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Abstract 

The controlled operation of hydrocyclones in mineral processing circuits leads 

to improved efficiency and cost benefits. In industry, hydrocyclones are typically only 

monitored at the cluster level and use low-level control for stable operation. Sensing 

options to monitor individual hydrocyclone operation and product quality have been 

developed, along with advanced control methods. However, they have not found 

wide-spread industrial implementation. This research project explored image-based 

hydrocyclone performance monitoring using convolutional neural networks and 

hydrocyclone underflow video footage. Coupled with this advanced level of process 

monitoring, model-free reinforcement learning was explored for process control 

performance benefits. 

Proof-of-concept investigations were performed using pretrained 

convolutional neural networks to produce hydrocyclone operational state classifiers 

on footage from a fixed high-speed camera filming a laboratory hydrocyclone and 

varied footage from multiple sources. A degree of robustness to the types of visual 

challenges that would be experienced in an industrial system were indicated. Further 

hydrocyclone operational state detector development was performed using fixed 

camera industrial footage, complicated by the lack of applied lighting. The trained 

classifier model’s individual frame performance deteriorated on transition operating 

state periods and crop positions outside that used in training. It did however present 

strong discernment between correct fan state operation and the fault states (roping 

or blocked) under industrial conditions. Applied sensor considerations and the 

development of a health check to monitor for obstruction or camera movement was 

also presented.  

Hydrocyclone underflow particle size inference from video footage was also 

investigated. Initial test work was performed using high-speed footage of a 

laboratory hydrocyclone and fine-tuning a pretrained convolutional neural network 

for the new task of outputting a particle size estimate. The discernment between fine 

and coarse particle sizes of the test dataset was sufficient to warrant further 

investigation. Standard frame rate video footage and operating data from an 

industrial hydrocyclone circuit was then collected. Neural network based models for 
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hydrocyclone underflow particle size prediction were developed from images only, 

circuit sensor data only, along with combining images and sensor data. The image-

based models using convolutional neural networks showed stronger test dataset 

performance than the sensor only models. The combination of image and sensor data 

in the model architecture did not yield a further performance improvement under 

the scenario trialled. 

A reinforcement learning algorithm, without access to a process model, was 

trialled interacting with a simulated open circuit hydrocyclone system. The operating 

data available to the reinforcement learning controller was that typically measured 

in such circuits, along with hydrocyclone operating state and underflow particle size 

information. Three continuous actions were available for hydrocyclone control, and 

with a meaningful reward function devised along with safety limits considered, the 

controller’s behaviour was explored under several scenarios. The inclusion of historic 

sensor readings was used to compensate for incomplete state information and 

sensor noise. The performance could deteriorate under certain scenarios, 

highlighting that control override protections would be prudent to include in applied 

industrial control. The controller was able to learn to avoid the hydrocyclone roping 

fault state and operate near limits when the set points were not achievable. The 

controller was able to generalise to conditions outside those experienced in training 

and handle set point changes. 

Through this work, proof-of-concept and applied considerations for 

convolutional neural network based hydrocyclone state detector and underflow 

particle size inference sensors were demonstrated. This forms the foundation for the 

development of industrial online monitoring of hydrocyclones through image 

analysis using this method. The behaviour of model-free reinforcement learning in a 

mineral processing context, incorporating additional information provided by the 

sensors developed, was found to be desirable. Building upon the practical 

considerations addressed, the future production of a safe and stable industrial 

reinforcement learning method would be beneficial for advanced circuit control. 
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1 Introduction 

1.1 Background 

Advances in machine learning through the successful incorporation of deep 

neural networks have seen impressive results in numerous domains. Human level 

image classification task performance in the ImageNet Large Scale Visual Recognition 

Challenge (ILSVRC; Russakovsky et al., 2015) was exceeded by Microsoft’s ResNet (He 

et al., 2015) using a deep convolutional neural network (CNN). Mnih et al.’s (2015) 

deep Q-network (DQN) incorporated CNNs and deep reinforcement learning (RL) to 

learn to play a range of Atari 2600 computer games at beyond human-level 

performance, with only game screen pixels and score as inputs. 

The use of CNNs for game board representation along with deep RL and 

Monte Carlo tree search allowed AlphaGo to beat champion players of the strategy 

board game Go (Silver et al., 2016). These results in a range of sensing, control, and 

decision-making tasks have driven interest in how such techniques can be applied to 

industrial problems. With the availability of open-source software such as Keras 

(Chollet & others, 2015a), Tensorflow (Abadi et al., 2015), DIGITS (NVIDIA 

Corporation, 2014) and Caffe (Jia et al., 2014), along with the release of pretrained 

CNN models, this area of research and development has become more accessible. 

Hydrocyclones form a core component in a range of mineral processing 

circuits, in particular comminution circuits. They influence the particle transfer size 

to downstream processing units and consequently valuable mineral liberation. 

Through this their controlled operation has a meaningful effect on operating costs, 

such as through aiding in efficient comminution and the minimisation of reagent 

requirements for flotation or leaching circuits, along with ultimately the achievable 

final product recovery and grade. 

Continuous monitoring of hydrocyclones typically only occurs at the cluster 

level (e.g., through tracking flow rates, slurry density, and feed inlet pressure) rather 

than individual hydrocyclone performance. By monitoring individual hydrocyclones 

another level of detail becomes available to assess the circuit, improving the ability 

to detect and respond to operational faults and product changes. One such proposed 
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option is image analysis of hydrocyclone underflow discharge appearance, which has 

been used to determine the operating state (Janse van Vuuren et al., 2011; Janse van 

Vuuren et al., 2010) and indicated as containing useful information for particle size 

inference (Aldrich et al., 2015; Uahengo, 2014). Given the performance of CNNs for 

image analysis tasks, their ability to produce accuracy and reliability image-based 

hydrocyclone sensors was worth investigating. 

Within mineral processing circuits hydrocyclones are also typically operated 

by low-level control such as Proportional-Integral-Derivative (PID) control loops. 

These methods can be implement with the available cluster level sensor readings to 

aid in providing stabile operation, though not necessarily optimal control. High-level 

advanced control for comminution circuits have been developed incorporating 

techniques such as model predictive control (MPC; Mintek, 2011b) and real-time 

optimisation (RTO; Coetzee & Ramonotsi, 2016). Though given the requirement of 

steady-state modelling for RTO and process dynamic modelling for MPC this can be 

challenging to achieve on complex and insufficiently defined mineral processing 

systems (Jiang et al., 2018). For RL a policy to control the system is developed through 

interacting with it and can occur through model-free methods such as the deep 

deterministic policy gradient (DDPG) algorithm (Lillicrap et al., 2015). Given DDPG’s 

indicated extension to process control (Spielberg, 2017), deep RL presents an 

alternative for industrial systems to explore for potential benefits and limitations. 

1.2 Objectives 

The broad aim of this project was to explore the potential for CNNs to be used 

in image-based monitoring of hydrocyclones, and RL in the control of hydrocyclones. 

There were three core objectives which were investigated 

1. The applicability of CNNs for image-based hydrocyclone state detection, 

through monitoring the underflow discharge. Ideally, the resulting sensor 

would require little to no site-specific retraining and able to be utilised under 

industrial conditions. 

2. The applicability of CNNs for image-based hydrocyclone underflow particle 

size inference, through monitoring the underflow discharge. Whether an 
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industrial sensor can be trained for a specific hydrocyclone from the 

underflow images alone or through incorporation with other sensor 

information was examined. 

3. The applicability of RL for hydrocyclone control was be explored, 

incorporating the outputs from the sensors developed above (or a related 

competing method). 

While the outcome of each objective is valid as a standalone sensor or control 

method, their interrelation tied them together in this project as a whole. An image-

based state detector would be required for operational fault detection. It would also 

provide a check that the output of the image-based particle size sensor is likely to be 

valid, as calibration would only be performed on the desired fan state operation. The 

introduction of these additional variables opens the possibility of more advanced 

process control options, of which RL could hold potential for the typically partially 

defined and noisy circuits containing hydrocyclones. 

1.3 Thesis Outline 

The thesis structure consists of an introductory first chapter, followed by a 

literature review in the second chapter. The literature review initially covers the 

basics of hydrocyclone operation and empirical modelling. The current progress of 

research and commercialisation of hydrocyclone operating state and particle size 

monitoring is then covered. Next background information on CNNs is included as 

they form the basis of the subsequent image-based monitoring investigations. 

Hydrocyclone control options are then be explored, followed by a focus on RL and 

specifically the DDPG (Lillicrap et al., 2015) algorithm to form the basis of the 

subsequent hydrocyclone RL control investigation. 

The third through fifth chapters will then cover the hydrocyclone monitoring 

and control investigations undertaken, with methods and methodologies used 

covered within their relevant section. The third chapter explores the use of CNNs for 

image-based hydrocyclone state detection. Initially covering laboratory-based proof 

of concept work, then moving onto more industrially relevant conditions, issues, and 

applied sensor considerations. The fourth chapter explores the use of CNNs for 
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image-based hydrocyclone underflow particle size estimation. Again, with initial 

laboratory-based proof of concept work undertaken, followed by an investigation 

under industrial conditions and with consideration for including additional sensor 

information. 

The fifth chapter explores the use of RL for hydrocyclone control with a DDPG 

(Lillicrap et al., 2015) based algorithm interacting with a simulated open circuit 

hydrocyclone system. The simulated environment was progressively modified to 

represent challenges and requirements for industrial hydrocyclone control, with the 

resulting performance assessed. The final sixth chapter concludes the findings of the 

investigations and presents recommendations for future work. 

2 Literature Review 

2.1 Hydrocyclone Basics 

Hydrocyclones have found widespread use for solids classification and 

dewatering tasks in mineral processing plants, due to their simplicity and relatively 

small footprint (Napier-Munn et al., 2005). Figure 2-1 illustrates some of the key 

physical components of hydrocyclones and the flow behaviour during operation. 

Slurry enters the hydrocyclone via the feed inlet, where design and physical 

constraints within the unit result in the production of a spiral flow which travels 

downwards and exits via the apex (Napier-Munn et al., 2005). This flow causes the 

particles of the slurry stream to be forced towards the wall of the unit, thus displacing 

water which moves towards the centre of the unit, with a secondary inner spiral flow 

forming which travels upwards and exits via the vortex finder (Flintoff & Knorr, 2019; 

Napier-Munn et al., 2005). Particle separation occurs through the balance of forces 

involved, with the coarse/dense particles along with minimal water forming the 

underflow stream. While the effect of fluid drag forces on the fine/light particles 

results in them drawn with the water to form the overflow stream (Flintoff & Knorr, 

2019; Napier-Munn et al., 2005). 

 



5 
 

Figure 2-1 

Hydrocyclone Parts and Flow Behaviour 

 

Note. Hydrocyclone flow behaviour (left) and key parts (right). From Mineral 

Comminution Circuits: Their Operation and Optimisation (p. 310), by T. J. Napier-

Munn, S. Morrell, R. D. Morrison, and T. Kojovic, 2005, Julius Kruttschnitt Mineral 

Research Centre. Copyright 2005 by Julius Kruttschnitt Mineral Research Centre. 

Reprinted with permission. 

 

Typical operation for classification purposes sees the generation of an air core 

within the unit and the characteristic fan shaped underflow profile. Under conditions 

were the air core collapses the underflow discharge stream takes on a rope-like 

appearance. For classification purposes this is usually considered a fault state 

exhibiting a higher underflow solids concentration and coarser overflow discharge 

(Napier-Munn et al., 2005). A number of studies have been undertaken to predict 
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conditions where this roping state is likely to occur, with such roping criteria 

presented in Equation 2-1, Equation 2-2, and Equation 2-3. 

 

Concha et al.’s (1996; as cited in Gupta & Yan, 2006) roping criteria 

𝘋𝖠

𝘋𝖵
< 0.45                   (2-1) 

where  DA = apex (spigot) diameter (cm) 

DV = vortex finder diameter (cm) 

 

Mular & Jull’s (1980; as cited in Gupta & Yan, 2006) roping criteria 

VU > 0.5385 VO + 0.4911                 (2-2) 

where  VU = underflow solids concentration by volume (v/v) 

VO = overflow solids concentration (v/v) 

 

Laguitton’s (1985; as cited in Gupta & Yan, 2006) roping criteria 

VU ≥ 0.56 + 0.20 (VF - 0.20)                        (2-3) 

where  VF = feed solids concentration (v/v) 

 

If the underflow solids content becomes too high to discharge freely or if 

foreign materials obstruct the hydrocyclone apex/spigot an underflow blockage can 

occur. Then with minimal, if any, material able to discharge from the underflow the 

hydrocyclone feed reports directly to the overflow, with the intended solids 

classification or dewatering task unable to occur. Figure 2-2 illustrates the key 

operating states’ underflow profiles, with the desired fan shape of normal operation 

contrasted with the rope-like appearance of the roping state or lack of underflow 

discharge of the blocked state. 
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Figure 2-2 

Hydrocyclone Operating States’ Underflow Profiles 

 

Note. From “Operational State Detection in Hydrocyclones with Convolutional Neural 

Networks and Transfer Learning,” by K. C. Giglia and C. Aldrich, 2020, Minerals 

Engineering, 149, p. 2 (https://doi.org/10.1016/j.mineng.2020.106211). Copyright 

2020 by Elsevier. Reprinted with permission. 

 

For assessing the solids classification performance of a hydrocyclone, cut size 

(d50) is a commonly used efficiency parameter being the size of feed particles which 

would be distributed 50:50 between the discharge streams. Corrected cut size (d50c) 

is then an adjustment to account for separation deemed to occur by classification 

forces alone, neglecting particles assumed to bypass classification such as via the 

water in the underflow stream (Napier-Munn et al., 2005). Other sources also noted 

to contribute imperfect classification in hydrocyclones include the bypassing of 

coarse feed material to the overflow, the capture of fine particles in the thickened 

coarse particle flow, turbulent mixing within the unit, and specific physical properties 

(e.g., size, shape, and density) of the solids involved (Napier-Munn et al., 2005).  Table 

2-1 summarises how hydrocyclone design, operating, and feed slurry properties can 

influence the corrected cut size, and thus how hydrocyclone performance can be 

manipulated to reach desired product size requirements. 
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Table 2-1 

Hydrocyclone Variable Influence on Corrected Cut Size 

Variable Change Cut Size (d50c) 
↑ Apex/Spigot Diameter Finer 
↑ Hydrocyclone Length Finer 
↑ Feed Solids Specific Gravity Finer 
↑ Feed Flow Rate or Pressure Finer 
↑ Vortex Finder Diameter Coarser 
↑ Inlet Diameter Coarser 
↑ Hydrocyclone Diameter Coarser 
↑ Feed Solids Concentration Coarser 
↑ Number of Hydrocyclones Online 
(with overall feed flow rate constant) 

Coarser 

Note. A summary of the effect of increasing the stated design, operating and slurry 

property variables on the corrected cut size, as described in Gupta and Yan (2006, p. 

384) and Napier-Munn et al. (2005, p. 329). 

 

2.2 Empirical Models 

A number of empirical hydrocyclone models have been developed to predict 

key engineering variables and find use in design and optimisation work. One of the 

earliest models was that by Plitt (1976), where equations for inlet pressure, overflow 

to underflow volumetric split, separation sharpness and corrected cut size were 

developed by correlating experimental data with a range of hydrocyclone design and 

operating parameters. Further revision of the Plitt model led to the Plitt-Flintoff 

model (Flintoff et al., 1987) including additional calibration factors and refinement of 

the original equations. Equation 2-4 presents the revised corrected cut size model, 

including a calibration factor, fluid viscosity effect, and compensation for solids 

density effect (with normalisation given original silica solids based experimental 

dataset). 
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Flintoff et al.’s (1987) Plitt-Flintoff corrected cut size model 

d50 =  
𝐹 39.7 𝘋𝖢

.  𝘋𝖨
.  𝘋𝖵

.  η .  e .  

𝘋𝖠
.  𝐻 .  Q .  

ρ − 1
1.6

 (2-4)

where F = calibration factor 
DC = hydrocyclone diameter (cm) 
DI = feed inlet diameter (cm) 
η = fluid viscosity (cP) 
VF = feed solids concentration (% v/v) 
H = hydrocyclone height, tip of vortex finder to apex (cm) 
Q = feed flow rate (l/min) 
ρs = feed solids density (g/cm3) 
𝑓 = exponent for ρs effect on d50c 

(e.g., 𝑓 = 0.5 laminar flow, 𝑓= 1 turbulent flow) 

 

Gutiérrez and Sepúlveda’s (1986; as cited in Sepúlveda, 2012) CIMM model is 

another empirical model of note. This was also derived from a large experimental 

dataset and includes similar equations to that of Plitt’s model, along with an 

additional slurry short-circuit correlation. The CIMM model finds use in Moly-Cop 

Tools Excel spreadsheet based open circuit hydrocyclone simulator Cyclosim_Single 

(Sepúlveda, 2012). The Nageswararao model (Nageswararao, 1995) presents 

correlations for water and slurry volumetric recovery to underflow, throughput to 

inlet pressure, corrected cut size, and reduced efficiency curve. With the 

Nageswararao model and subsequent modifications finding use in JKtech’s steady 

state comminution circuit simulator JKSimMet (Nageswararao, 1995; Napier-Munn 

et al., 2005). Narasimha et al. (2014) built upon historic hydrocyclone empirical 

modelling datasets to address limitations that were identified. They incorporated 

learnings from hydrocyclone computational fluid dynamics studies to produce 

models, including for sharpness of cut, which have been incorporated in the recent 

JKSimMet version 6.0. 

Subsequent works have extended upon the traditional empirical models with 

additional variables and modelling techniques. Eren et al. (1996) used a shallow 

artificial neural network (ANN) to predict hydrocyclone corrected cut size. This was 

based on closed circuit laboratory hydrocyclone data using silica ore, with the dataset 
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split 50% training and 50% testing. The resulting model’s predictions were 

comparable with those of a previous empirical model developed from this 

experimental system (Gupta & Eren, 1990) which used the same input variables: feed 

flow rate, feed solids concentration, apex diameter, hydrocyclone height, and slurry 

temperature. The ANN model’s predictive performance was also better than that of 

Plitt’s model, which was expected given the ANN was trained on data specific to this 

system. Eren, Fung, Wong, and Gupta (1997) then extended upon the previous ANN 

model with additional unconventional variables, such as overflow and underflow 

flow rates and solids split ratio, yielding further improvements.  

Further investigation into the use of shallow ANNs on predicting the corrected 

cut size produced by a hydrocyclone test rig was undertaken by van Loggenberg et 

al. (2016). Their dataset was split 60% training, 20% validation, and 20% testing with 

an increasing number of design and operating variable added to the ANN models 

trialled. Variables such as inlet pressure, apex diameter, feed solids concentration, 

feed flow rate and angle of underflow discharge were investigated. The best 

performing model comprised eight input variables, including unconventional 

variables also considered by Eren, Fung, Wong, and Gupta (1997) specifically 

overflow flow rate and density along with underflow flow rate. This model was then 

compared to the empirical Plitt-Flintoff model, with the ANN based model having a 

lower prediction error on a range of metrics.  

When sufficiently characterised and calibrated, traditional empirical models 

are powerful tools in mineral process design and optimisation. Recent work with 

ANNs, and including additionally measured variables, have shown that improved 

system specific modelling for the likes of corrected cut size can be achieved. 

2.3 Operational State Detection 

The development of online hydrocyclone state detection has occurred 

through exploiting different observable phenomenon related to these distinct 

operating conditions. These investigations have led to a range of sensing options, 

many of which have progressed from research to commercialisation. This section 

details several detections methods, focussing on those which could plausibly be 
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retrofit to existing hydrocyclone systems, and subsequently accelerate their uptake 

in industry. Thus, methods such as the gravimetric sensor discussed in Neesse et al. 

(2004), which exploits solids loading differences exhibited by the operating states, 

was not deemed relevant as the implementation requires flexible feed and overflow 

piping to facilitate weighing cell function. 

2.3.1 Electrical Tomographic Methods 

Gutiérrez et al. (2000) investigated using electrical impedance tomography 

(EIT) to monitor the internal flow behaviour of a hydrocyclone. In a single plane 

around the external circumference of a hydrocyclone (just below the feed inlet) 16 

electrode plates were mounted to facilitate resistivity imaging. A range of calcium 

silicate slurry feed solids concentrations and flow rates were trialled. When formed, 

the air core presented as a light region in the grey scale image near the centre of the 

unit, due to it having a higher resistivity than water present in the slurry. The authors 

proposed that EIT could thus be used for fault state detection, such as by monitoring 

the mean and standard deviation of the data, noting that without an air core the 

slurry within the unit appears more uniform (resulting in a lower standard deviation). 

Williams et al. (1999) applied electrical resistance tomography to both pilot 

plant and operating industrial hydrocyclones. Eight planes of electrodes were 

distributed along the length of the hydrocyclone (16 electrode discs per plane), 

allowing 3D conductivity mapping to also be investigated. The presence and nature 

of the air core was able to be imaged through the conductivity differences of the 

phases within the hydrocyclone. This allowed for identification of roping, underflow 

blockage, and spigot failure or excessive wear fault states. Williams et al. (1999) 

demonstrates the robustness for electrode use in industry and the suitable imaging 

frequency of electrical tomographic techniques (e.g., in the order of 500 FPS for EIT 

indicated by Gutiérrez et al., 2000). 

Metso Outotec (2021) have released the commercial product CycloneSense 

where 12 electrodes are contained within a gasket that is then mounted between 

the hydrocyclone upper and lower cones, enabling it to be readily retrofit to existing 
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hydrocyclones. This demonstrates the maturity tomographic methods have now 

reached for continuous hydrocyclone air core monitoring in an industrial setting. 

2.3.2 Acoustic Methods 

Olson and Waterman (2006) patent for Krebs Engineers (now FLSmidth) 

presents the use of an ultrasonic sensor in determining whether a hydrocyclone is 

operating in fan or rope state. The sensor is attached to a cylindrical splash skirt, 

which is mounted to the hydrocyclone body just underneath the apex. This system 

exploits the fact that under typical fan operation the underflow will strike the splash 

skirt and produce a characteristic signal. As the fan collapses the impact with the skirt 

will change (along with the signal detected), until ultimately under rope conditions 

the underflow does not impact the splash skirt. Buttler et al. (2019), a subsequent 

FLSmidth patent application, refers to a wireless sensor extension with the 

commercially available FLSmidth KREBS SmartCyclone wireless sensor having a 1 s 

measurement rate and 5 s reading update rate (FLSmidth, 2021). 

Neesse et al. (2004) demonstrated that the differences in vibration exhibited 

by hydrocyclones when operating in fan or rope state can be exploited for state 

detection. In their case, a single accelerometer sensor was mounted externally on 

the hydrocyclone body near the apex, with amplification and low pass filtering 

applied in produce a vibration frequency spectrum. Bowers et al.’s (2019) patent for 

Emerson Electric details a system using dual accelerometer sensors, attached to each 

hydrocyclone near the overflow and underflow regions. Band pass filtering is applied 

to the vibration signals, and by comparing the signals over time and in relation to 

each other in certain frequency ranges roping and blocked underflow operating 

states can be identified. 

Putz De La Fuente’s (2019) patent application also presents a vibration-based 

system, though in this case requiring a modified hydrocyclone overflow pipe setup. 

The sensor assembly is attached to an opening in the overflow pipe, at the 

hydrocyclone end of the pipe. The assembly consists of a membrane which forms 

part of the pipe’s internal wall, and an accelerometer sensor attached to the external 
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side of the membrane. By monitoring the membrane’s vibration characteristics in 

certain frequency ranges roping operation can be identified. 

An acoustic sensor which clamps around the outside of each individual 

hydrocyclone overflow pipe is used in CiDRA’s CYCLONEtrac Oversize Monitoring 

(OSM) system (CiDRA, 2018). The impact of large particles (≥6 mm) on the walls of 

the pipe creates strain which is detected by the sensor encompassing the pipe 

(O'Keefe et al., 2014), and with a 4 s reading update rate (CiDRA, 2018). O'Keefe et 

al. (2014) demonstrated that by monitoring the frequency and history of large 

particle impacts, events in which excessive coarse particles are present in the 

overflow can be identified (e.g., hydrocyclone roping or blockage). Though they also 

note that conditions such as high hydrocyclone feed solids concentration and 

damage to mill trommel screens or hydrocyclones can also result in excessive coarse 

material in the overflow stream, so interpretation of the readings based on individual 

hydrocyclones and the circuit as a whole is required. For hydrocyclone circuits in 

which the feed stream contains particles greater than the detectable size, 

CYCLONEtrac OSM presents an option for fault state detection that can be easily 

retrofitted. 

2.3.3 Underflow Probe Methods 

Hulbert’s (1992) patent for Mintek details the use of a probe suspended from 

an arm which can rotate about a fixed point. They describe the probe as being 

encouraged to ride on the external surface of the underflow stream, by gravity or an 

applied spring. The resulting angle of the arm could then be detected by optical or 

ultrasonic based methods, and subsequently allow the underflow discharge profile 

to be determined and correlated to operating state. Strudwicke et al.’s (2017) patent 

application for Weir Minerals details an extended probe, fixed to the spigot housing, 

which protrudes into the hydrocyclone underflow discharge region. A vibration 

sensor, whether mounted within a channel in the probe or closer to the mounting 

point, could then detect the vibrations caused by the underflow discharge fan striking 

the probe. By positioning the probe in such a way that a roping discharge stream 

does not contact it then the absence of vibration could be used to signify roping state 

(or potentially blockage). 
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While both methods describe the requirement for abrasion resistant 

materials, the nature of these physical contact-based methods still present the 

potential for wear, damage, and material build-up to influence their long-term 

viability compared to some of the non-contact state detection methods that have 

also been proposed. Neesse et al. (2004) present non-contact methods in which a 

capacitance probe, or laser proximity switch, in the underflow discharge region is 

used to detect whether a fan discharge is occurring or not. While these would also 

be protected and not intended to be in direct contact with the underflow discharge, 

the probe’s presence in the underflow region still increases the potential for damage 

compared to remote sensing methods, such as optical. 

2.3.4 Optical Methods 

Section 2.3.4 contains material previously published in “Operational state 

detection in hydrocyclones with convolutional neural networks and transfer 

learning,” by K. C. Giglia and C. Aldrich, 2020, Minerals Engineering, 149, p. 2 

(https://doi.org/10.1016/j.mineng.2020.106211). Copyright 2020 by Elsevier. 

Optical sensing methods for hydrocyclones exploit the fact that the underflow 

discharge profile acts as an external means of identifying the operating state, as 

noted in Section 2.1 and illustrated in Figure 2-2. Neesse et al. (2004) describes how 

a charge-coupled device camera could be used to capture the reflection of a 2D laser 

off the underflow discharge. With the laser beam presented at an angle and the 

camera perpendicular to the hydrocyclone, they show the collapse of a broad fan 

shaped underflow would see the reflected projection line both shift lower and 

become narrower. Pattern recognition could then be used in assessing the profile 

and subsequently classifying the discharge as fan or rope, with an extension for a lack 

of significant projection line to represent underflow blockage being plausible. 

Similarly, Mintek (2011a) presents CyLas as a commercially available laser-based 

sensor, which monitors the distance from mounting point to the underflow discharge 

to determine discharge angle (Giglia & Aldrich, 2020). 

As previously discussed in Giglia and Aldrich (2020), another optical method 

proposed to exploit the physical differences in the underflow profile of different 
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operating states is image analysis, thus negating the use of lasers and providing a 

richer source of information. Early work by Petersen et al. (1996) and van Deventer 

et al. (2003) was based on the use of a video camera and additional lighting to 

determine the underflow spray angle on both laboratory and industrial 

hydrocyclones. Video frames were enhanced via filtering and thresholding 

techniques to isolate the edges of the spray profile from which the spray angle could 

be calculated. Janse van Vuuren et al. (2010) and Janse van Vuuren et al. (2011) 

extended this work, but with a slightly different approach. Rather than processing 

the video frames as a whole, only the underflow width at a fixed horizontal plane was 

considered, thus tracking the same region over time given by a fixed camera. 

Individual frames were extracted from the video footage, converted to grey scale, 

and enhanced via contrast/brightness adjustment to improve the prominence of the 

underflow stream. The pixels’ intensities along a horizontal frame were then 

extracted to give 1D intensity spectrum from which the spray profile could be 

characterised (Giglia & Aldrich, 2020). 

In Janse van Vuuren et al.’s (2011) case, for every 1,800 frames the spectra 

are assessed to establish a search region from which motion detection between 

consecutive frames was used to determine the underflow width. The phase space 

was constructed using the 30 frames underflow width moving average for the current 

frame and a specified historic frame (to incorporate system dynamics). A single class 

support vector machine (SVM) classifier, using the slurry fan state as training data, 

and tested against the fault states (dilute fan or roping) was trialled on a number of 

different ore types. They found this method to be robust in handling system 

vibrations, background, and random noise, but had issues with foreground noise and 

conditions with low contrast between discharge and background. 

For Janse van Vuuren et al. (2010) a technique involving image normalisation 

and the quantile distribution was used to determine which points to include in the 

underflow width measurement. A range of classification modelling techniques were 

trialled incorporating underflow width, hydrocyclone feed pressure and solids 

concentration to differentiate between fan, rope, and unstable operational states 

(with the potential for extension to detect blocked states also noted). The neural 
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network based classifier resulted in the highest test set accuracy, though with the 

transition state detection accuracy distinctly lower than that obtained for the fan and 

rope states. Overall, the image-based hydrocyclone state detection research covered 

has demonstrated the potential viability of such methods through the extraction of 

engineered features along with applying various image processing techniques to aid 

in discerning the underflow profile (Giglia & Aldrich, 2020). 

2.3.5 Summary 

Numerous hydrocyclone operational state sensing methods have been 

presented, including potentially industrially viable or already commercially available 

options. The gravimetric methods would likely require too extensive modifications to 

existing systems to warrant retrofitting compared to the other methods presented. 

The recent release of a commercial tomographic sensor capable of being retrofitted 

to hydrocyclones shows the maturity of this method for industrial use. The potential 

service life and maintenance requirements of underflow probe-based methods may 

limit their appeal compared to remote sensing options. A range of acoustic-based 

methods are also mature hydrocyclone operational state detection options, with a 

number of commercial products able to be retrofitted to existing systems. Optical 

methods do however present a potentially viable alternative state detection method, 

requiring no modification to the hydrocyclone structure to facilitate their use. 

Commercial laser-based methods are currently available, but the progress of image-

based methods does offer an attractive alternative as a potential non-contact sensing 

option. 

2.4 Online Particle Size Monitoring 

Particle size distribution is useful in hydrocyclone performance monitoring, 

be it that contained in the overflow or underflow stream. Particle size measurement 

or inference will often take the form of stating the screen aperture a given 

percentage of solids would pass through (e.g., 80% for P80 and 50% for P50), or the 

percentage of solids that would pass through a given screen aperture. While manual 

checking of hydrocyclone stream sizing by screening methods is often performed 

during process monitoring, methods for automated and sufficiently frequent online 
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particle size measurement or estimation would be a requirement for continuous 

control and optimisation. 

2.4.1 Sub-sample Measurement 

Commercial online sizing measurement of slurry streams are currently 

available where a sub-sampling cut of the stream is taken and transferred to a unit 

for analysis. Outotec’s PSI 500i analyser uses laser diffraction to provide a volumetric 

particle size distribution, being applicable to particle sizes 0.5–1000 μm and with a 

180 s sample analysis frequency (Metso Outotec, 2020). According to Outotec (2009), 

the PSI 300 analyser uses a physical calliper which randomly captures and measures 

particles at a rate of 2 measurements per second. Over a period of time this process 

can be considered a representative sample and used to present a particle size 

distribution, being applicable to particle sizes 25–1000 μm and with a 70–90 s sample 

analysis frequency (Outotec, 2009). The nature of the sub-sampling process for these 

systems usually results in their use on composite streams rather than the product of 

individual hydrocyclone. 

2.4.2 Soft Sensors 

Investigations have also been undertaken to produce particle size predicting 

soft sensors from available industrial sensor information. Eren, Fung and Wong 

(1997) used ANNs with operational and design variables (including feed particle size 

distribution) from a laboratory hydrocyclone system to predict densities and particle 

size distributions in the overflow and underflow streams. Whilst the resulting model 

was not specifically used for online particle size predictions, it gives a demonstration 

that the ANN based empirical cut size model extensions can also be applied to 

particle size distributions. Zhang and Liang (2016) used available solids and water 

flow rates, solids concentrations, and mill power data from an operating primary 

grinding ball mill in closed circuit with a hydrocyclone to predict particle size. The 

dataset was split 50% training and 50% testing with the six input variables used for 

both support vector regression (SVR) and a shallow ANN modelling, finding SVR 

produced a slightly more accurate model. 
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A commercialised example of a particle sizing soft sensor is part of Mintek’s 

Millstar advanced control system. The Millstar particle size estimator is used to 

predict hydrocyclone overflow particle size, being based on an empirical model 

produced following plant test work (Mintek, 2011b). The existing soft sensor research 

shows that there are variables in hydrocyclone circuits that can be measured and 

used in performance monitoring. Emerson Electric have worked towards using 

vibration readings in hydrocyclone monitoring, via sensors mounted externally on 

the unit near the apex and overflow (Bowers et al., 2019). They have indicated that 

the incorporation of vibration data along with that of other measured variables can 

be used in a soft sensor to infer particle size in the overflow and underflow streams 

(Cahill, 2021). 

2.4.3 Overflow Discharge 

CiDRA’s CYCLONEtrac range of sensors are acoustic-based and used for 

individual hydrocyclone overflow monitoring. While the CYCLONEtrac OSM system 

discussed in Section 2.3.2 detects the presence of coarse particles in the overflow 

stream, it is used mainly for fault or undesirable condition detection. Alternatively, 

Maron et al. (2018) details CiDRA’s CYCLONEtrac particle size tracking system which 

uses a probe inserted into the discharge end of the hydrocyclone overflow pipe. This 

sensor converts the stress waves caused by particle impact on the probe into an 

electrical signal, which is correlated with a mass of material passing or retained by a 

screen size of interest in the calibration process (Maron et al., 2018). The system is 

applicable to particle sizes ≥75 μm, with a 4 s reading update frequency (CiDRA, 

2019), and has an approximately 18 months probe life due to abrasion from slurry 

flow (Maron et al., 2018). While the CYCLONEtrac sensors are useful methods for 

overflow particle size characterisation, they are not currently applied to individual 

underflow streams. They have been designed to be fitted to piping downstream from 

the hydrocyclone, while hydrocyclone underflow slurry usually discharges directly 

from the unit into a communal launder. 

2.4.4 Underflow Discharge 

As evident by its inclusion in van Loggenberg et al.’s (2016) ANN empirical 

model extension investigation, and the extreme example of fan versus rope 
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discharge appearance, underflow spray angle is an optically detectable external 

indicator of hydrocyclone performance. Hulbert’s (1993) patent for Mintek extends 

upon the physical underflow probe method of Hulbert (1992), discussed in Section 

2.3.3, to describe how the measured spray angle could be incorporated into a model 

along with feed flow rate and solids concentration measurements to infer particle 

size information of the discharge streams. Mintek’s CyLas (Mintek, 2011a) laser-

based sensor provides continuous hydrocyclone underflow spray angle monitoring, 

with an indicated measurement range of 0°–30°. Thus, along with its use for 

detecting undesirable operating conditions, as noted in Section 2.3.4, the signal could 

be used in hydrocyclone performance monitoring. 

As an alternative optical method, preliminary work was performed by 

Petersen et al. (1996) for monitoring the underflow spray angle from laboratory and 

industrial hydrocyclone video footage. A low-pass Gaussian filter and thresholding 

preprocessing was applied to the grey scale footage frames to aid in discerning the 

underflow stream from the background. This resulted in a binary image with most 

background values as zero and underflow stream values as one. Edge detection was 

then applied to the binary image, with the resulting spray angle able to be correlated 

with operating parameters (including percentage of <75 μm particles in overflow), 

though became less reliable during periods of operational instability. 

Dubey et al. (2016) analysed images of a laboratory hydrocyclone with a silica 

feed under various hydrocyclone geometry and operating conditions. Image analysis 

took the form of RGB to grey scale image conversion, thresholding to produce a 

binary image, then edge detection and spray angle determination. At each test 

condition, 10 images were taken (1 FPS) with the spray angle deemed to have an 

acceptable degree of stability and reproducibility under a given set of conditions. In 

their study an empirical model was generated for the system, correlating spray angle 

to several key parameters.  

Aldrich et al. (2015) took an alternative approach in analysing the underflow 

images of a laboratory hydrocyclone by investigating if textural features are usable 

for particle size classification. Experimental runs from three ore sources and variable 

solids concentrations were performed, and once stabilised at each interval underflow 
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images and samples for sizing were taken, leading to a total of 15 runs. Image 

preprocessing via RGB to grey scale conversion and image normalisation was 

performed, with a steerable pyramid algorithm and the subsequent decomposition 

used as feature extraction. The dataset was divided into three classes based on 

underflow particle size (fine, intermediate, coarse), and a linear discriminant 

classifier trained. Cross validation was used during model training with each class 

split randomly into 75% training and 25% testing, with steerable pyramid 

hyperparameters and inclusion of principal component analysis for feature reduction 

explored. The average classification model performance over 10 different 

training/tests split repetitions was approximately 92% accuracy. 

Uahengo (2014) undertook underflow mean particle size modelling using the 

same 300 example laboratory hydrocyclone experimental dataset as (Aldrich et al., 

2015), split 80% training and 20% testing. The image features used as inputs were 

underflow width (extracted in a similar manner to Janse van Vuuren et al., 2011), five 

grey level co-occurrence matrix statistics, and pixel intensity standard deviation. 

Modelling was trialled using both multiple linear regression and an ANN using a single 

hidden layer and 3-fold cross validation on the training set. Ultimately both models 

were deemed unsuccessful in correlating these image features to mean particle size, 

though the ANN model showed a better fit to the data. Some of the 

recommendations Uahengo (2014) proposed to improve upon this work was through 

the collection of a large dataset, the incorporation of additional measurable 

parameters into the model, attempting to have the image capture whilst 

simultaneously performing underflow sampling, and the capture of sequential 

images for further study, all of which were considered in the experimental design in 

Section 4. 

2.4.5 Summary 

A range of online particle size sensing options for hydrocyclone circuits have 

been presented, with several commercial options available for different purposes. 

Physical measurement systems are not practical for individual hydrocyclones and 

have specific particle size and sample frequency requirements. The soft sensor 

research demonstrates that available design and sensor data can be used to rapidly 
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infer particle size related information from a hydrocyclone circuit. Emerson Electrics 

incorporation of vibration data indicating that individual hydrocyclone stream 

particle size inference is possible through such methods (Cahill, 2021). CiDRA’s 

CYCLONEtrac acoustic sensor presents a rapid method for determining individual 

hydrocyclone overflow sizing information (CiDRA, 2019), but does not appear 

applicable to the underflow stream. The profile of a hydrocyclone’s underflow has 

been found to contain optically detectable information that can be correlated to 

particle size, both in terms of spray angle and textural features. Image-based 

research to date has used a range of preprocessing, image analysis and machine 

learning techniques to investigate this relationship. 

2.5 Convolutional Neural Networks 

The hydrocyclone underflow image-based studies discussed have applied 

traditional machine learning techniques with engineered features, however recent 

progress in image analysis has seen improved performance using deep CNNs. 

Krizhevsky et al.’s (2012) use of CNNs in AlexNet for the 2012 ILSVRC (Russakovsky et 

al., 2015) resulted in a significant improvement in image classification performance 

compared to previous computer vision techniques. The ILSVRC makes use of a subset 

of the ImageNet (Deng et al., 2009) dataset and contains a diverse range of labelled 

images from 1000 different classes (including some specific subclass examples like 

dog breeds). The resulting classification database for the ILSVRC contains 1.2 million 

training images (732–1300 images per class), along with 50 validation and 100 test 

images per class, creating a large benchmark database for algorithm development 

and evaluation (Russakovsky et al., 2015). Further improvements in network 

architectures and implementation techniques ultimately led to Microsoft’s ResNet 

(He et al., 2015) entry being the first CNN to exceed human level performance (5.1% 

top-5 classification error; Russakovsky et al., 2015) in the 2015 ILSVRC. 

2.5.1 Background 

There are a range CNN architecture designs that have found success in image 

analysis task, such as those used in the ILSVRC, and share many of the same core 

components. The input images to CNNs take the form of a 3D array of pixel intensities 

with dimensions of the image width by height and either 1 channel depth for grey 
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scale or 3 channel depth for a RGB images, and may be preprocessed by methods 

such as rescaling, centring or normalisation. 

Convolutional layers use filters (stacked 2D kernels) of a defined size which 

travel over the input space. The kernels consist of learnable weights (w) which are 

locally connected to the area of input space they assess and provide a trainable way 

of extracting meaningful features (Karpathy et al., 2015). Figure 2-3 illustrates the 

convolution operation between a kernel and region of the input, with the element-

wise multiplications summed to produce the output (shown with no bias added) as 

shown in Figure 2-4. This process is repeated over the entire input space, with the 

resulting output from a single filter referred to as a feature map. Convolutional layers 

are then progressively built up to identify higher-level features (e.g., parts and 

objects) composed of lower-level features (e.g., edges and motifs; LeCun et al., 2015). 

 

Figure 2-3 

Convolution Visualisation 

 

Note. From Figure3, by A. Naidu, 2019a, GitHub 

(https://github.com/ashushekar/image-convolution-from-

scratch/blob/master/images/figure3.jpg). Copyright 2019 by Ashwin Naidu. 

Reprinted with permission. 
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Figure 2-4 

Convolution Calculation Example 

 

Note. From Figure4, by A. Naidu, 2019b, GitHub 

(https://github.com/ashushekar/image-convolution-from-

scratch/blob/master/images/figure4.jpg). Copyright 2019 by Ashwin Naidu. 

Reprinted with permission. 

 

Pooling layers are used for dimensional reduction of feature maps, as 

illustrated in Figure 2-5, where set sized filter travels over each feature map and 

summarises the key information in that region. Examples include average pooling in 

which the average activation of the input region is the output, or max pooling where 

the maximum activation of the input region is the output (Karpathy et al., 2015), as 

illustrated in Figure 2-6. Dimensionality reduction, or conversely expansion, in terms 

of depth (channels) can be performed using 1x1 convolution, referred to as cross 

channel parametric pooling in Lin et al. (2013). 
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Figure 2-5 

Pooling Layer Dimensional Reduction Example 

 

 

 

Note. From Pool, by A. Karpathy, 2015c, GitHub 

(https://github.com/cs231n/cs231n.github.io/blob/master/assets/cnn/pool.jpeg). 

Copyright 2015 by Andrej Karpathy. Reprinted under an MIT license. 

 

Figure 2-6 

Max Pooling Operation Example 

 

Note. From Maxpool, by A. Karpathy, 2015a, GitHub 

(https://github.com/cs231n/cs231n.github.io/blob/master/assets/cnn/maxpool.jpe

g). Copyright 2015 by Andrej Karpathy. Reprinted under an MIT license. 
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Fully connected (fc) layers can find use within the CNN architecture as hidden 

and output layers which perform a global combination of features from their input 

(Chollet, 2018). Each node in these layers is connected to every node of the previous 

layer by learnable weights, as shown in Figure 2-7. Figure 2-8 illustrates the 

calculation of a single fully connected node output (shown with a bias added). The 

final output layer for CNNs will have a structure relevant to the task. For multi-class 

classification there would be a node for each class (𝑘) with a softmax activation, 

representing a probability distribution over the classes by rescaling all output 

activations to within the range 0–1 and such that they sum to one (Goodfellow et al., 

2016). 

 

Figure 2-7 

Example of a Network With Two Hidden and One Output Fully Connected Layers 

 

Note. From Neural_net2, by A. Karpathy, 2015b, GitHub 

(https://github.com/cs231n/cs231n.github.io/blob/master/assets/nn1/neural_net2

.jpeg). Copyright 2015 by Andrej Karpathy. Reprinted under an MIT license. 
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Figure 2-8 

Output Calculation for a Single Fully Connected Node 

 

Note. Single fully connected node (green font) with four inputs (purple font), 

learnable weights (orange font) and bias (yellow font).  

 

Deep CNNs are trained through supervised learning in which the network’s 

output is compared to the known values of the training images. Continuing the multi-

class classification case, cross entropy loss (L) would compare the true class 

probability distribution to the network’s output probability distribution for an image 

(Goodfellow et al., 2016), as in Equation 2-5. The loss is used in backpropagation, 

determining the gradient with respect to the learnable weights, which then guide the 

changes in network weights to reduce the error through stochastic gradient decent 

methods (LeCun et al., 2015). As succinctly stated by LeCun et al. (2015) the 

backpropagation method “is nothing more than a practical application of the chain 

rule for derivatives” (p. 438). 

 

Multi-class cross entropy loss 

𝐿(𝑤) =  − 𝑦 log 𝑦 (𝑤) (2-5)

where y𝑘 is probability true class = 𝑘-th class 

(i.e., 1 for labelled true class, 0 for all other 𝑘 classes) 

ŷ𝑘 is the 𝑘-th network output   (Murphy, 2012) 
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A useful property exhibited by CNNs is the potential transferability of learnt 

features, with Yosinski et al. (2014) exploring this behaviour using an AlexNet 

(Krizhevsky et al., 2012) implementation and the ImageNet (Deng et al., 2009) 

dataset. Experiments were performed in which the dataset’s classes were split 

randomly as well as into natural and artificial object classes, to gauge the learning 

effect on dissimilar tasks. Transfer learning was performed both in terms of using 

earlier network layers with frozen pretrained weights and only training the top layers 

with randomly initialised weights, along with fine-tuning in which the pretrained 

weights from layers earlier in the network can be trained further. They found that 

both the specialisation of later layers in the network along with co-adaption between 

layers affects the ultimate performance when applying transfer learning. While they 

also noted that the performance of transfer learning diminished with dissimilar tasks, 

it still held an advantage over training from randomly initialised weights alone. The 

use of pretrained CNNs also isn’t limited to training entirely neural network based 

classifiers, with Razavian et al. (2014) using a pretrained CNN as a feature extractor 

(with frozen weights) and then training a SVM classifier on the CNN’s fixed sized 

output feature vector. 

2.5.2 Notable Networks 

This section will briefly detail several notable CNNs and some of their key 

features, many of these where top performing entrants in past ILSVRC events. For 

further details on each network’s architectural structure the relevant cited papers 

along with their implementations on a range of open-source software can be 

examined.  

As introduced in Section 2.5, AlexNet’s 2012 ILSVRC performance led to 

significant interest in CNNs for computer vision. Krizhevsky et al.’s (2012) AlexNet 

consists of five convolutional layers, three max pooling layers, two fully connected 

hidden layers and a fully connected output layer. To speed up training beneficial 

design features include using parallel graphics processing units (GPUs) and the non-

saturating rectified linear unit (ReLU) activation function to all convolutional and fully 

connected layer outputs. To combat overfitting Krizhevsky et al. (2012) performed 

image augmentation (including random cropping, horizontal flipping, and channel 
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intensity shifts) which effectively expand the training dataset. They also used dropout 

with a 50% probability after each fully connected hidden layer. Srivastava et al. (2014) 

presents dropout as being a regularisation technique by which nodes and their 

associated weights in the designated layer are randomly set to zero with a given 

probability during the training process. They propose this technique breaks co-

adaption as no single node can be relied upon to be present during training, and also 

acts as a form of simplified model averaging, ultimately leading to improved 

generalisation performance. 

Simonyan & Zisserman’s (2014) Visual Geometry Group (VGG) entries into the 

2014 ILSVRC resulted in the highest localisation and second highest classification 

performances. The VGG networks focused on depth and a linear structure, with VGG-

16 and VGG-19 containing 13 and 16 convolutional layers respectively (with small 3x3 

receptive fields), along with five max pooling layers, two fully connected hidden 

layers and a fully connected output layer. The top classification task performance for 

the 2014 ILSVRC came from Szegedy et al.’s (2015) GoogLeNet, which makes use of 

what they called inception modules to produce a wider and deeper network 

structure. Their inception modules aim to perform multiscale feature extraction on 

the input, containing 1x1, 3x3, and 5x5 convolution filters along with 3x3 max 

pooling, and with the output feature maps concatenated. GoogLeNet’s architecture 

makes use of varying arrangements of convolution, pooling, and inception modules 

to create a network with 21 trainable hidden layers and four max pooling layers. This 

is then followed by global average pooling of the final feature maps and a fully 

connected output layer. 

He et al.’s (2015) ResNet submission became the first to exceed human level 

classification performance on the ImageNet dataset at the 2015 ILSVRC. Their 

residual networks incorporated shortcut connections which facilitate input 

information transfer to designated subsequent convolutions layers, to aid in 

combatting performance degradation of very deep networks. The ResNet 

architectures have a modular structure that can be built upon; all starting with a 7x7 

convolutional layer, followed by a 3x3 max pooling layer, then ultimately ending with 

global average pooling of the final feature maps and a fully connected output layer. 
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Following the max pooling layer, a number of convolutional layer blocks with varying 

receptive fields and a short cut connection are used. For example, ResNet50 has 16 

blocks (48 convolutional layers) while ResNet152 has 50 blocks (150 convolutional 

layers), as each block consisting of three convolutional layers (1x1, 3x3, 1x1). After 

each convolution the ResNet architectures also incorporate Batch Normalization 

which normalises the layers’ output for each training mini-batch, stabilising and 

speeding up training along with providing a regularization benefit (Ioffe & Szegedy, 

2015).  

While the CNN architectures discussed have focused on the progressive 

improvement in accuracy with respect to the ImageNet (Deng et al., 2009) dataset, 

there is another factor to consider and that is computational efficiency. If these 

models are to be applied in the continuous analysis of video footage, then being able 

to perform inference in real time on available hardware would be ideal. One such 

example of an efficiency focussed CNN architecture is Howard et al.’s (2017) 

MobileNet, which uses depthwise separable convolutions. The depthwise separable 

convolution blocks in MobileNet performs depthwise convolution with one 3x3 filter 

per input channel and then pointwise convolution (1x1 convolution) to combine the 

previous layer’s outputs, which leads to less computational cost than standard 3x3 

convolution. MobileNet’s structure starts with a 3x3 convolutional layer, then 13 

depthwise separable convolution blocks (26 convolutional layers), global average 

pooling of the final feature maps and a fully connected output layer. 

2.5.3 Mineral Processing 

In terms of industrially relevant CNN research, Fu and Aldrich (2018) 

investigated the use of transfer learning on mineral processing related data. In this 

case, images of flotation froth from arsenic sulphide ore laboratory batch flotation 

and platinum metal group industrial flotation circuit. Their investigation assessed the 

performance of AlexNet (Krizhevsky et al., 2012) for feature extraction compared to 

alternative methods including grey level co-variance matrices, local binary patterns, 

steerable pyramids, and wavelets. Coupled with random forest modelling, they found 

the AlexNet transfer learning feature extraction method to be superior to the 

alternatives examined in terms of coefficient of determination (R2) for arsenic 
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concentration in froth estimation and test set error for industrial operating condition 

classification. Given these results, Fu and Aldrich (2019) then extended upon this 

work through re-examining the industrial flotation images with a number of 

pretrained CNNs and applying varying degrees of further training. The fine-tuned 

ResNet34 (He et al., 2015) implementation resulted in the best test set accuracy, 

outperforming AlexNet (Krizhevsky et al., 2012) and VGG-16 (Simonyan & Zisserman, 

2014) feature extraction networks, and fine-tuned VGG-16. 

Further CNN based flotation monitoring investigations have been trialled 

incorporating historic information in producing froth grade estimates. Zhang et al. 

(2020) trained a CNN model to produce an initial froth grade and impurity type 

predictions, using GoogLeNet (Szegedy et al., 2015) for feature extraction, on 

industrial lead-zinc froth images. Information from key similar historical results 

stored in memory were then interrogated to refine the predictions. Using several 

statistical metrics, their method was found to be outperform alternative vision 

models including simpler CNN models, and an existing fuzzy expert system sensor. 

During the period in which this research project was being finalised, our wider 

research group also published on the use of CNNs for hydrocyclone underflow 

particle size estimation. Olivier and Aldrich (2021) revisited the 300 example images 

and underflow particle sizing data from Uahengo (2014) and Aldrich et al. (2015). The 

dataset was randomly split 70% for training and 30% for validation. Pretrained 

GoogLeNet (Szegedy et al., 2015) was used up to the final pooling layer, with a new 

100 node fully connected layer with ReLU activation followed by a single node fully 

connected layer added. Both training of the new fully connected layers and fine-

tuning the last two inception modules was undertaken until the validation mean 

squared error (MSE) loss did not improve for 10 epochs, leading to validation set R2 

of 0.851 and 0.910, respectively. 

Given the small dataset (limited experimental runs and associated images) 

used by Olivier and Aldrich (2021) an independent test dataset was not available, so 

the model’s ability to generalise could not be tested. This limits what can be 

interpreted from the model’s performance beyond the indicated fit to the dataset, 

and improvement yielded by task specific convolutional layer fine-tuning. Collecting 
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a large dataset, given the potential to overfit to training data, along with 

consideration for an independent test dataset were key factors in the experimental 

design in Section 4.  

2.5.4 Summary 

Through the utilization of technology advancement and large datasets, CNNs 

have been able to facilitate advances in a range of computer vision tasks. Continued 

research into network architectures and implementation techniques have produced 

a range of high performing image classifiers, many of which have been released open 

source and with weights pretrained on exist datasets (such as ImageNet; Deng et al., 

2009). The ability to apply transfer learning techniques to use pretrained CNNs on 

smaller datasets and even dissimilar tasks, further expands the potential use cases 

for these networks as highlighted by the mineral processing related research. 

2.6 Hydrocyclone Control 

A key method for getting the most out of any established circuit in a modern 

mineral processing plant is through its process control systems. Process control holds 

a hierarchical structure, with low-level regulatory control for stability and 

disturbance handling of simpler/predictable systems, high-level advanced regulatory 

control for multivariable and complex systems, through to advanced control for 

optimisation (Yench et al., 2015). 

2.6.1 Low-Level Control 

Wei and Craig’s (2009) grinding circuit control survey noted a majority of 

respondents used proportional–integral–derivative (PID) control in their circuits. 

They attributed this prevalence to the control method being easily understood, the 

relatively lower and more widely available skill level to implement than more 

advanced methods, and a reluctance to employ external vendors for the likes of 

remote process monitoring. The difference between the control set point (SP) and 

process variable (PV) is the error (ε), such that ε = SP - PV. The PID feedback control 

algorithm considers this difference (proportional), its history (integral), and rate of 

change (derivative) to determine the controller output, manipulated variable (MV; 

Wade, 2017). The complete PID algorithm has an ideal form as shown in Equation  
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2-6, though in practice only some components may be used (e.g., P-only or PI) along 

with optional modifications to improve performance (Wade, 2017). Further 

regulatory methods can also incorporate controllers such as feed forward, cascade, 

override, and dead-time compensation. 

 

Ideal PID control algorithm 

𝖬𝖵 = 𝐾 ε + 
1

𝑇
ε dt +  𝑇

dε

dt
 (2-6)

where Kp = controller gain 
Ti = integral time 

Td = derivative time (Wade, 2017) 

 

In terms of control strategy, Flintoff and Knorr (2019) noted that for open 

circuit hydrocyclone systems feed density is the main practically controllable driver 

of overflow particle size. The feed pressure would then be targeted, through the 

number of operating hydrocyclones and factoring in feed flow rate, to maintain the 

pressure in a stable range without requiring frequent changes. Orway Mineral 

Consultants (2017) discuss their experience and issues encountered around closed 

circuit hydrocyclone control philosophies, given the complexity the recirculating load 

brings. They note a preference for control based on feed flow rate adjustment to a 

pressure target and feed density adjustment to maintaining tank level, as it allows 

the hydrocyclone cut point to drift to match milling capability. With this method they 

suggest, overflow density would then be used to guide the number of hydrocyclone 

in operation. The range of control philosophies they describe as having encountered 

in grinding circuit operation highlights the subjectivity in the industry for what is the 

most long-term stable and optimal control behaviour. 

2.6.2 High-Level Control 

Advanced control methods become relevant for systems with a greater level 

of process complexity, disturbances, and potential constraints (Wade, 2017). Model-

based control, as the name suggests, uses a model of the process constructed from 

historic data in determining optimal actions whilst considering constraints. Their 
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performance, however, is dependent on the current strength and validity of the 

process model the controller is based on (Bascur, 2019). Expert systems attempt to 

incorporate operator or expert knowledge into rule-based control. With an if-then 

statement structure and using crisp (true/false) or fuzzy (degree of truth) logic, 

decisions for the control strategy (such as SP changes) can be developed in a human 

readable way (Bascur, 2019; Yench et al., 2015). Ultimately, if a model of the system 

can be produced then model-based methods are suitable, conversely rule-based 

methods form a model-free alternative (analogous to modelling the operator’s 

behaviour; Bascur, 2019). 

Research into advanced methods of hydrocyclone control has been 

approached in various ways. Gupta and Eren (1990) demonstrated an iterative 

controller for a laboratory hydrocyclone system with a fixed feed particle size 

distribution. A model for d50c was produced from experimental data and available 

sensor information, then used to sequentially adjust three MVs until the d50c SP or 

all constraints were reached. Wong et al. (2004) extended upon this work using the 

same system as Gupta and Eren (1990) but investigated using hybrid fuzzy modelling. 

Fuzzy rules were generated using the Improved Sugeno–Yasukawa modelling 

method (Tikk et al., 2002) on input-output experimental data from the laboratory 

hydrocyclone system. Wong et al. (2004) then used memetic algorithms as local 

search optimisation to refine fuzzy parameters of the identified rules. This produced 

three fuzzy rules to incorporate into the control, thus resulting in a simple, human 

readable control strategy. 

Stange (1992) presented model-based control interacting with a simulated 

open circuit desliming hydrocyclone system, with limited measured variables. Using 

system response data for varying feed size distributions, but maintaining target 

underflow sizing, a model was constructed using an ANN. The model mapped 

hydrocyclone feed and overflow density to an operating pressure, to be used for SP 

updating. This could then be applied to the system without online particle size 

measurement, where PID controllers were used for tank level and operating pressure 

control. Model training with varying degrees of noisy data was noted to yield a stable 
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control response, but increased noise lowered the ability to compensate for the 

unmeasured feed particle sizing. 

Mintek (2011b) presents Millstar as a commercially available grinding control 

system that includes MPC. With Millstar having the capacity for multivariable control 

and constraint handling including tank level, hydrocyclone overflow particle size, 

slurry densities, and hydrocyclone switching for pressure control. Coetzee (2014) 

presents the behaviour of Mintek’s StarCS Robust Non-linear MPC (RNMPC) on a 

simulated closed circuit grinding system (with hydrocyclones) leading to a flotation 

feed surge tank. This implementation builds upon RNMPC presented in Coetzee et 

al. (2010) through practical extensions including state estimation feedback via an 

unscented Kalman filter (Wan & van der Merwe, 2000), time-delay incorporation in 

modelling, PV soft constraints, and ability to handle MVs being set to manual 

(Coetzee, 2014). 

Coetzee and Ramonotsi (2016) then demonstrated the incorporation of RTO 

with the RNMPC controller on an operating platinum processing closed circuit 

grinding system (with screen classifiers instead of hydrocyclones) leading to a 

flotation feed surge tank. The RTO performs steady-state optimisation where the 

objective function can consider complex combinations of targets, constraints, and 

economic factors. In replacing individual RNMPCs for the mill discharge sump and the 

surge tank, and through manipulation of their respective water addition and 

outflows, the combined RNMPC with RTO resulted in improved long-term SP tracking 

accuracy and stability.  

Le Roux et al. (2016) presented MPC for the control of a simulated variable 

speed grinding mill in closed circuit with a hydrocyclone and incorporating commonly 

monitored variables. Dynamic inversion was used for the fast-acting mill sump level 

control and non-linear MPC for slower circuit wide control, with filtering techniques 

applied for state estimation and noise handling. Both mill fresh feed throughput and 

hydrocyclone overflow particle size were targeted, with the controller’s performance 

in tracking these individual SPs and rejecting disturbances presented. Botha et al. 

(2018) then investigated methods to facilitate discrete control actions, as required 

when bringing individual hydrocyclone in or out of operation. A hybrid non-linear 
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MPC was implemented using genetic algorithms, with the intended benefit of having 

improved pre-emptive changes to the number of hydrocyclones in operation than if 

advanced regulatory control was used.  

2.6.3 Summary 

Currently, hydrocyclone control in the mineral processing industry typically 

only extends to regulatory control for process stability rather than outright 

optimisation. Of the advanced control methods, model-based appear to be the most 

developed, with Mintek producing a commercially available product incorporating 

MPC for comminution circuit control. The industrial uptake of these model-based 

methods relies on the successful production of a process dynamics model from 

available sensor information and its subsequent real-world performance, along with 

the ever-present factors of cost and willingness to engage with external vendors for 

proprietary products. 

2.7 Reinforcement Learning 

RL is another control method applicable to complex systems that has recently 

found renewed interest following successes with incorporation of deep neural 

network function approximators. RL is a field of machine learning separate from the 

likes of supervised learning (learning from labelled data) and unsupervised learning 

(learning structure in unlabelled data). In RL, the intent is to learn an action taking 

policy (μ) to maximise a reward signal through interaction with an environment 

(Sutton & Barto, 2018). RL problems are usually framed as Markov decision processes 

(MDP). Here an agent (e.g., control system) can interact with, and receive feedback 

from, the environment (e.g., industrial process). An observation of the environment 

(ot) is received (e.g., sensor readings) at each discrete time step (t) and is used to 

produce a state representation (st). Given this, an action (ɑt) will then be taken and 

reward (rt) received with the subsequent environment observation (ot+1) used to 

produce the next state representation (st+1), with a transition probability p(st+1|st,ɑt), 

where the process can then continue from (Lillicrap et al., 2015; Sutton & Barto, 

2018). This interaction between agent and environment is illustrated in Figure 2-9. 

 



36 
 

Figure 2-9 

Reinforcement Learning Agent-Environment Interaction 

 

Note. With representations shown for the current time step (t) and subsequent time 

step (t+1). Adapted from File:Reinforcement Learning Diagram.svg, by Megajuice, 

2017, Wikimedia Commons 

(https://commons.wikimedia.org/wiki/File:Reinforcement_learning_diagram.svg). 

CC0 1.0. 

 

The reward is that obtained for a single time step, though it is the long-term 

return over an extended period that the agent should maximise. Value functions are 

used to quantify the cumulative expected return (J), such as the state-value function 

V(st) being the expected return from the current state or the action-value function 

Q(st,ɑt) being the expected return for the action taken from the current state (Sutton 

& Barto, 2018). The behavioural policies in RL can take the form of a stochastic policy 

μ(ɑt|st) where an action is selected from a probability distribution (given the current 

state) or a deterministic policy μ(st) where the action is directly selected given the 

current state (Silver et al., 2014). The process of developing an optimal policy in RL 

can occur on-policy where the action taking policy is also being optimized, or off-

policy where a target policy is being optimized while using data resulting from an 

alternative behavioural policy (Sutton & Barto, 2018). While RL methods can 
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incorporate models of the environment’s behaviour which can be used for planning 

a course of action, model-free methods will develop a policy through learning from 

environment interaction alone (Sutton & Barto, 2018). 

2.7.1 Industrial Process Control 

Investigations into industrial control with RL have been approached in a 

variety of ways, progressing with the introduction of new techniques and improved 

computational power. Hoskins and Himmelblau (1992) investigated using shallow 

ANNs to form evaluation and action networks for temperature control of a simulated 

continuous stirred tank reactor, using discrete actions and compared against PID 

control. Govindhasamy et al. (2005) presented an actor-critic type controller with 

shallow ANNs for the optimisation of a batch disc grinding process, producing a lower 

rejection rate than the existing control strategy. Jiang et al. (2018) presented a 

mineral processing specific RL control design for concentrate and tailings grade 

control of a simulated single flotation cell. In this case, along with ANN based critic 

and actor networks, they also incorporate an ANN model to approximate process 

dynamics from system inputs to outputs. A common thread in these industrial control 

investigations is the use of the actor-critic structure. The actor learns a policy for 

controller behaviour at a given time while the critic learns a value function used in 

critiquing the actor’s behaviour, with this interplay facilitating learning (Sutton & 

Barto, 2018). 

In terms of recent comminution circuit related RL control, Conradie and 

Aldrich (2001) conducted an investigation using a simulated ball mill in closed circuit 

with a hydrocyclone. A shallow policy neural network was used, with six input 

variables (including the hydrocyclone overflow particle size SP), a single twelve node 

hidden layer, and outputs five continuous actions. The reward function was 

structured to target the hydrocyclone overflow particle size SP along with maximising 

the mill feed throughput rate, and the policy trained through Moriarty and 

Miikkulainen’s (1996) symbiotic adaptive neuro-evolution genetic algorithm. 

Conradie and Aldrich (2001) performed trained model testing through observing the 

response to hydrocyclone overflow particle size SP changes, with unmeasured 

variability in the form of mill feed particle size and ore hardness trialled. In taking a 
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circuit wide view, the dominant action learnt by the controller was to manipulate the 

mill fresh feed throughput to maintain the particle size SP. 

During the period in which this research project was undertaken, additional 

comminution circuit RL control investigations were also published. Hallén et al. 

(2019) used a simulated milling circuit consisting of a primary mill feeding a 

secondary mill, and in closed circuit with a classifier. The simulation included several 

PID loops for control, which could be substituted with RL control to varying degrees 

depending on the experimental scenario requirements. Proximal policy optimisation 

(PPO; Schulman et al., 2017) was the RL algorithm used, with three continuous 

actions and one discrete action (a flap-gate for secondary mill pebble addition from 

primary mill) available to the control. The reward function was structured to 

maximise profit (predicted recoverable valuable minerals as a function of particle size 

and throughput) whilst penalising conditions and actions outside of constraint 

boundaries. With variable ore properties applied during training and testing, the RL 

control could demonstrate improvements in attained profit under certain conditions 

compared to extensively tuned PID control.  

Guo et al. (2019) also investigated the use of RL on a ball mill in closed circuit 

with a hydrocyclone. They used a similar three ANN structure as Jiang et al. (2018), 

but with deep neural networks for the actor policy and critic along with a recurrent 

neural network trained on historic operational data to model process dynamics. 

There are five continuous actions available, being the available SPs for the grinding 

circuit, and with the actor updated via a clipped policy ratio method as in PPO 

(Schulman et al., 2017). The reward function was structured to encourage a target 

hydrocyclone overflow particle size or finer, whilst also maximising the mill feed rate 

(with a discount factor applied to give a greater priority weighting to the overflow 

particle size). The reward function also included penalties for any variables exceeding 

their nominated constraint range. 

Guo et al. (2019) performed testing of their trained control policy comparing 

the calculated daily production performance, in terms of overflow particle size and 

throughput, against that yielded from a historic operating log. One test method 

considered what the improvement from the control action would be for one time 
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step (leading to a simulated subsequent state) against what was performed. The 

other test allowed successive control actions from simulated subsequent states. Both 

test methods yielded overall production performance improvements for both 

metrics, as well as greater proportion of beneficial control actions taken compared 

to the historic logged actions. 

2.7.2 Algorithm Background 

Numerous recent model-free continuous action and state space applicable 

algorithms have also been developed. These include the on-policy asynchronous 

advantage actor-critic (Mnih et al., 2016) and PPO (Schulman et al., 2017), or the off-

policy DDPG (Lillicrap et al., 2015), normalized advantage functions (Gu et al., 2016) 

and soft actor-critic (Haarnoja et al., 2018). DDPG was selected as the base algorithm 

for this project, being an actor-critic method that has found success in a range of 

control tasks including indicated extensions to process control by Spielberg (2017). 

Silver et al. (2014) presented deterministic policy gradient (DPG) based 

algorithms as more efficient alternatives to stochastic policy gradient methods in 

continuous action space RL. Lillicrap et al.’s (2015) DDPG extends the off-policy actor-

critic method of DPG with deep neural network function approximators. For DDPG 

these are the deterministic policy μ(st|wμ) and action-value function Q(st,ɑt|wQ) 

which are parametrised with learnable weights (w). In their work on RL feedback 

control, Hafner and Riedmiller (2011) presented a related batch learning method 

neural fitted Q iteration with continuous actions which also use an actor-critic design 

with neural network function approximators. 

Mnih et al.’s (2015) DQN used a number of techniques to facilitate learning 

with large neural networks, which have been incorporated into DDPG. One technique 

is a fixed size replay buffer where experienced transitions (st, ɑt, rt, st+1) are stored. A 

mini-batch of samples (N) are then taken at random from the replay buffer during 

training, allowing the networks to update on uncorrelated historic transitions rather 

than recent sequential transitions (Lillicrap et al., 2015; Mnih et al., 2015). DDPG’s 

critic action-value function update occurs using an adaption of Q-learning (Watkins 

& Dayan, 1992) through minimising the loss shown in Equation 2-7, which considers 
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the critic network output and the target value (R) determined for each sampled 

transition (n) in the mini-batch, explicitly (sn, ɑn, rn, sn+1). 

 

Lillicrap et al.’s (2015) critic update to minimise loss 

𝐿(𝑤 ) =  
1

𝑁
𝑅 − Q(𝘴 , ɑ |𝑤 )  (2-7)

 

In DDPG’s case the target value is given by the reward plus the discounted 

future return shown in Equation 2-8. The discount factor (γ) influences the 

importance given to future rewards, with γ = 0 only considering the immediate 

reward while the closer γ is to 1 the stronger the weighting given to future rewards 

(Sutton & Barto, 2018). This is also where Lillicrap et al. (2015) apply another 

technique from DQN (Mnih et al., 2015), where the discounted future return is not 

based on the currently learnt actor and critic networks, but rather target networks 

(μ’ and Q’ respectively). The target networks are copies of the actor and critic 

networks whose weights update slower than the current actor and critic networks, 

as in Equation 2-9. 

 

Lillicrap et al.’s (2015) target value for critic update 

𝑅 =  𝘳 +  γQ′ 𝘴 , μ′ 𝘴 |𝑤 |𝑤  (2-8)

 

Lillicrap et al.’s  (2015) target network soft-update 

𝑤 ←  τ𝑤 + (1 − τ)𝑤  (2-9)

where τ = soft-update factor (value much less than one) 

 

The use of these soft updating targets stabilise learning of the action-value 

function (Lillicrap et al., 2015). The actor policy function is then updated to maximise 

expected return through an application of the chain rule via the action value function 



41 
 

gradient with respect to the actions and the policy gradient with respect to the policy 

network’s weights (Equation 2-10), as proven as the policy gradient in the DPG study 

(Lillicrap et al., 2015; Silver et al., 2014). 

 

Lillicrap et al.’s  (2015) actor update via policy gradient 

∇ J ≈  
1

𝑁
∇ɑQ(𝘴 , ɑ|𝑤 )|ɑ (𝘴 ) ∇ μ(𝘴 |𝑤 )  (2-10)

 

DDPG’s success in a range of continuous control tasks, included car driving 

simulation, from simple state descriptions or rendered environment has led to many 

extensions and adaptions. Examples include Hausknecht and Stone’s (2015) adaption 

of DDPG for the parameterized action space of robotic soccer, where the 

requirement is to select a discrete action to perform and its associated continuous 

parameter(s). Fujimoto, van Hoof, and Meger (2018) extended upon DDPG as the 

Twin Delayed Deep Deterministic policy gradient (TD3) algorithm to address function 

approximation errors through various techniques. One such technique was clipped 

double Q-learning using dual critics, with the lower target network’s discounted 

future return used to train both critics, to counter overestimation bias. Another was 

the use of a delayed policy and target network update rate compared to the critic, 

which acts as a way of reducing the influence of the parameterised action-value 

function variance. Spielberg (2017) extended DDPG for the SP tracking requirements 

of process control. Training was performed on simulated single-input single-output 

and 2 x 2 multiple-input multiple-output systems, based on plausible industrial tasks 

and dynamics. Their trained system’s response to SP changes and varying degrees of 

input/output noise was assessed, with acceptable control yielded. 

2.7.3 Summary 

RL presents an alternative control method that aims to maximise future 

reward. Industrial process control investigations have been undertaken, including for 

complex mineral processing systems, with capabilities progressing with techniques 

and technology improvements. Lillicrap et al.’s (2015) DDPG algorithm was noted to 
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possess several appealing qualities for process control. It has an actor-critic structure 

common to other industrial RL examples and can operate in high-dimensional 

continuous action and state spaces. It is a model free method, which is of particular 

interest when a system model may not be feasible to produce, and an off-policy 

method able to learn from historic transitions. 

3 Hydrocyclone Operational State Detection 

Section 3.1 and Section 3.2 contains material previously published in “Operational 

State Detection in Hydrocyclones with Convolutional Neural Networks and Transfer 

Learning,” by K. C. Giglia and C. Aldrich, 2020, Minerals Engineering, 149, pp. 2–9 

(https://doi.org/10.1016/j.mineng.2020.106211). Copyright 2020 by Elsevier. 

3.1 Laboratory Hydrocyclone: Single Source 

This proof-of-concept investigation was undertaken to gauge the potential for 

CNNs to produce a three-state classifier (fan/rope/blocked), using a laboratory 

hydrocyclone (single source) and a fixed camera. 

3.1.1 Data Collection 

High-speed video footage of a laboratory hydrocyclone was collected using a 

FASTCAM Mini UX50 recording at 2,000 FPS, with a 1/4000 s exposure. A Nikon AF 

NIKKOR 1.8D 50 mm prime lens was mounted on the camera, set at f/2.8 with a 

distance of 1.64 m between the lens and hydrocyclone apex opening. The camera 

itself was mounted separately from the closed circuit hydrocyclone system to 

minimise vibration effects on the video data. The primary light source consisted of 

two 500 W halogen lights on a tripod to left of the camera, with a secondary light 

source comprising two 20 W LED lights on a tripod positioned to the right of the 

camera. A black screen was used to enhance the contrast of the illuminated 

hydrocyclone underflow. The hydrocyclone cone was 183 mm high with a 10 mm 

diameter apex opening. The system as detailed above is shown in Figure 3-1. 
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Figure 3-1 

Hydrocyclone Laboratory Experimental Setup 

 

Note. Located at the Western Australian School of Mines (WASM) Kalgoorlie campus. 

From “Operational State Detection in Hydrocyclones with Convolutional Neural 

Networks and Transfer Learning,” by K. C. Giglia and C. Aldrich, 2020, Minerals 

Engineering, 149, p. 3 (https://doi.org/10.1016/j.mineng.2020.106211). Copyright 

2020 by Elsevier. Reprinted with permission. 

 

Experimental runs were conducted with quartz slurries consisting of different 

particle sizes. Runs were executed by progressively increasing the solids 

concentration in the system, until the hydrocyclone roped. After each incremental 

increase in the solids concentration, the operation of the hydrocyclone was allowed 

to stabilise before video data were collected. In addition, the feed valve would be 

adjusted to modify the hydrocyclone feed flow rate. Each recording period filled the 

camera’s 16 GB memory, resulting in 19,409 individual frames (approximately 9.7 s 

worth of footage). The model training and testing frames were then drawn from 

footage of experimental runs with hydrocyclone feed solids concentration between 

5.0%–17.0% by weight (w/w) and inlet gauge pressure 30–80 kPa. 
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3.1.2 Model Development 

Raw image frames from the experimental runs were 12-bit grey scale with a 

768 x 768 pixel dimensionality. NumPy (Oliphant, 2006) & Pillow (Clark & 

contributors, 2010) Python libraries were used to convert the raw images to 8-bit 

grey scale (i.e., the pixel intensity was rescaled from 0–4,095 to 0–255) and then 

stacked over three channels to produce an RGB type image of the form expected by 

the pretrained CNNs to be employed. Moreover, the images were cropped square, 

approximately centring the hydrocyclone apex in the frame and removing the 

overflow and support bracket from the original image. Synthetic images to represent 

a blocked hydrocyclone underflow (i.e., no discharge) were produced by using roping 

images from another experimental run, but covering the discharge just below the 

apex with a section of the background from the image. 

2,000 consecutive frames were taken from the three experimental runs used 

to represent the operating states, (i.e., fan, rope and blocked). The first 1,400 frames 

were used to build a training set, the next 400 frames were used for the validation 

set, and the final 200 frames were used for the test set. DIGITS (NVIDIA Corporation, 

2014) was employed for dataset construction, resizing all images to 256 x 256 pixels. 

Examples of these frames are shown in Figure 3-2.  



45 
 

Figure 3-2 

Example Raw and Training Images 

   

   

Note. Raw images (top), and the same images processed for the training dataset 

(bottom). Adapted from “Operational State Detection in Hydrocyclones with 

Convolutional Neural Networks and Transfer Learning,” by K. C. Giglia and C. Aldrich, 

2020, Minerals Engineering, 149, p. 3 

(https://doi.org/10.1016/j.mineng.2020.106211). Copyright 2020 by Elsevier. 

Adapted with permission. 

 

In producing the state detection model, transfer learning was performed 

using a Caffe (Jia et al., 2014) implementation of VGG-16 (Simonyan & Zisserman, 

2014) available on DIGITS (NVIDIA Corporation, 2014), pretrained on the ILSVRC2012 

dataset. Mean pixel subtraction was employed, along with cropping to 224 x 224 

image size and image mirroring during training. The convolutional layers were 

unchanged with their pretrained weights frozen, the standard fully connected layers 

were replaced with a fully connected layer with 15 nodes and ReLU activation, 

followed by a 50% dropout layer (Srivastava et al., 2014), and finally a three node 

fully connected layer with softmax activation for classification. Figure 3-3 illustrates 
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the architecture of the new classification top layers. A training batch size of 42 and 

stochastic gradient descent was used to train the network, with a base learning rate 

of 1x10-4 and decay factor of 0.1 applied after completion of 33% intervals of the two 

training epochs. Training and validation accuracies of 100% were achieved, as could 

be expected for distinctly different conditions. 

 

Figure 3-3 

Laboratory Single Source Three-State Classification Network Architecture 

 

Note. Shown from the VGG-16 (Simonyan & Zisserman, 2014) final convolutional 

block max pooling layer. Includes the number of nodes and activation for new fully 

connected (fc) layers and dropout layer rate. 

 

3.1.3 Testing and Discussion 

Classification of the 200 test images not seen by the model during training 

also resulted in 100% accuracy. To interrogate the model further, underflow images 

from other experimental runs with different feed particle sizes, ore compositions and 

operating conditions were presented for classification. Of particular interest was a 

period of unstable operation in which the hydrocyclone underflow was fluctuating 

between fanning and roping conditions. Further synthetic blockage conditions were 

also generated from other experimental runs, though with slight modification, such 

as leaving some of the underflow in the image to give the appearance of splashing 

slurry.  

Figure 3-4 shows the classification results of the trained model on these 

additional test images. All blockage conditions were correctly identified, even with 

the presence of noise in the images. The allocation of fanning and roping appears 

reasonable, considering the model was only trained on a single stable fan period and 

VGG-16 fc dropout fc
5th block 15 50% 3
max pool ReLU softmax
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single consistent roping period. The point at which an image begins to be classified 

as roping could be adjusted simply by training the model with other example images 

that would also be considered roping.  

It should be noted that under these conditions the underflow width at a fixed 

horizontal plane method proposed by Janse van Vuuren et al. (2011), if extended 

further to consider blockage conditions and individual state classification, would also 

have given meaningful results for a number of images.  However, they noted 

particular issues with foreground noise which result in high intensity regions in the 

image that were difficult to handle through the image processing methods trialled. 

This could result in erroneous underflow width measurement, and potentially 

incorrect state detection, if present within the search region (Janse van Vuuren et al., 

2011). The assessment of the features within the image as a whole, and their 

correlation to what constitutes the distinct states, makes CNNs based methods more 

robust to this type of noise. Figure 3-4 images 10 to 12 present synthetic examples 

of foreground noise which would have presented a challenge for the fixed horizontal 

plane method, but have been correctly classified by the CNN based sensor. 

Another benefit of the use of CNNs is their ability to handle image translation 

(Goodfellow et al., 2016). With the method employed by Janse van Vuuren et al. 

(2011) the sensor is set up to monitor a specific horizontal line of the underflow 

image, and determine the underflow width within a specific interval search limit of 

that line (kept narrow to minimise potential for noise to enter and affect that 

measurement). This means that anything that may shift the section being monitored, 

such as cleaning or maintenance on the camera, would require confirmation of the 

sensor’s accuracy and adjustment as required. This is not a major issue for a CNN 

based sensor, as demonstrated by significant image shifts and resulting correct state 

allocation shown in Figure 3-4 images 13 to 15, thus leading to a more stable long 

term sensing option when applied in the field. 
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Figure 3-4 

Laboratory Three-State Detector Test Images and Output Classification 

   
1. Blocked 2. Blocked 3. Blocked 

   
4. Fanning 5. Fanning 6. Fanning 

   
7. Fanning 8. Fanning 9.Roping 

   
10. Roping 11. Blocked 12. Blocked 

   
13. Roping 14. Fanning 15. Fanning 

Note. Additional test images and their classification returned by the trained model, 

as indicated by the labels. Adapted from “Operational State Detection in 

Hydrocyclones with Convolutional Neural Networks and Transfer Learning,” by K. C. 

Giglia and C. Aldrich, 2020, Minerals Engineering, 149, p. 4 
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(https://doi.org/10.1016/j.mineng.2020.106211). Copyright 2020 by Elsevier. 

Adapted with permission. 

 

Without the need to compare consecutive frames to establish points of 

motion or smoothing of an underflow width measurement over time with a moving 

average as in Janse van Vuuren et al. (2011), the CNN based method is able to assess 

each frame for the probability that it is a member of each class. In this way the 

unstable transition period prior to continuous roping could be detected if the 

underflow profile collapses to the extent that it would be detected as roping for just 

a single frame. Thus, alarm thresholds could be set for the number of roping 

detections over a given time period to differentiate between the transition period 

and continuous roping. Figure 3-5 shows an example of an unstable transition period 

of the laboratory hydrocyclone filmed using a Panasonic Lumix DMC-FT2 hand-held 

camera at a more typical frame rate of 30 FPS. The achievable analysis frequency will 

depend on what is the bottleneck of the process such as frame rate or inference 

processing time, given the available hardware and model employed. 

 

Figure 3-5 

Laboratory Hydrocyclone Unstable Transition Period 

   

Note. Three consecutive frames of the laboratory hydrocyclone during an unstable 

transition period. Adapted from “Operational State Detection in Hydrocyclones with 

Convolutional Neural Networks and Transfer Learning,” by K. C. Giglia and C. Aldrich, 

2020, Minerals Engineering, 149, p. 4 
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(https://doi.org/10.1016/j.mineng.2020.106211). Copyright 2020 by Elsevier. 

Adapted with permission. 

 

This work demonstrates a proof of concept by simply presenting labelled 

images of hydrocyclone underflows in these three states, CNNs are able to extract 

meaningful features for their classification. There is thus potential to produce a fixed 

camera state detector with an ability to generalise to unseen operating conditions 

and handle a degree of image noise beyond what has been indicated by previous 

image-based sensors. 

3.2 Industrial hydrocyclone: Multiple Sources 

This preliminary hydrocyclone investigation was undertaken to gauge the 

extent to which CNN based sensors can generalise and be robust to more varied 

industrially relevant conditions. A two-state classifier (fan/rope) was investigated 

using a variety of industrial and laboratory hydrocyclone footage sources in which 

the cameras were not mounted to a fixed position. 

3.2.1 Data Collection 

Video material of fanning and roping operating conditions in hydrocyclones 

were sourced online and from industry donations. Online sources of hydrocyclone 

video footage used were CDE Group (2011), 911 Metallurgy Corp. (2016), Cyclone 

Engineering Jinyang (2016), and Xinhai Mining (2016). With the number of frames 

used within fair dealing for research and study limits of Australian Copyright Act. 

Roping footage from the laboratory hydrocyclone system used in Section 3.1, but 

filmed with a Panasonic Lumix DMC-FT2 hand-held camera, were also collected to 

expand this class’s dataset. The examples available present a range of images of 

varying quality, different viewing positions, hydrocyclone types and circuit designs, 

ore types, and the presence of image noise, such as mist and slurry spray. An effort 

was made to produce a balanced dataset with regard to the number of samples in 

each class, along with the number of examples from a given source, as summarised 

in Appendix A. Roping and fanning states only were considered, as an insufficient 

number of samples related to the blockage of hydrocyclones could be sourced. 
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3.2.2 Model Development 

The video clips were split into individual frames using the OpenCV (Bradski, 

2000) Python library (opencv-python package; Heinisuo et al., 2019), rotated so that 

the apex and discharge were orientated approximately north to south, and cropped 

square using the NumPy & Pillow Python libraries. Preprocessing of the images were 

done to ensure that the hydrocyclone apex and discharge were within a reasonable 

distance from the image edges and that objects such as other hydrocyclones and 

discharging slurry were largely removed, as at this stage the sensor is being 

developed to determine the operating state of one hydrocyclone per frame. The 

resulting dataset contained 322 examples of each class for training and 102 examples 

of each class for validation. Included in each class’s validation set were frames from 

unseen sources (i.e., two unseen fan sources and one unseen rope source), along 

with different viewing angles from sources included in the training set, to encourage 

the resulting classifier’s ability to generalise.  

With the images resized to 224 x 224 pixels and the network’s relevant input 

preprocessing performed, these images were then passed through the Keras (Chollet 

& others, 2015a) implementation of ResNet50 (He et al., 2015). This was available via 

Tensorflow’s (Abadi et al., 2015) implementation of Keras and pretrained on the 

ImageNet dataset. With the classification layer removed this produced a 2,048 value 

feature vector per image. Scikit-learn’s (Pedregosa et al., 2011) C-Support Vector 

Classification (SVC) was employed on the training dataset with a sigmoid kernel, C = 

4 error term penalty parameter, and gamma = scale kernel coefficient resulted in a 

93.6% validation set accuracy (13 errors out of 204 images). Indicating that 

meaningful features were able to be extracted from these industrially sourced 

images and used in state detection. 

In addition, the ability of the CNN itself to classify the images was also 

evaluated. As previously, the images were resized to 224 x 224 pixels and the 

network’s relevant input preprocessing was performed. In this case Keras’ 

implementation of VGG-19 (Simonyan & Zisserman, 2014), pretrained on the 

ImageNet dataset and with the fully connected top layers removed, was employed. 

The weights of this feature extracting part of the network were fixed during training, 
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and result in 512 7x7 feature maps per image. Image augmentation applied using 

Keras ImageDataGenerator was performed during training to avoid presenting the 

network with an identical image more than once, effectively expanding the dataset.  

Image augmentation involved constrained random position shifts, zooming, 

rotation, brightness and colour shifts, mirroring and with any blank areas in the image 

generated filled black as it is irrelevant for discerning the image class. The 

ImageDataGenerator settings are shown in Table 3-1, and examples of augmented 

image are shown in Figure 3-6. 

 

Table 3-1 

Data Augmentation Settings 

Variable Setting 
rotation_range 10 
width_shift_range 0.1 
height_shift_range 0.1 
shear_range 0 
zoom_range 0.05 
brightness_range 0.9, 1.3 
channel_shift_range 20 
horizontal_flip True 
fill_mode constant 
cval 0 

Note. Keras ImageDataGenerator (Chollet & others, 2015a) settings used in model 

development. From “Operational State Detection in Hydrocyclones with 

Convolutional Neural Networks and Transfer Learning,” by K. C. Giglia and C. Aldrich, 

2020, Minerals Engineering, 149, p. 9 

(https://doi.org/10.1016/j.mineng.2020.106211). Copyright 2020 by Elsevier. 

Reprinted with permission. 
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Figure 3-6 

Example Augmented Images 

   

Original 
Brightness and 

rotation 
Mirroring and 

rotation 

   

Brightness and 
colour shifted 

Mirroring and 
rotation 

Mirroring and 
position shift 

Note. Examples of image augmentation randomly performed by use of Keras 

ImageDataGenerator (Chollet & others, 2015a). Original image top left. Adapted 

from “Operational State Detection in Hydrocyclones with Convolutional Neural 

Networks and Transfer Learning,” by K. C. Giglia and C. Aldrich, 2020, Minerals 

Engineering, 149, p. 5 (https://doi.org/10.1016/j.mineng.2020.106211). Copyright 

2020 by Elsevier. Adapted with permission. 

 

The classifier portion of the network consisted firstly of applying dropout with 

a 50% probability, followed by a five node fully connected layer (kept small to limit 

the model’s capacity) with ReLU activation and L1 and L2 kernel regularisation (with 

penalties of 0.2 and 0.1 respectively). This regularisation scheme acts to encourage 

the reduction and zeroing of the layer’s weights, in a similar vein to elastic net (Zou 
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& Hastie, 2005). The five node fully connected layer was followed by a single node 

output layer with sigmoid activation, giving an output range 0–1. Figure 3-7 illustrates 

the architecture of the new classification top layers. Binary cross entropy loss 

(Equation 3-1) was employed, a training batch size of 46, and with Adam (Kingma & 

Ba, 2014) optimizer using a learning rate = 0.001 and decay rate = 0.1. 

 

Figure 3-7 

Industrial Multiple Source Two-State Classification Network Architecture 

 

Note. Shown from the VGG-19 (Simonyan & Zisserman, 2014) final convolutional 

block max pooling layer. Includes the number of nodes and activation for new fully 

connected (fc) layers and dropout layer rate. 

 

Binary cross entropy loss 

𝐿(𝑤) =  −[𝑦 log 𝑦(𝑤) + (1 − 𝑦) log(1 − 𝑦(𝑤))]             (3-1) 

where y is probability true class = 1 

(thus 1 – y is probability true class = 0) 

ŷ is the network’s output    (Murphy, 2012) 

 

The unconventional approach of applying dropout between the VGG-19 

feature extractor and the hidden fully connected layer was employed as a way of 

adding noise to the classifier input, forcing it not to over-rely on any given features. 

Owing to the small size of the dataset and similarities between images from the same 

video footage, data augmentation, dropout, L1 and L2 regularization were all 

employed to minimise the potential for overfitting and promote the network’s ability 

to generalise. 

VGG-19 dropout fc fc
5th block 50% 5 1
max pool ReLU sigmoid
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Random number seeding was employed to limit the run-to-run variability, 

though with training employing GPU for efficiency thus some variability still occurs 

(Chollet & others, 2015b). Hyperparameters were selected to give a high validation 

set accuracy, as an indication of ability to generalise. This model resulted in a 93.6% 

validation set accuracy (13 errors out of 204 images) after 10 epochs.  

3.2.3 Testing and Discussion 

For the trained VGG-19 CNN model, of the 13 validation set image 

misclassifications seven were from 35 frames of industrially donated footage. This 

system had poor lighting and slurry spray in the footage, however when looking at 

the specific frames that were misclassified the relatively narrow slurry covered spigot 

housing and wide flange joining it to the cyclone body were prominent, making a 

misclassification as roping plausible. By cropping these frames to remove the flange 

from the image and focusing more on the discharge region, all were then able to be 

correctly classified as fan state by the model.  

A further five of 64 frames from an online sourced roping state footage, which 

was relatively low resolution, and one of 35 frames from an online sourced fan state 

footage were also misclassified. These frames did not have any visually obvious 

reasons for misclassification compared to others from the same footage, though 

given the improvements yielded by cropping to make the hydrocyclone discharge 

region more prominent in the frame this was also trialled. This resulted in three of 

the roping state frames and the single fan state frame being reclassified correctly by 

the model. Though the model’s accuracy could still be refined further, this helps to 

demonstrate that in practice by initially presenting the best possible images the 

chance of misclassification even of unseen systems is lowered. This could include 

camera positioning considerations, cropping to focus on the region of interest, and 

optimisation of conditions such as lighting as much as practicable. 

Since the training and validation datasets consisted of only roping examples 

for the laboratory hydrocyclone, images of the system operating in fan state were 

tested to confirm that the classifier could correctly infer this unseen scenario (Figure 
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3-8). The fan state was correctly classified for both ambient light and illuminated 

conditions. 

 

Figure 3-8 

Industrial Two-State Detector Test Images and Output Classification 

   
Fanning Fanning Roping 

Note. Classification of the laboratory hydrocyclone underflow test images by the 

convolutional neural network (predicted states indicated by the labels). Adapted 

from “Operational State Detection in Hydrocyclones with Convolutional Neural 

Networks and Transfer Learning,” by K. C. Giglia and C. Aldrich, 2020, Minerals 

Engineering, 149, p. 5 (https://doi.org/10.1016/j.mineng.2020.106211). Copyright 

2020 by Elsevier. Adapted with permission. 

 

As a further test, another laboratory hydrocyclone was filled with water and 

allowed to drain by gravity. Images of this were passed through the trained network, 

which classified it as roping. The significance of this being that as roping is an 

undesirable condition and should ideally be a rare occurrence, it would be difficult to 

verify if a pretrained image-based sensor could detect the condition, should it occur. 

Given that this water flow was classified as roping, a simple test could be to run water 

through the hydrocyclones of new installations in such a way that similar water 

roping occurs. Images of these flows could then be used to validate the sensor 

output. If classified as roping, it would be an indication that a slurry rope should be 

detected correctly. If it is not classified as roping then fine tuning of the classifier may 
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be required, potentially using these water rope images as a substitute for actual 

roping footage of the system. 

Additional tests on footage donated from the Industry B source, of different 

hydrocyclones than those seen in the training process, were also undertaken to 

gauge the model’s current performance on these new systems. One set of 886 fan 

state frames from a non-stationary camera resulted in 213 misclassifications (76.0% 

accuracy), while another set of 122 fan state frames of a non-stationary camera 

resulted in 21 misclassifications (82.8% accuracy). This suggests that though efforts 

have been made to counteract it, overfitting to the training and validation set may 

still have occurred.  

The use of an ensemble method can improve prediction accuracy (reduce 

generalisation error) through averaging model outputs. This is beneficial as models 

trained in distinctly different ways are unlikely to make exactly the same errors. One 

such method would be a majority vote, in which each model assesses a frame and 

the majority class predicted is the output of the ensemble (Goodfellow et al., 2016). 

Given that only two distinct models have been developed on the industrial data so 

far, the average output probability method will instead be used. Here the probability 

that the image belongs to each class, given by each model, will be averaged to 

determine the class. Thus, in the event of a disagreement the model which appears 

more certain in its prediction of the class will determine the ensemble’s output, 

exploiting strengths in interpreting different situations that each model may have 

developed. 

Scikit-learn SVC’s ability to employ Platt’s scaling to produce a probability 

estimate from the SVM output (Platt, 2000) was utilised for the previously trained 

ResNet50 feature extraction model. The roping (class 1) probability for the trained 

SVM classifier is then averaged with the VGG-19 neural network classifier’s activation 

to give the ensemble’s probability and resulting classification. Table 3-2 presents the 

accuracy results for the three methods on the Industry B test images. Here it appears 

that the SVM classifier had a significantly better accuracy for the Industry_B_8 

footage, and was slightly less accurate for the Industry_B_10 footage. More 

importantly, when the class probabilities for the two methods are averaged the 
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resulting accuracy of the ensemble is greater than that achieved by either individual 

classifier. 

 

Table 3-2 

Modelling Method Performance Comparison 

Source Frames 
Accuracy (%) 

CNN SVM Ensemble 
Industry_B_8 886 76.0 97.9 98.2 
Industry_B_10 122 82.8 79.5 84.4 

Note. Industry B test frame accuracies for the VGG-19 CNN method, ResNet50 + SVM 

method, and ensemble method. From “Operational State Detection in Hydrocyclones 

with Convolutional Neural Networks and Transfer Learning,” by K. C. Giglia and C. 

Aldrich, 2020, Minerals Engineering, 149, p. 6 

(https://doi.org/10.1016/j.mineng.2020.106211). Copyright 2020 by Elsevier. 

Reprinted with permission. 

 

3.3 Industrial Hydrocyclone: Single Source 

This section will extend upon the work presented so far in Chapter 3 and 

Giglia and Aldrich (2020) with a focus on the process and practical considerations of 

developing an industrial fixed camera hydrocyclone state detector, with three-state 

(blocked/fan/rope) classification. This would currently be the most widely accessible 

route for the mineral processing industry, where in-house sensor development could 

be attempted on collected site specific footage and using open-source models and 

software. Compared to the three-state detector developed in Section 3.1 and Giglia 

and Aldrich (2020) on rather visually clean fixed high-speed camera laboratory 

footage, the industrial footage to be used presents more noise, variability, and state 

transition periods. Training with fixed camera footage means the model does not 

have to be as robust to changes in viewing angle, scale, discharge position within 

frame or the extreme of generalising to a new system compared to the industrial 

two-state (fan/rope) classifier developed in Section 3.2 and Giglia and Aldrich (2020). 
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3.3.1 Data Collection 

Video footage was donated by an industrial source from an operating mineral 

processing plant. Usage permissions for the footage does not extend to publication 

of video frames, thus relevant aspects of frames will be described as well as practical 

throughout this chapter. A fixed camera was used for each hydrocyclone in two 

clusters of five hydrocyclones, recording at 20 FPS. The frame dimensions were 3840 

x 2160 pixels, and contained the main body, apex, and slurry discharging into launder 

for each hydrocyclone of interest. A review of the footage found which hydrocyclone 

had the greatest period of roping and blockage events, this hydrocyclone will be 

referred to as Cyclone A, and was used for initial model training and testing.  

This circuit is typically operated with all hydrocyclones in a cluster either 

online or offline, and prior to taking the cluster offline it is flushed with water 

resulting in a clean discharge launder. Thus, footage of the hydrocyclone offline will 

not be used as a substitute for examples of blocked state, given that the discharge 

launder is prominent when viewing the hydrocyclone’s apex and the clean 

appearance is not representative of how an underflow blockage would appear in 

operation. In building the training and validation datasets rather strict conditions 

were used in selecting and labelling images  

 Fan state images had a broad fan profile filling a substantial portion of the 

discharge launder 

 Rope state images had a consistent central rope-like discharge flow extending 

from the apex  

 Blocked state images had little to no material discharging from the apex  

In long term operation however, hydrocyclone can exhibit intermediate 

conditions during periods of instability which can be difficult to classify under these 

strict labels. Frames from these periods have been included in the test dataset to 

gauge the trained model’s response to these conditions. Examples of these 

intermediate conditions include 
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 Periods where the fan briefly collapses to varying degree, but does not form 

a rope, resulting in a disrupted flow pattern. These were labelled as either fan 

or blockage depending on the extent of disruption. 

 Periods where the broad fan had collapsed, and a rope profile is forming near 

the apex. These were labelled as rope given the sufficient collapse from the 

typical fan profile. 

 Periods of partial blockage or blockage clearing, often occurring between 

distinct rope and blocked periods. Here falling material to varying extents and 

appearance is seen between the apex and discharge launder floor. If there 

was a largely consistent central rope-like discharge extending a reasonable 

distance from the apex these were be labelled as rope, otherwise they were 

labelled as blocked. 

External lighting was not applied to the hydrocyclone underflows so varied 

shadows from nearby structures were present to different extents throughout the 

day, along with bright/overexposed regions depending on the sun’s location. These 

conditions can result in varying degrees of information loss in the image making the 

classification task more difficult, with the underflow not visible at all during the night 

being the extreme example of lost information. For a long-term image-based sensor, 

applied light to the underflow region, and potentially restricting external lighting 

sources, would be beneficial in providing a more consistent appearance of the 

underflow profile. Though the current footage provides the opportunity to assess the 

degree of information loss due to lighting and shadows that can still be handled by a 

model trained under these conditions. The summary below briefly describes the 

lighting appearance of the periods of Cyclone A footage used to build the training 

(Train), validation (Val), and test (Test) sets, with Appendix B showing the state 

allocations that make up the datasets. 

 Train A – Low light in discharge launder from wide-spread shadow 

 Train B – Strong ambient light with prominent shadow centre / centre-right 

in discharge launder 

 Val A – Consistent moderate ambient light 

 Test A – Consistent moderate ambient light 
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 Test B – Strong ambient light with shadow right side in discharge launder 

 Test C – Strong ambient light with shadow centred in discharge launder 

 Test D – Strong ambient light with shadow right side in discharge launder 

 Test E – Consistent low / moderate ambient light 

3.3.2 Model Development 

The OpenCV (Bradski, 2000) Python library (opencv-python package; Heinisuo 

et al., 2019) was used to extract the frames from the video footage, with the Pillow 

(Clark & contributors, 2010) Python library used to extract 448 x 448 pixels crop 

regions of interest. For each period of footage to be cropped the coordinates for the 

centre of the apex tip was recorded, defined as [xapex, yapex], with this point indicated 

in Figure 3-9. As while all footage was from Cyclone A events such as cleaning of the 

camera lens result in changes in this position within the frame. The degree that the 

apex tip extends vertically into the frame was chosen (vapex) and horizontal centring 

given the crop size (i.e., 224 pixels) such that the top left coordinates for the crop 

position [xcrop, ycrop] is given by xcrop = xapex – 224 and ycrop = yapex – vapex. For this 

investigation vapex = 120 pixels was selected as a reasonable distance for the apex to 

extend into the frame given the crop region size, discharge appearance, and degree 

of crop position shift to be performed during training and testing. From the fixed crop 

coordinates [xcrop, ycrop] for each period of footage random integers from nominated 

ranges could then be added to or subtracted from each coordinate to facilitate the 

desired degree of crop position shift for an investigation.  

The training dataset consisted of Train A and Train B datasets, thus there were 

200 training images per class for a total of 600 training images. The validation dataset 

was made up of only the Val A dataset, thus there were 60 validation images per class 

for a total of 180 validation images. For each epoch of model training the Train A and 

Train B images were randomly cropped (with random integers between -40 and 40 

pixels added to their fixed crop coordinates) and augmented, resulting in each image 

being cropped and augmented differently for every epoch. The validation dataset 

was formed from the Val A images initially being randomly cropped (using the same 

settings as applied to the training set) and with no image augmentation applied, 
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resulting in the same unaugmented cropped images being used for validation every 

epoch. 

 

Figure 3-9 

Cyclone A Underflow Discharge Region Illustration 

 

Note. The centre of the apex tip used in crop coordinate calculations is indicated by 

a red + symbol. The 448 x 448 pixels crop region from the fixed crop coordinates 

(where vapex = 120 pixels) is illustrated by a red box. The extreme top left coordinates 

for the random cropping method [xcrop ± 40, ycrop ± 40] are illustrated by red г 

symbols. 

 

The industrial fan/rope sensor in Section 3.2 and Giglia and Aldrich (2020) was 

intended to be able to generalise to previously unseen hydrocyclone systems, and 

hence more varied and aggressive image augmentation was applied. For this work 

the three-state (blocked/fan/rope) sensor was trained and tested against the same 

hydrocyclone of interest, thus only relevant augmentation to this task was applied. 

Table 3-3 presents the Keras ImageDataGenerator (Chollet & others, 2015a) settings 

for image augmentation used in training the Section 3.2 and Giglia and Aldrich (2020) 

industrial sensor and the current design. Given the nature of the fixed camera 
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mounting point, image rotation and zoom augmentation was not applied. A 

brightness range of 1.0–1.5 was applied given that one training event was particularly 

dark and the other had a prominent shadow, thus brightness augmentation was 

intended to represent condition when illumination was increased from this limit. A 

channel shift range setting of five was applied to give a more subtle change in the 

image given that in this instance the sensor is not intended to be applied on different 

circuits and discharge slurries with vastly different appearances. While a horizontality 

flipped image would not be encountered by the sensor in practice, this augmentation 

was still applied to the training dataset to add variability, considering the mirror 

image still has the discharge appearance of the hydrocyclone operating in the 

labelled state. Given the variable crop position behaviour previously described, 

further width and height shifts using ImageDataGenerator were not required. 

Fill_mode and cval were left as the default values as none of the applied 

augmentations result in shifts outside of the input images’ boundaries, and thus 

filling was not required.  

 

Table 3-3 

Data Augmentation Settings Comparison 

Variable 
Settings 

Giglia & Aldrich (2020) Current Design 
rotation_range 10 0 

width_shift_range 0.1 0 
height_shift_range 0.1 0 

shear_range 0 0 
zoom_range 0.05 0 

brightness_range 0.9, 1.3 1.0, 1.5 
channel_shift_range 20 5 

horizontal_flip True True 
fill_mode constant nearest 

cval 0 0 

Note. Keras ImageDataGenerator (Chollet & others, 2015a) settings used in Giglia 

and Aldrich (2020) industrial sensor and the current work’s model development. 

Adapted from “Operational State Detection in Hydrocyclones with Convolutional 
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Neural Networks and Transfer Learning,” by K. C. Giglia and C. Aldrich, 2020, Minerals 

Engineering, 149, p. 9 (https://doi.org/10.1016/j.mineng.2020.106211). Copyright 

2020 by Elsevier. Adapted with permission. 

 

As in Section 3.2 and Giglia and Aldrich (2020), Tensorflow’s (Abadi et al., 

2015) implementation of Keras was used in model development. Also following a 

similar method, the images (augmented as previously described for the training set) 

were resized to 224 x 224 pixels and the required input preprocessing performed as 

expected by the pretrained CNN. With this work’s focus being on applied sensor 

development the lightweight CNN MobileNet (Howard et al., 2017) was selected. The 

Keras MobileNet implementation, pretrained on the ImageNet dataset, was used 

with default network width (alpha = 1.0) and resolution multiplier (depth_multiplier 

= 1). The output of MobileNet’s final convolutional block (i.e., with global average 

pooling and final classification related layers removed) was used to extract features, 

with the weights not updated during training and producing 1,024 7x7 feature maps 

from each input image. For comparison of the networks’ sizes, the Keras MobileNet 

implementation with these settings consists of approximately 3.2 million parameters 

to extract features from the three channel 224 x 224 pixels RGB input image to 

produce 1024 7x7 feature maps. While the Keras VGG-19 (Simonyan & Zisserman, 

2014) implementation, as used in Section 3.2 and Giglia and Aldrich (2020), consists 

of approximately 20.0 million parameters to extract features from the three channel 

224 x 224 pixels RGB input image to produce 512 7x7 feature maps. 

The classification network was structured similar to Section 3.2 and Giglia and 

Aldrich (2020) industrial two-state (fan/rope) detector but modified for this three-

state (blocked/fan/rope) detection task, as illustrated in Figure 3-10. Dropout 

(Srivastava et al., 2014) with 50% probability was applied, then a fifteen node fully 

connected layer with L1 (0.01) and L2 (0.1) kernel regularisation and ReLU activation. 

Finally, a three node fully connected layer with softmax activation was used given 

the three-state classification requirement. Categorical cross entropy loss was used 

with Adam (Kingma & Ba, 2014) optimizer (learning rate = 1x10-4) and a training batch 
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size of 30. Training was performed under the conditions described for 10 epochs and 

resulted in a 97.2% validation set accuracy. 

 

Figure 3-10 

Industrial Single Source Three-State Classification Network Architecture 

 

Note. Shown from the MobileNet (Howard et al., 2017) final convolutional block 

output. Includes the number of nodes and activation for new fully connected (fc) 

layers and dropout layer rate. 

 

3.3.3 Testing and Discussion 

The images from the Test A to Test E datasets were then evaluated by the 

trained model, with various cropping methods used as detailed below (each crop 

method used once per image). Figure 3-11 also shows all the crop position shifts for 

the random and expanded methods (with respect to the relevant fixed coordinates 

[xcrop, ycrop]) that were applied to the test datasets, to aid in visualising the behaviour 

of the crop methods. 

 Fixed – All images cropped using the relevant fixed crop coordinates. This can 

also be thought of as the central crop position of the random cropping 

method used during training. 

 Random – All images were cropped by having random integers between -40 

and 40 pixels added to their relevant fixed crop coordinates. This being the 

same cropping method used on the training and validation datasets. 

 Expanded – All images were cropped by having a random integer between -

80 and -41 or 41 and 80 pixels added to one of the relevant fixed crop 

coordinates, and a random integer between -40 and 40 pixels added to the 

MobileNet dropout fc fc
13th block 50% 15 3

ReLU ReLU softmax
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other fixed crop coordinate. This resulted in crop positions just outside of the 

region used during training. 

 

Figure 3-11 

Test Images Crop Position Shifts 

 

Note. Crop position shifts with respect to the relevant fixed coordinates [xcrop, ycrop] 

for the random and expanded crop methods as applied to the Cyclone A test images. 

 

Three-state confusion matrices for each test dataset and crop position are 

presented in Appendix C, with Table 3-4, Table 3-5, Table 3-6 showing the overall test 

three-state confusion matrices for each crop method; fixed, random, and expanded 

respectively. The initial discussion will be around the classification performance on 

the Fixed crop method (as this removes a source of variability), before moving on to 

the behaviour with variable crop positions. 
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Table 3-4 

Cyclone A Fixed Crop Method Combined Testing Three-State Confusion Matrix 

Crop: Fixed 
Accuracy 79.8% 

Predicted State  
blocked fan rope Recall 

True 
State 

blocked 868 51 365 67.6% 
fan 19 794 0 97.7% 

rope 22 1 152 86.9% 
Precision 95.5% 93.9% 29.4%  

Note. Combined (Test A to E datasets) three-state confusion matrix for the fixed crop 

method, along with per class precision, recall, and overall accuracy. 

 

Table 3-5 

Cyclone A Random Crop Method Combined Testing Three-State Confusion Matrix 

Crop: Random 
Accuracy 77.8% 

Predicted State  
blocked fan rope Recall 

True 
State 

blocked 829 45 410 64.6% 
fan 29 784 0 96.4% 

rope 19 2 154 88.0% 
Precision 94.5% 94.3% 27.3%  

Note. Combined (Test A to E datasets) three-state confusion matrix for the random 

crop method, along with per class precision, recall, and overall accuracy. 
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Table 3-6 

Cyclone A Expanded Crop Method Combined Testing Three-State Confusion Matrix 

Crop: Expanded 
Accuracy 67.3% 

Predicted State  
blocked fan rope Recall 

True 
State 

blocked 719 65 500 56.0% 
fan 122 668 23 82.2% 

rope 29 3 143 81.7% 
Precision 82.6% 90.8% 21.5%  

Note. Combined (Test A to E datasets) three-state confusion matrix for the expanded 

crop method, along with per class precision, recall, and overall accuracy. 

 

3.3.3.1 Fixed Crop Method Classification 

As the fan state is the typical and desired hydrocyclone operating state, the 

overall test recall of 97.7% for the fan state is a key metric. This presents the correctly 

predicted fan states as a proportion of the total fan labelled (true state) test 

examples. This provides an indication of the model’s potential for false fault state 

predictions (blocked and rope both being fault states) and subsequently false alarms. 

A total of 19 fan labelled test images were misclassified as blocked and none 

misclassified as rope. The Test D dataset contained 18 of these misclassifications, 

with these fan images all showing a state of fluctuation (not the uniform broad fan 

of stable operation) and also not the collapse of discharge into the initial roping 

appearance. Test B, Test C, and Test E datasets all had no fan state misclassifications, 

and Test A had a single fan misclassification as blocked without a clear visual cause. 

Another key metric is the overall test precision of 93.9% for the fan state. This 

presents the correctly predicted fan states as a proportion of the total fan state 

predictions for test examples. This provides an indication of the model’s potential for 

fan state readings to contain misclassified rope or blocked states, with these fault 

states going undetected. The Test B and Test D datasets had no images misclassified 

as fan. The Test A dataset had one rope labelled image misclassified as fan, and 10 

blocked labelled images misclassified as fan. Of these only one blocked labelled 

misclassification was from a fluctuating period where in labelling it was deemed to 
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have more of a blocked appearance than stable fan. The Test C dataset had 10 

blocked labelled images misclassified as fan, with two of these being from a 

fluctuating period.  

The Test E dataset had 31 blocked labelled images misclassified as fan, with 

five of these from a fluctuating period. Within this Test E dataset there were 111 

blocked labelled images (with varying degrees of material discharging from the apex) 

from a period in which spillage from the overflow launder above enters the crop 

region. This period accounted for 21 of the blocked labelled images misclassified as 

fan, along with 27 the blocked labelled images misclassified as rope. This period 

presents a higher proportion of misclassification as fan, though is also a more 

extreme example of foreground noise than the typical mist and spray found in 

operation. 

In all there are several test images misclassified as fan that are part of 

unstable fluctuating periods, such as a disrupted profile which can also see fan 

labelled images classified as blocked by the model as previously discussed, along with 

a period of atypical/extreme foreground noise. There are still a portion of images 

that have no visibly obvious potential explanation for the misclassification as fan, 

thus a degree of missed fault state detection under the current training and test 

conditions would still occur. 

The other aspect to discuss is that of the misclassification of the fault states 

(blocked/rope). Of the rope labelled states 22 (12.6%) have been misclassified as 

blocked state. While labelling of rope state was strict in terms of appearance of the 

discharge this demonstrates a level of disagreement in differentiating these fault 

states. Of the blocked labelled states 365 (28.4%) have been misclassified as rope 

state. The majority of these have material to some extent discharging from the apex. 

This helps to highlight the behaviour of the trained model in assessing these rope to 

blockage transition states. For this hydrocyclone system apex blockages are not a 

rare occurrence caused by foreign material obstructing the apex, instead occurring 

more frequently following conditions resulting in roping. The underflow solids 

concentration appears to rise to a point where the apex blocks or partially blocks and 

cycling conditions between roping and blockage occurs. 
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While firm criteria for roping were used in labelling datasets, the transition 

states particularly when taken as a stand-alone frame also presented challenges for 

the labeller. It needs to be acknowledged that trained classifiers may draw a different 

conclusion on unseen transition states, especially if similar examples did not form 

part of the training set. This could occur in practice if insufficient examples of the 

fault states are available, with the model  instead trained on footage of water/slurry 

discharging with a rope-like appearance, as suggested in Section 3.2 and Giglia and 

Aldrich (2020), and offline hydrocyclone footage in place of blockage example. Of 

most importance is that a fault state has been identified, even if its true state is 

debatable, and this is the case with only 4.0% of blocked labelled images and 0.6% of 

rope labelled images tested misclassified as the non-fault fan state. 

3.3.3.2 Variable Crop Method Effect 

For exploring the effect of crop position, the focus will be on the overall 

testing dataset and how the crop method affected the predicted state for the image. 

As previously noted, each crop method was performed once per test image. Table 

3-7 summarises whether the predicted state equals the labelled state, true (T) or 

false (F), for each test image and crop method (as a percentage of the overall test 

dataset). For 11.5% of the test images the predicted state did not match the labelled 

state, regardless of crop method used, suggesting these images as presented were 

challenging for the trained model. For 58.6% of the test images the predictions 

matched the labelled state regardless of crop position, thus 70.1% of images were 

classified consistently (correctly or incorrectly) regardless of crop position. Another 

14.1% of the test images had predictions matching the labelled state for the fixed 

and random cropped images but not the expanded crop. While 3.6% of test images 

for which the fixed and random cropped images predictions were incorrect, but the 

expanded crop image was correct. Thus 87.8% of images were classified consistently 

(correctly or incorrectly) within the crop region incorporated in the training process 

(as the fixed crop method region is contained within the random crop method 

region). 
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Table 3-7 

Summary of Crop Method Influence on State Prediction 

Fixed Random Expanded (%) 
T T T 58.6 
F F F 11.5 
T T F 14.1 
F F T 3.6 
T F F 4.1 
F T T 2.2 
T F T 3.0 
F T F 2.9 

Note. Shown as a percentage of overall test dataset. Predicted = labelled state (T) 

and predicted ≠ labelled state (F). 

 

Figure 3-12 shows the crop position shifts for the misclassified random and 

expanded method cropped test images (excluding test images where all three crop 

methods resulted in misclassification). Figure 3-13 then presents these 

misclassifications for each 40 x 40 pixels crop region from Figure 3-12, along with 

misclassification for the fixed crop method, as a percentage of total test images in 

that region (or the entire test dataset for the fixed crop method case). There appears 

to be a general increase in misclassifications in the expanded crop region where 

vertical pixel shift from ycrop is less than -40 and greater than or equal to -80, 

compared to the proportion of misclassifications from the fixed crop method and in 

the random crop method regions. This vertical shift up in crop position leads to the 

hydrocyclone being lower down in the cropped frame, thus cutting off part of the 

region at the bottom of the frame relevant to the underflow discharge appearance. 

There are also a few expanded crop method regions where horizontal pixel shift from 

xcrop is less than -40 and greater than or equal to -80 which show an increased 

proportion of misclassifications. This horizontal shift left in crop position leads to 

more of the launder lip (often covered in solids build-up) being brought into the 

frame and cutting off some of the discharge launder. 
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Figure 3-12 

Misclassified Test Images Crop Position Shifts 

 

Note. Crop position shifts, with respect to the relevant fixed coordinates [xcrop, ycrop], 

for the random and expanded crop methods’ test images which were misclassified 

(excluding test images where all three crop methods resulted in misclassification). 

 

Figure 3-13 

Region Percentage of Misclassified Crop Position Shift Test Images 

27% 24% 36% 30%  Expanded Crop Method 
21% 13% 11% 10%  Random Crop Method 
13% 8% 12% 10%  Fixed Crop Method 
31% 16% 12% 11%  9% 

Note. Percentage of misclassifications for the respective 40 x 40 pixels regions 

presented in Figure 3-12. Misclassification count is as used to produce Figure 3-12, 

representing misclassification associated with the crop position shift and thus 

excluding test images where all three crop methods resulted in misclassification. 
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Misclassification percentage is then based on the total test images in that 40 x 40 

pixels region (as shown in Figure 3-11). Also shown is the percentage of 

misclassifications for the fixed crop method (excludes test images where all three 

crop methods resulted in misclassification) over the entire test set. 

 

Incorporating crop position shift in the training process appears worthwhile 

to increase the variability of images presented and give a level of robustness to 

movement within a known region. Monitoring and restricting the applied sensors 

crop position within the region explored during training would be sensible. Though 

in this case a 40 pixels shift is less than 10% of the cropping frame’s 448 pixels width 

and height, the introduction of features or appearance changes not experienced 

during training can lead to a higher rate of misclassification. Ideally, holding the crop 

position as a fixed region with respect to the centre of the hydrocyclone apex tip 

would be desirable as it removes a source of variability. The central point of the crop 

position shift range used in training would being a reasonable point to select, 

allowing the largest potential shift in any direction to occur and still be contained 

within the region used during training. Though misclassifications can still occur, as 

the 2.2% of misclassified test images occurring with the fixed crop method but not 

the random or expanded crop methods shown in Table 3-7 demonstrate, the 

consistency a fixed crop region provides is still desirable. 

3.3.3.3 Fault State Detection 

Considering the previous discussion of the issues encountered by the trained 

model to discriminate between rope and blocked states, particularly during 

transition periods which were also challenging for a human labeller, the fault 

detection performance of the model on the test dataset for each crop method will 

be examined. Table 3-8, Table 3-9, and Table 3-10 reduces the respective three-state 

confusion matrices of Table 3-4, Table 3-5, and Table 3-6 to two-state confusion 

matrices fan versus fault (fault including blocked and rope states). The Matthews 

correlation coefficient (MCC; Matthews, 1975) was also calculated for each crop 

method for the now binary classification task (Equation 3-2), as it considers the 
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proportion of classes and their prediction outcomes to produce a more robust 

performance score than overall accuracy (Chicco, 2017). 

 

Matthews correlation coefficient (Matthews, 1975) calculated from the confusion 

matrix values as in Chicco (2017) 

𝖬𝖢𝖢 =  
𝘛 𝘛 − 𝘍 𝘍

(𝘛 + 𝘍 )(𝘛 + 𝘍 )(𝘛 + 𝘍 )(𝘛 + 𝘍 )
 (3-2)

where 𝖳fan = correct fan predictions 

𝖥fan = incorrect fan predictions 

𝖳fault = correct fault predictions 

𝖥fault = incorrect fault predictions 

 

With the model’s outputs simplified to the process critical hydrocyclone 

operational state fault detection, the current performance of the model within the 

crop region experienced during training appears strong. For the fixed and random 

crop method tests the performance metrics are comparable, with only a slightly 

improved overall performance indicated when the fixed crop position is used, as best 

illustrated by the slightly higher MCC of 0.933 against 0.928. The expanded crop 

method tests indicate a 90.6% accuracy and MCC of 0.794, further suggesting that 

there is distinct drop in performance for crop regions outside of that used in training. 

Of note is the 82.2% fan state recall, thus 17.8% of fan state labelled images were 

incorrectly classified as fault states and would lead to higher false alarm rates. 
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Table 3-8 

Cyclone A Fixed Crop Method Combined Testing Two-State Confusion Matrix 

Crop: Fixed 
Accuracy 96.9% 

Predicted State  
fan fault Recall  

True 
State 

fan 794 19 97.7%  
fault 52 1407 96.4%  

Precision 93.9% 98.7% MCC 0.933 

Note. Combined (Test A to Test E datasets) two-state confusion matrix for the fixed 

crop method; along with per class precision and recall, overall accuracy, and 

Matthews correlation coefficient (MCC). 

 

Table 3-9 

Cyclone A Random Crop Method Combined Testing Two-State Confusion Matrix 

Crop: Random 
Accuracy 96.7% 

Predicted State  
fan fault Recall  

True 
State 

fan 784 29 96.4%  
fault 47 1412 96.8%  

Precision 94.3% 98.0% MCC 0.928 

Note. Combined (Test A to E datasets) two-state confusion matrix for the random 

crop method; along with per class precision and recall, overall accuracy, and 

Matthews correlation coefficient (MCC). 
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Table 3-10 

Cyclone A Expanded Crop Method Combined Testing Two-State Confusion Matrix 

Crop: Expanded 
Accuracy 90.6% 

Predicted State  
fan fault Recall  

True 
State 

fan 668 145 82.2%  
fault 68 1391 95.3%  

Precision 90.8% 90.6% MCC 0.794 

Note. Combined (Test A to E datasets) two-state confusion matrix for the expanded 

crop method, along with per class precision and recall, overall accuracy, and 

Matthews correlation coefficient (MCC). 

 

3.3.3.4 Applied Sensor Considerations 

During initial setup of an industrial image-based hydrocyclone state detector 

consideration to reduce the variability in the footage over time would be beneficial. 

Applied lighting to the hydrocyclone underflow region would aid in minimising 

illumination variability, particularly shadows resulting in localised information loss, 

along with improving contrast with the background. Selection of the camera position 

and angle so that the resulting crop region contains less visual variability from other 

sources would also be beneficial. For example, during laboratory hydrocyclone state 

detector work in Section 3.1 and Giglia and Aldrich (2020), the camera was positioned 

perpendicular to the vertical hydrocyclone resulting in a crop region containing the 

hydrocyclone discharge but no flowing and splashing slurry from within the discharge 

tank.  

Additionally, “a clear view of the hydrocyclone’s discharge would generally be 

required. Spigot socks or housings that obscure a view of the fan profile may make it 

more difficult to determine the differences between the states” (Giglia & Aldrich, 

2020, p. 6). This lack of a reliable external indication of operating state could also be 

extended to systems where the spray angle leads to a particularly narrow fan profile. 

In this case, it becomes more challenging to visually discern from the rope state and 

would likely result in more frequent misclassifications. If typical operation sees a 
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narrow spray profile then other sensing methods not reliant on the underflow 

characteristics may be more suitable, such as electrical tomography based (Section 

2.3.1) or acoustic based (Section 2.3.2) sensors. 

The model trained under the current conditions has not achieved perfect 

classification accuracy, even for fault detection alone. It was worth considering how 

the model’s output will could be used for alarm thresholds and to form the operating 

state output that is visible and used by the operators and control system. As the 

model assesses each frame to output the most probable operating state, one option 

would be to assess the outputs over a fixed period. For example, if the outputs 

produced each second were to be assessed, then in this case there would be up to 

20 individual frames, if the available hardware allows for all the 20 FPS of video 

footage to be analysed. A threshold could then be set for the number of frames or 

consecutive frames in this period to produce a fault alarm (both blocked and rope 

counted to better handle for transition periods), along with the number of frames or 

consecutive frames to signify the operating state output for the time period. The 

number of frames for these thresholds would be set based on balancing the risk of 

false alarms with missed fault detection. Even with this frequency of model output 

assessment, the operating state output reading update rate would still be in the 

order of other commercially available operational state detection methods discussed 

in Section 2.3. 

 It is also worth considering the effect of analysing the underflow footage at 

a lower rate. This would reduce the probability of detecting, and thus responding to, 

the brief state changes (intermediate periods) that often occur before operating 

conditions lead to an extended state change. Also with a lower analysis rate, and thus 

the more time represented by the image analysed, there is more weight being given 

to that output as there is less data available to compare against to counteract a 

misclassification. This all factors into the decision on what time period should be used 

for the alarm thresholds and operating state output, given the desired 

responsiveness. 

If in practice, it is found that consistent features are present at times that 

result in extended periods of misclassification then another option to improve the 
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classification accuracy would be through using a model ensemble method. Through 

the development of additional classification models, such as training with a different 

pretrained CNN as a feature extractor, each models’ probability outputs could be 

averaged or a majority vote of proposed class could be used to produce the ultimate 

operational state output for a frame, as discussed in Section 3.2.3 and Giglia and 

Aldrich (2020). While this method can produce accuracy improvements compared to 

the individual classifiers, it requires additional computational resources and thus 

could lower the overall frame rate able to be processed (depending on available 

hardware). 

Both the assessment of frames over time and the use of ensemble methods 

for individual frame classification can be used in conjunction to try and produce the 

most reliable state detection classifier under all conditions. It would be worthwhile 

to have testing footage available to assess the performance of a trained classifier, to 

give an indication of relevant thresholds and if training additional classifiers may be 

necessary. At a minimum addition fan operating footage, which should be readily 

available, should be used to test fan state recall. If no true fault state footage is 

available then offline hydrocyclone footage as a substitute for blockage, along with 

artificial water or slurry rope footage, as suggested in Section 3.2.3 and Giglia and 

Aldrich (2020), would also be worth trialling. 

3.3.3.5 Generalisation 

The training and validation of the state classifier model was only performed 

on a small dataset from a single hydrocyclone (Cyclone A) and under visually 

challenging conditions (particularly due to the lack of dedicated lighting). This was 

undertaken to gauge the performance potential for a classifier produced under these 

conditions, though it is also of interest to see if a classifier trained in this way could 

generalise to other hydrocyclones in the circuit. A period of footage from a 

hydrocyclone which appeared most similar to Cyclone A in terms of viewing angle 

and launder position was used to produce test dataset Cyclone B. Frames were 

cropped using the Fixed crop method, with the resulting appearance having a similar 

launder lip position in the frame as Cyclone A though with very prominent shadowing 

covering large portions of the frame. Table 3-11 and Table 3-12 shows the Cyclone B 
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fixed crop test dataset results in terms of the three-state (blocked/fan/rope) and 

two-state (fan/fault) confusion matrices, respectively. The fault detection 

performance on this small test dataset is strong, with no misclassifications as fan, 

however the fan state recall is only 67.4% with all misclassifications as blockages. 

 

Table 3-11 

Cyclone B Fixed Crop Method Testing Three-State Confusion Matrix 

Crop: Fixed 
Accuracy 72.1% 

Predicted State  
blocked fan rope Recall 

True 
State 

blocked 39 0 6 86.7% 
fan 45 93 0 67.4% 

rope 9 0 23 71.9% 
Precision 41.9% 100% 79.3%  

Note. Cyclone B test dataset three-state confusion matrix for the fixed crop method; 

along with per class precision, recall, and overall accuracy. 

 

Table 3-12 

Cyclone B Fixed Crop Method Testing Two-State Confusion Matrix 

Crop: Fixed 
Accuracy 79.1% 

Predicted State  
fan fault Recall  

True 
State 

fan 93 45 67.4%  
fault 0 77 100%  

Precision 100% 63.1% MCC 0.652 

Note. Cyclone B test dataset two-state confusion matrix for the fixed crop method; 

along with per class precision and recall, overall accuracy, and Matthews correlation 

coefficient (MCC). 

 

Another period of footage from a hydrocyclone with a different viewing angle 

and launder position was used to produce test dataset Cyclone C. Frames were 
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cropped using the fixed crop method, with the resulting appearance having the 

launder lip on the right side of the frame (Cyclone A’s launder lip is on the left) and 

prominent shadowing on the centre and lower left of the frame. Table 3-13 shows 

the Cyclone C fixed crop test dataset results in terms of the three-state 

(blocked/fan/rope) confusion matrix. A critical issue with the Cyclone C test footage 

results is that no images were predicted as fan state so in this case the trained 

classifier has failed to generalise to this new footage. While the extent of shadow 

present in both these test datasets may go some way to explaining the lower test 

performance compared to Cyclone A, the poor fan state detection on the Cyclone C 

test dataset compared to Cyclone B shows that the ability to generalise when trained 

on a single hydrocyclone is limited. With consistent lighting and fixed camera 

positions selected to result in a more similar appearance for frames presented to the 

classifier, it would be of interest to investigate whether training individual classifiers 

per hydrocyclone or producing a single classifier from the combined dataset would 

result in improved final performance. This would be of particularly interest if the 

larger combined dataset opens up the option of fine-tuning convolutional layers. 

 

Table 3-13 

Cyclone C Fixed Crop Method Testing Three-State Confusion Matrix 

Crop: Fixed 
Accuracy 32.2% 

Predicted State  
blocked fan rope Recall 

True 
State 

blocked 56 0 20 73.7% 
fan 38 0 102 0% 

rope 2 0 21 91.3% 
Precision 58.3% - 14.7%  

Note. Cyclone C test dataset three-state confusion matrix for the fixed crop method; 

along with per class precision, recall, and overall accuracy. 
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3.3.4 Image-Based Sensor Health Check 

While the cameras monitoring the hydrocyclones have fixed mounting points, 

their brackets allow for adjustment and thus the position of the hydrocyclone within 

the frame was found to change over the extended periods of footage provided. The 

manual cleaning of the camera lens was noted as being an event that can result in 

significant movement of the camera. The state classifier training was performed 

using variable crop locations containing the hydrocyclone apex and discharge, and 

thus should have a degree of robustness to movement. Though as an applied sensor 

would be sampling from a set crop position it would be worth having a health check 

that the apex and discharge are expected to be acceptably contained within the set 

crop region. 

The more challenging task of object detection could form part of a general 

moving camera state detector, where confirming the presence and location of a 

hydrocyclone’s apex may be required in producing a reliable operational state 

classification. Considering in this case the camera mounting point and hydrocyclone 

structure are fixed, the simpler task of tracking a reference point/region over time 

would be sufficient. Here tracking is not used to follow a moving object within the 

frames, but rather to see how the field of view has moved in relation to the object. 

With the key physical structures and camera fixed, changes in the reference target’s 

scale, rotation and deformation would not likely occur. Changes in the target’s 

appearance due to lighting variation (especially shadows), mist/spray from the 

operating hydrocyclones, slow build-up of solids on surfaces, and the transition of 

the camera from colour day mode to a green hued infrared night mode would all be 

challenges for the tracking algorithm to handle. 

3.3.4.1 Tracker Selection 

Two OpenCV (Bradski, 2000) tracker implementations, available on the 

opencv-contrib-python package (Heinisuo et al., 2020), where trialled on a period of 

Cyclone A footage known to contain camera lens cleaning that resulted in a change 

in field of view. Tracker 1 was TrackerCSRT being an implementation of discriminative 

correlation filter with channel and spatial reliability (Lukežič et al., 2018), and Tracker 

2 was TrackerMOSSE being an implementation of minimum output sum of squared 
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error (MOSSE) correlation filter (Bolme et al., 2010). The trackers were initialised with 

a target region of interest on the first frame of the video footage, this region 

extended from the tip of the hydrocyclone’s apex to part way up the lower cone 

(including a bracket on the lower cone). The target region is defined by a bounding 

box (1970, 1105, 150, 180), consisting of the top left corner coordinates xmin and ymin 

along with the box’s width and height (all expressed in pixels). The tracker was then 

updated on every 20th frame. Considering the video frame rate is 20 FPS, this 

monitoring frequency should be more than sufficient to capture movement of the 

target region within the frame. The OpenCV tracker update for a new frame returns 

true if the target has been found, along with the proposed bounding box descriptors, 

otherwise false is returned with all bounding box descriptors zero. 

The resulting bounding box descriptors over time for the footage with lens 

cleaning and subsequent field of view shift for Tracker 1 is shown in Figure 3-14 and 

for Tracker 2 is shown in Figure 3-15. At approximately 13.5 min into the footage 

cleaning of the camera lens begins, with both trackers responding with changes in 

the bounding box xmin and ymin coordinates as the target region moves within the 

frame. During cleaning, the camera lens becomes fully obscured and the target is 

lost, with both trackers returning false and a break shown in the bounding box 

descriptor plots. Tracker 2 recovers from the obscuration when the target is again 

visible and continues tracking it. Tracker 1 does not successfully recover from the 

obscuration and subsequent bounding box descriptors no longer represent the 

intended target. Prior to the tracking failure, the bounding box descriptors for 

Tracker 1 are also more variable than Tracker 2, though the scale and structure of the 

intended target region is not changing during this period. 
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Figure 3-14 

Tracker 1 Bounding Box Descriptors During Lens Cleaning 

 

Note. OpenCV TrackerCSRT (Heinisuo et al., 2020) bounding box descriptors over 

time for footage with lens cleaning and subsequent field of view shift. 
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Figure 3-15 

Tracker 2 Bounding Box Descriptors During Lens Cleaning 

 

Note. OpenCV TrackerMOSSE (Heinisuo et al., 2020) bounding box descriptors over 

time for footage with lens cleaning and subsequent field of view shift. 

 

Given the successful recovery from obscuration and more stable bounding 

box descriptors of Tracker 2, this implementation of TrackerMOSSE was investigated 

further for its potential use in an image-based sensor health check application. With 

the bounding box width and height remaining constant throughout the tracking 

process, Figure 3-16 shows only the change in bounding box coordinates between 

consecutive frames assessed. Minor shifts (in this case within ±4 pixels) occur during 

tracking, resulting from causes such as movement/vibration of the system and 

potentially drift of the tracking region. A significantly larger shift in bounding box 

coordinates than otherwise observed then occurs during camera lens cleaning in this 

footage. 
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Figure 3-16 

Tracker 2 Bounding Box Descriptor Difference During Lens Cleaning 

 

Note. OpenCV TrackerMOSSE (Heinisuo et al., 2020) bounding box location xmin & ymin 

descriptor difference (between current and previously assessed frame) over time for 

footage with lens cleaning and subsequent field of view shift. 

 

3.3.4.2 Long-Term Stability 

To assess the longer term TrackerMOSSE behaviour on this system 

approximately 22.5 hr of continuous Cyclone A footage was monitored, again 

initialised on the region (1970, 1105, 150, 180) and with the tracker updated on every 

20th frame. This was performed to assess response to different visual challenges as 

previously discussed, along with behaviour during different operating conditions and 

hydrocyclone start-up and shutdown. Again, with the bounding box width and height 

remaining constant throughout the tracking process, Figure 3-17. shows the change 

in bounding box coordinates between consecutive frames assessed. Key events 

noted are as follows 

a. ymin shifts due to hydrocyclone jumping/vibrating on start-up 
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b. Two periods of tracking failure returned during lens cleaning. This cleaning 

instance did not result in a field of view shift 

c. A single frame shift with xmin difference = 9 pixels and ymin difference = 42 

pixels, before returning to previous values. No clear cause for the single frame 

shift, though there was mist/spray occurring in the target region during that 

period 

d. A single frame tracking failure which resulted in no position shift when the 

target was subsequently located, and no clear visible cause for the failure 

e. A single frame shift with xmin difference = -1 pixels and ymin difference = 4 

pixels, before returning to the previous values, with no clear cause for a single 

frame shift 

f. xmin and ymin shift due to hydrocyclone jumping/vibrating on start-up 

g. xmin and ymin shift due to hydrocyclone jumping/vibrating on start-up 

 

Figure 3-17 

Long-Term Bounding Box Descriptor Difference 

 

Note. OpenCV TrackerMOSSE (Heinisuo et al., 2020) bounding box location xmin & ymin 

descriptor difference (between current and previously assessed frame) over time. 
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Extended tracking performance analysis with key events marked. Initial tracking 

region (1970, 1105, 150, 180). 

 

While most notable shifts and tracking failures were reasonable and 

explainable, the single frame shifts and failure were more challenging. As the 

hydrocyclone’s apex (which was included in the target region) is within the discharge 

launder and thus more affected by lighting changes and spray/mist caused by the 

discharge, a revised target region was considered. The target region was adjusted to 

mainly include the bracket on the lower cone (1930, 1020, 225, 150), which was 

further out of the discharge launder and more consistently illuminated. The tracking 

process was then repeated with the revised target region, with Figure 3-18 showing 

the change in bounding box coordinates between consecutive frames assessed. The 

start-up and lens cleaning related points of interest were still present when initialise 

on this new target region, while the tracking was more stable with none of the 

unexplained single frame shifts and failure occurring. This demonstrates improved 

tracker reliability by using a reference point expect to have a more consistent 

appearance over the long term. A potential issue may be that if a localised 

obscuration is occurring in the apex and discharge crop region used by the state 

detector this is less likely to be identified (through the tracker returning a false signal) 

if the reference point is further away from this region. 
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Figure 3-18 

Long-Term Bounding Box Descriptor Difference With Revised Tracking Region 

 

Note. OpenCV TrackerMOSSE (Heinisuo et al., 2020) bounding box location xmin & ymin 

descriptor difference (between current and previously assessed frame) over time. 

Extended tracking performance analysis with key events marked. Revised initial 

tracking region (1930, 1020, 225, 150). 

 

The change in the bounding box descriptors over the extend tracking period 

for the two target regions trialled are shown below. 

 Initial (1970, 1105, 150, 180), Final (1970, 1110, 150, 180) 

 Initial (1930, 1020, 225, 150), Final (1931, 1023, 225, 150) 

These changes suggest that there may be drift in the tracker over time, which 

may require monitoring over an extended period and correction when required. 

Bolme et al.’s (2010) proposal to counteract drift was to occasionally recentre the 

MOSSE tracker’s filter with the initialisation frame, if the target’s appearance is 

relatively stable. Thus, if drift is found to be excessive this could potentially be 

incorporated as an automated method, provided there is little variability in the 
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region selected to be tracked. Matching the recentring schedule to the timing of the 

initialisation frame (i.e., same time of day), especially if the only lighting source is 

natural, and selecting a target region that is visibly consistent regardless of operating 

state would be some of the considerations in trialling automated recentring. 

3.3.4.3 Applied Sensor Considerations 

From this analysis the use of an appropriate tracking algorithm, such as 

OpenCV’s TrackerMOSSE (Heinisuo et al., 2020) implementation, would be useful as 

a health check system associated with a fixed camera state detector or other image-

based sensor. With an appropriate target region selected considering proximity to 

the state detector crop region (for potential in detecting local obscuration) and long-

term appearance stability (for improved tracking reliability) alarm structure and 

potential automated fault responses could be considered such as 

 Log alarm for frames returning false for target detected. 

 Log alarm for bounding box coordinate differences to previous frame greater 

than a certain threshold, dependant on the system and desired sensitivity. 

For the system assessed, coordinate differences beyond ±5 pixels could be 

logged so that operating and start-up movement/vibration are ignored. 

 Higher level excessive movement alarm if a given number of frames in a fixed 

time period return bounding box coordinate differences outside of a set 

threshold. 

 Higher level or critical tracking failure (possible obscuration) alarm if a given 

number of frames in a fixed time period return false for target detected. 

 Higher level alarm if change in average of individual bounding box 

coordinates over two close time periods is above a given threshold, to 

capture excessive shift in the field of view. Critical alarm if change expected 

to have resulted in hydrocyclone apex and discharge not within a valid region 

of the state detector crop area. 

o Given the fixed camera mounting point and hydrocyclone structure 

(constant scale), and consistent bounding box dimensions with this 

implementation of TrackerMOSSE, the shift in the bounding box top 

left corner coordinates could be used to automatically adjust the 
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state detector crop position following cleaning or camera 

maintenance (if deemed sufficiently reliable). 

 Higher level alarm if change in average of individual bounding box 

coordinates over widely spaced time periods has occurred, and not already 

been compensated for. This would be to attempt to detect long-term tracker 

drift. 

o Automatically recentring of the tracking region based on the 

initialisation frame could be performed (if deemed sufficiently 

reliable). 

3.4 Summary 

CNNs were investigated for their potential to extract meaningful features 

from hydrocyclone underflow video footage for the classification of operational 

states. Initially, a three-state (blocked/fan/rope) hydrocyclone operation state 

detector was trained on fixed camera footage from a laboratory hydrocyclone, using 

a pretrained version of VGG-16 (Simonyan & Zisserman, 2014) as a feature extractor. 

The resulting model demonstrated a high classification accuracy and indicated 

robustness to image noise and camera movement. 

A two-state (fan/rope) hydrocyclone operation state detection was then 

investigated, given the lack of available blocked state examples, and trained on non-

fixed camera footage from multiple sources (industrial and laboratory). 

Misclassification on the validation set of a neural network based model, with a 

pretrained version of VGG-16 (Simonyan & Zisserman, 2014) as a feature extractor, 

were found to reduce when the crop position was adjusted to focus more specifically 

on the underflow regions. Testing on images of water draining from a laboratory 

hydrocyclone were classified as roping, with such artificial fault state examples 

potentially useful in training or testing newly installed sensors. Subsequent testing 

on new fan state footage produced a lower accuracy than that of the validation set 

used during training. The incorporation of a secondary model, produced using a 

pretrained version of ResNet50 (He et al., 2015) as a feature extractor followed by a 

SVM classifier, into an ensemble model resulted in improved testing set accuracy 

compared to either individual model.  
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A three-state (blocked/fan/rope) hydrocyclone operation state detector was 

trained on fixed camera footage from an operating mineral processing plant. This 

footage was particularly challenging as no additional lighting other than ambient light 

was applied to the hydrocyclone discharge region, thus presenting a wide extent of 

visual variability especially due to the presence of shadows. A small dataset was also 

used for training and validation, with a similar feature extraction and ANN classifier 

structure as used previously in this work and in Giglia and Aldrich (2020). Though a 

pretrained version of the effcient MobileNet (Howard et al., 2017) model was 

selected as the feature extractor. Under these conditions the trained classifier 

presented strong fault (blocked and rope) versus non-fault (fan) state discernment, 

particularly within the variable crop region encountered during training. Discernment 

between the fault states was not as strong, particularly as the test dataset was made 

up of many transition states between rope and blocked. 

The ability for the model trained on a single hydrocyclone to generalise to 

others within the circuit was limited. Practical considerations for fixed image-based 

sensor development around minimising variability (through consistent applied 

lighting and monitoring camera movements) along with model ensemble and 

temporal information handling for improved accuracy and reliability were also 

addressed. Of note OpenCV’s TrackerMOSSE (Heinisuo et al., 2020) implementation 

was found to be useful in a fixed camera image-based sensor health check application 

for monitoring camera field of view movement and obscuration. 

4 Hydrocyclone Underflow Particle Size Inference 

4.1 Laboratory Hydrocyclone 

This proof-of-concept investigation was undertaken to gauge the potential for 

CNNs to infer underflow particle size information from video footage of a laboratory 

hydrocyclone. 

4.1.1 Data Collection 

The experimental setup (Figure 4-1) and filming process was as detailed in 

Section 3.1.1 and Giglia and Aldrich (2020) for high-speed video recording of a 

laboratory hydrocyclone’s underflow. The selection of the f-number for the lens 
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(f/2.8) was of particular relevance to the following investigation as it aimed to strike 

a balance between sharpness, depth of field and lighting requirements for high-

speed filming of the underflow discharge fan. The frame rate (2000 FPS) and 

exposure (1/4000 s) were also selected considering the available lighting and whilst 

attempting to minimise motion blur. 

 

Figure 4-1 

Hydrocyclone Laboratory Experimental Setup Viewed From Camera Perspective 

 

Note. Shown from the high-speed camera’s view position. Located at the WASM 

Kalgoorlie campus. 

 

Crushing and milling of a quartz ore source was performed to yield the two 

different feed particle size distributions used in the experimental runs. Initially 30 kg 

of water was added to the hopper, and then whilst running on water the feed valve 

position was adjusted so that the gauge pressure was 100 kPa. The feed material was 

then added and after a period of stabilisation (at least 2 min) high-speed video 

footage of the underflow was taken, followed by sampling of the underflow. 

Sampling was performed using a large beaker to cut the entire underflow stream 

whilst minimising sample losses through slurry splashing. The feed valve was then 

adjusted to reduce the hydrocyclone feed flow rate and pressure, then again 

following a period of stabilisation the discharge was filmed and sampled. The feed 
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flow rate was then increased, additional solids added, and the above procedure 

repeated. Appendix D contains specific details of the experimental runs performed. 

The lights were cleaned as required during this process to remove build up caused by 

slurry splash and mist. The underflow samples were oven dried for particle size 

analysis via dry sieving, which was performed as soon as practical to minimize the 

risk of sample loss. No external assistance was sought, with the entire experimental 

procedure undertaken by one person to minimise sources of variability and error. 

The use of a video camera in this experimental design addressed some of the 

limitations and recommendations made in Uahengo’s (2014) still image-based 

hydrocyclone investigation. The underflow sampling can be performed whilst the 

camera is recording, thus image capture and sampling is occurring simultaneously. 

Also, the video footage allows for sequential images to incorporated into the 

investigation. 

4.1.2 Footage Classification 

4.1.2.1 Model Development 

As detailed in Section 3.1.2 and Giglia and Aldrich (2020), NumPy (Oliphant, 

2006) and Pillow (Clark & contributors, 2010) Python libraries were used to convert 

the individual raw footage frames (768 x 768 pixels sized) from 12-bit to 8-bit grey 

scale, then stacked over three channels to produce RGB images. An example of the 

resulting images is shown in Figure 4-2 and will be referred to as rgb type images. 

Another set of images for each experimental run were also produced in which three 

consecutive 8-bit grey scale frames were stacked over the three channels (i.e., Red = 

frame – 2, Green = frame – 1, Blue = frame). An example of which is shown in Figure 

4-2 and will be referred to as rgb_motion type images. Though the pretrained CNN 

used has not been trained on images of this nature, it was trialled to see if the 

features extracted improved the trained model performance. 
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Figure 4-2 

Image Types and Crop Positions 

   

Note. Three channel rgb image (left) and rgb_motion image (centre). Crop positions 

trialled for classification analysis (right). 

 

To construct the training dataset, all the experimental underflow footage was 

reviewed and only experimental runs with extended periods of relatively stable 

underflow profile were selected for model training. From these runs, 8000 

consecutive images were used as the training dataset, and 2000 consecutive images 

from later in the footage were used as the validation dataset. Appendix E details the 

specific frames used in the various datasets. The images were cropped to 224 x 224 

pixels, to match the expected input dimension of the pretrained CNN. The cropped 

images were centred horizontally based on the apex opening, with Position A and 

Position C trialled as two distinctly different crop positions (Figure 4-2). Concerns 

with droplets forming on the apex structure potentially resulting in a consistent 

presence in some footage led to the testing of the slightly lower Position B. 

For training the classifier, DIGITS’ (NVIDIA Corporation, 2014) Caffe (Jia et al., 

2014) implementation of VGG-16 (Simonyan & Zisserman, 2014), pretrained on 

ILSVRC2012 dataset was used. As the cropped image sizes were already 224 x 224 

pixels, only mean pixel subtraction was performed as preprocessing. The pretrained 

weights of the convolutional layers were used, and the layers frozen (lr_mult: 0). The 

first two fully connected layers were used with their pretrained weights but fine-

tuned during training (lr_mult: 1.0). VGG-16’s original final fully connected layer was 
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replaced with an eight node fully connected layer, given the eight class classification 

task, with the weights updated more aggressively (lr_mult: 10.0). The key trainable 

portion of the architecture described is shown in Figure 4-3. The optimiser used was 

stochastic gradient decent with a base learning rate of 1x10-4, decaying by a factor of 

0.1 every 10 epochs, with a training batch size of 32 used throughout, and trained for 

30 epochs. 

 

Figure 4-3 

Hydrocyclone Underflow Footage Classification Network Architecture 

 

Note. Shown from the VGG-16 (Simonyan & Zisserman, 2014) fifth block max pooling 

layer, and with layers using pretrained weights for fine-tuning shaded grey. Includes 

the number of nodes and activation for new fully connected (fc) layers and dropout 

layer rate. 

 

4.1.2.2 Testing and Discussion 

The trained model’s performance on the different image types and crop 

positions for the training dataset, validation dataset, and test dataset (i.e., remaining 

frames from each relevant experimental run) are summarised in Table 4-1, Table 4-2 

and Table 4-3 respectively. For both image types, Position A shows better training 

and validation dataset accuracies than Position C. Hydrocyclone design and operating 

conditions dictate the underflow profile, as indicated by spray angle investigations 

such as van Deventer et al. (2003) and Dubey et al. (2016). Also, the further from the 

VGG-16 VGG-16 dropout
5th block 1st fc 50%
max pool ReLU

VGG-16 dropout fc
2nd fc 50% 8
ReLU softmax
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apex the more external forces (such as gravity) would influence the underflow 

profile, along with ultimately the breaking up of the continuous sheet-like flow (van 

Deventer et al., 2003). Therefore, it is reasonable that Position C with a more disperse 

underflow appearance, less influenced by the hydrocyclone discharge conditions, 

and without the edges of the underflow visible would have less meaningful features 

present to correlate to the current operating condition than Position A. 

 

Table 4-1 

Training Dataset Footage Classification Model Accuracy 

Image Type Position Overall Accuracy (%) Class Accuracy (%) 

rgb 
A 99.97 99.89–100.00 
B 99.28 96.99–100.00 
C 94.56 89.88–99.06 

rgb_motion 
A 99.99 99.96–100.00 
B 99.40 98.03–100.00 
C 92.64 88.36–97.01 

Note. Overall accuracy and range of per class accuracies for varying image types and 

crop positions trialled. 

 

Table 4-2 

Validation Dataset Footage Classification Model Accuracy 

Image Type Position Overall Accuracy (%) Class Accuracy (%) 

rgb 
A 93.81 59.75–99.80 
B 95.90 93.10–99.30 
C 75.82 56.40–92.85 

rgb_motion 
A 94.02 57.90–99.85 
B 96.52 91.75–99.65 
C 67.04 46.65–82.80 

Note. Overall accuracy and range of per class accuracies for varying image types and 

crop positions trialled. 
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Table 4-3 

Test Dataset Footage Classification Model Accuracy 

Image Type Position Overall Accuracy (%) Class Accuracy (%) 

rgb 
A 85.49 34.67–99.55 
B 95.09 91.17–99.40 
C -   - 

rgb_motion 
A 85.78 34.87–99.65 
B 95.49 90.41–99.43 
C -   - 

Note. Overall accuracy and range of per class accuracies for varying image types and 

crop positions trialled. 

 

Comparing the results of Position A and Position B, shows both have a strong 

fit to the training dataset. The overall validation dataset accuracy of Position B is 

slightly higher and more importantly the per class accuracies are all >90%, while for 

crop Position A there are individual class accuracies <60%. When the remaining 

frames from each relevant experimental run are used as a test dataset, unseen during 

the training process, the greater performance of the model produced from Position 

B becomes more evident. The overall accuracy and per class accuracy range for 

Position B is similar to the validation dataset, while for Position A the performance is 

lower than the validation dataset thus showing a poorer performance on new data. 

Though there is only a small difference between the images of Position A and Position 

B, it appears that the shift to include more of the wider highly textured band lower 

in the underflow stream and less of the narrower underflow band near the apex was 

sufficient to improve class discernment. 

Overall, the models based on rgb_motion images did not appear to give a 

significantly better accuracy than those based on rgb images. This is not to say that 

including temporal information into CNN based models will not yield improvements, 

but that this pretrained model constructed to classify colour images of objects was 
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not able to adequately use this information to provide any further footage 

classification benefit. Given that through fine-tuning VGG-16 using crop position B 

images features were able to be extracted and used to classify these experimental 

runs successfully (>90% per class accuracy), the next stage of the investigation 

explored if the extracted features can be used to estimate particle size information 

of the hydrocyclone underflow stream. 

4.1.3 Particle Size Regression 

4.1.3.1 Model Development 

The images from rgb image type and crop Position B, as in Section 4.1.2.1, 

made up the training and validation dataset for the regression model, and were 

paired with the measured hydrocyclone underflow P80 for the corresponding 

experimental run. Given the three channels of the images are identical, and that they 

differ from the ImageNet (Deng et al., 2009) dataset used in pretraining model’s 

available in Tensorflow’s (Abadi et al., 2015) implementation of Keras (Chollet & 

others, 2015a), the only preprocessing performed was training dataset mean pixel 

intensity subtraction from all images.  

The mean centred image data was then passed through the Keras 

implementation of VGG-16 (Simonyan & Zisserman, 2014). Initially, on top of the 

output of the second fully connected layer of VGG-16 a 50% dropout layer (Srivastava 

et al., 2014) was added, followed by a single node fully connected layer to output the 

predicted hydrocyclone underflow P80. A training batch size of 32 was used 

throughout, and with mean absolute error (MAE) as the loss function given that it is 

less influenced by outliers than MSE (Draper & Smith, 1998). While periods of 

relatively stable underflow profile make up the training and validation dataset the 

intent is for any frames resulting from instability or containing atypical features, and 

thus not representative of the typical underflow profile, to have a lower influence on 

model development. With only the weights of the new output layer trainable, using 

Adam (Kingma & Ba, 2014) optimizer with a learning rate = 1x10-3, the network was 

then trained for 3 epochs. The brief training of the new output layer was performed 

so that the weights are more relevant to the task prior to fine-tuning deeper in the 
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network, rather than attempting fine-tuning with an output layer of randomly 

initialised weights (Chollet, 2018). 

Next the parameters of the VGG-16 network up to the max pooling layer 

following the fourth convolution block were frozen. The network’s parameters from 

the fifth convolutional block through to the newly added output layer were kept 

trainable for fine-tuning. Dropout layers with 50% probability were also included 

between the first and second fully connected layers, along with between the second 

fully connected layer and output layer. The key trainable portion of the architecture 

described is shown in Figure 4-4. Adam optimizer was again used, though with a 

lower learning rate of 1x10-5 and decay rate of 1x10-6. The network was then trained 

for 10 epochs, with a final validation dataset MAE of 6.2 μm. 

 

Figure 4-4 

Hydrocyclone Underflow Particle Size Regression Network Architecture 

 

Note. Shown from the VGG-16 (Simonyan & Zisserman, 2014) fourth block max 

pooling layer, with the number of convolutional (conv) layers in each block, and the 

layers using pretrained weights for fine-tuning shaded grey. Includes the number of 

nodes and activation for new fully connected (fc) layers and dropout layer rate. 

 

4.1.3.2 Testing and Discussion 

Table 4-4 includes simple statistics for the validation dataset’s predicted underflow 

P80, with Figure 4-5 showing a plot of the predicted and measured underflow P80. 

VGG-16 VGG-16 VGG-16 VGG-16
4th block 5th block 5th block 1st fc
max pool 3 x conv max pool ReLU

dropout VGG-16 dropout fc
50% 2nd fc 50% 1

ReLU linear
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While the model provides an acceptable fit to the validation data this was expected 

considering the data is interrogated during the training process. 

 

Table 4-4 

Laboratory Validation Dataset Hydrocyclone Underflow P80 Performance Statistics 

Measured P80 (μm) 486 522 527 551 646 661 675 766 
Predicted 
P80 (μm) 

Mean 489 522 526 554 644 654 678 758 
SD 8 7 5 13 8 3 15 16 

Note. Predicted underflow P80 mean and population standard deviation (SD) shown 

against the measured underflow P80 for each data collection event. 

 

Figure 4-5 

Laboratory Validation Dataset Measured and Predicted Underflow P80 

 

Note. Model input images ordered by time for each footage period, with the periods 

then sorted by increasing measured underflow P80. 
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A more meaningful gauge of the model’s performance would be through 

making predictions on footage of experimental runs not included in the training and 

validation datasets. Thus, a test dataset was constructed from the remaining 

experimental runs that were previously deemed to lack a sufficient period of 

relatively stable underflow profile to be included in the training dataset. From each 

of these experimental runs 2000 consecutive images of relatively stable underflow 

profile were selected. Appendix F details the specific frames used in the test dataset. 

Table 4-5 includes simple statistics for the test dataset’s predicted underflow 

P80, with Figure 4-6 showing a plot of the predicted and measured underflow P80. 

While the mean predicted underflow P80 from the coarser feed examples are not as 

accurate as those achieved from the finer feed examples, the predictions are 

reasonable in that the footage from the distinct fine and coarse feed runs are 

correctly allocated as such. In terms of precision, there are several cases in which the 

predicted underflow P80 standard deviation is greater than that observed in the 

validation dataset, though given these frames were from experimental runs not used 

in training and noted for having greater periods of instability this is to be expected. 

 

Table 4-5 

Laboratory Test Dataset Hydrocyclone Underflow P80 Performance Statistics 

Measured P80 (μm) 513 515 522 547 686 713 
Predicted 
P80 (μm) 

Mean 528 537 507 537 649 647 
SD 31 27 18 9 9 20 

Note. Predicted underflow P80 mean and population standard deviation (SD) shown 

against the measured underflow P80 for each data collection event. 
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Figure 4-6 

Laboratory Test Dataset Measured and Predicted Underflow P80 

 

Note. Model input images ordered by time for each footage period, with the periods 

then sorted by increasing measured underflow P80. 

 

While an acceptable number of image frames were available for model 

training, the limited number of useable experimental runs and thus particle size 

examples also limit what can be interpreted from the model’s performance. 

Comparing the validation and test dataset’s performance it is not certain that the 

relationship between image features established is capable of being extended to 

unseen conditions. Though the results were sufficient to warrant further 

investigation under more industrially applicable conditions and using a more widely 

available lower framerate colour video camera. With a fixed camera setup, a similar 

filming and sampling process over a period of circuit operation would build a large 

dataset under varying operational and environmental conditions. A CNN regression 

modelling trial would probe if from images alone an acceptable underflow particle 

size prediction could be produced. 
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Considering the improvements yielded from incorporating unconventional 

features into empirical models of hydrocyclones (as discussed in Section 2.2) and 

Uahengo’s (2014) recommendation to explore incorporating additional measurable 

parameters into image-based modelling (as discussed in Section 2.4.4), the 

combination of CNN extracted features with other available hydrocyclone circuit 

data into a regression model was of interest. Lin and Jørgensen (2011) is one such 

industrially relevant example, where features were extracted from footage of an 

operating cement kiln using multivariate image analysis and combined with 

measured PVs in a regression model to predict nitrogen oxides emissions. This was 

found to have improved performance compared to soft sensors developed on 

conventional process measurements alone.  

4.2 Industrial Hydrocyclone 

This investigation builds upon the proof-of-concept work undertaken in Section 

4.1, extending it to data collection under industrial conditions and exploring the 

incorporation of additional sensor information into the underflow particle size 

prediction modelling. All videos, images, data, and information from IGO’s Nova mine 

site referred to throughout Section 4.2 are captured by the dataset IGO Nova (2020) 

and used with permission. 

4.2.1 Data Collection 

This experiment was conducted on the primary hydrocyclone cluster of IGO’s 

Nova nickel-copper sulphide processing plant. Ambient lighting behaviour 

throughout the day was a key consideration in selecting the location for filming. The 

underflow stream of the hydrocyclone selected for monitoring was illuminated by 

indirect sunlight for most of the day (along with the additional light source applied 

for the experiment). Only later in the day, and when not obscured by clouds, could 

direct sunlight result in overexposed regions in the frame as illustrated in Figure 4-7. 

In practice, enclosing the area to control for external light would be desirable, such 

that the applied light is the sole source of illumination for the underflow and thus 

minimising a source of visual variability. 
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Figure 4-7 

Examples of Illumination Variation Throughout a Single Day 

    

    

Note. Date stamp has been redacted. Adapted from Nova Mine Site Data, by IGO 

Nova, 2020. Copyright 2020 by IGO. Adapted with permission. 

 

A Panasonic Lumix G DC-G9GN-K camera fitted with a Panasonic Lumix G X 

Vario 12–35 mm / F2.8 II H-HSA12035E lens was used to film the hydrocyclone 

underflow. A Promaster HGX Prime 58 mm UV Filter (code 6711) was also attached 

to the front of the lens for additional lens protection and ease of cleaning when 

required. A wired remote shutter release was attached to the camera, so that starting 

and stopping the camera filming did not require any of the buttons on the camera to 

be touched, thus minimising the introduction of any movement/vibration in this 

process. 

A scaffold platform was erected on the underflow launder level grid mesh for 

camera mounting. The camera was attached to a tripod (with legs at minimum 

extension) which was fixed to the scaffold, and with a sandbag suspended from the 

centre pole. The intention when planning this setup was to hold the camera in a fixed 
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position for the duration of the experiment and attempt to minimise the effect of 

vibration (mainly that caused by wind and operating plant equipment).  

A LED light source was directed at the underflow discharge stream and 

mounted in a position where it did not interfere with the camera’s view of the 

underflow discharge stream. Figure 4-8 shows the resulting experimental setup, with 

the distance from the outer surface of the spigot housing to the LED light being 0.35 

m and to the focal plane mark on the camera body being 1.37 m. 

 

Figure 4-8 

Experimental Setup at IGO Nova Primary Hydrocyclone Cluster 

     

Note. Adapted from Nova Mine Site Data, by IGO Nova, 2020. Copyright 2020 by IGO. 

Adapted with permission. 

 

The relevant camera settings for filming the underflow were as follows 

 Recording Format = MP4 

 Resolution = 4K 

 Bite Rate = 150 Mbps 

 Frame Rate = 60 FPS 

 Luminance Level = 0–255 
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 Aperture = f/2.8 

 Shutter Speed = 1/3200 s 

 ISO Sensitivity = ISO3200 

 White Balance = WB K Set 6500K (to match LED colour temperature) 

 Photo Style = Natural 

All camera and lens image stabiliser options were turned off. Manual 

focussing was performed, aided by the camera’s MF Assist with focus peaking (HIGH 

Detect Level) to guide focusing on the underflow discharge stream. Once the focus 

was deemed satisfactory, the focus ring was then locked, and lens position resume 

activated to ensure a consistent focus throughout the experiment. 

Of note, with a fast shutter speed used to minimise motion blur, and given 

the camera’s electronic rolling shutter, the nature of the additional light source 

selected was an important consideration. Flickering results from variation in light 

source luminosity and while ideally an LED light source would be effectively flicker 

free, factors such as LED quality, type of DC adapter, and use of dimming can lead to 

flickering of varying degrees (Pueo, 2016). Figure 4-9 illustrates the banded 

appearance of footage that can occur with the camera settings stated previously and 

a flickering LED light source. This issue was ultimately avoided by using a 50W 5000 

lumen rechargeable LED light (Detroit DET50WRELED) as the additional light source. 

 

Figure 4-9 

Banded Footage Example Frames 

     

Note. Shown are three consecutive frames using the camera settings as previously 

detailed and a LED light source which results in frames with a banded appearance. 
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Prior to filming each data collection event the light was cleaned and camera 

lens protector removed. The remote shutter release was then used to start 

recording, with a minimum of 32 s worth of footage collected. A sampling cut of the 

entire underflow stream was then taken using a metallurgical sample cutter for 

representative sampling. The underflow samples were pressed, oven dried, and riffle 

split sub-sampled for particle size analysis via dry sieving, which was performed as 

soon as practical to minimize the risk of sample loss. No external assistance was 

sought, with the entire experimental procedure undertaken by one person to 

minimise sources of variability and error. 

Available sensors readings and subsequent calculated variables from the 

comminution circuit were also provided at 1 s intervals for each data collection event. 

Figure 4-10 shows a simplified representation of IGO Nova’s primary grinding circuit 

with the location of sensors readings and calculated variables used as model inputs 

in this chapter indicated. While an attempt was made to synchronize the camera’s 

timestamp with the SCADA system, a confirmation check at the end of the 

experimental period showed the camera’s timestamp to be approximately 3 s behind 

the time displayed on SCADA. This offset was assumed to be consistent throughout 

the experimental period when allocating sensor data to the time-stamped camera 

footage. 
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Figure 4-10 

IGO Nova Simplified Primary Grinding Circuit Diagram 

 

Note. IGO Nova’s primary grinding circuit with open circuit semi-autogenous grinding 

(SAG) mill and closed circuit ball mill with hydrocyclone cluster. Location of sensors 

readings and calculated variables indicated.  

 

The data collection events that formed the training dataset (Train) were 

collected over four consecutive days, and those for the validation dataset (Val) were 

collected over the day following this period. These data collection events occurred 

approximately hourly from 7:00AM to 4:00PM each day. All data collection events 

were included in the training and validation datasets if the footage did not contain 

any bright over exposed areas within the hydrocyclone underflow discharge region. 

This resulted in the training dataset being made up of 35 data collection events, and 

the validation dataset made up of 9 data collection events. 

The test datasets were produced from data collection events the day after 

the validation dataset was collected (Test NA) and 2 days prior to the first day of 

training dataset collection (Test NB). Of note these data collection events were not 

taken specifically at hourly intervals to give variation in the sampling times. The Test 

NB footage was also collected during a period in which adjustments were made to 

the camera’s focus, so though the appearance was visually similar to subsequent 

footage, it was prior to the focus being set and locked from the training dataset 

collection onwards. Footage containing over exposed regions in the hydrocyclone 
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underflow discharge region were also included in the test datasets to gauge the 

trained model’s performance under these conditions. The Test NA dataset was made 

up of seven data collection events, and the Test NB dataset made up of five data 

collection events. 

The decision to construct the datasets using blocks of daily data was made to 

better align the training process to the nature of an applied sensor. In practice 

training would be performed on an existing collection of data and then the trained 

model would be expected to accurately predict future hydrocyclone underflow P80 

values. Chollet (2018) highlights issues related to dataset construction in terms of 

leakage of information and of importance to this modelling task the consideration of 

leakage of temporal information. Issues related to the leakage of information 

between the training, validation, and testing dataset were minimised as each entire 

data collection event is only used in one specific dataset, instead of for example the 

random splitting of frames and relevant sensor information between the datasets. 

Issues related to the leakage of temporal information is also minimised by having the 

training and validation datasets split as sequential daily blocks. The test dataset is 

then constructed from daily blocks outside this period, rather than for example 

randomly allocating each data collection event into one of the datasets. 

Figure 4-11 presents the measured sample hydrocyclone underflow P80 of all 

the data collection events used to form the relevant datasets, in the order that they 

were collected and showing the variability of underflow P80 over time. Figure 4-11 

also indicates periods where notable operational changes have occurred. Typical 

operation of the primary hydrocyclone cluster during the experimental period had 

six hydrocyclones operating, except for the period indicated on day four in which five 

hydrocyclones were operating (marked as 5 CYC in Figure 4-11). Also, on days four 

and five the processing plant was being fed from the emergency run-of-mine (EROM) 

ore stockpile, which is known to be a typically coarser feed source. Table 4-6 shows 

the overall feed ore blend for each day during the experimental period. Figure 4-12 

presents the measured sample hydrocyclone underflow P80 of all the data collection 

events plotted against the sampling time. This shows no clear relationship between 

these variables, thus the degree of illumination depending on the time of day or any 
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operational processes undertaken at a certain time of day are unlikely to have an 

influence on the subsequent model developed. 

 

Figure 4-11 

Industrial Dataset’s Hydrocyclone Underflow P80 in Order Sampled 

 

Note. Presents IGO Nova (2020) hydrocyclone underflow P80 for all datasets in the 

order samples were taken, with notable changes in operating conditions of 

emergency run-of-mine (EROM) feed ore and five hydrocyclone (5 CYC) highlighted. 

  

5 CYC 

EROM Feed Ore 
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Table 4-6 

Daily Feed Ore Blend 

Dataset Day 
Feed Ore Blend (% w/w) 

EROM HG MG LG VLG PASTE 
Test NB 1 0 32 21 34 8 5 

Train 3 0 40 19 11 21 9 
Train 4 100 0 0 0 0 0 
Train 5 100 0 0 0 0 0 
Train 6 0 35 27 20 9 10 
Val 7 0 35 27 20 9 10 

Test NA 8 0 35 27 20 9 10 

Note. Presents daily feed ore blend from IGO Nova (2020) during the experimental 

period. Notation as per the Nova mine site designations; stockpile (EROM), high 

grade (HG), medium grade (MG), low grade (LG), very low grade (VLG), and paste 

backfill contaminated (PASTE). 
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Figure 4-12 

Industrial Hydrocyclone Underflow P80 Against Sampling Time 

 

Note. Presents IGO Nova (2020) hydrocyclone underflow P80 for all datasets plotted 

against the time of sampling. 

 

4.2.2 Image Only Modelling 

4.2.2.1 Model Development 

The 60 FPS camera frame rate setting was the highest available at 4K 

resolution (3840 x 2160 pixels), thus giving the most example images per second for 

training and testing. This setting yields a frame rate of 59.94 FPS in practice, resulting 

in certain 1 s periods in which there are only 59 frames with that timestamp rather 

than the expected 60 frames. For simplicity, in dataset construction from the first 

timestamp for the period of interest each 60 frame block was assumed to belong to 

1 s worth of footage. This resulted in some frames being slightly out of sync when 

subsequently paired with sensor data, given the practical frame rate issue. 

Considering the brief time periods used (i.e., 32 s and thus 1920 frames for each data 

collection event in the training and validation datasets) and in the context of the 
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overall difficulty in synchronizing the timestamp of a battery powered camera in the 

field with the SCADA system, this was deemed acceptable. For relevant data in 

subsequent investigations in which image frames are paired with other sensor data 

60 images were then matched with 1 s worth of sensor data. 

The OpenCV (Bradski, 2000) Python library (opencv-python package; Heinisuo 

et al., 2019) was used to extract the frames from the video footage. The Pillow (Clark 

& contributors, 2010) Python library was then used to extract an 896 x 896 pixels 

crop region from a fixed location in each frame. This crop position is below the 

shadow cast by the spigot housing onto the underflow stream and roughly centres 

the stream, as illustrated in Figure 4-13. This being a visually similar position to crop 

position B shown in Figure 4-2 and used in Section 4.1. 

 

Figure 4-13 

Example Video Frame Showing the Crop Location 

 

Note. Date stamp has been redacted. Adapted from Nova Mine Site Data, by IGO 

Nova, 2020. Copyright 2020 by IGO. Adapted with permission. 
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The cropped frames where then resized to 224 x 224 pixels and the required 

input preprocessing performed as expected by the pretrained CNN. In this case, the 

bicubic interpolation method was used rather than the Keras (Chollet & others, 

2015a) default nearest interpolation method, as a trade-off between retaining image 

quality and speed of processing images (Clark & contributors, n.d.). 

The model was then trained using the same method applied for the 

laboratory hydrocyclone images in Section 4.1.3. The preprocessed images were 

passed through Keras’ (Chollet & others, 2015a) pretrained implementation of VGG-

16 (Simonyan & Zisserman, 2014). Initially, on top of the output of the second fully 

connected layer of VGG-16 a 50% dropout layer (Srivastava et al., 2014) was added, 

followed by a single node fully connected layer to output the predicted hydrocyclone 

underflow P80. MAE was again used as the loss function, and a training batch size of 

32 used throughout. With only the weights of the new output layer trainable, using 

Adam (Kingma & Ba, 2014) optimizer with a learning rate of 1x10-2, the network was 

then trained for 3 epochs. 

Next the parameters of the VGG-16 network up to the max pooling layer 

following the fourth convolution block were frozen. The network’s parameters from 

the fifth convolutional block through to the newly added output layer were kept 

trainable for fine-tuning. Dropout layers with 50% probability were also present 

between the first and second fully connected layers, along with between the 2nd fully 

connected layer and output layer. Adam optimizer was again used, though with a 

lower learning rate of 1x10-4 and decay rate of 1x10-2, and the model trained for 5 

epochs. This network training method will be referred to as convtune. 

4.2.2.2 Testing 

The final validation set’s MAE was 13.1 μm, with Table 4-7 showing simple 

statistics for the validation dataset’s predicted underflow P80, and Figure 4-14 

showing a plot of the predicted and measured underflow P80. As the validation 

dataset does not include examples from when the EROM stockpile was used to feed 

the processing plant, Figure 4-15 showing a plot of the predicted and measured 

underflow P80 for the training dataset has also been included, with a MAE of 7.6 μm 

for the training set noted. 
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Table 4-7 

Convtune Model Validation Dataset Hydrocyclone Underflow P80 statistics 

Measured P80 (μm) 265 256 273 294 289 262 251 260 266 
Predicted 
P80 (μm) 

Mean 275 265 270 265 272 270 263 266 284 
SD 10 8 7 6 7 5 4 6 7 

Note. Predicted underflow P80 mean and population standard deviation (SD) shown 

against the measured underflow P80 for each data collection event. 

 

Figure 4-14 

Convtune Model Validation Dataset Measured and Predicted Underflow P80 

 

Note. Model input images ordered by time for each sampling period, with the 

periods then presented in the order samples were taken. 
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Figure 4-15 

Convtune Model Training Dataset Measured and Predicted Underflow P80 

 

Note. Model input images ordered by time for each sampling period, with the periods 

then presented in the order samples were taken. 

 

The test datasets were then passed through the trained convtune model. Test 

NA resulted in a MAE of 8.4 μm, with Table 4-8 showing simple statistics for the 

dataset’s predicted underflow P80, and Figure 4-16 showing a plot of the predicted 

and measured underflow P80. Test NB resulted in a MAE of 14.6 μm, with Table 4-9 

showing simple statistics for the dataset’s predicted underflow P80, and Figure 4-17 

showing a plot of the predicted and measured underflow P80. 

  



117 
 

  

Table 4-8 

Convtune Model Test NA Dataset Hydrocyclone Underflow P80 Statistics 

Measured P80 (μm) 266 280 266 263 251 271 270 
Predicted 
P80 (μm) 

Mean 269 281 273 270 265 275 277 
SD 10 9 7 8 4 5 5 

Note. Predicted underflow P80 mean and population standard deviation (SD) shown 

against the measured underflow P80 for each data collection event. 

 

Figure 4-16 

Convtune Model Test NA Dataset Measured and Predicted Underflow P80 

 

Note. Model input images ordered by time for each sampling period, with the periods 

then presented in the order samples were taken. 
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Table 4-9 

Convtune Model Test NB Dataset Hydrocyclone Underflow P80 Statistics 

Measured P80 (μm) 295 286 296 296 291 
Predicted 
P80 (μm) 

Mean 274 273 272 286 289 
SD 5 6 7 6 7 

Note. Predicted underflow P80 mean and population standard deviation (SD) shown 

against the measured underflow P80 for each data collection event. 

 

Figure 4-17 

Convtune Model Test NB Dataset Measured and Predicted Underflow P80 

 

Note. Model input images ordered by time for each sampling period, with the periods 

then presented in the order samples were taken. 
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4.2.3 Sensor Only Modelling: Hydrocyclone 

4.2.3.1 Model Development 

The first model incorporating sensor data only included available variables 

directly related to the hydrocyclone, thus trialling some of the variables used in the 

cut size ANN modelling undertaken by van Loggenberg et al. (2016). The variables 

used in the first model were 

 P = Hydrocyclone inlet pressure (kPa) 

 Q = Hydrocyclone feed flow rate (m3/h) 

 ρ = Hydrocyclone feed slurry density (t/m3) 

 C = Hydrocyclone feed solids concentration (% w/w) 

The number of operating hydrocyclones was not explicitly included as inputs 

in the model, but the relationship between pressure and feed flow rate could provide 

an implicit identification of these distinct operating conditions encountered in the 

training dataset if found to be meaningful in the training process.  

There were 32 s worth of sensor readings used for each data collection event 

in the training and validation datasets. Each input variable for the model was first 

standardised by subtracting the variable’s training dataset mean and then dividing 

by the variable’s training dataset standard deviation. A simple ANN was then 

constructed with Keras (Chollet & others, 2015a) by adding a three node fully 

connected hidden layer with ReLU activation, followed by a single node fully 

connected layer to output the predicted hydrocyclone underflow P80, as illustrated 

in Figure 4-18. MAE was again used as the loss function, and with a training batch 

size of 32 used. Adam (Kingma & Ba, 2014) optimizer with a learning rate of 1x10-1 

and decay rate of 1x10-4 was used to train the network for 14 epochs. This network 

training method will be referred to as cycsensor. 
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Figure 4-18 

Neural Network Architecture for Cycsensor Model 

 

Note. Includes the number of nodes and activation for fully connected (fc) layers. 

 

4.2.3.2 Testing 

The final validation set’s MAE was 10.2 μm, with Table 4-10 showing simple 

statistics for the validation dataset’s predicted underflow P80, and Figure 4-19 

showing a plot of the predicted and measured underflow P80. The training set’s MAE 

was 12.2 μm, with Figure 4-20 showing a plot of the predicted and measured 

underflow P80. The test datasets were then passed through the trained cycsensor 

model. Test NA resulted in a MAE of 37.8 μm, with Table 4-11 showing simple 

statistics for the dataset’s predicted underflow P80, and Figure 4-21 showing a plot 

of the predicted and measured underflow P80. Test NB resulted in a MAE of 16.5 μm, 

with Table 4-12 showing simple statistics for the dataset’s predicted underflow P80, 

and Figure 4-22 showing a plot of the predicted and measured underflow P80. 

 

Table 4-10 

Cycsensor Model Validation Dataset Hydrocyclone Underflow P80 Statistics 

Measured P80 (μm) 265 256 273 294 289 262 251 260 266 
Predicted 
P80 (μm) 

Mean 267 253 259 264 268 261 266 259 267 
SD 1 2 1 0 2 1 5 3 3 

Note. Predicted underflow P80 mean and population standard deviation (SD) shown 

against the measured underflow P80 for each data collection event. 

 

Sensor fc fc
4 3 1

inputs ReLU linear
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Figure 4-19 

Cycsensor Model Validation Dataset Measured and Predicted Underflow P80 

 

Note. Model input data ordered by time for each sampling period, with the periods 

then presented in the order samples were taken. 
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Figure 4-20 

Cycsensor Model Training Dataset Measured and Predicted Underflow P80 

 

Note. Model input data ordered by time for each sampling period, with the periods 

then presented in the order samples were taken. 

 

Table 4-11 

Cycsensor Model Test NA Dataset Hydrocyclone Underflow P80 Statistics 

Measured P80 (μm) 266 280 266 263 251 271 270 
Predicted 
P80 (μm) 

Mean 272 271 273 259 334 351 347 
SD 1 1 1 0 3 2 3 

Note. Predicted underflow P80 mean and population standard deviation (SD) shown 

against the measured underflow P80 for each data collection event. 
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Figure 4-21 

Cycsensor Model Test NA Dataset Measured and Predicted Underflow P80 

 

Note. Model input data ordered by time for each sampling period, with the periods 

then presented in the order samples were taken. 

 

Table 4-12 

Cycsensor Model Test NB Dataset Hydrocyclone Underflow P80 Statistics 

Measured P80 (μm) 295 286 296 296 291 
Predicted 
P80 (μm) 

Mean 283 288 272 314 317 
SD 3 3 2 4 3 

Note. Predicted underflow P80 mean and population standard deviation (SD) shown 

against the measured underflow P80 for each data collection event. 
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Figure 4-22 

Cycsensor Model Test NB Dataset Measured and Predicted Underflow P80 

 

Note. Model input data ordered by time for each sampling period, with the periods 

then presented in the order samples were taken. 

 

Of note, there are distinctly higher underflow P80 predicted values for the 

final three Test NA data collection events (see Figure 4-21 and Table 4-11). Figure 

4-23 shows the contribution of each component to the model’s output underflow 

P80 value for each Test NA data collection events. Compared to the earlier events, 

during the final three events the third hidden node becomes active, as indicated by 

the increase in the bias contribution. The hydrocyclone feed slurry density also 

becomes a major positive contributor to the output value. Figure 4-24 shows the 

hydrocyclone feed slurry density readings for all the datasets. The final three Test NA 

data collection events’ readings are low and outside that found in the training 

dataset. The current model is not able to successfully handle hydrocyclone feed 

slurry density readings outside the range used in training. 
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Figure 4-23 

Cycsensor Model Components Contribution to Output Values for Test NA Dataset 

 

Note. Shows model inputs variables hydrocyclone inlet pressure (P), feed flow rate 

(Q), feed slurry density (ρ) and feed solids concentration (C), along with Bias (as the 

sum of all layer biases), contribution to the predicted P80 output. Input data is 

ordered by time, with the corresponding measured P80 for the sampling period 

indicated. 
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Figure 4-24 

Hydrocyclone Feed Slurry Density Readings for All Datasets 

 

Note. Presents IGO Nova (2020) hydrocyclone feed slurry density (ρ) readings for all 

datasets in the order samples were taken, with the final three Test NA samples’ 

readings highlighted. 

 

4.2.4 Sensor Only Modelling: Extended 

4.2.4.1 Model Development 

The second model incorporating sensor data only then included additional 

calculated and measured variables from the wider grinding circuit, taking inspiration 

from some of the variables also included in Zhang and Liang’s (2016) closed circuit 

primary ball mill particle size soft sensor investigation. Considering the influence of 

hydrocyclone feed slurry density on the cycsensor model predictions when the 

sensor readings were outside that found in the training dataset, this variable was not 

included in the second sensor data only model. The variables used in the model were 

 Rs = SAG solids feed rate (dry t/h) 

 Es = SAG mill power draw (kW) 
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 P = Hydrocyclone inlet pressure (kPa) 

 Q = Hydrocyclone feed flow rate (m3/h) 

 C = Hydrocyclone feed solids concentration (% w/w) 

 Rb = Hydrocyclone underflow solids flow rate (dry t/h), 

also ball mill solids feed rate 

 Eb = Ball mill power draw (kW) 

As with the cycsensor model, 32 s worth of sensor readings were used for 

each data collection event in the training and validation datasets. Each input variable 

for the model was first standardised by subtracting the variable’s training dataset 

mean and then dividing by the variable’s training dataset standard deviation. A 

simple ANN, with a larger capacity than that used in cycsensor model, was then 

constructed with Keras (Chollet & others, 2015a). A 10 node fully connected hidden 

layer with ReLU activation was used, followed by a single node fully connected layer 

to output the predicted hydrocyclone underflow P80, as illustrated in Figure 4-25. 

MAE was again used as the loss function, and a with training batch size of 32 used. 

Adam (Kingma & Ba, 2014) optimizer with a learning rate of 1.0 and decay rate of 

1x10-1 was used to train the network for 9 epochs. This network training method will 

be referred to as gcsensor. 

 

Figure 4-25 

Neural Network Architecture for Gcsensor Model 

 

Note. Includes the number of nodes and activation for fully connected (fc) layers. 

 

4.2.4.2 Testing 

The final validation set’s MAE was 12.2 μm, with Table 4-13 showing simple 

statistics for the validation dataset’s predicted underflow P80, and Figure 4-26 

Sensor fc fc
7 10 1

inputs ReLU linear
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showing a plot of the predicted and measured underflow P80. Of note, for the 

seventh validation dataset sampling event (measured underflow P80 of 251 μm) 

there is a distinct spike in the early predictions. This resulted from an increase in the 

hydrocyclone feed flow rate and was also present in the cycsensor prediction for the 

same sample (see Figure 4-19). In the gcsensor case the related hydrocyclone 

underflow solids flow rate also contributes along with the hydrocyclone feed flow 

rate, resulting in a more pronounced spike during this less stable period of operation. 

The training set’s MAE was 11.1 μm, with Figure 4-27 showing a plot of the predicted 

and measured underflow P80. 

 

Table 4-13 

Gcsensor Model Validation Dataset Hydrocyclone Underflow P80 Statistics 

Measured P80 (μm) 265 256 273 294 289 262 251 260 266 
Predicted 
P80 (μm) 

Mean 280 265 280 284 276 265 292 266 264 
SD 4 8 2 5 3 3 11 3 5 

Note. Predicted underflow P80 mean and population standard deviation (SD) shown 

against the measured underflow P80 for each data collection event. 
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Figure 4-26 

Gcsensor Model Validation Dataset Measured and Predicted Underflow P80 

 

Note. Model input data ordered by time for each sampling period, with the periods 

then presented in the order samples were taken. 
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Figure 4-27 

Gcsensor Model Training Dataset Measured and Predicted Underflow P80 

 

Note. Model input data ordered by time for each sampling period, with the periods 

then presented in the order samples were taken. 

 

The test datasets were then passed through the trained gcsensor model. Test 

NA resulted in a MAE of 37.8 μm, with Table 4-14 showing simple statistics for the 

dataset’s predicted underflow P80, and Figure 4-28 showing a plot of the predicted 

and measured underflow P80. For the Test NA dataset there are markedly higher 

underflow P80 predicted values for the fifth data collection event (where measured 

underflow P80 is 251 μm). Figure 4-29 shows the contribution of each component to 

the model’s output underflow P80 value for each Test NA data collection events. For 

the fifth data collection event SAG mill solids feed rate is a major positive contributor 

to the output value, distinct from the minor contribution in the rest of the Test NA 

dataset. Figure 4-30 shows the SAG mill solids feed rate readings for all the datasets. 

The fifth Test NA data collection event’s readings are high and outside that found in 

the training dataset. 
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Table 4-14 

Gcsensor Model Test NA Dataset Hydrocyclone Underflow P80 Statistics 

Measured P80 (μm) 266 280 266 263 251 271 270 
Predicted 
P80 (μm) 

Mean 305 289 281 308 347 295 307 
SD 7 7 8 12 6 6 3 

Note. Predicted underflow P80 mean and population standard deviation (SD) shown 

against the measured underflow P80 for each data collection event. 

 

Figure 4-28 

Gcsensor Model Test NA Dataset Measured and Predicted Underflow P80 

 

Note. Model input data ordered by time for each sampling period, with the periods 

then presented in the order samples were taken. 
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Figure 4-29 

Gcsensor Model Components Contribution to Output Values for Test NA Dataset 

 

Note. Shows model input variables SAG mill solids feed rate (Rs) and power draw (Es), 

ball mill solids feed rate (Rb) and power draw (Eb), hydrocyclone inlet pressure (P), 

feed flow rate (Q) and feed solids concentration (C), along with Bias (as the sum of 

all layer biases), contribution to the predicted P80 output. Input data is ordered by 

time, with the corresponding measured P80 for the sampling period indicated. 
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Figure 4-30 

SAG Mill Solids Feed Rate Readings for All Datasets 

 

Note. Presents IGO Nova (2020) SAG mill solids feed rate (Rs) readings for all datasets 

in the order samples were taken, with the fifth Test NA sample’s readings highlighted. 

 

Test NB resulted in a MAE of 26.2 μm, with Table 4-15 showing simple 

statistics for the dataset’s predicted underflow P80, and Figure 4-31 showing a plot 

of the predicted and measured underflow P80. For the Test NB dataset there are 

markedly lower underflow P80 predicted values for the third data collection event 

(the first event where measured underflow P80 is 296 μm). Figure 4-32 shows the 

contribution of each component to the model’s output underflow P80 value for each 

Test NB data collection events. Only five to seven hidden nodes were active for the 

third event, compared to eight to ten active hidden nodes for the other events in the 

Test NB dataset. The contributions of the solids feed rate for the SAG mill and ball 

mill along with the hydrocyclone feed flow rate were negligible or slightly negative, 

rather than the positive contributions shown in the other Test NB examples. While 

there was a larger positive contribution from the hydrocyclone inlet pressure there 
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was also a larger negative contribution from the SAG mill power draw (which was 

also mainly outside those found in the training dataset as shown in Figure 4-33). 

 

Table 4-15 

Gcsensor Model Test NB Dataset Hydrocyclone Underflow P80 Statistics 

Measured P80 (μm) 295 286 296 296 291 
Predicted 
P80 (μm) 

Mean 304 299 231 318 312 
SD 8 7 9 9 11 

Note. Predicted underflow P80 mean and population standard deviation (SD) shown 

against the measured underflow P80 for each data collection event. 

 

Figure 4-31 

Gcsensor Model Test NB Dataset Measured and Predicted Underflow P80 

 

Note. Model input data ordered by time for each sampling period, with the periods 

then presented in the order samples were taken. 
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Figure 4-32 

Gcsensor Model Components Contribution to Output Values for Test NB Dataset 

 

Note. Shows model input variables SAG mill solids feed rate (Rs) and power draw (Es), 

ball mill solids feed rate (Rb) and power draw (Eb), hydrocyclone inlet pressure (P), 

feed flow rate (Q) and feed solids concentration (C), along with Bias (as the sum of 

all layer biases), contribution to the predicted P80 output. Input data is ordered by 

time, with the corresponding measured P80 for the sampling period indicated. 
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Figure 4-33 

SAG Mill Power Draw Readings for All Datasets 

 

Note. Presents IGO Nova (2020) SAG mill power draw (Es) readings for all datasets in 

the order samples were taken, with the third Test NB sample’s readings highlighted. 

 

4.2.5 Image and Sensor Modelling  

4.2.5.1 Model Development 

To explore incorporating hydrocyclone underflow image data and 

comminution circuit sensor information into the regression modelling the image-only 

convtune model was combined with the larger sensor-only model gcsensor. The 

model architecture was effectively a concatenation of the convtune and gcsensor 

model outputs prior to the final layer. This was then connected to a single node fully 

connected layer to output the predicted hydrocyclone underflow P80, as illustrated 

in Figure 4-34. The input image and sensor information preprocessing were also the 

same as that described in the convtune and gcsensor methods, respectively. As 

mentioned in Section 4.2.2, given that there are 60 image frames per second and the 

sensor information was available at 1 s intervals the sensor readings for a given 
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timestamp are paired with each of the related 60 images for that 1 s period to form 

the input datasets. 

 

Figure 4-34 

Network Architecture for Conv-gc Model 

 

Note. The image branch is shown from the VGG-16 (Simonyan & Zisserman, 2014) 

fourth block max pooling layer, with the number of convolutional (conv) layers in 

each block, and the layers using pretrained weights for fine-tuning shaded grey. 

Includes the number of nodes and activation for new fully connected (fc) layers and 

dropout layer rate. 

 

For model training, MAE was again used as the loss function and a training 

batch size of 32 used throughout. With only the weights of the new 10 node fully 

connected hidden layer and new output layer trainable, and using Adam (Kingma & 

Ba, 2014) optimizer with a learning rate of 1x10-4, the network was then initially 

trained for 2 epochs. Next the parameters of the VGG-16 network up to the max 

pooling layer following the fourth convolution block were frozen. The network’s 

parameters from the fifth convolutional block through to the newly added output 

layer, along with the 10 node fully connected hidden layer, were kept trainable for 

fine-tuning. Adam optimizer was again used, though with a lower learning rate of 

VGG-16 VGG-16 VGG-16 VGG-16
4th block 5th block 5th block 1st fc
max pool 3 x conv max pool ReLU

dropout VGG-16 dropout fc
50% 2nd fc 50% 1

ReLU linear

Sensor fc
7 10

inputs ReLU
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1x10-4 and decay rate of 1x10-6, and the model trained for 8 epochs. This network 

training method will be referred to as conv-gc. 

4.2.5.2 Testing 

The final validation set’s MAE was 11.0 μm, with Table 4-16 showing simple 

statistics for the validation dataset’s predicted underflow P80, and Figure 4-35 

showing a plot of the predicted and measured underflow P80. The training set’s MAE 

was 1.2 μm, with Figure 4-36 showing a plot of the predicted and measured 

underflow P80. The test datasets were then passed through the trained conv-gc 

model. Test NA resulted in a MAE of 10.1 μm, with Table 4-17 showing simple 

statistics for the dataset’s predicted underflow P80, and Figure 4-37 showing a plot 

of the predicted and measured underflow P80. Test NB resulted in a MAE of 18.6 μm, 

with Table 4-18 showing simple statistics for the dataset’s predicted underflow P80 

and Figure 4-38 showing a plot of the predicted and measured underflow P80. 

 

Table 4-16 

Conv-gc Model Validation Dataset Hydrocyclone Underflow P80 Statistics 

Measured P80 (μm) 265 256 273 294 289 262 251 260 266 
Predicted 
P80 (μm) 

Mean 277 268 268 276 278 273 263 262 271 
SD 10 8 13 13 9 5 1 3 4 

Note. Predicted underflow P80 mean and population standard deviation (SD) shown 

against the measured underflow P80 for each data collection event. 
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Figure 4-35 

Conv-gc Model Validation Dataset Measured and Predicted Underflow P80 

 

Note. Model input images/data ordered by time for each sampling period, with the 

periods then presented in the order samples were taken. 
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Figure 4-36 

Conv-gc Model Training Dataset Measured and Predicted Underflow P80 

 

Note. Model input images/data ordered by time for each sampling period, with the 

periods then presented in the order samples were taken. 

 

Table 4-17 

Conv-gc Model Test NA Dataset Hydrocyclone Underflow P80 Statistics 

Measured P80 (μm) 266 280 266 263 251 271 270 
Predicted 
P80 (μm) 

Mean 265 279 265 276 267 271 277 
SD 9 15 9 11 2 5 6 

Note. Predicted underflow P80 mean and population standard deviation (SD) shown 

against the measured underflow P80 for each data collection event. 
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Figure 4-37 

Conv-gc Model Test NA Dataset Measured and Predicted Underflow P80 

 

Note. Model input images/data ordered by time for each sampling period, with the 

periods then presented in the order samples were taken. 

 

Table 4-18 

Conv-gc Model Test NB Dataset Hydrocyclone Underflow P80 Statistics 

Measured P80 (μm) 295 286 296 296 291 
Predicted 
P80 (μm) 

Mean 286 272 268 278 268 
SD 6 5 8 7 2 

Note. Predicted underflow P80 mean and population standard deviation (SD) shown 

against the measured underflow P80 for each data collection event. 
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Figure 4-38 

Conv-gc Model Test NB Dataset Measured and Predicted Underflow P80 

 

Note. Model input images/data ordered by time for each sampling period, with the 

periods then presented in the order samples were taken. 

 

4.2.6 Discussion  

During model training, hyperparameters (e.g., learning rate, decay rate, and 

number of epochs) were tuned with a focus on minimising the validation dataset 

MAE whilst also ensuring the training dataset MAE was reasonable. Table 4-19 

summarises the trained model’s MAE for the training, validation and test datasets for 

all models covered in Section 4.2. Each model’s test dataset results are the best 

available indicator of their performance as they consist of events that are outside 

those used in the training process. 

As noted in Table 4-6, the ore blend is the same during the final day of the 

training dataset and the validation dataset, which may lead to bias in the trained 

model towards this condition. This ore blend is also the same for the Test NA dataset, 

so it adds importance to the performance on the Test NB dataset which is from a  
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prior day and with a different ore blend. Again, it needs to be acknowledged that the 

potential different focus position during the filming of the Test NB dataset introduces 

another point of difference which may also affect an image-based model’s 

performance. 

 

Table 4-19 

Trained Models’ Mean Absolute Error for All Datasets 

 Dataset MAE (μm) 
Inputs Model Training Validation Test NA Test NB 
Image Only convtune 7.6 13.1 8.4 14.6 
Sensor Only cycsensor 12.2 10.2 37.8 16.5 
Sensor Only gcsensor 11.1 12.2 37.8 26.2 
Image & Sensor conv-gc 1.2 11.0 10.1 18.6 

 

A more fine-grained comparison of the models’ performance on the testing 

datasets can be found in Table 4-20 for Test NA and Table 4-21 for Test NB. These 

show the difference between the measured and average predicted hydrocyclone 

underflow P80 per data collection event for each model. The models developed 

solely on sensor data do not extend well to operating conditions outside that 

experience in training, with the MAE for the test datasets greater than those from 

the training and validation datasets. The most significate deviations from the 

measured values are when sensor readings are outside those found in the training 

range, as noted in Section 4.2.3.2 and Section 4.2.4.2. This highlights the requirement 

for the training and validation dataset to cover the full range of conditions to be 

encountered, and demonstrates the effect a single variable can have on the model’s 

output. It would therefore be beneficial to only include key variables required to 

produce a meaningful predictive model. The risk of having excessive minor variables 

included is that if the underlying sensor or calculation were to fault or produce an 

atypical output this could then lead to an erroneous model output as well. 
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Table 4-20 

Test NA Average Hydrocyclone Underflow P80 Difference for Data Collection Event 

Measured P80 (μm) 266 280 266 263 251 271 270 

P80 
Difference 

(μm) 

convtune 3 1 7 7 14 4 7 
cycsensor 6 -9 7 -4 83 80 77 
gcsensor 39 9 15 45 96 24 37 
conv-gc -1 -1 -1 13 16 0 7 

Note. Hydrocyclone underflow P80 difference calculated as predicted – measured. 

 

Table 4-21 

Test NB Average Hydrocyclone Underflow P80 Difference for Data Collection Event 

Measured P80 (μm) 295 286 296 296 291 

P80 
Difference 

(μm) 

convtune -21 -13 -24 -10 -1 
cycsensor -12 2 -24 18 26 
gcsensor 9 13 -65 22 21 
conv-gc -9 -14 -28 -18 -23 

Note. Hydrocyclone underflow P80 difference calculated as predicted – measured. 

 

The models incorporating image data have resulted in testing dataset output 

MAEs more closely aligned with their relevant validation dataset MAE. These models 

also have a significantly higher capacity than the simpler sensor only models, which 

would be a contributing factor to their improved performance. The image and sensor 

combined conv-gc model resulted in a lower validation dataset MAE than the image 

only convtune model, but also showed a significantly lower training dataset MAE 

which may indicate overfitting to the training dataset. The conv-gc model also shows 

a Test NA dataset MAE similar to the validation dataset, though the Test NB dataset 

MAE is higher and a potential further indication of overfitting considering the ore 

feed similarities previously discussed. Ultimately, given that the conv-gc test 

dataset’s MAE are also higher than that produced by the convtune model, the 
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inclusion of sensor data has not resulted in a pronounced improvement in model 

performance using the methods trialled. 

To put the performance data for the models in context Figure 4-39 shows a 

box plot of the training dataset’s measured hydrocyclone underflow P80 values (note 

the training dataset range of 124 μm). The image only convtune model presents the 

best testing performance in terms of MAE compared to the other models produced. 

Its highest data collection event standard deviation was 10 μm, occurring in both the 

validation dataset (see Table 4-7) and the Test NA dataset (see Table 4-8). 

The convtune model’s greatest absolute difference between predicted and 

measured underflow P80 was 29 μm where the validation measured P80 is 294 μm 

(see Table 4-7). For each test dataset the greatest absolute differences was 14 μm 

where the Test NA measured P80 is 251 μm (see Table 4-20) and 24 μm where the 

Test NB measured P80 is 296 μm (see Table 4-21). From the discussion of sensor data 

in Section 4.2.4.2 both the test data collection events noted are from periods of 

operations outside those experience in training, in these cases specifically the SAG 

mill operation. This may mean that operational conditions not experienced in 

training where not able to be interpreted by the image only model. Another issue 

may be that the model cannot assess more atypical or extreme underflow particle 

sizes, given the limited validation data range used to guide hyperparameter tuning 

during training. These more atypical conditions, such as occurs when ore is being fed 

from the EROM, were not able to be included in the validation and testing process 

given the limited time on site to collect data. 
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Figure 4-39 

Box Plot of the Training Dataset Measured Hydrocyclone Underflow P80 

 

Note. Constructed using the median exclusive method and with x indicating mean. 

 

One final point of interest is that the last data collection event for both test 

datasets had overexposed regions on the hydrocyclone underflow stream (Figure 

4-40). Data collection events presenting over exposed regions were excluded from 

training and validation dataset construction, thus not encountered during model 

training. Though both models which use images were able to produce reasonable 

outputs from this footage. The mean P80 prediction difference from measured and 

prediction standard deviations for these data collection events were not outside 

those found in other examples from the test datasets. While ideally visual variability 

should be kept to a minimum and controlled where possible, further investigation 

into how robust the image-based models are to visual changes in conditions would 

be worthwhile. This would allow both assessment of the model’s long-term stability 

and the requirement for external controls for lighting. If minimal additional lighting 

and structural modifications are required, then the more appealing and lower cost 

an image-based sensor would be. 
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Figure 4-40 

Test Image Examples Exhibiting Over Exposed Regions 

  

Test NA: Measured P80 = 270 μm Test NB: Measured P80 = 291 μm 

Note. First frames of the test data collection events which exhibit overexposed 

regions (cropped as used for model input). Adapted from Nova Mine Site Data, by 

IGO Nova, 2020. Copyright 2020 by IGO. Adapted with permission. 

 

To produce particle size inference models with neural networks (whether 

through available sensor information, image analysis or a combination of both) it is 

apparent that a sufficient quantity and quality of input data is required. Napier and 

Aldrich’s (2017) conclusions from an investigation to develop an IsaMill regrind 

circuit product particle size soft sensor holds true not just to the sensor data case 

they explored but predictive models for mineral processing in general. They note that 

soft sensors would ideally require a check that the current conditions match those 

found in training. They also suggest that considering the variability encountered in 

mineral processing circuits (particularly in terms of feed) frequent recalibration when 

conditions change or a sufficiently long data collection period for training to try to 

capture enough data to compensate for process drift would be required. Further 

investigation into the potential for CNN based hydrocyclone underflow particle size 

estimation would benefit from a longer data collection period (for sufficient training 
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and testing data collection) along with further trials of model structures to gauge if a 

long term stable and usable sensor can be produced. 

4.3 Summary 

CNNs were investigated for their potential to extract meaningful features 

from hydrocyclone underflow video footage for particle size estimation. Pretrained 

VGG-16 (Simonyan & Zisserman, 2014) was used as a starting point in the model 

development, attempting to leverage the benefits of transfer learning. 

Using high-speed laboratory hydrocyclone footage, initially different crop 

positions within the underflow stream were trialled as a classification task to 

determine where the most meaningful features for grouping footage could be found. 

A crop position near the hydrocyclone apex was found to perform best, with a >90% 

per class accuracy. This is consistent with van Deventer et al.’s (2003) videographic 

analysis, given that at this position the underflow profile is still highly influenced by 

the hydrocyclones operating conditions and the stream’s edges are still present and 

defined. 

Given the high-speed camera footage consisted of single channel grey scale 

images, while the pretrained CNN expects a three channel RGB image, the stacking 

of three consecutive frames was trialled. This was undertaken to explore if including 

temporal information in this way could be exploited to improve the classification 

performance. Under the conditions tested this did not result in a significant 

improvement in classification accuracy. 

A regression model was also tested on the high-speed laboratory 

hydrocyclone footage to produce an underflow P80 particle size prediction. The best 

performing crop position from the classification task was used, and fine-tuning VGG-

16 (Simonyan & Zisserman, 2014) from the fifth convolution block through to a new 

task specific output layer was performed. An acceptable model was able to be 

produced, as demonstrated by the validation dataset accuracy. When tested on 

footage from the remaining experimental runs not used in training, though the 

accuracy was lower discernment between the coarser and finer particle sizes was 

achieved, and thus warranted further investigation. 
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An investigation using a standard frame rate colour camera was then 

undertaken under industrially relevant conditions, with data collected from IGO 

Nova’s primary hydrocyclone cluster. A similar experimental method as in the 

laboratory hydrocyclone investigation was performed, along with the collection of 

available online sensor readings for the grinding circuit. Simple ANN models were 

trialled using sensor data directly related to the hydrocyclone cluster as well as data 

from the wider grinding circuit. The subsequently trained models’ performance 

suffered when tested on sensor readings outside those experience in training, 

highlighting the importance of having a representative training dataset. 

Image-based models were also investigated, with a similar structure as that 

used in the laboratory hydrocyclone investigation along with trialling incorporation 

of grinding circuit sensor information. Both models resulted in improved testing 

dataset performance compared with the senor-only models. The inclusion of sensor 

information into the CNN image model in this case did not result in improved 

performance compared to the image-based model alone. While the image-based 

model showed the best testing dataset performance, the long-term applicability and 

stability of such models would require more extensive investigation. 

5 Reinforcement Learning Hydrocyclone Control 

On reflecting on their investigation into milling circuit control incorporating 

RL Hallén et al. (2019) suggested that RL may find further success and industrial 

acceptance through control strategies combining it with PID controllers to improve 

robustness and performance guarantees, and with SP manipulation also the focus of 

Guo et al. (2019). This provides a good lead-in to the design and practical 

considerations envisaged when developing the investigation undertaken for this 

chapter. Ideally the RL controller’s actions would adjust PID SPs to bring the system 

to meet targets without entering undesirable regions. 

Other practical considerations are that in an industrial setting, actions taken 

on a live processing plant should be limited within a constrained region at each time 

step, aiding the system to change in a controlled manner. For example, with slurry 

being pump from a tank, the changes in density should be gradual. A sudden 
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aggressive increase in feed solids concentration can result in bogging of the pump, 

particularly in unmixed transfer hoppers. Another practical consideration is that 

sufficient sensor data is unlikely to be available to fully characterise the system (with 

sensor data itself also noisy). The sensor data availability and quality contribute to 

making live processing plant systems partially observable, which should be 

incorporated and managed in control design.  

5.1 Experimental Design 

5.1.1 Hydrocyclone Simulation 

Moly-Cop Tools CycloSim (CycloSim_Single.xlsx) and the supplied base case 

example data (Sepúlveda, 2012) was used as the basis for the simulated 

hydrocyclone circuit. CycloSim is an Excel spreadsheet open circuit hydrocyclone 

simulator based on Gutiérrez and Sepúlveda’s (1986; as cited in Sepúlveda, 2012) 

CIMM model. Moly-Cop Tools CycloSim was selected for the circuit simulation as it is 

supplied as a calibrated model, with the includes base case example data allowing it 

to be considered a physically plausible system. The other factor in simulation 

selection was its ability to be integrated with the RL controller. This was satisfied as 

permission was granted by Moly-Cop to implement the required equations and data 

in Python using the NumPy (Oliphant, 2006) and Math libraries. All CycloSim base 

case example hydrocyclone geometries, classifier constants, feed size distribution, 

ore density, and the number of operating cyclones as 10, were used as supplied 

unless otherwise stated. See Appendix G for the CycloSim Data_File spreadsheet 

containing the base case example data as supplied. 

The simulated environment was designed to have the open circuit 

hydrocyclone cluster fed by a 500 m3 feed tank. A time step of 2 min was selected, 

thus it is assumed the input conditions are maintained for this period to allow the 

change in tank volume to be determined. The simulator also indicates the 

hydrocyclone underflow operating state of fan = 1 or roping = 0. Roping is deemed 

to be occurring if one or more of the roping criteria as stated in Equation 2-1, 

Equation 2-2, and Equation 2-3 are met. Figure 5-1 illustrates the simulated open 
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circuit hydrocyclone system with the status of variables available to the RL controller 

noted. 

 

Figure 5-1 

Simulated Open Circuit Hydrocyclone System Diagram 

 

Note. Simulated open circuit hydrocyclone system illustration showing the relevant 

variables, along with their visibility and nature in relation to the RL controller. 

 

5.1.2 Reinforcement Learning Controller 

Lau’s (2016) implementation of DDPG (Lillicrap et al., 2015) was used with 

permission as a starting point for the RL control. One point of difference to note is 

that Lau’s (2016) implementation does not contain batch normalisation in the neural 

networks, unlike Lillicrap et al.’s (2015) DDPG architecture. Lau’s (2016) 

implementation uses Keras (Chollet & others, 2015a) with a Tensorflow (Abadi et al., 

2015) back end, and was originally interacting with a car driving simulator. Both Lau’s 

(2016) and Lillicrap et al.’s (2015) implementations of DDPG use the optimiser Adam 

(Kingma & Ba, 2014) and ReLU activation for the hidden fully connected layers of 

both actor and critic networks. Additionally, the hyperparameters below are 

consistent with both Lau (2016) and Lillicrap et al. (2015) implementations of DDPG 

 Discount factor γ = 0.99 

 Target networks’ soft update τ = 1x10-3 

[PV]  Process Variable
[MV]  Manipulated Variable

  - Water Addition (m3/h)
    as required to meet set

R f = Tank Solids Feed Rate (dry t/h) -     Hydrocyclone Feed Solids - P  = Inlet Pressure (kPa)
M  = Feed Sizing %Passing Modification -     Concentration

ρs = Feed Solids Density (t/m3) -  C  = Hydrocyclone Feed Solids             HYDROCYCLONE
 Concentration (% w/w) [MV]  - 

- D A = Apex Diameter (mm) [MV]
T L = Tank Level (%) [PV] -   

Q  = Hydrocyclone Feed - U P = Underflow P80 (um) [PV]

Flow Rate (m3/h) [MV]   - 
- X  = Operating State [PV]

(fan = 1, roping = 0)

FEED PUMP

 Unmeasured Variable
 Measured Variable

FEED TANK
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 Actor Learning Rate = 1x10-4 

 Critic Learning Rate = 1x10-3 

Lau’s (2016) DDPG implementation was modified as required for this 

investigation including 

 For use with Tensorflow’s own implementation of Keras. 

 The actor network was brought closer in line with Lillicrap et al.’s (2015) DDPG 

architecture, with the state input connected to the first 400 node fully 

connected layer followed by a second 300 node fully connected layer. The 

output of the network was then a three node fully connected layer with tanh 

activation for each node to produce the action output. As illustrated in Figure 

5-2. 

 The critic network was brought closer in line with Lillicrap et al.’s (2015) DDPG 

architecture, with the state input connected to the first 400 node fully 

connected layer and the actions not introduced until the second 300 node 

fully connected layer. The output of the network was then a one node fully 

connected layer with linear activation for the critic network to output the 

Q(st,ɑt) value. As illustrated in Figure 5-2. 

 While Lillicrap et al.’s (2015) DDPG implementation used 1x10-2 L2 weight 

decay for the critic, the implementation noted in Fujimoto, van Hoof, and 

Meger (2018) did not. For this implementation 1x10-2 L2 kernel regularisation 

was used on the critic output layer. 

 The actor and critic network’s kernel initializer for their respective final layers 

were chosen from a random uniform distribution -3x10-3–3x10-3 as in Lillicrap 

et al. (2015). 

 Following Fujimoto, van Hoof, and Meger (2018) demonstration of reducing 

per-update error the actor policy and target networks’ updates were delayed, 

occurring every second time step while the critic continues to be updated 

every time step. 

 The replay buffer size was selected to be large enough to hold the agent’s 

entire history for a given test scenario, as was used in Fujimoto, van Hoof, and 

Meger (2018).  
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 A mini-batch size of 100 was selected as per Fujimoto, van Hoof, and Meger 

(2018). 

 

Figure 5-2 

Actor and Critic Neural Network Architectures 

 

 

 

Note. Actor (top) and critic (bottom) neural network architectures used in the RL 

controller, incorporating aspects of Lillicrap et al. (2015) and Lau (2016) 

implementations of DDPG. Includes the number of nodes and activation for fully 

connected (fc) layers. 

 

5.1.3 Simulator-Control Interaction 

At the start of each episode the hydrocyclone feed flow rate, hydrocyclone 

feed solids concentration, tank level and apex diameter were selected from a random 

uniform distribution within the initialisation range. The standard initialisation range 

shown below was used unless otherwise stated. 

 Q = 1000–2000 m3/h  

 C = 40%–60% w/w     

 TL = 40%–60% 

 DA = 90–140 mm 
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These selected values were then used to set the tank solids feed rate for the 

episode, under the simplified assumptions that inflow volume equals outflow volume 

at the start of an episode and a constant feed solids density (unless otherwise stated). 

The SPs and feed sizing %passing modification value were then set for the episode, 

depending on the experimental requirements.  

The input values { TL[initial], Q, C, DA, Rf, ρs, M } were then fed to the simulator 

and the output values { TL[final], Q, C, DA, P, X, UP } returned. The output values for the 

simulator consist of variables typically measured in a hydrocyclone circuit. One 

exception to this being hydrocyclone operating state detection, though image-based 

(Giglia & Aldrich, 2020) or vibration-based (Bowers et al., 2019) sensors are potential 

options. The other exception being hydrocyclone underflow particle sizing 

information, in this case hydrocyclone underflow P80. Though vibration-based 

sensors (Cahill, 2021) are available if physical online measurements of the composite 

stream was not occurring. An image-based sensor like that explored in Section 4 

could also be another option if successfully trained.  

The underlying values interacting with the simulator were maintained 

separately from the observations visible to the controller. This allows for the injection 

of noise (to simulate sensor noise) to be applied. The state representation is then 

formed from these noisy observations of the simulator output and the SPs, resulting 

in the form ( TL, Q, C, DA, P, X, UP, TL - TL[SP], UP - UP[SP] ). This representation of state 

using observations and SP difference is similar to that presented by Hafner and 

Riedmiller (2011). Observations of the simulated system continue to be received, and 

along with the SP differences, stacked over time in the state representation with no 

control actions taken until the set state matrix size has been filled. A step will thus 

refer to an action taking time step after the state matrix is full. 

Gupta and Eren’s (1990) laboratory hydrocyclone control experiments 

discussed in Section 2.6.2 were used as inspiration for this experimental design. In 

their case, adjustments could be made to the following variables sequentially to 

restore the cut size to a target value 

 Vortex finder height, via a uniquely designed pneumatic system 
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 Apex diameter, via a pneumatically adjustable rubber sleeve 

 Hydrocyclone feed flow rate, via a variable speed pump 

For the simulated control experiments three continuous actions were 

selected to be able to be adjusted simultaneously at each time step 

 Hydrocyclone feed flow rate (Q), which in practice would be adjusted via 

pump speed 

 Hydrocyclone feed solids concentration (C), which in practice would be 

adjusted by dilution water addition 

 Apex diameter (DA), which could be made adjustable via a pneumatically 

controlled rubber sleeve as noted by Gupta and Eren (1990) 

The flattened current state matrix values were rescaled by dividing each 

variable by a constant as shown 𝘛𝖫 ,
Q

,
𝘊

,
𝘋𝖠 ,

𝘗
,

𝘟
,

𝘜𝖯 ,
𝘛𝖫 𝘛𝖫[𝖲𝖯]

,
𝘜𝖯 𝘜𝖯[𝖲𝖯] , 

before being used as input to the actor network. Note that all state values were 

rescaled in this way prior to being used in the actor and critic networks. The actor 

network then outputs the three action values, bounded -1.0–1.0 due to their tanh 

activation functions. It is worth noting that rather than using squashing functions 

(e.g., tanh or sigmoid) to bound the actions, Hausknecht and Stone (2015) used an 

inverting gradient method. In their method gradients were modified as parameter 

boundaries were approached and was found to be necessary for stable learning in 

their domain, avoiding issues associated with squashing functions saturating. 

Spielberg (2017) also used the inverting gradient method for their process control 

implementation, though in the current work stable learning was possible using tanh 

activation (with clipping if action exploration suggests a value outside these bounds 

as will be discussed later) and thus modifying gradients was avoided.  

During training, exploration noise is then added to each action. Fujimoto, van 

Hoof, and Meger (2018) added Gaussian exploration noise (mean = 0, SD = 0.1) having 

noted no performance benefit in using temporally correlated noise as in the Lillicrap 

et al.’s (2015) DDPG implementation. For this investigation, a more aggressive 

Gaussian exploration noise (mean = 0, SD = 0.2) was applied during training. The 

randomly initialised policy was used for the first 2,000 time steps (with Gaussian 
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noise added) before training of the networks commenced, thus initialising the replay 

buffer with a broad set of transitions to begin training on. 

As the actor and critic networks were randomly initialised, their early outputs 

during training were not yet specialised for the system. To reduce the likelihood of 

exceeding what would be physical limits of an actual circuit, particularly during 

training, safety limits were selected. The current MV and proposed actions’ effects 

were assessed against the safety limits below. 

 Q = 500–2500 m3/h  

 C = 30%–70% w/w    

 DA = 70–160 mm 

 Given the current value, if a proposed action (plus exploration noise if 

applied) was determined to exceed a safety limit, then the action was modified so 

that it is calculated subsequent value is on the safety limit. In this way for a sensor 

noise free environment the control would not exceed these safety limits, though in a 

noisy environment it was still able to slightly exceed the limit but will be forced to try 

to return to the limit at each subsequent time step. The final stage of action 

interrogation was that if the proposed action value was > 1.0 or < -1.0, then the 

values 0.9999 or -0.9999 were forced, respectively. This stopped the action boundary 

being exceeded (which was only possible during training due to the addition of 

exploration noise) and by using fixed forced values this aided identifying when it had 

been applied. 

In Syafiie et al.’s (2008) Q-learning based control with discretised states and 

actions for chemical processes, the actions available in each state were limited in part 

by the allowable incremental variation in the MV. The MV would be adjusted by 

multiplying the gain by the desired action and adding it to the previous MV value. In 

a comparable manner for this investigation, the action values are then multiplied by 

the relevant maximum step size, being the maximum allowable change in MV per 

time step given the continuous action values are bound between -1.0–1.0. This is 

then added to the relevant MV’s value, and these revised inputs fed to the simulator. 

The subsequent noisy observations and SP differences were then stacked over time 
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in the state representation, with the oldest value removed to maintain the set size 

for the subsequent state representation. 

The transition reward was then calculated based on the subsequent state. A 

simple form of reward function for process control solely gives a penalty when the 

system is outside of the SP tolerance range (Hafner & Riedmiller, 2011). Though by 

shaping the reward function (Ng et al., 1999) richer feedback can be provided to aid 

training. This can consider difference from SPs (Spielberg, 2017), penalties for 

undesirable conditions (i.e., exceeding safety limits or roping state), and the relative 

weightings of rewards. The reward structure used was as follows 

 - | TL – TL[SP]| / 200 

 - | UP – UP[SP]| / 5 

 - 5 if roping (X = 0) 

 - 0.1 if equal to or exceeding safety limits 

These values were selected so that in typical operating ranges the total 

reward values are not excessively large. Table 5-1 illustrates the reward 

corresponding to a range of underflow P80 and tank level SP difference conditions. 

The tolerance values for underflow P80 and tank level used in the experiments are 

shown in bold in Table 5-1. The reward at tolerance for tank level results in a greater 

penalty that at tolerance for underflow P80, the intent being to give a stronger 

weighting to flow stabilisation than product size, though the training process looks 

to maximise total return thus it is not necessarily a direct trade off. The penalty for 

roping has been set beyond what would be expected for typical tank level and 

underflow P80 SP differences, to strongly discourage the policy from approaching 

regions where roping could occur. There was also a small penalty when the MV’s 

safety limits were met or exceeded, this is intended to encourage the policy itself to 

operate near these limits without the hard coded safety intervention from taking 

place. 
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Table 5-1 

Example Process Variable Set Point Differences and Corresponding Reward 

Reward | UP – UP[SP] | 
(μm) 

| TL – TL[SP] | 
(%) 

-0.10 20 0.50 
-0.25 50 1.25 
-0.50 100 2.50 
-1.00 200 5.00 
-2.00 400 10.00 
-5.00 1000 25.00 

Note. Resulting reward from absolute difference tank level reading (TL) to relevant 

set point (TL[SP]), and underflow P80 (UP) to relevant set point (UP[SP]). 

 

The flattened state matrix values, action values, reward, and flattened 

subsequent state matrix values are then stored in the replay buffer. Critic, actor, and 

target network updates were then performed as required. The control process then 

continued until a terminal condition was reached for the episode. If the tank level 

was deemed to have lost control (i.e., subsequent noisy observation <5% or >95%) 

then the current episode would terminate. Otherwise, the terminal conditions were 

either that for last 10 steps the current sensor readings had been within the tolerance 

range of the SPs and roping had not occurred, or 50 steps had occurred, whichever 

came first. 

5.2 Case studies 

5.2.1 State Representation 

RL control is ideally structured around an MDP, where the state is fully 

observable. While in a real-world setting sensor information is not typically available 

to cover all relevant contributing variables, so the system is partially observable. For 

Mnih et al.’s  (2015) DQN implementation partial observability was handled by 

including a history of observations and actions over a fixed time horizon (x) in the 

state representation, st = [ ot-x, ɑt-x,…, ɑt-1, ot ]. Similarly, for Lillicrap et al.’s (2015) 

DDPG implementation when learning direct from the rendered environment, one 
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controller time step constitutes three environment renderings with the action taken 

repeated during this period. The collection of feature maps from the renders are then 

used in the state representation, where changes in frames allows information like 

velocity to be inferred.  

To trial the control behaviour of a simple industrially applicable partially 

observed system, the tank solids feed rate was randomly set and unmeasured at the 

start of each training episode. All other variables were either measured or held 

constant. A state representation was formed by stacking observations (sensor 

readings) along with difference between current value and SP over a specified time 

horizon. The historic actions taken do not explicitly form part of the state 

representation, but as the variables they are applied to were measured the changes 

are still implied in the state representation.  

Model performance after a given number of training episodes, with the state 

representation made up of only the observations and SP differences for the current 

time step (State 1) and the observations and SP differences for the current time step 

along with the previous two time steps (State 3),  are shown in Table 5-2. Testing 

then occurred on 1,000 episodes, with random number seeding meaning the initial 

conditions for each episode was consistent for all test scenarios. The action taking 

steps were after the state representation was full, so for State 1 this was after the 

first sensor reading. For State 3 no actions were taken until the state matrix was full, 

though given for these tests the initialisation tank inflow = outflow it was effectively 

three sets of identical observations and SP differences before action taking steps 

occur. The training and testing SPs were TL[SP] = 50% and UP[SP] = 1800 μm. 
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Table 5-2 

State Representation and Training Period Test Performance Metrics 

State  Training Episodes  Episodes Solved 
(<50 steps) 

Average Steps 
(for solved episodes) 

State 1 

1,000 75.6% 21 
1,500 71.2% 21 
2,000 49.1% 23 
2,500 74.7% 22 

State 3 

1,000 100.0% 18 
1,500 100.0% 18 
2,000 100.0% 19 
2,500 100.0% 18 

Note. Percentage of episodes terminated in <50 steps and the average steps taken 

to solve them, for different state representations and periods of training. 

 

The results in Table 5-2 show that a state representation of three consecutive 

time steps was sufficient to allow the model to infer missing information and solve 

the test episodes in <50 steps after only 1,000 episodes worth of training. Thus, the 

three consecutive time steps state representation (State 3) will continue to be used 

for subsequent experiments. Also, training for 2,000 episodes worth of experiences 

was found to provide an acceptable level of testing performance over a range of test 

conditions encountered in the subsequent experiments. Thus, this was used as the 

testing point for all trained models unless otherwise stated, having considered the 

potential for issues such as overfitting and catastrophic forgetting (Goodfellow et al., 

2013). 

5.2.2 Unsolvable Instances 

The training process was repeated under the same conditions as Section 5.2.1 

(including State 3 representation), but with a 2000 μm hydrocyclone underflow P80 

SP. Figure 5-3 shows the number of steps taken for the test episodes to terminate, 

with 89.7% of episodes terminating in <50 steps. Figure 5-4 also shows the initial and 

final (at episode termination) tank level and hydrocyclone underflow P80 SP 

difference (PV – SP) values for the 1,000 test episodes. By looking into the 103 
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episodes that did not terminate in <50 steps we find that the final tank level reading 

ranged from 50.1%–50.3%, thus within the tolerance range. Though the final 

hydrocyclone underflow P80 reading ranged from 1817.2–1950.1 μm, thus either 

outside of the tolerance range or not continuously within the tolerance range for 

sufficient time to allow the episode to terminate in <50 steps. 

 

Figure 5-3 

Count of Test Episodes Terminated in the Given Number of Steps 
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Figure 5-4 

Initial and Final Process Variable Set Point Differences for Unsolvable Instances Test 

 

Note. Set point difference is process variable subtract set point (PV – SP). 

 

With access to the underlying simulator’s roping criteria the ratio of apex 

diameter to vortex finder diameter that leads to roping is known (Equation 2-1). 

Given the fixed vortex finder diameter of 190.5 mm, then an apex diameter less than 

85.725 mm would lead to roping. The final apex diameter of the episodes that did 

not terminate in <50 steps ranged between 86.9–87.3 mm. For all these episodes the 

tank solids feed rates were low (Figure 5-5), with subsequent lower hydrocyclone 

feed flow rates and feed solids concentrations reached to balance the circuit 

volumetric flow. Under these conditions the control can only reduce the apex 

diameter so far, to increase the hydrocyclone underflow P80, whilst avoiding the 

potential of roping. Figure 5-6 shows the change in tank level and hydrocyclone 

underflow P80 over time for the lowest tank solids feed rate test episode (#82, Rf = 

545.5 dry t/h) and the highest tank solids feed rate test episode (#792, Rf = 787.3 dry 

t/h) which failed to solve in <50 steps. 
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Figure 5-5 

Test Episode Tank Solids Feed Rate Against Steps Taken for Episode to Terminate 
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Figure 5-6 

Process Variables Plot Over Time for the Nominated Test Episodes 

 

Note. Change in tank level (TL) and underflow P80 (UP) over time (t) for test episodes 

#82 and #792 which failed to solve in <50 steps. 

 

Of note, for the 24,450 action taking transition made during this test, none 

resulted in a roping state. Taken together the behaviour presented for this simple 

partially observed system is quite desirable for process control. The policy generates 

actions to approach the target conditions, while if the target conditions are not 

achievable then operates near the limit and ideally does not enter any undesirable 

operating regions.  

5.2.3 Partial Observability Extension  

The Section 5.2.1 training process with State 3 representation was again used, 

with feed particle size included as an addition unmeasured variable randomly set at 

the start of each episode. To facilitate this a random value between -0.8–0.8 was 

selected and added to each screen size’s percentage passing value of the base case 

hydrocyclone feed particle size distribution, with this value referred to as feed sizing 
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%passing modification (M). In this way the feed particle size is shifted, resulting in a 

range of possible feed size distributions with the extremes shown in Table 5-3. 

 

Table 5-3 

Summary of Hydrocyclone Feed Sizing Information for Modified Base Case 

Feed Sizing Base – 0.8 (μm) Base (μm) Base + 0.8 (μm) 
P80 1368 1273 1185 
P50 290 281 273 

Note. Base case from Sepúlveda (2012) ± M. 

 

For these experiments three random number seeds were used during training 

(seed = 10, 20, 30), and the resulting policies after 2,000 episodes of training are 

compared on the same random number seeded 1,000 test episodes. The test 

performances appear similar (see Table 5-4, Figure 5-7, and Figure 5-8), with minor 

differences as would be expected considering the training is performed on episodes 

with different initial conditions, transitions, and ultimately number of gradient 

updates. All policies were unable to solve the same seven episodes in <50 steps, with 

training seeds 20 and 30 also unable to solve the same additional three episodes. The 

initial conditions for these test episodes were all Rf < 675 t/h and M > 0.25. This 

presents a similar issue as covered in Section 5.2.2 where at lower throughputs, and 

in this case also coupled with finer feed sizing, the control is limited in how close to 

conditions that will lead to roping it will approach (final apex diameters were 

between 85.8 mm to 88.5 mm). 

Also of note is that not all trained policies were able to result in no roping 

events. All these events occurred due to apex diameter adjustment resulting in a 

value of DA < 85.725 mm, highlighting that these policies did not behave optimal 

under all conditions. Though considering the approximately 19,000 transitions taken 

during each 1,000 episode test, this level of imperfect behaviour would likely be 

acceptable for this circuit, though not appropriate for a safety critical system. 
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Table 5-4 

Test Performance Metrics for Policy Trained With Different Random Number Seeds 

Training Seed Episodes Solved 
(<50 steps) 

Average Steps 
(for solved episodes) Roping Events 

10 99.2% 19 8 
20 98.9% 18 0 
30 98.9% 19 9 

Note. Percentage of episodes terminated in <50 steps and the average steps taken 

to solve them, along with number of roping events, for different training random 

number seeds. 

 

Figure 5-7 

Count of Test Episodes Terminating in the Given Number of Steps 

 

Note. 1,000 test episodes for each training random number seed. 
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Figure 5-8 

Initial and Final Process Variable Set Point Differences for Training Seed Tests 

 

Note. Set point difference is process variable subtract set point (PV – SP). 

 

Another 1,000 episode test using the trained model (seed = 10) in conditions 

outside that experienced during training was undertaken to test the generalisation 

performance. For this test, the initial tank level was randomly selected between 

30%–40% or 60%–70% (outside of the training initialisation range 40%–60%). The 

feed sizing modification for each episode was randomly selected between -1.0 to  

-0.8 or 0.8 to 1.0 (outside of the training range -0.8–0.8), see Table 5-5 for the 

extreme feed sizing information. The tank inflow volume equals outflow volume at 

the start of an episode was also not applied during these tests. Instead, the tank 

solids feed rate for the episode was randomly set between -200–200 t/h different to 

the solids discharge rate out of the tank (which is based on the randomly initialised 

hydrocyclone feed flow rate and solids concentration). Though the tank solids feed 

rate was clipped between 500–2000 t/h, just outside the approximate range of  

-538.5–1953.5 t/h encountered during training. 
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Table 5-5 

Summary of Hydrocyclone Feed Sizing Information for Extreme Modified Base Case 

Feed Sizing Base – 1.0 (μm) Base + 1.0 (μm) 
P80 1392 1160 
P50 292 270 

Note. Base case from Sepúlveda (2012) ± M. 

 

Testing resulted in 96.2% of the episodes solved in <50 steps, with initial and 

final SP difference shown in Figure 5-9. The remaining 38 episodes were all in the 

lower throughput coupled with finer feed sizing region for which reaching target 

underflow P80 of 1800 μm may not be possible without roping. All the final time 

step’s tank levels for these unsolved episodes were either within or near the 

tolerance region (specifically 47.4%–49.3%). In this case the region where Rf < 705 

t/h and M > 0.8 contained the unsolvable episodes (Figure 5-10). The higher tank 

solids feed rates and all coarser feed sizing episodes were solvable as they did not 

require approaching the apex diameter that leads to roping. Of the 22,630 steps 

taken in these test episodes 283 resulted in roping events, all involved M > 0.8 and 

were the result of DA < 85.725 mm roping threshold. Of the roping events 262 

occurred with Rf < 705 t/h, making this level of roping occurrences not unreasonable 

given that this is an area of state space not explored during training and with 

unmeasured variables known to cause challenging control conditions. 
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Figure 5-9 

Initial and Final Process Variable Set Point Differences for Generalisation Tests 

 

Note. Set point difference is process variable subtract set point (PV – SP). 
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Figure 5-10 

Solvability of Test Episodes Considering Feed Size Modification and Solids Into Tank 

 

Note. Solved refers to episode terminated in <50 steps. Only the finer feed size 

modification region is shown, as all coarser feed size modifications tested were 

solved in <50 steps. 

 

5.2.4 Set Point Variability 

The controller so far has been trained using fixed SPs TL[SP] = 50% and UP[SP] = 

1800 μm. To see how the trained system from Section 5.2.3 (seed = 10) handles 

variable SPs a 1,000 episode test was performed with the tank level SP varied 

between 40%–60% (inclusive) and the hydrocyclone underflow P80 varied between 

1700–1900 μm (inclusive). For the Coarse test case the tank level SP was randomly 

selected in 5% increments, and the hydrocyclone underflow P80 SP randomly 

selected in 50 μm increments. For the Fine test case the tank level SP was randomly 

selected in 1% increments, and the hydrocyclone underflow P80 SP randomly 

selected in 10 μm increments. 
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Table 5-6 presents key performance metrics for the variable SP test from the 

fixed SP trained model. The number of episodes able to be solved in <50 steps with 

variable SPs is significantly less than that achieved with the fixed SPs (for which it was 

trained). While measured tank level and hydrocyclone underflow P80 value along 

with the SP difference values are used to form the state representation, because in 

the fixed SP case the SP differences values are always just a constant offset of the 

measured values the model does not learn the effect of different SP scenarios. 

 

Table 5-6 

Test Performance Metrics for Policy Trained With Fixed Set Points 

SP Variability  Episodes Solved 
(<50 steps) 

Average Steps 
(for solved episodes) Roping Events 

Fixed 99.2% 19 8 
Coarse 58.4% 20 102 

Fine 65.8% 19 28 

Note. Percentage of episodes terminated in <50 steps and the average steps taken 

to solve them, along with number of roping events, for policy trained with fixed set 

points (SPs) and tested with different SP variability. 

 

The training process was repeated for 2,000 episodes, but this time the 

Coarse range of SPs were randomly set at the start of each episode and held constant. 

Testing of the trained policy for 1,000 episodes with varying SP scenarios was then 

performed, with key metrics summarised in Table 5-7. This trained model was able 

to handle the Coarse SP variability and extends well to the Fine SP variability scenario. 

It also had only slightly lower performance on the fixed SP test case than the model 

developed solely on this scenario. This demonstrates that if target SPs can or will be 

varied then this should be incorporated into the training process, though it does add 

extra complexity. 
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Table 5-7 

Test Performance Metrics for Policy Trained With Varied Set Points 

SP Variability Episodes Solved 
(<50 steps) 

Average Steps 
(for solved episodes) Roping Events 

Fixed 97.6% 19 5 
Coarse 95.8% 20 20 

Fine 95.5% 20 1 

Note. Percentage of episodes terminated in <50 steps and the average steps taken 

to solve them, along with number of roping events, for policy trained with Course set 

point (SP) variability and tested with different SP variability. 

 

In the tests so far, the SPs were selected at the start of each episode and held 

constant, with the difference included for each time step making up the state 

representation. If SP variability was allowed on an ongoing basis, as would occur in 

continuous process control, the state representation needs to accommodate this. 

Hafner and Riedmiller (2011) noted that a SP change violates the Markov property of 

the MDP model, but by using the current SP at each time step (t) and using that same 

value in forming the subsequent time step’s (t+1) state representation, they propose 

a consistent and valid transition can be built. Considering this requirement, the 

current state representation with a three time step history, and constant SPs during 

training, then the varying SP condition was considered as follows. 

The SPs (SPt) used in the current state (st) representation (thus compared 

against [ot-2, ot-1, ot]) are still applied in determining the reward (rt) and the 

subsequent state (st+1) representation (thus compared against [ot-1, ot, ot+1]) to 

complete the (st, ɑt, rt, st+1) transition. The historic observations [ot-1, ot, ot+1] are then 

reassessed against the new SPs (SPt+1) prior to forming the new current state for the 

system. The model trained with varied SPs was then used in a test episode in which 

the SPs were changed at certain intervals. All other random variables selected at the 

start of the episode remained constant. Figure 5-11 shows the change in the PVs tank 

level and hydrocyclone underflow P80, along with the respective SPs, during the 

episode. Figure 5-12 shows the change in the MVs hydrocyclone feed flow rate, 
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hydrocyclone feed solids concentration and apex diameter during the episode. The 

episode terminated successfully after holding the system within the SP tolerance 

range. 

 

Figure 5-11 

Process Variables and Relevant Set Points During the Set Point Change Test 

 

Note. Change in tank level (TL) and underflow P80 (UP) over time (t) with varied set 

points (SP). 
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Figure 5-12  

Manipulated Variables During the Set Point Change Test 

 

Note. Change in hydrocyclone feed flow rate (Q), hydrocyclone feed solids 

concentration (C) and apex diameter (DA) over time (t) for the set point change test. 

 

If offline pretraining was to be performed on historic transitions, SP variability 

could be incorporated. With the collection of sensor observations over the required 

time period, the actions taken, and the subsequent sensor observations then (st, ɑt, 

rt, st+1) transitions for varying SPs can be formed. Reasonable SPs for the system can 

be selected and used in forming the state representations. The subsequent state can 

then be assessed against the defined reward function to give the transition reward. 

In this way, regardless of the underlying control strategy and actual SPs that formed 

the observations, these synthetic transitions could potentially be used in the off-

policy training method. 

5.2.5 Noise 

All experiments to this point have the measured variables true to the 

underlying system, however uncertainty in sensors readings would occur in an 
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industrial setting. To simulate sensor noise random values were added to the 

simulator output values prior to forming the state representation. The random values 

were drawn from a normal distribution with mean = 0 and SD as shown in Table 5-8, 

with the Noise B having triple the SD of Noise A. 

 

Table 5-8 

Standard Deviation of Random Noise Applied to Measured Variables for Each Test 

Variable Noise A Noise B Units 
Tank level 0.2 0.6 % 

Hydrocyclone feed flow rate 5 15 m3/h 
Hydrocyclone feed solids concentration 0.15 0.45 % w/w 

Apex diameter 0.3 0.9 mm 
Inlet pressure 0.3 0.9 kPa 

Operating state (0 or 1) 0 0   
Underflow P80 5 15 μm 

 

Both training and subsequent testing of the trained model were performed 

with the relevant sensor noise condition applied. The initial training and testing was 

performed using the settings as in Section 5.2.3, with fixed SPs and three 

observations used in the state representation (State 3). The initial and final SP 

difference plots for the Noise A and Noise B 1,000 episode tests are shown in Figure 

5-13 and Figure 5-14 respectively. Table 5-9 shows the key performance metrics for 

these tests, along with performance metrics for the trained model from Section 5.2.3 

(training seed = 10) on the noise free version of this test system. With increasing 

extent of noise, the number of episodes able to be solved in <50 steps decreases and 

the average steps taken for solved episodes increases. 
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Figure 5-13 

Initial and Final Process Variable Set Point Differences for State 3 Noise A Tests 

 

Note. Set point difference is process variable subtract set point (PV – SP). 
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Figure 5-14 

Initial and Final Process Variable Set Point Differences for State 3 Noise B Tests 

 

Note. Set point difference is process variable subtract set point (PV – SP). 

 

Table 5-9 

Test Performance Metrics for Policies Trained With Varied Noise Conditions 

State  Noise 
Condition  

Episodes Solved 
(<50 steps) 

Average Steps 
(for solved episodes) 

Roping 
Events 

State-3 
No noise 99.6% 19 8 
Noise A 83.3% 20 3 
Noise B 9.3% 32 8 

State-5 
Noise A 95.7% 21 10 
Noise B 87.7% 27 29 

Note. Percentage of episodes terminated in <50 steps and the average steps taken 

to solve them, along with number of roping events, for different state 

representations and noise conditions. 
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The noise introduces uncertainty into the state representation and degrades 

the training process and ultimate model performance. By considering noise as further 

partial observability, a simple extended state representation using the last five 

observations (State 5) was trialled to see if this could provide further information to 

improve control. Table 5-9 also shows the key performance metrics for the State 5 

tests. This demonstrated an improved number of episodes solved and lower average 

steps for solved episodes compared to the State 3 noise tests, with a slight increase 

in roping events occurring. 

Along with the presence of noise brings uncertainty into defining the system’s 

state, there is also a requirement to be operating closer to the SPs to ensure even 

just the sensor noise alone does not result in a reading exceeding the tolerance range 

for the 10 steps required for the episode to terminate. Considering this, though 

performance is not as strong as the noise free system these results are still 

reasonable. Figure 5-15 shows the feed sizing %passing modification and tank solids 

feed rate conditions under which the State 5 test episodes were not solved in <50 

steps. For Noise A it was mainly the finer feed sizes coupled with the more extreme 

low or high tank solids feed rates that were not solved. While for the Noise B test, 

with a higher degree of applied noise, a wider range of conditions were not solved 

consistent with the increased difficulty in underlying system state identification and 

tolerance requirements. 
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Figure 5-15 

Unmeasured Variables for Unsolved State 5 Variable Noise Test Episodes 

 

Note. Solved refers to episode terminated in <50 steps. 

 

The initial and final SP difference plots for the Noise A and Noise B 1,000 

episode tests for the State 5 representation are shown in Figure 5-16 and Figure 5-17 

respectively. Most final SP difference results are within or near the tolerance limits, 

however two points in the Noise B test resulted in final tank level difference values 

of -9.5% and -7.5% (episodes #106 and #800 respectively) and will be examined 

further. 
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Figure 5-16 

Initial and Final Process Variable Set Point Differences for State 5 Noise A Tests 

 

Note. Set point difference is process variable subtract set point (PV – SP). 
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Figure 5-17 

Initial and Final Process Variable Set Point Differences for State 5 Noise B Tests 

 

Note. Set point difference is process variable subtract set point (PV – SP). 

 

Episode #106 had Rf = 551.1 t/h and M = 0.76, while episode #800 had Rf = 

570.0 t/h and M = 0.61. Both episodes are near the low limit of Rf = 538.5 t/h 

experienced during training and coupled with a fine feed size, making UP[SP] = 1800 

μm unattainable due to the roping apex diameter limit, as discussed in Section 5.2.3. 

Figure 5-18 shows the change in the PVs tank level and hydrocyclone underflow P80 

for these episodes. Figure 5-19 shows the change in the MVs hydrocyclone feed flow 

rate, hydrocyclone feed solids concentration and apex diameter for these episodes. 
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Figure 5-18 

Process Variables Plot for State 5 Noise B Tests With Decreasing Tank Level 

 

Note. Change in tank level (TL) and underflow P80 (UP) over time (t) for test episodes 

#106 and #800 with decreasing tank level. 
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Figure 5-19 

Manipulated Variables Plot for State 5 Noise B Tests with Decreasing Tank Level 

 

Note. Change in hydrocyclone feed flow rate (Q), hydrocyclone feed solids 

concentration (C) and apex diameter (DA) over time (t) for test episodes #106 and 

#800 with decreasing tank level. 

 

For both tests, the controller rapidly reduces the apex diameter to near, and 

occasionally below, the roping limit. The hydrocyclone feed flow rate is also rapidly 

reduced to around the 500 m3/h minimum flow limit. Both behaviours are expected 

given the fine feed size and low tank solids feed rate. The hydrocyclone feed solids 

concentrations are also rapidly increased to the 70% w/w upper limit; however, this 

is too high and leads to the tank level dropping. A cycling of the hydrocyclone feed 

solids concentration between around 60% w/w to the 70% w/w limit then begins, 

which still leads to the tank level dropping. Ultimately, near the low limit of feed rate, 

in an unsolvable region given the feed particle size distribution, and with this level of 

noise there were thus conditions encountered through which the current trained 

controller had not reach a stable policy for this time frame. This highlights that it 

would still be prudent to have control override protections in place for atypical or 
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undesirable conditions, such as water addition to ensure the tank level does not drop 

below a lower safety limit. 

5.3 Discussion 

The following section will highlight further limitations and points of interest 

in applying RL techniques to mineral processing circuit control, along works related 

to these areas. 

5.3.1 System  

For the simulated environment the controller interacted with, the effect of 

actions was instantaneous and held constant for the entire time step. The 

unmeasured variables were also constant for an entire episode, thus constant within 

each time step. While this was applied for simulation simplicity, in practice the time 

step for high level control would need to be selected considering the process 

dynamics so that it is sufficient for the actions and their effect to be realised, whilst 

also frequent enough to be able to compensate for changing conditions. 

Tallec et al. (2019) found that off-policy RL methods using the action-value 

function (with DQN and DDPG tested) were affected by the time discretization used, 

and subsequently extent and frequency of actions taken. At the extreme, the noted 

that when approaching continuous-time the strength of a briefly maintained action 

over another became increasingly small leading to poor Q-learning performance. As 

an industrial example, for Guo et al.’s (2019)  grinding circuit RL control investigation 

the available historic data was processed to determine the most appropriate 

transition time step to use. The senor readings, originally sampled at 5 s intervals, 

had 1 min moving averaging applied. Correlation analysis was then performed to 

determine the optimal time interval for the control action to influence the system.  

For the simple open circuit system in these experiments, the stacking of a few 

consecutive sensor readings and SP differences was able to provide largely sufficient 

information for control over the range of conditions tested. Though improved and 

more widely applicable representations could be developed. For more complex 

systems with longer time delays or interactions, such as a closed circuit grinding 

circuit where the hydrocyclone underflow is returned to the mill along with the fresh 



185 
 

  

feed, further adaptions to the RL controller design would likely be required. The use 

of recurrent neural networks (RNNs) such as Long Short-Term Memory (LSTM) 

networks (Hochreiter & Schmidhuber, 1997) for handling sequential data may be 

beneficial. RNNs incorporate a hidden state to represent recent input data, and LSTM 

uses gates which learn to control the flow of relevant data along with a cell state 

designed to stabilises error flow during back propagation training (Hochreiter & 

Schmidhuber, 1997; Wang et al., 2017). Wang et al. (2017) demonstrates the 

potential for incorporating LSTM into both networks of an on-policy actor-critic RL 

controller for a simulated buildings’ heating ventilation and air conditioning system. 

They also noted the potential benefit LSTM’s have in handling partial observability 

and noise through the hidden state’s inclusion of historic data to aid in true state 

inference. 

As we move towards more realistic processing systems the associated 

complexity, partial observability, and noise make the attainment of a state 

representation that satisfies the Markov property increasingly difficult. With then 

only an approximation of state the longer-term predictive performance can suffer, 

though if we accept this relaxed approximation of state good/sufficient predictions 

may still be attainable (Sutton & Barto, 2018). The performance of the State-5 Noise-

B tests in Section 5.2.5  highlights this point, given that largely successful control was 

still attained though long-term decreasing tank level events occurred under certain 

conditions. Considering the detrimental effect that increasing levels of noise yielded, 

the application of reasonable filters on the sensor readings may also be beneficial. 

While every effort should be made to characterise the system as well as practicable, 

RL based control methods need to be able to adequately handle this approximate 

state if they are to be successfully applied to live processing plant control. 

5.3.2 Actions 

For the experiments undertaken three continuous actions were able to be 

adjusted at each time step. As discussed in Section 5.1.3, these were applied with a 

maximum step size which restricted how much the MVs can change from their 

previous values at each time step. This was a particularly important consideration for 

the mineral processing industry given the requirement for stable slurry transport. 
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Following the selection of a suitable time step for the controller, the maximum step 

size for each action could then be selected considering knowledge of the process and 

an analysis of historic transitions to determine what would be considered reasonable 

and safe.  

For systems where only one action is desired or permitted per time step, the 

control problem becomes that of action selection followed by corresponding 

continuous parameter selection. As noted in Section 2.7.2, Hausknecht and Stone 

(2015) presented an extension of DDPG for these parametrised action-space 

systems. Their actor network used separate output layers, one having a node for each 

action and the other having a node for each action’s associated parameter. The 

applied action was then the maximum value from the action layer and its associated 

parameter/s from the parameter layer. While all values of the actor output layer are 

provided to the critic, and thus the applied action is not explicitly indicated, their 

success in training demonstrates that this was still a viable method. 

Another common type of system that would be encountered in mineral 

processing plant control would be where both continuous and discrete control 

actions are available. Hallén et al.’s (2019) RL grinding circuit control experiments 

included the potential for a discrete action to divert a flap gate, along with the other 

continuous control actions. Their RL controller did not manage to attain a stable 

control strategy for the flap gate, while it was utilised in the existing PID control 

strategy used for performance comparison. In the case of hydrocyclone circuits, the 

switching of hydrocyclones in and out of operation would be a key discrete action to 

have available to the controller. Though along with this comes another layer of 

complexity as the controller must learn the behaviour of the circuit under a range of 

conditions and relevant number of operating hydrocyclones. Then it must learn when 

to bring a hydrocyclone in/out of operation for best long term expected return and 

allow sufficient time for the system to stabilise following such an abrupt change (to 

avoid cycling of hydrocyclone operation). 
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5.3.3 Training 

In the experiments performed, training was through interaction with a 

simulated environment, starting from randomly initialised networks, and allowed to 

explore the environment widely. To train RL controllers for a live mineral processing 

plant, it is unlikely that such a degree of random initial behaviour and exploration 

range of positive and negative scenarios would be acceptable given the potential cost 

of lost production and risk to equipment and personnel that may arise. At a 

minimum, a degree of offline pretraining of the control would need to be performed. 

Should a suitable model of the system be available then pretraining could be 

performed against this, but if a sufficiently developed model is already available then 

it would need to be determined if model-based control methods may be better to 

serve the system. 

A model free off-policy method that incorporates a replay buffer, such as 

DDPG (Lillicrap et al., 2015), does lend itself to be suitable for offline pretraining from 

a replay buffer constructed from historic operating data. While the naïve approach 

would be to simply train the networks directly off such a replay buffer of historic 

transitions, the results from Fujimoto, Meger, and Precup (2018) suggest this may 

not lead to ideal behaviour. They performed a series of experiments involving a 

secondary DDPG controller learning in a true off-policy manner from 

 the complete final replay buffer used in training a primary DDPG controller, 

with high exploration noise 

 the replay buffer of a primary DDPG controller as it is training on the system, 

thus the same evolving dataset is used to train both controllers 

 a replay buffer built from transitions produced by an already trained DDPG 

controller 

Fujimoto, Meger, and Precup (2018) found all of these scenarios resulted in 

the trained secondary controller demonstrating worse performance than the 

alternative controller. They attributed the performance deterioration to 

extrapolation error in this batch learning process. To mitigate this, Fujimoto, Meger, 

and Precup (2018) proposed batch-constrained deep Q-learning (BCQ) which uses 
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dual Q-networks, similar to TD3 (Fujimoto, van Hoof, & Meger, 2018), along with a 

generative model for action proposal and a perturbation model for constrained 

action adjustment. Algorithms specifically designed for learning off a fixed dataset, 

such as BCQ, would be required to practically and safely pretrain an RL controller 

from historic operating data. 

5.4 Summary 

The behaviour of a RL controller based on Lau’s (2016) implementation the 

model-free off-policy DDPG algorithm (Lillicrap et al., 2015) was explored . This 

occurred through its interactions with a simulated open circuit hydrocyclone system 

based on Moly-Cop Tools CycloSim (Sepúlveda, 2012), which was extended to include 

roping criteria and a fixed size feed tank. The experimental design included 

industrially relevant considerations such as typically measured variable, restricted 

MV changes, safety limits, and the partial observability of the system through 

unmeasured variables and sensor noise. The controller was able to interact with the 

simulated system through three continuous MV; hydrocyclone feed solids 

concentration, hydrocyclone feed flow rate, and apex diameter. A reward function 

was constructed to guide the controller training process to bring the tank level and 

hydrocyclone underflow P80 to SP whilst avoid roping conditions and safety limits. 

The simulated environment was made progressively more challenging 

through the inclusion additional sources of partial observability; unmeasured tank 

solids feed rate, unmeasured feed sizing %passing modifications, and simulated 

sensor noise. The inclusion of historic observations in the state representation was 

found to compensate well for the partial observability of the system. Though for the 

methods trialled the controller began to struggle under some of the more extreme 

sensor noise conditions. This being a good illustration that there should still be 

control override protections considered to compensate for atypical or adverse 

conditions. 

The desirable process control behaviour of avoiding entering the roping fault 

state was learnt and apparent in testing. This would occur even when it resulted in 

the controller unable to reach SPs and instead operate in a region near the achievable 
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limit. The trained controller was also shown to exhibit the ability to generalise 

through being tested on initialisation conditions outside those experienced in 

training; tank level, feed sizing %passing modification, and unbalance tank 

inflow/outflow. The requirement for SP changes to be incorporated during the 

training process if they can or will be change in operation was demonstrated by 

degraded performance of the controller trained on fixed SP, even though SP 

difference formed part of the state representation. Considerations for the structure 

of the state representation to remain valid for SP changes that would occur in 

continuous process control were highlighted, and successful control following a 

number of SP changes was demonstrated. 

A final discussion was also presented highlighting additional points of interest 

and potential limitations for RL based mineral processing circuit control. The 

frequency of state assessment and control changes, along with the extent to which 

MVs can adjusted at each time step, should be based on the intended control 

behaviour and an assessment of the system dynamics. Controller design would need 

to be aligned with considerations for more complex systems such as the 

incorporation of RNNs for longer-term temporal information, requirements to 

perform action selection or discrete actions, and appropriate filtering of sensor data. 

The requirement for development of methods to successfully pretrain RL controllers 

on historic operating data was also raised as a critical hurdle to be overcome for their 

safe and effective implementation in operating mineral processing circuits. 

6 Conclusion 

The core objectives of this project were to investigate the applicability of 

CNNs for hydrocyclone operating state detection and underflow particle size 

inference, through image-based monitoring of the underflow discharge. This was 

undertaken with a focus on industrial applicability, factors affecting performance, 

and ease of model training and deployment. Exploring the use RL for hydrocyclone 

control, incorporating outputs from the CNN sensors or a related competing method, 

was also the final core objective.  
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In addressing the hydrocyclone state detection objective, a proof of concept 

for the use of CNNs in monitoring images of hydrocyclone underflow discharge was 

demonstrated. Transfer learning using pretrained models to extract features allowed 

fixed camera three-state (fan/roping/blocked) classifiers to be trained on limited 

data, in both laboratory and industrial settings. The sensor development process and 

testing focused on industrially relevant considerations including image noise, 

lighting, transition operating states, image cropping, camera movement and 

obscuration.  

The CNN based fixed camera system developed exhibits improvements in 

robustness to industrial conditions and simpler model development pipeline than 

previous image-based methods. This optical method offers a viable alternative to the 

commercially available hydrocyclone state detection options (such as acoustic, 

probe, or laser-based) in circuits where the underflow discharge is visible and 

unobstructed. This method also holds potential as a low-cost option for inhouse 

sensor development using a standard frame rate camera, sufficient lighting, and 

open-source software with included pretrained models. Further appealing attributes 

include no structural modifications required for sensor installation allowing for ease 

of retrofitting, and being a non-contact method the maintenance requirement would 

be minimised. 

The training of a general hydrocyclone state detector that would not require 

site specific retraining may be possible, as indicated by the industrial non-fixed 

camera performance, but would require further investigation to confirm. Such a 

system would allow for rapid roll-out of fixed camera-based state detectors to new 

mineral processing sites and open the possibility of moving drone mounted sensors 

as proposed in Giglia and Aldrich (2020). It is likely that the training of such a model 

would require a significantly large dataset with sufficient variability in source 

examples, rather than taking many examples from a few sources, to help produce a 

model that can truly generalise.  

In addressing the hydrocyclone underflow particle size estimation objective, 

a preliminary study into the use of CNN models to infer particle size information from 

video frames of hydrocyclone underflow discharge was undertaken. This being at an 
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individual hydrocyclone level for which online particle size monitoring options 

available to industry are limited, particularly for the underflow stream. A crop 

position near the hydrocyclone apex, and capturing the discharge stream edges, 

produced higher source footage classification accuracies than a crop position lower 

in the stream which captures a more disperse flow appearance. The inclusion of 

temporal information in the form of stacked consecutive frames did not produce a 

significant improvement in footage classification accuracy under the conditions 

tested and was not pursued further. Following this exploration of design aspects 

under which a fine-tuned CNN model could best allocate laboratory hydrocyclone 

high-speed video footage correctly, underflow particle size P80 modelling was 

performed and showed sufficient fine versus coarse discernment to warrant further 

investigation.  

Under industrial conditions, and using a standard frame rate camera, image-

based CNN fine-tuning and sensor ANN modelling methods were investigated. ANN 

based models relating underflow particle size P80 to hydrocyclone sensor 

information and sensor information of the wider grinding circuit were found to suffer 

in testing when sensor readings where outside that experienced during training. Both 

the image-based fine-tuned CNN model and the combined CNN model extension 

incorporating grinding circuit sensor information were able to outperform the sensor 

only ANN models. The combined model however did not show a significant testing 

performance improvement over the solely image-based model under these 

conditions. The long-term performance of a CNN based model in terms of handling 

atypical operating conditions, particle size extremes, and future variability is not clear 

from the current investigation, particularly given the narrow period of industrial data 

available.  

In addressing hydrocyclone control using RL, high-level control behaviour on 

a simulated open circuit hydrocyclone was presented. A simple reward function 

considering PV to SP difference and additional penalties for undesirable conditions 

was sufficient to control this system under a range of conditions. This included 

avoiding conditions that were learnt to result in the roping hydrocyclone fault state 

and instead operating near that limit, even if the SPs thus could not be reached. SP 
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changes could be handled by the control only if varied SPs had formed part of the 

training process, making it an important design consideration if this behaviour is 

required. 

Limits in allowable action step size and range led to bounded system changes 

as would be desirable for industrial control. Sensible control overrides, such as water 

addition for low tank level, were indicated as being useful to ensure safe and stable 

operation under industrial conditions. The inclusion of recent historic sensor 

information in the state representation was able to compensate for partial 

observability, such as unmeasured variables and sensor noise. As uncertainty 

increased, in this case through higher magnitude random noise, a longer history was 

required in the state representation to achieve satisfactory control performance.  

This work supports the notion that as RL algorithms continue to develop they 

hold potential as a data-driven control method for more complex industrial systems, 

removing a level of subjectivity in the devising of process control behaviour. The 

ability to successfully pretrain the controller on historic data will be critical for its safe 

implementation in operating mineral processing plants. While the production of a 

complete process model may not be attainable, a combination of future novel 

algorithm designs and extensive detailed historical operating data would help to 

facilitate pretraining of model-free RL algorithms. The continued incorporation of 

additional sensors into modern mineral processing plant will also aid in defining the 

current state of the system, with novel sensors developed from techniques such as 

CNN based image sensors opening up more monitoring possibilities. 

6.1 Recommendations 

Considering the results yielded from the investigations undertaken, 

recommendations for future work on each objective are proposed. For objective 

one’s image-based hydrocyclone operational state detection using CNNs, the 

following areas would be of interest 

 The industrial fixed camera state detection model development should be 

repeated with an applied light source directed at the hydrocyclone 

underflow. This would be both to see if the daylight classification accuracy 
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can be improved with direct illumination and to assess the performance at 

night. If the presence of overexposed regions in the footage are found to 

significantly affect performance, then cost effective options to block direct 

sunlight from troublesome regions could be investigated. 

 The long-term performance and stability of an industrial fixed camera system 

(both the state classifier and sensor health check) should be confirmed to be 

robust against all visually challenging conditions that may be encountered, 

including extreme weather events. The sensor health check tracker drift over 

an extended period should also be assessed. If drift is found to be an issue, 

then periodic correction should be undertaken such as recentring the 

tracker’s filter with the initialisation frame as proposed by Bolme et al. (2010). 

It should be investigated if a drift compensation process can be successfully 

automated to remove the burden of regular manual checks and correction. 

 Investigating the use of a thermal imaging camera in place of the visible light 

cameras already trialled would be of interest. Thermal camera’s detection of 

heat energy would remove the requirement for an applied light source and 

provide the ability to perform detection through sources of obscuration such 

as steam (FLIR, n.d.) which could be beneficial in improving sensor 

performance. Considering the distinct slurry discharge characteristics of the 

three operating states, a lower resolution thermal image may be sufficient for 

classification. If successful, and found to be more robust, as prices of the 

thermal cameras decrease this may become the more desirable sensing 

option.  

 Undertake further confirmation investigations into if water or dilute slurry 

draining from an industrial hydrocyclone could be used as a substitute for 

roping examples for model fine-tuning or testing of an existing model, as 

suggested in Giglia and Aldrich (2020). 

 Attempt to build a large and varied dataset of industrial hydrocyclone 

discharges images: including a wide range of commodities, hydrocyclone 

systems, viewing angles, etc. This could provide an opportunity to fine-tune 

the convolutional layers, as suggested in Giglia and Aldrich (2020), with the 



194 
 

  

ultimate goal being to produce a model with strong enough generalisation 

performance to not require site specific fine-tuning for new installations. 

 More generally the success of CNNs to detect the visible differences in 

hydrocyclone operating states opens the possibility of applying these 

techniques to assess the operation of other pieces of mineral processing 

equipment. 

For objective two’s image-based hydrocyclone underflow particle size 

estimation using CNNs, the following areas would be of interest 

 Build a larger industrial dataset over an extend period, with the intent being 

to ensure a representative range of operating conditions is encountered. This 

would help to avoid extreme conditions and sensor readings which can 

deteriorate model performance. 

 As only preliminary investigations were undertaken, further exploration of 

network architectures and extent of fine-tuning (facilitated by a larger 

dataset) would be of interest. 

o This could include considering temporal information using RNNs to 

incorporate past image features and/or sensor information. While the 

demand of these networks may affect frequency at which predictions 

are produced, if sufficiently beneficial for accuracy and considering 

the practical rate at which particle size information would be required, 

this may be deemed acceptable. 

o This could also include an investigation into the effect of the length of 

footage prior to sampling used in model training, and would be of 

most benefit performed under industrial conditions with a standard 

frame rate camera. This would be to see if an optimum can be found 

balancing the need to capture normal variability without being too 

long as to capture instability or changes in operation.  

 If further success is found in producing an image-based sensor it is still worth 

assessing whether alternatives are suitable for a given site’s requirements. If 

only circuit or cluster level particle size prediction are required, then it is 

worth investigating whether a soft sensor from available circuit sensor data 
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is sufficient. While attempts in this project were not successful, examples 

such as Zhang and Liang (2016) show there is potential to this method. Given 

there is no requirement to modify the hydrocyclone structure and the existing 

sensor data is readily available, this presents a minimal cost option to explore 

through collection of a large dataset. The use of vibration sensors in 

hydrocyclone particle size estimation systems, such as that indicated as being 

available from Emerson Electric (Cahill, 2021), would also be worth 

considering. This could present a lower cost of entry than an image-based 

sensor given the camera, lighting, and any other illumination control 

structures (to block out external lighting) that may be required. 

For objective three’s RL for hydrocyclone control the following areas would 

be of interest 

 Further exploration of appropriate RL algorithms, neural network structures, 

reward function construction, controller interaction frequency and action size 

would all be beneficial in establishing a strong performing RL control. This 

should not just be considered in terms the simple open circuit hydrocyclone 

system explored in this work. Requirement for discrete actions for 

hydrocyclone on/off, material recirculation for closed circuit hydrocyclone 

systems, and other more complex mineral processing circuits should also be 

explored.  

 The ability to handle sensor noise, uncertainty, and insufficient information 

leading to the partial observability of the system are key considerations for 

industrial control. Thus, the incorporation of RNNs and their use of temporal 

information to potentially counteract partially observability and other 

complexities in mineral processing systems would be of interest. 

 A critical hurdle for applying RL control to mineral processing plants will be 

the ability to successfully pretrain on historic operating data, as the ability to 

freely explore the system will not be possible. Further investigation into 

algorithm design with this requirement in mind will be required to progress 

from simulation to applied operating circuit control. 
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 If simulated and lab/pilot scale RL control can be successfully pretrained and 

lead to sufficient control performance, then trialling control of a minor stream 

of an operating industrial plant would be a sensible next step. An example of 

this could be a regrind circuit, in which control could be trialled for the 

hydrocyclone cluster, potentially then expanded to include the mill 

performance, and then any subsequent processing units such as flotation 

cells. In this way troubleshooting and refining of the control can be performed 

on a stream with lower impact on production, whilst building confidence in 

the method on site. 
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Appendices 

Appendix A 

Multiple Source Industrial Hydrocyclone Image Datasets Frames Breakdown 

Training Fan State Data Set 
Source Footage ID Frames 
online hydrocyclone_used_for_minerals_ores_classifying 87 
donation industry_C_cyc_A_1 35 
donation industry_C_cyc_B_1 35 
donation industry_C_cyc_B_4 35 
donation industry_C_cyc_C 35 
donation industry_B_1 19 
donation industry_B_2 19 
donation industry_B_4 19 
donation industry_B_5 19 
donation industry_B_6 19 
  TOTAL 322 
      

Training Rope State Data Set 
Source Footage ID Frames 
online hydrocyclone_roping_incorrect_cyclone_operation 64 
donation industry_C_cyc_B_3 64 
donation industry_A_5 64 
lab underflow_2_roping 130 
  TOTAL 322 
      

Validation Fan State Data Set 
Source Footage ID Frames 
online cyclone_output_from_evowash 35 
online hydrocyclone_used_for_minerals_ores_classifying 22 
donation industry_C_cyc_A_2 35 
donation industry_B_7 10 
  TOTAL 102 
      

Validation Rope State Data Set 
Source Footage ID Frames 
online hydrocyclone_on_work 64 
lab underflow_2_roping 38 
  TOTAL 102 

Note. From “Operational State Detection in Hydrocyclones with Convolutional Neural 

Networks and Transfer Learning,” by K. C. Giglia and C. Aldrich, 2020, Minerals 
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Engineering, 149, p. 8 (https://doi.org/10.1016/j.mineng.2020.106211). Copyright 

2020 by Elsevier. Reprinted with permission. 
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Appendix B 

Single Source Industrial Cyclone A Image Datasets Frames Breakdown 

 Blocked Fan Rope 
Train A 100 100 100 
Train B 100 100 100 
Val A 60 60 60 
Test A 283 115 16 
Test B 225 100 24 
Test C 368 236 66 
Test D 69 144 44 
Test E 339 218 25 
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Appendix C 

Three-State Confusion Matrices for Each Cyclone A Test Dataset and Crop Method 

Test A 
Crop: Fixed 

Predicted State  Test A 
Crop: Random 

Predicted State  Test A 
Crop: Expanded 

Predicted State 
blocked fan rope  blocked fan rope  blocked fan rope 

True 
State 

blocked 178 10 95  
True 
State 

blocked 169 5 109  
True 
State 

blocked 153 3 127 
fan 1 114 0  fan 1 114 0  fan 31 83 1 

rope 4 1 11  rope 4 2 10  rope 4 1 11 
 

Test B 
Crop: Fixed 

Predicted State  Test B 
Crop: Random 

Predicted State  Test B 
Crop: Expanded 

Predicted State 
blocked fan rope  blocked fan rope  blocked fan rope 

True 
State 

blocked 148 0 77  
True 
State 

blocked 147 0 78  
True 
State 

blocked 127 0 98 
fan 0 100 0  fan 3 97 0  fan 19 75 6 

rope 5 0 19  rope 3 0 21  rope 8 0 16 
 

Test C 
Crop: Fixed 

Predicted State  Test C 
Crop: Random 

Predicted State  Test C 
Crop: Expanded 

Predicted State 
blocked fan rope  blocked fan rope  blocked fan rope 

True 
State 

blocked 255 10 103  
True 
State 

blocked 227 17 124  
True 
State 

blocked 168 52 148 
fan 0 236 0  fan 2 234 0  fan 15 214 7 

rope 4 0 62  rope 3 0 63  rope 4 2 60 
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Test D 
Crop: Fixed 

Predicted State  Test D 
Crop: Random 

Predicted State  Test D 
Crop: Expanded 

Predicted State 
blocked fan rope  blocked fan rope  blocked fan rope 

True 
State 

blocked 66 0 3  
True 
State 

blocked 62 0 7  
True 
State 

blocked 49 0 20 
fan 18 126 0  fan 23 121 0  fan 56 86 2 

rope 9 0 35  rope 6 0 38  rope 10 0 34 
 

Test E 
Crop: Fixed 

Predicted State  Test C 
Crop: Random 

Predicted State  Test C 
Crop: Expanded 

Predicted State 
blocked fan rope  blocked fan rope  blocked fan rope 

True 
State 

blocked 221 31 87  
True 
State 

blocked 224 23 92  
True 
State 

blocked 222 10 107 
fan 0 218 0  fan 0 218 0  fan 1 210 7 

rope 0 0 25  rope 3 0 22  rope 3 0 22 
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Appendix D 

Operating and Particle Size Information of Laboratory Experimental Runs 

Sample ID Feed 
Material 

Feed 
%solids 

Feed 
Pressure 

(kPa) 

Underflow 
P80 

(μm) 

Underflow 
P50 

(μm) 
Q1_SL_P1 

Quartz 
P80 = 748um 
P50 = 371um 

3.3% 85 766 497 
Q1_SL_P2 3.3% 75 675 428 
Q1_SM_P1 5.5% 80 713 448 
Q1_SM_P2 5.5% 70 646 399 
Q1_SH_P1 7.2% 75 686 419 
Q1_SH_P2 7.2% 60 661 403 
Q2_SL_P1 

Quartz 
P80 = 492um 
P50 = 225um 

4.4% 80 551 375 
Q2_SL_P2 4.4% 60 522 345 
Q2_SM_P1 7.2% 80 515 327 
Q2_SM_P2 5.3% 80 547 369 
Q2_SM_P3 5.3% 60 527 349 
Q2_SH_P1* 7.4% 80 522 345 
Q2_SH_P2 7.4% 55 513 335 
Q2_SH_P3* 7.4% 80 486 307 

Note. Feed %solids are indicative only, based on initial water mass and solids 

addition. Thus, initial water held in pumping system, progressive removal of 

underflow samples, and slurry splashing were neglected in the calculation. *Samples 

were under similar operating conditions. During the initial sample (Q2_SH_P1) the 

underflow was unstable. Following the low pressure test the feed pressure was 

restored to 80kPa and as the underflow appeared more stable a second sample was 

taken (Q2_SH_P3). 
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Appendix E 

Laboratory Footage Frames Used in Training and Validation Dataset Construction 

Image Type Sample ID Underflow 
P80 (μm) Training Frames Validation 

Frames 

rgb 

Q2_SH_P3 486 1 - 8000 8001 - 10000 
Q2_SL_P2 522 1 - 8000 8001 - 10000 
Q2_SM_P3 527 1 - 8000 8001 - 10000 
Q2_SL_P1 551 2001 - 10000 11501 - 13500 
Q1_SM_P2 646 9001 - 17000 17001 - 19000 
Q1_SH_P2 661 1001 - 9000 9001 - 11000 
Q1_SL_P2 675 5001 - 13000 13001 - 15000 
Q1_SL_P1 766 7001 - 15000 15001 - 17000 

rgb_motion 

Q2_SH_P3 486 3 - 8002 8003 - 10002 
Q2_SL_P2 522 3 - 8002 8003 - 10002 
Q2_SM_P3 527 3 - 8002 8003 - 10002 
Q2_SL_P1 551 2001 - 10000 11501 - 13500 
Q1_SM_P2 646 9001 - 17000 17001 - 19000 
Q1_SH_P2 661 1001 - 9000 9001 - 11000 
Q1_SL_P2 675 5001 - 13000 13001 - 15000 
Q1_SL_P1 766 7001 - 15000 15001 - 17000 
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Appendix F 

Laboratory Footage Frames Used in Test Dataset Construction 

Image Type Sample ID Underflow 
P80 (μm) Test Frames 

rgb 

Q2_SH_P2 513 13501 - 15500 
Q2_SM_P1 515 9601 - 11600 
Q2_SH_P1 522 11501 - 13500 
Q2_SM_P2 547 601 - 2600 
Q1_SH_P1 686 15601 - 17600 
Q1_SM_P1 713 5251 - 7250 
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Appendix G 

CycloSim Data_File Spreadsheet Containing Supplied Base Case Data 

 

Note. From “CycloSim Hydrocyclone Simulator in Moly-Cop Tools,” by J. E. Sepúlveda, 

2012, Molycop (https://molycop.com/what-we-do/molycop-tools/). Copyright 2012 

by Moly-Cop. Reprinted with permission. 

Moly-Cop Tools TM   (Version 3.0)

                     Simulation N° 1

Remarks

# of
Cyclones Diameter Height Inlet Vortex Apex

10   20.00   75.00   3.50   7.50   3.67   
Default Values:  60.00   5.00   7.00   3.75   

Operating Conditions : Ore Density, ton/m3 2.80   

Dry Tons Water Slurry Flow Density % Solids % Solids
ton/hr m3/hr ton/hr m3/hr ton/m3 (by volume) (by weight)
1622.84   986.16   2609.01   1565.75   1.666   37.02   62.20   

Classifier Constants : (from Cyclobal_Single, Ballbal_Direct or Ballbal_Reverse)
a1 a2 a3 a4 l Bp (coarse)
9.680   1.401   54.964   0.523   0.950   0.050   
9.680   1.401   54.964   0.523   0.950   0.000   Default Values

Feed Size Distribution :

i Mesh Opening Mid-Size ton/hr % Ret % Pass
1   1.05 25400   30206   0.00   0.00   100.00   
2   0.742 19050   21997   0.00   0.00   100.00   
3   0.525 12700   15554   18.17   1.12   98.88   
4   0.371 9500   10984   41.49   2.56   96.32   
5   3 6700   7978   40.76   2.51   93.81   
6   4 4750   5641   37.01   2.28   91.53   
7   6 3350   3989   38.53   2.37   89.16   
8   8 2360   2812   44.14   2.72   86.44   
9   10 1700   2003   51.21   3.16   83.28   

10   14 1180   1416   66.98   4.13   79.16   
11   20 850   1001   78.83   4.86   74.30   
12   28 600   714   100.61   6.20   68.10   
13   35 425   505   122.86   7.57   60.53   
14   48 300   357   142.11   8.76   51.77   
15   65 212   252   143.62   8.85   42.92   
16   100 150   178   125.60   7.74   35.18   
17   150 106   126   98.97   6.10   29.08   
18   200 75   89   73.25   4.51   24.57   
19   270 53   63   53.99   3.33   21.24   
20   400 38   45   38.98   2.40   18.84   
21   -400 0   19   305.76   18.84   0.00   

Total 1622.84   100.00   

Cyclone Feed Conditions

CYCLOSIM

  Base Case Example
  

Cyclones Geometry, inches

HYDROCYCLONE SIMULATOR
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Appendix H 

Copyright Permissions 

Appendix H1 For Figure 2-1 
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Appendix H2 For Figure 2-3 and Figure 2-4 
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Appendix H3 For Figure 2-5, Figure 2-6, and Figure 2-7 

Reprinted under MIT license 

https://github.com/cs231n/cs231n.github.io/blob/master/LICENSE 
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Appendix H4 For Figure 2-9 

Adapted from Creative Commons CC0 1.0 Universal Public Domain Dedication file 

https://commons.wikimedia.org/wiki/File:Reinforcement_learning_diagram.svg 

 

I, the copyright holder of this work, hereby publish it under the following license: 

This file is made available under the Creative Commons CC0 1.0 Universal Public 

Domain Dedication. 

The person who associated a work with this deed has dedicated the work to the 

public domain by waiving all of their rights to the work worldwide under copyright 

law, including all related and neighboring rights, to the extent allowed by law. You 

can copy, modify, distribute and perform the work, even for commercial purposes, 

all without asking permission. 
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Appendix H5 Industry donated hydrocyclone underflow footage used in  

Section 3.2 

Appendix H5.1 BHP Nickel West, Mt Keith 
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Appendix H5.2 IGO, Nova 
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Appendix H5.3 Minara Resources, Murrin Murrin 

 

  



217 
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Appendix H6 Anonymous industry donated hydrocyclone underflow footage used 

in Section 3.2 
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Appendix H7 For Figure 4-7, Figure 4-8, Figure 4-13, Figure 4-40, and material from 

IGO’s Nova mine site (videos, images, data, and information) referred to throughout 

Section 4.2 and captured by the dataset IGO Nova (2020). 

IGO Nova. (2020). Nova mine site data [Data set, videos, and images]. 

Location: IGO Nova. 
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Appendix H8 For Appendix G and the Moly-Cop Tools CycloSim 

(CycloSim_Single.xlsx) software and supplied base case example data used as the 

basis for the simulated hydrocyclone circuit in Section 5 
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Appendix H9 For Ben Lau’s DDPG-Keras-Torcs software which was modified for use 

in Section 5 
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Appendix H10 For material from co-authored publication; predominantly in Section 

2.3.4, Section 3.1, Section 3.2, and Appendix A. Includes Figure 2-2, Figure 3-1, Figure 

3-2, Figure 3-4, Figure 3-5, Figure 3-6, Figure 3-8, Table 3-1, Table 3-2, and Table 3-3 

https://doi.org/10.1016/j.mineng.2020.106211 

This article was published in Minerals Engineering, Vol 149, K. C. Giglia & C. Aldrich, 

Operational state detection in hydrocyclones with convolutional neural networks 

and transfer learning, Article 106211, pp. 1–9, Copyright Elsevier (2020). 

Appendix H10.1 Co-author permission and attribution statement 
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Appendix H10.2 Publisher permission 

Pages 227–229 have been redacted for confidentiality reasons. 
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Appendix H10.3 Publisher figure and table adaption permission 

Pages 230–232 have been redacted for confidentiality reasons. 
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