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Abstract 9 

In analysis and design of structures subjected to blast loading, equivalent Single-Degree-of-10 

Freedom (SDOF) method is commonly recommended in design guides. In this paper, improved 11 

analysis method based on SDOF models is proposed. Both flexural and direct shear behaviors of 12 

structures subjected to blast load are studied using equivalent SDOF systems. Methods of deriving 13 

flexural and direct shear resistance functions are introduced, of which strain hardening and softening 14 

effects are considered. To collocate with the improved SDOF models, the improved design charts 15 

accounting for strain hardening and softening are developed through systematical analysis of SDOF 16 

systems. To demonstrate the effectiveness of the proposed analysis method, a model validation is made 17 

through comparing the predictions with laboratory shock tube testing results on reinforced concrete 18 

(RC) columns. It is found that compared to the conventional approach with elastic and elastic-19 

perfectly-plastic model, the elastic-plastic-hardening model provides more accurate predictions. 20 

Additional non-dimensional design charts considering various levels of elastic-plastic-21 

hardening/softening resistance functions are developed to supplement those available in the design 22 

guides with elastic-perfectly-plastic resistance function only, which provide engineers with options to 23 

choose more appropriate resistance functions in design analysis. 24 
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1 Introduction  27 

With rapid economic development and urbanization, deliberate terrorist bombing attacks, 28 

accidental explosions, and vehicle/ship collision with structures have been more and more frequently 29 

reported. (Wikipedia, 2014; Bureau of Counterterrorism, 2017). Owing to the increasing numbers of 30 

explosion and collision events, more structures are facing the risk of being subjected to blast and 31 

impact loads in their service life, therefore need to be properly designed to resist such loads for better 32 

personnel safety and asset protections.  33 

A large number of studies including experiments and numerical simulations have been performed 34 

to investigate structural responses subjected to blast and impact loads, as well as to develop possible 35 

mitigation technologies (Remennikov, 2003) . For example, recently Wu et al. (2009)  carried out 36 

field blast tests to investigate the response of RC slabs made of ultra-high-performance fiber reinforced 37 

concrete (UHPFC) with and without fiber reinforced polymer (FRP) strengthening. Burrell et al. (2014) 38 

tested blast responses of steel fiber-reinforced concrete (SFRC) columns using shock tube facility. 39 

Although they allow direct observations of the structural performance, such experiments are in general 40 

very costly and difficult to be carried out as they require special equipment such as shock tube or 41 

testing field and researchers having competence to handle explosives. Comprehensive numerical 42 

models have also been developed and employed to simulate the dynamic response of structural 43 

elements under blast loading, which are proven yielding good predictions. For instance, Shi et al. (2008) 44 

generated a comprehensive numerical model of RC columns and derived Pressure-Impulse (P-I) 45 

diagrams. Zhang et al. (2013) modeled the blast response of laminated glass windows using a detailed 46 

3D model with LS-DYNA, where both the dynamic material properties of glass and interlayer were 47 

considered. Tabatabaei et al. (2013) developed a finite element model and predicted the surface damage 48 

and material loss of long carbon fiber reinforced concrete panels exposed to blast loading. It is noted 49 

that reliable numerical modeling requires specialized experience and demands substantial 50 

computational resources. They are therefore often not practical for engineering design applications.  51 

The approach of simplifying a structural element into an equivalent Single-Degree-of-Freedom 52 

(SDOF) system is predominantly used in predicting the dynamic response of structures subjected to 53 



blast loading (Li and Meng, 2002; Fallah and Louca, 2007; Carta and Stochino, 2013). Compared to 54 

experiments and numerical simulations, SDOF approach could provide reasonably close predictions 55 

of structural responses but with less cost and computational effort. Standards and design guidelines 56 

such as UFC 3-340-02 (2008) and ASCE (2010) both employ the SDOF modeling method for design 57 

analysis. It has been found that the accuracy of prediction by using SDOF method strongly depends 58 

on the reliability of the derived equivalent mass and load, and the resistance function. The current 59 

design charts and criteria given in the design guides were derived by assuming flexural governed 60 

structural response mode and elastic or elastic-perfect-plastic resistance functions. These assumptions 61 

do not necessarily represent all the possible dominant response modes and structural resistances to 62 

high-rate blast loads, therefore, may lead to inaccurate design analysis. Many researchers and 63 

engineers have commented on the possible inaccuracy of conventional SDOF method because of these 64 

oversimplification and idealization (Oswald and Bazan, 2014; Hao, 2015).  65 

One of the shortcomings of the current design guides using SDOF method is that the structural 66 

resistance function is assumed to be either elastic or elastic-perfectly-plastic. In reality, the resistance 67 

functions of structural members vary, depending on the structural form, structural materials, and 68 

loading configurations. For example, in a study by Fallah and Louca (2007), the resistance curves of 69 

two corrugated steel walls were modeled by using FE method. One has an elastic-plastic-hardening 70 

resistance and the other has an elastic-plastic-softening resistance. Fallah and Louca setup their SDOF 71 

models using the obtained hardening and softening resistance functions from FE models, and the 72 

predicted responses were very close to FE results with a discrepancy all within 15%. They then carried 73 

out parametric study on the influence of hardening/softening index on P-I diagrams. Those 74 

observations indicated the importance in considering the hardening or softening behaviors of structures 75 

subjected to blast loads in design analysis.  76 

In addition, most of existing SDOF analysis models mainly consider flexural response, while the 77 

shear responses are not considered (Ma et al., 2007). Under blast loading, a RC element may 78 

experience both flexural and shear failures (Menkes and Opat, 1973). When a RC member is subjected 79 

to dynamic loading with relatively low amplitude and long duration, it would develop flexural 80 

deformation and may fail due to insufficient flexural capacity; whereas, when it is subjected to a high 81 



amplitude impulsive load with short duration, direct shear failure near supports could occur  82 

(Krauthammer, 1984; Krauthammer et al., 1986) . Compared with flexural bending failure, shear 83 

failure is brittle and always associated with relatively small structural deformation which usually 84 

happens within a very short period after the blast overpressure acts on the structure element and may 85 

cause sudden collapse of structures (Low and Hao, 2002). Thus, shear failures should be carefully 86 

checked in the design of structural element subjected blast load. It is generally considered that flexural 87 

failure and shear failure normally do not occur at the same time, a structural element will enter the 88 

flexural response mode only if it manages to survive the shear response (Low and Hao, 2002). 89 

Accordingly, flexural and shear failure modes can be modelled independently (Krauthammer and 90 

Shanaa, 1990).  91 

The primary aim of this paper is to develop an improved SDOF based analysis and design method 92 

for structural element subjected to impulsive loading. The improved method will cover both flexural 93 

response mode and shear response mode. Elastic-plastic-hardening and elastic-plastic-softening are 94 

also incorporated in the resistance functions, which will give more accurate predictions of structural 95 

response. Firstly, in Section 2 the equivalent SDOF systems for flexural and shear responses are 96 

established based on the classic structural dynamics theories (Krauthammer, 2008; Biggs, 1964). Then, 97 

in Section 3 the procedures for determining theoretical flexural and shear resistance functions are 98 

detailed. Strain rate effect is considered in the resistance function by considering the dynamic 99 

increment in material properties. The maximum displacements at midspan and supports are utilized to 100 

define the flexural and shear failure criteria, respectively. In Section 4, a working example of a RC 101 

column is presented using the above method and the predicted results are compared with the laboratory 102 

shock tube testing data. The improvement of the model is demonstrated by comparing the predictions 103 

using conventional SDOF method with elastic and elastic-perfectly-plastic resistance functions. Last 104 

but not the least, a series of non-dimensional design charts, of which the resistance functions have 105 

different levels of hardening and softening indexes, are derived as supplements to those provided in 106 

UFC 3-340-02 for use in design analysis.  107 



2 Equivalent SDOF Systems 108 

Figure 1 illustrates the flow chart of the SDOF approach for analyzing structural responses 109 

subjected to impulsive loads. The direct shear resistance capacity of the element is firstly estimated 110 

based on the preliminary design configuration and design load. Then, the shear response of the 111 

equivalent SDOF model derived with the shear deformation shape function is calculated. If the 112 

structural element survives, the flexural response will then be analyzed with another equivalent SDOF 113 

model derived with flexural deformation shape function for this element. The following section will 114 

introduce the flexural SDOF model and the shear SDOF model. 115 

 116 

Figure 1. Flow chart of the SDOF approach to predict structural responses subjected to blast and 117 

impact loads. 118 

2.1 Equivalent SDOF system for Flexural response 119 

The SDOF system for modelling the flexural response of a structural element is based on the 120 

classic theory of Biggs (1964). In Figure 2 (a) a simply supported RC beam is employed for 121 

demonstration of the model without losing generality. It is subjected to a uniformly distributed load 122 

typically from a mid to far field explosion. The equivalent SDOF system for its flexural behavior is 123 
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sketched in Figure 2 (b). 124 

 125 
Figure 2. (a) A simply supported RC beam, (b) an equivalent flexural SDOF model of the beam, (c) 126 

dynamic force equilibrium diagram for direct shear behavior of a RC beam, and (d) an equivalent 127 

SDOF model for direct shear response of the beam. 128 

The motion of the equivalent SDOF system can be described by the following equation 129 

𝑀𝑀𝐸𝐸𝐸𝐸𝑢̈𝑢(𝑡𝑡) + 𝑅𝑅𝑓𝑓(𝑡𝑡) = 𝐹𝐹𝐸𝐸𝐸𝐸(𝑡𝑡)                           (1) 130 

where 𝑢̈𝑢 is the acceleration at the mid-span; EfM , )(tRf , )(tFEf  are the equivalent mass, resistant 131 

force and equivalent load from blast wave, respectively. Damping is neglected since only the first peak 132 

displacement matters, and damping has little effect in the first cycle of response. Following Biggs 133 

(1964), equation (1) can be rewritten as  134 

 𝐾𝐾𝑀𝑀𝑀𝑀𝑢̈𝑢(𝑡𝑡) + 𝐾𝐾𝐿𝐿𝑅𝑅(𝑡𝑡) = 𝐾𝐾𝐿𝐿𝐴𝐴𝐴𝐴𝑟𝑟(𝑡𝑡)   𝑜𝑜𝑜𝑜   𝐾𝐾𝐿𝐿𝐿𝐿𝑀𝑀𝑢̈𝑢(𝑡𝑡) + 𝑅𝑅(𝑡𝑡) = 𝐴𝐴𝐴𝐴𝑟𝑟(𝑡𝑡) (2) 135 

where MK  , LK   and LMLM KKK /=   are mass, load and load-mass transformation factors, 136 

respectively; M  = total mass of the system; )(tR  =flexural resistance function of the element; A137 

=area loaded by the blast pressure; and )(tPr = time-varying blast pressure, )()( tqLtPA r ⋅=⋅ . The 138 

(a) (b)

(c) (d)



detailed derivations of these transformation factors for different boundary conditions can be found in 139 

Biggs (1964), which are therefore not given here for brevity.  140 

2.2 Equivalent SDOF system for shear response 141 

Commonly used design guides such as UFC 3-340-02 (2008) does not provide any method for 142 

calculating the shear mode governed response of a structural element but only the procedures for shear 143 

reinforcement design. To more accurately analyze the shear response, another SDOF model for direct 144 

shear behavior is generated. Without considering damping, the direct shear response can be described 145 

by the following equation:  146 

 𝑀𝑀𝐸𝐸𝐸𝐸𝑣̈𝑣(𝑡𝑡) + 𝑅𝑅𝑠𝑠(𝑡𝑡) = 𝐹𝐹𝐸𝐸𝐸𝐸(𝑡𝑡)    (3) 147 

where 𝑣̈𝑣 is the acceleration of the shear slip at the supports; EsM , )(tRs , )(tFEs  are the equivalent 148 

direct shear mass, equivalent shear resistance and equivalent external load for direct shear, respectively. 149 

Because the direct shear failure mode is expected to occur within a very short duration upon the action 150 

of the blast load, the structure would not have any significant deformation at that time. Since the failure 151 

plane is very close to the support, the phenomenon is thus like a sudden collapse of the entire beam. 152 

Hence, the shape function for direct shear failure mode can be taken as unity as suggested by other 153 

researchers (Krauthammer et al., 1986; Low and Hao, 2002; Xu et al., 2014). The dynamic force 154 

equilibrium diagram for direct shear behavior is illustrated in Figure 2 (c) and the equivalent direct 155 

shear model is shown in Figure 2 (d). Because of symmetry, considering only one half of the element, 156 

then 2/MM Es = , M  is the total mass of the element; )()( tStRs = , where )(tS  is the direct shear 157 

resistance at support which will be further explained in the next section, and 158 

2/)(2/)()( tPAtqLtF rEs ⋅=⋅= . Equation (3) can be then rewritten as 159 

 0.5𝑀𝑀𝑣̈𝑣(𝑡𝑡) + 𝑆𝑆(𝑡𝑡) = 0.5𝐴𝐴𝑃𝑃𝑟𝑟(𝑡𝑡) (4) 160 

By solving this dynamic equilibrium equation numerically, the shear slip at supports can be 161 

obtained and used for assessing the potential of direct shear failure of the beam.  162 



3 Determination of Analysis Parameters and Failure Criteria 163 

To enable the analysis using the above derived SDOF systems, the model parameters need to be 164 

determined which are detailed in this section. The derivation of the flexural resistance function, as well 165 

as the shear resistance function are provided. Strain rate effect is also taken into consideration. The 166 

failure criteria of the structural element are also presented and discussed in this section. 167 

3.1 Flexural resistance function 168 

The flexural resistance of a SDOF system is obtained by first determining the moment-curvature 169 

relation of the section. Then, by considering the support and loading conditions, the resistance-170 

deflection relationship of the structure can be derived from the onset of loading to failure. Normally, 171 

the resultant static elastic-plastic behavior of the flexural SDOF system can be represented by a bilinear 172 

load-displacement diagram, as shown in Figure 3. The reason of constructing a bilinear resistance 173 

function is for easy use of the design charts which will be illustrated in Chapter 5. The abscissa x  174 

represents deformation and the ordinate r  represents resistance. The dashed lines are the original 175 

resistance curves which could be obtained from the theoretical derivation, finite element analysis or 176 

experimental tests. In Figure 3, eK  is the stiffness of the elastic part, and the point ) ,( yE rX  is the 177 

elastic limit which for RC structures is usually related to the point of reinforcement steel yielding. pK  178 

is the stiffness of the plastic part, and uX  is the anticipated ultimate deformation for the structural 179 

element. If 0>pK , it is an elastic-plastic-hardening model, and if 0<pK , it is an elastic-plastic-180 

softening model. The hardening/softening index (H/S index) is defined as ep KK /  . The dynamic 181 

flexural resistance functions are obtained by directly using the dynamic strength of materials estimated 182 

with a constant strain rate. For the following contents of this section, a theoretical approach to derive 183 

the flexural bilinear resistance will be introduced. 184 



 185 

Figure 3. Idealized bilinear representation of elastic-plastic hardening and softening resistance 186 

function (the dashed lines represent the original resistance curves). 187 

The moment-curvature relation can be obtained through layered analysis of cross-section. Taking 188 

a doubly reinforced RC element as an example, Figure 4 (a~c) shows the layered cross section and its 189 

stress and strain diagram of this element. It can be seen that the cross-section is sliced into numerous 190 

layers, and within each layer the stress and strain are assumed to be constant. Also note that this 191 

analysis considers the effects of axial load.  192 

 193 

Figure 4. (a) Layered cross section of a doubly reinforced RC element; (b) stress diagram of cross 194 

section; (c) strain diagram of cross section; (d) bilinear bending moment–curvature diagram. 195 

Given the assumptions that the cross sections of the element remain plane after deformation and 196 

that tensile resistance of concrete is neglected, the following force equilibrium equation of cross 197 

section can be derived: 198 
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where N  is the axial force at the cross-section; sσ  and ssσ  are the steel stresses in the tension and 200 

compression zones; sA   and ssA  are the areas of reinforcements in tension and compression, 201 

respectively; n  is the number of concrete layers in compression; ciσ  is the compressive stress of 202 

the i th layer of concrete; ciA  is the area of the i th layer of concrete, and nbxA nci /= , of which b  203 

is the width of cross section and nx  is the depth of the neutral axis.  204 

Taking moment equilibrium about the neutral axis, the resultant moment RM  can be calculated 205 

by  206 
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where h  is the depth of the cross section; cd  is the depth of the concrete cover; 0h  is the effective 208 

depth; and ciy  is the distance from the i th layer of concrete to the neutral axis. The corresponding 209 

curvature ϕ  is computed by  210 
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where sε  is the strain of the tension steel. Because the anticipated resistance has bilinear form, 212 

only the moment and curvature at yielding ( yM   and yϕ  ) and ultimate state ( uM   and uϕ  ) are 213 

required. The procedure for obtaining the moment-curvature relationship of the structural element can 214 

be summarized as follows:  215 

(1) For the yielding state, sys εε = , and for the ultimate state, cuct εε = ,  where syε  is the 216 

yielding strain of tensile steel, ctε  is the concrete strain of the top layer, cuε  is the ultimate strain 217 

of concrete which is usually assumed as 0.0038; 218 



(2) Assume a value for the depth of the neutral axis nx  at each state; 219 

(3) Calculate sσ , ssσ , and ciσ , and substitute them into Eq. (5) to check if the equilibrium is 220 

satisfied. If equilibrium is not satisfied, go back to step (2), assume a new value of nx , and re-analyze 221 

step (3); if equilibrium is satisfied, go to step (4). 222 

(4) Calculate moment (  and ) and curvature (  and ) using Eq. (6) and (7). 223 

The method of bi-section can be used to determine the value for the depth of the neutral axis nx  in 224 

step (2). 225 

After the determination of yM  , yϕ  , uM  and uϕ  , the bilinear bending moment–curvature 226 

diagram can be defined as Figure 4 (d). In this analysis, the concrete reaching the strain of cuε  does 227 

not represent the failure of element as redistribution of compressive force will happen. The nominal 228 

ultimate state mentioned in this section is only for the calculation of hardening/softening index. The 229 

resistance-deflection relationship can be derived as described below. 230 

The resistance r   can be computed from the bending moment by considering the moment 231 

equilibrium of the element. The determination of deflection should be divided into two stages, namely 232 

elastic stage and plastic stage. Taking a simply supported beam under uniformly distributed load as an 233 

example, the resistance at yielding and ultimate state are calculated by 234 
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where L is the beam length. The deflection at midspan at yielding can be calculated from the well-236 

known formula provided by the linear elastic theory of beams: 237 
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The displacement in the plastic stage is evaluated by assuming that a concentrated plastic hinge is 239 

formed at the mid-span section of the beam. Here, Pθ  indicates the plastic rotation at any time after 240 

the formation of plastic hinge. By introducing a fixed plastic hinge length Lp, and by denoting the 241 

yM uM yϕ uϕ



plastic curvature as )( y
midspan

u
midspan

P
midspan

P
midspan ϕϕϕϕ −= , which is assumed to be a constant over Lp, 242 

the total displacement at the ultimate state can be derived as 243 
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By using equations (8), (9), (10) and the obtained bilinear bending moment–curvature relationship, 245 

the bilinear load-deflection diagram can be determined, as illustrated in Figure 3, where y
midspanE uX = , 246 

u
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Many approximate expressions for Lp are available in literature. Here, the simple formula adopted 248 

by Carta and Stochino (2013) is used as 249 

 LhLp 05.00 +=  (11) 250 

The constitutive properties of concrete adopt the idealized stress-strain curve for concrete under 251 

uniaxial compression proposed by Hognestad (1951). The ascending branch of the stress-strain 252 

relationship, when 00 εε ≤≤ c , is described by the following equation: 253 
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where cf   is the unconfined static compressive strength of concrete, and 0ε   is the corresponding 255 

strain at peak compressive stress. The descending branch, when 0εε >c , is represented by a straight 256 

line connecting the peak strength to cf85.0  at a strain of cuε . In the meantime, the uniaxial behavior 257 

of reinforcing steel (both in tension and in compression) is approximated to be elastic-perfectly plastic. 258 

It is worth mentioning that in UFC 3-340-02, the influence of axial compression on moment 259 

capacity of beam elements is neglected in order to attain a more conservative design. Unfortunately, 260 

such simplifications may cause significant errors in predicting members’ blast response. The 261 

comparisons with UFC’s method will be presented in Chapter 4.  262 



3.2 Direct shear resistance function 263 

The direct shear resistance function of RC structures is not well developed and thus is more 264 

empirical. Figure 5 shows the resistance-slip model employed here, which was first proposed by 265 

Krauthammer et al. (1986). It is composed of five straight line segments, namely the elastic response 266 

segment OA, hardening segment AB, plastic flow segment BC, softening segment CD and final 267 

yielding segment DE. The elastic segment (segment OA) finishes at the slip of 0.1mm, and the 268 

corresponding shear stress (MPa) eτ  is given by the expression 269 

 
2145

)145(157.0165 mc
e

f ττ ≤
+

=  (13) 270 

where (MPa) cf  is the concrete uniaxial compressive strength, and (MPa) mτ  is the maximum shear 271 

stress corresponding to the starting point of plastic flow segment (segment BC) with a shear slip of 272 

0.3mm. mτ  is given by the expression as 273 
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where vtρ  is the total reinforcement ratio of the steel crossing the shear plane. In the shear flow 275 

segment (BC), the shear stress remains constant until the shear slip reaches 0.6mm. Then, the shear 276 

stress decreases as the shear slip increases. In practical application, a trilinear model is used to simplify 277 

the shear resistance curve (Krauthammer et al., 1993). In this paper, the trilinear model is further 278 

simplified into a bilinear model following Low and Hao (2002), as shown in Figure 5. The 279 

simplification is based on the energy equivalency principle that the area under the resistance-280 

displacement curve remains constant, so that the blast energy absorbed by the system would be the 281 

same, and thus the displacement calculated would be the same as well. The yielding and the maximum 282 

allowable shear slips are taken as 0.1 mm and 0.6 mm, respectively (Low and Hao, 2002). The shear 283 

stress yτ  at point F is found to be equal to )(5.0 me ττ + . Apparently, the resulted bilinear direct shear 284 

resistance function is an elastic-plastic-hardening model.  285 



 286 

Figure 4．Direct shear resistance model 287 

For direct shear, cracks are usually near the supports. Thus, the shape function is assumed as unity 288 

in deriving the equivalent SDOF model as discussed in section 2.2. Since the rotation at support is 289 

neglected in calculating the shear responses, the influence of different boundary conditions on this 290 

direct shear resistance model is neglected. 291 

3.3 Strain rate effects 292 

It is commonly known that the constitutive properties of concrete and steel are both strain rate 293 

sensitive. The dynamic strength will be amplified under dynamic loading comparing to those under 294 

quasi-static load. 295 

UFC 3-340-02 (2008) has provided the recommended DIFs of concrete and reinforcing steel for 296 

design of structural members subjected to blast loading. For instance, for far field blast load, a DIF of 297 

1.17 is suggested for reinforcing bar under bending and 1.19 for concrete. For more brittle direct shear 298 

failure a DIF of 1.1 is recommended for both concrete and reinforcing bar. In this study, those DIFs 299 

provided by UFC will be adopted. Further study will be carried out to investigate the influences of 300 

using different DIFs and different consideration methods of DIF on structural response predictions.  301 

3.4 Damage criteria for flexural and direct shear failures 302 

Based on a number of previous field blasting test and laboratory testing results on RC structures, 303 

different failure criteria have been proposed by different researchers to quantify structural damage 304 
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corresponding to different failure modes (Yu and Jones, 1991; Ma et al., 2007; Huang et al., 2017). 305 

Since the maximum ductile plastic deformation is usually developed at the mid-span of a RC beam for 306 

flexural dominated response, the ratio of central deflection to half-span length is normally utilized to 307 

define the criteria for flexural bending failure; while the averaged shear strain at supports is employed 308 

to define the direct shear damage criterion since the maximum shear plastic deformation usually 309 

appears near the supports. Accordingly, based on the relevant researchers (Yu and Jones, 1991; Li and 310 

Jones, 1999; Bai and Johnson, 1982), the threshold transverse displacement due to flexural bending 311 

failure at mid-span and direct shear failure near supports can be defined as follows:  312 

 2/LD fm η=  (15) 313 

 hD vsm δγ=  (16) 314 

where fmD   is the maximum transverse displacement at the mid-span due to flexural bending 315 

deformation; η  is the ratio of centerline deflection to half-span length; L is the length of a beam; 316 

smD  is the maximum transverse displacement (shear slip) at supports due to direct shear deformation; 317 

vγ  is the averaged shear strain in unit length; δ  is the half-width of the shear band obtained from 318 

experimental results, and here δ   is defined as 0.866 according to Li et al. (2000); and h is the 319 

thickness of beam. Table 1 gives the empirical flexural bending and direct shear damage criteria for 320 

different damage levels from reference (Ma et al., 2007). 321 

Table 1 Empirical damage criteria for bending and direct shear 322 

Failure mode Criteria Minor damage (%) Moderate damage (%) Severe damage (%) 

Shear Average shear strain 1 2 3 

Bending 
Ratio of centerline 

defection to half span 
2.5 6 12.5 

4 Analysis and Model Validation 323 

The above developed SDOF models for flexural and direct shear responses as well as the 324 

determination of their resistance functions are programmed into MATLAB. Newmark-β method with 325 

Newton-Raphson Iteration is adopted to solve the equations of motion. The models are validated with 326 

available testing data reported by Burrell et al.  (Burrell et al., 2014)  on RC columns subjected to 327 



lateral impulsive loading. The SDOF model for direct shear response is firstly used to check the shear 328 

damage of the column. Then, the responses are calculated using the equivalent SDOF model based on 329 

flexural response mode. For comparison, the responses are calculated by considering the elastic-330 

plastic-hardening resistance, as well as the elastic and elastic-perfectly-plastic resistance functions 331 

specified in UFC 3-340-02. The influences and accuracy of the idealized resistance functions on the 332 

structural response predictions are examined with respect to the testing data.  333 

In Burrell et al.’s test program, eight RC columns were tested under impulsive loading using the 334 

shock tube at the University of Ottawa. The clear height of the columns between the supports was 1980 335 

mm. The columns had cross-sectional dimensions of 152 mm × 152 mm and the same longitudinal 336 

reinforcement which consisted of M4–10 bars (equal tension and compression reinforcement, bar 337 

diameter=11.3 mm and reinforcement ratio=1.74%). The columns were subjected to an initial pre-338 

compression of 294kN (about 30% of the concentric axial load capacity of the specimen). More details 339 

about the test can be found in reference (Burrell et al., 2014).  340 

Among the tested columns, the control specimen noted as SCC-0%-75 is chosen for comparison 341 

in this study. It was constructed with plain self-consolidating concrete (SCC) with 0% steel fibers and 342 

75mm spacing for reinforcement ties. The compressive strength of concrete was 51.6MPa, and the 343 

longitudinal reinforcement had an averaged yielding strength of 483MPa. The equivalent flexural and 344 

direct shear SDOF systems of the chosen column can be developed accordingly as Eq. (2) and Eq. (4) 345 

respectively. Since the boundary condition is considered as simply supported, LMK  is taken as 0.78 346 

before steel yielding and 0.66 after steel yielding for the equivalent SDOF model of the flexural 347 

response. The total mass of column M  is 315kg (mass of column and load-transfer device), and the 348 

loaded area A  is 4.129 m2 (area of the shock tube opening 2.032m×2.032m). The blast pressure is 349 

represented by a typical impulse-equivalent triangular pulse with zero rise time. The recorded peak 350 

reflected pressure and impulse in the test as input here are 87.9kPa and 780.7kPa∙ms, respectively. The 351 

two equations of motion are solved using the Newmark method. Following ASCE recommendation 352 

(2010), the maximum time-step is chosen as the smaller of either one tenth of the natural vibration 353 

period of the member or one tenth of the duration of the blast. 354 



 355 

Figure 5．(a) Simplified bilinear direct shear resistance function of the tested column; (b) time-356 

histories of shear slip obtained from SDOF system. 357 

The resistance functions used in the dynamic analysis are generated following the procedure 358 

described in section 3.1 and 3.2. Strain rate effect is taken into consideration with DIF for material 359 

dynamic strengths. For direct shear SDOF system, as suggested by UFC, a 1.1=′cfDIF  for concrete, 360 

and a 1.1=
yfDIF  for the yielding strength of reinforcement are used. It is worth noting that previous 361 

researches showed increasing axial force could reduce RC member shear resistance, while some other 362 

literatures argued that under low-level axial pre-compression the shear strength of RC members could 363 

be improved (UFC, 2008; Ou and Kurniawan, 2015). UFC code recommends that under low-level 364 

axial compression, the influence on column shear capacity could be neglected. Since in this example, 365 

the level of pre-compression is relatively small, its influence on column shear resistance is therefore 366 

not considered. Figure 6 (a) shows the derived simplified bilinear direct shear resistance function of 367 

the tested column. The stiffness in elastic range (0~0.1mm shear slip) is mmkNK s
e / 2146= , and the 368 

stiffness in plastic range (0.1~0.6mm shear slip) is mmkNK s
p / 143=  . The hardening ratio is 369 

）（ %7.6 067.0/ =s
e

s
p KK . Figure 6 (b) shows the calculated shear slip time histories near the supports. 370 

The maximum shear slip is found to be 0.24 mm, and the corresponding time is 1.35 ms. It is to be 371 

noticed that the equivalent triangular pulse has a duration of 17.8ms indicating that the direct shear 372 

response indeed occurs within a very short period before any significant deformations are developed 373 

 
(a) 

 
(b) 

  



in the RC element. Based on the direct shear damage criteria, the average shear strain vγ  calculated 374 

using Eq. 16 is 0.18% ( hD vsm δγ=  , where 152 0.866, ,24.0 === hDsm δ  ), which is below the 375 

minor damage threshold of 1% (as defined in Table 1). This analysis result aligns with the experimental 376 

observation that the tested column did not fail in shear damage. Since the RC element survives from 377 

direct shear responses, it will enter flexural dominated responses with relatively large deformations.  378 

 379 

Figure 6. (a) Different flexural resistance functions of the column; (b) Comparison of experimental 380 

and SDOF results 381 

Figure 7 (a) shows the resistance curves of the column derived based on method introduced in 382 

section 3.1 and UFC’s method. In this flexural SDOF system, a 19.1=′cfDIF   for concrete and a 383 

17.1=
yfDIF  for the yielding strength of reinforcement are used, as recommended in UFC. The yellow 384 

chain dotted line is the obtained resistance based on UFC’s method, and the red dashed line is the 385 

theoretical resistance function without consideration of the axial load as per section 3.1. It can be 386 

observed that the UFC method gives a slightly larger initial stiffness but relatively smaller yield 387 

strength. But overall, the difference is not significant. The blue solid line denotes the theoretical 388 

resistance function with consideration of the axial pre-compression on the column. It can be seen that 389 

the axial pre-compression significantly increases the flexural resistance of the column, and apparent 390 

hardening effect can be found once yielding is reached. The equivalent elastic deflection ( EX ) is 14.7 391 

 
(a) 

 
(b) 

  



mm, the stiffness in the elastic range ( f
eK ) is 8.06 kN/mm and the stiffness in plastic range ( f

pK ) is 392 

0.62 kN/mm, thus the hardening ratio ( f
e

f
p KK / ) is 0.077 (7.7%).  393 

Figure 7 (b) compares the column mid-height deflection time histories between the experimental 394 

testing data with the SODF analysis using different resistance functions. Table 2 have summarized the 395 

comparison results. It can be seen that the predicted column response using the theoretical derived 396 

resistance function with consideration of axial load and hardening effect is very close to that of the test 397 

results. The maximum central deflection and the corresponding time recorded in the experiment is 398 

126.2mm and 27.2ms, and the predicted results is 112.1 mm and 23.2 ms reflecting -11.2% and -14.7% 399 

difference. The difference could be attributed to the variation of axial load in the experiment. During 400 

the test, the axial load reduced with the shortening and rotation of the column when deformed laterally. 401 

As the axial load decreased, the moment resistance capacity of the column decreased, which led to a 402 

larger lateral deflection and longer vibration period. As expected, the SDOF model using an elastic 403 

resistance function greatly underestimates the response of the column. A maximum column central 404 

deflection of 69.8mm is predicted indicating a -45.1% difference comparing to the experimental results. 405 

This is because it largely overestimates the resistance of the column without considering column 406 

yielding. Similarly, when using the UFC recommended elastic-perfectly-plastic resistance function, 407 

the SDOF model predicts a maximum central deflection of 358.6mm, indicating a 184% higher central 408 

deflection as compared to the experimental testing results. This is mainly because the UFC method 409 

totally ignores the influence of axial pre-compression and the hardening effect, and therefore it 410 

underestimates the resistance of the column. As shown, when strain hardening effect is considered for 411 

the UFC recommended resistance function (7.7% hardening), the prediction error on the maximum 412 

deflection and time at maximum deflection could be effectively reduced to 58% and 20.6%, in 413 

comparison to 184.2% and 117.6% error by using the elastic-perfectly-plastic resistance function. The 414 

comparison demonstrates the necessity of considering the hardening effect in the resistance function, 415 

in which the improved resistance function considering hardening effect could yield much better 416 

prediction comparing to elastic only or elastic-perfectly-plastic resistance function as in the UFC 417 

design code. 418 



Table 2 Summary of experimental and SDOF analysis results 419 

Results Test 

SDOF analysis with different resistance curves 

Theoretical Resistance with 
axial load 

Elastic Elastic-perfectly-plastic  
Elastic-plastic-

hardening 

Max. 
deflection 

(mm) 
126.2 112.1 

Error:  
-11.2 % 

69.8 
Error:  

-45.1 % 
358.6 

Error:  
184.2 % 

201.3 
Error:  
58.3 % 

Time at max. 
deflection 

(ms) 
27.2 23.2 

Error:  
-14.7% 

15.2 
Error:  

-44.1% 
59.2 

Error:  
117.6% 

32.8 
Error:  
20.6% 

5 Design Charts and Discussion 420 

5.1 Improved design charts 421 

The above validation demonstrates the improved SDOF analysis with consideration of hardening 422 

could give better prediction of structural response under blast loading. Although the above solution 423 

procedure is straightforward, it requires some knowledge and programming skill to solve the 424 

differential equation with nonlinear resistance function through step-by-step integration. Design guides 425 

such as UFC 3-340-02 provide charts for engineers to quickly read the maximum structural response. 426 

These design charts are plotted in the form of nondimensional curves based on systematic analysis of 427 

SDOF systems with idealized resistance functions, i.e., elastic or elastic-perfectly-plastic, for several 428 

idealized loading conditions, namely idealized triangular load or rectangular load. These design charts 429 

do not include the cases with strain-hardening or softening. Following UFC’s approach, new design 430 

charts with different levels of hardening/softening ratios of resistance curves are derived to supplement 431 

those in UFC. These generated curves would give engineers more choices in a complex circumstance 432 

and hence yield better predictions of structure responses under blast loading.  433 

In order to utilize these response charts, both the blast loads (pressure-time history) and the 434 

resistance-deflection curve of a structural system need to be approximated. Methods for computing 435 

these idealized blast loads can refer to UFC 3-340-02 (Chapter 2) (2008), and the methods for 436 

simplification of the actual system and construct the resistance-deflection functions are presented in 437 

Section 3 of this paper.  438 



Figure 8 and Figure 9 exhibit the generated design charts of elastic-plastic-hardening and elastic-439 

plastic-softening SDOF systems subjected to uniformly-distributed triangular shape blast load. These 440 

design charts were obtained through MATLAB program developed in this study. Charts of the first and 441 

third columns are the maximum deflections, while charts of the second and fourth columns are the 442 

time instant corresponding to the maximum response. P and T represent the peak load and duration of 443 

the idealized blast triangular load. Xm and tm are the maximum deflection and the corresponding time. 444 

From Figure 3, it is known that the resistance force of the system is defined by its elastic resistance ry, 445 

elastic deflection XE, and the hardening/softening index Kp/Ke. While TN is the natural period of the 446 

equivalent SDOF system.  447 

Among those charts, twelve levels of hardening index, i.e. 0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 448 

0.2, 0.3, 0.4, 0.5, 0.6, and six softening index, i.e. -0.005, -0.01, -0.02, -0.03, -0.04, -0.05 (‘-’ means 449 

softening), are considered which cover the likely hardening and softening behaviors of brittle concrete 450 

and ductile steel structural elements. Extrapolation of these design charts for other hardening/softening 451 

levels may not necessarily give accurate prediction. Therefore, derivation of new design charts should 452 

be carried out using the above method if needed. Since these design charts are all normalized, it is 453 

suitable for all kinds of SDOF systems once the required parameters are determined. 454 
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Figure 7. Design charts of elastic-plastic-hardening SDOF system for triangular load with Kp/Ke= 455 

0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 (Maximum deflection: (a1)~(a12); 456 

Maximum response time: (b1)~(b12)) 457 

 458 

  

0.1 1 10 20

T/T
N

0.1

1

10

100

X
m

/X
E

Triangular Load, K
p

/K
e

=0.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

  1

1.1

1.2

1.5

  2

r
y

/P

(a11) 0.1 1 10 20

T/T
N

0.02

0.1

1

10

t m
/T

Triangular Load, K
p

/K
e

=0.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

  1

1.1

1.2

1.5

  2

r
y

/P

(b11)

0.1 1 10 20

T/T
N

0.1

1

10

100

X
m

/X
E

Triangular Load, K
p

/K
e

=0.6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

  1

1.1

1.2

1.5

  2

r
y

/P

(a12) 0.1 1 10 20

T/T
N

0.02

0.1

1

10

t m
/T

Triangular Load, K
p

/K
e

=0.6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

  1

1.1

1.2

1.5

  2

r
y

/P

(b12)

0.1 1 10 20

T/T
N

0.1

1

10

100

X
m

/X
E

Triangular Load, K
p

/K
e

=-0.005

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

  1

1.1

1.2

1.5

  2

r
y

/P

(a1) 0.1 1 10 20

T/T
N

0.02

0.1

1

10

20

t m
/T

Triangular Load, K
p

/K
e

=-0.005

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

  1

1.1

1.2

1.5

  2

r
y

/P

(b1)



  

  

  

0.1 1 10 20

T/T
N

0.1

1

10

100

X
m

/X
E

Triangular Load, K
p

/K
e

=-0.01

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

  1

1.1

1.2

1.5

  2

r
y

/P

(a2) 0.1 1 10 20

T/T
N

0.02

0.1

1

10

20

t m
/T

Triangular Load, K
p

/K
e

=-0.01

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

  1

1.1

1.2

1.5

  2

r
y

/P

(b2)

0.1 1 10 20

T/T
N

0.1

1

10

100

X
m

/X
E

Triangular Load, K
p

/K
e

=-0.02

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

  1

1.1

1.2

1.5

  2

r
y

/P

(a3) 0.1 1 10 20

T/T
N

0.02

0.1

1

10

20

t m
/T

Triangular Load, K
p

/K
e

=-0.02

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

  1

1.1

1.2

1.5

  2

r
y

/P

(b3)

0.1 1 10 20

T/T
N

0.1

1

10

100

X
m

/X
E

Triangular Load, K
p

/K
e

=-0.03

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

  1

1.1

1.2

1.5

  2

r
y

/P

(a4) 0.1 1 10 20

T/T
N

0.02

0.1

1

10

20

t m
/T

Triangular Load, K
p

/K
e

=-0.03

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

  1

1.1

1.2

1.5

  2

r
y

/P

(b4)



  

  
Figure 8. Design charts of elastic-plastic-softening SDOF system for triangular load with Kp/Ke= -459 

0.005, -0.01, -0.02, -0.03, -0.04, -0.05 (Maximum deflection: (a1)~(a6); Maximum response time: 460 

(b1)~(b6)) 461 

5.2 Discussion 462 

From Figure 8 (b) it can be observed that as hardening effect becomes prominent (larger hardening 463 

index value), the maximum response time tm/T curves become more and more compacted for different 464 

resistance over load ratio ry/P, which indicates when there is large hardening effect, the influence of 465 

ry/P ratio becomes insignificant and negligible on structure response time (tm/T). To demonstrate the 466 

structure hardening/softening effects on the maximum response of SDOF systems, the maximum 467 

deflection (Xm/XE) and the maximum response time (tm/T) versus loading time (T/Tn) relations with 468 

different hardening/softening index values are plotted for the same ry/P =0.8 in Figure 10. As shown, 469 

when T/TN is below 0.5, negligible difference can be found on the response of the structure, because 470 

only elastic response or very limited plastic response is resulted in the structure. However, as T/TN is 471 
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larger than 0.5, the difference becomes more and more significant. Typically, from Figure 10 it can be 472 

easily observed that the maximum deflection reduces with the increase of the hardening ratio, and the 473 

maximum response converges to a constant value with the increase of the T/TN ratio. This is expected 474 

because as the hardening/softening index increases, the overall stiffness of the system increases as well, 475 

therefore the maximum response is smaller. The results also indicate that increasing the hardening ratio 476 

makes the structure response achieve the maximum response faster and less sensitive to the T/TN ratio. 477 

For example, when the hardening ratio is 60%, the maximum response ratio is almost stable when T/TN 478 

ratio is larger than 3.0, while the maximum response ratio still increases when T/TN ratio is 20 if the 479 

hardening ratio is 5%, implying increasing the loading duration still increases the maximum responses.  480 

 481 

Figure 9. Illustration of the effects of the hardening/softening index on the (a) maximum deflection; 482 

and (b) corresponding response time 483 

To further demonstrate the necessity and importance of considering hardening and softening effect, 484 

Table 3 lists the values of Xm/XE and tm/T predicted when T/TN=2 and ry/P =0.8 for different H/S index 485 

as an example. The prediction errors compared with those from an elastic-perfectly-plastic system are 486 

also provided. It can be seen that even a small H/S index could cause considerable errors in structural 487 

response predictions. For instance, when a 5% hardening exists for a structure, the maximum deflection 488 

could be about 20% smaller than that predicted using conventional elastic-perfectly-plastic model; and 489 

when there is a 5% softening, the conventional elastic-perfectly-plastic model could underestimate 490 

structural maximum deflection by nearly 90%. Therefore, it is important to take hardening and 491 

softening into consideration in design analysis.  492 
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Table 3 Comparison of prediction errors for Xm/XE and tm/T with different H/S index (ry/P =0.8, T/TN=2) 493 

H/S index 

ry/P =0.8, T/TN=2 

Xm/XE tm/T 

Values Errors (%) Values Errors (%) 
-5% 11.89 88.53 0.970 63.66 
-4% 9.53 51.15 0.820 38.36 
-3% 8.24 30.68 0.733 23.61 
-2% 7.59 20.31 0.673 13.58 
-1% 6.78 7.47 0.628 5.99 

-0.5% 6.53 3.51 0.610 2.87 
0% 6.30 0.00 0.593 0.00 

0.5% 6.11 -3.14 0.578 -2.53 
1% 5.93 -5.96 0.564 -4.81 
2% 5.62 -10.87 0.540 -8.94 
5% 4.94 -21.57 0.486 -18.04 

10% 4.26 -32.44 0.428 -27.74 
20% 3.53 -44.00 0.364 -38.62 
30% 3.13 -50.32 0.327 -44.77 
40% 2.87 -54.44 0.303 -48.90 
50% 2.69 -57.38 0.285 -51.85 
60% 2.55 -59.61 0.271 -54.22 

6 Conclusion  494 

In this work, an improved analysis and design method using SDOF systems is introduced for 495 

predicting structural response under blast loading. Firstly, the direct shear response of a structural 496 

element is examined using a SDOF model corresponding to direct shear response mode. The shear 497 

resistance-slip function is derived through simplification of available 5-segment shear-slip resistance 498 

model. The shear capacity of the structure is checked. Only structure that survives the direct shear 499 

failure is further analyzed to evaluate the flexural responses. Secondly, an improved flexural SDOF 500 

model is developed by taking into consideration the strain hardening and softening as well as the axial 501 

loading effect for better prediction of structural flexural bending response. Through comparing with 502 

the conventional elastic only or elastic-perfectly-plastic resistance functions recommended in UFC, 503 

the improved model with elastic-plastic-hardening/softening resistance function gives more accurate 504 

predictions of responses of structures. Using the validated model, supplementary design charts are 505 

generated considering different levels of hardening and softening indexes for design purposes.  506 



The generated design charts with strain hardening and softening supplement the available design 507 

charts provided by UFC 3-340-02. It is found that considering the hardening/softening structural 508 

resistance could lead to significant differences in structural response predictions as compared to the 509 

perfectly plastic assumption. For example, when the ratio of yielding resistance over peak blast load 510 

equals to 0.8 (ry/P =0.8), assuming elastic-perfectly-plastic resistance could lead to an overestimation 511 

of the maximum deflection by about 20% for a structure with 5% strain hardening and an 512 

underestimation of the maximum response by 90% for a structure with 5% strain softening. The 513 

generated design charts in this study provide engineers more choices for better predictions of the 514 

dynamic responses of structures subjected to blast load. 515 
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