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• Ni, Fe and V not absorbed into the otolith via the dietary exposure route
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1.1. Abstract 
The uptake of metals into the aragonite lattice of the fish otolith (ear-bone) has been used for 

decades as a historical record of exposure to metals in polluted environments. The relative 

abundance of two metals in particular, Ni and V, are used in forensic chemical analysis of crude oils 

to assist in confirming its origin. In this study we investigate the potential for metal accumulation in 

otoliths to act as a biomarker of exposure to crude oil. 
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Using a 33-day static-renewal laboratory trial design, 56 juvenile Lates calcarifer (commonly known 

as Asian seabass or barramundi) were fed diets enriched with V (20mg/kg), Ni (500mg/kg), Fe 

(500mg/kg), and two crude oils with distinctly different metals profiles: a heavy fuel oil (1% w/w) 

and a typical Australian medium crude (1% w/w). 

Fish exposed to crude oils showed Ba and Al retained in otoliths in a dose-dependent manner, but 

fish fed V-, Ni- and Fe-enriched diets showed no metal increase in otoliths, indicating that V, Ni and 

Fe are not incorporated into the otolith of L. calcarifer via dietary exposure. For crude oils, 

incorporation into otolith for many metals is likely limited due to porphyrin casing reducing their 

bioavailability. Principal components analysis (PCA) and subsequent linear discriminatory analysis 

(LDA) of selected otolith metals demonstrated that, even despite large variability in the metal 

abundances detected in otolith between individuals within the test groups (cv = 1.00), it is possible 

to discriminate between fish exposed to different crude oils using multivariate analysis of their 

otolith microchemistry. 

 

1.2. Introduction 
Crude oils are ubiquitous marine pollutants. Given the dependence of the shipping industry on heavy 

fuel oil, the periodic unintentional release of petroleum hydrocarbons into the environment in the 

future is likely to match the historical record of oil spills of the past few decades. Incidents such as 

the Prestige oil spill that released 60,000 tonnes of heavy fuel oil near the Spanish coastline in 2002, 

the Montara well failure in Australia in 2009 that released 47,000 tonnes of crude oil into the Timor 

Sea, the Deepwater Horizon (DWH) spill of 650,000 tonnes of crude oil in the Gulf of Mexico in 2010 

and the recent Mauritius MV Wakashio fuel oil spill have repeatedly demonstrated the large scale 

environmental impacts inevitably caused by these events. 

International maritime law holds to the principal that the polluter must pay. Particularly in the case 

of smaller scale incidents, identifying the source of the spill is the starting point of most litigation 



proceedings. Fingerprinting crude oils is complicated by the degradation of oil during weathering 

(loss of volatile and polar compounds; Gagnon et al, 1999; Scarlett et al, 2021) of oil released into 

the environment. Crude oils contain characteristic amounts of metals such as V (as a vanadyl 

complex) and Ni (Yasnygina et al, 2006; Pereira et al, 2010) as well as other metals such as Cu, Zn 

and Mn (Woltering et al, 2016) whose relative abundance may be used in forensic chemistry to assist 

in identifying different oils (Barwise, 1990; Pereira et al, 2010). In crude oils, these metals are 

predominantly incorporated in porphyrins (Dunning et al, 1960; Grice et al, 1996; Biesaga et al, 

2000; Ali and Abbas, 2006; Woltering et al, 2016) found in the asphaltene fraction. Following the 

natural weathering process of crude oils exposed to environmental factors, porphyrin-bound metals 

typically end up in the tar balls that remain on the sea-floor, or wash up on beaches following an oil 

spill (National Research Council, 2003; Suneel et al, 2015; Scarlett et al, 2019) and become deposited 

in sediment (Boehm et al, 1987; Boehm et al, 2008). 

Fish exposed to metals may incorporate these metals into the otolith (ear bone), where bi- and tri-

valent metals can replace Ca ions in the aragonite lattice (reviewed by Campana, 1999). The 

mechanism for this is complicated (Thomas et al, 2017) and only partially understood. Prior to 

otolith incorporation, metals must first be absorbed into the bloodstream either via the gills in the 

case of waterborne metals, or via the intestine in the case of metals present in the diet. From there 

they must cross the otolith haemolymph barrier prior to ossification (Campana, 1999). The 

mechanisms by which this occurs appear to be specific to individual metals, which follow different 

routes to otolith incorporation (Milton and Chenery, 2001). For example, Zn can be incorporated 

into the otolith only via the dietary route (Ranaldi and Gagnon 2008a), whereas others such as Pb, Sr 

and Cu can only be incorporated via the aqueous route (Milton et al, 2000). Still others, such as Cd, 

are incorporated into the otolith via either pathway (Ranaldi and Gagnon, 2009).  

Metal analysis of otoliths in situ by laser ablative inductively coupled plasma mass spectrometry (LA-

ICP-MS) (Woodhead et al, 2007) has been used to establish a historical record of fish migratory 



patterns as they move through areas of varying metal contamination (Rolls, 2014; Milton et al, 2000; 

Long et al, 2014), and as a biomarker for exposure to crude oils (Morales-Nin et al, 2007; Nelson et 

al, 2015; López-Duarte et al, 2016) and other anthropogenic sources of metals in  the environment 

(Arslan and Secor, 2005; Friedrich and Halden, 2010; Ranaldi and Gagnon, 2008b, 2010). Field 

studies show that metals found in the otoliths of exposed fish reflect environmental concentrations 

for some metals such as Cu but other metals such as Zn, Pb and Mn do not appear to be correlated 

to environmental concentrations (Milton et al, 2000; Andronis et al, 2017). 

In environments polluted with petroleum hydrocarbons, crude oil compounds can accumulate in 

tissues of exposed aquatic organisms (Khan et al, 1995; Rabalais and Turner, 2016; D’Costa et al, 

2017; Ahmed et al, 2019). In heavily industrialised areas, total petroleum hydrocarbon (TPH) levels 

have been reported in fish tissue at concentrations ranging from 10 to 1,500 mg/kg (Ansari et al, 

2012; Ahmed et al, 2019; Enuneku et al, 2015; Jisr et al, 2020). Following a spill, compounds from 

crude oils enter food webs (Buskey et al, 2016), become biomagnified in successive trophic levels, 

and may reach high levels in carnivorous fish species. This is well illustrated by field studies after 

DWH where TPH in tissues of exposed commercial fish species were as high as 21,575 mg/kg (2.2% 

w/w) with a mean concentration of 3,968 mg/kg (0.4% w/w) (Sammarco et al, 2013). In the field, the 

authors have observed fish feeding on oil particles mistaking them for food, and in a laboratory 

setting copepods have been reported directly ingesting emulsified oil particles (Gyllenberg, 1981).  

In order to investigate the suitability of otolith microchemistry as a prospective biomarker tool for 

discriminating exposure to various crude oils, we conducted a 33-day dietary exposure study in 

juvenile Lates calcarifer. This pelagic carnivorous teleost fish is a common aquaculture species and 

popular sports-fish found in tropical and sub-tropical environments ranging from the Persian Gulf to 

northern Australia (Boonyaratpalin 2017; Grey 1987; Mathew 2009). Its globally widespread marine 

and riverine dispersal, and hardy tolerance of a range of temperature, pH and saline conditions 

(Jerry 2013), make it a suitable test species to investigate the potential effects of oil spills which may 



occur in a wide variety of environmental conditions. We hypothesised that metals in crude oils, 

including those classically used in crude oil fingerprinting such as V and Ni would be incorporated in 

otoliths of exposed fish in characteristic concentrations to facilitate identification of the respective 

crude oil they were exposed to. 

1.3. Methods 
All fish were handled in accordance with Curtin University animal ethics approval number 

ARE2019/11. 

1.3.1. In-vivo exposure of L. calcarifer 
A total of 56 juvenile L. calcarifer (10-15cm in length) were purchased from a commercial hatchery. 

Fish were kept in tanks containing 100L of natural Indian Ocean seawater with four fish per tank. The 

trial was a static renewal design using external canister biofilters with a flow rate of approximately 

5L/min.  Experimental conditions were maintained at 28 ± 2 oC, dissolved oxygen > 5.0 mg/L, pH  7.6 

± 0.6, salinity of 32 ± 2ppt and a 12-hour light/dark cycle. Water exchanges of 10-60% total tank 

volume were performed as indicated by daily water quality testing. 

Fish were fed either commercial fishmeal (Nova FF 3mm, Skretting Pty Ltd, Perth, Australia) as the 

control (n = 12 fish), fishmeal enriched with 20 mg/kg V (as V205) (n = 4 fish), fishmeal enriched with 

500 mg/kg Ni (as NiSO4) (n = 8 fish), fishmeal enriched with 500 mg/kg Fe (as FeSO4) (n = 8), fishmeal 

spiked with 1% w/w HFO (A.P.I. 11.1) (n = 12 fish), or fishmeal spiked with 1% w/w MCO (A.P.I. 31.0) 

(n = 12 fish).  

Fish were fed twice per day to a total of 2% bodyweight per day for 33 days, followed by a 2-day 

depuration period. Fish were euthanized by ike-jime, weighed, and their otoliths were surgically 

removed, weighed, dried and stored at room temperature. 

Otoliths were mounted in resin, with several otoliths per mount, and the mount face abraded with 

2000-grit wet and dry sandpaper. Due to the concave otolith shape, grinding was halted once 



sufficient material was exposed for LA-ICP-MS analysis in order to preserve the integrity of the distal 

edge containing the most recent growth (Dehghani et al, 2015; Kerambrun et al, 2012) (Figure 1). 

 

1.3.2. LA-ICP-MS Analysis 
Analysis was undertaken using a RESOlution M-50A-LR incorporating a Compex 102 excimer laser, 

coupled to an Agilent 8900x QQQ ICP-MS at the GeoHistory Facility, John de Laeter Centre, Curtin 

University. Following a 30s period of background analysis and two cleaning pulses (to remove 

surface contamination), samples were spot ablated for 40 s at a 10Hz repetition rate, using a 50 μm 

beam and laser energy of 3.0 J cm-2. Oxide polyatomic interferences were minimized by tuning flow 

rates for a ThO/Th of < 0.5%. The sample cell was flushed with ultrahigh purity He (320 mL min-1) and 

N2 (1.2 mL min-1) and high purity Ar was employed as the plasma carrier gas. International glass 

standard NIST 612 was used as the primary reference material, to calculate elemental 

concentrations (using stoichiometric aragonite 43Ca as the internal standard element and assuming 

40.04% Ca in otoliths) and to correct for instrument drift on all elements. Secondary standards (NIST 

610 glass and MACS-3B pressed calcium carbonate powder) yielded results within 5% of the 

recommended values, except Mg (22%), Ti (12%), and Bi (12%) for secondary standard NIST610, and 

<10% and B, Zn, As, Nb, Mo, Ag, Cd, Sb, Tl, Pb, Bi which yielded errors of 10-50% for secondary 

standard MACS-3. The higher errors on the latter standard are attributed to the more 

heterogeneous nature of a pressed powder pellet when compared to a silicate glass such as those in 

the NIST 61x series standards (Wilson et al, 2008; Jochum et al, 2016). Standard blocks were run 

every 15 unknowns. 



 

Figure 1: Light microscope (x40 objective) images of resin-mounted otoliths.  
Light areas are the distal otolith edge (most recent growth) exposed by grinding, the dark areas are 
those still embedded in resin. Red markings are targeting points for LA-ICP-MS. 

 

The mass spectra were reduced using the Trace Elements data reduction scheme in Iolite (Paton et 

al, 2011 and references therein). Data were collected on the following 34 isotopes: 11B, 25Mg, 27Al, 

29Si, 34S, 47Ti, 51V, 52Cr, 55Mn, 57Fe, 59Co, 60Ni, 61Ni, 63Cu, 66Zn, 75As, 77Se, 88Sr, 89Y, 90Zr, 93Nb, 95Mo, 107Ag, 

111Cd, 118Sn, 121Sb, 133Cs, 137Ba, 197Au, 205Tl, 208Pb, 209Bi, 232Th and 238U. Results are provided in Table 1. 

Uncertainties are given as standard error (SE), and limit of detection (LOD) calculated using the 

Howell method (Howell et al, 2013). Between five to eight points were sampled per otolith, 



predominantly on the distal edge (Figure 1), and an average calculated for each otolith, for each 

metal detected. 

 

1.3.3. Metal Analysis of Crude Oils 
A sample of each oil was accurately weighed and then repeatedly digested in nictric acid, followed 

by a final digestion in nitric and perchloric acid. Taken to incipient dryness, the sample was 

redissolved in high purity nitric acid (0.7mL), hydrochloric acid (0.2mL) and double distilled water 

(25mL), before quantitation for a suite of 61 metals by ICP-AES and ICP-MS using AccuTrace multi 

element standards (Choice Analytical, Australia).  

 

1.3.4. Data Handling 
Data was analysed using R statistical software (v 1.4).  

Significant differences (p < 0.05) between test group means was determined by one-way ANOVA, 

followed by pair-wise application of Tukey’s honestly significant difference (Tukey’s HSD) (p < 0.05). 

Principal components analysis (PCA) was conducting using the FactoMiner R package (Lê et al, 2008). 

The PCA analysis was constrained to the metals detected on average in otolith at concentrations 

greater than twice their respective limits of reporting. Subsequent linear discriminatory analysis 

(LDA) was conducted using the MASS R package (Venables and Ripley 2002). 

 

1.4. Results and Discussion 
1.4.1. Metals in Crude Oils 

The two oils used as dietary supplements in this study have very different metal profiles. The MCO is 

generally poor in metals compared to the HFO (Table 1). The HFO is highly sulfurous and contains 

relatively high amounts of Fe (37.9 ± 1.47 mg/kg), Ni (12.23 ± 0.71 mg/kg) and V (15.3 ± 0.9 mg/kg) 

compared to MCO (4.73 ± 1.85 mg/kg, 0.07 ± 0.06mg/kg and <0.03 mg/kg for Fe, Ni and V 



respectively). The two oils contain similar small quantities of Zn, Cr, Pb and Sn. Of particular interest, 

HFO contains higher amounts of Al (15.44 ± 8.98 mg/kg) and Ba (1.32 ± 0.08 mg/kg) compared to 

MCO (10.23 mg/kg and 0.11mg/kg respectively). 

 

1.4.2. Metals in Otolith 
Few metal species were detected above the limit of detection (LOD) in any of the 56 otoliths 

analysed by LA-ICP-MS. Only 11 of the 34 metals were detected on average more than twice their 

LOD: Al, Ba, Cr, Co, Cu, Pb, Fe, Mo, Mg, Ni, and Zn (Table 1).  

Table 1: Selected metals analysis of crude oils, and of otoliths of L. calcarifer exposed to dietary crude 

oil or metal-enriched diets. 

    Metals in Crude Oils (mg/kg)* Metals in otolith (mg/kg) § 
Metal MCO HFO Control     MCO   HFO     

Al Aluminium 10.23 ± 10.23 15.44 ± 8.98 0.004 ± 0.003 0.057 ± 0.040 0.170 ± 0.085 
Ag Silver 0.000 0.000 0.000 0.000 0.000 
As Arsenic 0.000 0.041 ± 0.008 0.120 ± 0.012 0.231 ± 0.007 0.090 ± 0.008 
Ba Barium 0.113 ± 0.072 1.311 ± 0.078 10.26 ± 0.29 11.63 ± 0.38 13.93 ± 0.86 
Cd Cadmium 0.004 ± 0.003 0.000 0.000 0.000 0.000 
Co  Cobalt 0.000 1.430 ± 1.116 0.001 ± 0.000 0.002 ± 0.001 0.001 ± 0.000 
Cr Chromium 0.298 ± 0.290 0.243 ± 0.131 1.006 ± 0.010 0.949 ± 0.008 0.928 ± 0.015 
Cu Copper 0.150 ± 0.150 0.000 0.371 ± 0.146 0.196 ± 0.016 0.189 ± 0.023 
Fe Iron 4.730 ± 1.854 37.90 ± 1.47 14.29 ± 0.24 11.82 ± 0.20 10.28 ± 0.11 
Mg Magnesium 1.197 ± 0.944 1.800 ± 0.468 24.63 ± 1.21 23.69 ± 1.18 30.85 ± 2.71 
Mo Molybdenum 0.000 0.052 ± 0.003 0.000 0.000 0.000 
Ni Nickel 0.070  ± 0.039 12.23 ± 0.71 1.284 ± 0.030 1.111 ± 0.045 0.939 ± 0.031 
Pb Lead 0.083  ± 0.03 0.042 ± 0.17 0.032 ± 0.031 0.001 ± 0.000 0.001 ± 0.001 
S Sulfur 393.6  ± 36.3 10250 ± 850 277.8 ± 11.8 235.9 ± 7.0 198.3 ± 6.1 

Sb Antinomy 0.000 0.459 ± 0.19 0.001 ± 0.000 0.000 0.000 
Se Selenium 0.061  ± 0.036 0.007 ± 0.007 0.016 ± 0.007 0.008 ± 0.004 0.022 ± 0.013 
Sn Tin 0.117 ± 0.103 0.128 ± 0.057 0.004 ± 0.003 0.001 ± 0.000 0.003 ± 0.002 
Sr Strontium 0.226  ± 0.191 0.432 ± 0.152 1533 ± 54 1585 ± 44 1548 ± 46 
Ti Titanium 0.000 3.240 ± 0.127 0.000 0.004 ± 0.004 0.002 ± 0.002 
V Vanadium 0.000 15.27 ± 0.87 0.000 0.000 0.000 
Zn Zinc 1.473 ± 0.117 1.194 ± 0.126 0.379 ± 0.053 0.320 ± 0.021 0.376 ± 0.023 

For the calculation of means, analyses below the limit of reporting were assumed to be zero. 
*Means of triplicate ICP-MS analysis of crude oil 
§ Means of in-situ LA-ICP-MS analysis of otoliths from all fish in each respective test group. 
Abbreviations: MCO = Montara crude oil, HFO = heavy fuel oil 



Fish fed any of the three diets enriched with metals did not show increased otolith concentrations of 

V, Ni or Fe compared to controls (Table 1). Given the high concentration of these metals in the 

enriched feeds, this implies that these metals are not incorporated via the dietary route of exposure 

into L. calcarifer otoliths. 

Between all test groups, there was no significant difference in otolith Zn concentrations (ANOVA, p = 

0.47), a metal known to be incorporated into fish otolith via the dietary route (Ranaldi and Gagnon 

2008a), even though it is present in both MCO and HFO (1.47 ± 0.12mg/kg and 1.19 ± 0.13 mg/kg 

respectively). This may be due to a lack of bioavailability of some porphyrin-bound metals in crude 

oils, which have a very low water solubility due to their planar hydrophobic structure (Mitchell, 

2016). Hence, porphyrin-secluded metals do not dissolve in the water-accommodated fraction 

(WAF) of spilled oils, and consequently are not available for absorption via the gills. Minimal 

absorption via the gastrointestinal tract would subsequently result in the elimination of porphyrin-

embedded metals via faeces. Evidences are available from studies conducted by Lopez-Duarte et al 

(2016) who reported that fish exposed to the Gulf of Mexico 2010 oil spill had levels of Ni and V in 

their otoliths comparable to those of reference fish. Metals from crude oils are also not retained in 

the muscle tissue of exposed fish. Grosser et al (2012) used ICP-MS analysis of the muscle tissue of 

post-spill Gulf of Mexico tuna to show no significant difference between metals concentration in 

muscle tissue of unexposed fish to compared to fish exposed to crude oil following the DWH 

incident.  

Seemingly, in fish exposed to crude oils Al was incorporated into otolith in a dose dependent manner 

(r2 = 0.85, using test group averages). Aluminium was detected in otolith at a mean concentration of 

0.17 ± 0.08 mg/kg in HFO-exposed fish, which was higher than in control fish at 0.003 ± 0.003 mg/kg, 

approaching significance (ANOVA, p = 0.06). Elevated mean concentrations of Al in otolith was also 

detected in MCO exposed fish at 0.06 ± 0.04 mg/kg, but this was not significantly different to Al 

levels in control fish (ANOVA, p = 0.20). Aluminium is not widely studied due to its comparatively low 



toxicity (Crichton, 2012), and this is the first time to our knowledge that Al uptake into otoliths has 

been reported.  

Likewise, Ba also appeared to be incorporated into the otolith of oil-exposed fish in levels 

proportional to those present in oil-spiked feeds (r2 = 0.91, using test group averages). MCO- and 

HFO-exposed fish had mean distal otolith Ba concentrations of 11.63 ± 0.38 mg/kg and 13.93 ± 0.86 

mg/kg respectively, significantly higher (ANOVA, p < 0.009) than control fish with 10.26 ± 0.29 

mg/kg. This agrees with field studies in the Gulf of Mexico, where fish exposed to Macondo Oil 

showed a five-fold increase in otolith Ba concentration compared to unexposed fish (Lopez-Duarte 

et al, 2016). Natural background Ba concentrations of 5.4 µg/kg in Indian Ocean surface seawater 

(Jeandal et al, 1996) may reasonably account for the high Ba concentration detected in otoliths of 

control fish.  

Porphryin-bound metals found in crude oils such as Ni, V, Mg, Zn, Fe, Mn, Co, and Cu (Scheer and 

Katz, 1975; Beisaga et al, 2000; Woltering et al, 2016) are the end-result of diagenesis and 

catagenesis of metalloproteins and other complex biologically active molecules in organic material. 

Chlorophyll and haemoglobin can be considered the most classic textbook examples, with atoms of 

Mg and Fe positioned in their respective active sites (Waldron and Robinson, 2009). Situated in the 

centre of a large molecular structure may shield Ni (Hausinger, 1997; Boer et al, 2014), V (Lyalkova 

and Yurkova, 1992; Pessoa et al, 2015; Gustafsson, 2019) and other porphyrin-bound metals in crude 

oils from interacting with other biological molecules. The accumulation of transition metals into 

otolith may also be complicated by the competition for these metals by other biologically active 

metalloproteins in the endolymph (Thomas et al, 2017). Other metals such as Ag, Al, Ba, Se and Sn 

however, are not known to have a functional role in metalloproteins, and are not generally 

incorporated into complicated, biochemically active molecular structures (Crichton 2012; Briffa et al, 

2020). This may explain why some metals were found in otolith while others were absent - Al and Ba 



might not be sequestered inside large molecular structures in crude oils and are hence more 

biologically available.  

Seawater typically contains Mg at very high concentrations around 1200 mg/kg (Bruland et al, 2013; 

Mewes et al, 2014). This likely caused interference for results of Mg found abundantly in otoliths of 

fish exposed to MCO (23.69 ± 1.18 mg/kg) and HFO (30.85 ± 2.71 mg/kg), which although high, were 

not significantly different (ANOVA, p < 0.020) from Mg detected in control fish (24.63 ± 1.21 mg/kg). 

Although Mg is present in both MCO (1.20 ± 0.94 mg/kg) and HFO (1.80 ± 0.47 mg/kg), it cannot be 

excluded that Mg found in analysed otoliths largely originated from seawater and was absorbed via 

the gills rather than from crude oils spiked into fish feed (Limburg et al, 2018). Similarly, B is present 

in seawater at an approximate concentration of 5 mg/kg (Kabay et al, 2010; Wolska and Bryjak, 

2013; Bruland et al, 2013) and was detected in all otoliths of fish exposed to crude oils at 

concentrations around 1mg/kg, not significantly different from controls (ANOVA, p = 0.61). 

 

1.4.3. Multivariate Analysis 
Four otolith metals were selected for inclusion in the multivariate analysis (Al, As, Ba, and Cr) based 

on the following criteria: they are metals not present in seawater in concentrations above 0.1mM 

(e.g. B, Mg and Sr), may be incorporated into otolith via the dietary exposure route (unlike Pb, Sr or 

Cu), and they are not known to be commonly found in porphyrins or other metalloproteins (e.g. Fe, 

Mg, Co, Zn, Mn, Ni, and V) and are hence more likely to be bioavailable in crude oils. The four 

selected metals conformed to these characteristics, are also present in the crude oils used in this 

study, and were detected in otoliths of oil-exposed fish at levels (on average) at least double their 

respective analytical LOD. Other metals such as Ag, Se and Sn were notably excluded from this 

analysis as they were not on average detected in otolith of exposed fish in the current study at more 

than double their respective LOD, even though they meet all the other criteria. 



The PCA of the otolith concentrations of the four included metals (Al, As, Ba, and Cr) produces two 

principal component factors (PC1 and PC2) which together retain 69.2% of the total variability of the 

dataset (Figure 2). Individuals within test groups displayed a large degree of variation in otolith 

metals composition, with a mean coefficient of variation for all metals concentrations of 1.00 within 

each test group. Despite this high degree of variation, the PCA plot shows a separation of the MCO, 

HFO and control test groups, which was confirmed by the application of Tukeys’s HSD to the derived 

Cartesian coordinates for each test group (p<0.046).  The position of individual fish on the PCA axes 

is driven predominantly by their respective concentrations of Al and Ba (Figure 2), which are higher 

in HFO compared to MCO (Table 1), and hence result in HFO-exposed fish positioned further in the 

direction of these respective variables along the x-axis (PC1) within the ordination plot (Figure 2). A 

subsequent LDA of the PCA output with leave-one-out cross validation (11 out of the 12 replicates 

from each test group used as a training set, followed by a prediction of the exposure test group for 

the 12th fish) showed a 88.9% success rate for the correct prediction of exposure test group for each 

fish based on their respective otolith microchemistry profiles of Al, Ba, Cr and As (Figure S1). 

 

 



 

Figure 2: Principal components analysis (PCA) of four otolith metal levels in L. calcarifer exposed via 
the dietary route to Montara crude oil (MCO), or to heavy fuel oil (HFO).  

Dot points are individual fish, larger circles are the respective geometric means. 

 

The significance of this is that multivariate analysis of otolith microchemistry can provide a 
supplementary line of evidence to demonstrate fish exposure to crude oil. If fish suspected of having 
been exposed to a specific oil are available for comparison to unexposed fish, selective otolith 
microchemistry PCA and LDA may also be able to provide corroborating evidence to identify a 
specific oil in an environmental exposure scenario. Further research involving field studies (in the 
event of a future oil spill) would be needed to explore this idea, however. 

The fish used in this study were juveniles less than a year old by the end of the exposures, and the 

samples of otolith analysed near the distal edge represent the most recent ear-bone growth. Spot 

LA-ICP-MS analysis can be targeted to a specific year in a fish’s life history using otolith rings. In this 

way multivariate analysis of otolith microchemistry of selected metals such as Al, As, Ba and Cr (and 

possibly also other metals such Ag, Se and Sn) can assist environmental managers conducting oil spill 

investigations or litigations to identifying historical fish exposures to crude oil even after all other 



signs of exposure have dissipated in the environment. However, the permanency of metal 

deposition, especially Ba and Al, in otoliths would need to be demonstrated before this approach 

can be used in studies investigating exposure months or years after an oil spill incident. 

 

1.5. Conclusions 
The classical metals used in oil fingerprinting (V and Ni) are not absorbed by fish via the dietary route 

and consequently, are not deposited in the otolith. In crude oils, these metals are found embedded 

in porphyrins which likely have low bioavailability. In contrast, Al and Ba contained in crude oils are 

absorbed via dietary routes and deposited in significant levels in otoliths. Based on metals that 

accumulate in significant levels in otoliths following dietary exposure to crude oils, PCA and LDA can 

discriminate the oil to which fish were exposed. The rapid, low-cost analysis of otolith 

microchemistry combined with crude oil metal content measurement has the potential to assist oil 

spill investigations in identifying fish exposure to crude oil, even after all other signs of exposure 

have dissipated in the environment. 
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