for each scenario. The LCV
bandwidth selector is deployed to select two bandwidths: one using the Gaussian
kernel smoother (with Jones-Diggle correction), and the other using the diffusion
smoother. Using these two bandwidths we compute three estimates of the target
density: the Gaussian estimate using the bandwidth selected by LCV applied to
Gaussian estimates (G); a diffusion estimate using the bandwidth selected by LCV
applied to diffusion estimates (D); and a diffusion estimate using the bandwidth
selected by LCV applied to Gaussian estimates (Dg). Integrated squared error
(ISE) with respect to the true scenario is computed.

One reason for considering the hybrid scheme Dg is pragmatic: if the band-
widths selected by likelihood cross-validation are similar whether we use the Gaus-
sian kernel or the (far more computationally expensive) diffusion kernel, then we
might recommend using the Gaussian kernel for bandwidth-selection purposes.
This would be justifiable at least for small bandwidths, for which the diffusion
kernel is approximately Gaussian, but it remains to be seen whether this works
for larger bandwidths.

Figure 12 shows the distributions of optimal bandwidths for both versions of
the selector for each scenario, as well as the ISEs for the three density estimates.
Examining the top row of selected bandwidths, we see those selected based on the
leave-one-out diffusion estimates are quite comparable to their Gaussian counter-
parts. That said, in S2, the ‘edge-heavy’ scenario, the diffusion-based selections
appear slightly larger on average, suggesting edge effects can indeed play a role
in optimising the bandwidth; it would seem the diffusion-based LCV procedure
does not “shy away” from selecting larger bandwidths if necessary, due to the
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Fig 12. Results of the simulation study. Top row: Distributions of the selected bandwidths under
the LCV criterion for both Gaussian and diffusion estimators. Bottom row: ISEs relative to the
true density, for the Gaussian estimate with corresponding LCV bandwidth (G); the diffusion
estimate with diffusion bandwidth (D); and diffusion estimate with Gaussian bandwidth (Dg).

unique style of reflective edge correction inherent in the heat kernel.
Turning to the ISEs, we see the diffusion estimates (both D and Dg) signifi-

cantly outperform the Gaussian estimate (G) where we might expect it to (i.e.
S2 and S4). We also see the diffusion estimates outperform the Gaussian kernel
estimator in S3 and S5, albeit to a lesser degree, with results more compara-
ble in the results for S1. Comfortingly, the performances of Dg still result in
good ISE performance relative to the other estimates, which indicates using a
Gaussian-selected bandwidth in a diffusion estimate is an acceptable strategy
when computational expense might prohibit a diffusion-selected bandwidth.

Overall, the simulations point to the diffusion estimator performing well against
the Gaussian estimator. This may be particularly evident in situations where the
study region is highly irregular.

9. DISCUSSION

Arguably the most attractive feature of diffusion smoothing is that it is intrin-
sically adapted to the study domain. It can be regarded as a more rigorous version
of existing ad hoc approaches, including reflected-kernel corrections for edge ef-
fects for kernel density estimates on the positive half-line ([11, 42, 59, 32, 40],
[63, p. 26]) and inverse-path-weighted-distance methods [66]. Diffusion smooth-
ing does not require edge correction, and the resulting estimates are usually
plausible in the application context. The diffusion estimate has desirable sample
properties such as conservation of mass, and desirable statistical properties such
as unbiasedness for the uniform density.

By design, the diffusion estimate always satisfies the Neumann boundary con-
dition (5) that, along the boundary of the study region, the estimate has zero
slope in the direction normal to the boundary. This may be unrealistic in some
applications, and may lead to statistical under-performance when the true density
or intensity does not satisfy the same condition. Unlike Gaussian kernel estimates,
diffusion estimates are also highly sensitive to errors in the connectivity of the
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study domain. This is especially relevant when a study region is made up of highly
irregular polygons, which may include islands, holes and thin peninsulas.

In the density-estimation literature, it is common to assume that the point pro-
cess is Poisson (or at least that, conditional on the number of points, the locations
are i.i.d.). This is not necessary for any of the results stated here. We obtained
explicit formulas for the mean and variance of the diffusion estimator for a general
point process. It is well-known that it can be difficult or impossible to distinguish
inferentially between clustering and inhomogeneity from a single realisation of a
point process [7]. However, this paper concerns moment estimation rather than
inference. Unbiased estimation in the presence of correlation is commonplace in
many fields. In spatial statistics, it is common to estimate the K-function or pair
correlation function in the presence of inhomogeneous first-order intensity [2, 34].
This is theoretically justified in the case of a Cox process [3, Chap. 12]. Finally,
statistical inference for general point processes is fully supported when replicated
point pattern data are available [8, 33].

We investigated two kinds of adaptive diffusion smoothing: the “variable-rate”
diffusion proposed by Botev et al. [12], and our new “lagged-arrival” approach.
Variable-rate diffusion estimates tend to reproduce the appearance of the pilot
estimate, and they converge to the pilot as the global bandwidth increases. In
practice, the pilot density is often computed using a fixed-bandwidth estimate;
in such a case, while it is tempting to think of the variable-rate diffusion estimate
as ‘adaptive’, its final features borrow strongly from a fixed-bandwidth estimate.
An analogy is to think of the pilot density estimate for variable-rate diffusions as
a strong, informative Bayesian prior.

Lagged-arrival diffusion, based only on the values of the pilot estimate at the
observation locations, appears to be more robust against potential errors in the
pilot, whereas all weaknesses of the pilot are inherited by a variable-rate diffusion.
On the other hand, the lagged arrival estimator is sensitive to errors in point
locations if these would cause substantial changes in individual bandwidths.

Computation time for a diffusion estimate is much slower than for the Gaussian
kernel estimator, because the latter can be computed rapidly using the Fast
Fourier Transform [62]. In this paper we used the Euler scheme, because it is
convenient for exposition, easy to implement, and corresponds in special cases to
the algorithm of Barry and McIntyre [6]. The Euler scheme is known to perform
poorly on the class of “stiff” partial differential equations, which includes the heat
equation. Performance is greatly improved by using Richardson extrapolation.
Alternatives to the Euler scheme should also be explored; they include Galerkin
methods [14] and the method of lines [58]. Diffusion methods are well-established
in computer image analysis and in medical imaging; existing algorithms in those
fields could be helpful, especially for bandwidth selection.

Diffusion smoothing in other spaces is worth attention. Extensions to three-
dimensional space and space-time are theoretically straightforward (indeed they
are covered by the theory in Section 6), but their practical application would
involve further computational challenges, and methodological questions about the
treatment of smoothing along the different coordinate axes. Diffusion smoothing
on linear networks has already been developed [51, 52]; diffusion smoothing of
point patterns observed on the surface of a sphere is important.

Density estimators can be extended to estimators of spatially-varying relative
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risk, spatial segregation and smooth regression. Diffusion estimators for these
tasks will be studied in a forthcoming article.

Other potential research topics include bandwidth selection, Choi-Hall data
sharpening [19] and the use of Langevin diffusions (Section 6.2.4).
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