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Abstract: Understanding the spatiotemporal trend of land cover (LC) change and its impact on
humans and the environment is essential for decision making and ecosystem conservation. Land
degradation generally accelerates overland flow, reducing soil moisture and base flow recharge, and
increasing sediment erosion and transport, thereby affecting the entire basin hydrology. In this study,
we analyzed watershed-scale processes in the study area, where agriculture and natural shrub land
are the dominant LCs. The objective of this study was to assess the time series and spatial patterns
of LCC using remotely-sensed data from 1973 to 2018, for which we used six snapshots of satellite
images. The LC distribution in relation to watershed characteristics such as topography and soils was
also evaluated. For LCC detection analysis, we used Landsat datasets accessed from the United States
Geological Survey (USGS) archive, which were processed using remote sensing and Geographic
Information System (GIS) techniques. Using these data, four major LC types were identified. The
findings of an LC with an overall accuracy above 90% indicates that the area experienced an increase
in agricultural LC at the expense of other LC types such as bushland, grazing land, and mixed
forest, which attests to the semi-continuous nature of deforestation between 1973 and 2018. In 1973,
agricultural land covered only 10% of the watershed, which later expanded to 48.4% in 2018. Bush,
forest, and grazing land types, which accounted for 59.7%, 16.7%, and 13.5% of the watershed in 1973,
were reduced to 45.2%, 2.3%, and 4.1%, respectively in 2018. As a result, portions of land areas, which
had once been covered by pasture, bush, and forest in 1973, were identified as mixed agricultural
systems in 2018. Moreover, spatial variability and distribution in LCC is significantly affected by soil
type, fertility, and slope. The findings showed the need to reconsider land-use decision tradeoffs
between social, economic, and environmental demands.

Keywords: GIS and remote sensing; spatiotemporal modelling; image processing; land cover change
detection; soil spatial variability; soil–land use–slope interaction; kriging
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1. Introduction

The conversion of land cover (LC) has occurred for millennia and has intensified with
population increase on a globally significant scale over recent decades [1]. Land cover
change (LCC) is driven by interactions between socioeconomic activities, institutional
and environmental factors, human population density, vegetation cover, and climatic
conditions [2,3]. For example, urban areas have expanded in response to population
growth and economic development with encroachment on agricultural and untouched
areas [4]. LCC has therefore become a key research priority for national and international
research programs examining local and global environmental change [5,6].

Change in LC (e.g., forest to bare land) alters the fluxes of water and sediment leading
to reduced soil moisture content and base flow, accelerated overland flow, and increased
soil erosion and the widespread degradation of watersheds [7]. In this regard, various
studies have used LC mapping tools and methods to understand LCCs and the changes in
the hydrologic behavior of watersheds [8–12].

There have been dramatic LCCs throughout Ethiopia over the last few decades, where
forest cover in highland areas has decreased from more than 90% to less than 4% [13].
This change has influenced diverse aquatic and terrestrial resources including the Blue
Nile [14]. The change is thought to be linked to increases in population and the resulting
degradation of natural resources and loss of biodiversity. Elias et al. [14] reported that
rates of natural resource degradation and biodiversity loss showed a marked increase in
the last five decades of the 20th century, associated with changes in LC and leading to the
deterioration in water quality in rivers and lakes (e.g., Awash River, Lake Abaya, and Lake
Ziway). Other studies [5,15] have emphasized that changes in LC can adversely affect the
quality of life and human wellbeing.

The Ethiopian Rift Valley basin has undergone major changes in LC due to population
and agricultural expansion, which includes floriculture and irrigated cropland [16,17]. For
instance, in an LCC study conducted on the Central Rift Valley of Ethiopia, [18] found
that between 1973 and 2014, agricultural areas expanded at the expense of all other LC
types. According to their findings, during this period, the rate and magnitude of LCC
for each of the four major LC types: water, forest, grass, and woodland, declined by 3%,
6%, 13%, and 15%, respectively, concurrently with a 36% increase in agricultural area. A
similar study in the basin [16] supports the findings of [18], and it highlighted that LCC
is one of the phenomena that interweaves with the socioeconomic and environmental
status in the area and the country at large. As a result, estimating temporal patterns and
the magnitude and trends in LCC at the watershed, basin, and regional scales [19] can
provide valuable information on the expected extent of change in water resources and
socioecological responses.

Previous studies on the spatial variability in soil and LC are either site-specific, coarse-
scale (e.g., basin scale studies), or implemented pedo-transfer functions (PTFs) that neither
provide all the required data inputs nor account for environmental effects [20–22]. This
means that no significant research in the region has followed a bottom-up approach to drive
the LC and soil–topography relationship and upscale the result for hydrological modelling.
In addition, the region lacks research that can associate subbasin scale spatiotemporal
LCC with watershed characteristics including topography and soils. It should also be
pointed out that the accurate LCC predictions and assessments of soil fertility, hydrological
cycles, biodiversity, biogeochemical cycles, and energy balances are only accurate at the
smaller spatial scales, i.e., from the plot to watershed level [23]. Fine-scale assessments
of the spatiotemporal watershed soil and LC status and its rate of change in Ethiopia
is therefore paramount to support the development of environmental protection and
sustainability plans [17].

This research, on the other hand, assesses the spatial dynamics of LC and soil proper-
ties to understand time series LCC and landscape physicochemical processes in the area.
The significance of the work, therefore, stems from three aspects. Firstly, we reconstructed
historical LC data, mapped soil–topography–LC interactions, and performed change de-
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tection analysis; secondly, from the fact that, in our research, we did not rely using either
the coarse resolution FAO soils guidelines that assign the same soil property at different
landscape gradients or site-specific and unreliable PTFs. Instead, we performed a detailed
field survey and laboratory analysis and developed the soil–landscape relation for a tropi-
cal catchment in the Rift Valley basin where data are scarce resources. Thirdly, by using
catchment hydrological characterization using fine-scale soils, time series remotely-sensed
data, and historical runoff data, the study can provide a reference for the rational allocation
of water resources and the adjustment of land use structure for decision makers.

Furthering the significance of our research, the implications of LCC on the environment
have been reported. For example, [24] highlighted that soil physical attributes are highly
related to topography and changes in soil properties can affect the soil’s water content,
vegetation response, and the rate and intensity of LCC [25]. The relationship between
watershed soil properties and topography and how they interact with changes in LC in areas
identified with high topographic heterogeneity is also documented [26]. It is also argued
that soil type affects moisture retention, which is a major mechanism for influencing LC [26].
Therefore, the assessment of the soil–topography effects on LC distribution requires reliable
LC information that is generated based on systematic methods, tools, and techniques [27].
The LC information of the area was extracted using the maximum likelihood classification
(MLC) algorithm for supervised classification [28].

Following the LC classification, various approaches have been proposed to assess
LCC detection [29]. In this study, we implemented object-based MLC as it is one of the
most widely used and robust supervised training algorithms [30]. For example, [30] used
an object-based MLC technique for LCC detection as it overcame some of the particular
problems encountered with pixel-based classification.

The overarching aim of this study was to determine the rate and magnitude of LCC
in the Batena watershed during the period of 1973–2018. The specific objectives were to
(i) assess the time series LCC and perform change detection analysis between 1973 and
2018 and (ii) evaluate the pattern, rate, trend, and magnitude of long-term spatiotemporal
LCC. It also aimed to characterize the effect of soil and topography on LC distribution,
spatially correlate soil properties and topographic attributes, and assess the interactive
effect of soil, LC type, and slope position on soil physicochemical properties.

To achieve this, we examined the time series and spatial patterns of LCC using change
detection methods applied over the catchment between 1973 and 2018. We used satellite
images and the Environment for Visualizing Images (ENVI) software to assess the trend of
LCC [31,32]. Multi-temporal Landsat products provided the opportunity to distinguish LC
types by employing change detection analysis at various time points [33]. Consequently,
we used the historical Landsat datasets [29], applied a Bayesian MLC algorithm to assess
the different LC types [34,35], and used change detection comparison techniques to identify
intra-image LCC [36]. Grid scheme field observations and discussions with local people
were also employed to validate results from remotely-sensed data. Based on the results of
field observation, four major LC types were identified in the watershed, and changes in
each class were identified.

2. Materials and Methods
2.1. Study Area

The Batena watershed (117 km2) in the Rift Valley lakes basin drains into Bilate River
on its way to Lake Abaya. The area is located in the rural mountainous part of the Rift Valley
lakes basin, southwestern part of Ethiopia (Figure 1) between 7.4◦ and 7.72◦N latitude, and
37.8◦ and 37.9◦E longitude. The topography of the area has two distinct features: rugged
mountainous highland areas in the northern and northwestern part of the watershed and
lowlands in the eastern watershed. The area lies at altitudes ranging from 2065 m to 2947 m
above mean sea level. The region is characterized by steep to moderate hilly slopes and
the two clay rich soils found in this slope range are chromic, pellic vertisols and chromic
luvisols. Cultivated land is common at all altitudinal ranges. Apart from agricultural
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lands, the study landscape comprises mosaics of mixed forests, grazing land, and bushland.
Built-up areas are sparse and small and were not represented in our analysis. Bilate river
basin, which includes this watershed, has alluvial sediments of gravel, sand, and clay with
pedogenetic profiles sloping smoothly to the bed [37].
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Figure 1. Location of Ethiopia in Africa (A), Batena watershed in the Rift Valley basin (B), and Batena
watershed (C). Elevation classes 1–5 indicate altitudinal gradients in increasing order.

The climate of the region is mainly controlled by seasonal migration of the Intertropical
Convergence Zone (ITCZ) and its associated atmospheric circulation. Annual rainfall
ranges between 1280 mm and 1339 mm, and the annual mean minimum and maximum
temperature varied from 11 ◦C to 22 ◦C, respectively, based on local weather station data [7].

2.2. Methodology
2.2.1. Datasets

To assess the rate and magnitude of LCC, a series of multi-sensor Landsat images were
accessed from the USGS data portal (https://earthexplorer.usgs.gov; accessed on 20 March 2020)
(Table 1). They included acquisition of medium resolution Landsat satellite data: Multi-
spectral Scanner System (MSS), Thematic Mapper (TM), Landsat-7 Enhanced Thematic
Mapper Plus (ETM+) [38], and Landsat-8 OLI (Operational Land Imager) in a regular and
tiled fashion following the World Reference Systems (WRS1 for MSS, WRS2 for TM, ETM+,
and Landsat 8). The data spanned nearly five decades and used MSS for the 1970s, TM for
the 1980s and 1990s, ETM+ for 2000s, and Landsat 8 OLI for the 2010s. A digital elevation
model (DEM) of the area with 30 m horizontal vertical resolution was obtained from the
Ethiopian Ministry of Water and Energy, GIS and remote sensing department.

https://earthexplorer.usgs.gov
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Table 1. Summary of the characteristics of Landsat images used in this study (1973–2018).

Sensor
Type

Date of
Acquisition Path Row Spatial

Resolution (m)
Temporal

Resolution (Days)

MSS 31 January 1973 181 55 60 18
TM 22 November 1984 169 55 30 16
TM 21 January 1995 169 55 30 16

ETM+ 24 November 2003 169 55 30 16
ETM+ 27 November 2008 169 55 30 16

OLI 20 November 2018 169 55 30 16
Source: United States Geological Survey, USGS (https://earthexplorer.usgs.gov/, accessed on 20 March 2020).

Different kinds of satellite images and ancillary datasets were collated to identify
historical and recent LC information and seasonal development of vegetation manifested
(Table 1). The oldest available dataset used Landsat MSS archive at the EROS Data Cen-
ter. These datasets obtained from the Global Land Cover Facility (GLCF) were taken by
Landsat 1 (ESAT1) on 31 January 1973 at WRS1 path 181 and row 55. The satellite that
carries the MSS instrument on board, Landsat 1, orbited at 920 km height with 18 days
repeat cycle. The image data from MSS consists of four spectral bands covering the visible
green, red, and two near-infrared wavelengths.

The TM and ETM+ sensors are designed to achieve sharper spectral separation, higher
image resolution, greater radiometric accuracy and resolution, and improved geometric
fidelity than the MSS sensor. These sensors have a 30 m spatial resolution for bands 1–5,
and band 7, and a 120 m or 60 m resolution for band 6 for TM and ETM+, respectively. A
single scene covering 169/55 (path/row) was taken on November 1984 using TM sensor
on board Landsat 5. The same path/row image taken in January 1995 was employed
to assess the decadal LC at 30 m spatial resolution ETM+, and Landsat 8 OLI datasets
taken on November 2003, 2008, and 2018 were also used in the time series LC and change
detection analysis.

2.2.2. Image Processing

Digital image processing involved manipulation and interpretation of digital images
using pre-processing, enhancement, transformation, classification, and analysis functions.
Pre-processing comprises a series of sequential operations, including atmospheric correc-
tion, image registration, normalization, geometric correction, and masking. We checked
that these had already been implemented from the source. Prior to image classification,
spatial resolution of the images (MSS, TM, ETM+, and Landsat 8 OLI) was enhanced by
using resolution merge technique that integrates images of different spatial resolution.
Stripping and banding errors were accounted for through radiometric enhancement [38,39].
Principal component analysis (PCA), on the other hand, improved the image visualiza-
tion with a technique of data compression to segregate noise components and reduce the
dimensionality of datasets, and produce uncorrelated output bands [40].

The methodology employed in the LC assessment included image interpretation, pre-
liminary LC classification and mapping, and post-classification tasks (Figure 2). Geometric
and radiometric corrections were applied to reduce geospatial data uncertainty resulting
from image resampling, percent cloud cover, and assumptions of homogeneity [41]. Dur-
ing image processing, color balance was used for image enhancement through histogram
equalization [23], and radiometric correction was undertaken to minimize the effect of
atmospheric factors.

Supervised image classification was used to create time series land cover data of
the watershed. Training data were collected during the soil sampling fieldwork. The
dominant land cover classes identified in this study were agriculture, bushland, grazing
land, and mixed forest. The other small patches of land cover such as built-up areas were
neglected due to their insignificant contribution to the watershed area. Those training
sample data were used to train the algorithm and generate sample statistics, which were

https://earthexplorer.usgs.gov/
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used for supervised classification. The MLC, maximum likelihood classification, algorithm
was used to classify unsampled pixels into the target classes of land cover included in the
training process. ENVI software was used to run the image classification.
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Figure 2. The study workflow in which image and field survey data collection and analysis steps are
depicted. The angular rectangles represent the data sources (i.e., remote sensing and field survey);
round edged rectangles mean the different individual analysis methods; the hexagonal symbol
represents the overlay operation, which integrated the different data types; the trapezium-shaped
symbol that has one irregular side represents the image output, while the table frame represents
tabular output.

For LCC analysis with different dates of acquisition, images were resampled to a
higher spatial resolution, layer stacked, and geometrically transformed before use for
analysis. Geometric transformation of digital images modified the spatial relationship
between pixels in an image for post-processing. Conversion of satellite image from fine-
scale to a coarser spatial resolution with images from similar or different satellite sensors of
varying spatial resolutions involves image resampling. The choice of resampling method
depends, among others, on the ratio between input and output pixel size and the purpose
of resampled images [42]. In this research, the Landsat Multispectral Scanner image of
1973 with a pixel size of 60 × 60 m was resampled into a pixel size of 30 × 30 m using the
nearest neighbor method to preserve the original image radiometric information [42–44].
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2.2.3. Land Cover Change Detection

Many techniques have been developed to assess LCC between images of varying
dates [45], such as conventional image differentiation, image regression, image ratio, man-
ual on-screen digitization of change, principal components analysis, multi-date image
classification, and post-classification comparison [46]. Of these classification methods, post-
classification comparison that uses ML object-based classification technique that gained
prominence in the field of remote sensing was principally employed [30]. The study find-
ings of [30] and the references therein indicate that object-based image analysis involves
image segmentation that partitions images into homogeneous and non-overlapping regions
that are later identified as objects. It is also suggested that object-based classification is rec-
ommended as it overcomes some of the particular problems (e.g., disregarding geometric
and contextual information) encountered with pixel-based classification [29]. In addition,
in object-based image analysis, a range of diagnostic features for a specific object can be in-
tegrated on the basis of expert knowledge, and it aims to represent the content of a complex
scene in a manner that best describes the imaged reality by mimicking human perception.
The other advantage of object-based image classification is that, by the incorporation of
textural data, spatial characteristics, and spectral information, it approaches the way that
humans visually interpret the information on satellite images and aerial photos. During
ML classification, image data were first classified by aggregating images into scene clusters
based on their inherent spectral properties and local area knowledge of LC types, which
were used to develop training site for supervised classification.

LC classification was defined according to the classification schemes in FAO guide-
lines [47] where LC of the area was mapped using vegetation cover, type, and intensity of
cultivation. Following image post-processing through MLC, change detection was used
to quantify the rate, magnitude, and pattern of change [48]. Of the various change detec-
tion comparison procedures [49], post-classification comparison was applied to identify
intra-image LCC. This technique compares classifications of initial and final state images to
identify intra-image LCC. According to [49], for example, post-classification comparison
was the most accurate procedure.

Extending the analysis of trend and intensity of LCC, we used two indicators that
characterize LCC: LCC intensity index (LCI) and vegetation change index (VCI). LCI was
used to assess the intensity of LCC. The higher the absolute value of LCI for a specific
LC type, the more intense the LCC in the watershed and vice versa. For each LC type
considered, the value of LCI was calculated as the area of LCC divided by total watershed
area (Equation (1))

LCIi =
ai
A

∗ 100% (1)

where LCIi is the LCC intensity index ranging from 0 to 1; ai is change in area of LC type i
in km2; A is the total watershed area in km2.

The other important factor used to quantify the intensity of LCC and degree of vegeta-
tion restoration was the VCI (Equation (2)). VCI indicates the change in area of vegetation
(i.e., numerical sum of forest, shrub, medium, and high-coverage grassland) obtained from
time series LC maps. VCI values greater than zero show an increase in vegetation cover and
those less than 0 indicate a decrease in vegetation cover with a value of zero representing
unchanged vegetation cover.

VCI = R2 − R1 (2)

where R1 and R2 represent the initial and final vegetation cover in percent, respectively.

2.3. Accuracy Assessment

Prior to implementation of the error matrix approach to assess classification accu-
racy [50], we collected validation samples at all soil sampling points that were performed in
a grid scheme (see Figure 1, Section 3.2.2). In addition, LC training samples were collected
in areas where we identified different LC types. Error matrix was used to compare ground
truth data with the classified LC types for all satellite images (MSS 1973, TM 1984, TM
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1995, ETM + 2003, ETM+ 2008, and OLI 2018). It was also used to provide a detailed
assessment of the agreement between classified results and the reference data obtained in
the field observations.

The accuracy of image classification was carried out using a confusion matrix gener-
ated through GIS overlay of the classified maps and test samples. The measure of overall
accuracy is obtained by dividing the total number of correctly classified samples by the
total number of samples in the error matrix. The possible bias towards the LC category
with a larger number of samples was addressed by representative reference data points.
The image classification accuracy was further assessed by calculating the Kappa coefficient
(k̂), an estimate of overall agreement between image and the ground truth data with values
of k̂ ranging between 0 and 1 [51]. A k̂ value of 0 indicates no agreement between two
tests, while a value of 1 shows a perfect agreement. k̂ is often multiplied by 100 to give a
percentage measure of classification accuracy. k̂ values are also characterized into three
groupings: a value greater than 0.8 for strong agreement, a value between 0.4 and 0.8 for
moderate agreement, and below 0.4 representing poor agreement [50,52]. k̂ can be negative
indicating the level of agreement is less than would be expected just by chance.

k̂ =
N ∑r

i=1 Xii − ∑r
i=1 Xi+X+i

N2 − ∑r
i=1 Xi+X+i

=
θ1 − θ2

1 − θ2
(3)

θ1 =
r

∑
i=1

Xii
N

and θ2 =
r

∑
i=1

Xi+X+i
N2 (4)

where Xi+ is the sum of the ith row, X+i is the sum of the ith column, and Xii is the count of
observations at row i and column i, r is the number of rows or columns in the error matrix,
while N is the total number of observations in the error matrix.

2.4. Soil, Topography, and Land Cover Characterization
2.4.1. Soil Survey and Mapping

A combination of field and laboratory work was used to identify the relation between
LC and basic soil physicochemical properties. Such data were also used to establish
the distribution of soils for assessing land capability. Soil samples were collected from
systematically aligned 97 field plots (1 plot for each 1 km2 grid) by using soil sample pits
and description augers. Soil field survey and mapping followed the latest United States
Department of Agriculture natural resource conservation service norms and standards for
field mapping [53].

Through soil sampling, it was possible to estimate and characterize LC and soil
physical and chemical attributes at non-sampled sites through existing models. However,
because of the highly complex relationship among the unpredictable spatial patterns and
sampled soil spatial properties [54], implementation of probabilistic method admits some
uncertainty on the spatial variation and soil properties at the unmeasured sites; these are
considered to be outcomes of some random process [55], which are not achieved through
the deterministic method of soil characterization.

The surface map was built using Kriging (point iterations), which estimates the statis-
tical relationships among the sample points with the assumption that the distance between
sampling points reflects a spatial correlation that can be used to explain data variations [56].
The model first creates an empirical semi-variogram representing the variance for each pair
of observation points followed by adjustment of the model to fit the semi-variogram. The
methodology adopted in this study is presented in Figure 2, explaining how LC and soils
are mapped prior to assessing soil–LC–slope interactions.

For soil mapping, we implemented geostatistical analysis that elucidates soil spatial
pattern within the area and allows interpolation of soil variables to unmeasured locations
throughout the landscape using the variogram model in kriging. Variogram modeling
is an advanced geostatistical tool that generates an estimated surface from a scattered
set of points with z-values. Soil property prediction maps were created using a set of
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training data as input to Kriging point iteration, which works with the regionalized variable
theory [57]. The spatial variation is estimated using semi-variogram [58] computed from
soil samples collected from field and laboratory across the study area that followed a
gridded sampling scheme [56].

2.4.2. Relationship of Soil, Topography, and Land Cover

Soil sampling plot locations (at elevations between 2065 and 2947 m. a. s. l.) were
identified based on the LC map in a grid scheme (Section 3.2.1). Individual sampling
locations were chosen in such a way that pairs of composite soil samples (soil pits and
description augers) were taken at adjacent places in the same geomorphologic setting and
different LC types. This technique of sampling minimizes the pedogenetic variability in the
sampled soil [59]. In addition, informal interviews were held with the local community
to find out the cultivation period of each cultivated land to determine its impact on soil
physicochemical properties such as soil organic carbon [60,61]. In summary, a detailed soil
survey and onsite LC validation were performed in order to identify the relation between
terrain slope, LC, and soil type.

In furthering the soil–LC–terrain characterization, the magnitude and pattern of
soil’s physical and chemical attributes were mapped using the FAO [47] guidelines. As a
result of the complex slope–LC relationships among soil properties and the unpredictable
spatial pattern [54], deterministic method of soil characterization does not result in accurate
estimation. Probabilistic methods, on the other hand, show some uncertainty about how soil
properties could vary in space, and soil properties at the unmeasured sites are considered
to be outcomes of some random process [55]. In this regard, we used a class of geostatistical
technique to assess terrain–LC effects on the spatial distribution of soil properties. This
method provides a wide variety of tools for identification of data anomalies, spatial data
exploration, evaluation of errors in prediction of surface models, and creation of statistical
estimation and optimal surfaces [62]. Kriging point iteration technique was used to create
prediction maps from field training datasets and laboratory analysis results [57].

3. Results and Discussion
3.1. Land Cover Change

Regarding the field survey and the output of the Landsat image analysis, the final
Bayesian ML classification resulted in four major LC types with automatic merging of
the closer values of reflectance properties and characteristics. The LC maps of the study
area for the six reference years (Figure 3a, Table 2) indicated that only about 23.5% of the
watershed was under cultivation and grazing in 1973, while the remaining 76.5% was
predominantly covered by bush and mixed forest. Later on, agricultural land dominated
the other LC types. For example, cultivated land was nearly threefold by 1984 (Figure 3b,
Table 2), showing a near 17% increase in a decade, mainly at the expense of grazing and
bushland cover types that exhibited a rapid decrease amounting to nearly 5% and 16%,
respectively. In 1995, nearly 77% of the area was covered by bush and agricultural land,
of which around 40% of the total was intensively cultivated agriculture. By the year 2003,
nearly 42% of the total was covered by agricultural land.

Supervised classification of the 2008 Landsat image (Figure 3e) revealed that the
majority of the area was covered by agricultural and bushland cover types accounting for
nearly 43 and 46 percent of the total. On the other hand, grazing land and mixed forest
covered about 6% of the land area. In 2018, the outcome of image classification showed that
about 48% of the watershed was under cultivation (i.e., more than four times the area in
1973) and bushland and grazing land covered nearly 45% and 4% of the total, respectively
(Figure 3a, Table 2). There had also been a rapid decline in the grazing and mixed forest LC
types between 1973 and 2018. The grazing and mixed forest LC types that covered 13.5%
and 16.7% of the area in 1973, respectively, showed a considerable decrease to 4.1% and
2.3%, respectively, in 2018.
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Table 2. Change matrix for response of LC (km2, %) in the Batena watershed.

Years

LC Type
1973 1984 1995 2003 2008 2018

km2 % km2 % km2 % km2 % km2 % km2 %

Agriculture 11.7 10.0 31.0 26.6 46.0 39.5 48.3 41.4 50.2 43.0 56.5 48.4
Bushland 69.7 59.7 51.4 44.2 43.6 37.4 34.9 29.9 54.1 46.4 52.8 45.2

Grazing land 15.8 13.5 10.2 8.8 8.6 7.3 12.2 10.5 5.8 5.0 4.8 4.1
Mixed forest 19.5 16.7 23.9 20.5 18.4 15.8 21.2 18.2 6.6 5.6 2.7 2.3

Total area 116.7 116.7 116.7 116.7 116.7 116.7
Overall acc. 95.1 99.2 95.2 96.2 98.2 90.4

k̂ 92.3 98.4 93.3 97.8 97.1 93.2

Some other watershed and river basin scale studies conducted in the Ethiopian Rift
Valley basin support our finding that agricultural land has increased through time. For
example, an LCC study conducted in the central Rift Valley basin (10,320 km2 area) for a
period of 30 years (1985–2015) [63] indicated that there was a rapid increase in irrigable
land, large scale farming, and mixed cultivation accounting for 59% of the area. They also
noted that over the 30-year period, about 81% of the land showed major changes in LC.
Another study [18] conducted in two districts of the Ethiopian central Rift Valley indicated
that between 1973 and 2014, there was a significant increase in agricultural areas at the
expense of all other LC types. The results reported by [18] showed that between 1973 and
2014, the area of agricultural land increased from 11.0% to 47%, whereas the area of the
other three major LC types (i.e., forest, grassland, and woodland) declined by 6%, 13%, and
15%, respectively. A study in the Upper Dijo River watershed, on the midwest escarpment
of the Ethiopian Rift Valley [63], that aimed to detect the pattern of LCC for three decades
(1972–2004) supports this finding. This study highlighted that shrub and riverine trees
declined at rates of 21.5 and 16.3 ha per year, respectively, and agricultural land increased
at a rate of 12.5 ha per year.

From the result, it can be inferred that the increasingly noticeable changes in LC in the
Batena watershed can alter the fluxes of water, sediment, and other water constituents, which
result in significant changes in natural resources and the loss of biodiversity [14]. Conse-
quently, a fine-scale assessment (at watershed level) of the spatiotemporal status of LC and its
rate of change is of a paramount importance for developing environmental protection and
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sustainability plans [64]. However, though the study has been supported by field validation,
LCC assessment at a watershed level is still prone to classification errors. For example, this
rural watershed did not have a built-up LC type as the rural settlements were thinly dispersed
and sparsely populated. They were classified under the agricultural LC type.

In summary, as indicated in Figure 3, the agricultural areas stretched to a higher
altitude. This result is consistent with previous studies conducted to evaluate the impacts
of LULC with topography [65]. The extent of different LC types and their rate of change
during the study period are summarized in Table 2. In all the study periods, agricultural
land showed a progressive increase covering nearly 26.6%, 39.5%, 41.4%, 43%, and 48.4%
of the watershed total area in 1984, 1995, 2003, 2008, and 2018, respectively. Compared
to the rate of agricultural expansion in the first three decades (i.e., 1973 to 1995), the rate
of agricultural expansion in the watershed over the last few years has reduced. This
might be due to improved LC management following the greater practice of planting the
bush Ensete ventricosum (false banana). As a result, during the entire period of analysis,
1973–2018, some conversion of cultivated land to bush and plantation forests was indicated.

There were more active LCCs in the area in the first study period (1973 to 1984) than
during the period from 1984 to 1995. In the first decade, nearly half of the landscape
underwent LCC and 16.6% of the total that was once bush, forest, and grazing land in
1973 had been converted to agriculture in 1984. Table 2 summarizes the areas of the LC
types for six snapshots from 1973 to 2018, with classification accuracy expressed using
kappa coefficient (k̂).

Land Cover Change Intensity

The intensity of LCC and degree of vegetation restoration is quantified with the
VCI (Figure 4). The VCI quantitatively describes the dimension, status, and changes of
vegetation in an area over time based on the difference between two LC datasets. As
indicated in Figure 4, for example, a 24.4% change in vegetation between 1973 (1) and 2008
(5) was nearly two times the change that occurred between 1984 (2) and 2008. In addition,
the vegetation change index between 1973 (1) and 2018 (6) was about five times the change
between 1995 (3) and 2018 (6).
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Figure 4 shows the LCI values relating to LCC for each specific LC type, which can
also be represented in Figure 4b as the absolute value of change between two LC maps.
Regardless of the sign preceding the numbers, a higher numeric value of the LCI for a
specific LC type may indicate more intense LCC in the watershed. For example, as indicated
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in Figure 4 for agricultural land between 1973 and 2018, the intensity of LCC (38.4%) was
nearly twofold of the change between 1973 and 1984. This means that there was an intense
change in the agricultural LC type during the specified time. Similarly, between 1973 and
2018, the LCC intensity index for grazing land was 9.4% and dropped to 4.7% between
1984 and 2018.

In summary, change in LC intensity between two specific times is an indication of the
change in the magnitude of different LC types, which, in turn, may evidence anthropogenic
effects and a regime shift in socioeconomic activities [1]. This can also be evidenced from the
change in the magnitude of different LC types between two pairs of LC types as indicated
by the LCI values in Figure 4 below.

The change detection statistics shown in Table 3 provide a detailed tabulation of
changes between the initial state classes in the rows and the final state classes in the
columns. For each initial state class, the table indicates how these LC types were classified
in the final state image. To illustrate, between 1973 and 2018, agricultural land (+44.8)
showed an increase in the spatial neighborhood at the expense of grazing (−11.0), bush
(−16.9), and mixed forest (−16.9) LC types.

Table 3. LC transition matrix (km2) for the period 1973–2018.

Initial State
Final State (2018)

AL BL GL MF RT Gain

1973

AL 8.3 31.4 8.0 8.8 56.5 48.2
BL 2.6 33.3 6.8 9.9 52.8 19.4
GL 0.6 3.4 0.6 0.1 4.8 4.1
MF 0.1 1.5 0.3 0.7 2.7 1.9
CT 11.7 69.7 15.8 19.5 116.7
CC 3.4 36.3 15.1 18.8
ID 44.8 −16.9 −11.0 −16.9

1984

AL 21.0 27.2 4.3 3.9 56.5 35.4
BL 9.2 22.9 2.0 18.6 52.8 29.9
GL 0.4 0.4 3.9 0.03 4.8 0.9
MF 0.3 1.0 0.02 1.4 2.7 1.3
CT 31.0 51.4 10.2 23.9 116.7
CC 9.9 28.5 6.3 22.5
ID 25.5 1.3 −5.4 −21.2

1995

AL 34.2 17.2 3.1 2.0 56.5 22.2
BL 11.5 24.1 2.1 15.1 52.8 28.7
GL 0.2 1.1 3.4 0.02 4.8 1.4
MF 0.1 1.2 0.04 1.3 2.7 1.3
CT 46.0 43.6 8.6 18.4 116.7
CC 11.8 19.6 5.2 17.1
ID 10.4 9.1 −3.8 −15.8

2003

AL 29.7 11.9 5.6 9.3 56.5 26.8
BL 17.8 21.4 2.5 11.1 52.8 31.4
GL 0.4 0.2 4.1 0.1 4.8 0.7
MF 0.45 1.40 0.03 0.77 2.7 1.9
CT 48.3 34.9 12.2 21.2 116.7
CC 18.6 13.6 8.1 20.4
ID 8.2 17.8 −7.5 −18.5

2008

AL 46.0 7.3 0.6 2.6 56.5 10.5
BL 3.3 43.9 2.4 3.2 52.8 8.9
GL 0.9 1.6 2.3 0.0 4.8 2.5
MF 1.3 0.5 0.8 2.7 1.8
CT 50.2 54.1 5.8 6.6 116.7
CC 4.2 10.2 3.5 5.8
ID 6.3 −1.3 −1.0 −3.9

Note: descriptions of the notations are agricultural (AL), bush (BL), grazing land (GL), mixed forest (MF), class
total for the specific initial state (CT), class change for the specific initial state (CC), image difference for the specific
initial state (ID), and row total (RT).
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As indicated in Table 3, the image difference or net change (gain minus loss) was
positive for agricultural land for all six reference years at varying degrees and negative for
grazing and mixed forest LC types. In line with our findings, Girmay et al. [63] indicated
that there was a rapid increase in agricultural land in the central Rift Valley basin where our
study area is a contributing subcatchment. Other basin scale studies in the Ethiopian central
Rift Valley [18] and midwest escarpment of the Ethiopian Rift Valley [66] have also noted
that agricultural land has been increasing through time. According to Mengistu et al. [66],
for example, between 1972 and 2004, agricultural land increased at a rate of 12.5 hectare
per year.

3.2. Relationship of Soil, Topography, and Land Cover
3.2.1. Soil Spatial Analysis, Classification, and Mapping

Table S1 shows the ranking of qualifiers [53] based on the FAO reference soil group
guidelines [67]. Following the field soil survey, laboratory analysis, and descriptive augers,
seven soil taxa at the family level of the USDA soil taxonomy hierarchy were identified and
mapped. These soil types were chromic luvisol, chromic vertisol, haplic gleysol, humic
nitisol, lithic leptosol, ochric regosol, and pellic vertisol. Approximately 92% of the study
area was covered with three soil types: pellic vertisol (28.2%), chromic luvisol (30.2%), and
chromic vertisol (33.3%). The remaining soil classes (humic nitisol, haplic gleysol, lithic
leptosol, and ochric regosol) covered 8% of the area.

The relationship between soil, LC distribution, and terrain slope in the watershed
is illustrated in Figure 5. Agricultural lands were mostly located in regions of lower
altitude. The continuous conversion of different LC types into agricultural land had
squeezed bush and forest covers for all slope ranges from low (slope class 1) to very steep
(slope class 5) terrains. The conversion of LC was location dependent. To illustrate, on
the upper terrain slope of the watershed a slight change in LC was observed as opposed
to the major change on the lower slopes. Following the growing practice of planting the
bush Ensete ventricosum (false banana), there was a more variable trend in the bush LC type.
Soil–LC–slope relationships and the spatial variability in LC types can be collated based
on six snapshots (1973–2018) for five slope classes. For example, in 1973 (Figures 5 and 6),
25 ha of the agricultural area was topographically located in slope class 1 (slope ranging
from 0 to 2◦) and the specific soil type was chromic vertisol (VRx).
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As an important indicator of topography, terrain slope has a substantial effect on
LCC, thereby affecting soil fertility, and LC density and pattern. LC changed dramatically
in agriculturally accessible and arable soils (Figure 6) and remained relatively stable in
mountainous and poorly fertile soils [68]. The intensification of agricultural practices could
also be related to the acute shortage of land on the gentle slopes. Changes in LC are usually
accompanied by a decrease in the concentrations of soil organic carbon and nutrients and
also a deterioration in soil structure. Similar studies in other geographic locations [69,70]
have highlighted that in line with agricultural unsuitability, properties of dryness/wetness
and magnitude and the seasonal pattern of rainfall are the other possible variables to alter
the pattern and trend of LCC. This suggests that the management of any one of these soil
properties may yield unintended cascading effects throughout the soil subsystem.

According to the FAO [47], soils such as vertisols (VRx, VRp), luvisols (LVx), nitisols
(NTu), and gleysols (GLe) are fertile and highly suitable for agriculture. On the other
hand, leptosols (LPq) and regosols (RGe) are very weakly developed mineral soils in
unconsolidated materials that are extensive in eroding lands, in particular in arid and
semi-arid areas and mountain regions.

Figure 6 indicates that most of the land cover classes and soil types occur in the second,
third, and fourth slope classes, respectively. Agriculture and bushland accounted for the
majority of the land areas in the study area in general and in the middle slope classes
described above in particular (Table 2 and Figure 6). The proportion of agricultural land
cover increased in recent years (Figure 6 bottom panel) but that of bushland sustained a
significantly large share from the start. The increase in agricultural land cover happened
at the expense of the loss of forest and grazing lands. Pelvic vertisols, chromic vertisols,
and chromic leptosols dominate these slope classes. The size of land with extremely low
and high slope classes was small. However, even these small patches of land were used
for agriculture.

3.2.2. Terrain Effects on Soil Physicochemical Properties and Land Cover Distribution

As an important indicator of topography, slope gradient has a clear effect on the inten-
sity of soil erosion [71], thereby affecting soil fertility and patterns of LC (Figurs 3 and 7).
Steeper slopes generally have rapid runoff, less moisture entering the soil [72], and lower
crop productivity. Regarding the effect of slope under the different land cover status at any
point in the landscape, Tables S2 and S3 and Figure 7 illustrate the spatial relation between
slope and selected soil physicochemical properties, such as sand, clay, silt, available water
content (AWC), and soil organic carbon contents (OC). Considering the spatial variation in
soil’s AWC can help to define the amount of water stored in the root zone and determine
the length of time that a plant can survive between rain events. In order to evaluate the
impact of slope on soil texture (sand, clay, and silt), the OC and AWC, and the spatial
variation in each variable is presented in Figure 7. Changes in the OC and AWC are highly
related to variations in soil type and LC (Tables S2 and S3). For example, a highly leached
leptosol has low OC.

Other similar studies conducted in the north central highlands of Ethiopia [73] indicate
that the variation in these soil physicochemical properties is highly related to topographic
position and LC. According to their findings, for example, the lowest soil pH was observed
in the upper slope positions, which are forested areas characterized by high OC, while the
highest pH value was recorded on lower slope positions with low OC where cultivation
land was the dominant LC. Griffiths et al. [74] showed a clear association between topo-
graphical parameters such as slope, surface curvature, elevation, and LC and OC variation.
They reported that topography could influence soil physicochemical properties (OC, soil
depth, texture, and mineral contents), thereby affecting grain and biomass production.
Supporting our finding of the LC–soil property–slope relationships, Hu et al. [75] reported
a decrease in the OC and associated changes in the local microenvironment and soil nutri-
ents with LC conversions into agriculture and an increasing incidence of tillage. Scientific
evidences from different areas revealed similar patterns of soil property change.
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Further details of terrain effects on soil physicochemical properties and LC distribu-
tion can be found in Tables S2 and S3. The descriptive statistics of soil physical attributes
with altitude are also presented in depth in the Supplementary Materials (see Tables S1–S5
and Figure S1). The spatial distribution of LC was significantly affected by soil type and
fertility, and slope position. For example, in 2018, 19.8 ha of the agricultural area was
located in slope class 2 (slope ranging from 2 to 10◦) in a silty soil type 3 (i.e., abundance
between 22.7–27.5%). From field sampling and laboratory analysis results, we also pre-
sented the spatial correlation between soil’s physical and chemical properties using Pearson,
Spearman’s rho, and Kendall’s rank correlation coefficient for top and second soil layers
(Tables S4 and S5). Figure 7 illustrates the spatial relation of the selected soils’ physical and
chemical properties.

3.3. Socioeconomic Impacts of Land Cover Change

Through time, rapid population growth has been accompanied by the considerable
expansion in agricultural land, which has been noticeable in Ethiopia since the late half of
the 20th century [14]. According to Ariti et al. [18], the Central Rift Valley basin is typified
with agricultural expansion at the expense of all other LC types. In their findings, it was
indicated that between 1973 and 2014, the rate and magnitude of LCC for four major LC
types; water, forest, grass, and woodland declined by 3, 6, 13, and 15%, respectively, as a
result of a 36% increase in agricultural area. This dynamic change in LC has resulted in
significant socioeconomic pressures in the Ethiopian Rift Valley, which is home to many
unique aquatic and terrestrial ecosystems with documented evidence of natural resources’
degradation [14]. The degradation of natural resources and loss of biodiversity are therefore
the most visible socioeconomic and environmental problems in the Rift Valley lakes basin,
and put increasing pressures on many water bodies.
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Several other studies [14,76–79] have reported that LCC has considerable socioeco-
nomic impacts. For example, a study conducted in the Rib watershed that forms part of
the northwestern highlands of the Blue Nile basin of Ethiopia indicated multiple effects
of LCC in the area [22]. The authors [22] explained that LCC has significantly affected the
ecological and socioeconomic conditions of the watershed as it has been identified as one of
the most important causes of soil quality deterioration. Other studies conducted to identify
determinants of farmers’ adoption of land management practices in the northern highlands
of Ethiopia indicated that LCC accelerates the loss of topsoil and aggravates erosion [78].

Soil erosion resulting from changes in LC affects the environment in various ways [80,81].
For example, the conversion of LC types from either forest or bushland to agriculture
loosens the surface protection, provoking splash erosion and soil erodibility, especially in
steeper areas of the watershed [82], thereby increasing the loss of soil nutrients. The soil
eroded from upstream of the watershed is then routed downstream and accumulates in the
lower reaches through sedimentation. In addition to inadequate watershed management
practices, extensive agriculture in the upstream areas results in high runoff and sediment
accumulation in the downslope areas and river banks [83]. This is particularly critical in
the study area, a tributary of the Rift Valley lakes basin that drains to the Bilate river, which
later empties into Lake Abaya. For example, a basin scale LC assessment [63] in the central
Rift Valley showed that 81% of the land indicated major changes in LC, and the lake area
decreased by 2.31%. According to their findings, one of the Rift Valley lakes, Lake Abijata,
showed a progressive decline of 25.6%.

For the six LCC periods considered in this study (see Section 3.1), there has been
a significant change from bush and forest to agricultural LC. This change in LC from
vegetation into agriculture and the corresponding land disturbance accelerates soil erosion,
thereby bringing a reduction in soil infertility in the area. As detailed in the data and
methods supplemented by comprehensive results, and our analysis of the soil–topography
and LUC interactions, the findings of the research provide immense contributions to the
science in the field as they explain how agricultural land use has changed over the decades
at different topographies and soil types. Our findings basically show that agricultural
use expanded around fertile soils and the most suitable topography. This analysis is
essential to control land degradation, to prioritize areas for watershed management, and
mitigate the effects of future climate extreme events. Zenebe et al. [84] highlighted that
relating land use change with terrain dynamics could provide a platform to inform policy
makers towards land management decisions. Given such implications for basin-wide water
sustainability, we thereby suggest a continued undertaking of a long-term LULC study in
regional endorheic basins.

4. Conclusions

Over the last few decades, more than 90% of Ethiopian highlands have undergone
dramatic LCCs that have ultimately affected the country’s socioeconomic and environ-
mental situation. As with other parts of the country’s highlands, the study area in the
Great Rift Valley basin has undergone major changes in LC. In areas with heterogeneous
topography and where soil is spatially variable, the way we manage catchment LC alters
the fluxes of water, sediment, and nutrient balance. This effect is more pronounced in highly
rugged agrarian landscapes where there is a significant land disturbance and topographic
influences are dominant. Having a knowledge of soil properties and terrain attributes
associated with the prevailing anthropogenic LCC is vital for ensuring sustainable land
management. However, previous studies on the spatial variability in LC and soil properties
have either been site-specific, coarse in scale, or implemented pedo-transfer-functions
(PTFs) that neither accounted for environmental effects nor provided all the required
data inputs.

In this study, we assessed spatiotemporal land cover change and soil–landscape
relationships and mapped soil property spatial dynamics to understand landscape physico-
chemical processes. The significance of this study therefore stems from the method and



Remote Sens. 2022, 14, 3257 18 of 21

the findings achieved to parametrize scale effects. We explained the drawbacks of relying
on either coarse resolution data that assign the same attribute values for areas at different
gradients or site-specific and unreliable PTFs. We ascertained spatiotemporal variations in
landscape datasets through a rigorous field survey and laboratory analysis and developed
soil–LC relations for a tropical catchment in the Rift Valley basin where data are scarce.
Descriptive statistics were used to explore soil–terrain dynamics and to associate soil–land
use–terrain interactions.

The time series LCC (between the years: 1973, 1984, 1995, 2003, 2008, and 2018)
indicated that the area experienced an increase in agricultural land at the expense of
other LC types such as bushland, grazing land, and mixed forest, which attests to the
ongoing deforestation and drought. For example, agricultural land that covered 10% of the
watershed in 1973 had increased by nearly fivefold by 2018, accounting for 48.4% of the
area of the watershed. The study also characterized the soil–LC–topography interaction in
which we explored the effects of terrain characteristics on soil’s physicochemical properties
and the LC distribution in the area. The study results revealed that the spatial variability
in LCC was significantly affected by soil type and slope. We advise that similar studies
should be conducted in different environmental settings to check if similar patterns exist.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14143257/s1, see Table S1: soil classification; Tables S2 and S3:
soil–LU–slope interaction; Table S4: first soil layer; Table S5: second soil layer in the supplementary
excel file. A note for the value range of each of the soil physicochemical properties, slope range (◦),
and time series LCC is included. Figure S1: catchment characteristics and selected soil physico-
chemical properties. Catchment characteristics: slope and sampling sites, soils, and selected soil
physicochemical properties: sand (%), clay (%), silt (%), OM (%), EC (S/m), AWC, Ksat, MBD, Aspect,
and TI.
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