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Abstract: Machine learning (ML) has been widely used worldwide to develop crop yield forecasting
models. However, it is still challenging to identify the most critical features from a dataset. Al-
though either feature selection (FS) or feature extraction (FX) techniques have been employed, no
research compares their performances and, more importantly, the benefits of combining both methods.
Therefore, this paper proposes a framework that uses non-feature reduction (All-F) as a baseline to
investigate the performance of FS, FX, and a combination of both (FSX). The case study employs
the vegetation condition index (VCI)/temperature condition index (TCI) to develop 21 rice yield
forecasting models for eight sub-regions in Vietnam based on ML methods, namely linear, support
vector machine (SVM), decision tree (Tree), artificial neural network (ANN), and Ensemble. The
results reveal that FSX takes full advantage of the FS and FX, leading FSX-based models to perform
the best in 18 out of 21 models, while 2 (1) for FS-based (FX-based) models. These FXS-, FS-, and
FX-based models improve All-F-based models at an average level of 21% and up to 60% in terms
of RMSE. Furthermore, 21 of the best models are developed based on Ensemble (13 models), Tree
(6 models), linear (1 model), and ANN (1 model). These findings highlight the significant role of
FS, FX, and specially FSX coupled with a wide range of ML algorithms (especially Ensemble) for
enhancing the accuracy of predicting crop yield.

Keywords: feature selection; feature extraction; machine learning; crop yield; VCI; TCI

1. Introduction

Machine learning (ML) is a branch of artificial intelligence focusing on self-learning
strategies to determine the association patterns between historical yearly crop yield and
yield-impacted data to provide better yield prediction. As this method outperformed
biophysical models [1–4], it has been widely used recently worldwide for different crop
types. However, it is still challenging when aiming to build a high-performance predictive
model [2], such as selecting suitable ML algorithms or identifying the most critical features
from a dataset to embellish the learning algorithm. For example, Klompenburg et al. [2]
analyzed 50 studies that investigated yield prediction with different ML algorithms and
concluded that models with more features did not always provide better performance for
yield prediction. Therefore, models with various numbers of features should be tested
to find the best-performing model. This conclusion agrees with the comment that the
dimensionality reduction of components is an important area in ML [5,6], especially where
datasets have many attributes [7]. It allows the ML algorithm to train faster, decreases the
complexity of the model, and makes interpretation easier [7]. It also maximizes the model’s
accuracy when choosing a proper subset and prevents overfitting [7].

There are two ways to reduce dimensionality: feature selection and feature extrac-
tion [5,6]. Feature selection selects only a subset of original features containing relevant
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information. In contrast, feature extraction transforms the input space into a lower-
dimensional subspace that preserves the most pertinent information [5,6,8]. New features
will not be generated in the feature selection process but through feature extraction. Al-
though important information related to a single component is not lost in feature selection,
information is likely lost as some of the features must be omitted [5]. On the other hand, in
feature extraction, the feature space size can often be decreased without losing essential
information about the original feature space. Still, the combination of the original compo-
nents is usually not interpretable, and the knowledge about how much an initial feature
contributes is often lost.

Recent studies have made much effort to apply feature selection algorithms when
developing crop yield prediction models. They can be divided into three groups: (1) apply
feature selection without assessing their contribution, (2) investigate which feature selection
method is the best, and (3) apply feature selection and indicate its effectiveness compared
with the non-feature selection approach.

Regarding the first group, various feature selection algorithms have been adopted to
build a crop yield forecasting model. For example, Lingwal et al. [9] used the regularized
random forest algorithm (RRF; [10]), correlation-based feature selection (CBFS; [11]), and
the recursive feature elimination algorithm (RFE; [12]) to select the 10 most significant
features from 18 attributes related to agriculture and weather for rice yield prediction in
the Punjab State of India. Fernandes et al. [13] employed the wrapper method to exclude
14 irrelevant and/or redundant features from the initial dataset to predict sugarcane yield
in São Paulo State, Brazil, based on the normalized difference vegetation index (NDVI).

Studies in the second group assessed which feature selection method is the best. For
example, Gopal et al. [14] and PS et al. [8] applied five techniques, namely forward feature
selection (FFS), backward feature elimination (BFE), CBFS, variance inflation factor (VIF),
and random forest Variable Importance (RFVarImp), for paddy crop yield prediction in
the Tamil Nadu state of India. These methods’ performance was quite similar (FFS and
BFE are slightly better than others, but FFS takes less time) when combined with linear
regression [8,14] and M5Prime but varied with artificial neural network (ANN) [8]. In
addition, PS [7] indicated FFS performed better than CBFS, VIF, and RFVarImp. At the
same time, random forest (RF) achieved the highest accuracy for all the feature subsets
compared with ANN, support vector machines (SVM), K-nearest neighbor (KNN). In [15],
feature selection approaches incorporated with four ML methods were investigated for
bio-oil yield prediction employing biomass composition (ultimate and proximate analysis)
and pyrolysis conditions (highest pyrolysis temperature, heating rate, particle size, and
nitrogen flow rate). The results indicated that the genetic algorithm-based features selection
approach (GA) outperforms filter and wrapper methods. Whitmire et al. [16] showed
that the correlation-based method was better than ReliefF, and wrapper methods when
predicting alfalfa yield in Kentucky and Georgia, the United States. Corrales et al. [17]
presented the results of regression learners (linear regression (LR), SVM, backpropagation
neural network (BPNN), RF, least absolute shrinkage and selection operator (LASSO), and
M5 decision tree) trained with a subset of the most representative variables selected by filter,
wrapper, and embedded methods to improve soybean yield prediction in Southern France.
The results showed that the feature subsets selected by the wrapper method combined with
SVM (6 selected features) and LR (14 selected features) provided the best results.

The third group presented the effectiveness of applying feature selection for generating
a crop yield prediction model, which considers the model using all the features as a baseline.
For example, Gopal et al. [14] and PS et al. [8] showed that the adjusted R2 of 85% (84%)
was achieved by using the selected features (all the features) for developing the crop
yield prediction model in Tamil Nadu, India. Whitmire et al. [16] demonstrated that
ML combined with feature selection offered promise in forecasting alfalfa yield even on
simple datasets with a handful of features in Kentucky and Georgia. For most of the
regression learners (SVM, gradient boosting regression (GBR), RF, partial least square
regression (PLSR), and neuroevolution of augmenting topologies (NEAT)), using the most
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important parameters and the most critical months improved the coffee yield prediction in
Brazil compared with employing all features [18]. Feng et al. [19] showed RF-, SVM-, and
KNN-based alfalfa yield prediction in Wisconsin (the United States) were improved when
using RFE-based selected features compared with those employing all features. Using
satellite-derived variables, Jui et al. [20] indicated that combining RF with the dragonfly
algorithm and SVM-based feature selection improved the prediction performance over
other standalone ML approaches for tea yield in Bangladesh. Srivastava et al. [21,22] sorted
features’ importance generated from the trained XGboost model [22] and convolutional
neural network (CNN) model [21] of winter wheat yield in Germany and then developed
two models based on 75 percent and 50 percent of the most important components. The
models’ accuracies did not decline remarkably compared with the model based on full
features; some even slightly improved. Similar results were shown in [23] for corn and
soybean yield forecasting in the United States. In contrast, Bocca et al. [24] revealed that
feature selection eliminated nearly 40% of the features but increased the mean absolute
error (MAE) by 0.19 Mg/ha for rainfed sugarcane yield modeling in Teodoro Sampaio-São
Paulo in Brazil.

These previous studies showed that feature selection had been used for determin-
ing the most important features, comparing the performance of some feature selection
approaches, or the performance of feature selection for improving crop yield prediction
models in different datasets. However, regarding feature extraction, the numbers of stud-
ies are fewer. For example, several studies [25–28] used principal component analysis
(PCA; [29–31]) combined with the linear ML algorithm, i.e., the so-called principal com-
ponent regression (PCR), for predicting rice yield based on vegetation condition index
(VCI) and temperature condition index (TCI). However, the contribution of PCA was not
transparent because they did not compare the performance of a combination of ML and
PCA (PCA-ML) with ML-only. In contrast, Suryanarayana et al. [32] showed a significant
improvement in PCR-based prediction models of cotton yields compared with the corre-
sponding models using MLR. Furthermore, Pham et al. [33] proposed a new framework
that considers PCA as an option for developing crop yield prediction models based on
different ML methods. Using rice yield in Vietnam as a case study, the results showed that
a combination of PCA with the ensemble boost tree was better than ML-only at an average
of 18.5% and up to 45% of the root mean square error (RMSE) values.

A brief review of existing studies shows that either feature selection or feature ex-
traction techniques were employed to reduce the feature dimension when developing
crop yield prediction models. However, research that compares the performance of the
two approaches and, more importantly, the benefits of combining both methods is still
missing. Therefore, this study investigates the performance features to reduce dimensions
following three options: feature selection, feature extraction, and a combination of both
when developing ML modes for crop yield forecasts. The performance is measured by
comparing the models generated from reduced features with those created by including
all features.

This paper aims to investigate the performance of three methods of feature dimension-
ality reduction, namely, (i) feature selection, (ii) feature extraction, and (iii) the combination
of both when developing ML-based models of crop yield prediction. It uses ML-based
rice yield crop models over the entirety of Vietnam based on VCI and TCI data as a case
study, which uses all common, widely used ML algorithms, namely linear, SVM, Tree,
ANN, and Ensemble. Furthermore, it extends the previous work of [33] to find the best
feature dimensionality reduction techniques to predict rice yield in Vietnam. To the best
of the authors’ knowledge, this study provides the first comprehensive assessment of the
potential of feature selection, feature extraction, and a combination of both in modeling
rice yield prediction using different ML algorithms and VCI/TCI data.

Further information on reduced dimensionality methods and the main findings in the
reviewed papers are shown in Table A1 of Appendix A.
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2. Feature Selection, Extraction, and Combination within ML-Based Crop Yield
Prediction Models
2.1. Problem Definition

Assuming that data crop yield and crop yield-influenced features are available in the
same duration, ML-based crop yield prediction models can be built in the general formula
as follows:

Y = F( f1, f2, . . . , fn), (1)

where Y (response) denotes crop yield, e.g., rice yield; F refers to function (learner) of
features (predictors); f1, f2, . . . , and fn are feature 1, feature 2, . . . , and feature n, respectively,
e.g., VCI, and TCI, etc.

If a featured dataset has high dimensional data that contains many redundant or
irrelevant components, it can confuse learning algorithms [33,34], making the ML-based
crop yield prediction model training unstable [18], lose precision [18,35], overfit [36,37],
impose a large memory space requirement [35], and a high computational cost [35,38]. Thus,
feature dimension reduction has been developed to eliminate these interferences from the
original feature dataset, which forms a low-dimensional feature space while maintaining
as much as possible of the existing information of the data. This problem has attracted
many researchers worldwide, but it is still challenging. Thus, this study is a continuation
of previous achievements to propose an effective solution to this problem.

Two common ways of dimensionality reduction are feature selection (FS) and feature
extraction (FX). Feature selection reduces dimensionality by selecting a small set of the
original features [39]. In contrast, the FX obtains dimensionality reduction by transforming
the original elements into a lower dimensional feature space [39,40]. Besides using either FS
or FX, this paper proposes a combination of both techniques (hereafter referred to as FSX),
as mentioned in [39]. In addition, this paper also investigates the behavior of these three
feature dimension techniques: FS, FX, and FSX. Toward the abovementioned aim, a model
employing all features is used as a baseline to assess models adopting FS, FX, and FSX.

The workflow of the research is designed as follows: First, crop yield prediction
models are developed based on ML algorithms with (i) all the features (All-F), (ii) a feature
subset obtained by using FS, (iii) a feature subset generated from FX, and (iv) a feature
subset derived from FSX. Each ML method generates four FS-, FX-, FSX-, and All-F-based
models using FS, FX, FSX, and All-F sets, respectively. Secondly, the best models with the
highest accuracy (e.g., the model with the lowest RMSE value), namely the best All-F-, FS-,
FX-, FSX-based models for feature sets derived from All-F, FS, FX, and FSX, respectively,
are determined. Finally, the best FS-, FX-, and FSX-based models’ performance is compared
with the best All-F-based model, and the overall best model is also determined from these
four best models. The data processing is summarized in Figure 1.

 Original 
feature 
dataset  

including 
all  

features 
(All-F) 

The best  
All-F-based model

Overall  
best model

Model 
comparison 

based on 
RMSE

Crop 
yield 

dataset

The best 
 FSX-based model

The best 
 FX-based model

The best 
 FS-based model

An FSX-derived feature subset  
generated by the FSX technique that uses 

FS followed by FX

An FX-derived feature subset generated by 
the feature extraction technique (FX), 

 e.g., principal component analysis (PCA), 
independent component analysis (ICA), 

linear discriminant analysis (LDA)

An FS-derived feature subset selected by 
the feature selection technique (FS), e.g., 

filter, wrapper, and embedded methods

Developing ML-based 
crop yield prediction 
models based on the 

relationship as follows:  
 Y=F(f1, f2, ..., fn), 

where Y=Crop yield, e.g., 
rice yield, etc;   

F=ML method, e.g., 
Linear, SMV, Tree, ANN, 

and Ensemble, etc. 
f1, f2, ..., fn = features, 

such as VCI, and TCI, etc

Figure 1. Flowchart illustrating the selection of the best performing ML-based crop yield prediction
models based on FS, FX, FSX, and All-F.

Regarding the learner F in Equation (1), Klompenburg et al. [2] concluded that various
ML algorithms have been used for building crop yield prediction models in previous
studies, but there are no conclusions about the best model overall. This is reasonable
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because the crop yield forecasting models have been developed based on different feature
subsets. As the “no free lunch” theory [41], models based on particular predictors for
specific regions should be trained based on multiple ML methods to determine which
one is the best. Thus, this work tries to use a wide range of ML algorithms such as linear,
SVM, decision tree (Tree), ANN, and Ensemble. The SVM is developed with kernels as
linear (SVMLine), quadratic (SMVQuaratic), cubic (SMVQuaratic), and RBF (SMVRBF).
The ANN is employed with active functions such as ReLU (ANNRelu), tank (ANNTank),
sigmoid (ANNSigmoid), and none (ANNNone). The Ensemble method is employed with
an ensemble boost tree (EmbBoostTree), and an ensemble bagged tree (EmbBagTree). A
detailed description of these ML methods is presented in [42,43].

2.2. Overview of Feature Selection (FS), Extraction (FX), and Combination (FSX)
2.2.1. Feature Selection

Feature selection methods have been developed in the literature, which are divided into
three main groups: filter, wrapper, and embedded [5,17,35,40,44–46]. The filter approach
performs variable selection using characteristics of individual features [6]. It is uncorrelated
to the training process because selecting essential features is a part of a data preprocessing
step while training a model uses the selected features. The wrapper algorithm uses a
specific ML algorithm based on a feature subset and then adds or removes a feature [6]. The
selection criterion directly estimates the model’s change in performance caused by adding or
removing a feature, determining what subsets of components lead to the best results [6,47].

Filter methods have a low computational cost and are independent of the learning
method [6,48,49]. However, they lack robustness against relationships among elements and
element redundancy [48,49], and it is unclear how to choose the cut-off point for rankings
to determine only dominant features [6]. Generally, wrapper techniques outperform filter
techniques [6,48,49] as they consider the feature dependencies and their collective contribu-
tion to model generation [6]. However, they are computationally demanding [35] and have
higher risks of overfitting [6].

Embedded methods, which use the benefits of both filter and wrapper approaches,
have been recently developed (e.g., [17,44,45]), which discover feature importance in the
training process and are usually specific to certain learning machines [40,44]. Thus, they
reduce the computational cost and improve the efficiency during the stage of FS [40].

2.2.2. Feature Extraction

The most prevalent feature extraction methods are PCA [5,29,30,50], but many alterna-
tives have been proposed recently, such as independent component analysis (ICA; [5,6,51])
and linear discriminant analysis (LDA; [6]), amongst others.

The PCA reduces dimensionality by transforming original correlated features into
linearly uncorrelated components [5,29–31]. It computes the covariance matrix and its
eigenvectors (principal components) [52]. Principle components (PCs) are new features
with two properties: (1) each PC is a linear combination of the input features; (2) the PCs
are uncorrelated to each other, and also, the redundant features are removed [40]. The PCs
can be ranked based on the amount of variability in the data they account for. The first PCs
presenting most of the variability are selected, while others are eliminated [6,30,39,40,52].
It minimizes the redundancy (estimated via the covariance) and maximizes information
(estimated via the variance) [40].

The ICA is a linear transformation in which the new feature space is one that includes
statistically independent components [5,6,51]. The LDA reduces the dimension by optimally
projecting the initial sample to the best discriminant vector space [6,39]. The data samples
after the projection have the largest inter-class distance and the smallest intra-class distance
(maximum inter-class scatter matrix and smallest intra-class scatter matrix). When the
original feature dimensionality is more than the number of samples, which is known as the
singularity problem, LDA is not a reasonable method [40] due to the challenge of inversing
the singular matrix.
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2.2.3. Feature Selection Combined with Feature Extraction (FSX)

Feature selection and feature extraction are currently only explored independently
for developing ML-based crop yield prediction models. This paper proposes a two-step
approach to combining FS and FX to reduce the dimension rather than a single step. The FS
is first applied to the original feature set to select important features, followed by using FX
to transform this reduced feature set obtained from the first step to lower its size further. In
the first step, the FS eliminates the redundant and irrelevant features, while in the second
step, the FX combines the selected elements and generates a smaller set of new features.

3. Case Study of Vietnam’s Rice Yield Prediction
3.1. Study Area

Rice is one of the three leading food crops globally [53], and Vietnam is the second-
largest rice producer globally [54]. Therefore, there is a need to find out the best solution
for generating accurate rice yield prediction models in Vietnam for food security. For
this purpose, Pham et al. [33] divided the Vietnam mainland into eight sub-regions with
uniform spatial patterns of VCI and TCI, namely Northwest, Northeast, Red River Delta
(RRD), North Central Coast (NCC), South Central Coast (SCC), Highlands, Southeast, and
Mekong River delta (MRD) (cf. Figure 2).

There are three rice-growing seasons in Vietnam, i.e., Winter–Spring, Fall–Winter, and
Summer–Autumn. However, Northwest, Northeast, and RRD have only Winter–Spring
and Fall–Winter seasons.

3.2. Data
3.2.1. Annual Rice Yield in Vietnam

This study uses rice yield averages over all provinces in Vietnam during the 1995–2019
period obtained from the Vietnamese General Statistics Office through the link [55], accessed
on 15 January 2021. A distinct sub-region’s seasonal rice yield time series is generated
as a spatial mean value for 1995 to 2019, except for the Summer–Autumn rice data in the
Highlands, which is for 1997 to 2019. The duration of 1995–2019 is selected because the rice
yield in Vietnam is only available in this period at the time of processing data.

3.2.2. VCI/TCI Data

Although several satellite-based indices have been employed to predict crop yield, there
exists no empirical proof regarding which data are the best [33]. However, among others,
the VCI and TCI have a theoretical advantage: They are weather-associated and, therefore,
display the accumulative weather impacts on the yearly crop yield variation around the
trend [56]. If they are the predictors, the yield deviations from the trend will be the responses,
which avoid many other input-defining levels of crop yield stability (e.g., ecosystems, climate,
soils, and topography; [57]) and form a long-term persistent yield change (e.g., pest and
disease control, fertilizers, hybridization; [56]). In addition, their role as predictors has
been demonstrated in crop yield forecasts at different locations [25,56–58]. Thus, this study
utilizes VCI/TCI as predictors for developing ML-based rice yield prediction models.

The VCI, a representative of the chlorophyll and wetness of the vegetation canopy,
indicates plant greenness. In contrast, the TCI characterizes thermal state [25,59] and
moisture availability via radiation close to the surface and aerodynamic shapes [60]. The
VCI and TCI are calculated by eradicating the long-term elements associated with climate
from the NDVI and brightness temperature (BT) [61,62], respectively, so they are considered
the NDVI and BT’s yearly weather-related oscillations from their climatologies. Weather
changes often dominate the annual crop yield variation from a long-term yield trend [56].
Therefore, it is intensely related to the VCI/TCI, leading the VCI/TCI as predictors in
producing crop yield prediction. Formulas computing the VCI/TCI from the NDVI/BT
and further details related to the VCI/TCI are documented in [61].
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Figure 2. Eight sub-regions for developing rice yield prediction in mainland Vietnam: Northwest,
Northeast, RRD, NCC, SCC, Highlands, Southeast, and MRD [33].

The National Oceanic and Atmospheric Administration (NOAA) already provides the
average VCI/TCI time series for eight sub-regions mentioned in section 3.1 through the
link [63], accessed on 15 December 2020. Because the rice harvested in 1995 was planted
in 1994, the VCI/TCI data are selected from 1994 to 2019 to match the rice production
data from 1995 to 2019. Each crop year, the average VCI/TCI comprises 52 weekly values.
Missing data on weeks 37–52 in 1994, weeks 2–29 in 2004, and weeks 1–6 in 1995 are refilled
by the long-term mean values of the corresponding weeks from the remaining years. The
VCI/TCI data for each rice season are grouped, matching the planted time that starts after
the previous harvest season and ends in the last week of the current harvest season.

3.3. Results

In each rice season in a particular region, the predictor and response datasets are
divided into a training subset (80%) and a test subset (20%) based on a stratified sampling
strategy [42] (p. 51), as performed in [33]. In all sub-regions but the Highlands, the training
sets include 20-year-long predictors/responses, and the test sets include data for the left
five years. Regarding the Summer–Autumn in the Highlands sub-region, the training
and test sets are 19-year-long and 5-year-long time series, respectively. For further detail
about preparing predictors and response datasets, see [33]. This study uses leave-one-out



Sensors 2022, 22, 6609 8 of 18

cross-validation for training all model,s as analyzed in [33]. The RMSE is used for model
assessment. Finally, the entire data processing is implemented in the Matlab environment.

Regarding feature selection, the sub dataset is selected based on the embedded method
that uses the advantages of both filters and wrapper approaches [5]. It is worth noting
that embedded techniques conduct feature selection in the training process and are usually
specific to certain learning machines [26,44]. However, there is a slight adaption to this study.
First, embedded methods are performed by developing a model by function “TreeBagger”
in Matlab to select the variables based on their importance. In this function, the feature
importance is measured via the RFVarImp algorithm that uses permutation to measure
how meaningful the predictors in the model are at forecasting the response. If a predictor is
meaningful, permuting its values should influence the model’s performance. On the other
hand, if a predictor is not effective, permuting its values will have little to no influence on
the model’s performance. Finally, the features having important values above the median
value (this threshold is also applied in [7]) are selected for developing FS-based crop yield
prediction models. It is essential to mention here that the RFVarImp algorithm and other
similar approaches were also used in recent studies to select important features when
developing crop yield prediction models, e.g., [7,8,14,21–23].

The embedded method is a promising approach that has recently been developed to
overcome the disadvantage of traditional methods such as filters and wrappers. However,
relying entirely on this method is unreasonable because developing a crop yield forecasting
model usually faces a small sample problem, where the feature dimensionality is high,
but the number of samples is small. A small sample problem may cause most existing FS
algorithms to be unreliable by choosing many irrelevant components [39] because these
components can easily gain statistical relevancy due to randomness [64]. This problem can
be addressed by using additional information sources to improve the understanding of the
data at hand [39]. Thus, besides the embedded method, this study also uses the correlation
between VCI and TCI and between VCI/TCI and rice yield to assess the collinearity among
the features to select the independent ones. These outcome feature subsets are also used for
developing an FS-based crop yield prediction model. Finally, these models are compared
with the ones using the FS set generated from the embedded method to determine the final
FS subsets for developing the FS-based model.

Regarding the FX method, this paper uses the PCA for reasons: (1) it is one of the
popular FX techniques [5,29,50], and most recent studies use it when extracting features for
building crop yield forecasting models, e.g., [25–28,32,33], and (2) it has confirmed records
of high success in downsizing dimensions [32,33,48].

The rice yield forecasting models are constructed based on ML approaches: linear,
SVMLine, SMVQuaratic, SMVQuaratic, SMVRBF, Tree, EmbBoostTree, EmbBagTree, AN-
NRelu, ANNTank, ANNSigmoid, and ANNNone. For particular ML methods, four models
are developed based on corresponding feature sets: All-F, FS, FX, and FSX. The RMSE of
these models is shown in (see Figure 3), in which each subfigure presents a particular rice
season. In a specific region, each ML algorithm includes four columns, in order from left
to right, denoting the RMSE of the All-F-based model, the FS-based model, the FX-based
model, and the FSX-based model. In most cases, the FS-, FX-, and FSX-based models
generally perform better or at the same level as the All-F-based model except for some
cases such as Winter–Spring in Northeast (Figure 3(a3)), SCC (Figure 3(a10)), and MRD
(Figure 3(a19)) and Summer–Autumn in SCC (Figure 3(a12)), Highlands (Figure 3(a15)),
and MRD (Figure 3(a21)). Furthermore, no clear pattern shows which model is better
when comparing the FS-based and FX-based models. However, these two models offer
worse performance than the FSX-based model in many cases, except in some models in
Winter–Spring of SCC and MRD (see Figures 3(a10) and 3(a16)) and Summer–Autumn in
Highlands (see Figure 3(a15)).

The performance of the three feature subsets (FS, FX, and FSX) compared with the
full feature set (All-F) varies according to ML methods and rice seasons. With specific
ML, the improvement of FS-, FX-, and FSX-based models change from region to region.
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Within a particular sub-region, the comparison of FS-, FX-, and FSX-based model results
vary depending on the ML methods used. For instance, for the Winter–Spring rice season
in the Northwest, the FSX is the best if it couples with SVMRBF, Tree, EmbBoostTree, and
EmbBagTree (see Figure 3(a1)). In addition, each feature subset generates varying RMSE
values depending on the ML methods used. For example, in Winter–Spring of Northwest
(see Figure 3(a1)), the RMSE of the FSX-based model is smaller than 0.2 ton/ha in the case
of EmbBoostTree, but it is larger than 0.2 ton/ha for SVMLinear.

The percentage of FS-, FX-, and FSX-based models outperforming All-F-based models
for particular ML methods is shown in Figure 4(a1). The highest percentage for the FSX-
based models (an average of 65%), followed by FS-based models (an average of 63%)
and FX-based models (an average of 50%). On the other hand, the percentage of FS-
based models being better than FX-based models, FSX-based models being better than FS-
and FX-based models are presented in Figure 4(a2), which reveals the percentage of FSX
outperforming FX (FS) is at a mean level of 68% (53%) and especially up to 100% (95%)
when using EmbBoostree. The percentage of FS being better than FX varies from 42% to
67% depending on the season and has an average level of 59%.

Figure 3. The RMSE of All-F-, FS-, FX-, and FSX-based models in different ML algorithms, units are
tons/hectare.

Based on models derived from ML methods, the best model for a particular feature
set (All-F, FS, FX, and FSX) is determined and presented in Figure 5(a1–a3). From left to
right, the columns show the RMSE of the best model generated from All-F, FS, FX, and
FSX sets, respectively. The results show that the FS, FX, and FSX sets outperform or are
at least at the same level as the All-F set except for Winter–Spring in SCC and Highland
(Figure 5(a1)) and Fall–Winter in NCC (Figure 5(a2)), where the RMSE of the FS- and
FX-based models are larger than that of the All-F-based models. The percentage of the
best FS-, FX-, and FSX-based models better than the best All-F-based models are 71%, 71%,
and 90%, respectively, while 85% (90%) of the best FSX-based models are better than the
best FS-based (FX-based) models. In addition, 81% of the best FS-based models are better
than the best FX-based models. Those percentage values are generated from the data in
Figure 5(a1–a3). Moreover, the used ML methods denoted by the number in the columns in
Figure 5(a1–a3) reveal that feature subsets primarily work well with Tree (4/4/8/4 models
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for All-F/FS/FX/FSX), EmbBoostTree (8/10/7/14 models for All-F/FS/FX/FSX), and
EmbBagTree (1/2/4 models for All-F/FS/FX).

Figure 4. Percentage of FS-, FX-, and FSX-based models outperforming All-F-based models (a1);
FS-based models being better than FX-based models, FSX-based models being better than FS-based
models, and FSX-based models being better than FX-based models (a2).

Figure 5. (a1–a3) display RMSE values of the best models generated from separate All-F, FS, FX,
and FSX sets, while (a4) presents the RMSE of the overall best model selected over different feature
subsets (All-F, FS, FX, and FSX) for each rice season. The numbers in the columns refer to the used
ML method: 1 (linear), 3 (SVMQuaratic), 4 (SVMCubic), 5 (SVMRBF), 6 (Tree), 7 (EmbBoostTree),
8 (EmbBagTree), 9 (ANNReLu), 11 (ANNSigmoid), and 12 (ANNNone). The text at the top of the
column denotes the dimensionality reduction techniques used; (b) The accuracy improvement of the
best overall models compared with the All-F-based models.
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The overall best model for each rice season (including 21 models corresponding
with 21 rice seasons) is selected from the best models of all subsets (All-F, FS, FX, and
FSX) and shown in Figure 5(a4). In Northwest, Northeast, and RRD, the left and right
columns are denoted for Winter–Spring and Fall–Winter, respectively. For the remaining
areas, the left, middle, and right columns are defined for Winter–Spring, Fall–Winter, and
Summer–Autumn, respectively. The numbers in the columns display the ML methods,
and the text at the top of the column stands for the dimensionality reduction techniques
used. The results reveal feature sets used in the 21 best models are mainly FSX (18/21
models (86%)), followed by FS (2/21 models) and FX (1/21 model). The ML methods
used in the 21 final modes include EmbBoostTree (12/21 models), Tree (6/21 models), and
linear/ANNReLu/EmbBagTree (1/21 model for each).

Figure 5b indicates the improvement of the final models compared with the All-F
models. The advantage ranges from 0% to 60%, fluctuating from sub-region to sub-region
and from season to season. The average RMSE of these final models is smaller than that of
All-F models at an average level of 0.054 tons/hectare (21%) (these data are not exhibited
in Figure 5b).

4. Evaluation: Strengths and Limitations

Dimension reduction has become one of the most critical and challenging tasks in
ML [5,6,30], which tries to obtain a valuable feature subset while maintaining the critical
characteristics of the initial data [6]. Thus, in the context of using ML for developing crop
yield prediction models, this paper simultaneously assessed three dimensionality reduction
techniques, namely, feature selection (FS), feature extraction (FX), and the combination
of the two techniques (FSX), with All-F-based model being the baseline to assess the
performance of FS-, FX-, and FSX-based models. The results highlight the contribution
of three feature dimension reduction techniques when developing ML-based rice yield
prediction models for Vietnam based on the regression learners linear, SVM, Tree, ANN,
and Ensemble using VCI/TCI data. More importantly, it revealed the superiority of the
FSX over FS and FX. This main finding is further analyzed as follows:

(1) Performance of FS, FX, and FSX for ML-based crop yield prediction models: The perfor-
mance of FS, FX, and FSX compared with the baseline All-F in general: In each ML method used,
at least one of three dimension reduction methods FS, FX, and FSX performs better or at
the same level as All-F except only a few cases (cf. Section 3). Specifically, considering all
models, 63% of FS-based models, 53% of FX-based models, and 65% of FSX-based models
outperform All-F-based models as measured by RMSE. However, regarding the best mod-
els of each feature dataset defined from all ML methods, 71%, 71%, and 90% of the best
FS-, FX-, and FSX-based models, respectively, are superior to the best All-F-based models.
Furthermore, the 21 final models with the highest accuracy corresponding with the 21 rice
seasons, determined from the best models of all feature subsets, were developed based on
FS, FX, and FSX subsets (except for one model that experiences the highest accuracy with
FS and All-F). These final models improve All-F-based models at an average level of 21%
and up to 60% in terms of RMSE. These findings support previous studies that concluded
reducing feature dimensions is crucial for ML techniques [8,14,16,18–24,45]. It also pointed
out that feature dimension reduction may not work well with all ML methods; thus, careful
selection is necessary.

The improvement of FS, FX, and FSX also change from region to region and from
season to season. This may be caused by the spatial and temporal characteristics of VCI/TCI
data, the different complexity of rice yield patterns, and a limited number of samples in the
case study.

The performance of FS: An average of 63% (71%) of FS-based models (the best FS-based
models defined from all ML methods) outperform the corresponding All-F-based models.
On the one hand, the results confirm the significance of the FS technique in developing
crop yield prediction models, which is consistent with previous studies, e.g., for winter
wheat in Germany [21,22], corn and soybean yield in the United States [23], alfalfa in the
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United States [16,19], rainfed sugarcane in Brazil [24], and crop in India [8,14]. On the
other hand, these findings also reveal that FS is not always contributing to forecasting
crop yield because the remaining FS-based models (37% for all models, 29% for the best
models) do not show improvement. This outcome may be caused by the limited number of
samples in the case study (20 samples for training models), which supports the previous
arguments. For instance, one challenge in FS applications is the small sample issue [39].
With few samples, many irrelevant components can quickly attain statistical relevancy due
to randomness [64].

The results also reveal that, except for a few cases, FS-based models are better than
FX-based models while mostly worse than FSX-based models. Finally, it is worth noting
that, not only in accuracy, FS also exceeds FX in providing insight into what factors most
impact crop yield, leading to data collecting being more efficient [16,65].

The performance of FX: An average of 50% (71%) of FX-based models (the best FX-based
models determined from all ML methods) are better than the corresponding All-F-based
models. This finding indicates that FX does not dominate All-F all the time, highlighting
the comments in [33] that PCA should only be considered as an option for developing
crop yield prediction. It is important to note that the experiment in [33] was limited to the
EmbBoostree method, while the present study extends to 11 other ML methods.

In addition, FX-based models are generally worse than FS- and FSX-based models.
Compared with a single-level approach to reducing the dimensionality of FS, the lower
quantity of FX may be explained by (1) more prominent noise existing in the VCI/TCI
dataset caused by local environmental factors and (2) loss of original information due to
transforming data. For the first reason, Macarof et al. [66] commented that the VCI does
not perform sufficiently in wet regions. Basically, the PCA method rotates the predictors
to orient the directions in which the data spread out the most with the principal axes,
decreasing the data dimensionality while preserving the variance as close to the actual data
as possible [30,67]. Theoretically, the PCA benefits by removing the linear correlations in
the predictors leading to better results. However, when predictors contain considerable
noise compared with the variance of the original data, the PCA may maximize the noise
instead of the variance. Consequently, the PCA effectiveness is not always pronounced in
practice [26–28,33,68]. The problem that PCA is sensitive to outliers in the datasets was also
pointed out in [67], and this work also reviewed some techniques that referred to robust
PCA as an alternative approach for simple PCA to deal with this problem. Turning to the
second reason, although the FX approach tries to maintain the original behavior of the
data as much as possible [39], the transformation from high-dimensional feature space to
low-dimensional space will inevitably lead to the loss of some original information [6],
leading to a negative effect on the resulting models. Moreover, the worse performance
of FX may also come from the nonlinear relationship between predictors. Here, the FX
subset is generated from PCA, which assumes the relationships between variables to
be linear [5,30,67]. Thus, to overcome the limitation, the nonlinear PCA [67] should be
investigated in future work.

The performance of FSX: The proposed FSX is expected to be superior to the single
dimensionality reduction (FS or FX) techniques since it takes full advantage of both tech-
niques. Theoretically, the FSX is better than FS because it widens FS by extracting the most
important data information from the FS-based feature set. The FSX also improves the single
FX technique because it reduces the dimensionality of FS-based selected features instead
of the original full set of features, which far more relieves the challenge of dealing with
redundant or irrelevant data. This theoretical advantage of FSX is demonstrated in the case
study. An average of 65% (90%) of FSX-based models (the best FSX-based models ) perform
better than the corresponding All-F-based models. Compared with single techniques,
85% (90%) of the best FSX-based models advance the best FS-based (FX-based) models.
Specifically, the FSX-based models account for 86% of the 21 final models. This new finding
indicates the combination (FSX) of FS and FX performs mostly better than single techniques,
which extends the conclusion in [48,49] on the superiority of integrating FS and FX over
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single-level techniques. Here FSX is applied for predictive problems while it was employed
for classification in [48,49].

(2) The strengths of FS, FX, and FSX varies according to ML algorithms: The results also
reveal that the performance of FS, FX, and FSX varies according to ML methods. Some
cases of FS, FX, and FSX being not better than All-F may be caused by inadequate training
or the over-fitting phenomenon of some ML methods when using a small sample size
(unfortunately, most crop yield forecasting problems worldwide face this challenge, e.g.,
the training set herein is 20) in the context of a highly complicated crop yield variation. This
results to feature dimensionality reduction and the regression learning process becoming
unstable; that is, the generalization capability of the models will drop. In addition, the
21 best models are produced by various ML methods, such as 12 EmbBoostTree-based
models, 6 Tree-based models, 1 EmbBagTree-based model, 1 linear-based model, and 1
ANNReLu-based model. These results can be explained by different ways of learning the
patterns of data, leading to distinct advantages and disadvantages of each ML algorithm.
This outcome supports the conclusion that many ML algorithms have been used for crop
yield prediction, but there is no evidence regarding which ML method is the best [2] or
various ML approaches to be evaluated for specific datasets when developing models of
forecasting crop yield [69]. It also underlines the “no free lunch” theory [41].

The present results of this paper also underline the ensemble learners’ potential
while integrating with feature dimensionality reductions in forecasting crop yield. For
example, ensemble-based models (EmbBoostTree and EmbBagTree herein) account for 13
out of 21 models (62%), while the other single learners, namely linear, Tree, and ANN,
record 38%. These findings are reasonable because Ensemble is a simple and robust
technique that combines the rough predictions of some weak learners to come up with
accurate estimations instead of using a single ideal sophisticated learner [70]. For example,
several studies demonstrated that ML ensembles could substantially outperform single ML
methods [19,69,71–73]. Thus, there is an increasing interest in Ensemble techniques in the
ML community [19]. This technique can be used in two common ways: (1) develop different
training algorithms, followed by combining all the models (or several models that perform
best). This approach has been used for developing prediction models (e.g., [9,19,73,74]);
(2) use the same learner algorithm but train them on different subsets of the training set.
It can be seen that this approach is used here by using Tree as a basic learner. Although
Srivastava et al. [22] noted that there had been a marked tendency toward applying tree-
based Ensemble models for developing yield prediction models recently, e.g., [69,71,72],
the first Ensemble approach should also be considered in the next studies.

(3) The limitations of this paper: Besides the achievements mentioned above, some
limitations of this paper should be noted:

The limited numbers of techniques employed in the three feature dimension reduction: The
study has not tried the wide range of techniques for FS, FX, and FSX. Regarding FS,
future work should include other methods such as filter and wrapper. Furthermore, other
techniques, such as nonlinear PCA, robust PCA, ICA, and LDA, amongst others, may be
investigated for FX. Again, besides the proposed FSX described in Section 2, other types of
combining dimensionality reduction techniques could be considered, such as FS followed
by another FS, FX followed by another FX, FS followed by another FS coupled with FX, etc.;
that is, similar to some of the approaches in [48].

Limit of predictor type: In this case, future studies should add more predictors beyond
VCI/TCI to test the performance of FS, FX, and FSX for ML-based crop yield prediction
models. This is because some regions’ VCI/TCI data may not cover all short-term yield-
impacted elements. For example, the VCI index represents the rainfall state, and TCI is
related to thermal conditions. Thus, they represent the typical and critical factors that
influence the variation of crop yields. However, in some crop areas, other factors such as
irrigation regulation policy, type of seedling, and other abnormal weather variables may
also affect crop yield fluctuation.
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Limit related to the small number of samples: All 21 case studies face a small sample
challenge (20 (1) case studies using 20 (19) samples for training rice yield forecasting
models), leading to negative effects on the performance of reducing feature dimensionality,
as mentioned above. Unfortunately, although the number of samples in this work is modest,
it is still significantly more than in previous studies. In fact, long time series of most crop
yield data at a regional scale worldwide is not available. Thus, it is difficult to overcome
this obstacle in the near future work.

5. Conclusions

This paper proposed a framework for assessing different feature dimension reduction
techniques, namely FS, FX, and FSX, in developing crop yield prediction models over
time based on ML approaches. The experimental results underline the improvement of
21 ML-based rice yield forecasting models compared with those that do not employ feature
dimension reduction. More importantly, it highlighted the superior performance of FSX
(the combination of FS and FX) compared with single techniques, which have not been
considered in previous works for predicting crop yield. In summary, the outcome includes
four key findings as follows:

(1) The three techniques, namely FS, FX, and FSX, improve ML-based crop yield prediction
models when employing widely used ML methods to choose the best one: 21 of the best models
corresponding with 21 rice seasons, selected from all feature sets and ML methods, are all
developed based on FS, FX, or FSX subsets (except for one model that could be selected
from All-F- or FS-based models). These final models improve All-F-based models at an
average level of 21% and up to 60% in terms of RMSE.

(2) In general, FSX is the best technique, followed by FS and FX: Considering all models,
65% of FSX-based models outperform All-F-based models, while this is 63% (53%) for
FS-based (FX-based) models; 59% of FS-based models are better than FX-based models.
With the best models selected for each feature subset: 90% (71%) of the best FSX-based
(FS- and FX-based) models are better than the best All-F-based models; 85% (90%) of
the best FSX-based models exceed the best FS-based (FX-based) models; 81% of the best
FS-based models are better than the best FX-based models. Regarding the 21 final models
selected from all feature sets and ML methods, FSX-based models account for 86%. The
better performance of FSX than FS and FX may result from the accumulative advantage in
both techniques.

(3) It is necessary to consider a wide range of ML methods when applying feature dimensionality
reduction techniques: The performance of FS, FX, and FSX are not always better than All-F but
depend on ML methods. The 21 final models are developed using different ML methods,
including 12 EmbBoostTree-based models, 6 Tree-based models, 1 EmbBagTree-based
model, 1 linear-based model, and 1 ANNReLu-based model. This finding stresses the “no
free lunch” theory [41] when developing ML-based crop yield forecasting models.

(4) Ensemble-based models have the greatest potential when combined with feature dimension-
ality reductions: EmbBoostTree (12 models) and EmbBagTree (1 model) account for 13 out
of 21 models (62%), while the other single learners, namely linear, Tree, and ANN, make
up 38%.

This work may be helpful to other studies because it describes a framework for eval-
uating the three feature dimensionality reductions that can be applied to other problems
related to crop yield forecasts. However, upcoming work should deal with the limitations
associated with the number of techniques employed in the three feature dimension reduc-
tion by further investigating other methods, e.g., filter and wrapper for FS; nonlinear PCA,
robust PCA, ICA, LDA, and so on for FX. Furthermore, besides the proposed FSX herein,
other types of combining dimensionality reduction techniques for bi-level or multi-level
approaches could be considered. Finally, the proposed framework should be applied with
predictors beyond VCI/TCI.
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Appendix A

Table A1. The feature dimensionality reduction methods used and the main findings in
reviewed papers.

Crop; Regions Features Methods Related Findings

Rice; Punjab State
of India [9]

Features related to agriculture and
weather

RRF; CBFS,
RFE Selected ten of the most significant features

Sugarcane; São Paulo
State, Brazil [13]

NDVI: at the start, in the middle,
1–10 months after the harvest starts;
amplitude; max; derivative; integral

Wrapper com-
bining ANN Selected seven essential features

Bio-oil; Un-
clear [15]

Biomass composition and pyrolysis
conditions

GA, filter,
wrapper GA outperforms filter and wrapper methods.

Unclear crop;
Tamil Nadu,
India [8,14]

Canal length; the number of tanks,
tube and open wells; planting area;
amount of fertilizers, seed quantity;
cumulative rainfall and radiation;
max/average/min temperatures

FFS, BFE,
CBFS, RF-
VarImp, VIF

Methods were quite the same accuracy (FFS and BFE
are slightly better than others, but FFS takes less
time) when combined with MLR and M5Prime but
varied with ANN; The adjusted R2 of 85% (84%) was
achieved by using selected features (all features).

Unclear crop; Tamil
Nadu, India [7]

Canal length; the number of tanks,
tube and open wells; planting area;
amount of fertilizers, seed quantity;
cumulative rainfall and radiation;
max/average/min temperatures

FFS, CBFS, VIF,
RFVarImp

FFS gives good accuracy; RF achieves the highest
quality for all feature subsets compared with ANN,
SVM, and KNN.

Soybean; Southern
France [17]

Features related to climate, soil, and
management

Filter, wrapper,
embedded

The subsets selected by wrapper combined with
SVM and LR provided the best results.

Winter wheat; Ger-
many [21,22]

Weekly weather data, soil condi-
tions, and crop phenology variables

SHAP explana-
tion

The accuracies of models using 50/75 percent of com-
ponents did not decline significantly compared with
the model using full features; some even slightly
improved.

Corn, and Soy-
bean; The United
States [23]

Weather components, soil condi-
tions, and management

The trained
CNN-RNN
model

The models’ accuracies did not decline remarkably
compared to the model based on full features, but
some even slightly improved.

Alfalfa, Wiscon-
sin, the United
States [19]

Vegetation indices RFE All models based on RF, SVM, and KNN were im-
proved when using selected features.
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Table A1. Cont.

Crop; Regions Features Methods Related Findings

Tee;
Bangladesh [20]

Satellite-derived hydro-
meteorological variables

Dragonfly and
SVM

Combining RF with the dragonfly algorithm and
SVR-based feature selection improves prediction per-
formance.

Alfalfa; Kentucky
and Georgia [16] Weather, historical yield, sown date CBFS, ReliefF,

wrapper

CBFS was better than ReliefF and wrapper; ML com-
bined with FS offered promise in forecasting perfor-
mance.

Sugarcane; Teodoro
Sampaio-São
Paulo in Brazil [24]

Soil and weather RReliefF
FS eliminated nearly 40% of the features but
increased the mean absolute error (MAE) by
0.19 Mg/ha.

Coffee; Brazil [18]
Leaf area index (LAI), tree height,
crown diameter, and the individual:
RGB band values

Pearson, Spear-
man, F-test,
RFE, Mutual
Information

Most of the learners using the most important pa-
rameters (LAI and the crown diameter) and the most
critical months improved prediction compared with
employing total features.

Winter wheat, Corn;
Kansas, USA [26,27] VCI and TCI PCA The contribution of PCA was unclear because PCA-

ML was not compared with ML-only.

Rice, Potato;
Bangladesh [25,28] VCI and TCI PCA The contribution of PCA was unclear because PCA-

ML was not compared with ML-only.

Cotton; Unclear re-
gion [32]

Max/min temperature, relative hu-
midity, wind speed, sunshine hours PCA A significant improvement in PCR-based prediction

models compared with models using MLR.

Rice; Vietnam [33] VCI and TCI PCA
PCA coupled with EmbBoostTree was better than
ML-only at an average of 18.5% and up to 45%
of RMSE.
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