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Abstract 6 

Metaconcrete and meta-truss bar are a new type of material and structure with extraordinary 7 

characteristics that cannot be found in nature. Metamaterials/metastructures possess the ability 8 

to manipulate wave propagation in certain frequency ranges, termed as bandgaps. Application 9 

of metamaterials/metastructures for structural protection is different from the traditional 10 

strategies which resist the external loads by using their strength or energy absorption through 11 

plastic deformation, metamaterials and/or metastructures stop incident stress waves from 12 

propagating through them if their frequency contents fall into the bandgaps, thus safeguarding 13 

the protected structures. Spring-mass models are commonly utilized to predict the wave 14 

propagation characteristics of local resonant metamaterials and metastructures. It is well 15 

understood that the formation of bandgaps is because of the generation of negative effective 16 

mass and negative effective stiffness owing to the out-of-phase local vibrations. However, in 17 

current literature, some studies derived the bandgaps associated with only the negative effective 18 

mass while others derived those from both the negative effective mass and negative effective 19 

stiffness. There has not been a systematic study and explanations on these differences, and there 20 
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is also lack of understanding of the mechanics of bandgap formation, in particular the low-21 

frequency bandgap. This paper presents a theoretical study to reinvestigate the formations of 22 

bandgaps in metaconcrete and meta-truss structure associated with the effective negative mass 23 

and stiffness, provides explanations of the discrepancies in the literature, and identifies the 24 

fundamental mechanism for the bandgap formation in metaconcrete and meta-truss structure. 25 

A comprehensive analysis is also provided for predicting bandgaps of metamaterials and 26 

metastructures, followed by a design procedure for engineering applications. 27 

Keywords: Metaconcrete; Meta-truss bar; Bandgap; Fundamental mechanism; Negative 28 

effective mass; Negative effective stiffness.  29 
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1. Introduction 30 

Blast/impact mitigations are of importance in engineering fields to prevent catastrophic 31 

consequences from terrorist activities and unexpected accidental explosions. For example, 32 

2,996 people were killed in the 9/11 terrorist attack which caused a loss of US$135 billion [1], 33 

while an accidental explosion at Port of Beirut claimed 218 lives, 7,000 injuries and US$15 34 

billion in property damage and left 300,000 people homeless [2]. Due to these escalating man-35 

made hazards, the need for more robust protective systems is of vital importance [3-9]. As a 36 

topic of particular recent interest, metamaterials have attracted rapidly increasing attention due 37 

to their favourable wave mitigation capacity, as well as enormous potential for various practical 38 

applications. The concept of metamaterials was first discussed in 1968 [10] and is an 39 

interdisciplinary research topic that can be applied to numerous fields, e.g. mechanics, 40 

acoustics, optics, and electromagnetics, etc. Driven by the promising performance in the 41 

manipulation of vibrational energy, the metamaterials considered in this study have been 42 

regarded as candidates of enormous potential for many important applications in structural 43 

dynamics or vibration mitigation. Metamaterials are artificially engineered materials composed 44 

of internal structures that exhibit unusual physical properties in a specific range of excitation 45 

frequency [11-14], which could not be found in nature. These particular characteristics are 46 

triggered from the wave interference/out-of-phase motions of the internal components leading 47 

to negative effective properties. Accordingly, incident waves are filtered out, or in another 48 

word, they cannot propagate through metamaterials if their frequency contents fall into a certain 49 

range of frequencies, namely the “bandgap” [15, 16] or “attenuation band” [17, 18]. This 50 

characteristic of metamaterials has been widely adopted in many fields, including mechanical 51 

and manufacturing engineering as well as civil engineering. 52 
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Generally, metamaterials are based on two operating mechanisms to form a bandgap, i.e. Bragg 53 

scattering [19-23] and local resonance [21, 24-28]. The characteristics of the bandgap zones 54 

generated by these two mechanisms are completely different. While engineered materials with 55 

periodic features termed as phononic crystals have been utilized to form Bragg-scattering type 56 

of bandgap due to wave interference (Fig. 1a), the locally resonant bandgap is attributed to the 57 

out-of-phase motions of the resonators (Fig. 1b). The main limitation of phononic crystals stems 58 

from their dependence on the periodic spacing constant, which generates the high-frequency 59 

bandgap and thus is not suitable for low-frequency wave mitigations [15, 29, 30]. Conversely, 60 

the underlying mechanism of locally resonant metamaterial is the out-of-phase motions of the 61 

local resonators, which counteracts the applied excitation on the structures [31-35]. The 62 

bandgaps generated by the metamaterials associated with local resonance depend on the 63 

resonant frequency of the resonators embedded in the unit cell, thus making them suitable for 64 

low-frequency wave attenuation [36-39]. With this advantage, numerous local resonant 65 

metamaterials have been proposed and viewed as promising candidates for emerging 66 

applications, e.g. stress wave mitigation [26, 40], vibration suppression [18, 41-45], and seismic 67 

isolation [46-49]. 68 

 

Fig. 1. Schematic view of metamaterials utilizing (a) Bragg scattering mechanism (e.g. 

Accordion-like meta-chain of circular discs interlayed by minimal tensegrity prisms, which 
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are formed by tapered bars and prestressed strings [50]) and (b) local resonant mechanism 

(e.g. tunable fluid-solid metamaterials [51]). 

Many attempts have been reported using the spring-mass lattice system to examine the dynamic 69 

behaviours of metamaterials with local resonators. With their extraordinary effective 70 

characteristics, local resonant metamaterials/metastructures have demonstrated their 71 

effectiveness in many engineering applications. For example, a theoretical investigation on the 72 

bandgaps of the meta-beam was firstly proposed by Liu et al. [52] to study its effectiveness in 73 

vibration suppression while the negative mass and stiffness in the spring-mass structure were 74 

observed in an experimental study [53]. Tremendous efforts have also been made to enhance 75 

the wave attenuation of engineered concrete-like materials, i.e., metaconcrete which provides a 76 

promising solution for protecting concrete structures. Mitchell et al. [54] analytically and 77 

experimentally studied the effect of the design parameters on the performance of the 78 

metaconcrete. Subsequently, the influences of the geometries, dimensions, and material 79 

properties of resonant engineered aggregates on the prescribed bandgap region were 80 

numerically and experimentally investigated by Xu et al. [55-57]. Most of the previous studies 81 

on metamaterials or metastructures for structural protection are based on the spring-mass model 82 

for analytical derivations as shown in Fig. 2. However, the simplifications in establishing the 83 

spring-mass model in previous studies are not necessarily the same, which led to different 84 

predictions of bandgaps.  85 
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Fig. 2. Schematic view of the discrete spring-mass model adopted for metaconcrete and 

meta-truss bar in the meta-panel functioning as sacrificial cladding to protect the main 

structures from blast loading. 

The generations of bandgaps in metamaterials and metastructures for stopping wave 86 

propagations depend on the negativity of the effective mass and stiffness. Besides, apart from 87 

solely considering the negative effective mass and negative effective stiffness, researchers have 88 

also considered the bandgap formation differently by substituting the negative effective 89 
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stiffness by the negative effective modulus [58-63]. It should be noted that there is a reciprocal 90 

relationship between the negative effective stiffness and the negative effective modulus. In 91 

deriving the bandgaps of metamaterials and metastructures using the simplified spring-mass 92 

model, the parameters of the spring-mass model need to be properly determined, otherwise 93 

inaccurate bandgaps would be derived. There were a few spring-mass models proposed for 94 

metamaterials/metastructures, i.e. for metapanels [25, 26], metamaterials in acoustic field [64, 95 

65], and metaconcrete [57, 66]. Theoretically, for a typical single degree of freedom (SDOF) 96 

spring-mass model, there should be two bandgaps when the negative effective mass and 97 

negative effective stiffness are induced. Some previous studies [24, 52] reported two bandgaps 98 

while the other studies [55, 67] only obtained one bandgap even though they all adopted the 99 

same type of spring-mass model. A detailed review found that this discrepancy is rooted in the 100 

existence of the negative effective stiffness because the former studies obtained both the 101 

negative effective mass and the negative effective stiffness while only the negative effective 102 

mass was obtained in the latter studies. This variation causes confusion and may lead to 103 

incorrect observations and understandings of the generations of bandgaps. Therefore, this study 104 

conducts theoretical derivations to reinvestigate the frequency bandgaps of metamaterials and 105 

metastructures based on the simplified spring-mass model. The results provide a thorough 106 

understanding of the frequency bandgap generations of metamaterials and metastructures, and 107 

also explain the differences in the previous studies. For complete understanding, three methods 108 

are utilized to determine the intrinsic bandgaps, including the effective properties (i.e. effective 109 

mass and effective stiffness), dispersion curves and transmission coefficient. These three 110 

methods are used to confirm the existence of bandgaps on preventing the wave propagations 111 

and crosscheck the outputs. 112 

In addition, considering the fact that the frequency content of some popular engineering 113 

loading, e.g. earthquake excitation and mechanical vibration, is in low-frequency ranges (e.g. 114 
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0.5 – 25 Hz for earthquake loading [68]), tremendous efforts have been devoted to generating 115 

the bandgap associated with these low frequencies [68-70]. However, by using a similar spring-116 

mass model, a few studies [24, 52] reported a bandgap in the low-frequency range starting from 117 

zero but this low-frequency bandgap is not reported in other studies [57, 67]. Vo et al. [24] 118 

found that the shear stiffness of the internal coating layer is responsible for widening the 119 

bandwidth of the low-frequency bandgap as observed in [52]. On the other hand, Jin et al. [67] 120 

analytically investigated the attenuation mechanism of metamaterials using the spring-mass 121 

model but did not observe the bandgap in the low-frequency range. The reason for this 122 

discrepancy is not systematically investigated and discussed. 123 

As can be seen from the above review, two issues need to be clarified, i.e., (1) conditions to 124 

form two bandgaps in metaconcrete/meta-truss bar and (2) existence of low-frequency bandgap 125 

and the influences of the shear stiffness on the bandgaps. This paper presents theoretical 126 

derivations, supported by experimental and numerical results to examine the mechanisms 127 

behind these two issues and provides explanations on why different observations on bandgaps 128 

were reported in the previous studies. The results in this study foster appropriate design for 129 

practical applications of metaconcrete and meta-truss bar. A detailed design procedure of the 130 

meta-truss bar for resisting the targeted impulsive loads, especially in the low-frequency range 131 

is given as an application example. 132 

2. Analytical model 133 

As mentioned previously, the concept of metamaterials or metastructures has been adopted in 134 

numerous engineering applications, e.g. metaconcrete, metabeam, and metapanel. The 135 

simplified spring-mass models are often utilized for analysis. In this study, a spring-mass model 136 

for a metaconcrete rod and a meta-truss bar is chosen as an example, as shown in Fig. 2. It 137 

should be noted that the considered metaconcrete rod is a periodic structure consisting of a 138 
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finite number of metaconcrete unit cells, and in which, normal aggregates of conventional 139 

concrete embedded in the host matrix are replaced by spherical resonators comprising a heavy 140 

metal core coated with a soft outer layer; and the configuration of the meta-truss bar is a 141 

cylindrical hollow tube containing dual resonators suspended by soft coatings in a periodic 142 

arrangement.  143 

2.1 Spring-mass model for metaconcrete rod 144 

2.1.1 Conventional analysis 145 

A discrete spring-mass lattice system containing infinite structural components (called unit 146 

cells) that are connected together end-to-end to represent the metaconcrete rod is illustrated in 147 

Fig. 3. In the model, the external mass (i.e. host matrix) is denoted by m1 while the internal 148 

mass (i.e. resonator) and the stiffness of the axial spring connecting the two adjacent outer 149 

masses are denoted by m2 and ka1, respectively. The internal mass is an oscillator whose 150 

displacement counteracts that of the external mass when the local resonant phenomenon occurs. 151 

The stiffness of the axial spring connecting the oscillator and the external mass is denoted by 152 

ka2. It should be noted that the shear stiffness ks1 and ks2 in Fig. 2 are equal to zero in this 153 

conceptualized model, as in previous studies [55, 56]. The influence of neglecting the shear 154 

stiffness will be discussed later. 155 
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Fig. 3. Schematic view of the simplified spring-mass model for metaconcrete, including 

external mass m1, internal mass m2, external axial stiffness ka1 and internal axial stiffness ka2 

with respect to the continuum media and its equivalent effective model with effective mass 

meff and effective stiffness keff. 

To discuss the kinematic modelling of this system, the free vibration equation of motion of the 156 

external mass for the jth unit cell can be expressed as Eq. (1): 157 

( ) ( ) ( ) ( )( ) ( ) ( )( )1 1
1 1 1 1 1 1 2 1 22 0j j j j j j

a am x k x x x k x x+ −+ − − + − =  (1) 

where the overdot denotes the derivative with respect to time t while x1 and x2 are respectively 158 

the displacements of the external and internal masses in the jth unit cell. 159 

The dynamic equilibrium equation for the internal mass of the unit cell j is 160 

( ) ( ) ( )( )2 2 2 2 1 0j j j
am x k x x+ − =  (2) 

Rewrite Eqs. (1) and (2) in the matrix form, it has 161 

( )

( )

( )

( )

( ) ( )( )1 1
1 2 2 1 1 11 1 1

2 22 2 2

20 0
0 00

j jj j
a a a a

j j
a a

k k k k x xm x x
k km x x

+ −    + − +    
 + − =       −               




 

(3) 
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The harmonic wave solution for the displacement of the jth unit cell is given as Eq. (4) based on 162 

Bloch’s theorem. This theory was developed to solve differential Schrodinger equations in 163 

mathematics and physics. 164 

( ) ( )j i jqL tx Xe ω−=  

( ) ( )1j i jqL t iqLx Xe eω+ −=  

( ) ( )1j i jqL t iqLx Xe eω− − −=  

(4) 

where L is the length of the unit cell, q is the wavenumber, ω is the angular frequency, i is the 165 

imaginary unit, and X is the displacement amplitude. 166 

The lattice system consisting of spring-mass unit cells is considered as an equivalent solid 167 

object and substituting Eq. (4) into Eq. (3) results in an eigenvalue problem of the form 168 

( ) 2 0q ω − = K M u . Solving this eigen function, the vibration frequencies can be obtained 169 

and the effective mass (meff) of the unit cell is derived as [67, 71] 170 

2
2 0

1 2 2
0

eff
mm m ω
ω ω

= +
−

,  

where the natural vibration frequency of the unit cell is 2 2
0

2

ak
m

ω =  

(5) 

As shown, the effective mass depends not only on the physical masses m1 and m2, but also on 171 

the natural vibration frequency of the unit cell ω0 and the excitation frequency ω. When the 172 

excitation frequency is larger than the natural vibration frequency of the unit cell, the effective 173 

mass could become negative. The underlying goal for developing the effective properties of 174 

this model is to establish the relationship between the frequency of the incident excitation and 175 

the locally resonant frequency of the unit cell. As shown in Eq. (5), the effective mass 176 

significantly changes when the incident frequency approaches the natural vibration frequency 177 

of the resonator and can become negative, leading to the favourable wave attenuation 178 

characteristics of the meta-system. When the effective mass (meff) becomes negative, the 179 
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motions of m1 and m2 are out-of-phase, which implies that the mechanical wave of this 180 

frequency range cannot pass through the system. The wave energy is transferred to local 181 

vibrations of unit cells and cancelled by one another due to out-of-phase motions instead of 182 

propagating through the system. As a result, the wave energy with frequency coincident with 183 

the bandgaps is greatly attenuated. 184 

The physical meaning and mechanism of metamaterials associated with the negative effective 185 

mass on attenuating wave propagation have been documented in the previous studies [55, 57]. 186 

However, one major limitation of the conventional approach is that it only considers the 187 

effective mass negativity which exists in a very narrow bandgap region, specifically near the 188 

natural vibration frequency of the internal mass. This approach has been widely adopted by 189 

other studies for metaconcrete [57, 66]. Considering only the negative effective mass cannot 190 

predict the bandgap in the high-frequency range either as observed in the experimental tests 191 

reported by Mitchell et al. [72] as shown in Fig. 4, in which a metaconcrete rod is similar to the 192 

one illustrated in Fig. 3 was tested. In other words, only considering negative effective mass 193 

failed to capture the actual behaviours of metaconcrete since the experimental results exhibited 194 

two bandgaps while the analytical prediction gave only one narrow bandgap. 195 
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Fig. 4. Experimental transmission coefficient of the metaconcrete exhibits a high-frequency 

bandgap not predicted by the conventional approach. Note: the transmission coefficient 

presented is given by the ratio of the amount of energy transmitted to the last unit to the 

total energy of the system. (For interpretation of the references to colour in this figure 

legend, readers are referred to the web version of this article). 

2.1.2 Comprehensive analysis 196 

In response to the limitations of the conventional analysis and to gain an insightful 197 

understanding of the underlying physics of the negative effective properties based on the 198 

analysis of the spring-mass model, a comprehensive derivation and discussion are presented in 199 

this section. This comprehensive derivation includes both the effective mass and the effective 200 

stiffness. The system containing an infinite number of periodically-arranged spring-mass in Fig. 201 

3 is adopted in this section to study its frequency-dependent wave phenomenon. For double 202 
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verification of the determined bandgaps from the spring-mass model, three methods including 203 

the effective properties, wave dispersive analysis and wave transmission are used in this study. 204 

2.1.2.1 Identification of the effective parameters 205 

The effective mass and the effective stiffness are the most important parameters of the spring-206 

mass model. In general, bandgaps are formed when these effective parameters become negative. 207 

As discussed above, the effective mass is given by Eq. (5) while the effective stiffness is 208 

neglected in some previous studies [56, 57]. In this subsection, the formula of the negative 209 

stiffness is derived to investigate its reciprocal relationship with the bandgaps. To define the 210 

effective stiffness from the lumped mass model, the unit cell is assumed as homogeneous and 211 

can be calculated as follows [52]: 212 

2
2 2 0

1 2 1 2 2
0

1 1
4 4

a
eff a a

kk k k m ωω
ω ω

 
= + − + − 

, 2 2
0

2

ak
m

ω =  (6) 

From Eq. (6), it is obvious that depending on the stiffness, mass and natural vibration frequency, 213 

the effective stiffness could also be negative, resulting in favourable bandgaps. The 214 

conventional analysis which only considered the effective mass has overlooked this bandgap in 215 

its prediction. This study provides a comprehensive analysis of bandgap formation considering 216 

both the effective mass and the effective stiffness. The bandgaps obtained from the negative 217 

effective properties are cross-checked with other methods, which will be derived in the 218 

following sections. 219 

2.1.2.2 Wave dispersive analysis 220 

In addition to the direct derivation, wave dispersive analysis can be also adopted to determine 221 

bandgaps. Dispersion curves provide information on whether or not a wave could propagate 222 

through the system at certain frequency ranges. It can be used to determine the frequency stop-223 

bands (bandgaps) wherein the wave vector is imaginary, therefore, the plane waves experience 224 

rapid attenuation. To derive the dispersion curves, the solutions of the harmonic wave of the jth, 225 
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(j+1)th, (j-1)th unit cells in Eq. (4) are adopted, and their derivative functions can be obtained as 226 

follows: 227 

( ) ( ) ( )2 2j i jqL t jx Xe xωω ω−= − = −  

( ) ( ) ( )1 2 2j i jqL t jiqL iqLx Xe e x eωω ω+ −= − = −  

( ) ( ) ( )1 2 2j i jqL t jiqL iqLx Xe e x eωω ω− − − −= − = −  

(7) 

Substituting Eq. (7) into Eq. (3), the dynamic equilibrium equation can be rewritten as: 228 

( )

( )

( )

( )
( ) ( )2

1 2 21 1 1 11
2

2 22 2 2

2 00
00 0

j j jiqL iqL
a a a a

j j
a a

k k kx x k e e xm
k km x x

ω
ω

−     + − + −    
+ − =          −−              

 (8) 

By applying the identity ( )2cosiqL iqLe e qL−+ = , Eq. (8) becomes: 229 

( )

( )

( )

( )
( ) ( )2

1 2 21 11 1 1
2

2 22 2 2

2 00 2 cos
00 0

j j j
a a a a

j j
a a

k k kx xm k qL x
k km x x

ω
ω

     + − −    
+ − =          −−            

 (9) 

Solving Eq. (9), one obtains the relation between the wave number q and the angular frequency 230 

ω, which is called the wave dispersion relation. 231 

( ) ( )( ) ( ) ( )2 2
1 1 1 1 2 12

2 2

2 1 cos 1 0j j ja
a a

a

km x k qL x k x
k m

ω
ω

 
− + − + − = − 

 (10) 

The frequency gap between the wave dispersion curves is called the bandgap, which means 232 

there is no positive real solution for ω with the change of q in the bandgap frequency range. In 233 

these excitation frequency ranges, only exponentially decaying solutions exist. 234 

Eq. (10) can be further rearranged as 235 

2
2 0

1 2 2 2
0

1

1
cos 1

2

a

a

m k
qL

k

ωω
ω ω

 
− − − = − , 2 2

0
2

ak
m

ω =  

(11) 
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2.1.2.3 Wave transmission 236 

Wave transmission analysis can also be used to determine the bandgaps. The wave transmission 237 

coefficient of the spring-mass model, defined as the ratio between the displacements of the 238 

output signal to the input excitation, can be calculated as: 239 

( )
( )

( )1
1 1

jN N
j

j
j j

xT T
x −

= =

= =∏ ∏  (12) 

where x(j) is the displacement of the jth unit cell, and N is the total number of the unit cells. 240 

Rearrange Eq. (11) as 241 

( )( )2 12 1 cosa

eff

k qL
m

ω = −  (13) 

and substituting ( )2cosiqL iqLe e qL−+ = , from Eq. (9) it has 242 

( ) ( ) ( ) ( )( )1 12
1 12 j j j

eff ak m x k x xω + −− = + , 1, 2,..., 1j N= −  

( ) ( ) ( )12
1 1

j j
a eff ak m x k xω −− = , j N=  

(14) 

By substituting the above equation into Eq. (12), the wave transmission coefficient can be 243 

formulated as follows: 244 

( )
( )( )

1
1 2

1 2
j a

j
a eff

kT
k T m ω+

=
− −

, 1, 2,..., 1j N= −  

( ) 1
2

1

N a

a eff

kT
k m ω

=
−

, j N=  

(15) 

where T(j) is the transmission coefficient of the jth unit cell, and N is the total number of the unit 245 

cells. 246 

2.2 Spring-mass model for meta-truss bar (considering the shear stiffness of the 247 

coating layers) 248 

It was mentioned previously that the metaconcrete and meta-truss bar adopted a similar concept 249 

but their characteristics are slightly different. The cores in the metaconcrete are usually 250 
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spherical while the core in the meta-truss bar is often cylindrical. Accordingly, the shear 251 

stiffness between the core and the mortar matrix in metaconcrete with spherical units is 252 

minimum owing to the point contact, but the shear resistance between the matrix and the 253 

cylindrical core in the meta-truss bar is considerable owing to the surface contact, therefore 254 

needs to be considered in the spring-mass model. The analytical analysis in this study shows 255 

this shear stiffness governs the low-frequency bandgap.  256 

To investigate the wave propagation in the meta-truss bar, especially in the low-frequency 257 

range, an equivalent spring-mass system with the shear spring stiffness of a continuum unit cell 258 

is proposed and illustrated in Fig. 5. It should be noted that, to straightforwardly compare the 259 

bandgap mechanism between this model (i.e. the model considering the shear stiffness) and the 260 

model adopted for metaconcrete without considering the shear stiffness, the meta-truss bar in 261 

Fig. 5 is selected as a representative. Besides the axial spring stiffnesses ka1 and ka2 respectively 262 

connecting the external mass with its adjacent unit cell and with the internal mass, this model 263 

considers the two shear spring stiffnesses, i.e. ks1 and ks2.  264 
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Fig. 5. Schematic view of the simplified spring-mass model for meta-truss bar, including 

external mass m1, internal mass m2, external axial stiffness ka1, internal axial stiffness ka2, 

external shear stiffness ks1, and internal shear stiffness ks2 with respect to the continuum 

media and its equivalent effective model with effective mass meff and effective stiffness keff. 

Using the analytical model established in Fig. 4, one can derive the equations of motion of the 265 

unit cell jth as 266 

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )1 1
1 1 1 1 1 1 2 1 2 1 12 0j j j j j j j

a a sm x k x x x k x x k x+ −+ − − + − + =  

( ) ( ) ( )( ) ( )
2 2 2 2 1 2 2 0j j j j

a sm x k x x k x+ − + =  

(16) 

Rewrite Eqs. (16) into a matrix 267 

( )

( )

( )

( )

( ) ( )( )1 1
1 2 1 2 1 1 11 1 1

2 2 22 2 2

20 0
0 00

j jj j
a a s a a

j j
a a s

k k k k k x xm x x
k k km x x

+ −    + + − +    
 + − =       − +               




 

(17) 

Similar approaches are utilized to determine the effective parameters. The effective mass and 268 

the effective stiffness of the system are derived as [24] 269 
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where the natural vibration frequency is defined by 2 2 2
0

2

a sk k
m

ω +
= . 270 

Based on the Bloch-Floquet theory, in which the motion must satisfy the Bloch periodicity 271 

condition, the dispersion relation can be obtained as 272 
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Using the transmission equations of the starting and ending unit cells, the displacement 273 

transmission coefficient of the entire system can be expressed as 274 

( )
( )
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= =
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 275 

3. Verification and discussion of mechanisms for bandgap generation 276 

In this section, the spring-mass models used to predict the bandgaps of metaconcrete and meta-277 

truss bar are verified and discussed. From the above analytical derivations, it is expected that 278 

the metaconcrete has two bandgaps while the meta-truss bar has one additional bandgap in the 279 

low-frequency range due to the contribution of the shear stiffness. For validation, the 280 

experimental data from the previous study [72] and the numerical results are utilized to verify 281 

the analytical models. 282 

3.1 Spring-mass model for predicting bandgaps of metaconcrete 283 

A number of experimental tests reported in the literature, e.g., results shown in Fig. 4 from [72] 284 

illustrate that metaconcrete structure has two bandgaps although many studies overlooked the 285 

second bandgap and the discussions concentrated mainly on the first bandgap associated with 286 

the negative effective mass. This section analytically demonstrates metaconcrete has two 287 

bandgaps and presents methodologies on how to determine them. The periodic metaconcrete 288 

rod (shown in Fig. 6) consists of three components, including the matrix (mortar), soft coating 289 

(nylon) and spherical inclusion (lead). Each part within the model is assigned with the 290 

appropriate properties as given in Table 1, where ν denotes Poisson’s ratio, while ρ and E 291 

respectively represent the density and elastic modulus. Details of the considered structure have 292 

been reported in previous study, which is therefore not repeated herein for brevity. According 293 
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to the previous explanation, the considered metaconcrete rod is conceptualized as a spring-mass 294 

model. 295 

 

Fig. 6. Schematic view of a metaconcrete rod used for modal analysis consisting of 8 unit 

cells in which each unit cells comprises of the matrix (mortar), the soft coating (nylon) and 

the spherical inclusion (lead). 

Table 1. Elastic material properties for all components. 296 

Materials Mortar Lead Nylon 

ρ (kg/m3) 2,500 11,400 1150 

E (GPa) 30 16 1 

ν 0.2 0.44 0.4 
 

To reveal the true relationship between the effective parameters and the bandgaps in the 297 

frequency band structure, the formations of the effective mass and effective stiffness are derived 298 

in Section 2 using the Floquet-Bloch theory. The effective mass and effective stiffness of the 299 

considered model are examined in detail, which will be used as the foundation for the 300 

explanation of the bandgap formation in the system. Fig. 7 shows the effective mass and 301 

effective stiffness of the considered model calculated analytically over the frequencies of 302 

interest. As expected, the effective mass of the model becomes negative at a narrow frequency 303 

band from 17.5 kHz to 26.4 kHz (blue-shaded area), due to the out-of-phase motions of the 304 

resonator and the host matrix. It is worth mentioning that the wave manipulation capacity is 305 
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significantly influenced by the local resonance of the resonator which is defined in Eq. (5) by 306 

0 2 2/ 17.5ak mω = = kHz. 307 

Fig. 6 shows that considering the effective mass for determination of the attenuation band can 308 

only predict a portion of the first bandgap (blue-shaded area, [17.5 – 26.4]), i.e., under-predicts 309 

the first bandgap width. The first bandgap actually consists of the blue-shaded area caused by 310 

negative effective mass and the red-shaded area induced by negative effective stiffness, i.e. 311 

[13.5 – 17.5] kHz. Fig. 7 shows a second bandgap in the red-shaded area, i.e. [> 35.9] kHz, also 312 

due to the negative effective stiffness. As illustrated, when the vibration frequency approaches 313 

the resonant frequency, the effective stiffness dramatically decreases to negative values in a 314 

narrow frequency region, then jumps to high positive values after passing the resonant 315 

frequency. Afterwards, the effective stiffness returns rapidly to zero before becoming negative 316 

again when vibration frequency is large. The mechanism for forming a portion of the 1st 317 

bandgap of the effective stiffness is attributed to its negative values when approaching the local 318 

resonant frequency of the resonator, and its 2nd bandgap is generated when vibration frequency 319 

is large that leads the effective stiffness to a negative value. This result can explain the high-320 

frequency bandgap of the considered model as observed in the tests. 321 

By combining the results in Fig. 7, two observations can be found. Firstly, there are two 322 

bandgaps induced by both the effective mass and effective stiffness, which is different from 323 

previous studies on metaconcrete where only one bandgap was reported. Secondly, the first 324 

bandgap consists of two portions induced by the negative effective mass and negative effective 325 

stiffness. Accordingly, the width of the first bandgap should be wider than the case when only 326 

the effective mass is considered as in previous studies [57, 66]. 327 
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Fig. 7. Effective parameters of the spring-mass model to show the theoretical bandgap 

regions of metaconcrete including the effective mass on the upper side and the effective 

stiffness on the lower side. Shaded areas in blue and red indicate the bandgaps associated 

with the negativity of the effective mass and effective stiffness, respectively (For 

interpretation of the references to colour in this figure legend, readers are referred to the 

web version of this article). 

To further elaborate the mechanism of the considered model and verify the frequency band 328 

structure given by the effective properties, the real and imaginary parts of the dispersion curves 329 

produced by using the periodic spring-mass model are illustrated in Fig. 8. The blue line in the 330 

figure denotes the real part while the corresponding imaginary part is represented by the red 331 

line. As shown, the imaginary part of the wavenumber in the complex frequency band is not 332 

equal to zero [Im(qL) ≠ 0] at the two regions of frequencies (shaded areas), indicating complete 333 

bandgap frequency regions. In other words, the frequency band structure of this model exhibits 334 

two bandgaps [Re(qL)=0] and two passbands [Re(qL) ≠ 0].  335 
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It is clear that the bandgaps in Fig. 8 match well with the frequency bandgaps derived above 336 

based on the negative effective mass and stiffness, i.e., the first bandgap from 13.5 kHz to 26.4 337 

kHz and over 35.9 kHz for the 2nd bandgap. These results indicate that once the effective 338 

properties become negative, the corresponding wavenumber would become complex, resulting 339 

in wave attenuation and eventually preventing wave transmitting through the system. 340 

 

Fig. 8. Complex frequency band structure of the dispersion curves of the spring-mass model 

to show the theoretical bandgap regions of metaconcrete including the real part on the upper 

side and the imaginary part on the lower side. Shaded areas in grey indicate the bandgaps 

(For interpretation of the references to colour in this figure legend, readers are referred to 

the web version of this article). 

In addition to the wave dispersion curves, the wave transmission can also be utilized to study 341 

the mitigation characteristics of wave propagation in metaconcrete. As shown in Fig. 9, the low 342 

transmission of the system is observed in the frequency ranges coincident with the negative 343 

effective properties in Fig. 7. These observations demonstrate that both methods yield the same 344 
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results. To further validate the bandgaps obtained in the above derivations, the tunable wave 345 

transmission coefficients from the experimental results and those obtained above, as well as the 346 

bandgaps derived by considering only the negative effective mass are compared in Fig. 9. As 347 

shown, the experimental results also gave two bandgaps as denoted by grey-shaded areas. The 348 

bandgap associated with the negative effective mass (i.e. conventional analysis) represented by 349 

the red-shaded area only captures a portion of the 1st bandgap of the experimental result (grey-350 

shaded area), demonstrating again that considering the negative effective mass alone is 351 

insufficient to obtain the complete bandgaps of metaconcrete. 352 

Meanwhile, the combined bandgaps associated with both the negative effective mass and 353 

negative effective stiffness match well with the experimental results (Fig. 9), which confirms 354 

the validity of the above analysis and the need for considering the negative effective stiffness 355 

in deriving the bandgaps. In particular, a sharp wave transmission dipping at 17.5 kHz is found 356 

in both the analytical derivation and experimental test, which is caused by the local resonance 357 

of the resonator. The bandgaps due to the local resonator obtained from the analytical derivation 358 

agree well with those observed in the experimental tests. In the experimental tests, the obtained 359 

frequency bandgaps are from 12.5 kHz to 23.5 kHz and >34.5 kHz, respectively for the 1st and 360 

the 2nd bandgap while the corresponding ranges from the analytical derivation are 13.5 kHz to 361 

26.4 kHz and >35.9 kHz. It should be noted that there are some slight variations between the 362 

experimental result and the theoretical results. This is because, as discussed above, in theoretical 363 

derivation the model is assumed to be homogeneous with idealized material properties, and an 364 

infinite number of unit cells connected by springs, i.e., no boundary reflection, while the tested 365 

specimen in the experiment has a finite length with only 8 unit cells and the specimen material 366 

properties are inhomogeneous.  367 
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Besides, as observed from the experiment in Fig. 9, the transmission coefficients in the low-368 

frequency bandgap are smaller than those in the high-frequency bandgap. It is attributed to the 369 

fact that the number of unit cells in the considered structure has a significant effect on the high-370 

frequency bandgap while it has limited influence on the low-frequency bandgap, which is in 371 

close proximity of the local resonant frequency (i.e. 17.5 kHz). Specifically, as proven in the 372 

previous study [72], when increasing the number of unit cells from 8 units to 36 units, the 373 

transmission coefficients in the low-frequency bandgap is unchanged while those of the high-374 

frequency bandgap decrease to a converged value. 375 

The above results indicate that both the effective mass and effective stiffness need to be 376 

considered in deriving the frequency bandgaps. The analytical results agree well with those 377 

observed in the experimental tests. 378 
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Fig. 9. Bandgaps obtained from experimental test, prediction considering both the effective 

mass and effective stiffness, and prediction considering only the effective mass. Shaded 

areas in blue and red indicate the bandgaps associated with the comprehensive analysis and 

conventional analysis, respectively while the bandgaps from the experiment are denoted by 

the grey-shaded area (For interpretation of the references to colour in this figure legend, 

readers are referred to the web version of this article). 

3.2 Spring-mass model for predicting bandgaps of meta-truss bar 379 

Section 3.1 discusses a spring-mass model for metaconcrete which ignores the shear behaviour 380 

between the resonators and the host matrix. The shear stiffness can be ignored because of the 381 
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spherical shape of the unit cells in metaconcrete which results in minimum shear resistance 382 

between the unit cells and the matrix. For a meta-truss bar, however, the unit cell usually has 383 

cylindrical shapes for easy implementation as studied in [25, 26]. When simplifying the meta-384 

truss bar to the spring-mass model, the shear resistance between the resonators and the matrix 385 

cannot be ignored because of the large shear area of the cylindrical surface. Without loss of 386 

generality, the meta-truss bar (Fig. 10) consists of eight periodical unit cells, in which each unit 387 

cell comprises five components including the outer shell, soft coatings, and resonators. For 388 

brevity, details of the meta-truss bar are not presented herein but can refer to a previous study 389 

by Vo et al. [25]. The material properties are summarized in Table 2. 390 

 

Fig. 10. Schematic view of the meta-truss bar used for modal analysis consisting of 8 unit 

cells in which each unit cells comprises of the outer shell (Al), two soft coatings (PU) and 

the two resonators (Al). 

Table 2. Elastic material properties for all components of the meta-truss bar [25]. 391 

Materials Aluminium Polyurethane Lead 

ρ (kg/m3) 2,770 900 11,400 

E (GPa) 70 0.147 16 

ν 0.33 0.42 0.44 
 

From the derivations presented in Eq. (18), the analytical formulae for the effective mass and 392 

effective stiffness with respect to the vibration frequency can be straightforwardly determined. 393 
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Fig. 11 shows the effective mass and effective stiffness of the meta-truss bar, in which the 394 

bandgaps correspond to their negative values. The blue-shaded regions represent the frequency 395 

ranges of the bandgaps related to the negative effective mass while those associated with the 396 

negative effective stiffness are marked by red-shaded areas. It is observed again that the 397 

bandgap at the local resonant frequency does not start at the natural frequency of the local 398 

resonator (i.e. 10.3 kHz), but at a lower frequency because of the contribution of the negative 399 

stiffness. The bandgap close to the local resonant frequency is in the range of 9.3 kHz to 11.5 400 

kHz. Combining both the effective parameters, it is found that there are three bandgaps in this 401 

considered meta-truss bar. Particularly, two bandgaps in the low and high-frequency regions 402 

are independent of each other and are formed because of the negative effective mass and 403 

negative effective stiffness, respectively, while the bandgap in the middle is the combination of 404 

the negativity of the effective mass and effective stiffness. Compared to the frequency band 405 

structure in Fig. 7, the second (middle range) and the third (high-frequency range) bandgaps 406 

are similar as discussed above in metaconcrete, while the metaconcrete considered above does 407 

not have the first (low-frequency range) bandgap associated with the negative effective mass. 408 

This is because of the shear stiffness between the matrix and the unit cell in the meta-truss bar 409 

that generates this low-frequency bandgap from 0 – 5 kHz. This low-frequency bandgap is of 410 

great importance in the field of engineering applications, e.g. vibration control, seismic 411 

isolation, and mechanical harness because loading frequencies are mainly in the low-frequency 412 

range. This finding is of foremost importance since it reveals how the mechanism can be fully 413 

leveraged to achieve a wider range of the bandgap frequencies for which wave propagation is 414 

reduced, especially in a low-frequency range. 415 
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Fig. 11. Effective parameters of the spring-mass model with shear stiffness to show the 

theoretical bandgap regions of metaconcrete including the effective mass on the upper side 

and the effective stiffness on the lower side. Shaded areas in blue and red indicate the 

bandgaps associated with the negativity of the effective mass and effective stiffness, 

respectively (For interpretation of the references to colour in this figure legend, readers are 

referred to the web version of this article). 

To construct the frequency band structure of the meta-truss bar, the theoretical dispersion curves 416 

obtained from Eq. (19) for wave propagation are illustrated in Fig. 12. It should be noted that 417 

the bandgap corresponds to the frequency range when the imaginary part (the attenuation factor) 418 

is not equal to zero. As shown, there are three bandgaps in the frequency band structure of the 419 

meta-truss bar, with one additional bandgap in the low-frequency region compared to the model 420 

without shear stiffness. Specifically, the three bandgaps are 0 – 5 kHz, 9.3 – 11.5 kHz, and 421 

>13.5 kHz. In these frequency ranges, no waves can freely propagate through the meta-truss 422 
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bar. The dividing points of the first and last branches correspond to the locations where the 423 

effective mass or effective stiffness becomes zero, respectively. Whereas the dividing points 424 

for the middle-frequency band are the combination of both the negative effective mass and 425 

negative effective stiffness. It is worth mentioning that the dividing points mean the starting or 426 

cutoff frequencies of the bandgaps. 427 

 

Fig. 12. Complex frequency band structure of the dispersion curves of the spring-mass 

model with shear stiffness to show the theoretical bandgap regions of metaconcrete 

including the real part on the upper side and the imaginary part on the lower side. Shaded 

areas in grey indicate the bandgaps (For interpretation of the references to colour in this 

figure legend, readers are referred to the web version of this article). 

To further validate the above theoretical predictions, a numerical model of the considered meta-428 

truss bar is developed in the commercial FEA software, LS-Dyna. The design of the considered 429 

meta-truss bar consists of 8 unit cells, whose dimensions and compositions are depicted in Fig. 430 
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10. The transmission coefficient is numerically calculated and compared with the theoretical 431 

predictions. The transmission coefficient is the ratio between the output and the input signals 432 

of the considered meta-truss bar. For the numerical simulation, the input signal defined by a 433 

sweep frequency ranging from 0 – 30 kHz is applied at one end of the meta-lattice truss, and 434 

the output response at the other end is captured to calculate the transmission coefficient. All 435 

elements in the numerical model, i.e. solid hexahedron elements (SOLID 164), are meshed with 436 

a minimum meshing size of 1 mm after performing mesh convergence tests. Details of the mesh 437 

size sensitivity analysis with the same structure have been reported in the previous study [25], 438 

which is therefore not repeated here for brevity. For modelling contact and boundary conditions, 439 

the interfaces between the inclusions and coating defined by the keyword 440 

*TIED_SURFACE_TO_SURFACE are assumed as perfect contact while the keyword 441 

*NON_REFLECTING_BOUNDARY is applied at one end of the model to minimize stress 442 

waves reflection. The material properties used in the numerical model are the same as those in 443 

theoretical calculations given in Table 2.  444 

The transmission coefficient profiles from the analytical analysis and numerical simulation are 445 

shown in Fig. 13. The bandgaps from the analytical transmission coefficient are the same as 446 

those obtained from the dispersive analysis and the effective mass and stiffness. As shown, the 447 

bandgap regions corresponding to the wave reduction in the transmission-frequency profiles 448 

from the analytical prediction match very well with those from numerical simulation, further 449 

confirming the validity of the analytical model for predicting the bandgaps of the meta-truss 450 

bar. It should be noted that the locally resonant frequency of the resonator (i.e. 10.3 kHz) 451 

corresponds to a big dip displacement in the transmission profile. From the numerical 452 

simulation, the first and second bandgaps are respectively at 0 kHz to 4.1 kHz and 8.5 kHz to 453 

12.3 kHz while the high-frequency bandgap is greater than 14.2 kHz. It is found that the first 454 

bandgaps between the two approaches agree reasonably well. The discrepancies between the 455 
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numerical and the analytical results can be attributed to the assumption of the infinite number 456 

of unit cores in the theoretical derivations while only 8 unit cores are modelled in the numerical 457 

simulation, and likely numerical errors because of discretization. It should be worth mentioning 458 

that there are slight variations between the model with 8 unit cells and other numbers of unit 459 

cells in terms of the location of the bandgap and the bandwidth. Although the numerical model 460 

with more unit cells yields a bit more accurate prediction with the analytical results compared 461 

with that with 8 unit cells, considering both the accuracy and computational cost, the numerical 462 

model with 8 unit cells is chosen in this study. 463 

 

Fig. 13. Transmission coefficient against frequency of excitation for validation between 

numerical and analytical results. Shaded areas in blue and grey indicate the bandgaps 

associated with the analytical analysis and numerical analysis, respectively (For 

interpretation of the references to colour in this figure legend, readers are referred to the 

web version of this article). 
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The above analyses have proven the considered meta-truss bar can generate three bandgaps and 464 

it can mitigate stress wave propagation when the wave frequency falls within these bandgaps. 465 

To demonstrate the frequency-filtering performance of the meta-truss bar in the low-frequency 466 

range, a harmonic displacement input constituted by three frequencies, i.e. ( )
3

1
( ) sin 2 i

i
u t f tπ

=

=∑467 

, where f1=1 kHz, f2= 3 kHz, and f3= 7 kHz, is applied to the input end of the meta-truss bar to 468 

examine whether the wave could propagate through the meta-truss bar. The displacement at the 469 

other end is recorded as the output signal. It should be noted that f1 and f2 are deliberately 470 

selected to fall within the first bandgap in the low-frequency range of the meta-truss bar, while 471 

f3 does not fall into any bandgap. Fig. 14 shows the Fast Fourier Transform (FFT) spectra of 472 

displacement-time histories at the two ends of the meta-truss bar (i.e. the input and the output, 473 

respectively). As shown, a significant wave reduction in the first bandgap is observed as 474 

expected with only the input signal at 7 kHz passing through the meta-truss bar while the other 475 

two components at 1 kHz and 3 kHz within the first bandgap are effectively mitigated. 476 

Generally, the obtained results indicate that the meta-truss bar has the favourable ability to filter 477 

stress waves with frequency contents falling in its bandgap.  478 
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Fig. 14. FFT spectra of the input and output displacements at center points of two ends of 

the meta-truss bar. Input prescribed displacement is applied to one end of the meta-truss bar 

while the output displacement is captured at the other end. The displacements of the input 

and output respectively denoted by the blue solid line and red dotted line are illustrated in 

(a) time histories and (b) FFT spectra. (For interpretation of the references to colour in this 

figure legend, readers are referred to the web version of this article). 

3.3 Discussions 479 

Recall the two issues that are defined and discussed in the above sections, namely one or two 480 

bandgaps obtained in the metaconcrete in previous analyses by different researchers, and the 481 

existence of an additional low-frequency bandgap in the meta-truss bar. Based on the above 482 

results, these two issues are discussed here. 483 

For the first issue, it is clear now that the analysis that considers only the negative effective 484 

mass in determining the bandgap of the metaconcrete fails to obtain the second high-frequency 485 
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bandgap associated with the negative effective stiffness. Neglecting the influence of the 486 

negative effective stiffness also results in an under-prediction of the width of the first bandgap. 487 

Therefore both the negative effective mass and negative effective stiffness need to be 488 

considered in determining the bandgaps of metaconcrete. The predicted bandgaps with 489 

consideration of both the negative effective mass and stiffness agree well with those obtained 490 

in experimental tests, verifying the correctness of the proposed analytical model. 491 

For the second issue, it is clear that if the shear resistance exists between the unit cells and the 492 

matrix, a low-frequency bandgap will be generated. In such cases, the metastructure could have 493 

three bandgaps for wave propagation mitigation. The formation of the low-frequency bandgap 494 

is of significant importance for practical applications since many loadings on civil, mechanical, 495 

and other structures have low-frequency contents. To facilitate engineering applications, a 496 

design procedure for meta-panel is presented in the appendix. 497 

In brief, the actual realizations of the predicted bandgaps of resonance-based 498 

metamaterials/metastructures are presented in this study. The results demonstrate that the 499 

analytical model can accurately predict the experimental bandgaps of the metaconcrete, 500 

including one widened middle bandgap compared to the conventional analysis and another 501 

bandgap in the high-frequency range. It is found that at the resonance frequency, a merging 502 

bandgap from both the negative effective mass and negative effective stiffness is formed, 503 

corresponding to the out-of-phase motions of the resonators. In addition, the meta-truss bar is 504 

proven to possess the bandgap in the low-frequency range due to the shear stiffness between 505 

the soft coating layers and the truss tube. With such unique capabilities, physically realizable 506 

waveguide at different frequencies can be programmably designed for 507 

metamaterials/metastructures for numerous practical engineering applications. 508 
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4. Conclusions 509 

This study presents an in-depth analysis of the bandgap formation in metaconcrete and meta-510 

truss bar. The effective mass and effective stiffness, the wave dispersion relation, and the 511 

transmission coefficient are analytically derived to quantitatively determine the bandgaps of the 512 

metaconcrete and meta-truss bar. The analytical outputs are validated against experimental 513 

results and numerical predictions. Two bandgaps exist in metaconcrete structure, in which the 514 

first bandgap is formed by the negative effective mass and the negative effective stiffness while 515 

the negative effective stiffness further creates another bandgap in the high-frequency range. 516 

The shear stiffness between the cores and the surrounding host matrix governs an additional 517 

bandgap in the low-frequency range in the meta-truss bar. This bandgap only appears when the 518 

shear behaviour between the cores and the host matrix is considerable. In addition, this study 519 

also provides a detailed design as an example in the appendix for programmable waveguides of 520 

the meta-panel consisting of meta-truss bars, which can be employed for designing the meta-521 

panel for mitigation of dynamic loading effect. 522 
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Appendix 696 

A. Design guide for meta-truss bars with targeted bandgap regions 697 

Based on the above analytical solutions, a design method of meta-truss bars with the desired 698 

target bandgaps is proposed in this section. The proposed design flowchart is illustrated in Fig. 699 

15. It starts with the parameters of the expected loading F(t) on the considered structure. This 700 

loading can be a recorded impact load, blast load or load given in a design code. The next step 701 

is to determine the frequency content of F(t) using the Fast Fourier Transform (FFT). From the 702 

FFT spectrum of the design load, the desired bandgaps, BGi=[fi1-fi2], can be determined to 703 

ideally cover the entire or primary frequency ranges that the loading energy distributed in the 704 

frequency domain for the best loading mitigation effect. It should be noted that the subscript 705 

i=1,2,3 indicates the first, second, and third bandgaps of the meta-truss bar and ideally BGi 706 

should enclose all frequency ranges [fa,…,fb] that loading energy distributes to achieve the 707 

maximal mitigation effect. The design parameters of the spring-mass model, i.e. mi and ki, are 708 

analytically calculated based on the theoretical bandgap starting point fi1 and cutoff point fi2, 709 

which will be discussed later in Appendix B. Next, the initial design features including 710 

geometric parameters, materials are selected as given in Eq. (23). After the initial selection of 711 

the design parameters, the bandgaps of the meta-truss bar are numerically evaluated using a 712 

numerical verification, e.g. using LS-Dyna. If the calculated bandgaps from the initial selection 713 

meet the above requirements, it shall move to the final step. If not, the trial and error processes 714 

are required to obtain the appropriate design parameters ensuring that the numerical bandgaps 715 

cover all or primary frequency contents of the applied loading. Finally, given a set of design 716 

parameters, the meta-structures can be fabricated. 717 
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Fig. 15. Flowchart of the meta-structure design consists 7 steps starting with the parameter 

initialization and ending with the meta-panel fabrication. 

B. Determination of the Starting and Cutoff frequencies of a corresponding bandgap 718 

The bandgaps from the comprehensive analysis of the spring-mass model are presented in Fig. 719 

16. Based on the theoretical results from this study, the bandgaps of the meta-truss bar can be 720 

divided into three regions including [0-f11] for the 1st bandgap, [f21-f22] for the 2nd bandgap, and 721 

[>f31] for the 3rd bandgap. It is worth mentioning that the local resonant frequency of the 722 

resonator can be calculated by, ( )2 2
0

2

/ 2a sk kf
m

π+
= . 723 

 

Fig. 16. Typical bandgap determination based on the dispersion curves is divided into three 

regions including [0-f11] for the 1st bandgap, [f21-f22] for the 2nd bandgap, and [>f31] for the 

3rd bandgap. (For interpretation of the references to colour in this figure legend, readers are 

referred to the web version of this article). 



44 

To define the width of the bandgaps, the dispersion in Eq. (19) can be rewritten as 724 

( ) ( )
( )( ) ( )

4 2
1 2 2 1 2 1 1 2 2 1 2

1 2 2 1 1 2 2 2

2 1 cos

2 1 cos 0
a s a s

a a s s a s a s

m m m qL k m k m m k m k

k k k qL k k k k k

ω ω− − + + + + +  
+ + − + + + =

 (21) 

The expression of the angular frequency can be obtained by solving Eq. (21) as 725 

( ) ( )2 1 2 1 1 2 2 1 22

1 2

2 1 cos
2

a s a sm qL k m k m m k m k
m m

ω
− + + + + ± Ψ −Χ

=  (22) 

where ( ) ( )( )2
2 1 2 1 1 2 2 1 22 1 cos a s a sm qL k m k m m k m kΨ = − + + + + and 726 

( )( ) ( )1 2 1 2 2 1 2 2 2 24 2 1 cosa a s s a s a sm m k k k qL k k k k kΧ = + − + + +    727 

The starting angular frequencies of the bandgaps can be obtained by substituting qL=0, as 728 

( )2 1 1 2 2 1 22
1

1 22
s a s

i

m k m m k m k
m m

ω
+ + + ± Γ
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where ( )( ) ( )2
2 1 1 2 2 1 2 1 2 1 2 2 2 24s a s s a s a sm k m m k m k m m k k k k kΓ = + + + − + +    729 

The cutoff angular frequencies of the bandgaps can be obtained by substituting qL=π, as 730 

( )2 1 2 1 1 2 2 1 22
2

1 2

4
2

a s a s
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m k m k m m k m k
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ω
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where ( )( )2
2 1 2 1 1 2 2 1 24 a s a sm k m k m m k m kΛ = + + + + and 731 

( ) ( )1 2 1 2 2 1 2 2 2 24 4 a a s s a s a sm m k k k k k k k kΜ = + + + +    732 

The starting and cutoff frequencies of the bandgaps are 733 

2
ij

ijf
ω
π

= , i=1,2,3 and j=1,2,3 (25) 
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The design parameters including internal mass, external mass and stiffnesses can be estimated 734 

by Eq. (26), where ρi and Vi are the material density and volume of the unit cell, and its length 735 

and radius are denoted by li and ri, respectively. 736 

2
i i i i i im V r lρ ρ π= = , i=1,2 

i
ai

i

EAk
l

= , i
si

i

GAk
l

=  

(26) 

where E and A are Young’s modulus and the nominal cross-section area of the coating material. 737 

C. Worked-out example 738 

A design example of a meta-panel consisting of four meta-truss bars to resist the impact force 739 

induced by a spherical ball with a mass of 1 kg and an impact velocity of 30 m/s is presented 740 

here to illustrate the above-proposed design procedure. 741 

• Step 1: Determination of the design load F(t). 742 

The impactor has a spherical shape of 20 mm radius and its weight is 1 kg. The initial velocity 743 

of the impactor against the structural panel is 30 m/s. A numerical model is generated in LS-744 

DYNA to predict the impact load on the structure. The predicted impact force-time history F(t) 745 

is illustrated in Fig. 17. 746 
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Fig. 17. Peak impact force time history of the simulated impact loading generated by the 

impactor with the mass of 1kg and the velocity of 30 m/s. 

• Step 2: Determination of the frequency contents of F(t) 747 

The FFT spectrum of the predicted impact force time history F(t) is calculated and shown in 748 

Fig. 18. As shown, the impact loading energy distributes mainly in the frequency regions of [0 749 

– 4.8] kHz, [7.5 – 8.5] kHz, and [9.7 – 12] kHz. 750 
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Fig. 18. FFT spectrum of the impact force time history of the simulated impact loading F(t) 

generated by the impactor with the mass of 1kg and the velocity of 30 m/s. 

• Step 3: Determinations of the bandwidth of the desired bandgaps to cover the frequencies 751 

with the most loading energy. 752 

To cover the dominant frequencies of the applied loading, the bandgaps of the desired meta-753 

truss bar are selected according to the FFT spectrum in Fig. 19 as 754 

BG1 = [0 – f11] kHz, BG2 = [f21– f22] kHz, and BG3 = [>f31] kHz 755 

where f11= 4.8 kHz, f21= 7.5 kHz, f22= 8.5 kHz, and f31= 9.7 kHz. 756 
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Fig. 19. Estimated bandgap widths of the designed meta-truss bar including [0 – 4.8] kHz 

for the 1st bandgap,  [7.5 – 8.5] kHz for the 2nd bandgap, and [>8.5] kHz for the 3rd bandgap. 

(For interpretation of the references to colour in this figure legend, readers are referred to 

the web version of this article). 

• Step 4: Calculations of the design parameters 757 

To achieve the above desired bandgaps, the design parameters of the analytical spring-mass 758 

model are obtained from Eqs. (23), (24), (25), and they are m1=4.71x10-2 (kg), m2=1.55x10-2 759 

(kg), ka1=2.3x108 (N/m), ka2=1.6x108 (N/m), ks1=3.2x108 (N/m), and ks2=2.3x108 (N/m). 760 

• Step 5: Select the materials and dimensions of the meta-truss bar 761 

Polyurethane is selected for the soft coating while the outer tube and the resonators are made 762 

of Aluminium and Lead. The diameters of the internal and external resonators are respectively 763 

denoted by r2 and r1, which are calculated by 764 

2
2

2 9
2

1.55 10 6
11400 12 10Lead

m xr
l x x xρ π π

−

−= = = (mm) 765 
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Thicknesses of the inner and outer coatings, i.e. t1 and t2 can be calculated by 767 

2 9 2 6
1 1

1 8
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0.147 10 10 10 2
2.3 10a a
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k k x

π π −
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2 9 2 6
2 2
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k k x

π π −

= = = = (mm) 769 

• Step 6: Verification of the bandgaps of the designed meta-truss bar. 770 

To check the bandgaps of the designed meta-truss bar, the above procedures are applied to 771 

calculate the bandgap frequencies. Fig. 20 shows the dispersion curves of the meta-truss bar 772 

with the above designed dimensions and material properties. As shown, the bandgaps of the 773 

designed meta-truss bar cover the primary frequency contents of the applied loading, implying 774 

the meta-truss bar is effective to mitigate the loading effects. 775 
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Fig. 20. Dispersion curve of the designed meta-truss bar. Shaded areas in grey indicate the 

bandgaps (For interpretation of the references to colour in this figure legend, readers are 

referred to the web version of this article). 

• Step 7: Performance of the meta-panel consisting of 4 designed meta-truss bars. 776 

The meta-panel consisting of four designed meta-truss bars is shown in Fig. 21. Its performance 777 

in mitigating the impact loading effects is evaluated. The numerical model of the meta-panel is 778 

built in LS-DYNA and its impact response is shown in Fig. 22. 779 

 

Fig. 21. Design of meta-panel including the schematic view of the meta-panel, meta-unit 

cell includes the outer tube, the coatings and the resonators, and meta-truss bar is made of 8 

unit cells. 

As shown, the designed meta-panel functioning as a sacrificial cladding exhibits its superior 780 

dynamic performances compared with the traditional designs. In particular, the peak reaction 781 

force of the designed meta-panel transmitted to the protected structure is reduced significantly 782 
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by more than 47% compared to its conventional counterparts including the hollow-truss panel 783 

and solid-truss panel. It should be noted that the numerical results from the corresponding 784 

panels with solid-truss and hollow-truss bars from [25] was adopted herein for comparison, 785 

which is not presented in detail for brevity. More information about these panels can be found 786 

in [25]. These results demonstrate that the designed meta-panel yields better protections to 787 

structures as compared to the traditional sacrificial panels with solid and hollow truss bars. 788 

 

Fig. 22. Comparison of reaction force of the three panels under impact loading. Comparison 

of reaction force-time history of the back facesheet between the three considered meta-

panels including meta-panel, the hollow-truss panel, and the solid-truss panel. (For 

interpretation of the references to colour in this figure legend, readers are referred to the 

web version of this article). 

D. Determination of axial and shear stiffness of the analytical model 789 

With an attempt to accurately estimate the spring stiffness, the commercial software COMSOL 790 

MULTIPHYSICS was adopted. A constant force F which is depicted in Fig. 23 (a) is applied 791 

to the model to calculate the value of shear spring stiffness ks1 of the internal core while the 792 

0 0.5 1 1.5 2 2.5 3 3.5 4

Time (ms)

-20

-15

-10

-5

0

5

10

15

20

25

R
ea

ct
io

n 
Fo

rc
e 

F
z

 (k
N

)

Solid-truss panel
Hollow-truss panel
Meta-panel



52 

coupled forces F were put in two directions of the model to estimate the values of ka1 as shown 793 

in Fig. 23(b). Similarly, the estimation of ks2 and ka2 is carried out with the same procedure but 794 

different dimensions. As seen in Figs. 23 (a-b), the average displacements monitored at the 795 

surfaces are denoted as ui (i=1,2,3,4). It is noted that all edges of the outer shell are clamped.  796 

The relation between stiffness and displacement of the unit model is expressed as [25] 797 

( )1 1 2 1 1a sk u u k u F+ + =  

1 3sk u F=  

( )2 4 5 2 4a sk u u k u F+ + =  

2 6sk u F=  

(27) 

 

Fig. 23. Outline model utilized for the calculation of (a) k2 and k4, and (b) k1 and k3.  

  798 
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List of Figures 799 

Fig. 1. Schematic view of metamaterials utilizing (a) Bragg scattering mechanism (e.g. 800 

Accordion-like meta-chain of circular discs interlayed by minimal tensegrity prisms, which are 801 

formed by tapered bars and prestressed strings [50]) and (b) local resonant mechanism (e.g. 802 

tunable fluid-solid metamaterials [51]). 803 

Fig. 2. Schematic view of the discrete spring-mass model adopted for metaconcrete and meta-804 

truss bar in the meta-panel functioning as sacrificial cladding to protect the main structures from 805 

blast loading. 806 

Fig. 3. Schematic view of the simplified spring-mass model for metaconcrete, including 807 

external mass m1, internal mass m2, external axial stiffness ka1 and internal axial stiffness ka2 808 

with respect to the continuum media and its equivalent effective model with effective mass meff 809 

and effective stiffness keff. 810 

Fig. 4. Experimental transmission coefficient of the metaconcrete exhibits a high-frequency 811 

bandgap not predicted by the conventional approach. Note: the transmission coefficient 812 

presented is given by the ratio of the amount of energy transmitted to the last unit to the total 813 

energy of the system. (For interpretation of the references to colour in this figure legend, readers 814 

are referred to the web version of this article). 815 

Fig. 5. Schematic view of the simplified spring-mass model for meta-truss bar, including 816 

external mass m1, internal mass m2, external axial stiffness ka1, internal axial stiffness ka2, 817 

external shear stiffness ks1, and internal shear stiffness ks2 with respect to the continuum media 818 

and its equivalent effective model with effective mass meff and effective stiffness keff. 819 

Fig. 6. Schematic view of a metaconcrete rod used for modal analysis consisting of 8 unit cells 820 

in which each unit cells comprises of the matrix (mortar), the soft coating (nylon) and the 821 

spherical inclusion (lead). 822 

Fig. 7. Effective parameters of the spring-mass model to show the theoretical bandgap regions 823 

of metaconcrete including the effective mass on the upper side and the effective stiffness on the 824 

lower side. Shaded areas in blue and red indicate the bandgaps associated with the negativity 825 

of the effective mass and effective stiffness, respectively (For interpretation of the references 826 

to colour in this figure legend, readers are referred to the web version of this article). 827 

Fig. 8. Complex frequency band structure of the dispersion curves of the spring-mass model to 828 

show the theoretical bandgap regions of metaconcrete including the real part on the upper side 829 

and the imaginary part on the lower side. Shaded areas in grey indicate the bandgaps (For 830 
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interpretation of the references to colour in this figure legend, readers are referred to the web 831 

version of this article). 832 

Fig. 9. Bandgaps obtained from experimental test, prediction considering both the effective 833 

mass and effective stiffness, and prediction considering only the effective mass. Shaded areas 834 

in blue and red indicate the bandgaps associated with the comprehensive analysis and 835 

conventional analysis, respectively while the bandgaps from the experiment are denoted by the 836 

grey-shaded area (For interpretation of the references to colour in this figure legend, readers are 837 

referred to the web version of this article). 838 

Fig. 10. Schematic view of the meta-truss bar used for modal analysis consisting of 8 unit cells 839 

in which each unit cells comprises of the outer shell (Al), two soft coatings (PU) and the two 840 

resonators (Al). 841 

Fig. 11. Effective parameters of the spring-mass model with shear stiffness to show the 842 

theoretical bandgap regions of metaconcrete including the effective mass on the upper side and 843 

the effective stiffness on the lower side. Shaded areas in blue and red indicate the bandgaps 844 

associated with the negativity of the effective mass and effective stiffness, respectively (For 845 

interpretation of the references to colour in this figure legend, readers are referred to the web 846 

version of this article). 847 

Fig. 12. Complex frequency band structure of the dispersion curves of the spring-mass model 848 

with shear stiffness to show the theoretical bandgap regions of metaconcrete including the real 849 

part on the upper side and the imaginary part on the lower side. Shaded areas in grey indicate 850 

the bandgaps (For interpretation of the references to colour in this figure legend, readers are 851 

referred to the web version of this article). 852 

Fig. 13. Transmission coefficient against frequency of excitation for validation between 853 

numerical and analytical results. Shaded areas in blue and grey indicate the bandgaps associated 854 

with the analytical analysis and numerical analysis, respectively (For interpretation of the 855 

references to colour in this figure legend, readers are referred to the web version of this article). 856 

Fig. 14. FFT spectra of the input and output displacements at center points of two ends of the 857 

meta-truss bar. Input prescribed displacement is applied to one end of the meta-truss bar while 858 

the output displacement is captured at the other end. The displacements of the input and output 859 

respectively denoted by the blue solid line and red dotted line are illustrated in (a) time histories 860 

and (b) FFT spectra. (For interpretation of the references to colour in this figure legend, readers 861 

are referred to the web version of this article). 862 

Fig. 15. Flowchart of the meta-structure design consists 7 steps starting with the parameter 863 

initialization and ending with the meta-panel fabrication. 864 
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Fig. 16. Typical bandgap determination based on the dispersion curves is divided into three 865 

regions including [0-f11] for the 1st bandgap, [f21-f22] for the 2nd bandgap, and [>f31] for the 3rd 866 

bandgap. (For interpretation of the references to colour in this figure legend, readers are referred 867 

to the web version of this article). 868 

Fig. 17. Peak impact force time history of the simulated impact loading generated by the 869 

impactor with the mass of 1kg and the velocity of 30 m/s. 870 

Fig. 18. FFT spectrum of the impact force time history of the simulated impact loading F(t) 871 

generated by the impactor with the mass of 1kg and the velocity of 30 m/s. 872 

Fig. 19. Estimated bandgap widths of the designed meta-truss bar including [0 – 4.8] kHz for 873 

the 1st bandgap,  [7.5 – 8.5] kHz for the 2nd bandgap, and [>8.5] kHz for the 3rd bandgap. (For 874 

interpretation of the references to colour in this figure legend, readers are referred to the web 875 

version of this article). 876 

Fig. 20. Dispersion curve of the designed meta-truss bar. Shaded areas in grey indicate the 877 

bandgaps (For interpretation of the references to colour in this figure legend, readers are 878 

referred to the web version of this article). 879 

Fig. 21. Design of meta-panel including the schematic view of the meta-panel, meta-unit cell 880 

includes the outer tube, the coatings and the resonators, and meta-truss bar is made of 8 unit 881 

cells. 882 

Fig. 22. Comparison of reaction force of the three panels under impact loading. Comparison of 883 

reaction force-time history of the back facesheet between the three considered meta-panels 884 

including meta-panel, the hollow-truss panel, and the solid-truss panel. (For interpretation of 885 

the references to colour in this figure legend, readers are referred to the web version of this 886 

article). 887 

Fig. 23. Outline model utilized for the calculation of (a) k2 and k4, and (b) k1 and k3.  888 
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List of Tables 889 

Table 1. Elastic material properties for all components. 890 

Table 2. Elastic material properties for all components of the meta-truss bar. 891 
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