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Graphical Abstract: 23 

Abstract: 24 

Biodiesel is created through the transesterification of fats/oils and its usage is increasing worldwide 25 

as global warming concerns increase. Biodiesel fuel properties change depending on the feedstock 26 

used to create it. The aim of this study was to assess the different toxicological properties of 27 

biodiesel exhausts created from different feedstocks using a complex 3D air-liquid interface (ALI) 28 

model that mimics the human airway. Primary human airway epithelial cells were grown at ALI until 29 

full differentiation was achieved. Cells were then exposed to 1/20 diluted exhaust from an engine 30 

running on Diesel (ULSD), pure or 20% blended Canola biodiesel and pure or 20% blended Tallow 31 

biodiesel, or Air for control. Exhaust was analysed for various physio-chemical properties and 24-32 

hours after exposure, ALI cultures were assessed for permeability, protein release and mediator 33 

response.  All measured exhaust components were within industry safety standards. ULSD contained 34 

the highest concentrations of various combustion gases. We found no differences in terms of 35 

particle characteristics for any of the tested exhausts, likely due to the high dilution used. 36 

Exposure to Tallow B100 and B20 induced increased permeability in the ALI culture and the greatest 37 

increase in mediator response in both the apical and basal compartments. In contrast, Canola B100 38 

and B20 did not impact permeability and induced the smallest mediator response. All exhausts but 39 

Canola B20 induced increased protein release, indicating epithelial damage. 40 

Despite the concentrations of all exhausts used in this study meeting industry safety regulations, we 41 

found significant toxic effects. Tallow biodiesel was found to be the most toxic of the tested fuels 42 

and Canola the least, both for blended and pure biodiesel fuels. This suggests that the feedstock 43 

biodiesel is made from is crucial for the resulting health effects of exhaust exposure, even when not 44 

comprising the majority of fuel composition. 45 
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Abbreviations: 48 

B100; 100% biodiesel fuel 49 

B20; Blended mineral diesel fuel with 20% biodiesel 50 

DPF; Diesel particulate filter 51 

FAME; Fatty acid methyl esters 52 

ULSD; Ultra-low sulfur mineral diesel 53 

O2; Oxygen 54 

CO; Carbon Monoxide 55 

CO2; Carbon Dioxide 56 

NOx; Nitrogen oxides 57 

NO; Nitrogen Monoxide 58 

NO2; Nitrogen Dioxide 59 

PAHs; Polycyclic aromatic hydrocarbons 60 

PM; Particulate matter 61 

SO2; Sulfur Dioxide 62 

G-CSF; Granulocyte colony-stimulating factor 63 

GM-CSF; Granulocyte-macrophage colony-stimulating factor 64 
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IFN-γ; Interferon gamma 65 

IL1-RA; Interleukin 1 receptor antagonist 66 

IL-6; Interleukin 6 67 

IL-7; Interleukin 7 68 

IL-8; Interleukin 8 69 

IL-9; Interleukin 9 70 

IP-10; Interferon gamma-induced protein 10 71 

MCP-1: Monocyte chemoattractant protein 1 72 

MIP-1β; Macrophage inflammatory protein 1-beta 73 

PDGF-bb; Platelet derived growth factor BB 74 

RANTES; Regulated on activation, normal T cell expressed and secreted 75 

TNF-α; Tumour necrosis factor-alpha 76 

VEGF; Vascular endothelial growth factor 77 

1.Introduction: 78 

Biodiesel is a renewable diesel fuel created through the transesterification of fatty acids found 79 

within natural fats and oils into fatty acid methyl esters (FAME) (Knothe et al., 2015). It can be used 80 

to replace commercial mineral diesel in many diesel engines including those currently on road 81 

(Fontaras et al., 2009). The type of fat or oil used to create the biodiesel alters the FAME profile and 82 

other properties of the fuel (Knothe and Steidley, 2005; Ramos et al., 2009). This in turn changes the 83 

combustion exhaust composition (Graboski et al., 2003) and the resulting health impacts of exhaust 84 

exposure (Landwehr et al., 2021). Global biodiesel production has increased 50-fold since 2000 (EIA, 85 
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2020a) and as diesel fuel gets more difficult and expensive to extract, it is likely that usage will 86 

increase even further.  This is due to the fact that diesel fuel is still heavily used for long distance 87 

transporting due to its economical fuel usage (Suppes and Storvick, 2016) and other renewable 88 

energy options are not yet capable of replacing diesel engines in this aspect (Amjad et al., 2010; 89 

Camuzeaux et al., 2015).  90 

Currently, biodiesel is often used as a mandated blend with mineral diesel in order to increase 91 

lubricative properties and address global warming concerns (EU, 2016; EU, 2019; Li et al., 2019). A 92 

blend of 20%, labelled B20, is the most common type of blend tested within literature as it is already 93 

in use (EERE, 2020; Hamje et al., 2014; International, 2020). Biodiesel made from Canola (Rapeseed) 94 

and Soy are some of the most commonly used biodiesel types and are thus also the most commonly 95 

tested (Møller et al., 2020; OECD/FAO, 2020), however other types such as Palm, Coconut and 96 

animal fats such as Tallow are also currently in use worldwide (ARENA, 2018; OECD/FAO, 2020). 97 

As diesel exhaust is generally inhaled, effects of exposure occur primarily in the respiratory and 98 

cardiac systems (Behndig et al., 2011; Giles et al., 2018; Mills et al., 2011; Peters et al., 2017), 99 

although effects on other organs such as the brain (Nejad et al., 2015) and bladder (Latifovic et al., 100 

2015) have also been reported. Diesel exhaust contains many toxic/irritating compounds including 101 

oxides of nitrogen (NOx), carbon monoxide (CO), elemental carbon particles and polycyclic aromatic 102 

hydrocarbons (PAH) which are known to impact health (Fontaras et al., 2009; Gioda et al., 2016; 103 

Graver et al., 2016). However, the majority of toxic effects caused by inhalation of diesel exhaust 104 

have been attributed to the ultrafine particle component (<100 nm diameter) (Breitner et al., 2011; 105 

Oberdörster et al., 1995). Particles under 35 nm in size make up more than 90% of particles found 106 

within diesel exhaust and yet only account for approximately 10% of the mass (Kittelson et al., 2002; 107 

Ris, 2007). Ultrafine particles are considered especially toxic as they are capable of bypassing the 108 

epithelial barrier of the lungs and directly entering the blood stream (Brook et al., 2010; Goodson et 109 

al., 2017). Additionally, diesel exhaust can contain toxic chemicals such as aromatic hydrocarbons, 110 



6 
 

aldehyde, ketones and heavy metals (Fontaras et al., 2009; Gioda et al., 2016) which are known to 111 

readily adsorb/adhere to the surface of these more easily inhaled ultrafine particles (Mullins et al., 112 

2016; Munack et al., 2006).  113 

Biodiesel exhaust is typically similar to mineral diesel exhaust, apart from a few important 114 

differences. It generally contains more NOx and a smaller median particle size (Fontaras et al., 2009; 115 

Giakoumis et al., 2012), which has concerning implications for the toxic effects of exhaust exposure. 116 

Previous studies on biodiesel exhaust toxicity have provided conflicting results (Larcombe et al., 117 

2015; Madden, 2016; Møller et al., 2020), with some studies finding biodiesel to be more toxic than 118 

mineral diesel in terms of cytotoxicity and inflammatory effects (Skuland et al., 2017; Yanamala et 119 

al., 2013), others diesel to be more toxic than biodiesel in terms of mutagenicity and vascular effects 120 

(Hemmingsen et al., 2011; Mutlu et al., 2015) and yet others finding blended biodiesel/mineral 121 

diesel fuels to be more toxic than either of the pure fuels in terms of mutagenicity and oxidative 122 

activity (Adenuga et al., 2016; Krahl et al., 2008). A common limitation in previous literature is the 123 

tendency to treat biodiesel as the same regardless of the feedstock used during creation, to the 124 

point that the type of biodiesel used is not always stated in previous studies (Ackland et al., 2007; 125 

Hawley et al., 2014). Since health impacts are known to change depending on feedstock type 126 

(Landwehr et al., 2021), this makes attempts to clarify biodiesel toxicity difficult. Furthermore, 127 

methodologies used to test toxicity vary greatly with engine configurations (Brito et al., 2010; de 128 

Brito et al., 2018; Hemmingsen et al., 2011; Magnusson et al., 2019), exhaust after-treatment 129 

technologies (André et al., 2015b; Gioda et al., 2016; Magnusson et al., 2017), exhaust dilutions (de 130 

Brito et al., 2018; Douki et al., 2018), mineral diesel reference fuels (Brito et al., 2010; Mullins et al., 131 

2016) and toxicological measurements (Adenuga et al., 2016; Gioda et al., 2016; Mutlu et al., 2015) 132 

to the point that meaningful comparisons between different studies are virtually impossible 133 

(Larcombe et al., 2015; Møller et al., 2020). 134 



7 
 

Another limitation of prior literature is the tendency to focus solely on the particle components of 135 

the exhaust, ignoring the health impact of the gaseous components entirely (André et al., 2015a; 136 

Larcombe et al., 2015). Exhaust particles are generally collected on filters and extracted using 137 

solvents to be added directly to the media of cell lines or the Ames bacterial mutagenicity assay to 138 

test cytotoxicity and mutagenicity respectively (Bünger et al., 2000; Cervena et al., 2017). A strength 139 

of this approach is that the exact deposition amount of the particles added during exposure is 140 

known (Cervena et al., 2017), however collecting particles on a filter often removes the ultrafine 141 

particles entirely as particles agglomerate to create an artificial particle size spectra (Morin et al., 142 

2008) and the health impact of the gaseous components is removed. 143 

With the aforementioned limitations in mind, the aim of this study was to assess the exhaust toxicity 144 

of two different biodiesels and their 20% blends in a 3D primary airway epithelial cell model that 145 

accurately mimics human lung formation (Martinovich et al., 2017). We chose Tallow and Canola 146 

biodiesel as both feedstock types are amongst the most popular types  currently in use (ARENA, 147 

2018; OECD/FAO, 2020) and our previous study found them to be at opposite ends of the toxicity 148 

spectrum of six different biodiesel feedstocks, with Tallow being more toxic than ultra-low sulfur 149 

diesel (ULSD) and Canola being less (Landwehr et al., 2021). Furthermore, we hypothesised that 150 

Tallow would be the most toxic feedstock type and Canola the least and mimic our observations 151 

made using monolayer cultures (Landwehr et al., 2021). Collectively, results generated are the first 152 

to expose fully differentiated primary human airway epithelial cells to multiple biodiesel exhausts, 153 

using exhaust generated from an engine paired with modern exhaust after-treatment devices (both 154 

a diesel particulate filter and oxidation catalyst).  155 

2.Material and Methods: 156 

2.1 Fuel Types: Commercial ULSD was obtained from local suppliers (SHELL, WA, AUS, biodiesel free, 157 

<10ppm sulfur). Two different biodiesel types and their respective 20% blends within ULSD were 158 

also used in this study. Canola and Tallow biodiesel were created in our laboratory using high quality, 159 
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food grade commercial oils/fats (Campbells Wholesale Reseller, WA, AUS). All oils were converted to 160 

fatty acid methyl esters (FAME) using an established sodium methoxide transesterification process 161 

(Knothe et al., 2015). 162 

2.2 Participants: This study was approved by the St John of God Hospital Human Ethics Committee 163 

(901).  Airway epithelial cells were derived from trans-laryngeal, non-bronchoscopic brushings of the 164 

tracheal mucosa of children through an endotracheal tube as previously described (Kicic et al., 2006; 165 

Lane et al., 2005). Informed parent/guardian permission was obtained prior to brushings obtained 166 

from six healthy, non-atopic volunteers (six total, aged 2-9 years, 3 males) undergoing elective 167 

surgery for non-respiratory related conditions. Atopy was determined using a radio-allergo-sorbent 168 

test for a panel of common childhood allergens and positive results were excluded. Volunteers 169 

clinically diagnosed with bacterial or viral chest infections or any underlying chronic respiratory 170 

disease such as asthma were also excluded. 171 

2.3 Tissue Culture: Primary airway epithelial cell cultures and differentiated ALI models were 172 

established as previously described (Martinovich et al., 2017) and grown at 37°C in an atmosphere of 173 

5%CO2/95% air under aseptic conditions. All cells tested negative for mycoplasma. Cells were 174 

passaged weekly in Corning T75 tissue culture flasks (CLS430720, Corning ®, MERCK, NSW, AUS) and 175 

used for differentiation before passage 3 in all cases. For differentiation, cells were seeded at 176 

250,000 cells per membrane onto transwell membranes (Corning® Transwell, 12mm with 0.4µm 177 

pore polyester membrane, MERCK, NSW, AUS), allowed to reach confluence over a period of three 178 

days and then air lifted. Cells were then differentiated for a minimum of 28 days in UNC-ALI media 179 

(Table S1, Looi et al., 2018) before use in exposure experiments. Trans epithelial resistance (TER) was 180 

tested weekly and the final reading occurred just before exposures began (Figure S1). Cultures that 181 

deviated too far from the average TER for each subject were rejected. Media was refreshed prior to 182 

all exposures. ALI models were grown in duplicate for every subject and exposure and randomly 183 

assigned to exposure conditions to minimise bias. 184 
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2.4 Exposure Methodology: All cultures were randomised in layout on the culture plate to avoid bias 185 

caused by uneven exhaust dispersion. They were then exposed for one hour to either air as a control 186 

or exhaust generated from a single cylinder, 435cc design Yanmar L100V engine (Yanmar, Italy) 187 

coupled with a dynamometer and fitted with Euro V/VI after-treatment technology consisting of a 188 

diesel particulate filter and oxidation catalyst (Daimler, Germany) (Landwehr et al., 2019). All 189 

exhaust exposures were run at cold start to simulate real world exposures, at a constant load of 40% 190 

and speed of 2000 rpm. Exhaust was diluted 1:20 with air inside a mixing chamber attached to the 191 

exhaust piping and pumped through an isokinetic sampling point at a rate of 10 L/min into a sealed 192 

incubator (Model 1535, Sheldon Manufacturing, OR, USA) maintained at 37ºC containing the ALI 193 

models. Once the models were exposed, exhaust was vacuumed out for physico-chemical analysis of 194 

gas and particle properties. Exposure to air was used as a negative control.  195 

2.5 Gas and Particle Analysis: Exhaust exiting the sealed incubator was analysed every 10 minutes 196 

for concentrations of common combustion gas products including O2, CO, CO2, NOx (NO and NO2) 197 

and SO2 using a combustion gas analyser (TESTO 350, Testo, Lenzkirch, Germany). Similarly, exhaust 198 

was analysed every 10 minutes for particle concentrations between the sizes of 3 nm-340 nm using a 199 

Universal Scanning Mobility Particle Sizer (U-SMPS 1700 Palas, Karlsruhe, Germany). Particles less 200 

than 10nm in size were excluded from further calculations due to high variability of measurements. 201 

Count-median particle size was calculated using the number of particles mean. Particle mass was 202 

calculated from particle spectra, assuming sphericity and using the 40% load diesel exhaust particle 203 

density as previously described (Olfert et al., 2007). Particle number was further separated into two 204 

fractions: nucleation mode particles below 23 nm in size and solid particles above 23 nm (Amanatidis 205 

et al., 2014). Particles for both B100 fuels and ULSD were collected on quartz filters (47mm, SKC, 206 

USA) and sent for PAH analysis using Gas Chromatography Tandem Mass Spectrometry at 207 

Queensland Health Forensic and Scientific Services (Queensland, Australia). 208 
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2.6 Permeability: After being left to rest for 24 hours, permeability of the ALI models was analysed 209 

as previously described (Looi et al., 2016). Briefly, transepithelial electrical resistance was measured 210 

using a Epithelial Volt/Ohm (TEER) Meter (EVOM2 with chopstick electrode set, MERCK, AUS) to 211 

assess model integrity (Figure S1) before cultures underwent a fluorescent dextran permeability 212 

assay. Fluorescein isothiocynate labelled dextran beads (MERCK, NSW, AUS) were dissolved in HEPES 213 

buffered Hank's Balanced Salt Solution (HEPES-HBSS) (4 kDa beads, final concentration 2 mg/mL) and 214 

0.5mL was added to the apical compartment of each ALI insert. 1.5 mL of fresh HEPES-HBSS buffer 215 

without dextran beads was added to the basal compartment and cultures were placed on an orbital 216 

shaker within an incubator at 37°C in an atmosphere of 5%CO2/95% air for 6 hours to allow agitation 217 

to help beads flow from the apical to the basal compartment. Basal compartment samples of 0.75 218 

mL were taken at 0, 0.5, 1, 2, 3, 4, 5 and 6 hours with fresh buffer replacing the sample. Apparent 219 

permeability was then calculated using the equation Papp = (dQ/dt) × (1/AC0), where dQ/dt is the 220 

steady-state flux, A is the surface area of the membrane and C0 is the initial concentration in the 221 

basal compartment.  222 

2.7 Histology: After permeability, inserts were randomly allocated to either fixation or lysis for RNA 223 

extraction. Fixation occurred in 10% formalin for 30 minutes and inserts stored in 100% ethanol until 224 

all samples were collected. Inserts were then embedded in paraffin, and 5-μm thick sections sliced 225 

for hematoxylin and eosin staining as per manufacturers protocol (Richard Allan Scientific, 226 

Thermofisher Scientific Histology Series Stain).  227 

2.8 Protein Concentration: After being left to rest for 24 hours, protein concentration of the insert 228 

lysate and apical and basal supernatant was assessed using a Pierce™ BCA protein assay kit 229 

(Thermofisher Scientific, MA, USA). Insert lysate was collected from half the insert after permeability 230 

analysis, basal supernatant was collected from the basal compartment of each exposed ALI culture 231 

(1.5 mL total) and apical supernatant was collected by performing a 0.5 mL media wash of the apical 232 

compartment.  233 
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2.9 Oxidative Stress PCR: After resting for 24 hours, RNA was extracted from insert lysate for one 234 

insert per ID per exposure, using RNeasy RNA Extraction Kit (Qiagen) as per kit instructions. Reverse 235 

transcription and qRT-PCR was performed as previously described (Ling et al., 2020) using TaqMan 236 

primers (ThermoFisher) and TaqMan Gene Expression Master Mix (ThermoFisher) as per master mix 237 

TaqMan protocol. The experimental primers used were as follows: SOD1 Hs00533490_m1, GPX1 238 

Hs00829989_gH, NOX4 Hs01558199_m1, NOX5 Hs00225846_m1, PRDX3 Hs04942082_m1, CTSB 239 

Hs00947433_m1, HMOX1 Hs01110250_m1. The primers for the housekeeping gene were PPIA 240 

Hs99999904_m1. Expression was analysed using the 2-ΔΔCT method. 241 

2.10 Mediators: Mediator release was assessed 24 hours after exposure for both the apical and 242 

basal compartments using a Bio-Rad 27plx human cytokine kit (Bio-rad, CA, USA) and accompanying 243 

software (Bio-Plex Manager, v6.1.1, Bio-Rad, Tokyo, Japan). The 27 mediators analysed can be 244 

further split into mediators that affect the innate and adaptive immune systems or act as regulators 245 

(Dayer et al., 2017; Duffy et al., 2013; Holdsworth and Gan, 2015; Sokol and Luster, 2015). 246 

Normalisation was performed to adjust supernatant concentrations to 1mL and all mediator 247 

concentrations were normalised to total protein lysate for each exposure group. 248 

2.11 Statistical Analysis: Data are presented as mean ± standard deviation where indicated. All 249 

statistical analyses were performed using R statistical software (v3.4.3) (R Team, 2018) loaded with 250 

the packages “lme4” and “mgcv”. P-values less than 0.05 were considered significant. All statistical 251 

analyses excluding gas concentration data were completed using multivariate general linear 252 

modelling methodologies with the families “Gamma(inverse/log)” and “gaussian(log)” as best fit the 253 

data, applying a backwards elimination approach to remove insignificant predictive variables. For 254 

combustion gas analysis a separate General Additive Model (GAM) file was fitted to each gas 255 

measurement with concentration as the response variable and time as the predictor, thus allowing 256 

for non-parametric fits.  257 

3.Results: 258 
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3.1 Gas Analysis: Mean values and standard deviations of gas components for each fuel are shown 259 

(Table 1), with the exception of CO which shows only the highest reading at 10 minutes due to the 260 

cold start effect on the performance of the catalytic converter. Trends over time were also captured 261 

(Figure S2). All fuels displayed similar trends over time with NOx (NO and NO2), CO2 and SO2 262 

increasing rapidly in the first half of the exposure, O2 decreasing rapidly in the first 20 minutes and 263 

CO peaking in the first 10 minutes before decreasing rapidly to undetectable concentrations. Of the 264 

four fuels tested we found Canola B20 to be the most different to ULSD with significantly increased 265 

O2 and significantly decreased SO2 and NOx in the form of NO and NO2 (Table 1: p<0.05). Canola B20 266 

was also the most different to its B100 counterpart with four significant differences compared to 267 

Tallow B20’s one (Table 1: p<0.05). 268 

3.2 Particle Analysis: Particle spectra between the sizes of 10 nm-340 nm were obtained for each 269 

exhaust (Figure S3). All fuels displayed small peaks in particle size at approximatley 100 nm. In terms 270 

of particle number concentration, no significant differences were found between any of the fuels 271 

(Figure S3). Median particle size and particle mass were also calculated from the particle spectra and 272 

found to be similar (Table S2). Of the 28 PAHs tested in filter collected particulate matter, only 3 273 

were found at concentrations above the limit of detection (Table S3). 274 

3.3 Histology, Permeability and Protein Concentration: The ALI cultures used in this experiment 275 

were fully differentiated, as shown by the multiple layers and ciliated cells (Figure 1, representative 276 

images). No gross morphological differences in the airway epithelium were observed between Air 277 

and exhaust exposed inserts. Exposure to the exhaust of Tallow B100 and Tallow B20 resulted in 278 

significantly increased permeability of the ALI cultures, (1.33±0.67 and 1.52±0.41 fold change 279 

respectively) compared to that of Air exposure (p<0.05) (Figure 2). Tallow B20 exhaust also 280 

significantly increased permeability in comparison to ULSD and Canola B20 (p<0.01).  281 
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Figure 1: Representative morphological images of ALI cultures. Cultures these images were 282 

obtained from have been exposed to a) Air, b) ULSD, c) Canola B100 and d) Tallow B100. No 283 

differences in morphology were found after any of the exposures. Note: Scale bar: 50 µM. 284 

Figure 2: Permeability measurements of ALI cultures after exhaust exposure. Permeability is 285 

measured as apparent permeability (Papp Coefficient) and normalised to fold change compared to 286 

Air for each fuel (*=p value<0.05, **=p value<0.01, n=12 for ULSD, Canola B20 and Tallow B100, 287 

n=11 for Air, Canola B100 and Tallow B20). 288 

Exposure to both Tallow B100 and Canola B100 also resulted in significantly increased protein 289 

concentration in both the basal and apical compartments (p<0.05) (Figure 3). Exposure to Tallow B20 290 

resulted in increased protein concentration only in the apical supernatant and exposure to ULSD 291 

resulted in increased protein concentration only in the basolateral supernatant (p<0.01).  292 

Figure 3: Protein concentrations in apical and basal compartments of the exposed ALI cultures. 293 

Measured protein concentration in a) apical wash and b) basal supernatant (*= p<0.05, **= p<0.01).  294 

3.4 Reactive Oxygen Species (ROS): Transcription of various oxidative stress response genes was 295 

analysed using quantitative polymerase chain reaction and the 2-ΔΔCT method (Figure 4 and 296 

Supplementary Figure S4). Of the seven genes tested, two were found to be significantly different to 297 

Air controls: NOX4 and PRDX3. The expression of NOX4 was significantly decreased after exposure to 298 

Canola and Tallow B100 exhausts, whereas PRDX3 expression was significantly increased after 299 

exposure to Tallow B20 exhaust (p<0.05 in all cases).  300 

Figure 4: Transcription of oxidative stress genes in the exposed ALI cultures. Mean (standard 301 

deviation) fold change in expression compared to Air exposed controls for the oxidative stress 302 

response genes a) CSTB, b) HMOX1, c) NOX4 and d) PRDX3 (*= p<0.05, **= p<0.01, n=6 in all cases 303 

except PRDX3 ULSD and Canola B20 where n=5). The remaining three markers can be found in the 304 

supplementary (Figure S4). 305 
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3.5 Mediator Release: Mediator release was measured for both the apical and basal supernatants 306 

(Tables 2 and 3). Of the 27 mediators analysed, 16 were released at levels above the limits of 307 

detection, 15 for each compartment. PDGF-bb was only measured above the limit of detection in the 308 

apical supernatant, whereas VEGF was only measured above the limit of detection in the basal 309 

supernatant. The 15 mediators released in the apical compartment can be translated as local 310 

mediator release (Floreth et al., 2011) and significant differences primarily impacted the innate 311 

immune system with differences found in 3 regulatory (IL-1RA, IL-7 and PDGF-bb), 5 adaptive (IL-5, 312 

IL-9, IFN-γ, IP-10 and RANTES) and 7 innate mediators (IL-6, IL-8, G-CSF, GM-CSF, MCP-1, MIP-1β and 313 

TNF-α) (p<0.05) (ElKassar and Gress, 2010; Holdsworth and Gan, 2015; Sokol and Luster, 2015). In 314 

comparison to Air exposed controls, Tallow B20 was the most immunogenic locally with significantly 315 

altered release of 11 mediators, followed by 10 for Tallow B100 whereas Canola B100 was the least 316 

with only two altered mediators being produced.   317 

The mediator release in the basal compartment (Table 3) can be interpreted as systemic mediator 318 

production (Floreth et al., 2011) and was also found to primarily impact the innate immune response 319 

with 3 regulatory (IL-1RA, IL-7 and VEGF), 5 adaptive (IL-5, IL-9, IFN-γ, IP-10 and RANTES)  and 7 320 

innate mediators (IL-6, IL-8, G-CSF, GM-CSF, MCP-1, MIP-1β and TNF-α) (p<0.05) (ElKassar and Gress, 321 

2010; Holdsworth and Gan, 2015; Sokol and Luster, 2015). Systemic inflammation was impacted 322 

more than local with more exhaust exposures significantly altering mediator production; both IL-1RA 323 

and IL-6 were significantly released in all exhaust in the basal compartment compared to Air exposed 324 

controls. Tallow B20, Tallow B100 and Canola B20 exhaust exposures induced the greatest mediator 325 

responses with the significant increase of 7 mediators each compared to Air exposed controls, 326 

although Canola B20 impacted the regulatory response more with significantly increased release of 327 

VEGF compared to Tallow B20 and B100 which impacted the innate response more with the 328 

increased release of TNF-α (p<0.05). 329 

4.Discussion:  330 
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Results of this study show that exposure to highly diluted biodiesel or diesel exhaust elicits a range 331 

of health impacts in a primary human airway epithelial ALI exposure model. Of the two biodiesels 332 

tested we found Tallow to cause the most negative health impacts, with both the 20% blend and the 333 

pure biodiesel exhausts inducing increased permeability of the epithelial barrier, increased protein 334 

concentrations in the apical and/or basal compartment (suggesting epithelial cell damage) and the 335 

broadest range in mediator release.  These findings were unexpected considering that ULSD exhaust 336 

contained the highest concentrations of exhaust gas components and no differences were found 337 

between any of the different fuel types for exhaust particle characteristics. Subsequently, we found 338 

Canola biodiesel to have the least negative health effects of the tested fuels, with no effect on 339 

permeability and the smallest impact on mediator release. 340 

In terms of exhaust characteristics, Canola B20 was the most different to diesel exhaust, with three 341 

of the six gases tested being significantly different.  All B20 and B100 exhausts were found to have 342 

decreased NO2 concentrations (compared with ULSD), and Canola B100 and Canola B20 exhausts 343 

displayed a decrease in NO levels. This is in contrast to previous studies which have found NOx levels 344 

to be increased in the exhaust of biodiesel when compared to mineral diesel (de Brito et al., 2018; 345 

Graver et al., 2016), although reports on biodiesel blends are contradictory with studies showing 346 

both more and less NOx (Graver et al., 2016; Mullins et al., 2016). This difference to previous 347 

literature observed in our study could be attributed to some effect of biodiesel on exhaust after 348 

treatment devices, which are known to impact exhaust NOx concentrations (Ko et al., 2019), as many 349 

of the previous studies that assessed biodiesel health effects used old technology engines not 350 

equipped with exhaust after-treatment devices (Larcombe et al., 2015). For example, use of 351 

biodiesel in an engine equipped with a diesel particulate filter (DPF) has been found to lower particle 352 

loading and shorten regeneration time compared to ULSD, however, biodiesel also reacted more 353 

readily with the lubricating oil which in turn caused a slower rise in DPF inlet temperature (Pechout 354 

et al., 2019). All these effects would impact the concentrations of various exhaust components. 355 
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We found no significant differences in the particle characteristics between any of the tested fuels in 356 

the range of 10-340 nm, likely because of the high dilutions used. Previous studies have found 357 

differences in particle mass concentrations to be subtle enough that a 1/20 dilution would negate 358 

any differences between fuels (de Brito et al., 2018,(Valand et al., 2018). This suggests that the 359 

increased toxicity observed after Tallow biodiesel exhaust exposures was not caused by an increase 360 

in ultrafine particles, as has been suggested by previous studies (Lankoff et al., 2017; Mullins et al., 361 

2016). Since all exhausts had similar fine particle concentrations and the combustion gas 362 

concentrations were highest in ULSD, this suggests that Tallow biodiesel exhaust and Tallow 363 

biodiesel blend exhaust toxicity is associated with an exhaust component that has not been broadly 364 

tested for in this study, such as PAH’s or heavy metals (Fontaras et al., 2009; Kowalska et al., 2017). 365 

Although we attempted to analyse PAH concentrations for Diesel and Canola and Tallow B100, 366 

collected particle deposits were so low than only 3 of the 28 tested PAH’s were found at 367 

concentrations above the limit of detection (Table S3). These concentrations were highest in Tallow 368 

B100 exhaust however an analysis of 3 PAHs cannot be considered comprehensive and previous 369 

studies have found tallow biodiesel to contain lower levels of non-volatile organic compounds and 370 

particulate semi-volatile organic compounds than other biodiesel types (Cheng et al., 2017; Schirmer 371 

et al., 2016). 372 

One of the more concerning implications of this study is that we found considerable toxic health 373 

effects despite exhaust parameters being within Australian Work Standards, which is also used as a 374 

guideline for European standards (EU OSHA, 2013) and is equal to or stricter than the US 375 

Occupational Safety and Health Administration standards (US OSHA). The Safe Work Australia 376 

standards for various exhaust components are time weighted 8 hour averages of 3 ppm for NO2 377 

(with concentrations not exceeding 5 ppm over a 15 minutes average), 25 ppm NO, 2 ppm SO2 (with 378 

concentrations not exceeding 5 ppm over a 15 minutes average), 30 ppm CO and 5,000 ppm CO2 379 

(with concentrations not exceeding 30,000 ppm over a 15 minute average) (SWA, 2019). Oxygen 380 

must not fall below “safe levels” of 19.5% (SWA, 2018). It is recommended that in Australia, 381 
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particulate matter exposure from diesel exhaust not exceed 100 µg/m3 elemental carbon, although 382 

this is not a hard limit (AIOH, 2017). In America, the limit for a non-coal mining setting is set at 160 383 

µg/m3 total carbon (MSHA, 2016) and the European Union has set a recent occupational exposure 384 

limit of 50 ug/m3 elemental carbon (EU, 2019; EU, 2004). The diluted exhaust used in this study 385 

meets all these limits. 386 

Despite the exhaust used in this study being “safe” in terms of work standards, we measured 387 

increased airway epithelial barrier permeability after just one hour of exposure to Tallow B100 and 388 

B20 in comparison to Air controls. The airway epithelium is designed to act as a first line of defence 389 

against insults from viruses, bacteria and other environmental insults such as diesel exhaust (Celebi 390 

Sözener et al., 2020; Faber et al., 2020; Looi et al., 2018). Increased permeability compromises this 391 

function and allows these insults to invade the underlying lung tissue (Faber et al., 2020), providing a 392 

potential mechanism for entrance into the cardiovascular system (Brook et al., 2010; Cho et al., 393 

2018; Neophytou et al., 2019). Since previous biodiesel exhaust studies have found indications of 394 

cytotoxicity in submerged cell line cultures, this indication of increased permeability could provide a 395 

functional consequence of that cytotoxicity (Agarwal et al., 2018; Bünger et al., 2000). As ultrafine 396 

particles are capable of bypassing this barrier to enter the bloodstream directly (Brook et al., 2010; 397 

Celebi Sözener et al., 2020), an increase in epithelial barrier permeability would only amplify this 398 

effect and likely contribute to even worse health outcomes.  399 

In addition, if ULSD exposure at higher concentrations also causes increased barrier permeability 400 

then this could help explain why previous studies, including those by Gowdy et al (2010), Zarcone et 401 

al (2017) and Shears et al (2020), have found dual insults of diesel exhaust exposure and respiratory 402 

pathogens such as influenza, non-typeable H influenzae and S pneumoniae to increase the severity 403 

of disease (Gowdy et al., 2010; Shears et al., 2020; Zarcone et al., 2017). Increased permeability 404 

would help the virus or bacteria infiltrate the airway epithelium, potentially facilitating infection and 405 

increasing disease severity (Fukuoka et al., 2016; Looi et al., 2018; Shears et al., 2020). Alvarez-Simón 406 
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et al 2017 have successfully used diesel exhaust to sensitise mice to soy protein to simulate an 407 

allergic asthma model (Alvarez-Simón et al., 2017). Increased permeability would also facilitate 408 

passage of allergens across the epithelial barrier which would be a crucial process in driving allergic 409 

responses (Celebi Sözener et al., 2020). Since only small amounts of Tallow biodiesel exhaust is 410 

needed to induce increased barrier permeability, this has concerning implication for human 411 

exposure in areas where Tallow biodiesel is already in use (ARENA, 2018; EIA, 2020b; Flach et al., 412 

2019; Toldrá-Reig et al., 2020). This is especially true during the current COVID-19 pandemic, where 413 

increased permeability could potentially increase infection severity (Ali and Islam, 2020; Pozzer et 414 

al., 2020). 415 

Although we measured the expression of seven different oxidative stress response genes, only two 416 

were found to be differentially expressed compared with Air controls. The expression of NOX4, or 417 

NADPH oxidase 4, is associated with physiological signalling as an oxygen sensor and it catalyses the 418 

reduction of O2 into various species of ROS (Schröder et al., 2012). It was decreased in response to 419 

both B100 exhaust exposures and previous studies have shown that inhibited expression helps to 420 

attenuate some species of ROS (Hollins et al., 2016; Kuroda et al., 2010). PRDX3 or Peroxiredoxin 3, 421 

belongs to a family of peroxidases that function as antioxidant enzymes and thus help to protect 422 

against the damage caused by ROS (Rebelo et al., 2021). We found this gene to be more highly 423 

expressed after exposure to Tallow B20 exhaust. Overall, these changes suggest oxidative stress may 424 

be ongoing within the exposed cells, however the small change in expression, combined with the 425 

response being observed mostly in the more toxic exposures, suggests that either the highly diluted 426 

exhaust used in our exposures does not result in high amounts of oxidative stress or that the 24-427 

hour timepoint chosen is not optimal to best measure a ROS response.  428 

We also found altered mediator release in both the apical and basal compartments after exhaust 429 

exposure. The mediators measured have a variety of effects and can impact both the innate and 430 

adaptive immune responses (Holdsworth and Gan, 2015). As the ALI culture models human lung 431 
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formation, mediator changes in the apical compartment can be interpreted as changes more 432 

relevant to local inflammation of the airway lumen, whereas changes in the basal compartment can 433 

be interpreted as relevant to the basement membrane of the airway and thus a more systemic 434 

reaction (Floreth et al., 2011). Of the 27 mediators tested, we found 15 were released above 435 

measurable concentrations in both the apical and basal compartments. These 15 cytokines mostly 436 

overlapped, however VEGF (which helps promote angiogenesis and lung injury repair (Boussat et al., 437 

2000)) was released only in the basal compartment and PDGF-bb (which helps promote wound 438 

repair but is also connected with airway hyperresponsiveness (Kardas et al., 2020)) was released 439 

only in the apical compartment. Of the 5 exhausts tested, Tallow B20 and Tallow B100 were the 440 

most immunogenic in the apical compartment and Tallow B20, Tallow B100 and Canola B20 were 441 

the most immunogenic in the basal compartment. Canola B100 was the least immunogenic in both 442 

compartments, which supports our previous work (Landwehr et al., 2021).  443 

The differences seen between apical and basal mediator release, where more mediators are 444 

released for all 5 exhaust exposures in the basal compartment, are indicative of the mediator 445 

response to exhaust being driven mostly through systemic inflammation and potentially through 446 

different cell types such as basal epithelial cells, with local airway lumen inflammatory responses in 447 

the apical compartment only occurring after exposure to the more inflammatory exhausts. This is 448 

understandable as many immune cells, such as neutrophils, would need to be recruited to the site of 449 

insult (Sokol and Luster, 2015) and the local inflammation mediators released apically for the more 450 

inflammatory Tallow B20 and Tallow B100 exposures primarily impact the innate immune response 451 

(Holdsworth and Gan, 2015; Sokol and Luster, 2015). Previous studies looking into the impact of 452 

diesel exhaust exposure on workers have found indications of systemic inflammation (Wang et al., 453 

2017), and our results indicate that exposure to any of the pure biodiesel or blended exhausts would 454 

likely result in similar, or worse, responses.  455 
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Previous studies that have exposed ALI cultures to biodiesel exhaust have several limitations. One 456 

key issue is that they often use undifferentiated cell lines grown on transwell membranes, which is 457 

limited in how accurately it can model human tissue and negates effects caused by genetic variability 458 

(Kicic et al., 2006; Barraud et al., 2017; Steiner et al., 2013). Additionally these cell lines are cultured 459 

at ALI conditions for the minimal time possible for the experiment (<12 hours) (Barraud et al., 2017; 460 

Steiner et al., 2013), due to the cell lines inability to survive extended time outside of liquid, which 461 

further limits how accurately they can model real world exposures. Other studies only expose the 462 

cultures to one type of biodiesel and attempt to extrapolate that data to represent biodiesel as a 463 

whole (Hawley et al., 2014; Vaughan et al., 2019) when our data shows that biodiesel feedstock type 464 

greatly impacts health effects. Previous studies also use exhaust concentrations that are too high to 465 

be entirely relevant to real world conditions, with either particle mass (>200 µg/m3) or NO2 (>9 ppm) 466 

concentrations being much higher than many occupational exposure limits permit (SWA, 2018, 2019; 467 

(AIOH, 2017; EU, 2019; MSHA, 2016; EU, 2004). Previous studies that assess the health impacts of 468 

diesel and biodiesel exhaust without the use of an ALI culture focus almost exclusively on the 469 

particulate matter components of exhaust, generally ignoring the gaseous components entirely 470 

(André et al., 2015b; Larcombe et al., 2015). In addition, they use filters to collect these particles and 471 

then expose submerged cultures directly to extracted particle solutions (Cervena et al., 2017; Gioda 472 

et al., 2016). While this method allows for accurate dosing and easier comparison between 473 

exposures, it removes both the effects of the gaseous components and the ultrafine particles which 474 

agglomerate on the filter leading to skewed particle size spectra (Morin et al., 2008).  We exposed 475 

our cultures directly to dilute exhaust and found significant health effects after exposure to Tallow 476 

biodiesel even though the particle size spectra between the different exhausts did not change. This 477 

means that the ALI cultures in each exposure group were likely exposed to similar dosages of 478 

particles. This in turn means that the increased toxicity in the Tallow B100 and B20 exposure groups 479 

is a direct effect of the different exhaust components being more toxic than those of ULSD, not 480 

something that can be attributed to just having more particles within one exposure group. The same 481 
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can be said for Canola, which we found to be less toxic than ULSD despite having similar exhaust 482 

particle profiles.  483 

There are several limitations to our study. We used highly diluted exhaust concentrations in order to 484 

simulate real world exposure events, meaning that the health impacts observed are relatively small. 485 

Using more concentrated exposures may allow more differences between treatments to be 486 

identified but at the detriment to losing this “real-world” applicability. However, the primary 487 

strength of the current study was that toxicological differences were observed despite using 488 

occupational exhaust concentrations. Our study also lacks a comprehensive particle chemistry 489 

analysis, in part because the exhaust concentrations used were so low that we could not collect 490 

enough particles for more than one type of analysis, and a direct cytotoxicity analysis, mainly due to 491 

an inability to force the cells into single cell suspension for flow cytometry without significantly 492 

lowering baseline viability. Furthermore, using the ALI airway-epithelial cell model, we focused 493 

primarily on the toxicological effects of exposure on the lungs, missing the potential effects of 494 

exposure (primary or secondary) to other biological systems. We also used primary cells obtained 495 

from “healthy” patients, meaning that those with underlying respiratory conditions or diseases could 496 

have different health impacts to what was found in our study. Finally, we used two different first-497 

generation biodiesel types chosen based on current biodiesel usage, when in future biodiesel will 498 

likely be created from oil crops that do not compete with food prices.  499 

5.Conclusion: 500 

In conclusion, this study is the first to use differentiated epithelial cells grown at ALI to assess the 501 

exhaust toxicity of more than one type of biodiesel or biodiesel blend. It is also one of the first 502 

studies to use exhaust diluted to real-world exposure concentrations to assess biodiesel and 503 

biodiesel blend toxicity, as well as the first to use a transepithelial permeability assay to assess 504 

exposure impacts for either diesel or biodiesel exhaust. We found exposure to Tallow biodiesel 505 

exhaust, both B100 and B20, to be the most toxic with increased permeability and the greatest 506 
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mediator response. This was followed by ULSD and then Canola B100 and B20 exhaust, showing that 507 

even when biodiesel does not comprise of the majority of the fuel, the feedstock type used to make 508 

it still significantly impacts exhaust toxicity. These results support our previous study (Landwehr et 509 

al., 2021) into the toxic effects of different biodiesel exhaust exposures where we also found Tallow 510 

biodiesel to be the most toxic and Canola the least using a submerged culture experimental design 511 

which incorporated some additional endpoint measurements. This suggests that a less complicated 512 

submerged model can be used to assess the basic toxicity of different biodiesel fuels so long as 513 

whole exhaust is used, however for a more comprehensive assessment into the mechanisms of 514 

toxicity a more complicated model such as ALI or in vivo animal models is needed. 515 
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Figure 1: Representative morphological images of ALI cultures. Cultures these images were obtained 

from have been exposed to a) Air, b) ULSD, c) Canola B100 and d) Tallow B100. No differences in 

morphology were found after any of the exposures. Note: Scale bar: 50 µM. 
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Figure 2: Permeability measurements of ALI cultures after exhaust exposure. Permeability is measured 

as apparent permeability (Papp Coefficient) and normalised to fold change compared to Air for each fuel 

(*=p value<0.05, **=p value<0.01, n=12 for ULSD, Canola B20 and Tallow B100, n=11 for Air, Canola 

B100 and Tallow B20). 

 



 

Figure 3: Protein concentrations in apical and basal compartments of the exposed ALI cultures. 

Measured protein concentration in a) apical wash and b) basal supernatant (*= p<0.05, **= p<0.01).  

 



 

Figure 4: Transcription of oxidative stress genes in the exposed ALI cultures. Mean (standard deviation) 

fold change in expression compared to Air exposed controls for the oxidative stress response genes a) 

CSTB, b) HMOX1, c) NOX4 and d) PRDX3 (*= p<0.05, **= p<0.01, n=6 in all cases except PRDX3 ULSD and 

Canola B20 where n=5). The remaining three markers can be found in the supplementary (Figure S4). 

 



Table 1: Mean (standard deviation) gas measurements for all exhausts. All significances displayed are 

compared to ULSD.  

Fuel ULSD 

Canola 

B20 

Canola 

B100 

Tallow 

B20 

Tallow 

B100 

O2 (%) 

20.63 

(0.105) a 

20.74 

(0.062) 

***,b,c 

20.64 

(0.146) a 

20.67 

(0.082) a 

20.64 

(0.077) 

CO (ppm) 0.80 

(0.20) d 

1.23 

(0.67) 

1.27 

(1.19) 

0.80 

(0.20) d 

1.07 

(0.50) *,c 

CO2 (%) 0.35 

(0.098) 

0.25 

(0.145) 

0.33 

(0.068) 

0.31 

(0.112) 

0.34 

(0.101) 

NOx 

(ppm) 

11.47 

(2.26) 

a,b,c 

7.82 

(1.78) 

***,b,c,d 

7.75 

(1.55) 

***,a,c,d 

10.43 

(2.22) * 

a,b 

10.44 

(2.21) a,b 

NO (ppm) 

7.09 

(1.52) a,c 

4.94 

(1.02) 

***,c,d 

5.51 

(1.18) *** 

c,d 

6.83 

(1.41)  a,b 

7.34 

(1.62) a,b 

NO2 

(ppm) 

4.39 

(1.06) 

a,b,c,d 

2.89 

(0.83) 

***,b,c 

2.25 

(0.41) 

***,a,c,d 

3.59 

(0.90) 

***,a,b,d 

3.10 

(0.68) 

***,b,c 

SO2 (ppm) 

0.83 

(0.38) b 

0.89 

(0.32) b 

0.50 

(0.51) 

***,a,d 

0.94 

(0.23) 

0.94 

(0.24) b 

Measurements are shown as the mean concentration for the entire exposure, with the exception of CO 

which is shown as the peak measurement. 

* Significantly different to ULSD (*=p <0.05, **=p <0.01, ***=p <0.001) 

a=significantly different to Canola B20 (p<0.05) 

b=significantly different to Canola B100 (p<0.05) 

c=significantly different to Tallow B20 (p<0.05) 

d=significantly different to Tallow B100 (p<0.05) 

 



Table 2: Mean mediator release in the apical compartments. Mean (standard deviation) mediator 

release for the 15 cytokines released above the limits of detection for the apical supernatant samples.  

Mediator 

Concentration 

(pg/mL/mg 

protein) 

Fuel 

Air 

 

ULSD Canola B20 

Canola 

B100 Tallow B20 Tallow B100 

IL-1RA 

659.37 

(987.96) 

1264.47 

(2113.32)**** 

1210.17 

(1556.21)** 

d 

841.87 

(1161.45) 

## c,d 

1432.94 

(1913.46)**** 

b 

1461.20 

(2172.96)**** 

a,b 

IL-5 

7.23 

(8.77) 

8.23 

(11.56) 

10.46 

(9.70) b,c 

15.76  

(23.00)** 

## a,c,d 

21.91 

(37.89)**** 

### a,b,d 

13.56 

(16.31) b,c 

IL-6 

89.93 

(68.02) 

130.79 

(62.73) 

140.25 

(79.56) 

159.47 

(194.00) 

234.04 

(234.52)* 

218.19 

(131.65)* 

IL-7 

23.93 

(4.11) 

24.30 

(6.53) 

30.96 

(6.72)** # 

b,d 

18.73 

(6.88) # 

a,c 

27.59 

(8.49) b 

22.81 

(8.68) a 

IL-8 

3744.90 

(1655.76) 

5717.74 

(2311.66)* 

6311.03 

(4263.62)** 

b 

3796.56 

(1167.34) 

# a,c,d 

6984.61 

(4318.23)** b 

7232.75 

(4919.93)** b 

IL-9 

44.04 

(7.91) 

59.07 

(11.55)** 

60.27 

(16.84)**  b 

44.24 

(11.44) 

## a,c,d 

59.20 

(20.41)** b 

60.44 

(14.73)** b 

G-CSF 

40.96 

(64.41) 

93.08 

(107.09)** 

61.56 

(62.05) d 

35.80 

(42.43) 

## c,d 

140.31 

(175.58)*** b 

130.54 

(88.98)*** a,b 

GM-CSF 

7.17 

(5.48) 

9.79 

(8.34) 

8.25 

(5.40) 

6.18 

(4.82) # d 

8.55 

(6.49) 

9.54 

(10.42) b 

IFN-γ 

3.62 

(6.35) 

8.30 

(8.34) 

8.32 

(5.40)** 

5.62 

(4.82) 

9.52 

(6.49)** 

9.06 

(10.42)* 

IP-10 

486.74 

(276.17) 

326.96 

(159.21)* 

484.45 

(250.72) # b 

311.37 

(292.31) 

a 

403.84 

(293.32) 

360.41 

(163.04) 

MCP-1 

8.70 

(5.38) 

11.66 

(8.03) 

11.70 

(7.22) c,d 

14.09 

(15.07) 

22.48 

(18.53)** # a 

24.25 

(29.85)** # a 

PDGF-bb 

26.57 

(26.64) 

18.85 

(14.41) 

44.03 

(37.02)** 

### b,c,d 

13.12 

(13.70)* 

a 

9.54 

(5.29)* a 

14.38 

(16.20)* a 

MIP-1β 

10.95 

(2.31) 

14.66 

(2.28)*** 

15.53 

(3.92)*** b 

11.16 

(2.89) ## 

a,c,d 

14.40 

(4.33)** b 

15.31 

(4.01)*** b 

RANTES 

13.80 

(8.82) 

14.34 

(11.47) 

12.54 

(8.83) 

9.80 

(5.83) 

8.69 

(5.48) # 

12.00 

(7.05) 

TNF-α 

15.15 

(11.88) 

24.24 

(18.87)* 

21.34 

(16.19) 16.27 

26.01 

(18.27)** b 

24.14 

(21.99)** b 



(10.84) 

c,d 

*=significantly different to Air (*=p <0.05, **=p <0.01, ***=p <0.001) 

#=significantly different to ULSD (#=p <0.05, ##=p <0.01, ###=p <0.001) 

a=significantly different to Canola B20 (p<0.05) 

b=significantly different to Canola B100 (p<0.05) 

c=significantly different to Tallow B20 (p<0.05) 

d=significantly different to Tallow B100 (p<0.05) 
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