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Abstract 

Knee osteoarthritis accounts for 83% of the total osteoarthritis burden and is a 

growing musculoskeletal health problem. The condition significantly impacts health 

care systems, the workforce, and most importantly, individuals living with this 

condition. A contemporary understanding of knee osteoarthritis considers this 

condition in the context of the whole person. Symptoms of knee osteoarthritis can 

include joint pain, stiffness, sleep disturbance, lower limb weakness, altered 

movement patterns and emotional distress. The condition is associated with physical 

impairment and activity limitation that affect a person’s ability to participate in 

society. The most common activity limitations include walking, negotiating stairs, and 

transitioning to and from a chair. Some people with knee osteoarthritis avoid or 

reduce how often they engage in such an activity because it is painful or difficult to 

perform. 

Across a range of activities, people with knee osteoarthritis demonstrate altered 

movement patterns affecting kinematics, kinetics, and muscle activity. During 

activities such as walking, negotiating stairs, and transitioning to and from a chair, 

there are biomechanical parameters (movement parameters) that differentiate people 

with and without knee osteoarthritis. Some of these movement parameters include 

reduced knee flexion angles, increased knee adduction and flexion moments, as well 

as quadriceps-hamstrings co-contraction. Various movement parameters have been 

associated with increased risk of structural progression, activity limitation or pain as 

well as cognitive factors such as fear and reduced confidence. However, it is unclear if 

changes in movement patterns after an intervention are related to changes in clinical 

outcomes such as pain and activity limitation, and clinicians do not currently have a 

practical means of monitoring movement patterns outside of a clinical environment. 

The broad aims of the research in this doctoral thesis are to: (1) explore the 

relationship between a change in movement patterns and change in clinical outcomes 

following exercise interventions, and (2) investigate how wearable sensor technology 

could be used to monitor activity avoidance and altered movement patterns in people 

with knee osteoarthritis.  
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Study 1 – Systematic Review  

Background: Exercise is recommended in many clinical guidelines as a core 

intervention for people with knee osteoarthritis. Some types of exercise interventions, 

such as neuromuscular exercise and gait retraining, directly target changes in 

movement patterns, while other exercise interventions, including resistance training or 

general walking programmes, do not. All these various types of exercise have been 

shown to improve activity limitation and pain in randomised controlled trials. 

Exercise has the potential to modify movement patterns directly through changes in 

technique or indirectly through changes in muscle activity or reduced symptoms. 

While exercise has the potential to change movement patterns and improve clinical 

outcomes such as activity limitation or pain, it is unclear the extent to which there is a 

relationship between those two types of changes.  

Aim: To determine if there is a relationship between changes in movement 

patterns and activity limitation or pain after exercise interventions in people with knee 

osteoarthritis.  

Methods: Prospectively registered (PROSPERO CRD42020160164) systematic 

review using the PRISMA statement for reporting standards. Search: Four databases 

(MEDLINE, Embase, CINAHL and AMED) were searched up to 22 January 2021. 

Inclusion: Cohort studies and randomised controlled trials investigating exercise 

interventions for people with knee osteoarthritis that assessed changes in knee joint 

movement parameters and changes in the clinical outcomes of activity limitation or 

pain. Selection: Two reviewers independently examined titles, abstracts and full texts 

using Covidence. Outcomes: Changes in kinematic, kinetic and muscle activity 

parameters during functional activities and activity limitation or pain. Quality: 

Methodological quality was assessed using an adapted version of the Joanna Briggs 

Institute Risk of Bias Critical Appraisal Checklist and overall quality of evidence was 

assessed using the Grading of Recommendations, Assessment, Development and 

Evaluations (GRADE) Tool. Data analysis: A descriptive synthesis of studies that 

reported group mean change for both movement parameters and clinical outcomes, 

or a correlation between those outcomes.  
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Results: Data from 22 mostly low-quality studies were analysed involving 936 

participants. Eight knee joint moment, 15 kinematic and four muscle activity walking 

related movement parameters were investigated. No other activities had been 

investigated. Group mean change was reported in 20 studies for movement 

parameters and activity limitation or pain, and two studies reported correlations. 

There was a group-level change relationship (co-occurrence of change in both 

movement parameter and clinical outcome) 24.5% of the time a movement parameter 

was investigated, despite an improvement in clinical outcomes occurring 90% of the 

time. There was an individual-level change relationship in one of eight correlations 

tested across two studies.  

Discussion: There was an infrequent relationship between changes in 

walking-related movement parameters and changes in activity limitation or pain across 

studies. The exact nature of a change relationship is unclear because of the limited 

number of high-quality studies, methodological issues, limited biomechanical 

assessment of activities other than walking, and heterogeneous participant 

characteristics (e.g. structure, symptoms, behaviour, and cognitions). Collectively the 

findings suggest that: changes in walking-related movement parameters may be 

unrelated to improvement in clinical outcomes, or clinical phenotypes may exist 

where movement parameters are more clinically relevant and responsive to exercise 

interventions, in which case movement parameters and clinical outcomes would need 

to be more individualised to accommodate that heterogeneity, or exercise 

interventions may need to be more targeted. 

This study has been published:  

Tan, J.-S., Tikoft, E., O'Sullivan, P., Smith, A., Campbell, A., Caneiro, J. P., & Kent, 

P. (2021). The Relationship between Changes in Movement and Activity Limitation 

or Pain in People with Knee Osteoarthritis: A Systematic Review. Journal of Orthopaedic 

& Sports Physical Therapy, 51(10), 492-502. https://doi.org/10.2519/jospt.2021.10418 
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Study 2a – Human Activity Recognition 

 Background: People with knee osteoarthritis often avoid activities and 

demonstrate altered movement patterns that result in increased mechanical loading. 

Monitoring activity avoidance and altered movement patterns might be of clinical 

relevance in a proportion of the population with knee osteoarthritis. However, there 

are no systems that are accessible for clinicians to monitor activity avoidance or 

altered movement patterns of their patients in free-living environments (e.g. at home 

or work). Wearable sensor systems, such as inertial measurement units (IMUs), are a 

technology that could assist with monitoring patients in free-living environments. 

However, IMU data streams are long and unlabelled, and therefore do not provide 

contextual information about what activity a person is doing. Knowing what a person 

is doing is important for clinicians to make clinically informed decisions about activity 

avoidance and for meaningful biomechanical analysis. Machine learning, a form of 

artificial intelligence, is one data handling approach that can be used to process IMU 

data. 

Aim: To develop a human activity recognition system to classify clinically 

important activities (walking, negotiating stairs and transitioning to and from a chair), 

and phases of activities using raw IMU training data from people with knee 

osteoarthritis.  

Methods: IMU data was collected from 18 participants with knee osteoarthritis 

performing clinically important activities. Convolutional neural network (machine 

learning) models were trained to predict three levels of classification – activity, 

direction, and phase. 

Results: The model accuracy was 85% at the first level of classification (activity 

– walk, stair, chair), 89% to 97% at the second (direction of movement – stand to sit/sit-

to-stand, ascend/descend stairs) and 60% to 67% at the third level (swing or stance 

phase) for walking and ascending/descending stairs). 

Discussion: This study was the first to develop a machine learning system for 

human activity recognition using IMU data collected from people with knee 

osteoarthritis. Clinically, data from the first and second levels of classification have 
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the potential to be used to monitor activity avoidance in people with knee 

osteoarthritis. Labelled data from the second and third level of classification is 

potentially suitable for use as part of a data handling pipeline for subsequent 

biomechanical analysis. 

This study has been published:  

Tan, J.-S., Beheshti, B. K., Binnie, T., Davey, P., Caneiro, J. P., Kent, P., . . . 

Campbell, A. (2021). Human Activity Recognition for People with Knee 

Osteoarthritis—a Proof-of-Concept. Sensors, 21(10). 

https://doi.org/10.3390/s21103381 

 

Study 2b – Sagittal Plane Angular Prediction 

 Background: When walking, negotiating stairs and transitioning to and from 

a chair, people with knee osteoarthritis often use less knee flexion. IMU systems 

typically integrate data from an accelerometer, gyroscope, and magnetometer using 

fusion algorithms to output meaningful information like knee flexion angles. 

However, in free-living environments, electromagnetic interference can affect 

magnetometer data and impact the validity of kinematic outputs. As an alternative to 

the use of fusion algorithms and magnetometer data, machine learning has been used 

to handle raw data from IMU’s accelerometers and gyroscopes to predict knee joint 

kinematics in young, healthy people for the activity of walking. No studies have yet 

trained a machine learning model on IMU data collected from people with knee 

osteoarthritis to predict sagittal plane kinematics for multiple clinically important 

activities using data collected from people with knee osteoarthritis. 

 Aims: To (a) develop machine learning models for the prediction of sagittal 

plane angular kinematics for multiple clinically important activities using IMU data 

collected from people with knee osteoarthritis, and (b) explore the model 

performance of a single-leg model (two IMUs on a single leg), compared to a double-

leg model (four IMUs across two legs).  
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Methods: Simultaneous IMU and Vicon data were collected from 17 

participants with knee osteoarthritis performing clinically important activities. 

Bidirectional long-short term memory (machine learning) models were trained to 

predict sagittal plane angular kinematics for phases of walking, negotiating stairs, and 

transitioning to and from a chair.  

 Results: The single-leg model was more accurate than the double-leg model 

for walking and negotiating stairs, while the double-leg model was more accurate for 

transitioning to and from a chair. The prediction error for the single-leg model ranged 

from RMSE = 7° to 11° and Pearson’s r = 0.89 to 0.99. The prediction error for the 

double-leg model ranged from RMSE 7° to 13° and Pearson’s r = 0.74 to 0.99. 

 Discussion: This study was the first to develop kinematic prediction models 

for multiple clinically relevant activities for people with knee osteoarthritis. The 

prediction model was designed to be incorporated into a larger IMU data handling 

pipeline. Kinematic prediction would be preceded by the labelling of activities and 

activity-phases of multiple clinically important activities using a human activity 

recognition algorithm. This study also demonstrated that performance of single-leg 

and double-leg models may depend on the type of activity being performed.  The 

double-leg model outperformed the single-leg model for symmetrical activities (e.g. 

sit-to-stand), whereas the single-leg model outperformed the double-leg model for 

asymmetrical activities (e.g. walking and negotiating stairs). The number of required 

IMUs used for training each model has implications for patient and clinician burden.  

This study has been published:  

Tan, J.-S., Tippaya, S., Binnie, T., Davey, P., Napier, K., Caneiro, J. P., . . . Campbell, 

A. (2022). Predicting Knee Joint Kinematics from Wearable Sensor Data in People 

with Knee Osteoarthritis and Clinical Considerations for Future Machine Learning 

Models. Sensors, 22(2). https://doi.org/10.3390/s22020446 
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Study 2c – Moment and Force Prediction 

 Background: An increase in frontal and sagittal plane loading during the 

stance phase of walking is associated with structural progression of medial knee 

osteoarthritis and increased pain. Knee joint moment and forces have the potential to 

change in some people with knee osteoarthritis in response to biomechanical 

interventions such as exercise. Yet, clinicians do not currently have the ability to 

objectively assess knee joint loading in free-living environments.  

Movement patterns across the population with knee osteoarthritis are diverse. 

This heterogeneity may undermine the model performance of machine learning based 

biomechanical predictions for population-based models tested on an individual. 

Machine learning models are commonly tested on participants whose data are not 

included in training the model. However, individualising biomechanical prediction 

models may help to accommodate heterogeneity in a clinical environment. One 

method of individualising prediction models involves adding some of the test 

participants data to the training dataset (that includes all other study participants), 

resulting in a more individualised model. It is also unclear if training a machine 

learning model on single-leg or double-leg data for the prediction of knee moments 

and forces might affect model performance.  

Aims: To (a) develop machine learning models for the prediction of knee joint 

moments and forces for the stance phase of walking from IMU data collected from 

people with knee osteoarthritis, (b) explore model performance at the level of 

individual participants when training data from that participant is added to the 

training phase of a model trained on all other participants, and (c) explore 

performance of a single-leg model compared to a double-leg model.  

Methods: IMU and Vicon data were collected from 17 participants with knee 

osteoarthritis performing clinically important activities. Bidirectional long-short term 

memory (machine learning) models were trained to predict knee adduction and 

flexion moments as well as compression and medial force for the stance phase of 

walking. 
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Results: Individualised models outperformed non-individualised models by 

normalised RMSE values of 9% to 36%. Double-leg models outperformed single-leg 

models by normalised RMSE 1% to 23%. The strongest model performance 

(individualised double-leg model) ranged from normalised RMSE 16% to 23%, 

Pearson’s r = 0.80 to 0.86. 

Discussion: Individualising prediction models improved machine learning 

model prediction performance for knee moments and forces in a population with 

knee osteoarthritis. Double-leg models outperformed single-leg models, suggesting 

that for optimal results, kinematic and kinetic prediction models may differ in IMU 

placement requirements across lower limbs. The kinetic prediction models were 

designed to be used secondary to human activity recognition and may assist clinicians 

to monitor patients who demonstrate biomechanical loading risk factors related to 

structural progression of knee osteoarthritis. If individualised prediction models were 

to be implemented in clinical practice, there are some options about of how this 

might occur without access to an appropriate motion analysis reference standard.  

This study is under review. 

 

Conclusion 

 This doctoral thesis adds knowledge to the current understanding of the 

relationship between movement patterns and clinical outcomes in people with knee 

osteoarthritis, and how movement data from IMU technology can be processed with 

machine learning algorithms for clinically relevant applications. At a group level, a 

change in movement patterns and clinical outcomes after exercise interventions were 

infrequently related. However, there were several methodological limitations in the 

existing literature that precluded a deeper understanding of the relationship between 

how people move and their clinical outcomes. There remains the possibility that for a 

biomechanical phenotype a change in movement pattern is clinically important, but 

this has not yet been tested thoroughly. 
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 Human activity recognition and biomechanical prediction models were 

developed as a proof-of-concept for the development of an automated data handling 

pipeline for IMU data collected from people with knee osteoarthritis. These models 

were developed to predict clinically important activities and movement parameters. 

As the foundation of a data handling pipeline, the models could be integrated into a 

system that provides information about activity avoidance or altered movement 

patterns in free-living environments. The research into human activity recognition 

and biomechanical prediction for clinical populations is in its early stages and there 

are substantial clinical and machine learning considerations that require attention 

prior to clinical implementation. Sensor based technology together with machine 

learning has significant potential to assist with patient monitoring to assess physical 

function, assist telehealth, provide automated biofeedback, and enhance 

biomechanical risk prediction. Such systems could facilitate clinical research to help 

establish the relationship between changes in biomechanics and clinical outcomes at 

an individual person-level in response to intervention. 
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Chapter 1  

Thesis Introduction 

 

1.1 Background 

Knee osteoarthritis is a growing problem and a leading cause of musculoskeletal 

disability worldwide (Safiri et al., 2020; Vos et al., 2012). The impact of the condition 

on the individual is characterised by symptoms including pain, joint stiffness, sleep 

disturbance, lower limb weakness, and emotional distress (Hawker et al., 2008; Wallis 

et al., 2019). Symptoms result in disability characterised by activity limitation 

performing daily activities and participation restriction when performing activities in 

society (World Health Organization, 2002).  

People with knee osteoarthritis most commonly report activity limitation with 

the activities of walking (Machado et al., 2008; Wallis et al., 2019; Wilkie et al., 2007), 

negotiating stairs and transitioning to and from a chair (Machado et al., 2008; Wallis et 

al., 2019; Wilkie et al., 2007). There is consistent evidence in the literature that 

indicates that people with knee osteoarthritis have different movement patterns when 

performing those activities compared to people who do not have knee osteoarthritis 

(Iijima et al., 2018; Mills et al., 2013; Sonoo et al., 2019; van Tunen et al., 2018). 

Movement patterns are characterised by the differences in specific movement 

parameters such as knee adduction and flexion moment (Iijima et al., 2018; Mills et 

al., 2013; Sonoo et al., 2019; van Tunen et al., 2018), knee flexion angle (Iijima et al., 

2018; Mills et al., 2013; Sonoo et al., 2019),  and hamstring-quadriceps co-contraction 

(Iijima et al., 2018; Mills et al., 2013). Some of these movement patterns have been 

found to be associated with structural progression (Chang et al., 2015; Chehab et al., 

2014; Hodges et al., 2016), activity limitation and pain (Hall et al., 2017; Nebel et al., 

2009; O'Connell et al., 2016).  

Exercise is a core guideline recommendation for people with knee osteoarthritis 

(Bannuru et al., 2019). Some exercise interventions such as neuromuscular exercise 
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(Ageberg & Roos, 2015) and gait retraining (Richards et al., 2017) target movement 

patterns directly, while other interventions like progressive resistance training 

(Foroughi et al., 2011a) or walking programmes (Hunt et al., 2018) do not. Most 

commonly, the purpose of targeting movement patterns is to change or normalise 

specific movement parameters that are associated with structural progression, activity 

limitation or pain. Exercise that aims to change movement patterns have 

demonstrated efficacy for improving activity limitation and pain in randomised 

controlled trials (Bennell et al., 2010; Bennell et al., 2014; Hunt et al., 2018). However, 

the literature is mixed when exploring if movement patterns change, and therefore it 

is unclear if there is a relationship between changing movement patterns and clinical 

outcomes of activity limitation and pain after exercise interventions. 

In clinical research the gold-standard equipment for assessing movement 

patterns in people with knee osteoarthritis requires optoelectronic systems for 

collecting kinematic data, and with the addition of force-plates kinetic data can also be 

obtained. However, there is some indication in the literature that people do not 

perform activities in the same way when they are observed (e.g. in a research or 

clinical environment), compared to when they are unobserved in free-living 

environments (e.g. at home or work) (Brodie et al., 2017; Brodie et al., 2016; Del Din 

et al., 2016; Dreischarf et al., 2016; Renggli et al., 2020; Robles-García et al., 2015; 

Weiss et al., 2011).  

Over the past 25 years there has been growing research interest in wearable 

sensor systems (Picerno, 2017). While there is growing commercially available 

wearable sensors such as inertial measurement units (IMUs), clinical uptake is slow. 

There are limitations using IMUs to collect movement-based data in free-living 

environments. IMU software most commonly uses fusion algorithms to integrate data 

from onboard hardware that includes triaxial accelerometers, gyroscopes, and 

magnetometers (Weygers et al., 2020). Calibration is required to mitigate known 

errors that occur in the gyroscope and magnetometer, and that is a burden for the 

user. More importantly, electromagnetic interference can reduce the reliability of IMU 

measurements particularly in free-living environments where it is not possible to 
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control the magnetic field. It is also not possible to directly record kinetic data in free-

living environments using IMUs alone.  

There is significant growing interest in advanced computation approaches such 

as machine learning for handing IMU data. Monitoring of IMU data in free-living 

environments has the potential to provide clinicians and researchers information 

about activity avoidance (reduced movement quantity) and altered movement patterns 

(altered movement quality). An example of activity avoidance is someone using a 

elevator, rather than stairs, due to knee pain. An example of an altered movement 

pattern is a ‘quadriceps avoidance pattern’ in walking (Al-Zahrani & Bakheit, 2002; 

Fisher et al., 1997; Messier et al., 1992). Machine learning is a branch of artificial 

intelligence where a model containing specific algorithms is designed to predict a 

specific outcome based on previous training. IMU data streams collected in free-living 

environments are long and do not include automated labelling of activities that would 

provide context about which activity the wearer was performing. One way to 

automate labelling of IMU data would be through teaching a machine learning 

algorithm to predict which activities were being performed, a concept known as 

‘human activity recognition’. There are a significant number of studies that have 

developed human activity recognition machine learning models, but the majority have 

investigated only healthy participants (Albert et al., 2012; Arif & Kattan, 2015; 

Ascioglu & Senol, 2020; Cust et al., 2019; Dobkin, 2013; Fridriksdottir & Bonomi, 

2020; Hendry et al., 2020; Qi et al., 2018; Ramanujam et al., 2021; Jindong Wang et al., 

2019). Because people with knee osteoarthritis move differently to healthy controls, 

machine learning models trained on IMU data from healthy participants may lack 

validity. Previous studies have established poorer prediction accuracy for systems not 

trained on the intended population (Albert et al., 2012; Emmerzaal et al., 2020; Lonini 

et al., 2016). Despite growing interest in development of machine learning human 

activity recognition models, there appears to be no studies investigating this approach 

in people with knee osteoarthritis.   

Other machine learning studies have focused on predicting specific movement 

parameters from IMU data. While the majority of studies have investigated healthy 

participants, there are a handful of studies that have investigated prediction of 
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kinematic and kinetic parameters in people with knee osteoarthritis (He et al., 2019; 

Renani et al., 2021; Renani et al., 2020; Wang et al., 2020). However, those studies 

developed models only for walking, and not for other clinically relevant activities such 

as negotiating stairs and transitioning to and from a chair. These previous models 

were designed as knee osteoarthritis population-based models, which in theory is 

generalisable to people matching the inclusion and exclusion criteria. However, none 

of those studies investigated the effect of personalising models to potentially refine 

the prediction accuracy.  

Implementation of machine learning models for IMU data in clinical practice 

would require a pipeline-based approach to data handling. Despite this, standalone 

machine learning models are commonly reported in the literature. Therefore, there are 

calls for development of IMU data handling pipelines that output data about both 

human activities and clinically important movement parameters (Kobsar et al., 2020). 

To date, there is only one study that has developed such a pipeline, although that 

system was only validated on healthy participants rather than people with knee 

osteoarthritis (Emmerzaal et al., 2020).  

1.2 Statement of the Problem 

Activity limitation and pain are common in people with knee osteoarthritis and 

exercise interventions are recommended in clinical guidelines to improve those 

outcomes. However, it is unclear if changes in movement patterns after exercise 

interventions are associated with changes in activity limitation or pain across a range 

of activities, movement parameters and types of exercise. While people with knee 

osteoarthritis frequently avoid painful activities and exhibit altered movement 

patterns, clinicians do not have objective means of monitoring the actual performance 

of activities or movement patterns outside of a clinical or research environment.   
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1.3 Thesis Aims 

The broad aims of the research in this doctoral thesis are to: 

1. Explore the relationship between a change in movement patterns and 

change in clinical outcomes following exercise interventions; and  

2. Investigate how wearable sensor technology could be used to monitor 

activity avoidance and altered movement patterns in people with knee 

osteoarthritis.  

1.4 Structure of Thesis 

This thesis is comprised of seven chapters and a series of appendices.  

Chapter 1 introduces the problem of knee osteoarthritis and the current 

evidence about the relationship between movement patterns and clinical outcomes, 

limitations of current motion analysis systems and how machine learning that uses 

IMU data could address those limitations.  

Chapter 2 presents a literature review detailing the prevalence and impact of 

knee osteoarthritis as well as exploring the relationship between common activity 

limitation, symptoms and movement patterns associated with the condition. Various 

methods that provide information about physical function are explored. IMU 

technology is explored in the context of benefits and limitations and how machine 

learning may help to overcome those limitations.  

Chapter 3 contains a systematic review investigating the relationship between a 

change in knee related movement parameters and change in clinical outcomes 

(activity limitation or pain) after exercise interventions. This study was published in 

the Journal of Orthopaedic & Sports Physical Therapy. 

Chapter 4 reports the development and validation of a machine learning human 

activity recognition system for people with knee osteoarthritis to classify clinically 

important activities (walking, negotiating stairs and transitioning to and from a chair) 

and directions and phases of those activities. This study was published in the 

journal Sensors. 
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Chapter 5 outlines the development and validation of a machine learning 

kinematic prediction model for multiple clinically important activities (walking, 

negotiating stairs and transitioning to and from a chair). This study was published in 

the journal Sensors.  

Chapter 6 describes the development and validation of a machine learning 

kinetic prediction model for the stance phase of walking. This study has been 

submitted to a journal and is under review. 

Chapter 7 is a discussion of the main findings of the thesis. The main findings 

from the studies within this thesis are explored within the context of individualised 

assessment and management in clinical practice and research. Opportunities and 

challenges of implementing machine learning data handling pipelines for IMU data 

will be described with a focus how the findings from this thesis may inform future 

clinical practice and research.  
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Chapter 2  

Literature Review 

 

This chapter aims to review the scientific literature about (a) the pathology, 

burden and risk factors of knee osteoarthritis, (b) the relationship between movement 

patterns and clinical outcomes, (c) interventions for knee osteoarthritis with a focus 

on interventions that target a change in movement patterns, (d) monitoring outcomes 

in people with knee osteoarthritis, (e) using inertial measurement units to measure 

physical function in people with knee osteoarthritis, and (f) using machine learning 

for processing inertial measurement unit data for human activity recognition and 

biomechanical analysis.  

 

2.1 Knee Osteoarthritis 

2.1.1 Pathology and Diagnosis of Knee Osteoarthritis 

The Osteoarthritis Research Society International (OARSI) defines the 

pathology of osteoarthritis as: 

 “…[a] disorder involving movable joints characterised by cell stress and 

extracellular matrix degradation initiated by micro- and macro-injury that activates 

maladaptive repair responses including pro-inflammatory pathways of innate 

immunity. The disease manifests first as a molecular derangement (abnormal joint 

tissue metabolism) followed by anatomic, and/or physiologic derangements 

(characterised by cartilage degradation, bone remodelling, osteophyte formation, joint 

inflammation and loss of normal joint function), that can culminate in illness.” (Kraus 

et al., 2015) 

While the definition of osteoarthritis as a pathology is biomedical in nature, the 

clinical presentation requires consideration of a range of biopsychosocial factors 

(Caneiro, O'Sullivan, et al., 2020; Hunter, 2018; Kittelson et al., 2014). Knee 

osteoarthritis arises from a combination of modifiable and non-modifiable risk factors 

that relate to inflammation and subsequent reduction in cartilage tissue quality 
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(Mobasheri & Batt, 2016). Traditionally, a diagnosis of knee osteoarthritis was 

obtained through medical imaging (Kellgren & Lawrence, 1957); however, medical 

imaging alone does not assist in determining symptomatic pathology. Therefore, 

multiple guidelines recommend diagnosing knee osteoarthritis through a combination 

of clinical features that include: (a) >45 years of age, (b) activity-related joint pain and 

(c) no morning joint stiffness > 30 minutes (National Institute for Health & Care 

Excellence, 2014; Zhang et al., 2010). Nonetheless, imaging is frequently considered 

for grading the structural severity of knee osteoarthritis. One of the most widely used 

grading systems for clinical research is the Kellgren-Lawrence system that grades 

osteoarthritis from 0 (none) to 4 (severe) (Kellgren & Lawrence, 1957). 

2.1.2 Burden of Knee Osteoarthritis 

2.1.2.1 Impact to Society 

In Australia, from the 2017 to 2018 estimates, osteoarthritis affects 2.2 million 

people, which equates to approximately 9.3% of the population, with increasing 

prevalence with age (Australian Institute of Health and Welfare, 2021). Similarly, in 

the United Kingdom for adults over the age of 25 years of age, it is estimated the 

prevalence of knee osteoarthritis is 10.7% (Swain et al., 2020), and 13.4% in the 

United States (Cisternas et al., 2016). Knee osteoarthritis accounts for 83% of the 

total osteoarthritis burden (Vos et al., 2012) and is one of the leading causes of 

musculoskeletal disability worldwide (Safiri et al., 2020; Vos et al., 2012), with a 

pooled global prevalence of 16% in people over 15 years of age (Cui et al., 2020). 

In Australia, the number of people with of osteoarthritis has been forecast to 

increase from 2.2 million in 2015, to 3.1 million by 2030, resulting in a projected 

39.3% increase in health care costs related to increased disability burden and demand 

for health care services (Ackerman et al., 2018). A significant component of the 

increasing health care costs is related to the projected 275% increase in the number of 

joint replacements performed in Australia by 2030 (Ackerman et al., 2019). The 

increase in knee surgery is proposed to be unsustainable (Ackerman et al., 2019) and 

result in significant implications for the healthcare workforce. 
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2.1.2.2 Impact to the Individual 

Knee osteoarthritis is a threat to healthy ageing and is associated with obesity 

(Silverwood et al., 2015), cardiovascular disease (Calvet et al., 2016) and physical 

inactivity (Dunlop et al., 2011; Skou et al., 2018). Disability associated with knee 

osteoarthritis also affects the broader economy and personal finances as those with 

the condition are at higher risk of work loss compared to those without the condition 

(Sharif et al., 2016). 

Knee osteoarthritis is a ‘whole person condition’ that is influenced by a 

combination of biological, psychological and social factors, which interact to 

influence both the pathology and lived experience of the condition (Caneiro, 

O'Sullivan, et al., 2020). Common symptoms of knee osteoarthritis include pain, joint 

stiffness, sleep disturbance, lower limb weakness, and emotional distress, although the 

individual experience of people who have knee osteoarthritis is variable (Hawker et 

al., 2008; Wallis et al., 2019). These symptoms result in limitations of physical 

function (activity limitation) and social roles (participation restriction) (Hawker et al., 

2008; Wallis et al., 2019). Activity limitations are “difficulties an individual may have in 

executing activities”, while participation restrictions are “problems an individual may 

experience in involvement in life situations” (World Health Organization, 2002). The most 

common activity limitations in people who have knee osteoarthritis include walking 

(Machado et al., 2008; Wallis et al., 2019; Wilkie et al., 2007), negotiating stairs and 

transitioning to and from a chair (Machado et al., 2008; Wallis et al., 2019). 

Subsequently, these activity limitations can result in participation restrictions that 

includes difficulty with transportation, socialising, work, and recreational activities 

(Wallis et al., 2019).  

2.1.3 Risk Factors for Progression of Knee Osteoarthritis 

Part of the solution for the increasing prevalence and costs associated with knee 

osteoarthritis includes improved ability to assess and manage risk factors associated 

with progression of structural progression, symptoms, and activity limitation. There is 

a complex interplay of biopsychosocial risk factors related to progression of structural 

changes as well as clinical outcomes such as activity limitation and pain. Structural 

progression of knee osteoarthritis has been reported to be related to the following 
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factors: female sex (Silverwood et al., 2015), age, multisite osteoarthritis, high body 

mass index (BMI)/obesity (Chapple et al., 2011), previous injury (Poulsen et al., 2019; 

Silverwood et al., 2015), occupational demands (Canetti et al., 2020), quadriceps 

weakness (Øiestad et al., 2022), radiographic varus alignment (Brouwer et al., 2007; 

Chapple et al., 2011), and knee biomechanics during walking (Chang et al., 2015; 

Chehab et al., 2014).  

In contrast, progression of activity limitation and pain in people with knee 

osteoarthritis has been reported to relate to depression (de Rooij et al., 2016; Previtali 

et al., 2020; Zheng et al., 2021), quadriceps weakness (Culvenor et al., 2017), higher 

baseline pain, bilateral symptoms (de Rooij et al., 2016), lower education, and 

comorbidities (Previtali et al., 2020). The salience of particular biopsychosocial risk 

factors varies between and within individuals over time, underpinning the need for 

individualised assessment and management. 

2.1.3.1 Biomechanical Risk Factors in Knee Osteoarthritis 

Biomechanical features such as quadriceps weakness (Culvenor et al., 2017; 

Øiestad et al., 2022), radiographic alignment (Brouwer et al., 2007; Chapple et al., 

2011), and specific movement parameters during walking (Chang et al., 2015; Chehab 

et al., 2014; Hall et al., 2017; Henriksen et al., 2012; Hodges et al., 2016; Nie et al., 

2019) have been implicated as risk factors in people with knee osteoarthritis. 

The risk of structural progression of medial compartment knee osteoarthritis is 

associated with increased medial knee load during walking (Chang et al., 2015; Chehab 

et al., 2014) and static varus radiographic alignment (Brouwer et al., 2007; Chapple et 

al., 2011). In a small sample of 16 participants with knee osteoarthritis, Chehab et al. 

(2014) reported moderate correlations (R2 = 0.6, p = 0.01) between medial-to-lateral 

femoral cartilage thickness ratio and baseline knee adduction moment, knee flexion 

moment and pain over five years. Similarly, in a prospective longitudinal study of 391 

knees (204 people), Chang et al., (2015) reported that larger knee adduction moment 

and knee adduction moment impulse were associated with reduced cartilage thickness 

over two years. Longer duration of medial co-contraction of quadriceps and 

hamstrings has also been implicated in structural progression, which results in 
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increased medial load during walking, is also predictive of medial tibial cartilage loss 

(Hodges et al., 2016).  

These risk factors are important, because they are potentially modifiable 

through a range of non-surgical interventions (see section 0), although clinicians are 

unable to routinely assess three-dimensional biomechanics as part of their clinical 

practice (see section 2.3.2.2). 

2.1.4 Movement Patterns in People with Knee Osteoarthritis 

People with knee osteoarthritis display movement patterns that differentiate 

them from those without osteoarthritis during activities such as walking (van Tunen 

et al., 2018), sit-to-stand (Sonoo et al., 2019; Turcot et al., 2012) and negotiating stairs 

(Iijima et al., 2018). In clinical biomechanics research, a person’s movement pattern 

(i.e. any possible combination of movement parameters) can be evaluated by 

measuring kinetic, kinematic and/or muscle activity movement parameters. The 

methods for conducting biomechanical analysis are discussed in more detail in section 

2.3.2.2.  

Movement parameters that distinguish people who have knee osteoarthritis 

from healthy control groups include: (a) increased medial knee joint loading (reported 

as knee adduction moment) (Heiden et al., 2009; Mills et al., 2013; Sparkes et al., 

2019; van Tunen et al., 2018), (b) reduced sagittal plane range of movement 

(Bouchouras et al., 2015; Heiden et al., 2009; Hinman et al., 2002; Iijima et al., 2018; 

McCarthy et al., 2013; Mills et al., 2013; Segal et al., 2013) and (c) increased co-

contraction of the quadriceps and hamstrings (Heiden et al., 2009; Hodges et al., 

2016; Mills et al., 2013). Table 2-1 provides a summary of studies that have 

investigated differences in movement parameters between people with knee 

osteoarthritis compared to healthy controls for a range of clinically relevant activities. 
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Table 2-1. Studies investigating differences in movement patterns between 
people with and without knee osteoarthritis. 

Movement 
parameter 

Activity 

Walking 
Negotiating 
stairs/step 

Sit-to-stand/ 
stand-to-sit 

Kinetic 

Knee adduction 
moment  

 

(Heiden et al., 2009; 
Sparkes et al., 2019; van 
Tunen et al., 2018) 

 

(Sparkes et al., 2019) 

 

Knee flexion 
moment 

 

(Heiden et al., 2009; 
Mills et al., 2013; 
Sparkes et al., 2019) 

 

(Iijima et al., 2018) 

 

(Epifanio et al., 2008; 
Sonoo et al., 2019; 
Turcot et al., 2012) 

Kinematic 

Knee flexion 
angle 

 

 

(Heiden et al., 2009; 
McCarthy et al., 2013; 
Mills et al., 2013) 

 
 
 
(Hinman et al., 2002; 
Iijima et al., 2018) 

 
 
 
(Bouchouras et al., 
2015; Segal et al., 2013; 
Sonoo et al., 2019) 

Muscle activity 

Hamstring/ 
quadriceps co-

contraction 

 

(Heiden et al., 2009; 
Hodges et al., 2016; 
Mills et al., 2013) 

  

 
Hamstring/ 
quadriceps 

muscle timing 

  
(Hinman et al., 2002; 
Iijima et al., 2018) 

 

As discussed in the previous section, some movement patterns are related to 

risk of structural progression of knee osteoarthritis (Chang et al., 2015; Chehab et al., 

2014; Hodges et al., 2016). There is also some evidence that some movement patterns 

during walking are related to pain severity (Hall et al., 2017; Henriksen et al., 2012; 

Nie et al., 2019; O'Connell et al., 2016). For example, in a cross-sectional study by 

(O'Connell et al., 2016), 65 participants were categorised into four different levels of 

pain severity (none, mild, moderate/severe) using the Western Ontario and McMaster 

Universities Osteoarthritis Index (WOMAC) pain subscale. The group with 

moderate-severe pain demonstrated significantly higher peak knee flexion moment 

during midstance than those without pain (O'Connell et al., 2016). That same study 

also demonstrated weak evidence (p = 0.06) of a difference between participants with 

no pain, mild pain, and moderate-severe pain for peak knee flexion angle during 

weight acceptance. Increased knee flexion was observed for those who are 

symptomatic when controlling for radiographic severity and gait speed (O'Connell et 
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al., 2016). Those findings suggest that with a modestly larger sample size, the result 

may be statistically significant. 

Recently it has been reported that there is a stronger link between knee 

kinematics during walking and clinical outcomes (activity limitation and pain), than 

between severity of structural changes and clinical outcomes (Bensalma et al., 2022). 

They conducted a secondary analysis of baseline randomised controlled trial data 

from 415 participants with knee osteoarthritis. Using canonical correlation analysis (a 

form of multilevel regression analysis that reports associations between sets of 

variables) they reported significant moderate to strong global correlations between 

knee kinematics and activity limitation (rho = 0.7), and kinematics and pain (rho = 

0.6) explaining > 36% of the variance in the activities of daily living and pain subscale 

of the Knee Injury and Osteoarthritis Outcome Score (KOOS) (Bensalma et al., 

2022). The strongest correlations for individual kinematic variables with total KOOS 

score were in the sagittal plane including flexion at push-off (rho = 0.3) and knee 

flexion excursion during loading (rho = 0.4), while the weakest correlations were 

related to frontal plane kinematics (rho = -0.24). Bensalma et al. (2022) also reported 

weak to moderate correlations between structural severity and activity limitation (rho 

= 0.2), and structural severity and pain (rho = 0.4) suggesting that kinematic 

parameters are more strongly related to clinical outcomes than structural changes. 

Together, those findings suggest that clinical decision making may be better informed 

by how a person moves rather than the severity of knee osteoarthritis when 

attempting to facilitate improvement in activity limitation or pain. Based on these 

cross-sectional results, as greater knee flexion is associated with better function and 

less pain, targeting increased movement in the sagittal plane may potentially facilitate 

improvements in clinical outcomes.  

The relationship between pain (Hall et al., 2017; Henriksen et al., 2012; Nie et 

al., 2019), activity limitation (Hall et al., 2017; Nie et al., 2019) and knee adduction 

moment during walking has been investigated according to underlying structural 

severity assessed using the Kellgren-Lawrence grading scale (Kellgren & Lawrence, 

1957). Table 2-2 summarises the findings for those studies and demonstrates that 

across these studies the relationship is not consistent.  
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Table 2-2. Relationship between knee adduction moment during walking 
and activity limitation or pain for different grades of knee osteoarthritis. 

Studies 
Kellgren-Lawrence Grade 

Grade 2 Grade 3 Grade 4 

Pain 

(Hall et al., 2017) 

 

No association 

 

↑ KAM Impulse 

↑ Pain 

 

↑ KAM Peak 

↓ Pain 

 

(Nie et al., 2019) 

 

↑ KAM Peak/Impulse 

↓ Pain 

 

No association 

 

No association 

 

(Henriksen et al., 
2012) 

 

↑ KAM Peak/Impulse 

↓ Pain 

 

↑ KAM Impulse 

↑ Pain  

 

No association  

KAM Peak and Pain 

 

↑ KAM Impulse 

↑ Pain  

 

No association 

KAM Peak and Pain 

Physical Function 

(Hall et al., 2017) 

 

No association 

 

No association  

 

↑ KAM Peak 

↑ Function  

(Nie et al., 2019) ↑ KAM Peak/ Impulse 

↓ Function  

No association No association 

KAM = (first peak) knee adduction moment 

Because the findings from the studies detailed in Table 2-2 are mixed, they do 

not provide certainty about the relationship between knee adduction moment and 

clinical outcomes assessed through patient-reported outcome measures across knee 

osteoarthritis grades. Those studies used patient-reported outcome measures that ask 

about pain and activity limitation in the past 48 hours (e.g. WOMAC) and included 

people regardless of whether their symptoms were related to physical activity or more 

specifically to walking, potentially contributing to the mixed results. A different 

approach to testing the relationship between movement parameters and clinical 

outcomes is to include participants whose pain specifically increases during or after 

physical activity. Marriott et al. (2019) conducted a retrospective cross-sectional study 

of 279 participants with medial knee osteoarthritis that investigated the relationship 

between movement patterns during walking and increased pain. Participants were 

included if they experienced increased pain (≥1/10 on the visual analogue scale 

(VAS)) in one knee, and no increased pain in the other knee after six minutes of 

walking. Within participants, knee angles and moments were compared between the 
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knee that increased in pain and the other knee that did not increase in pain, allowing 

calculation of an odds ratio for increased pain in one knee compared to the other 

knee. The findings from Marriott et al. (2019) are presented in Table 2-3. One 

interpretation of the findings in Table 2-3 is that interventions could be selected to 

target specific movement parameters in a direction that is associated with less pain. 

However, that has yet to be tested.  

Table 2-3. Relationship between activity-related increase in pain and 
movement parameters from Marriott et al. (2019) 

 Movement parameter 
(peak) 

Odds Ratio  

(Confidence interval) 

Interpretation 

Significant positive relationship between pain and movement parameter 

Moments 1st Adduction 2.8 (2.0-3.9) 

An increase in 
movement parameter is 
related to an increase in 

pain. 

 2nd Adduction 2.4 (1.7-3.2) 

 Adduction impulse 6.6 (3.5-12.6) 

 Internal rotation 7.5 (3.3-17.1) 

Angles Varus 1.3 (1.2-1.4) 

 External rotation 1.0 (1.0-1.0) 

Significant negative relationship between pain and movement parameter 

Moments Flexion 0.5 (0.4-0.6) 

An increase in 
movement parameter is 
related to a reduction in 

pain. 

 Extension 0.6 (0.4-01) 

 External rotation 0.001 (0.00-0.04) 

Angles Flexion 0.9 (0.8-0.94) 

 Extension 0.9 (0.9-0.97) 

 Internal rotation 0.9 (0.9-0.97) 

Overall, the literature is clear that movement patterns differ between people 

with and without knee osteoarthritis. The relationship between movement patterns 

and clinical outcomes, such as activity limitation and pain, is beginning to emerge in 

cross-sectional research, although further studies are required to substantiate these 

early findings and test if targeting these movement parameters is of clinical value. 

Studies investigating the relationship between movement patterns and clinical 

outcomes are limited mostly to the activity of walking, despite other activities also 

being of clinical importance. There are a range of interventions that have the potential 

to modify movement patterns and improve clinical outcomes. The effect of some of 

these interventions will be explored in the following sections. 
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2.1.5 Key Points 

What is known and not known about knee osteoarthritis? 

• Knee osteoarthritis accounts for most of the osteoarthritis burden with 
forward projections suggesting a significant increase in disability burden 
and health care costs over the next decade. 

• The most common activities associated with activity limitation and pain 
include walking, negotiating stairs, and transitioning to and from a chair. 

• When performing those activities – kinematic, kinetic and/or muscle 
activity parameters differ compared to healthy controls. 

• Some movement parameters are associated with structural progression, 
activity limitation or pain, although the exact nature of these relationships 
is still emerging.   
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2.2 Interventions for Knee Osteoarthritis 

The core guideline recommendations for treatment of knee osteoarthritis 

include education, structured land-based exercise programmes or mind-body exercise 

with or without dietary weight management (Bannuru et al., 2019). Additional 

management can also include topical, oral, or injectable anti-inflammatory 

pharmacological agents (Bannuru et al., 2019). It is recommended that these 

approaches be trialled prior to referral to an orthopaedic surgeon for consideration of 

a knee arthroplasty (replacement).  

There is considerable research investigating the effects of land-based exercise in 

people with knee osteoarthritis. The most recent Cochrane systematic review reported 

that there is high quality evidence for improvement in pain and quality of life and 

moderate quality evidence of improved physical function (reduced activity limitation) 

for land-based exercise (Fransen et al., 2015). For those outcomes, there are moderate 

effect sizes immediately post-intervention and small effect sizes at two to six months 

post-intervention (Fransen et al., 2015). Most commonly, the outcomes are assessed 

via patient-reported outcome measures which provides information about a person’s 

perception of what they can do, rather than objectively quantifying what they can 

actually do, a concept that is explored in section 2.3.  

Among land-based exercise interventions, there are many different approaches 

that target various aspects of impairments of movement or fitness. The most 

common targets include improving lower limb muscular strength, aerobic fitness, 

range of movement or neuromuscular control (Fransen et al., 2015). Within this 

thesis, exercise will be defined per the Medical Subject Headings (MeSH) of ‘exercise 

therapy’ – “[a] regimen or plan of physical activities designed and prescribed for 

specific therapeutic goals. Its purpose is to restore normal musculoskeletal function or 

to reduce pain caused by diseases or injuries” (National Centre for Biotechnology 

Information, 2021). The most commonly investigated land-based exercise 

interventions (Bannuru et al., 2019; Fransen et al., 2015) include strength/resistance 

training, aerobic exercise programmes (e.g. walking or cycling), mind-body 

interventions (e.g. yoga or Tai-Chi), balance or proprioception interventions (Runhaar 
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et al., 2015), and neuromuscular exercise (Ageberg & Roos, 2015; Bennell et al., 2014; 

Holsgaard-Larsen et al., 2017; Skou & Roos, 2017).  

There are multiple theories about the mechanism of exercise-induced pain 

reduction in people who have knee osteoarthritis (Davis et al., 2020; Runhaar et al., 

2015). A narrative review by Davis et al. (2020) described general mechanisms, 

including widespread anti-inflammatory and antinociceptive neural effects, and 

cartilage and inflammatory biomarkers. Other psychosocial factors have also been 

implicated, including reduced helplessness, increased self-efficacy, as well as improved 

health beliefs, coping and mood (Hurley et al., 2003). 

A systematic review investigating possible mechanisms of effect for exercise 

interventions identified 12 potential mediators, although no studies in that review 

performed a formal mediation analysis (Runhaar et al., 2015). The potential mediators 

most investigated across all the studies were muscle strength (61 intervention groups), 

gait properties and biomechanics (25 intervention groups) and range of movement 

(21 intervention groups) (Runhaar et al., 2015), suggesting these features may be 

important to target as part of an exercise-based intervention. Guidelines consistently 

recommend exercise targeting improvement in muscular strength which can help to 

address deficits in quadriceps strength, identified as a risk factor for progression of 

knee osteoarthritis outlined in section 2.1.3. However, the role of changing movement 

patterns remains unclear. Therefore, the ongoing focus of this literature review will 

explore (a) interventions that target a change movement patterns and (b) how physical 

function is assessed in people with knee osteoarthritis.  

2.2.1 Interventions that Target Movement Patterns 

Because of the relationship between some movement parameters and structural 

progression (Chang et al., 2015; Chehab et al., 2014), activity limitation and pain (Hall 

et al., 2017; Henriksen et al., 2018; Hodges et al., 2016; Marriott et al., 2019; Nie et al., 

2019), interventions have been developed that aim to modify movement patterns in 

order to slow or prevent structural progression, as well as reduce activity limitation 

and pain. Such interventions include knee support braces, orthotics or prescription 

footwear (Radzimski et al., 2012), gait retraining (Richards et al., 2017) and 

neuromuscular exercise (Ageberg & Roos, 2015). 
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While there are a variety of interventions that target abnormal movement 

patterns in people with knee osteoarthritis, current guidelines only support exercise 

(Bannuru et al., 2019; Royal Australian College of General Practitioners, 2018). Other 

interventions that have the potential to change movement patterns such as orthotics 

and knee braces are not supported in guidelines, largely due to the low quality of 

available studies.  

2.2.2 Strengthening Exercise, Movement Patterns and Clinical Outcomes 

Some exercise interventions, like strengthening exercise or resistance training do 

not target a change in movement patterns directly. Resistance training is typically 

targeted at strength deficits in the quadriceps muscles, and also has the potential to 

improve knee confidence (Skou, Rasmussen, Simonsen, et al., 2015), self-efficacy, 

inflammatory mediators, activity limitation and pain (Runhaar et al., 2015). 

Improvements in quadriceps function also have the potential to subsequently modify 

sagittal plane movement (e.g. flexion angle) or loading patterns (e.g. flexion moment) 

of the knee during functional activities. However, across studies, strengthening 

exercise does not change early stance phase peak knee flexion angle during walking, 

despite improvements in activity limitation and pain (DeVita et al., 2018; Fisher et al., 

1997; Gaudreault et al., 2011). Similarly, in a cohort study of 14 participants, Al-

Khlaifat et al. (2016) demonstrated significant improvements in activity limitation and 

pain, without concurrent changes in knee adduction moment (peak or impulse) during 

the stance phase of walking after six-weeks of combined weight bearing resistance 

training and balance exercise. They did however report a significant reduction in early 

and mid-stance lateral hamstring-quadriceps co-contraction (Al-Khlaifat et al., 2016). 

McQuade and de Oliveira (2011) investigated the effect of eight-weeks of progressive 

machine-based resistance exercises on knee moments and muscle activity during a 

step-up task. They reported significant improvements in activity limitation and pain, 

without concurrent changes in knee flexion and extension moments, changes in 

muscle activation amplitude of the quadriceps and hamstrings, or changes in 

hamstring-quadriceps ratio. Together, these findings suggest that improvements in 

clinical outcomes may occur in the absence of changes in movement patterns 

following land-based resistance training. While it is possible that the most common 
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forms of assessment of movement parameters may lack sensitivity to detect change, 

two other possible reasons that movement patterns do not change after 

strengthening-based exercise is that the intervention does not target movement 

patterns directly (see section 2.2.3), or that the strength increase was insufficient to 

result in a change in movement pattern. 

While most studies mentioned above do not demonstrate change in movement 

parameters, Davis et al. (2019) explored the effect on movement parameters after 

four-weeks of lower limb strengthening exercise on responders compared to non-

responders with knee osteoarthritis. Participants were classified as responders when 

improvement in quadriceps strength improved more than the upper limit of the 95% 

confidence interval (CI) for the minimal detectable change. Based on a 2 x 2 

functional ANOVA which can identify significant differences between groups for 

time-series data, the authors found significantly greater knee flexion angle during the 

first 50% of stance and significantly greater knee extension in the second 50% of 

stance in responders compared to non-responders (Davis et al., 2019). These findings 

suggest that sagittal plane kinematics are affected by changes in quadriceps strength 

following exercise in people with knee osteoarthritis. However, these changes in 

kinematics may be unrelated to changes in pain (WOMAC pain/VAS pain) or 

function (WOMAC function) as there were no between-group differences in change 

scores between responder and non-responder groups. 

In summary, clinical outcomes may change after exercise because of a diverse 

range of biopsychosocial factors. Currently, there does not seem to be evidence in the 

literature that movement patterns change frequently as a result of exercise 

interventions that do not directly target movement parameters. There may be some 

indication that for those people who improve in strength, they may also have a 

concurrent change in movement patterns and that concept needs to be further 

investigated. However, there are other approaches to exercise that directly target 

movement patterns. 

2.2.3 Exercise Approaches that Target Movement Patterns 

Exercise interventions targeted at changing movement patterns have been 

theorised to improve pain and physical function through improved neuromuscular 
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control of the knee and lower limb (Harris-Hayes et al., 2010; Lehman, 2018). There 

is no single agreed definition for neuromuscular control. It is generally accepted that 

neuromuscular control describes the ability to co-ordinate the musculoskeletal system 

under differing external knee loads and is influenced by strength, proprioception, 

balance, relative amplitude of contraction of antagonist musculature and passive 

ligamentous support (Ageberg & Roos, 2015; Mills et al., 2013; van der Esch & 

Dekker, 2014). Therefore, as neuromuscular control is a multidimensional construct, 

there are a variety of different kinetic and kinematic movement parameters that have 

been investigated for change after exercise that targets a change in movement 

patterns.  

Two popular exercise-based interventions targeting movement patterns are 

neuromuscular exercise and gait retraining. Neuromuscular exercise is included as part 

of the OARSI guidelines for non-surgical management of knee osteoarthritis due to 

evidence that it improves activity limitation and pain  (Bannuru et al., 2019).  In 

contrast, there is only preliminary data suggesting that gait retraining improves activity 

limitation and pain (Richards et al., 2017; Richards et al., 2018). 

Interventions that aim to directly change movement patterns use verbal, visual 

or proprioceptive cues to explicitly modify the way in which a movement is 

performed. The new movement pattern is practiced regularly with the belief that with 

sufficient practice the habitual movement pattern will be replaced with one that 

reduces the load on the knee and thereby improving physical function, reducing 

symptoms and preventing further structural progression of the condition (Ageberg & 

Roos, 2015).  

Neuromuscular exercise is a popular intervention for knee osteoarthritis, 

promoting normal alignment of the lower limb (e.g. reduce knee adduction moment) 

during traditional functional strengthening exercises, such as bridges, lunges, step-ups 

and squats (Ageberg & Roos, 2015). There are several randomised controlled trials 

that have established that neuromuscular exercise (or combined interventions) is 

superior to education alone to improve activity limitation and pain immediately 

post-intervention (da Silva et al., 2015; Hurley et al., 2007; Skou, Rasmussen, Laursen, 

et al., 2015) and for up to one year (Skou, Rasmussen, Laursen, et al., 2015). 
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However, in other studies, the effect of neuromuscular exercise is not superior when 

compared to oral analgesics (Holsgaard-Larsen et al., 2017) or quadriceps 

strengthening exercise (Bennell et al., 2014) for improving activity limitation or pain. 

Those studies indicate there was no between-group difference in knee adduction 

moment change scores between neuromuscular exercise and control groups (oral 

analgesics or quadriceps strengthening exercise). This suggests that improvement in 

activity limitation and pain may occur via mechanisms that transcend the proposed 

target for each intervention, that different mechanisms may exist for each 

intervention, or that changes in knee joint loading may not be a prerequisite for 

improvement in clinical outcomes. 

Regardless of changes in clinical outcomes, some studies do demonstrate 

within-group changes in movement parameters. In a randomised controlled trial 

testing the efficacy of neuromuscular exercise compared to pharmacological 

management of 93 participants with knee osteoarthritis, Holsgaard-Larsen et al. 

(2017) reported significant small within-group reductions in knee adduction moment 

(1st peak and impulse) during walking, that were not observed in the oral analgesic 

control group. Contrary to those findings, an earlier cohort study investigated the 

effect of neuromuscular exercise for early-stage knee osteoarthritis on knee adduction 

moment (Thorstensson et al., 2007). No change in knee adduction moment during 

walking was found, although there was a reduction in peak knee adduction moment 

during one-leg sit-to-stand in the affected leg but not the unaffected leg 

(Thorstensson et al., 2007). This suggests that neuromuscular exercise may selectively 

alter movement patterns for activities that have similar biomechanical requirements to 

the type of exercise intervention, while having limited effect on movement patterns of 

activities that have different biomechanical requirements. For example, squats and 

lunges performed within a neuromuscular exercise intervention are biomechanically 

similar to one-leg sit-to-stand compared to walking. 

In studies investigating neuromuscular exercise described above, the study 

methods did not take into consideration baseline biomechanics of participants which 

has the potential to impact the effect of the intervention. One study has explored that 

concept using data from randomised controlled trials. Bennell et al. (2015) reported 
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that neuromuscular exercise improved pain for people who demonstrated varus thrust 

(a surrogate, subjective, visual measure of knee adduction moment) during walking, 

compared to those who did not have varus thrust, suggesting baseline movement 

patterns might influence outcome. The authors describe two possible mechanisms 

(Bennell et al., 2015). Firstly, that because there is a relationship between varus thrust 

and pain (Lo et al., 2012), neuromuscular exercise may directly reduce thrust and 

therefore improve pain. Alternatively, they suggest that because neuromuscular 

exercise focuses on control of movement, especially in the frontal plane, changes in 

muscle activation patterns or proprioception may be involved in reducing pain. The 

authors concede that they did not objectively assess varus thrust, nor muscle activity 

or proprioception, reducing the confidence of those conclusions. 

Together these studies suggest that neuromuscular exercise is efficacious for 

improving clinical outcomes of activity limitation and pain. However, there is 

conflicting evidence as to whether walking-related movement patterns change in 

response to the intervention, and there are a limited number of studies that have 

investigated changes in other activities important to people with knee osteoarthritis 

(e.g. sit-to-stand and stairs). Underlying baseline movement patterns prior to 

neuromuscular exercise may influence changes in symptoms, however it is unclear if 

post-intervention changes in movement patterns are related to improvements in 

clinical outcomes.  

Gait retraining is another exercise intervention (according to the MeSH 

definition – see section 0) that has been investigated for its potential to modify knee 

adduction moment and improve clinical outcomes. Unlike neuromuscular exercise, 

gait retraining is prescribed as an intervention that directly reflects the activity 

assessed via biomechanical analysis – a participant’s gait pattern. A recent systematic 

review summarised the literature about effects of gait retraining changing in knee 

adduction moment and/or clinical outcomes of activity limitation and pain (Richards 

et al., 2017). They identified three studies (Hunt & Takacs, 2014; Segal et al., 2015; 

Shull, Silder, et al., 2013) that demonstrated medium to large within-group effect sizes 

for activity limitation (standardised mean difference (SMD) 0.55 to 0.85) and pain 

(SMD 0.55 to 1.16). Three cohort studies (Hunt & Takacs, 2014; Shull, Shultz, et al., 
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2013; Shull, Silder, et al., 2013) demonstrated small effect sizes (SMD 0.29 to 0.37) for 

reducing knee adduction moment immediately after intervention, while the two other 

studies did not provide data about change in knee adduction moment (Hunt et al., 

2014; Segal et al., 2015). Of the studies that reported change in knee adduction 

moment, there were also concurrent changes in activity limitation (Shull, Silder, et al., 

2013) and pain (Hunt & Takacs, 2014; Shull, Silder, et al., 2013), potentially suggesting 

a relationship between a change in movement parameters and clinical outcomes.  

Since the review by Richards et al. (2017), three additional studies investigating 

gait retraining in people who have knee osteoarthritis have been published reporting 

longer term follow-up assessments (Cheung et al., 2018; Hunt et al., 2018; Richards et 

al., 2018). Two studies were randomised controlled trials investigating gait retraining 

compared to a walking exercise control group (Cheung et al., 2018; Hunt et al., 2018). 

Those studies demonstrated large between-group and within-group improvements in 

WOMAC physical function and pain subscales benefiting the gait retraining group 

(Cheung et al., 2018; Hunt et al., 2018). However, there were conflicting findings for 

change in first peak knee adduction moment. Cheung et al. (2018) reported a 

significant between-group difference and within-group change for first peak knee 

adduction moment during walking, while (Hunt et al., 2018) reported no between-

group difference or within-group change. Hunt et al. (2018) also reported significant 

between- and within-group change for second peak knee adduction moment and knee 

adduction moment impulse. Similar to Cheung et al. (2018), in a small cohort study (n 

= 21), Richards et al. (2018) found that first peak knee adduction moment 

significantly reduced after six-weeks of toe-in gait retraining. While the findings of 

those three studies (Cheung et al., 2018; Hunt et al., 2018; Richards et al., 2018) first 

appear to be conflicting, one explanation may be the differences in the gait retraining 

approach (Simic et al., 2013). The study by Hunt et al. (2018) prescribed that all 

participants adopt a toe-out gait modification affecting second peak knee adduction 

moment. Richards et al. (2018) prescribed a toe-in modification affecting first peak 

knee adduction moment. Cheung et al. (2018) provided individualised gait 

modification based on a pre-intervention assessment and targeted a reduction in first 

peak knee adduction moment via changing individual participants’ movement 
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patterns including adjusting foot progression angle (either toe-in or toe-out), hip 

adduction or rotation, or trunk sway as required. A toe-in gait modification is 

theorised to reduce first peak knee adduction moment during the stance phase of 

walking resulting in the knee joint centre moving towards the midline, resulting in a 

more lateral centre of pressure (Shull, Shultz, et al., 2013). Whereas a toe-out 

modification moves the centre of pressure laterally, because the line of action of the 

ground reaction force moves closer to the stance phase weight bearing knee, resulting 

in reduced second peak knee adduction moment (Jenkyn et al., 2008).  

The study by Cheung et al. (2018) provides first evidence for sustained changes 

(six months post-intervention) in both knee adduction moment and clinical 

outcomes. While other studies demonstrated improvements in clinical outcomes up 

to six months, they did not demonstrate longer term changes in movement 

parameters (Hunt et al., 2018; Richards et al., 2018). One possible explanation for this 

is that the intervention was individualised for each participant – a concept that 

requires further investigation. Together, studies in gait retraining provide preliminary 

evidence that suggest that specific training cues (toe-in vs toe-out) may selectively 

alter specific walking related movement parameters in people with knee osteoarthritis. 

The literature currently suggests that gait retraining interventions positively influence 

activity limitation and pain despite differences in movement parameter affected (e.g. 

first vs second peak knee adduction moment). 

Other forms of movement-based mind-body exercise exist for people with 

knee osteoarthritis. Zhu et al. (2016) conducted a randomised controlled trial and 

demonstrated improvements in activity limitation and pain after 24-weeks of Tai Chi 

compared to wellness education for people with knee osteoarthritis. There was also 

between- and within-groups increase in knee flexion angle at initial contact and knee 

flexion range of movement during walking favouring Tai Chi. In contrast, a 12-week 

yoga programme for a cohort of participants with knee osteoarthritis did not change 

knee adduction moment during walking despite significant improvements in activity 

limitation and pain (Brenneman et al., 2015). Another intervention known as 

Alexander Technique aims to promote neuromuscular control through increased 

attention and awareness of muscle tension (Preece et al., 2016). A cohort study of 21 
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participants with knee osteoarthritis demonstrated that hamstring-quadriceps co-

contraction significantly reduced after 12-weeks of Alexander Technique intervention, 

along with improvements in long-term (15-month post-intervention) measures of 

activity limitation and pain assessed using WOMAC.  

Similar to studies investigating general strengthening exercise, gait retraining and 

neuromuscular exercise – mind-body exercise has demonstrated consistent 

improvements in activity limitation and pain across randomised controlled trials and 

cohort studies. However, there are a limited number of studies investigating changes 

in movement patterns and clinical outcomes using mind-body interventions. Such few 

studies make it difficult to draw conclusions about whether changes in movement 

patterns are related to changes in clinical outcomes.  

In summary, exercise interventions consistently improve activity limitation and 

pain for people with knee osteoarthritis (Bannuru et al., 2019). However, there is 

conflicting evidence that movement patterns change and if so whether they are 

related to changes in levels of activity limitation and pain. There are a variety of 

reasons why movement patterns do not change consistently across studies 

investigating the effect of exercise in people with knee osteoarthritis. There appears to 

be more consistent changes in walking-related movement patterns for gait retraining 

interventions, possibly because the method of intervention and assessment are 

aligned. In contrast, interventions such as neuromuscular retraining do not seem to 

affect walking-related movement patterns, which could be, at least in part, because the 

intervention does not specifically target walking itself.  

Another reason may be because of the variability in movement patterns across 

the heterogeneous population who have knee osteoarthritis (Gustafson et al., 2015; 

Hunt et al., 2010; Thorp et al., 2006). Some people with knee osteoarthritis may have 

no capacity to change because their movement patterns are considered normal, while 

others may have fixed movement impairments (e.g. an inability to fully straighten the 

knee, or reduce a structural varus deformity). For those with altered movement 

patterns, the way they move may not be related to physical function or pain, and 

alternatively, may be adaptive (helpful and pain relieving) rather than maladaptive 

(unhelpful and pain inducing). It also might be that, in the presence of clinical 
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heterogeneity, ‘one-size-fits-all’ interventions where the same strategy to change 

movement pattern is prescribed to the whole group, potentially results in smaller 

effects than individually tailored interventions based on that person’s baseline 

movement or control impairments.  

2.2.4 Relationship between a Change in Movement Pattern and Clinical 

Outcomes 

While there are some studies that demonstrate concurrent change in movement 

patterns and patient-reported clinical outcomes after strength training (Al-Khlaifat et 

al., 2016; Davis et al., 2019), neuromuscular exercise (Bennell et al., 2015; Holsgaard-

Larsen et al., 2017), gait retraining (Hunt & Takacs, 2014; Shull, Silder, et al., 2013), 

and mind-body exercise (Preece et al., 2016; Zhu et al., 2016), it is not clear if there is 

a consistent relationship between post-exercise changes in movement patterns and 

clinical outcomes. 

One systematic review exists that explored this topic, and only for knee 

adduction moment during walking. Ferreira et al. (2015) conducted a systematic 

review of randomised controlled trials to investigate if there was a relationship 

between changes in medial joint loading during gait and clinical outcomes after an 

exercise intervention in people with knee osteoarthritis. They included one high-

quality (Bennell et al., 2010) and two low-quality studies (Foroughi et al., 2011; Lim et 

al., 2008). Because no between-group mean difference was found for knee adduction 

moment across studies, the authors concluded that changes in activity limitation or 

pain were not associated with changes in movement pattern.  

It is common for group-level data to be reported in randomised controlled trials 

and systematic reviews. While group-level data can provide an indication that two 

outcomes change together across the sample population, this does not mean that 

those participants who responded to the treatment on one outcome were the same as 

those who responded on the other. On the other hand, individual person-level data 

can be used in studies that use correlation analysis to assess the relationship between 

changes in two outcomes. For example, in a cohort study of 21 participants with knee 

osteoarthritis, Preece et al. (2016) have investigated the relationship between changes 

in movement patterns during the stance phase of walking and activity limitation or 
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pain after Alexander Technique intervention. They conducted correlation analyses 

between change in quadriceps-hamstring co-contraction and WOMAC pain. They 

reported one significant correlation from four tested, with a positive moderate 

correlation (r = 0.45, p < 0.05) for pre-contact medial quadriceps-hamstring co-

contraction and pain, indicating that lower levels of co-contraction are associated with 

less pain. Medial co-contraction is of particular interest, as reduction of this 

movement parameter would theoretically reduce medial joint loading, a potentially 

important change for people with medial compartment knee osteoarthritis.  

While Ferreira et al. (2015) have provided the first review into the relationship 

between changes in movement patterns and clinical outcomes, questions remain 

because of their study design. Firstly, they included only randomised controlled trials. 

Because the question is not about efficacy, but about relationships between change 

outcomes between two variables, both cohort studies and randomised controlled 

trials would be informative for this research question. Both cohort studies and 

randomised controlled trials provide an opportunity to explore within-group change 

in two outcomes through the use of correlation analysis or co-occurrence of change 

between outcomes. The relationship between change in other movement parameters 

(beyond knee adduction moment) and clinical outcomes has also yet to be 

systematically reviewed. 
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2.2.5 Key Points 

What is known and not known about interventions for knee osteoarthritis? 

• To improve activity limitation or pain, core guideline recommendations 
for treatment of knee osteoarthritis include education, exercise with or 
without weight management, prior to considering surgery.  

• In studies investigating the effects of exercise, there does not seem to be 
consistent changes in movement patterns. 

• Some exercise interventions target movement patterns either directly or 
indirectly.  

• The relationship between a change in movement parameters and changes 
in activity limitation or pain after exercise is currently unclear. 
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2.3 Monitoring Outcomes in Clinical Practice 

2.3.1 Patient-reported Outcome Measures 

Clinical practice guidelines for knee osteoarthritis recommend two clinical 

outcomes above all else for monitoring the status of a patient over the course, or after 

treatment – activity limitation and pain (National Institute for Health & Care 

Excellence, 2014; Royal Australian College of General Practitioners, 2018).  There are 

several validated self-reported questionnaires, such as the WOMAC (Bellamy et al., 

1988) or the KOOS (Roos & Lohmander, 2003).  

Recommended questionnaire-based outcome measures for people with knee 

osteoarthritis (Bellamy et al., 1988; Roos & Lohmander, 2003) commonly evaluate 

symptoms such as pain, as well as other features such as swelling, stiffness and 

crepitus. Pain is typically evaluated in two ways. The first uses outcome measures such 

as WOMAC to rate pain severity associated with a specific activity (e.g. during 

walking or ascending stairs). The second is to rate average or maximum pain on a 0 to 

10 VAS or numerical rating scale (Alghadir et al., 2018) across a specified number of 

days (e.g. two days or past week). The assessment of activity limitation in the 

WOMAC (physical function subscale) and KOOS (activities of daily living subscale) 

is rated in terms of the perception of difficulty when performing a range of activities 

related to locomotion or transitioning between positions (e.g. walking, ascending 

stairs, getting off the floor) or completing daily activities (e.g. going shopping, 

performing heavy domestic duties). 

While pain can be only evaluated by self-report, physical function is a 

multidimensional construct consisting of perceptual as well as observable physical 

characteristics. Because patient-reported outcomes for physical function can only 

evaluate what a person perceives they can do, it is also recommended that objective 

physical outcome measures of what a person can actually do are also evaluated 

(Dobson et al., 2013). Consideration of both objective physical outcome measures 

alongside patient-reported outcome measures is believed to provide a more 

comprehensive understanding of physical function and activity limitation (Dobson et 

al., 2013; Stratford et al., 2003; Stratford & Kennedy, 2006; Terwee, Mokkink, et al., 

2006). This is particularly important as there are multiple studies that clearly 
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demonstrate no, or minimal relationship between changes in patient-reported 

outcome measures of physical function and objective physical outcome measures 

such as performance-based tests (Stevens-Lapsley et al., 2011; Stratford & Kennedy, 

2006; Terwee, van der Slikke, et al., 2006) or physical activity monitoring (Verlaan et 

al., 2015). 

2.3.2 Objective Measures of Physical Function 

There are three methods currently available for the assessment of physical 

function that assess the actual performance of activities in people with knee 

osteoarthritis: performance-based tests, biomechanical assessment, and physical 

activity monitoring. 

2.3.2.1 Performance-based Tests 

Performance-based tests are assessed by an observer, typically a clinician or 

researcher who evaluates physical performance by counting the number of 

repetitions, timing the duration, or measuring the distance of a functional activity (e.g. 

walking) or combination of functional activities (e.g. timed up-and-go test) (Dobson 

et al., 2012; Dobson et al., 2013). While performance tests have not yet been 

comprehensively validated (Dobson et al., 2012), they are recommended for 

monitoring a patient’s progress (Dobson et al., 2013). However, they are arguably not 

representative of how a person performs an activity during daily life. For instance, the 

30-second chair stand test (Jones et al., 1999) has a patient perform sit-to-stand-to-sit 

as many times as possible in 30 seconds, which arguably would not represent how a 

person performs sit-to-stand during their daily life. Similarly, another recommended 

test, the 40-meter fast-paced walk test (Wright et al., 2011), does not provide 

information about how a person usually walks. Therefore, while performance tests 

may capture improvement in one dimension of physical function, those tests provide 

limited information about physical capacity outside of the clinical or research 

environment. Recently, it has been recommended that performance-based tests 

should not be routinely used in clinical practice because only the 40-meter fast-pace 

walk test was found to be responsive and neither that test nor the 30-second chair 

stand test were found to have sufficient construct validity (Tolk et al., 2019). 

However, this study validated performance tests against patient-reported outcome 
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measures. Considering performance tests and patient-reported outcomes are now 

known to represent different constructs of physical function (Stevens-Lapsley et al., 

2011; Stratford & Kennedy, 2006; Terwee, van der Slikke, et al., 2006), this method of 

validation could be considered questionable. As performance-based tests do not 

represent true performance of an activity that is usually performed during unobserved 

day-to-day life, this creates a dilemma for clinicians. Therefore, clinicians currently 

have limited ability to access objective, data driven methods of monitoring 

improvement in their patient’s everyday performance of activities. To assess physical 

function, clinicians must currently rely on direct observation of their patients 

performing activities during a consultation or alternatively via patient-reported 

outcome measures. 

2.3.2.2 Biomechanical Assessment 

Human biomechanical analysis is a technologically-assisted physical assessment 

that evaluates specific movement parameters of kinematics, kinetics, and muscle 

activity for the purposes of describing observable movement patterns (Bartlett, 2007). 

Kinematics refers to geometry of movement without reference to what causes the 

movement (e.g. joint angles and angular velocity), while kinetics refers to the forces 

that act on the body to create movement (e.g. force and moments) (Bartlett, 2007). 

The gold-standard, surface-based method of estimating kinematics is through 

the use of an optoelectronic motion analysis system such as Vicon (Oxford Metrics 

Inc., Oxford, UK) (Cuesta-Vargas et al., 2010; Vicon, 2021). This system uses a 

minimum of three infrared cameras to track retroreflective markers placed on the 

research participant within a fixed physical space, usually within a laboratory. Three-

dimensional locations of each marker are modelled on to a simulated body comprised 

of rigid segments allowing estimation of each segment position. From this model 

joint angles can be calculated. With the addition of force plate data, using inverse 

dynamics (Camomilla et al., 2017), kinetic movement parameters can be calculated, 

such as a joint moment, which is the rotational force around the joint axis. Muscle 

activity, on the other hand, requires the use of electromyography equipment that 

records the electrical activity of muscle tissue (Mills et al., 2013). Readings from 

electromyography are often expressed in terms of amplitude of muscular activation or 



33 
 

a ratio between antagonist muscle groups as a description of muscular control around 

the joint.  

There is a substantial body of work using biomechanical analysis to investigate 

the clinical relevance of movement patterns in people who have knee osteoarthritis 

(see sections 2.1.3.1 and 2.2.1). Despite this, biomechanical assessment is not 

currently recommended as part of routine clinical practice to assess the outcome of an 

intervention. Motion analysis laboratories incur a high cost, have space requirements, 

and require technological expertise to set up and run, preventing access for most 

clinicians. However, there are systems that exist for assessing movement parameters 

in clinical practice that do not provide the level of detail of gold-standard systems. 

To measure kinematics in clinical practice, camera-based smart phone 

applications are available (Krause et al., 2015; Milanese et al., 2014). For example, 

Coach’s Eye (TechSmith Corp, Michigan) is a camera-based smartphone application 

that has demonstrated excellent reliability for measuring range of movement during 

functional movements such as a squat (intraclass correlation coefficient 0.98, 95% CI 

0.96 to 0.99). Concurrent validity of single plane motion analysis of the knee 

compared to the reference system Vicon was acceptable (mean difference 5°, 95% 

limits of agreement ranging −17.6° to 7.6°), and a minimum detectable change of 6° 

(Krause et al., 2015). So, while camera-based smart phone approaches may help 

quantify kinematics in a clinical environment, there are some limitations. Such 

systems are limited as they cannot provide information about three-dimensional 

kinematics, are unable to provide information about kinetics, and do not provide the 

opportunity to capture data about how a person performs activities in free-living 

environments.  

Assessment of kinetic movement parameters such as knee joint moments and 

forces require pressure sensing technology like force plates or shoe insoles combined 

with motion capture (e.g. Vicon) (Camomilla et al., 2017; DeBerardinis et al., 2018). 

Clinicians do not commonly have access to combined motion capture and pressure 

sensing technology as they are typically expensive, would take up clinic space, and 

require professional expertise to install. Insoles provide a cheaper alternative and have 

the potential to be used in free-living environments, but do not directly measure 
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force, resulting in imprecise outputs (Chen et al., 2022). A review by Chen et al. 

(2022) described multiple limitations of pressure sensing technology including 

humidity, size, heat, electromagnetic interference, device complexity, calibration 

methods, sampling requirements and energy consumption. If a patient would like to 

wear a range of shoes, they would be required to move the insoles between shoes, 

increasing patient burden. While insoles can provide data about modelling kinetic 

parameters (Oubre et al., 2021) and assist with labelling gait events, they do not 

provide spatial data required for kinematic motion analysis (Chen et al., 2022). 

Recently kinematic estimates from wearable sensors known as inertial measurement 

units (IMUs) have been used to calculate knee moments and forces using inverse 

dynamics (Karatsidis et al., 2019). However, there are a number of limitations using 

IMUs in free-living environments described in section 2.4 that may affect the 

reliability and validity of that approach. 

IMUs are becoming widely accessible, due to reducing hardware and software 

costs, and many require minimal technical expertise to operate. IMUs allow the 

wearer freedom of movement through space without being confined to a field of view 

and data from IMUs can be used to provide both kinematic and kinetic data (see 

sections 2.4.1.1 and 2.5.6). Compared to performance-based tests, IMUs can record 

how a person naturally performs activities and are therefore one potential technology 

that could be used to monitor patient outcomes both within the clinical and free-

living environments. Together, patient-reported outcome measures, performance-

based tests and IMU monitoring represent different aspects of physical function, 

providing a clinician a more comprehensive picture of their patient’s ability to 

perform activities.  

2.3.2.3 Monitoring Physical Activity beyond a Clinical Environment  

Monitoring of physical activity requires an electronic system that can record and 

store movement-based data. Researchers first investigated accelerometer-based 

physical activity monitoring in the early 1980s (Montoye et al., 1983) for the purposes 

of quantifying physical activity intensity (energy expenditure) in free-living 

environments. Since the early 2000s accelerometer-based activity monitors have been 

available to the general public in the form of smartphones and smartwatches for 



35 
 

tracking energy expenditure through monitoring physical activity intensity or step 

count, as well as monitoring sleep patterns (Henriksen et al., 2018). Where the aim is 

to increase physical activity, energy expenditure can be monitored using a simple 

accelerometer or pedometer. Over time, hardware costs have reduced resulting in 

wide spread availability of wrist worn sensors for measuring energy expenditure (e.g. 

Apple watch www.apple.com/watch). Some devices that monitor energy expenditure 

can also track or monitor activities but those systems are not designed to 

automatically identify activities, and instead requires the user to select the activity 

(Apple Inc, 2022). In comparison, a gold-standard, research grade, accelerometer-

based device (e.g. activPAL www.palt.com) has the added benefit of automating the 

recognition of activities and can provide data about the amount of time spent sitting, 

standing, stepping, and lying (Carpenter et al., 2021) – a function known as ‘human 

activity recognition’ (see section 2.5.5). Therefore, the activPAL can provide 

information about the duration these activities are performed. However, that system 

is not able to discriminate walking from other ambulatory activities, such as ascending 

or descending stairs, nor transitions between positions such as sit-to-stand which are 

important for people with knee osteoarthritis. In addition to not providing a broader 

capacity for human activity recognition, accelerometer-based devices are unable to 

provide other potentially important biomechanical information like kinematics or 

kinetics.  

Evidence across healthy and clinical populations suggests that how people move 

is different when observed in a laboratory compared to real-world environments 

(Brodie et al., 2017; Brodie et al., 2016; Del Din et al., 2016; Dreischarf et al., 2016; 

Renggli et al., 2020; Robles-García et al., 2015; Weiss et al., 2011). While those studies 

did not directly investigate people with knee osteoarthritis, some studies may still be 

relevant to this clinical population. For example, in older people (>75years), there is 

evidence of slower gait velocity, lower cadence and higher step time variability in an 

observed laboratory environment compared to free-living environments (Brodie et al., 

2016; Renggli et al., 2020). So far, these studies that compare observed and 

unobserved movement patterns have reported only spatiotemporal kinematic data, 

and not angular kinematics, joint moments, or muscle activity. Nonetheless, 

http://www.apple.com/watch
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considering changes in spatiotemporal parameters are related to changes in angular 

kinematics and knee joint loading (Zeni & Higginson, 2009), monitoring changes in 

movement patterns during performance of activities across multiple environments 

may provide information that is unable to be obtained when a patient is observed 

during a consultation.  

If the aim of management is to reduce activity avoidance by focusing on 

increasing the amount of walking and stair use for a person with knee osteoarthritis, a 

system that can monitor daily performance of these activities is needed. Such as 

system would require a function that can discriminate between types of activities 

automatically. While some systems are designed to be able to detect body positions 

like lying, sitting, standing, and walking (Valkenet & Veenhof, 2019) – none are yet 

capable of identifying a range of ambulatory activities (e.g. negotiating stairs) or 

transitions between positions (e.g. sit to stand) that are important to people with knee 

osteoarthritis. Currently, there is no wearable sensor system that is widely used that 

can reliably be used to monitor a change in the frequency or time spent performing 

clinically relevant activities such as walking, negotiating stairs, and transitioning to or 

from a chair for people with knee osteoarthritis over the course of, or after, 

treatment. Further, no current technology can provide contextualised angular 

kinematic and kinetic information (see section 2.4.2), that provides details about 

which activities were performed while their patient is unobserved in free-living 

environments, for example – when at home or work.  
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2.3.3 Key Points 

What is known and not known about assessing physical function? 

• Physical function can be assessed using patient-reported outcome 
measures, performance-based tests, biomechanical assessment or 
monitoring of energy expenditure. 

• When physical function is observed by a clinician or researcher, how a 
person moves may not be a true representation of how an activity is 
performed in free-living environments. 

• Current methods for assessment of physical function do not provide 
objective data about how frequently or how long a person with knee 
osteoarthritis performs activities recommended for assessment in 
guidelines for physical assessment of people with knee osteoarthritis.  

• Accelerometer based wearable sensors provide information about body 
position but not activities associated with activity limitation in people with 
knee osteoarthritis, nor provide biomechanical data.  

• IMUs have potential to monitor people in free-living conditions but have 
limitations.  
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2.4 Inertial Measurement Units 

IMUs are a wearable sensor technology that record movement-based 

information while the wearer can move around freely in their environment, which is 

ideal for monitoring patients in free-living environments. IMUs are worn on the 

body, either adhered to the skin with double-sided, hypoallergenic tape or via 

elasticated straps. The IMU is placed onto the body part, which is referred to as a 

segment (e.g. the thigh or shank). Each IMU houses hardware including a triaxial 

accelerometer, gyroscope, and magnetometer. The accelerometer records linear 

acceleration, gyroscope records angular velocity, while the magnetometer records the 

magnetic field strength. For a segment, raw data from each piece of hardware is 

recorded, but is clinically meaningless, and therefore is typically converted into 

interpretable data through fusion algorithms (Picerno, 2017). IMU fusion algorithms 

combine data from the accelerometer, gyroscope, and magnetometer of multiple 

IMUs. Most sensors systems use proprietary fusion algorithms to estimate segment 

orientation or joint position. The position and orientation are estimated on the 

integration of the accelerometer and gyroscope data, while the magnetometer helps 

stabilise the frontal plane by providing a heading and corrects for drift that occurs 

through the integration of accelerometer and gyroscope data (Picerno, 2017). These 

systems, that can provide potentially important biomechanical information, are 

becoming increasingly accessible for clinicians due to reducing hardware and software 

costs. 

2.4.1 Clinical Utility of Inertial Measurement Units 

Kobsar et al. (2020) proposed that IMUs could be used to monitor changes in 

movement patterns outside of a clinical environment using a pipeline of data handling 

approaches that include human activity recognition followed by biomechanical 

analysis. IMUs have the potential to be used to assess and monitor changes in 

movement patterns over time, in both clinical and free-living environments. Tracking 

changes in the duration and or the frequency of performance of clinically relevant 

activities such as walking, negotiating stairs, and transitioning to or from a chair could 

provide clinicians objective information about activity avoidance behaviours and 

inform clinical decision making. 
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2.4.1.1 IMUs for Biomechanical Analysis 

Most software for these commercially available IMU systems estimate lower 

limb segment orientation and joint kinematics using fusion algorithms (Picerno, 

2017). IMU fusion algorithms to estimate lower limb kinematics during functional 

activities (e.g. walking, sit-to-stand, squatting, negotiating stairs, running and cycling) 

have been validated in comparison to gold-standard motion analysis systems such as 

Vicon (Weygers et al., 2020). That systematic review reported the range of the root 

mean square error (RMSE) (standard deviation (SD)) for knee joint sagittal plane 

estimations to be 1.01° (0.11°) to 11.22° (1.09°) across 23 studies. The vast majority 

of these studies validated IMUs for walking (20/31 studies) with the next most 

common activities being sit-to-stand and squatting (6/30 studies) (Weygers et al., 

2020). Most of those studies included only participants without pathology. In fact, 

across two systematic reviews and one scoping review up to 2020, there was only one 

study that validated an IMU for kinematic features in people with knee osteoarthritis 

(Hafer et al., 2020). Only one other study has more recently investigated the 

concurrent validity of IMUs against Vicon motion analysis for estimating knee 

kinematics in people with knee osteoarthritis (Binnie et al., 2021). These two studies 

compared IMUs proprietary fusion algorithms that presumably use magnetometer 

data, against an optoelectronic motion analysis system using ZXY Euler angle 

decomposition. Hafer et al. (2020) reported a RMSE of 0.29° to 0.92° for total sagittal 

plane knee range of movement during a gait cycle. Binnie et al. (2021) investigated the 

concurrent validity for peak and time-series kinematic estimations of an IMU against 

Vicon for multiple clinically important activities that included phases of walking, 

negotiating stairs, sit-to-stand, and step up/down. They reported RMSE ranging from 

1.97° (1.48°) to 3.02° (2.56°) for peak estimations, and 3.72° (3.63°) to 4.67° (4.12°) 

for time-series estimations. Both these studies in people with knee osteoarthritis 

reported RMSE within the range of that found in healthy participants, albeit with 

higher variability, demonstrating potential for their use in this clinical population. 

Despite the low RMSE between the IMU and Vicon systems, the limits of 

agreement reported by Binnie et al. (2021) indicated a large variability in sagittal plane 

angular estimates with the limits of agreement for peak predictions ranging between –
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9.63° to 9.32° and -16.91° to 20.94°. High variability may preclude clinical use because 

of unreliable estimates, which may be related to differences in movement patterns in 

people with knee osteoarthritis or electromagnetic interference (see section 2.4.2) 

affecting the fusion algorithm. Because no other study has reported variability in the 

estimates for IMU systems in people with knee osteoarthritis, it is unclear if this is 

consistent across different IMU systems, knee osteoarthritis populations and 

movement patterns.  

The range of walking-related movement parameters investigated using IMUs for 

people with osteoarthritis have been summarised in a recent scoping review (Kobsar 

et al., 2020). From 72 included studies: 45 investigated spatiotemporal parameters, 33 

investigated joint angles or segment orientation, 22 investigated accelerations, 10 

investigated side-to-side symmetry of walking parameters, and three investigated knee 

joint moments. They identified 10 studies that investigated knee joint angles and three 

studies that investigated knee joint moments using IMUs in people with knee 

osteoarthritis (He et al., 2019; van den Noort et al., 2013; Wang et al., 2020). 

Kinematic outcomes in those studies included: sagittal plane hip, knee and ankle joint 

as well as lower limb segment (thigh, shank or foot) range of movement, and other 

information such as stride duration and step length (van der Straaten et al., 2018). 

Some systems can also segment data to provide additional clinically important 

information, such as the kinematics involved during specific phases of an activity (e.g. 

stance and swing during walking) (van der Straaten et al., 2018). These studies have 

demonstrated potential for providing clinicians and researchers movement-based 

information that may be clinically important. However, studies that use IMUs to 

collect movement-based information to inform clinical reasoning have only recently 

been investigated.     

While there is limited evidence of group-based changes in movement patterns 

following exercise interventions (see section 2.2.3), there is recent evidence that IMUs 

can be used to monitor patient-specific movement patterns in people with knee 

osteoarthritis (Kobsar & Ferber, 2018) and low back pain (Wernli, O'Sullivan, et al., 

2020). For example, using IMUs, Kobsar and Ferber (2018) investigated if 

patient-specific changes in treadmill walking-related movement patterns were 
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associated with changes in patient-reported outcome measures (KOOS) following a 

progressive strengthening and balance based exercise intervention for people with 

knee osteoarthritis. Using a machine learning approach (see section 0), they found a 

strong association between changes in individualised walking-related movement 

patterns and clinical outcomes (Spearman’s rho = 0.78) (Kobsar & Ferber, 2018). 

Their approach used principal component analysis to reduce linear acceleration 

(accelerometer) and angular velocity (gyroscope) data – representing 95% of the total 

variance of the collected data. The authors justified this approach suggesting that 

univariate approaches to biomechanical analysis (typically knee adduction moment) in 

group-based study designs (e.g. randomised controlled trials) have questionable 

sensitivity across a heterogeneous population like those with knee osteoarthritis. 

Because the approach was individualised, and used principal component analysis, it is 

unclear which biomechanical variables were of clinical interest. So, while this study 

demonstrated change in movement can be assessed using IMUs following exercise 

intervention, it is unclear how a clinician would practically target a change in 

movement pattern because the specific kinematic variables are unknown. 

More recently, IMUs have been used to monitor changes in individualised 

lumbar spine movement patterns within a clinical environment for people with low 

back pain within an experimental single case design of 12 participants (Wernli, 

O'Sullivan, et al., 2020). The authors reported that 10/12 participants had significant 

strong to excellent correlations between changes in individualised movement 

parameters and clinical outcomes. The most common changes were an increase in 

lumbar range of movement and speed of movement into flexion which was 

interpreted as being ‘less protective’ (Wernli, O'Sullivan, et al., 2020). While no studies 

have used IMUs and described the exact movement parameters of a ‘less protective’ 

movement pattern in knee osteoarthritis, they may be similar to people with low back 

pain. For example, in the previously described (see section 2.1.4) study  by Marriott et 

al. (2019), an increase knee flexion during walking was associated with less pain – 

potentially suggesting a ‘less protective’ movement pattern.  

While these two studies included only small sample sizes, these studies suggest 

that IMUs have the potential to be useful in clinical practice to monitor changes in 
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individualised movement patterns in clinical environments. It is unclear however if 

these changes in movement patterns would also be evident outside of the clinic in a 

free-living environment. 

2.4.1.2 IMUs for Recognising Activities 

Different types of activities have distinct, recognisable movement patterns. 

Because of these distinct movement patterns, models can be created to detect specific 

activities from IMU data, an approach known as ‘human activity recognition’ (Kim et 

al., 2010). Human activity recognition is an automated approach that has the potential 

to unobtrusively monitor the performance of functional activities (i.e. activity 

avoidance) outside of a clinical environment, described in this thesis as ‘free-living 

environments’ (see section 2.5.5).  

IMU-based human activity recognition has been mostly investigated in people 

without health conditions, where data is automatically handled by classification 

models (see sections 2.5.4and 2.5.5) to predict common every day activities such as 

walking, running, ironing, vacuuming, opening a refrigerator and drinking from a cup 

(Arif & Kattan, 2015; Ascioglu & Senol, 2020). There are multiple systematic reviews 

describing the various uses for human activity recognition. IMU-based human activity 

recognition has been developed for detecting sports-specific bodily movements to 

monitor training load (McGrath et al., 2020), exercise detection (O’Reilly et al., 2018), 

and for quantifying activities in people with mobility impairments (Rast & Labruyère, 

2020) that could help inform clinical decision making. 

However, despite sensor based human activity recognition having potential to 

recognise clinically important activities for the purpose of informing clinical decision 

making, there are a limited number of studies involving people with knee 

osteoarthritis, or related conditions. A review by Rast and Labruyère (2020) identified 

only one study that recruited participants with knee osteoarthritis (Verlaan et al., 

2015), and two others in participants who had total joint arthroplasty (joint 

unspecified) (Lipperts et al., 2017), and rheumatoid arthritis (Andreu-Perez et al., 

2017). In studies by Verlaan et al. (2015) and Lipperts et al. (2017), IMUs were used 

to identify lying down (duration), sitting (duration), standing (duration), walking 

(duration/number of steps) and stair climbing (duration/number of steps). In 
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comparison Andreu-Perez et al. (2017) used IMUs to recognise changes in body 

position, such as lying to sitting, lying to standing and sitting to standing/walking. 

While the purpose of the studies by Lipperts et al. (2017) and Andreu-Perez et al. 

(2017) was to develop and validate human activity recognition models, Verlaan et al. 

(2015) compared activity profiles between participants with and without knee 

osteoarthritis without describing validation of their model. Therefore, no study has 

yet validated a human activity recognition model for people with knee osteoarthritis. 

Validation is an important step in development of human activity recognition and is 

explored in section 2.5.3. 

2.4.2 Limitations of Inertial Measurement Units 

While there is promising research investigating the use of IMUs for clinical 

purposes, there are several limitations that preclude widespread clinical use. As 

discussed in the previous section, most IMU systems that provide interpretable 

biomechanical data have only been validated for use in healthy participants in 

laboratory conditions. Only a few studies have validated IMU systems for people with 

knee osteoarthritis for kinematic parameters (Binnie et al., 2021; Hafer et al., 2020) 

and joint moments (He et al., 2019; van den Noort et al., 2013; Wang et al., 2020). No 

systems have been validated for human activity recognition in people with knee 

osteoarthritis (Kobsar et al., 2020) which is described further in section 2.5.5.  

All IMUs are prone to integration drift (position or orientation errors that grow 

with time) over longer time periods, such as hours of use (Kok et al., 2017). Drift 

originating from the gyroscope reflects a constant bias and measurement noise 

resulting in an accumulated error, and can only be imperfectly corrected via 

integration of orientation data from the magnetometer (i.e. heading or tilt estimates 

from the accelerometer for the vertical plane) (Kok et al., 2017; Weygers et al., 2020). 

These drift corrections are usually based on joint constraint or degrees of freedom 

boundaries (Weygers et al., 2020). Because of the requirement to correct for drift, 

both magnetometer and accelerometer-based drift correction methods are limitations 

of IMU systems. 

Because IMU systems are usually validated in controlled laboratory 

environments, it is unclear if kinematic estimates in clinical or free-living 
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environments are equally as precise. This is particularly important as the 

magnetometer in the IMU is susceptible to electromagnetic interference and 

magnetisation from ferrous materials and electrical systems (Bachmann et al., 2004; de 

Vries et al., 2009; Schall et al., 2016). Considering the widespread use of ferrous 

material for construction (e.g. door frames) and furniture (e.g. chairs), as well as 

electrical equipment such as lighting, wiring, mobile phones and laptops (Bachmann 

et al., 2004), it is not possible to avoid these sources of interference in both clinical 

and free-living environments. This makes IMU systems that use magnetometers 

unreliable in uncontrolled environments resulting in some researchers discarding the 

magnetometer data because kinematic estimates from fusion algorithms were 

unreliable as a result of electromagnetic interference (Schall et al., 2016).  

To address the issue of electromagnetic interference, some fusion algorithms 

have been developed that only require data from accelerometers and gyroscopes, 

using short term accelerometer-based drift correction (Schall et al., 2016; Teufl et al., 

2019; Weygers et al., 2020). However, these systems require calibration procedures to 

be frequently performed and the IMUs to be placed in the same orientation, which 

places increased technical burden on the user, especially in free-living environments if 

a patient is required to initiate the IMUs themselves.  

While magnetometer-free IMUs are well suited for field use over longer periods 

of time (Weygers et al., 2020), they create large files of long continuous streams of 

unlabelled data. Continuous datasets that include hours of information are 

meaningless for a clinician or researcher without data labelling that describes which 

activity was being performed during the data collection period. Because of this, 

significant data handling is required to extract meaningful samples from these data 

streams. To overcome these barriers, some systems allow the user – either the 

clinician or patient to timestamp an event manually to create a data collection 

‘window’, which is cumbersome and time-consuming. A more user-friendly option 

would be to use a human activity recognition approach to automate segmentation and 

label the data into clinically relevant samples from these large, continuous data files. 

Another limitation when using IMUs is a lack of certainty about the number required 

to be worn that would provide accurate results. For example, for human activity 
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recognition, when there are multiple layers of classification, accuracy can be improved 

by as much as 20% by using five IMUs compared to one IMU (Hendry et al., 2020). 

However, for biomechanical analysis in people with knee osteoarthritis the accuracy 

of biomechanical models has not been tested using different numbers of IMUs and 

locations.  

One approach to help automate handling of large, complex datasets, from 

IMUs, is known as machine learning, a form of artificial intelligence. Machine learning 

offers a data driven method to overcome the issues with electromagnetic interference, 

calibration requirements and data segmentation limitations of inertial measurement 

units. 

2.4.3 Key Points 

What is known and not known about IMUs? 

• IMUs are a wearable sensor technology capable of collecting data in 
free-living environments.  

• IMUs can provide kinematic information using fusion algorithms. 

• IMUs can not provide kinetic information directly.  

• Preliminary studies indicate IMUs can provide individual person-level data 
that is clinically relevant. 

• IMU data can be used for human activity recognition.  

• Fusion algorithms commonly rely on a magnetometer to provide 
meaningful information. 

• There are limitations using IMU systems based on fusion algorithms in 
free-living environments because of electromagnetic interference and 
calibration requirements. 

• The effect of different numbers of IMUs for human activity recognition 
and biomechanical analysis is unclear in people with knee osteoarthritis. 

• Machine learning may help address limitations of current IMU systems.  
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2.5 Artificial Intelligence 

2.5.1 Background of Artificial Intelligence and Machine Learning 

In 1950, the famous mathematician and computer scientist Alan Turing 

published a seminal paper, posing the question “Can machines think?” (Turing, 1950). 

He laid the framework for developing and testing artificial intelligence, a concept 

where computers or machine systems are capable of performing tasks that would 

usually require human intelligence (Oxford English Dictionary). Machine learning is a 

specific branch of artificial intelligence based around the idea that computers can 

learn through experience (Mitchell, 1997; Samuel, 1959). With the correct data and 

sufficient experience, a machine learning model can be trained to accurately predict an 

outcome.  

There are three types of machine learning – supervised learning, semi-

supervised learning, and unsupervised learning (Bi et al., 2019; Wiemken & Kelley, 

2020). At its most basic level, unsupervised learning uses unlabelled data for 

identifying hidden patterns or clusters in large datasets without a pre-specified 

outcome. On the other hand, supervised learning uses labelled data with a 

predetermined output which can be used for classification and regression problems.  

Classification is most easily understood as a categorical decision-making process. 

Consider the images of a ‘dog’ or ‘cat’ (Figure 2-1). A machine (computer algorithm), 

much like a child, can begin to correctly identify (classify) a furry animal as a dog if 

presented with sufficient examples of a dog (experience). If the machine is then 

presented with a cat, it would likely classify it as a dog if it has not been provided with 

experience to learn the relevant features that provide sufficient information to classify 

the cat appropriately.  

Regression problems on the other hand, can be solved using a supervised 

prediction model for continuous outcomes. One such example is weather forecasting 

to predict hourly temperature or rainfall where previous time-series data is used to 

forecast or predict future events.  
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Figure 2-1.  Example of a machine learning classifier for cats and dogs. 

Multiple 
samples of 

labelled data 

Training the machine 
learning model 

Input of new data for 
prediction 

Prediction output 

 

   

 

2.5.1.1 Developing Machine Learning Systems 

The development of a machine learning system (Figure 2-2) broadly involves 

two phases: (a) training (learning) and (b) testing (prediction) (Kokkotis et al., 2020). 

The training phase involves an iterative feedback loop that informs all steps of the 

test phase. Before data is input into the machine learning model, it is important that 

the data undergoes pre-processing to be ‘cleaned’. For this cleaning process, data is 

checked for consistency, missing samples and any noise is filtered (Kokkotis et al., 

2020). After cleaning, further pre-processing can include data transformation (e.g. 

normalisation) and restructuring. The input data consists of two categories; the target 

variable (reference standard) and the predictor variable (input data mapped to the 

target) (Kokkotis et al., 2020). In statistical terms, the target variable is the dependent 

variable, and the predictor variable is the independent variable. 

After the pre-processing phase, the data then undergoes a feature extraction 

phase where important features are selected that can be used for training the model. 

This feature extraction phase is part of a feedback loop that provides multiple levels 

of refinement based on the results of training the model (Kokkotis et al., 2020).  
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Figure 2-2. Traditional machine learning development and testing. 

 

Note. “A typical machine learning system” Adapted from " Machine Learning in Knee Osteoarthritis: A 
Review" by C. Kokkotis, S. Moustakidis, E. Papageorgiou, G. Giakas and D.E. Tsaopoulos, 2020, 
Osteoarthritis and Cartilage Open, 2(23), p. 2. (https://doi.org/10.1016/j.ocarto.2020.100069). Copyright 2020 
by Osteoarthritis Research Society International (Creative Commons). 

2.5.1.1.1 Traditional Machine Learning 

There are a variety of traditional machine learning approaches that can handle 

continuous or categorical input data. The various traditional machine learning 

approaches can be categorised as Bayesian, linear regression, tree-based, instance-

based and support vector machines (Kokkotis et al., 2020). Some examples of 

traditional machine learning architecture are listed in Table 2-4.  

Table 2-4. Types of traditional machine learning approaches. 

Category Models Data 

Bayesian 

Naïve Bayes 
Gaussian Naïve Bayes 
Multinomial Naïve Bayes 
Bayesian Belief Network 

Categorical 

Instance-based 
K-nearest neighbour 
Locally weighted learning 
Learning Vector 

Categorical 

Linear Linear regression Continuous 

Support vector machine 
Support vector machine 
Least squares support vector machine 

Categorical 
Continuous 

Tree-based 

Decision tree 
Random forest 
Gradient boosting 
Regression tree 

 
Categorical 

 
Continuous 
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Linear regression is one of the simplest forms of traditional machine learning 

for continuous data, whereby a linear equation is fit to the observed independent and 

dependent variables. Another example is a decision tree, which can handle both 

continuous data for regression tasks and categorical data for classification tasks 

(Somvanshi et al., 2016). In a decision tree, the data is branched with each node coded 

for a particular decision. At each node an independent variable is input with a 

threshold set to make the decision that indicates the navigation path to the next 

branch of the tree (Somvanshi et al., 2016). Traditional machine learning models 

require a-priori feature selection as determined by the researcher, which is dependent 

on the researcher’s interpretation of what features are important. Traditional 

approaches are also unable to handle complex interactions or relationships between 

inputs. A more sophisticated machine learning approach is known as deep learning, 

which is a subclass of machine learning that can handle more complex problems.  

2.5.1.1.2 Deep Learning 

Deep learning is a newer form of machine learning that involves a complex 

architecture that is modelled on a layered structure of ‘neurons’ (Sarker, 2021). Like 

the structure of a brain, each neuron is connected to multiple other neurons, which in 

turn are further connected to others resulting in a deep multilayered neural network 

(LeCun et al., 2015; Liu & Lang, 2019; Sarker, 2021).  

While traditional machine learning requires a human programmer to make 

a-priori decisions about which features are important, deep learning automates this 

process (Figure 2-3) (LeCun et al., 2015). Some researchers consider traditional 

approaches to have been superseded by deep learning because of the automated 

pre-processing, feature extraction and feature selection (Figure 2-3) and ability to 

learn complex multidimensional nonlinear relationships within the training data 

(LeCun et al., 2015; Jindong Wang et al., 2019; Xu et al., 2019).  However, evidence of 

the superior performance of deep learning approaches is only just emerging for 

models trained IMU data (Fridriksdottir & Bonomi, 2020) and therefore requires 

further exploration. 
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Figure 2-3. Comparison of tradition machine learning and deep learning 
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In a deep learning model, there are three types of neuron layers: the input, 

hidden and output layers. A deep neural network is ‘deep’ because of multiple hidden 

layers, where the more hidden layers result in a deeper network. Figure 2-4 depicts a 

simple neural network that is two layers deep with each grey circle represents a single 

neuron which is linked (or ‘synapsed’) to every other neuron before and after. 

Figure 2-4. Example of a deep neural network with two hidden layers 
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The input layer contains the collected pre-processed data which is then passed 

into one or more hidden layers (Sarker, 2021). A hidden layer has multiple neurons 

that contain reprocessed data. Reprocessed data in each hidden neuron is a weighted 

sum of its inputs (Sarker, 2021). That hidden neuron then passes the new value into 

the next layer, with its new weighting and bias into an activation function (Sarker, 

2021). The bias controls when the activation function is initiated. Once the activation 

function is initiated it prepares an output to further propagate the restructured data to 

the next layer (Sarker, 2021). Last of all, the output layer provides the results. 

Examples of deep learning architectures are summarised in Table 2-5 (Liu & Lang, 

2019; Sarker, 2021). 

Table 2-5. Types of supervised deep neural networks. 

Type of Architecture Variations Type of data 

Recurrent neural network 
LSTM 

Bi-LSTM 
GRU 

Regression 

Convolutional neural network CNN Categorical 

Feed-forward neural network/Artificial 
neural network 

Multilayer 
perceptron 

Regression 

LSTM = long-short term memory, Bi-LSTM = bidirectional-LSTM, GRU = gated recurrent units, CNN = 
convolutional neural network 

2.5.2 Machine Learning in Healthcare 

With the rapidly increasing digitisation of healthcare, there is a growing interest 

in machine learning applications for handling the large complex datasets across health 

disciplines such as cancer, cardiovascular disease and neurology (Jiang et al., 2017). 

The majority of machine learning research in healthcare is focused on diagnostic 

imaging, genetic profiling/diagnosis and electrodiagnosis (Jiang et al., 2017). 

In healthcare, unsupervised machine learning can be used in an exploratory 

manner to find naturally occurring patterns in the data (Deo, 2015; Leslie et al., 2018; 

Sidey-Gibbons & Sidey-Gibbons, 2019). For example, it has been demonstrated that 

unsupervised machine learning approaches can be used for large complex multifacility 

datasets to improve health system performance (Leslie et al., 2018) through to 

monitoring outcomes at a personalised, individual level (Kobsar & Ferber, 2018). 

However, for the purposes of predicting outcomes, supervised machine learning 
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approaches have been used for broad range of healthcare applications, including 

diagnostics (Caballé-Cervigón et al., 2020), prognostics (Senders et al., 2018) and 

clinical decision making (Hassan et al., 2021).  

2.5.3 Assessing Performance of Machine Learning Models 

2.5.3.1 Validation Approaches 

Understanding validation approaches is important because when comparing 

different studies, differences between validation approaches can hinder meaningful 

comparison. A common validation method is k-fold validation. For example, in a 10-

fold cross-validation (Figure 2-5), where k = 10. A k-fold cross-validation pools all 

the data across participants, and randomly partitions trials into k (10) groups (folds). 

From this, nine folds are used for training and one for testing. This process is 

repeated 10 times and the results averaged across the 10 folds.  

Figure 2-5. 10-fold cross-validation 

Validation 
iteration 

Training 
folds 

Test 
fold 

1st 1 2 3 4 5 6 7 8 9 10 

2nd 1 2 3 4 5 6 7 8 9 10 

3rd 1 2 3 4 5 6 7 8 9 10 

 … 

10th  1 2 3 4 5 6 7 8 9 10 

Another common approach is known as leave-one-out cross-validation 

(Figure 2-6). This again pools all participant data and randomly partitions the data 

across participants. But in this approach the model is trained on all the data except for 

a single sample on which the model is tested. Randomly partitioned k-fold validation 

(including both 10-fold and leave-one-out cross-validation) increase the likelihood a 

participant’s data is part of both the training and test data. Because samples from one 

participant’s data is potentially in both the training and test phase those approaches 

are known to result in higher accuracy compared to leave-one-subject-out cross-

validation that fully takes into account between-participant variability (see below) 

(Gholamiangonabadi et al., 2020; Saeb et al., 2017).  
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Figure 2-6. Leave-one-out cross-validation 

Validation 
iteration 

Training 
samples 

Test 
sample 

1st 1 2 3 4 5 6 … 98 99 100 

2nd 1 2 3 4 5 6 … 98 99 100 

3rd 1 2 3 4 5 6 … 98 99 100 

 … 

100th  1 2 3 4 5 6 7 8 9 10 

Similarly, percentage-based validation methods exist (e.g. 70% training, 30% test 

(Figure 2-7) and they also do not fully account for between-participant variability as 

the model is tested on, for example, 30% of the entire sample across all participants. 

Figure 2-7. 70:30 cross-validation 

Validation 
iteration 

Training data Test data 

1 70% 30% 

What is meant by ‘do not account for between-participant variability’ is that k-

-fold cross-validation and percentage split validation increases the likelihood that an 

individual’s data is included in both the training and validation dataset (Saeb et al., 

2017). That provides imprecise information about the expected accuracy for a single 

person who was not in the training sample, such as new patient in a clinic. In contrast, 

an approach where between-participant variability is maximally accounted for is 

known as leave-one-subject-out cross-validation (Figure 2-8).  

Leave-one-subject-out cross-validation is similar to k-fold validation, but instead 

k = the number of participants (n) where, rather than randomly partitioning the data 

across participants, each participant’s data is partitioned. The model is trained on data 

from all participants except for that of the test participant and the results of the 

model are averaged across the number of participants. 

Figure 2-8. Leave-one-subject-out cross-validation 

Validation 
iteration 

Training 
participants (n - 1) 

Test 
1 

1st 1 2 3 4 5 6 7 8 9 10 

2nd 1 2 3 4 5 6 7 8 9 10 

3rd 1 2 3 4 5 6 7 8 9 10 

 … 

10th  1 2 3 4 5 6 7 8 9 10 
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Sidenote 
Some researchers split data into three sub-sets – training, validation, and test 

(Figure 2-9). In these instances, there is the additional validation step which 
subdivides the training data, providing an opportunity to refine model parameters to 
optimise the model prior to testing. For example, Fridriksdottir and Bonomi (2020) 
used 50% training data, 25% validation, and 25% test to validate a human activity 
recognition model. 

Figure 2-9. Validation sub-set of training data 

Dataset 

 

Training (75%) Testing (25%) 

 

Training (50%) Validation (25%) Testing (25%) 
 

Gholamiangonabadi et al. (2020) reported the results for human activity 

recognition model reporting both 10-fold cross-validation (99.8% accuracy) and 

leave-one-subject-out cross-validation (85.1% accuracy). Those results demonstrate a 

substantial ~15% difference between the two validation methods. For a clinician, it is 

difficult to interpret how accurate a human activity recognition system is for each new 

patient, when accuracy is derived from a 10-fold cross-validation rather than a 

leave-one-subject-out cross-validation. This is because the results of a 10-fold 

cross-validation are confounded by training data from a test participant potentially 

being in the training data. A leave-one-subject-out cross-validation never uses data 

from a test participant in the training data. Therefore, when a machine learning model 

is used for a new patient in a clinical practice, a clinician would know the average 

expected accuracy for that patient, presuming the patient has the same characteristics 

as the participants on which the model was built. And that is quite useful for 

clinicians. 

2.5.3.2 Statistical Reporting 

Across different fields of research, language for statistical testing differs. In 

medical research, accuracy is commonly reported for diagnostic tests whereby the 

results of a test can be cross tabulated into four categories: true positive, false 

positive, true negative and false negative. The cross-tabulation (otherwise known as a 

confusion matrix), provides a summary of the frequency of possible outcomes. From 

the frequencies, various statistics can be derived to describe accuracy (Table 2-6). 



55 
 

The same confusion matrix is used for machine learning classifiers, although different 

statistics are used. 

Table 2-6. Confusion matrix. 

  Actual  

  Positive Negative  

P
re

d
ic

te
d

 

Positive True Positive False Positive Precision 

Negative False Negative True Negative 
Negative 

Predictive Value 

  Sensitivity/Recall Specificity Overall Accuracy 

 

Accuracy in the context of diagnostics is commonly reported as (Alberg et al., 

2004):  

Sensitivity: the number of positive tests out of all those who have the disease. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

Specificity: the number of negative tests out of all those who don’t have the disease. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

Sensitivity and specificity are most commonly used for diagnostics because 

‘overall accuracy’ (described below) is dependent on the known prevalence of a 

condition which affects precision (Alberg et al., 2004). However, in machine learning 

validation, the exact number of positive samples is always known, and therefore 

‘overall accuracy’ is appropriate for use. Another difference regarding machine 

learning, is that the context for interpretation is about predicting correct positives, 

whereas in clinical diagnostics correctly identifying true negatives is often equally 

important, and therefore instead of specificity, precision is used. The one metric that 

is similar between diagnostics and machine learning is recall/sensitivity which 

describes the correctly identified positives out of all the positives that exist. 

Accuracy in the context of machine learning classification can be reported as: 
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Overall Accuracy: the number of correct predictions out of the total number of 

predictions. 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 +
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

 

Precision: the number of correct positive predictions out of the total number of 

positive predictions. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

Recall: the number of correct positive predictions out of the actual positive cases.  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

2.5.4 Supervised Machine Learning in Knee Osteoarthritis 

Since 2015, supervised machine learning approaches have attracted significant 

increase in attention from knee osteoarthritis researchers (Jamshidi et al., 2019; 

Kokkotis et al., 2020). A recent literature review reported the two most common 

types of training data used for machine learning models were medical imaging (e.g. x-

ray or magnetic resonance imaging) and biomechanical data (e.g. from IMUs) 

(Kokkotis et al., 2020). At times these were combined with patient-reported outcome 

measures (e.g. KOOS), demographic data, health status, genetic data, biochemical 

markers and food intake (Jamshidi et al., 2019; Kokkotis et al., 2020). In the field of 

knee osteoarthritis, there has been significant interest in using supervised machine 

learning approaches for diagnostics and prognostics with little investigation into the 

development of tools that can assist with clinical decision making (Jamshidi et al., 

2019; Kokkotis et al., 2020). Amongst the 75 studies in the review by Kokkotis et al. 

(2020); 13 studies used prediction or regression techniques that usually used medical 

imaging to predict structural progression; 43 studies used classification techniques 

using medical imaging or biomechanical data for the purposes of diagnostics; 15 

studies used machine learning techniques for segmenting medical imaging; and four 

studies used biomechanical data for monitoring rehabilitation. The majority of the 

machine learning-osteoarthritis research agenda is clearly weighted towards 
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diagnostics, rather than the development of tools to facilitate clinical decision-making 

post-diagnosis. It is clear that there is a gap in the literature for using machine learning 

approaches to handle IMU data in a way that would provide clinicians information 

from which to base decisions about management of their patients.  

2.5.4.1 Machine Learning for IMU Data in People with Knee Osteoarthritis 

For a person with knee osteoarthritis, IMU-machine learning approaches have 

the potential to provide a clinician or researcher with highly individualised, clinically 

relevant information about movement related outcomes. Despite this, there has yet to 

be significant research interest in machine learning approaches to facilitate 

biomechanical analysis and activity monitoring for people with knee osteoarthritis in 

free-living environments. 

Machine learning models that use IMU data are well placed to address the 

limitations with current methods of monitoring outcomes in clinical practice (see 

section 2.3) as they have the potential to provide objective data about how a person 

moves and engages with activities in free-living environments. Machine learning 

approaches also avoid the limitations associated with fusion algorithms outlined in 

section 2.4.2. by being able to use raw accelerometer and/or gyroscope data while 

ignoring the magnetometer data. 

There are a limited number of studies that have investigated the development of 

machine learning IMU monitoring systems for people who have knee osteoarthritis. 

Kobsar et al. (2017) reported ~80% accuracy classifying high-responders, 

low-responders, and non-responders on the KOOS following a hip strengthening 

intervention from gait data (four accelerometers) using a traditional machine learning 

approach (principal component analysis). Traditional machine learning approaches 

have also been used to classify common rehabilitation exercises prescribed for people 

who have knee osteoarthritis (Chen et al., 2015; Huang et al., 2017). These studies use 

two IMUs placed on the lower limb and up to three IMUs also placed elsewhere on 

the body of healthy participants to classify three different exercises and reported the 

accuracy of these models as ranging from 62% to 98%. While these machine learning 

IMU-based systems would be helpful for monitoring correct performance of an 

exercise, or compliance with an exercise programme in free-living environments, they 
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are unable to assist in monitoring other clinically important aspects of physical 

function such as biomechanics and monitoring of daily activities (e.g. walking, 

negotiating stairs, and transitioning to and from a chair) (see section 2.3.2). 

So far, there are few studies investigating development of a machine learning 

IMU human activity recognition system for activities commonly reported as difficult 

in people with knee osteoarthritis (Emmerzaal et al., 2020; Lipperts et al., 2017; 

Verlaan et al., 2015) (see section 2.5.5) – although those studies did not validate 

models on the intended population. There are also only a handful of studies that have 

developed machine learning models to predict biomechanical outcomes for functional 

activities (He et al., 2019; Renani et al., 2021; Renani et al., 2020; Wang et al., 2020) 

(see section 2.5.6).  

There is a clear, untapped potential for future development of machine learning 

models trained on IMU data for human activity recognition and prediction of 

movement parameters. The combination of IMU technology with data handling using 

machine learning approaches has the potential to aid clinical decision making for 

clinicians managing people who have knee osteoarthritis. The following sections will 

explore machine learning approaches to human activity recognition and 

biomechanical prediction. 

2.5.5 Machine Learning for Human Activity Recognition 

There are currently only two methods of assessing physical function outside of a 

clinical or laboratory environment: using patient-reported outcome measures 

(see section 2.3.1), and using accelerometers to monitor energy expenditure or body 

position (see section 2.3.2.3). But neither of these approaches provides direct 

information about the actual performance of activities that are most commonly 

associated with activity limitation due to knee osteoarthritis, which include walking, 

negotiating stairs and transitioning to or from a chair (Dobson et al., 2013). The goal 

of machine learning based human activity recognition is to use movement-based data 

to recognise and classify activities performed by humans in free-living environments 

(Kim et al., 2010).  
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A human activity recognition system designed to classify clinically important 

activities would have potential to assist in clinical decision making by monitoring 

performance of these activities when a patient is unobserved, outside of the clinical or 

laboratory environment. Because of the limitations associated with monitoring 

outcomes in clinical practice (see section 2.3), human activity recognition systems 

provide a promising new tool that has the potential to support clinical decision 

making.  

Monitoring systems have the potential to provide a clinician information about 

the frequency their patient has performed, and/or the time spent engaging with, an 

activity in free-living environments (Verlaan et al., 2015). Data from a human activity 

recognition system could be used by a clinician, for example, to reduce avoidance of 

activities by providing motivating feedback from monitoring data about active time 

versus sedentary time, or engagement with feared or painful activities when at home 

or out in the community. In addition, a second use for human activity recognition 

systems could be to segment large data streams into datasets of specific activities for 

subsequent biomechanical analysis. 

Human activity recognition models are developed as supervised machine 

learning classifiers, like the earlier example about classifying dogs and cats (see section 

2.5.1). For human activity recognition, the data are categorised and labelled before 

being input to train the machine learning model. A range of technologies exist that 

output data which could be input into a human activity recognition system (Qi et al., 

2018). Devices are categorised as ‘on-body’ (wearable) sensors (e.g. IMUs or global 

positioning systems) or ‘on-object’ sensors (e.g. radiofrequency identification tags or 

infrared location devices). On-body sensors are not limited by location in that they 

can be worn in any environment (i.e. indoors, outdoors, home, work, recreation). On-

body technology such as instrumented shoe insoles (Ngueleu et al., 2019), body 

cameras and IMUs (Qi et al., 2018) are available for the purposes of human activity 

recognition. Instrumented insoles have limitations because they have the additional 

burden of needing to be changed between the shoes worn and they do not fit all 

shoes. While body-worn cameras can provide direct observation of an activity, there 

are privacy concerns that influence user acceptance because they record the user’s 
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environment. In contrast, IMUs do not have these limitations, although wearability 

limitations exist as some people may find them uncomfortable or cumbersome. 

Despite this, IMUs are reducing in size and weight and can be considered a practical 

option for collection of data in free-living environments. However, IMU data 

collected in free-living environments are typically unlabelled, posing a data handling 

challenge. Human activity recognition can be the first part of a data handling pipeline 

that automatically segments data into manageable samples, providing clinically 

relevant information. 

The clinical application for human activity recognition for people with knee 

osteoarthritis falls into two categories: (a) classifying rehabilitation exercise, and 

(b) classifying functional activities. The literature review by Kokkotis et al. (2020) 

identified two studies that developed traditional machine learning human activity 

recognition models (support vector machines) to classify rehabilitation exercises 

commonly prescribed to people who have knee osteoarthritis (Chen et al., 2015; 

Huang et al., 2017). The exercises selected in these studies included; sitting knee 

extension, supine straight leg raise, and standing hip abduction (Huang et al., 2017); 

and inner range knee extension, supine straight leg raise and a mini-squat (Chen et al., 

2015). The classification accuracy for these studies ranged from 99.3% (SD 1.16%) 

(Chen et al., 2015) to 100% (Huang et al., 2017) using a 10-fold cross-validation. 

These studies have limited clinical utility for three reasons. Firstly, they recruited 

young, healthy participants rather than people who have knee osteoarthritis. Secondly, 

while having a system that can classify exercises might be helpful for monitoring 

exercise training volume during rehabilitation, it does not provide information about a 

person’s functional status. Thirdly, because those studies use a 10-fold cross 

validation that does not provide a clinician information about the expected average 

accuracy for each individual patient (see section 2.5.3.1). 

There are a substantial number of studies that have investigated the 

development of machine learning models to classify functional activities from inertial 

measurement unit data collected from healthy people (Arif & Kattan, 2015; Ascioglu 

& Senol, 2020; Bulling et al., 2014; Cust et al., 2019; Fridriksdottir & Bonomi, 2020; 

Martinez-Hernandez & Dehghani-Sanij, 2018, 2019; O’Reilly et al., 2018; Ramanujam 
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et al., 2021; Song-Mi et al., 2017; Jindong Wang et al., 2019; Weygers et al., 2020; Xu 

et al., 2019; Xu et al., 2018). Fewer studies have investigated populations that have 

pathology affecting lower limb movement (Albert et al., 2012; Lonini et al., 2016; Rast 

& Labruyère, 2020). Human activity recognition studies differ significantly on the 

types of activities, the number of activities, if the activities involve both upper and 

lower limbs, the number of IMUs used, the placement of IMUs, and the validation 

approach used. For example, Arif and Kattan (2015) reported a 89% accuracy (70% 

training data, 30% test validation – see Figure 2-7) classifying 12 activities (lying, 

sitting, standing, walking, running, cycling, Nordic walking, ascending stairs, 

descending stairs, vacuuming, ironing and rope jumping), by training a neural network 

on data collected from nine participants wearing three sensors (wrist, chest, and 

ankle). In comparison Fridriksdottir and Bonomi (2020) reported a 94% accuracy 

(50% training data, 25% validation, and 25% test – see Figure 2-9) classifying six 

activities (lying, upright, walking, descending stairs, ascending stairs and using a wheel 

chair), by training a deep neural network on data from 20 participants wearing a single 

sensor placed on the trunk. The heterogeneity in the type and number of activities, 

number of IMUs, placement of IMUs, and validation approaches makes direct 

comparison of the accuracy between human activity recognition models challenging. 

Nonetheless, for a human activity recognition system to be clinically meaningful, it is 

optimal for training data to be trained to classify only a limited number of activities 

relevant to the patient’s pathology. Limiting the number of activities ensures the data 

from the human activity recognition system is interpretable for the clinician. For 

example, some human activity recognition systems are designed to classify different 

standing activities such, as opening a refrigerator (Ascioglu & Senol, 2020) or ironing 

(Arif & Kattan, 2015). But this differentiation between standing activities is arguably 

unimportant for a clinician managing a person who has knee osteoarthritis because 

they are both standing activities that are largely differentiated by arm movement 

(which is not the focus for people with knee osteoarthritis) and time spent 

performing the activity.  

In a scoping review, Rast and Labruyère (2020) investigated the use of IMUs for 

quantifying activities in people with mobility impairments. That review identified 95 
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studies that used various forms of human activity recognition that could be 

categorised into four categories: “(1) maintaining and changing a body position, (2) 

walking and moving, (3) moving around using a wheelchair, and (4) activities that 

involve the upper extremity)” (Rast & Labruyère, 2020). The categories most 

consistent with the OARSI recommendations for assessment of physical function in 

people who have knee osteoarthritis (Dobson et al., 2013) relate to category one 

(changing body position, e.g. transitioning to and from a chair) and category two 

(walking and moving, e.g. negotiating stairs and walking) because of the primary 

physical limitation in moving the lower limbs. Machine learning based human activity 

recognition for people with knee osteoarthritis should focus on those activity 

categories. Human activity recognition machine learning models focused on lower 

limb specific activities have been developed for people with knee osteoarthritis, or 

post knee replacement. These three studies used traditional machine learning models 

(decision tree) to classify clinically important activities such as walking, ascending 

stairs, descending stairs, and transitioning to and from a chair (Emmerzaal et al., 2020; 

Lipperts et al., 2017; Verlaan et al., 2015).  

Using an unspecified validation approach, Lipperts et al. (2017) reported a 

99.5% prediction accuracy (five errors from 992 samples) for classifying activities for 

healthy participants and 98.9% for people who had a (unspecified) joint replacement 

(four errors from 390 samples). That study recruited 16 healthy participants and 40 

participants who had received a joint replacement three to 14 days prior to testing 

who were all asked to walk around, sit, stand, ascend, and descend stairs. Because that 

study did not specify the validation approach, it is not possible to interpret their 

model performance against similar studies. Emmerzaal et al. (2020) developed an app 

designed for people with knee osteoarthritis that included human activity recognition 

and biomechanical analysis to facilitate clinical decision making. They trained an 

unspecified machine learning model to classify the activities of walking, ascending 

stairs, descending stairs, sit-to-stand, stand-to-sit, jogging, and cycling, by use of data 

measured by a mobile phone accelerometer in a hip bag. The accuracy predicting 

these activities ranged between 65% to 97% using a leave-one-subject-out cross-

validation approach (Emmerzaal et al., 2020). However, their model was trained and 
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tested on data from 17 healthy participants, leaving questions about the validity of the 

human activity recognition model for the intended population who have knee 

osteoarthritis. The study by Verlaan et al. (2015) included participants with end-stage 

knee osteoarthritis, but their aim was to compare performance of physical activities 

between that group and healthy controls, rather than to develop and validate a human 

activity recognition system, and therefore did not report validation metrics precluding 

meaningful interpretation of their model’s performance. Overall, human activity 

recognition systems have been tested for clinically important activities but have not 

been trained nor tested on a population with knee osteoarthritis which is an important 

step prior to clinical implementation. 

2.5.6 Machine Learning for Predicting Movement Parameters 

IMUs also have the potential to be able to monitor movement in people with 

knee osteoarthritis for the purpose of biomechanical analysis. However, there are 

currently some limitations, and these have contributed to the slow uptake in clinical 

practice (see section 2.4.2). Over the past few years, there has been an increasing 

number of papers (below) investigating deep learning approaches for predicting 

biomechanical outcomes from IMU data as a method to overcome the calibration and 

magnetisation limitations of this technology. Machine learning based biomechanical 

prediction models have been developed for the hip, knee and ankle and have included 

both kinematic and kinetic movement parameters. 

Knee joint movement parameters predicted in machine learning studies include 

spatiotemporal (Renani et al., 2020) and angular kinematics (Hernandez et al., 2021; 

Rapp et al., 2021; Wouda et al., 2018), as well as joint moments and forces (He et al., 

2019; Mundt et al., 2021; Mundt, Koeppe, David, Witter, et al., 2020; Mundt, 

Thomsen, et al., 2020; Stetter et al., 2020; Stetter et al., 2019; Wang et al., 2020). Most 

studies about the development of machine learning prediction models for knee joint 

movement parameters usually include young and healthy participants. In these studies 

that recruit healthy participants, a variety of deep learning approaches have been used 

including artificial neural networks/feed-forward neural networks (Mundt, Thomsen, 

et al., 2020; Wouda et al., 2018), long-short term memory (LSTM)/recurrent neural 

networks (Mundt et al., 2021; Mundt, Thomsen, et al., 2020; Rapp et al., 2021), 
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multilayer perceptron networks (Mundt et al., 2021), convolutional neural networks 

(CNN) (Mundt et al., 2021), and combined CNN-LSTM (Hernandez et al., 2021). 

These studies developed biomechanical prediction models only for the activity of 

walking or sports-specific lower limb movements.  

Machine learning biomechanical prediction models are usually compared to 

gold-standard optoelectronic motion analysis systems for kinematic parameters, with 

the addition of force plate data for kinetic parameters. Table 2-7 outlines the 

prediction error for various deep learning prediction models for knee kinematic and 

kinetic parameters for walking.  

Table 2-7.  Deep learning model prediction error for walking. 

Movement parameter r RMSE Study 

Sagittal plane angular 
kinematics  

Flexion/ extension 

 

 
0.94 – 0.99 

 

 
0.97 – 12.1° 

 

(Hernandez et al., 2021; Mundt 
et al., 2021; Mundt, Thomsen, 
et al., 2020; Rapp et al., 2021; 
Wouda et al., 2018) 

Knee moments 

Adduction 

 

0.71 – 0.98 

 

10.5 – 22.3%* 

 
(He et al., 2019; Mundt, 
Thomsen, et al., 2020; Stetter et 
al., 2020) 

Flexion 0.72 18.4%* (Stetter et al., 2020) 

Knee joint forces  

Medial 

 

0.6 

 

27.7%* 
(Stetter et al., 2020) 

Compression 0.87 14.2%* 

*Normalised RMSE = RMSE divided by the peak to peak amplitude (Ren et al., 2008), r = Pearson’s 
correlation coefficient. 

There has been little in the way of machine learning research to predict 

movement parameters using IMU training data collected from people who have knee 

osteoarthritis despite the potential clinical significance of movement patterns in this 

population (see sections 2.1.3.1, 2.1.4, 2.2.1, 2.3.2.2). A recent review by Kobsar et al. 

(2020) investigated the use of wearable sensors for gait analysis in people who have 

knee osteoarthritis. From 72 studies, they identified only two studies using machine 

learning for predicting knee joint moments (He et al., 2019; Wang et al., 2020), and no 

studies for the prediction of kinematics (Kobsar et al., 2020). Only two additional 

studies since that review have investigated spatiotemporal (Renani et al., 2020), and 
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kinematic gait parameters (Renani et al., 2021) using data from participants with knee 

osteoarthritis.  

The two studies identified in the review by Kobsar et al. (2020) used training 

data collected from people with knee osteoarthritis wearing IMUs placed on both 

ankles to train an artificial neural network to predict knee adduction moment during 

the stance phase of walking. Wang et al. (2020) demonstrated the mean absolute error 

for their ANN to be 0.004 Nm/kg*cm and R2 = 0.96, while He et al. (2019) reported 

an RMSE of 0.36 Nm/kg*m (SD = 0.11) and r = 0.91. Because of the different 

methods of reporting results, it is not possible to directly compare these two studies, 

nor make comparisons between these studies that recruited people with knee 

osteoarthritis and other studies that only recruited healthy people.  

Renani et al. (2021) trained a bidirectional LSTM (BiLSTM) (deep learning) 

model to predict knee and hip angular kinematics (sagittal, frontal, and transverse 

planes) and spatiotemporal parameters (segment angular velocity and acceleration) for 

walking. They used training data collected from four IMUs placed over the pelvis, 

thigh, shank, and foot of participants, 13 of whom had knee osteoarthritis and 17 had 

a previous total knee arthroplasty. Averaged across the three predicted planes, they 

reported RMSE (SD) for hip 4.5° (1.6°) and knee 3.3° (0.2°) with strong correlations 

for the hip r = 0.82 and knee r = 0.83. The most accurate prediction was for sagittal 

plane knee movement (RMSE 2.9° (1.1°), r = 0.99).  

The prediction error for the deep learning kinematic prediction models that use 

IMU data collected from people with knee osteoarthritis for training and testing (He 

et al., 2019; Renani et al., 2021; Wang et al., 2020) are similar to that reported in other 

studies using data collected from healthy participants (Hernandez et al., 2021; Mundt 

et al., 2021; Mundt, Thomsen, et al., 2020; Rapp et al., 2021; Wouda et al., 2018). This 

demonstrates the feasibility for training and testing machine learning models to 

predict knee joint biomechanics for walking in this clinical population. Although the 

error may be similar, this does not detract from the need to derive models using data 

from people with activity limitation or pain, as their movement patterns can be 

different, potentially impacting model performance (as detailed in the next section). 
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No studies that have trained machine learning models on data from participants 

with knee osteoarthritis have demonstrated performance for predicting kinematic or 

kinetic parameters for multiple clinically relevant activities (i.e. walking, negotiating 

stairs and transitioning to and from a chair). Because biomechanical prediction 

models have only been developed for walking for people who have knee 

osteoarthritis, it is unknown if similar models can be built across a range of clinically 

important activities with acceptable accuracy. The performance of a model that is 

trained on data from a range of activities including walking, negotiating stairs, and 

transitioning to and from a chair, remains unclear. 

2.5.7 Population-Specific Models 

While there is a growing body of research of machine learning prediction studies 

using IMU training data from healthy participants, the models developed within these 

studies may not be fit for purpose in clinical populations, such as people with knee 

osteoarthritis. Very few studies have developed machine learning models trained and 

tested on data from clinical populations with activity limitation or pain (Rast & 

Labruyère, 2020). 

For some studies that use data from healthy participants, the intended end use is 

for populations with specific pathology such as knee osteoarthritis. This is potentially 

problematic, as people with knee osteoarthritis move differently to those without 

knee osteoarthritis (see section 2.1.4). Because machine learning predictions rely on 

consistent patterns in the IMU data, using models built on training data from healthy 

participants can affect the accuracy of the predictions when the model is tested on 

populations with pathology that affects their movement. 

There is some early work that has revealed machine learning prediction models 

using IMU data are affected by the population from which the training data was 

collected. For example, in human activity recognition studies, studies report 

11% to 26% reduction in test accuracy for models trained on data from healthy 

people that are subsequently tested on people with movement impairments such as 

Parkinson’s disease (Albert et al., 2012) or who are wearing orthoses (Lonini et al., 

2016).  
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As described in the previous section 2.5.5, Emmerzaal et al. (2020) developed a 

human activity recognition system for people with knee osteoarthritis as one 

component of an IMU-app. However, they trained and tested their model on data 

from healthy participants, but not people with knee osteoarthritis. After developing 

the human activity recognition model, they applied the model in a subsequent test for 

people who have knee osteoarthritis to explore the usability of their product. Their 

study did not report the test results on data from people with knee osteoarthritis but 

instead, the authors described that during usability testing in people with knee 

osteoarthritis, their system was inaccurate, limiting their systems utility (Emmerzaal et 

al., 2020). These findings may suggest that the difference in movement patterns 

between healthy participants and those with knee osteoarthritis affected the results. 

Future studies should therefore consider training and testing human activity 

recognition models on data collected from people with knee osteoarthritis. 

It is also not known if machine learning biomechanical prediction models can 

be used broadly across different populations. A recent study reported on the 

development of a deep learning model for spatiotemporal kinematic predictions, 

using training data from 14 participants with knee osteoarthritis and 15 participants 

who had a total knee arthroplasty (Renani et al., 2020). They reported a 4% higher 

prediction error for people who have knee osteoarthritis compared to those who had 

a total knee arthroplasty. They concluded that the difference in prediction error was 

because of greater variability in gait parameters for participants with knee 

osteoarthritis compared to those who had a knee arthroplasty. 

Considering there are significant differences in kinematics and kinetics between 

people with and without knee osteoarthritis (see section 2.1.4), machine learning 

models for human activity recognition and biomechanical prediction may need to be 

trained on population specific data to minimise prediction error.  
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2.5.8 Key Points 

What is known and not known about the use of artificial intelligence in studying people with knee 
osteoarthritis? 

• Machine learning is a branch of artificial intelligence where through 
experience a model can be trained to predict an outcome. 

• Deep learning is a branch of machine learning that does not require a-
priori feature selection by the researcher and is capable of handling non-
linear relationships. 

• In people with knee osteoarthritis, supervised machine learning has been 
used for predicting diagnosis and prognosis with minimal focus on models 
to facilitate clinical decision making.  

• Machine learning can be used as an alternative to fusion algorithms for 
IMU data to overcome limitations with electromagnetic interference and 
calibration requirements.  

• There are no studies using machine learning human activity recognition in 
people with knee osteoarthritis for activities associated with activity 
limitation. 

• There are a few studies using machine learning for biomechanical 
prediction in people with knee osteoarthritis but only for walking. 

• Population-specific models may be required. 
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2.6 Summary of Literature 

Knee osteoarthritis is a growing problem globally and accounts for the largest 

proportion of the total osteoarthritis burden and its associated disability. That 

disability is related to symptoms such as persistent pain and stiffness, psychological 

factors and physical factors that are associated with movement impairment and 

activity limitation. The most common activity limitations include walking, negotiating 

stairs, and transitioning to and from a chair, impacting a person’s ability to fully 

participate in society. People with knee osteoarthritis display altered movement 

patterns when performing clinically relevant activities such as walking, negotiating 

stairs, and transitioning to and from a chair. Movement parameters most frequently 

observed to differ from healthy controls include increased knee adduction moment, 

reduced sagittal plane range of movement, and increased levels of muscular activity 

around the knee. Abnormal knee joint loading, such as knee adduction and flexion 

moments, are risk factors for structural progression of knee osteoarthritis. 

A variety of non-invasive interventions (e.g. braces, orthotics, exercises) have 

been developed that aim to reverse the change in movement patterns in people with 

knee osteoarthritis in an effort to prevent structural progression, and improve pain 

and resultant activity limitation. Exercise is a core guideline-based intervention for 

people with knee osteoarthritis. Multiple high-quality studies demonstrate that 

exercise improves activity limitation and pain in people with knee osteoarthritis. Some 

exercise approaches have demonstrated the potential to influence movement 

parameters, although, there is conflicting information about whether exercise 

interventions can change movement patterns.  

There is one systematic review investigating the relationship between changes in 

movement and changes in symptoms, which included randomised controlled trials 

and only investigated knee adduction moment during walking. They concluded that 

there is no relationship between changes in knee adduction moment and clinical 

outcomes assessed with patient-reported outcome measures. However, other 

activities, movement parameters and study designs have yet to be systematically 
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investigated to explore the relationship between changes in movement and changes in 

activity limitation and pain after exercise interventions.  

There is heterogeneity across the population with knee osteoarthritis. Because 

movement patterns are variable across the population, group-based intervention and 

assessment may disguise the relevance of targeting a change in individualised 

movement parameters through exercise-based interventions. There are two recent but 

small studies that have demonstrated strong relationships between changes in 

individual person-level movement parameters, assessed using IMUs, and changes in 

clinical outcomes.  

IMUs are one tool that when combined with machine learning approaches have 

the potential to be used for monitoring the physical activities of patients with knee 

osteoarthritis in free-living environments, which could be used to help guide clinical 

decision making. However, IMUs systems are prone to error in free-living 

environments because they rely on magnetometers that can be affected by 

electromagnetic interference from computers, mobile phones, and metallic structures. 

Machine learning approaches to processing IMU data using only the raw 

accelerometer and gyroscope data have been successfully used in previous studies for 

two specific and clinically relevant purposes: human activity recognition and 

biomechanical prediction. 

Machine learning is also one method that can handle the large amounts of data 

produced by IMUs worn in free-living environments. But as the recorded data is 

unlabelled, it typically provides outputs that do not describe the type of activity that 

was being performed, preventing meaningful analysis for clinicians. Human activity 

recognition is a machine learning approach that could be used for monitoring 

engagement with activities in free-living environments, whist also segmenting the data 

for subsequent biomechanical analysis. Several studies have used IMU data for 

training biomechanical prediction models in people with knee osteoarthritis. But 

currently, no studies have demonstrated the prediction error for machine learning 

models for any activity besides walking and the majority use training data collected 

from healthy participants.  
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Most IMU-machine learning studies have used IMU data collected from healthy 

participants, limiting generalisability for clinical populations such as those with knee 

osteoarthritis. While previously published human activity recognition and 

biomechanical prediction machine learning models based on training data from 

healthy participants could be used for people with knee osteoarthritis, the significant 

differences in movement patterns between people with and without the condition 

may limit their validity and reliability. So far there are no human activity recognition 

machine learning studies, and only a handful of studies describing machine learning 

based biomechanical prediction models for kinematics and kinetics, that have used 

IMU training data collected from people with knee osteoarthritis.  

It is unclear if it is feasible to develop a machine learning IMU-based human 

activity recognition and biomechanical prediction system for multiple clinically 

important activities, based on IMU training data collected from people with knee 

osteoarthritis. Such a system could be used in free-living environments to monitor 

individualised changes in engagement with clinically important activities and to 

monitor changes in movement patterns that result from exercise, or other 

interventions for people with knee osteoarthritis.  
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2.7 Aims of Thesis 

1. Systematically review cohort studies and randomised controlled trials to 

investigate how changes in knee joint movement parameters during 

functional activities relate to changes in activity limitation or pain after 

exercise intervention in people with knee osteoarthritis. 

2. Investigate how wearable sensor technology could be used to monitor 

activity avoidance and altered movement patterns in people with knee 

osteoarthritis:  

a. Develop an IMU-based, human activity recognition system that can 

classify clinically relevant activities and phases of activities (walking, 

negotiating stairs, and transitioning to and from a chair) for people 

with knee osteoarthritis; 

b. Develop machine learning prediction models for knee joint sagittal 

plane angular kinematics for multiple clinically important activities; 

and 

c. Develop machine learning prediction models for knee joint moments 

and forces for the stance phase of walking. 
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Chapter 3  

Study 1: Systematic Review 

 

The Relationship Between Changes in Movement and  

Activity Limitation or Pain in People with Knee Osteoarthritis: 

A Systematic Review 

 

Prior to this body of research, there was one previous systematic review 

summarising the results of studies that investigated the relationship between changes 

in movement patterns and changes in the clinical outcomes of activity limitation or 

pain after exercise interventions (Ferreira et al., 2015). That review included studies 

that (a) investigated knee adduction moment, (b) limited study designs to randomised 

controlled trials, and (c) did not investigate the relationship using within-group 

change or correlation analyses. There are a broad range of other movement 

parameters that have been investigated to change post exercise. Also, both 

randomised controlled trials and cohort study designs are appropriate to investigate 

the relationship between change in outcomes using the either the co-occurrence of 

group-level change data or the correlation between changes using individual person-

level data. 

Therefore, as there were no systematic reviews that had investigated a 

relationship between movement patterns and clinical outcomes across a broad range 

of kinematic, kinetic and muscle activity parameters, questions remained about the 

relevance of changing movement patterns in clinical practice. 

The aim of this systematic review was to summarise the evidence about the 

relationship between change in knee joint angular kinematics, moments and muscle 

activity and change in activity limitation or pain following exercise intervention in 

people with knee osteoarthritis. 
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3.1 Abstract 

Objective: To report whether changes in knee joint movement parameters 

recorded during functional activities relate to change in activity limitation or pain after 

an exercise intervention in people with knee osteoarthritis. 

Design: Aetiology systematic review. 

Literature Search: Four databases (MEDLINE, Embase, CINAHL, and 

AMED) were searched up to January 22, 2021. 

Study Selection Criteria: Randomised controlled trials or cohort studies of 

exercise interventions for people with knee osteoarthritis that assessed change in knee 

joint movement parameters (moments, kinematics, or muscle activity) and clinical 

outcomes (activity limitation or pain). 

Data Synthesis: A descriptive synthesis of functional activities, movement 

parameters, and clinical outcomes. 

Results: From 3182 articles, 22 studies met the inclusion criteria, and almost all 

were of low quality. Gait was the only investigated functional activity. After exercise, 

gait parameters changed 26% of the time, and clinical outcomes improved 90% of the 

time. A relationship between group-level changes in gait parameters and clinical 

outcomes occurred 24.5% of the time. Two studies directly investigated an 

individual-level relationship, reporting only one significant association out of eight 

correlations tested. 

Conclusion: Most studies reported no change in gait-related movement 

parameters despite improvement in clinical outcomes, challenging the belief that 

changing movement parameters is always clinically important in people with knee 

osteoarthritis. 
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3.2 Introduction 

When walking (van Tunen et al., 2018), transitioning from sit-to-stand (Sonoo et 

al., 2019), or negotiating stairs (Iijima et al., 2018), people with knee osteoarthritis 

have altered joint loading (e.g. knee adduction moment) (Heiden et al., 2009; Iijima et 

al., 2018; Rutherford et al., 2017; Sparkes et al., 2019; van Tunen et al., 2018) less 

sagittal plane range of movement (Baliunas et al., 2002; Bouchouras et al., 2015; 

Hinman et al., 2002; McCarthy et al., 2013) and altered muscle activity compared to 

people without osteoarthritis (Bouchouras et al., 2015; Heiden et al., 2009; Hinman et 

al., 2002). Some altered movement patterns have been associated with structural 

progression of osteoarthritis (Bennell et al., 2011; Chehab et al., 2014; Thorp et al., 

2006) and pain intensity (Bensalma et al., 2019; Hall et al., 2017; O'Connell et al., 

2016). Gait alterations that include increased hamstrings-quadriceps co-contraction are 

associated with knee joint effusion (Rutherford et al., 2012), a factor that is strongly 

and independently related to weight-bearing knee pain in people with knee 

osteoarthritis (Lo et al., 2009).  

It is unclear whether altered movement patterns are the cause of activity 

limitation or pain. Yet, rehabilitation strategies focus on changing movement patterns 

to reduce synovitis and structural progression, in order to subsequently improve 

activity limitation and pain (Ageberg & Roos, 2015; Al-Khlaifat et al., 2016; Lehman, 

2018; Radzimski et al., 2012; Richards et al., 2017).  

There is preliminary evidence from randomised controlled trials (Cheung et al., 

2018; Hunt et al., 2018) and uncontrolled studies (Hunt & Takacs, 2014; Shull, Silder, 

et al., 2013; Thorp et al., 2010) that exercise may change knee movement patterns (Al-

Khlaifat et al., 2016; Preece et al., 2016). There is strong evidence from multiple 

systematic reviews that exercise improves the clinical outcomes of activity limitation 

and pain (Bannuru et al., 2019; Fransen et al., 2015). However, it is unclear whether 

there is a relationship between changes in specific knee joint movement parameters 

and changes in clinical outcomes.  

The relationship between change in knee adduction moment and change in 

clinical outcomes after an exercise intervention has been systematically reviewed 
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before: changes in activity limitation or pain were not associated with changes in knee 

adduction moment (Ferreira et al., 2015). However, the review had two important 

limitations: (a) it included knee adduction moment only (no other movement 

parameters), and (b) it included randomised controlled trials only, despite other de-

signs (such as cohort studies) also being capable of providing insight into the rela-

tionship between a change in movement parameter and a change in clinical outcome. 

A more comprehensive approach is to include both randomised controlled trial and 

cohort study designs, using within-group statistical approaches across a 

comprehensive range of knee joint movement parameters.  

Therefore, we aimed to assess whether changes in knee joint movement 

parameters during functional activities were associated with changes in activity 

limitation or pain after an exercise intervention in people with knee osteoarthritis. 

3.3 Methods 

We followed the reporting standards of the Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA) statement (Moher et al., 2009) and 

prospectively registered the review protocol with PROSPERO (registration number 

CRD42020160164).  

3.3.1 Data Sources  

Electronic databases (AMED, CINAHL, Embase, and MEDLINE) were 

searched from inception to January 22, 2021. The search strategy, using Medical 

Subject Headings (MeSH) (National Library of Medicine, 2019) and key words, was 

developed in collaboration with a faculty librarian (Appendix 3-1).  

3.3.2 Study Selection  

We included randomised controlled trials and cohort studies that (a) studied 

people with clinically (e.g. American College of Rheumatology classification criteria 

(Altman et al., 1986)) or radiologically diagnosed symptomatic knee osteoarthritis who 

participated in an exercise intervention, and (b) reported outcomes that included at 

least one knee joint movement parameter (moments, kinematics, or muscle activity) 

and activity limitation or pain outcomes at two time points. Studies were only 

included if they provided data with sufficient detail, as outlined in section 3.3.5.  
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We used the MeSH definition of exercise therapy: “A regimen or plan of physi-

cal activities designed and prescribed for specific therapeutic goals. Its purpose is to 

restore normal musculoskeletal function or to reduce pain caused by diseases or in-

juries” (National Centre for Biotechnology Information, 2021). Studies that assessed 

the effects of orthotics, shoes, braces, weight loss, or a single session of exercise were 

excluded. Due to a lack of translation resources, only studies written in English were 

included.  

Abstracts, then full texts (as appropriate), were independently screened for 

eligibility by two reviewers (J.T. and E.T.). All disagreements were resolved by 

discussion between reviewers until consensus.  

3.3.3 Risk of Bias Within Studies  

We aimed to investigate the relationship between changes in two outcome 

measures. As most studies did not investigate that relationship directly, we instead 

assessed for measuring change in outcome.  

We assessed the thoroughness of description of the population, the reliability 

and validity of outcome measures, data missingness, appropriateness of data analysis 

(correlation/regression or within-group mean change), and whether the assessor was 

blinded to the results of both the movement and clinical outcome measures. We 

adapted the Joanna Briggs Institute critical appraisal checklist for cohort studies 

(Appendix 3-2) (Moola et al., 2017). The original version of this checklist has been 

peer reviewed, and an adapted version of this tool has been previously used for a 

similar purpose (Wernli, Tan, et al., 2020). Two reviewers independently assessed the 

quality of each article included in this review, and all conflicts were resolved by 

discussion. The percentage agreement between the two reviewers was 91% to 100% 

(median, 100%; interquartile range, 95% to 100%).  

Studies were at high risk of bias when at least one of the most critical sources of 

bias was graded negatively. Studies were at overall low risk of bias only when all items 

were judged positively. Critical sources of bias related to reliability and validity in 

measuring outcomes, statistical analysis, and whether the assessor was blinded to both 

outcomes.  
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3.3.4 Certainty of Evidence Across Studies  

To rate the certainty of evidence across studies, we used the Grading of 

Recommendations Assessment, Development and Evaluation (GRADE) tool. All 

studies were analysed as cohort studies, because treatment allocation was irrelevant to 

our research question. We assessed the GRADE domains of risk of bias, imprecision, 

inconsistency, indirectness, and publication bias in relation to our research question 

about whether change occurred in movement parameters, activity limitations, and 

pain. For details about GRADE ratings and how the tool was applied, see Appendix 

3-3.  

3.3.5 Data Analysis  

Data Extraction  

A data-extraction table was adapted from a previous systematic review (Wernli, 

Tan, et al., 2020). The reviewers (J.T. and E.T.) independently extracted study design, 

sample size, participant characteristics, intervention (type, dose, duration), method of 

assessment, and prescore, postscore, and change score of movement parameter, 

activity limitation, and pain outcomes.  

Outcomes of Interest  

Studies were included if they investigated both a knee-specific movement 

parameter during a functional activity and a clinical outcome measured before and 

after the intervention. Movement parameters were required to be objective, 

instrument-assisted measures of knee joint movement during a functional activity (e.g. 

gait, negotiating stairs, or sit-to-stand). The movement parameters of interest were 

independent measures of knee joint (a) moments (e.g. knee adduction moment), (b) 

kinematics (e.g. knee flexion range of movement), and (c) muscle activity (e.g. muscle 

co-contraction ratio). Movement parameters not measured during a functional activity 

(e.g. supine knee flexion/extension or dynamometry) or combined measures of 

movement (e.g. via factor analysis) were excluded.  

Clinical outcomes included activity limitation or pain rated with self-reported 

questionnaires (e.g. the Western Ontario and McMaster Universities Osteoarthritis 
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Index (WOMAC) physical function and/or pain subscales or the visual analogue scale 

for pain).  

Data Synthesis  

With data extraction from randomised controlled trials, we considered only 

change within the exercise intervention arm. If a study included two exercise 

intervention arms, both were included as separate cohorts.  

To explore the relationship between changes in movement parameter and 

changes in activity limitation or pain, we provide a descriptive synthesis of studies 

reporting tests of association between the changes in movement and changes in ac-

tivity limitation or pain. Because only two studies calculated the association directly by 

correlation analysis (DeVita et al., 2018; Preece et al., 2016) we also report the 

frequency and direction of change for all outcomes for each co-occurrence that could 

be tested.  

If mean change was not reported, change was calculated by subtracting the 

postscore from the prescore. When the 95% confidence interval (CI) of the change 

was not reported, it was calculated from the change score variance. Missing SDs of 

change scores (SDchange) were estimated from pre and post SDs, using the 

recommended method for “imputing a change-from-baseline standard deviation using 

a correlation coefficient” in chapter 6.5.2.8 of the Cochrane Handbook for Systematic 

Reviews of Interventions (Higgins et al., 2020). The change SD was not reported in eight 

studies (DeVita et al., 2018; Fisher et al., 1997; Foroughi et al., 2011a; Foroughi et al., 

2011; Gaudreault et al., 2011; Shen et al., 2008; Shull, Silder, et al., 2013; Wang et al., 

2016) and thus was estimated from prescore and postscore values. The standardised 

response mean (SRM) was calculated (change mean/SDchange), which is the within-

group effect size used for repeated measures (Middel & van Sonderen, 2002). The 

SRM was standardised for dependent samples, allowing for use of Cohen’s threshold 

for effect sizes within a single group (Middel & van Sonderen, 2002). We defined the 

presence of change as a prescore-minus-postscore change score with a 95% CI that 

did not cross zero and an SRM greater than 0.2 (at least a small effect size) (Middel & 

van Sonderen, 2002). Therefore, studies that reported medians were omitted.  
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3.3.6 Deviations from the PROSPERO Registration  

This review differs from the PROSPERO registration in that we omitted the 

question on the magnitude of change when a relationship was present, due to a lack 

of studies that directly investigated the change relationship at an individual person-

level (such as using correlation analyses). We include data for the reader about 

changes in outcome for all outcome measures in the online appendices.  

3.4 Results 

The search strategy identified 3182 potentially suitable articles, and 22 met the 

inclusion criteria (n = 936 participants) (Bennell et al., 2010; Bennell et al., 2014; 

Brenneman et al., 2015; Cheung et al., 2018; DeVita et al., 2018; Fisher et al., 1997; 

Foroughi et al., 2011a; Foroughi et al., 2011; Gaudreault et al., 2011; Holsgaard-

Larsen et al., 2017; Hunt et al., 2018; Hunt & Takacs, 2014; King et al., 2008; Lim et 

al., 2008; Preece et al., 2016; Roper et al., 2013; Shen et al., 2008; Shull, Silder, et al., 

2013; Sled et al., 2010; Turcot et al., 2009; Wang et al., 2016; Zhu et al., 2016). The 

PRISMA flow diagram is presented in Error! Reference source not found. and the 

characteristics of the 22 articles (which included a total of 26 intervention arms) in 

Appendix 3-4. Two studies (Foroughi et al., 2011a; Foroughi et al., 2011) reported 

data from the same cohort; participants were counted once (Foroughi et al., 2011a), 

and duplicate data for any movement parameter were included once (Foroughi et al., 

2011a). Heterogeneity of movement parameters and interventions precluded meta-

analysis.  

3.4.1 Risk of Bias Within Studies  

One study was at low risk of bias, one was at medium risk, and 20 were at high 

risk (Table 3-1). The most common reasons for a lower rating were uncertainty about 

whether the assessor was blinded to both movement parameters and clinical out-

comes at both time points (unclear in 18/22 studies) and missing data (not adequate 

or unclear in 6/22 studies).  
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3182 references imported 
for screening 

 

2196 studies screened 
against title and abstract 

58 studies assessed for full-
text eligibility 

22 studies included 

550 duplicates removed 

436 missing abstracts 

2138 studies excluded 

36 studies excluded 
14 wrong outcomes 
3 wrong interventions 
4 wrong study design 
3 not peer reviewed 
academic journal 
12 no within group 
statistics/data 

 

Figure 3-1. PRISMA flow chart. 
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Table 3-1. Risk-of-bias assessment  
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(Bennell et al., 2010) 1 1 1 1 1 1 1 1 U High 
(Bennell et al., 2014)  1 1 1 1 1 1 1 1 U High 
(Brenneman et al., 
2015)  

0 1 1 1 1 1 1 1 0 High 

(Cheung et al., 2018)  1 1 1 1 1 1 1 1 U High 
(DeVita et al., 2018)  1 1 1 1 1 1 1 1 U High 
(Fisher et al., 1997)  1 1 0 1 1 1 1 1 U High 
(Foroughi et al., 
2011a) 

1 1 1 1 1 1 1 1 1 Low 

(Foroughi et al., 2011) 1 1 0 1 1 1 1 1 1 Medium 
(Gaudreault et al., 
2011)  

1 1 1 1 1 1 1 1 U High 

(Holsgaard-Larsen et 
al., 2017)  

1 1 1 1 1 1 1 1 U High 

(Hunt et al., 2018) 1 1 1 1 1 1 1 1 U High 
(Hunt & Takacs, 
2014) 

1 1 1 1 1 1 1 1 U High 

(King et al., 2008) 1 1 1 1 1 1 1 1 U High 
(Lim et al., 2008) 1 1 U 1 1 1 1 1 U High 
(Preece et al., 2016) 0 1 1 1 1 1 1 1 U High 
(Roper et al., 2013) 1 1 0 1 1 1 1 1 U High 
(Shen et al., 2008) 1 1 U 1 1 1 1 1 U High 
(Shull, Silder, et al., 
2013) 

1 1 1 1 1 1 1 1 U High 

(Sled et al., 2010) 1 1 U 1 1 1 1 1 U High 
(Turcot et al., 2009) 1 1 1 1 1 1 1 1 0 High 
(Wang et al., 2016) 1 1 1 1 1 1 1 1 U High 
(Zhu et al., 2016) 1 1 1 1 1 1 1 1 U High 

Domain level 
prevalence 

91% 100% 73% 100% 100% 100% 100% 100% 9%  

Abbreviations: *= critical risk of bias, 1 = Adequate, 0 = Not adequate, U = Unclear. 
High risk = any of the critical risks scored negatively or were unclear; Medium risk = all of the critical risks scored 
positively but some non-critical risks scored negatively or were unclear; Low risk = scored positively on all items. 

 

3.4.2 Certainty of Evidence Across Studies  

There was an overall low certainty of evidence for changes in outcomes and 

movement parameters (Error! Reference source not found.). We downgraded the 

starting position of “medium quality” to “low quality” and have limited confidence in 

the effect estimate due to the reasons detailed in Appendix 3-2.  
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Table 3-2. GRADE summary of findings for each outcome 

Change 
outcome 

Studies 
(n) 

Risk of 
Bias 

Imprecision Inconsistency Indirectness Publication 
Bias 

GRADE 
Rating 

Movement 
parameters 

22 Very 
serious 

Not serious Very serious Very serious Likely Very low 

WOMAC PF 
subscale 

15 Very 
serious 

Not serious Not serious Not serious Not likely Low 

KOOS ADL 
subscale 

3 Very 
serious 

Not serious Not serious Not serious Not likely Low 

WOMAC 
pain subscale 

16 Very 
serious 

Not serious Not serious Not serious Not likely Low 

KOOS pain 
subscale 

3 Very 
serious 

Not serious Not serious Not serious Not likely Low 

Pain 
VAS/NRS 

8 Very 
serious 

Not serious Not serious Not serious Not likely Low 

FSI difficulty 
subscale 

1 Very 
serious 

NA NA NA NA NA 

FSI pain 
subscale 

1 Very 
serious 

NA NA NA NA NA 

Abbreviations: ADL, activities of daily living; FSI, Functional Status Index; GRADE, Grading of 
Recommendations Assessment, Development and Evaluation; KOOS, Knee injury and Osteoarthritis 
Outcome Score; NA, not applicable; NRS, numeric rating scale; PF, physical function; VAS, visual analogue 
scale; WOMAC, Western Ontario and McMaster Universities Osteoarthritis Index. 

3.4.3 Synthesis of Results  

Two studies directly investigated the change relationship via correlation analysis. 

Gait was the only functional activity studied (22 studies, 26 intervention arms): there 

were eight knee joint moment, 15 kinematic, and four muscle activity parameters 

investigated. The within-group mean prescore, postscore, and change score (with 

95% CI) and the SRM for movement parameters for each study are detailed in 

Appendix 3-5, and for clinical outcomes in Appendix 3-6. The number of occasions 

a change in movement parameter was investigated and the frequency (%) at which it 

occurred are reported in Table 3-3. 

A within-group change (an SRM greater than 0.2, with the 95% CI of the mean 

change not crossing zero) in any gait- related movement parameter occurred 26% of 

the time (22/84), a within-group change in gait-related moments occurred 27% of the 

time (15/56) (Bennell et al., 2010; Cheung et al., 2018; DeVita et al., 2018; Foroughi 

et al., 2011a; Gaudreault et al., 2011; Holsgaard-Larsen et al., 2017; Hunt et al., 2018; 

Hunt & Takacs, 2014; Lim et al., 2008; Shull, Silder, et al., 2013; Wang et al., 2016), 

and a within-group change in gait-related kinematics occurred 25% of the time (7/28) 

(Roper et al., 2013; Turcot et al., 2009; Wang et al., 2016; Zhu et al., 2016). There 

were no within-group change data available for any muscle activity parameter.  
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Table 3-3. Changes in knee joint movement parameters during gait 

Movement parameter 
Occasions 

investigated (n) 
Change occurred 

n(%) 

Moments 

1st Peak knee adduction moment* 20 7 (35%) 

Knee flexion moment 14 0 

Peak knee adduction moment impulse 8 3 (37%) 

Knee extension moment 5 2 (40%) 

2nd Peak knee adduction moment 5 2 (40%) 

Peak knee internal rotation moment 1 0 

Peak knee abduction moment 2 1 (50%) 

Peak knee external rotation moment 1 0 

 56 15 (27%) 

Kinematics 

Knee flexion range 2 0 

Peak knee flexion angle early stance 4 1 (25%) 

Peak knee adduction angle 5 0 

Peak knee abduction angle 3 2 (67%) 

Max sagittal angular velocity stance 2 1 (50%) 

Min transverse angular velocity swing 2 1 (50%) 

Max sagittal angular velocity swing 2 0 

Peak knee external rotation angle 1 0 

Peak knee flexion angle swing 1 0 

Peak knee internal rotation angle 1 0 

Acceleration anterior-posterior 1 1 (100%) 

Knee angle initial contact 1 1 (100%) 

Acceleration medial-lateral 1 0 

Adduction-abduction range 1 0 

Internal-external rotation range 1 0 

 28 7 (25%) 
Change was defined as occurring when the 95% confidence interval did not cross zero and when 
the standardised response mean was greater than 0.2. 
*The study by (Foroughi et al., 2011a) was excluded from the count because data were reported in 
(Foroughi et al., 2011) 

The most frequently studied movement parameter was first peak knee 

adduction moment, which was also the one that changed most frequently (7/20, 

35%). An improvement in activity limitation or pain occurred 90% of the time 

(139/155) a cooccurrence of change was tested against gait parameters. No study 

reported worsening of activity limitation or pain after intervention.  

3.4.4 Studies Testing a Correlation Between Gait Parameters and Clinical 

Outcomes  

One study (DeVita et al., 2018) directly investigated the association between 

change in two movement parameters (peak flexion angle at early stance and peak knee 
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extension moment) and change in activity limitation. There was no correlation 

between change in any movement parameter and change in activity limitation. Two 

studies directly investigated the association between change in six movement 

parameters (precontact and early stance medial and lateral hamstrings-quadriceps co-

contraction ratios (Preece et al., 2016), peak flexion angle at early stance and peak 

knee extension moment (DeVita et al., 2018)) and change in pain. Change in one 

muscle activity parameter (precontact medial hamstrings-quadriceps co-contraction 

ratio) had a statistically significant correlation with a change in WOMAC pain 

subscale score (r = 0.45, p < 0.05) (Preece et al., 2016). 

3.4.5 Co-occurrence of Within-Group Mean Change Between Gait 

Parameters and Clinical Outcomes  

A co-occurrence of change between gait-related movement parameters and activity 

limitation or pain was uncommon. A change (SRM greater than 0.2, with the 95% CI 

of the mean change not crossing zero) in both a movement parameter and a clinical 

outcome occurred 24.5% of the times (38/155) a comparison could be made (Bennell 

et al., 2010; Cheung et al., 2018; DeVita et al., 2018; Foroughi et al., 2011a; 

Gaudreault et al., 2011; Holsgaard-Larsen et al., 2017; Hunt et al., 2018; Hunt & 

Takacs, 2014; Lim et al., 2008; Roper et al., 2013; Shull, Silder, et al., 2013; Turcot et 

al., 2009; Wang et al., 2016; Zhu et al., 2016). Those instances where there was within-

group change in movement parameters are reported in Table 3-4, cross-tabulated 

with change in activity limitation or pain. Appendix 3-7 expands on Table 3-4, 

presenting results for those instances where movement parameters did not 

demonstrate change. Where co-occurrence of change was observed between first 

peak knee adduction moment (Bennell et al., 2010; Cheung et al., 2018; Holsgaard-

Larsen et al., 2017; Hunt et al., 2018; Lim et al., 2008; Shull, Silder, et al., 2013) or 

peak knee adduction moment impulse (Gaudreault et al., 2011; Holsgaard-Larsen et 

al., 2017; Hunt et al., 2018) and a clinical outcome, the direction of change for the 

movement parameter was variable (Table 3-4).  
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Table 3-4. Direction of change in gait-related movement parameters, 
activity limitation and pain for movement parameters that demonstrated a 
change 
  

Activity Limitation 
 

Pain 

Movement 
Parameter 

 
Improved No 

Change 
Worse 

 
Improved No 

Change 
Worse 

Moments 

1st Peak knee 
adduction 
moment 

Increased 4 (21%) 1 (5%) 0  4 (20%) 1 (5%) 0 
No Change 9 (47%) 3 (16%) 0 

 
10 (50%) 3 (15%) 0 

Decreased 2 (11%) 0 0 
 

2 (10%) 0 0 

Peak knee 
adduction 
moment impulse 

Increased 1 (14%) 0 0  1 (12%) 0 0 
No Change 4 (57%) 0 0  5 (63%) 0 0 
Decreased 2 (29%) 0 0  2 (25%) 0 0 

Knee extension 
moment 

Increased 1 (20%) 0 0  1 (20%) 0 0 
No Change 2 (40%) 1 (20%) 0  3 (60%) 0 0 
Decreased 1 (20%) 0 0  1 (20%) 0 0 

2nd Peak knee 
adduction 
moment 

Increased 0 0 0  0 0 0 
No Change 3 (75%) 0 0  3 (60%) 0 0 
Decreased 1 (25%) 0 0  2 (40%) 0 0 

Peak knee 
abduction 
moment 

Increased 0 0 0  0 0 0 
No Change 1 (50%) 0 0  1 (50%) 0 0 
Decreased 1 (50%) 0 0  1 (50%) 0 0 

Kinematics 

Peak knee 
flexion angle 
early stance 

Increased 1 (25%) 0 0  1 (25%) 0 0 
No Change 2 (50%) 1 (25%) 0  3 (75%) 0 0 
Decreased 0 0 0  0 0 0 

Peak knee 
abduction angle 

Increased 0 0 0  0 0 0 
No Change 1 (33%) 0 0  1 (33%) 0 0 
Decreased 2 (67%) 0 0  2 (67%) 0 0 

Max sagittal 
angular velocity 
stance 

Increased 0 0 0  1 (50%) 0 0 
No Change 0 0 0  0 1 (50%) 0 
Decreased 0 0 0  0 0 0 

Min transverse 
angular velocity 
swing 

Increased 0 0 0  1 (50%) 0 0 
No Change 0 0 0  0 1 (50%) 0 
Decreased 0 0 0  0 0 0 

Acceleration 
anterior-
posterior 

Increased 0 0 0  1 (100%) 0 0 
No Change 0 0 0  0 0 0 
Decreased 0 0 0  0 0 0 

Knee angle at 
initial contact 

Increased 1 (100%) 0 0  1 (100%) 0 0 
No Change 0 0 0  0 0 0 
Decreased 0 0 0  0 0 0 

Change was defined as 95% confidence interval does not cross zero and standardised response mean >0.2. * Vote counting system – 1.0 vote per 
parameter. Where multiple measures were used for an outcome, the 1 vote was divided by the total number times used. For example, if pain was 

reported using WOMAC pain and NRS pain, then the vote was divided equally, therefore if WOMAC pain changed and NRS pain did 
not change the score was 0.5. See  

Appendix 3-7. Direction of a change in movement parameter, activity limitation 

and pain (count (%)) for movement parameters that did not demonstrate a change. 

 for movement parameters that did not demonstrate a change. 

For gait, the co-occurrence of change was observed between moment param-

eters and activity limitation 26% of the time (13/50) (Bennell et al., 2010; Cheung et 

al., 2018; Holsgaard-Larsen et al., 2017; Hunt et al., 2018; Lim et al., 2008; Shull, 

Silder, et al., 2013) and between kinematic parameters and activity limitation 18% of 
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the time (4/22) (Wang et al., 2016; Zhu et al., 2016). There were no studies that 

provided sufficient data to establish a co-occurrence of change between muscle 

activity and activity limitation.  

Co-occurrence of change was observed between moment parameters and pain 

26% of the time (14/54) (Bennell et al., 2010; Cheung et al., 2018; Holsgaard-Larsen 

et al., 2017; Hunt et al., 2018; Lim et al., 2008; Shull, Silder, et al., 2013) and between 

kinematic parameters and pain 24% of the time (7/29) (Roper et al., 2013; Turcot et 

al., 2009; Wang et al., 2016; Zhu et al., 2016). There were no studies that provided 

sufficient data to establish a co-occurrence of change between muscle activity and 

pain.  

3.5 Discussion 

We aimed to quantify the relationship between change in knee joint movement 

parameters and change in activity limitation or pain after an exercise intervention for 

people with knee osteoarthritis. The included studies were mostly of low quality and 

exclusively focused on gait, overlooking other important functional tasks relevant to 

people with knee osteoarthritis (e.g. sit-to-stand or ascending stairs). Gait parameters 

were predominantly focused on knee adduction moment, with limited investigation of 

kinematic and muscle activity parameters.  

Only two studies directly assessed a relationship via correlation analysis (DeVita 

et al., 2018; Preece et al., 2016). Change in only one movement parameter of the six 

investigated had a significant (moderate) correlation with improvement in pain 

(Preece et al., 2016). We found a within-group co-occurrence of change between gait-

related movement parameters and activity limitation or pain to be infrequent (24.5% 

of the time), even though clinical outcomes improved frequently (90% of the time).  

3.5.1 Interpretation of Findings  

Our results align with previous reviews across multiple body regions that report 

infrequent (Laird et al., 2012; Wernli, Tan, et al., 2020) or absent (Ferreira et al., 2015; 

Nodehi Moghadam et al., 2020; Richards et al., 2017) relationships between changes 

in movement patterns and clinical outcomes. We expanded on previous reviews in 

people with knee osteoarthritis (Ferreira et al., 2015; Richards et al., 2017) by 
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including a broader range of movement parameters and interventions (including 

active intervention control groups) and by reporting within-group change and 

additional results from cohort studies.  

There were only two studies (DeVita et al., 2018; Preece et al., 2016) that di-

rectly investigated the strength of the relationship between changes in movement 

parameters (peak flexion angle at early stance, peak knee extension moment, and 

medial and lateral hamstrings-quadriceps co-contraction ratio at precontact and early 

stance) and changes in activity limitation or pain, using the most precise statistical 

approaches (correlation or regression). Only one relationship was significant: a 

(moderate) correlation between a reduction in medial hamstrings-quadriceps co-

contraction ratio at precontact and improvement in WOMAC pain subscale score 

(Preece et al., 2016). In a recent prospective study over one year, higher medial 

hamstrings-quadriceps co-contraction was associated with faster progression of 

medial knee osteoarthritis resulting from increased medial loading (Hodges et al., 

2016). Considering that knee joint effusion is an independent predictor of weight-

bearing pain (Lo et al., 2009), and that people who have knee osteoarthritis and joint 

effusion have higher co-contraction than those with knee osteoarthritis but without 

effusion, the preliminary and promising results warrant further investigation (Preece 

et al., 2016).  

Fifteen studies in our review aimed to reduce medial joint loading through a 

reduction in knee adduction moment, which in turn may help prevent structural 

progression of the condition. On the other hand, physical therapists commonly 

prescribe load-modifying interventions for people with knee osteoarthritis, aiming to 

improve function (Teo et al., 2020). There are a variety of exercise modes (e.g. gait 

retraining, neuromuscular exercise) commonly prescribed by physical therapists that 

may modify or normalise medial joint loading. Beyond preventing structural 

progression, physical therapists have traditionally treated those with specific 

pathology as a homogeneous group and viewed modifying movement patterns 

through a kinesiopathological model of care – assuming that modifying a movement 

pattern to a specific, predetermined “normal” is necessary to reduce pain and improve 

function (Harris-Hayes et al., 2010; Lehman, 2018). Given that activity limitation or 
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pain almost always improved, despite a co-occurrence with change in movement 

parameters only 25% of the time, we suggest that changes in other factors may relate 

to the clinical benefits observed during exercise interventions.  

We found that improvements in clinical outcomes can occur together with a 

change in movement in a direction that is theoretically “detrimental.” Despite 

elevated first peak knee adduction moment being associated with structural 

progression of knee osteoarthritis (Bennell et al., 2011; Chehab et al., 2014; Thorp et 

al., 2006), we found more studies reporting concurrent improvements in clinical 

outcomes with increased (Bennell et al., 2010; Holsgaard-Larsen et al., 2017; Hunt et 

al., 2018; Lim et al., 2008), rather than reduced (Cheung et al., 2018; Shull, Silder, et 

al., 2013), first peak knee adduction moment after exercise (Table 3-4). There are 

theories about why both directions of association may be plausible that may be sepa-

rate from theories about why exercise is helpful in the absence of a change in 

movement parameters (Runhaar et al., 2015). Increased knee adduction moment is a 

risk factor for structural progression of medial knee osteoarthritis (Chehab et al., 

2014), but the association between knee adduction moment and pain differs ac-

cording to underlying radiological severity (Hall et al., 2017). There may be a 

balancing act for clinicians: helping to manage pain or improve function on one hand 

and preventing structural progression on the other.  

Improvements in clinical outcomes usually occurred with no change in a 

movement parameter. Therefore, it is unlikely that normalising movement patterns is 

a prerequisite for a change in clinical outcomes, and different exercise interventions 

may act through different mechanisms (Runhaar et al., 2015). In people with knee 

osteoarthritis, exercise has the potential to impact risk factors for poor outcome, such 

as obesity (Hall et al., 2019), muscle strength (Dekker et al., 2009; Runhaar et al., 

2015), sedentary lifestyle (Alentorn-Geli et al., 2017), and psychological factors such 

as depression and low self-efficacy (Briani et al., 2018; van Dijk et al., 2006). Change 

in those risk factors may have a stronger relationship with clinical outcomes than 

normalising movement patterns.  

Group-level change in gait-related movement parameters occurred infrequently 

and bidirectionally in the limited number of studies where change was observed. 
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Therefore, exercise may not predictably or consistently change movement parameters 

in a specific direction across participants. One reason is that the populations studied 

may not have had the potential to change. For example, participants may not have 

had activity limitation or pain related to gait or impairments of the investigated 

movement parameter at baseline. Also, some participants may have had fixed 

deformity, in which exercise was unable to change the way they move during gait. It is 

also possible that the intervention did not target the impairment by using an exercise 

that reflects the specific functional activity (e.g. gait retraining versus neuromuscular 

exercise).  

3.5.2 Strengths  

Our review describes all movement parameters that have been investigated for 

change alongside change in activity limitation or pain. We provide the first estimation 

of the co-occurrence of changes in diverse movement parameters during functional 

activities and changes in activity limitation or pain in people with knee osteoarthritis.  

3.5.3 Limitations  

There is a risk of selective reporting bias (most studies were not prospectively 

registered), language bias (only English-language publications were included), and 

publication bias (only peer-reviewed studies were included). As studies did not always 

include mean ± SD change, we estimated those values (using a best-practice approach 

as described by the imprecision. Some other kinetic parameters not considered in our 

review (e.g. force) may have stronger relationships (DeVita et al., 2018). Because we 

were interested only in a relationship between change in outcomes at the within-

group level, it is not known whether the observed change was the result of the exer-

cise intervention, which would need to be investigated in randomised controlled trial 

designs. Finally, the estimates of a change relationship were mostly described in the 

included studies at the group level, which provides limited ability to make inferences 

about relationships at the individual-level.  

3.5.4 Clinical Implications  

The results of this systematic review do not appear to support the targeting of a 

change in movement patterns during a functional activity to improve activity 

limitation or pain in people with knee osteoarthritis. In the evidence that was 
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available, gait-related knee joint movement patterns changed infrequently across stud-

ies, and these changes in movement were infrequently related to improvement in the 

clinical outcomes of activity limitation and pain at a group level. However, our 

confidence in this conclusion is limited due to the low-quality evidence.  

The pain experience of a person with knee osteoarthritis is multifactorial 

(Georgiev & Angelov, 2019). The current evidence supports education, weight loss, 

and exercise therapy for improving clinical outcomes (Hall et al., 2018; Mihalko et al., 

2019). Exercise is strongly advocated and well supported by evidence (Bannuru et al., 

2019; Fransen et al., 2015) but it remains unclear what role changing movement may 

have in directly improving activity limitation and pain in a person with knee 

osteoarthritis. In people with low back pain, there were moderate to large correlations 

between changes in movement parameters and activity limitations after an 

intervention targeting individually relevant movements (Wernli, O'Sullivan, et al., 

2020). However, individually relevant movement parameters and activity limitations 

were diverse and specific to the individual (Wernli, O'Sullivan, et al., 2020). These 

findings in people with low back pain may suggest similar diversity and the need to 

provide individualised care for people who have knee osteoarthritis or other 

conditions, although that has yet to be tested.  

3.5.5 Unanswered Questions and Future Research  

There is an absence of high-quality research, with appropriate assessor blinding, 

investigating the relationship between changes in how a person with knee 

osteoarthritis moves during functional activities and improvement in clinical 

outcomes. Researchers might consider two methodological approaches to quantify a 

relationship between changes in outcomes: (a) apply correlation or regression analyses 

of change scores to investigate person-level change relationships, or (b) consider 

meta-regression of randomised controlled trial data (comparative treatment effects) to 

determine whether changes are the result of the intervention and to quantify the as-

sociation between those changes, ideally using participant-level data.  

To date, research has focused only on gait. It is unclear whether movement 

parameters during other functional activities (e.g. ascending stairs or standing from a 

chair) change after exercise intervention, and whether there is a relationship with 



95 
 

change in clinical outcomes. Further research may reveal stronger change re-

lationships between individually targeted activities and movement parameters and 

clinical outcomes (Wernli, O'Sullivan, et al., 2020).  

Other movement parameters, such as the hamstrings-quadriceps co-contraction 

ratio, warrant further investigation due to the demonstrated link with pain intensity 

(Preece et al., 2016). Future studies could also investigate people with knee 

osteoarthritis who demonstrate symptom relief following intervention, to determine 

whether change in knee adduction moment is protective or deleterious for long-term 

structural severity, activity limitation, or pain.  

3.6 Conclusion 

Targeting a change in movement patterns is unlikely to improve activity 

limitation or pain in people with knee osteoarthritis. Gait movement parameters have 

been most frequently explored and change infrequently after an exercise intervention, 

despite most studies reporting improvements in activity limitation and pain.  

3.7 Key Points 

Findings: A relationship between group-level change in gait-related movement 

parameters and change in activity limitation or pain occurred only 24.5% of the time 

comparisons could be made, despite improvements in clinical outcomes occurring 

90% of the time, across low-quality studies.  

Implications: It is unlikely that improvements in clinical outcomes after exercise 

are related to changes in gait-related knee joint moments, kinematics, and muscle 

activity at the group level. Clinicians should prescribe exercise interventions for 

people with knee osteoarthritis, while being mindful that these findings suggest that 

changing movement patterns may be unrelated to clinical outcomes.  

Caution: The majority of studies were of low quality and did not directly 

investigate an association between changes in movement parameters and clinical 

outcomes at an individual level. Other activities besides gait have not yet been 

investigated.  
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3.9 Appendices 

Appendix 3-1. Search strategy (Medline/EMBASE) 

1  Diagnosis osteoarthritis, knee.sh. OR (knee and osteoarthritis).ti,ab. OR (knee and arthritis).ti,ab. OR (knee and 
degenerative and joint).ti,ab. OR knee osteoarthritides.ti,ab. OR knee OA.ti,ab. OR osteoarthritides, knee.ti,ab. 
OR knee, OA of.ti,ab. OR knees, osteoarthritis of.ti,ab. OR osteoarthritis of knee*.ti,ab. OR OA of knee*.ti,ab. 

2  Intervention Exp rehabilitation/ OR physical therapy modalities/ OR physiotherap*.af. OR physical therap*.af. OR  
 
Exp Exercise therapy/ OR exercise therapy.af. OR Exercise movement techniques/ OR exercise*.af. OR 
therapeutic exercise.af. OR functional exercise.af. OR resistance training/ OR strength*.af. OR plyometric 
exercise/ OR closed kinetic chain exercise*.af. OR open kinetic chain exercise*.af. OR group exercise.af. OR 
 
Gait $training.af. OR  
 
biofeedback.af. OR bio-feedback.af. OR (neuromuscular rehabilitation).af. OR (EMG biofeedback).af. OR 
retraining.af. OR neuromuscular facilitation.af. OR 
 
hydrotherapy.af. OR yoga/ OR yoga.af. OR tai ji/ OR tai chi.af. OR dance therapy/ OR aerobic exercise.af. 

3  Pain Pain measurement/ OR pain.ti,ab. 

4  (VAS OR visual analogue scale OR NRS OR Numeric* pain rating scale OR ICOAP OR (Intermittent and 
Constant Osteoarthritis Pain) OR MPQ OR McGill Pain Questionnaire).af. 

5  3 OR 4 

6  Activity 
limitation 

Disability evaluation/ OR Activities of daily living/ OR (function* OR functional outcome OR disability OR 
activity limitation).af. 

7 
 

 (WOMAC OR (Western Ontario and McMaster Universities Osteoarthritis Index) OR KOOS OR (Knee Injury 
and Osteoarthritis Outcome Score) OR HAQ OR (Health Assessment Questionnaire) OR PROMIS OR 
(Patient Reported Outcomes Measurement Information System) OR PSFS OR (Patient Specific Functional 
Scale)).af. 

8  6 OR 7 

9  patient reported outcome measures/ OR Self report/ OR treatment outcome/ OR patient outcome 
assessment/ 

10  Primary 
outcome 

5 OR 8 OR 9 

11  Movement 
outcome 

exp biomechanical phenomena/ OR biomechanic*.af. OR movement pattern*.af. OR exp biomechanical/ OR 
Gait analysis/ 

12  kinematic*.af. OR angle.af. OR angular velocity.af. 

13  Exp Kinetics/ OR kinetic*.af. OR moment.af. OR torque/ or impulse.af. 

14  exp electromyography/ OR EMG.af. OR sEMG.af. OR motor 97ctive*.af. OR 97ctive* pattern*.af. OR muscle 
97ctive*.af. OR co-contraction.af. OR co-contraction index.af. 

15  11 OR 12 OR 13 OR 14  

16  Functional 
activity 

human activities/ OR musculoskeletal physiological phenomena/ 

17 
 

 Gait/ OR locomotion/ OR walking/ OR gait.af. OR walk*.af.  

18  Sit* to stan*.af. OR stan* to sit*.af. OR rising.af. 

19  stair climbing/ OR stair*.af. OR step*.af. OR stair climbing.af. 

20  16 OR 17 OR 18 OR 19 

21 Movement 
during 
functional 
activity 

15 and 20 

22  
 

Trials randomized controlled trial.pt. OR controlled clinical trial.pt. OR clinical trial.pt. OR random*.ti,ab. OR 
((doubl* OR singl*) and blind*). Ti,ab. OR exp clinical trial/ OR crossover. Ti,ab. OR clin* trial.ti,ab. OR 
(control* and (trial* OR stud*)).ti,ab. OR ((singl* OR doubl* OR tripl* OR trebl*) and (blind* OR mask*)).ti,ab. 
OR placebo.ti,ab. OR research design/ OR comparative study/ 

23 
 

 meta-analysis.pt. OR (meta-anal* OR metaanaly* OR meta analy*).ti,ab. 
 

24 
 

Cohorts Case-control studies/ OR cohort studies/ OR comparative study/ OR evaluation studies/ OR follow-up 
studies/ OR longitudinal studies/ OR prospective studies/ OR treatment outcome/ OR exp Clinical Study/ 
OR observational study/ 

25 
 

Trial type 22 OR 23 OR 24 

26  1 and 2 and 10 and 21 and 25 

27  (neoplasm* OR cancer*).ti. 

28 
 

Not Cross-Sectional Studies/ OR cross-sectional.pt. OR cross sectional.pt. OR reliability.ti. 

29  28 OR 29 

30  26 not 29 

31  Limit 31 to English language  
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Appendix 3-2. Adapted Joanna Briggs Institute Critical Appraisal Tool for 
Cohort Studies. 

Risk of Bias Item Description 

1. Were the demographic and 
clinical characteristics of the 
participants adequately 
described? 

Description of the participants adequate enough to understand how 
generalisable (externally valid) the findings might be to other 
settings. 

2. Were the selection criteria 
for participants adequately 
described?  

Knowledge of how the participants were selected is important to 
also understand how generalisable the findings are. For example, if 
the sample only included participants with certain traits (such as 
only including people with generalised hypermobility). 

3. Was there an acceptable 
missingness of data?  

Data missingness is not in excess of 20% (>80% of the data 
analysed). If applicable, statistical analysis that handles missing data 
well is used (for example: multiple imputation, Generalised 
Estimating Equations, Mixed Effect models, Latent Growth 
models). Non-random missingness from people in a cohort can 
reduce external validity, while missingness of data timepoints in 
longitudinal studies can reduce internal validity.  

4. Were the movements 
assessed in a standardised and 
valid way? 

The study clearly describes the method of measurement of 
movements. Assessing validity requires that a 'pseudo-gold 
standard' is available with which the measure has been compared or 
that construct, and concurrent validity have been quantified in 
some other way. Measure needs to be well described and referenced 
unless it is well known.  

5. Were movements assessed 
in a reliable way? 

In this context, reliability (reproducibility) refers to the 
quantification of test-retest variability. The measure needs to be 
well known, or if not well known, it needs to be referenced. 

6. Were pain and/or activity 
limitation assessed in a 
standardised and valid way? 

The study should clearly describe the method of measurement of 
pain and/or activity limitation. Validity requires some 
demonstration (for example a reference) of construct and 
concurrent validity. 

7. Were pain and/or activity 
limitation assessed in a reliable 
way? 

Reliability refers here to the quantification of test-retest variability. 
The method of measurement needs to be well known, or if not well 
known it needs to be referenced.  

8. Was appropriate statistical 
analysis used?  

Transparency and appropriate selection of the analytical strategy 
used. In this case, appropriate statistical approaches would include 
test to determine whether change over time occurred (e.g. T-tests, 
Mann-Whitney-U / Wilcoxon rank-sum tests, or similar), or they 
provide sufficient data that such a test can be performed post-hoc. 

9. Was the assessment of 
movement (and its change) 
blind to the assessment of pain 
or activity limitation (and its 
change) or vice-versa? 

 Assessor knowledge of participant self-report of pain or activity 
limitation (or its change) may have biased the assessor’s subsequent 
assessment of movement (or vice-versa). If assessor blinding is 
reported, a ‘1 - yes’ is scored; if the non-blinding of assessors is 
reported, a ‘0 – no’ is scored; and if it is not clear if blinding of 
assessors took place, a ‘U – Unclear’ is scored. 

Each item scored: ‘Yes, No, Unclear or Not Applicable’. 

 

  



99 
 

Appendix 3-3. Scores and reasoning for the five GRADE domains 
assessing quality of evidence across studies for change in outcomes. 

 
The GRADE guidelines suggest starting at ‘low-quality’ for research using cohort designs. Because cohort 
studies are not inferior to randomised controlled trials for assessing within group change, we started with a 
rating of ‘medium quality’ and we used GRADE criteria to upgrade or downgrade the quality score.  
 
Domain 1. Risk of bias - All but two studies were rated as high risk of bias for investigating change in outcomes in 
this review. We therefore downgraded to rating of very low-quality was due to lack certainty if assessors of the 
change in movement parameters were blinded the change in the clinical outcome measures (pain and activity 
limitation). 

 
Domain 2. Imprecision - From 22 studies, 936 individuals with knee osteoarthritis were investigated increasing the 
generalisability of the findings in this review, albeit that there was diversity in the movement parameters 
assessed and measurement of clinical outcomes. We have increased confidence in the estimates of change for 
clinical outcomes with consistent point estimates and confidence intervals across studies. Movement parameters 
were investigated using measurement equipment with known error within and between sessions (McGinley et 
al., 2009) increasing the confidence of identifying true change. However, a boundary of the confidence intervals 
for a change in movement was often close to 0, indicating a possibility that true change did not occur. 

 
Domain 3. Inconsistency - We have confidence of a consistent and true estimate of clinical benefit (activity 
limitation and pain) across the majority of studies, with 90% reporting moderate to large positive effect sizes 
after exercise interventions and appreciable overlap of confidence intervals. This contrasts with movement 
parameters, where there were inconsistent point estimates of change with a wide range of confidence intervals 
(even for the same movement parameter), which reduces confidence of these findings. 

 
Domain 4. Indirectness - The population sample, clinical outcome measures (activity limitation and pain) and 
interventions were representative of those in clinical practice, improving the generalisability of these findings. 
Similarly, the equipment used to investigate change in movement parameters was quite precise, notwithstanding 
that it is not widely accessible to clinicians in a clinical environment.  

 
Domain 5. Publication bias - The majority of included studies reported no group-level change in movement and 
this finding did not differ between studies with smaller or larger samples, minimising the likelihood of 
overestimation of the effect. There may be an overestimation of the frequency across studies where a change in 
movement parameter occurred due to the potential of selective publication of studies that showed positive 
findings.  
 

Criteria which could influence a decision to upgrade the quality rating: 
1. Large effect - Not applicable to this systematic review. 
2. Dose Response - Not applicable to this systematic review. 
3. Accounted for all plausible residual confounding - Not applicable to this systematic review. 
 

Summary 
Starting with a GRADE of ‘medium-quality’ for cohort derived data, after consideration of all GRADE criteria, 
we downgraded the classification to low-quality evidence: defined by GRADE as “our confidence in the effect 
estimate is limited: The true effect may be substantially different from the estimate of the effect”. The main 
reason was because, for our research question about a relationship of change between clinical attributes, our 
judgement is that the degree of indirectness in the included studies and the possibility of a lack of movement 
assessor blinding, resulted in a meaningful threat to the estimate of how frequently that relationship occurs.  

 
References for quality of evidence assessment:  
Guyatt, G. H., Oxman, A. D., Vist, G. E., Kunz, R., Falck-Ytter, Y., Alonso-Coello, P., & Schünemann, H. J. 
(2008). GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ, 
336(7650), 924-926. https://doi.org/10.1136/bmj.39489.470347.ad 
 
Balshem, H., Helfand, M., Schünemann, H. J., Oxman, A. D., Kunz, R., Brozek, J., ... & Guyatt, G. H. (2011). 
GRADE guidelines: 3. Rating the quality of evidence. Journal of Clinical Epidemiology, 64(4), 401-406. 
https://doi.org/10.1016/j.jclinepi.2010.07.015 
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Siemieniuk R, Guyatt G. What is GRADE? Learn Evidence Based Medicine: Toolkit 2020; 
https://bestpractice.bmj.com/info/us/toolkit/learn-ebm/what-is-grade/. Accessed 30 September, 2020. 

Appendix 3-4. Characteristics of included studies. 

Author, 
year 

N 
(recr
uite
d),( 
% 

Fem
ale) 

Diagnosti
c criteria 

Intervention Study 
population 

(BMI, 
Grade 

(Kellgren-
Lawrence), 

Age) 

Follow
-up 

Movement 
measurement 

device 

Movement 
outcome 

Patient 
reported 
outcome 

(Bennell 
et al., 
2010) 

45, 
(51
%) 

ACR Neuromuscul
ar exercise 
 

 

27.5(4.7),  

GII 15 GIII 
15 GIV 15, 

64.5(9.1) 

13 
weeks 

Optical (8 
camera 
Vicon 
system) with 
AMTI force 
plates 

Gait 

1st PKAM 

PKAM impulse 

 

WOMAC 
function 

WOMAC 
pain 

(Bennell 
et al., 
2014) 

100, 
(52
%) 

ACR Neuromuscul
ar exercise 
 

 

 

Quadriceps 
strengthening 

29.6(3.9) 

GII 9, GIII 
21, GIV 20 

62.7(7.3), 

 

29.7(4.3) 

GII 13, 
GIII 22, 
GIV 15, 

62.2(7.4) 

13 
weeks 

Optical (12 
camera 
Vicon 
system) with 
AMTI force 
plates 

Gait 

1st PKAM 

PKAM impulse 

PKFM 

 

WOMAC 
function 

WOMAC 
pain 

NRS pain 
movement 

NRS pain 
overall 

(Brenne
man et 
al., 
2015) 

45, 
(100
%) 

ACR Yoga-
inspired 
strengthening 
program 

Ht 1.63 
(0.06), Wt 
78.1(14.8), 

NR, 

60.3(6.5) 

12 
weeks 

Optical (9 
camera 
Optotrak 
system) with 
AMTI force 
plates 

Gait 

1st PKAM 

 

KOOS 
ADL 

KOOS 
Pain 

(Cheun
g et al., 
2018) 

23, 
(50
%) 

Radiogra
phic 

Gait 
retraining 
(n=12) 

 

 

Walking 
exercise  
(n=11) 

24.5(2.4) 

GI 2, GII 8, 

60.8(6.4) 

 

25.2(1.1) 

GI 3, GII 7 

63.1(5.9) 

6 
weeks 

Optical (8 
camera 
Vicon 
system) with 
AMTI force 
sensing 
treadmill 

Gait 

1st PKAM 

PKFM  

WOMAC 
function 

WOMAC 
pain 

(DeVita 
et al., 
2018) 

16, 
(67
%) 

ACR Quadriceps 
strengthening 

26.4(4) 

GI 2, GII 4, 
GIII 7, 
GIV 2, 

58.1(6.5) 

12 
weeks 

Optical 
(Qualisys 
system) with 
AMTI force 
plates 

Gait 

PKEM 

 

PKFA early 
stance 

WOMAC 
function 

WOMAC 
pain 

  

https://bestpractice.bmj.com/info/us/toolkit/learn-ebm/what-is-grade/
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(Fisher 

et al., 

1997) 

10, 

(100

%) 

Radiogra

phic 

Progressive 

resistance 

training  

Ht 1.63 

(0.5), Wt 

75.5(16.8), 

>GII (not 

specified), 

62.1(7.9) 

2 

month

s 

Video (Peak 

Performance) 

with Kistler 

force plates 

Gait 

PKEM 

PKFA early 

stance 

 

Jette 

Functional 

Status 

Index 

Difficulty 

Pain 

(Foroug

hi et al., 

2011a) 

54, 

(100

%) 

Radiogra

phic 

(Modifie

d 

Outerbri

dge 

Classifica

tion)  

Progressive 

resistance 

training 

(n=26) 

 

 

Sham 

exercise 

(n=28) 

31.4(5.4), 

GI 9, GII 5, 

GIII 10, 

GIV 1, 

66(8) 

 

32.7(8.4),  

GI 11, GII 

2, GIII 10, 

GIV 2 

65(7) 

6 

month

s 

Optical (10 

camera 

Motion 

Analysis 

Corporation 

system) with 

Kistler force 

plates 

Gait 

1st PKAM 

2nd PKAM 

PKEM 

PKFM 

 

WOMAC 

function 

WOMAC 

pain 

(Foroug

hi et al., 

2011) 

54, 

(100

%) 

Radiogra

phic 

(Modifie

d 

Outerbri

dge 

Classifica

tion) 

Progressive 

resistance 

training 

 

 

 

Sham 

exercise 

31.9(5.2), 

GI 6, GII 5, 

GIII 5, 

GIV 10, 

64(7) 

 

33.2(8.1), 

GI 12, GII 

3, GIII 7, 

GIV 6, 

64(8) 

6 

month

s 

Optical (10 

camera 

Motion 

Analysis 

Corporation 

system) with 

Kistler force 

plates 

Gait 

PKAddA 

1st PKAM@  

 

WOMAC 

function 

WOMAC 

pain 

(Gaudre

ault et 

al., 

2011) 

29, 

(76

%) 

ACR Quadriceps 

strengthening 

and 

proprioceptio

n exercises 

Manual 

therapy 

31(5), 

GI 10, GII 

5, GIII 5, 

GIV 9, 

63.3(8.4) 

12 

weeks 

Optical (6 

camera 

Vicon 

system) with 

Kistler force 

sensing 

treadmill  

Gait 

1st PKAM 

PKAM Impulse 

PKFM 

2nd PKFM 

PKEM 

PKIRM 

PKERM 

PKFA 

PKFA early 

stance 

Flexion range 

PKAddA 

PKAbdA 

Adduction-

Abduction range 

PKIRA 

PKERA 

IR-ER range 

WOMAC 

function 

WOMAC 

pain 
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(Holsga

ard-

Larsen 

et al., 

2017) 

47, 

(62

%) 

ACR Neuromuscul

ar exercise 

(functional, 

proprioceptiv

e, endurance 

strengthening

) 

27(3), 

GI 26, GII 

14, GIII 7, 

57.9(7.9) 

8 

weeks 

Optical (8 

camera 

Vicon 

system) with 

AMTI force 

plates 

Gait 

1st PKAM 

KAM Impulse 

KOOS 

ADL 

KOOS 

pain 

(Hunt 

et al., 

2018) 

79, 

(70

%) 

Radiogra

phy 

Gait 

retraining 

(toe-out) 

(n=40) 

 

 

 

Progressive 

walking 

(n=39) 

27.3(3.5), 

GII 19, 

GIII 17, 

GIV 4, 

64.6(7.6) 

 

 27.4(3.5), 

GII 18, 

GIII 14, 

GIV 7, 

65.4(9.6 

4 

month

s 

Optical (10 

camera 

Motion 

Analysis 

Corporation 

system) with 

AMTI force 

plates 

Gait 

1st PKAM 

2nd PKAM 

KAM Impulse 

PKFM 

WOMAC 

function 

WOMAC 

pain 

NRS past 

month 

(Hunt 

& 

Takacs, 

2014) 

16, 

(56

%) 

Radiogra

phy 

Gait 

retraining 

(toe-out) 

29.9(6.8), 

GII 4, GIII 

9, GIV 3, 

64.8(10.4) 

10 

weeks 

Optical (10 

camera 

Motion 

Analysis 

Corporation 

system) with 

AMTI force 

plates 

Gait 

1st PKAM 

2nd PKAM 

KAM impulse 

PKFM 

WOMAC 

function 

WOMAC 

pain 

NRS past 

month 

(King et 

al., 

2008) 

14, 

(14

%) 

ACR Resistance 

training 

(seated) 

29.3(3.3), 

GI 2, GII 4, 

GIII 7, 

GIV 1, 

48.4(6.5) 

12 

weeks 

Optical (8 

camera 

Motion 

Analysis 

Corporation 

system) with 

AMTI force 

plates 

Gait 

1st PKAM 

 

KOOS 

ADL 

KOOS 

Pain 

NRS 

Tibiofemor

al pain 

ADL 

(Lim et 

al., 

2008) 

53, 

(57

%) 

ACR Quadriceps 

resistance 

exercise 

(sitting and 

supine) 

Neutral 

group 

29(5.2), 

GII 12, 

GIII 7, 

GIV 8, 

64.1(9.3) 

 

Malaligned 

group 

28.2(3.7), 

GII 4, GIII 

8, GIV 14, 

67.2(6.7) 

12 

weeks 

Optical (8 

camera 

Vicon 

system) with 

AMTI force 

plates 

Gait 

1st PKAM 

WOMAC 

function 

WOMAC 

pain 
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(Preece 

et al., 

2016) 

22, 

(50

%) 

Radiogra

phy 

Alexander 

technique 

29(4), 

GII 11, 

GIII 3, 

GIV 4, 

62(10) 

12 

weeks 

Optical (10 

camera 

Qualisys 

system) with 

AMTI force 

plates 

 

Surface 

EMG 

(Telemyo 

system) 

Gait 

 

EMG Co-

contraction  

Pre-contact 

Early stance 

Lateral - VL, BF 

Medial – VM, ST 

 

WOMAC 

Pain 

(Roper 

et al., 

2013) 

14, 

(86

%) 

ACR Aquatic 

treadmill 

Land 

treadmill 

33.5(8.4), 

NR, 

59.2(7.2) 

1 week Optical (7 

camera 

Vicon 

system) 

Gait 

Maximum 

angular velocity – 

Sagittal plane 

Stance phase 

Swing phase 

 

Minimum 

angular velocity – 

Transverse plane 

Swing phase 

VAS pain 

past week 

(Shen et 

al., 

2008) 

48, 

(88

%) 

ACR Tai Chi 28.1(6.04), 

NR, 

64.4(8.3) 

6 

weeks 

2D video 

(Peak Motus) 

Gait 

Flexion range 

 

WOMAC 

function 

WOMAC 

pain 

VAS pain 

maximum 

VAS pain 

overall 

(Shull, 

Silder, 

et al., 

2013) 

10, 

(40

%) 

Radiogra

phic 

Gait 

retraining 

(toe-in and 

trunk sway) 

26.6(4.7), 

GII 3, GIII 

6, GIV 1, 

60(13) 

6 

weeks 

Optical (8 

camera 

Vicon 

system) with 

Bertec force 

sensing 

treadmill 

Gait 

1st PKAM 

PKFM 

WOMAC 

function 

WOMAC 

pain 

VAS pain 

(Sled et 

al., 

2010) 

40, 

(58

%) 

ACR Hip 

strengthening 

exercise  

27.38(5.47) 

Mean grade 

2.5(9.1) 

62.98(9.73) 

8 

weeks 

Optical (2 

camera 

Optotrak 

system) with 

AMTI force 

plates 

Gait (speed 

matched) 

1st PKAM 

 

WOMAC 

function 

WOMAC 

pain 

(Turcot 

et al., 

2009) 

24, 

(75

%) 

ACR Aerobic, 

proprioceptiv

e/balance 

and 

strengthening 

exercise. 

Manual 

therapy, 

ultrasound, 

tape 

30.3(4.7), 

NR, 

64.2(7.7) 

12 

weeks 

Optical (6 

camera 

Vicon 

system) with 

acceleromete

rs (Physilog) 

Gait 

Acceleration 

Anterior-

posterior 

Medial-lateral 

WOMAC 

pain 
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(Wang 

et al., 

2016) 

50, 

(53

%) 

ACR Quadriceps 

strengthening 

exercise 

(n=20) 

 

Quadriceps 

strengthening 

exercise + 

whole body 

vibration  

(n=19) 

26.2(2.7) 

GII 9, GIII 

11, 

61.5(7.3) 

 

27.8(3.1) 

GII 9, GIII 

10, 

61.1(7.1) 

12 

weeks 

Optical (8 

camera 

Vicon 

system) with 

AMTI force 

plates 

Gait 

1st PKAM 

Peak Valgus 

Moment 

 

KAddA 

Knee valgus 

angle 

WOMAC 

function 

WOMAC 

pain 

VAS pain 

related to 

joint 

movement 

(Zhu et 

al., 

2016) 

23, 

(100

%) 

ACR Tai Chi 25.23(3.46), 

GI 7, GII 

12, GIII 4 

64.61(3.4) 

24 

weeks 

Optical (16 

camera 

Vicon 

system) 

Gait 

PKFA early 

stance 

Flexion angle at 

initial contact 

WOMAC 

function 

WOMAC 

pain 

 

Abbreviations: ACR, American College of Rheumatology diagnostic criteria (Altman et al., 1986); BF, biceps femoris; EMG, 
surface electromyography; ER, external rotation; GI-GIV: grade according to Kellgren Lawrence; IR, internal rotation; 
KOOS, Knee Injury and Osteoarthritis Outcome Scale; MVIC, maximal voluntary isometric contraction; NR, not reported; 
NRS, Numerical Rating Scale; PKAbdA, peak knee abduction angle; PKAddA, peak knee adduction angle; PKAM, peak 
knee adduction moment; PKEM, peak knee extension moment; PKERA, peak knee external rotation angle; PKERM, peak 
knee external rotation moment; PKFA, peak knee flexion angle; PKFM, peak knee flexion moment; PKIRA, peak knee 
internal rotation angle; PKIRM, peak knee internal rotation moment; ST, semitendinosus; VAS, Visual Analogue Scale; VL, 
vastus lateralis; VM, vastus medialis; WOMAC; Western Ontario McMaster Universities Osteoarthritis Index. @excluded 
from review as reported in (Foroughi et al., 2011a).  
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Appendix 3-5. Pre, post and change scores of all investigated gait 
moment parameters. 

Author & year 
(Cohort or 
alternate measure) 

n 
Time 

between 
measures 

Movement Parameter 

Pre Mean 
(SD) 

Post Mean 
(SD) 

Change 
Mean (SD)  

95%CI (or p 
value) 

Standardised 
response 

mean 

Moments (Nm/kg.ht%)# 

Changed - 1st Peak Knee Adduction Moment 

Bennell 2010 
(Neuromuscular 
exercise) 

45 13 weeks 3.2 (1.00) 3.3 (0.90) 
0.15 (0.44) 
0.01 to 0.29 

0.34 

Cheung 2018 
(Gait retraining – toe 
out) 

12 6 weeks 0.35 (0.05) 0.27 (0.05) 
-0.08 (0.03) 

-0.10 to -0.05 
-2.62 

Holsgaard-Larsen 2017 
(Neuromuscular 
exercise) 

47 8 weeks 2.86 (0.83) 
2.98 (Not 
reported) 

0.12 (0.31) 
0.03 to 0.22 

0.38 

Hunt 2018 
(Progressive walking) 

39 4 months 2.38 (0.88) 2.57 (0.37) 
0.13 (0.37) 
0.00 to 0.26 

0.35 

Lim 2008 
(Quads strength –  
more neutrally aligned) 

27 12 weeks 3.58 (0.94) 3.63 (1.11) 
0.05 (0.0 9) 
0.01 to 0.09 

0.56 

Lim 2008 
(Quads strength –  
more malaligned) 

26 12 weeks 4.28 (0.63) 4.4 (0.76) 
0.12 (0.09) 
0.08 to 0.16 

1.33 

Shull 2013 
(Gait retraining – toe 
in) 

10 6 weeks 3.11 (1.40) 2.61 (1.47) 
-0.50 (0.48) 

-0.84 to -0.16 
-0.34 

No change - 1st Peak Knee Adduction Moment 

Bennell 2014 
(Neuromuscular 
exercise) 

50 13 weeks 3.05 (0.90) 3.26 (0.95) 
0.12 (0.50) 

-0.05 to 0.29 
0.24 

Bennell 2014 
(Quads strengthening) 

50 13 weeks 3.21 (0.88) 3.30 (0.79) 
-0.04 (0.46) 
-0.18 to 0.10 

-0.09 

Brenneman 2015 
(Yoga)^ 

45 12 weeks 0.42 (0.16) 0.43 (0.15) 
0.01 (0.09) 

-0.02 to 0.04 
0.11 

Cheung 2018 
(Progressive walking) 

11 6 weeks 0.32 (0.06) 0.33 (0.05) 
0.01 (0.02) 

-0.01 to 0.02 
0.14 

Foroughi 2011a 
(Strengthening)  

26 6 months -2.63 (1.26) -2.65 (1.26) 
-0.02 (0.42) 
-0.21 to 0.17 

-0.02 

Foroughi 2011a 
(Sham exercise) 

28 6 months -2.43 (1.06) -2.54 (0.98) 
-0.11 (0.35) 
-0.25 to 0.03 

-0.1 

Gaudreault 2011 
(Exercise therapy) 

29 12 weeks -2.35 (1.19) -2.45 (1.03) 
-0.10 (0.40) 
-0.25 to 0.05 

-0.08 

Hunt 2014 
(Gait retraining – toe 
out) 

16 10 weeks 3.45 (0.82) 3.19 (0.72) 
-0.26 (0.60) 
-0.60 to 0.07 

-0.43 

Hunt 2018 
(Gait retraining – toe 
out) 

40 4 months 2.41 (1.30) 2.43 (0.37) 
-0.01 (0.36) 
-0.13 to 0.11 

-0.03 

King 2008 
(Resistance training) 

14 12 weeks 3.3 (0.72) 3.43 (0.49) 
0.13 (0.47) 
-0.14 to 0.4 

0.28 

Sled 2010 
(Hip strengthening) 

40 8 weeks 2.97 (0.84) 2.96 (0.87) 
-0.01 (0.29) 
-0.10 to 0.08 

-0.01 

Wang 2016^ 
(Vibration + Quads 
strengthening) 

19 12 weeks 0.53 (0.20) 0.52 (0.15) 
-0.01 (0.08) 
-0.05 to 0.03 

-0.04 

Wang 2016^ 
(Quads strengthening) 

20 12 weeks 0.54 (0.14) 0.53 (0.17) 
-0.01 (0.06) 
-0.04 to 0.02 

-0.06 

No change - Peak Knee Flexion Moment 

Bennell 2014 
(Neuromuscular 
exercise) 

50 13 weeks 4.02 (1.38) 3.89 (1.64) 
-0.03 (1.08) 
-0.38 to 0.32 

-0.03 

Bennell 2014 
(Quads strengthening) 

50 13 weeks 3.96 (1.59) 4.05 (1.79) 
0.07 (0.82) 

-0.18 to 0.32 
0.08 

Cheung 2018 
(Gait retraining) 

12 6 weeks 0.30 (0.04) 0.29 (0.04) 
-0.01 (0.03) 
-0.03 to 0.01 

-0.16 
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Cheung 2018 
(Progressive walking) 

11 6 weeks 0.27 (0.05) 0.27 (0.05) 
-0.00 (0.04) 
-0.03 to 0.02 

-0.02 

Foroughi 2011a 
(Strengthening)  

26 6 months 3.56 (0.95) 3.62 (0.97) 
0.06 (0.78) 

-0.26 to 0.38 
-0.06 

Foroughi 2011a 
(Sham exercise) 

28 6 months 3.26 (1.72) 3.32 (1.66) 
0.06 (1.37) 

-0.44 to 0.56 
0.03 

Gaudreault 2011 
(Exercise therapy) 

29 12 weeks -1.96 (1.27) -2.2 (1.34) 
-0.24 (1.06) 
-0.59 to 0.11 

-0.18 

Hunt 2014 
(Gait retraining – toe 
out) 

16 10 weeks 1.38 (1.36) 1.51 (1.29) 
0.13 (1.18) 

-0.52 to 0.78 
0.11 

Hunt 2018 
(Gait retraining – toe 
out) 

40 4 months 3.01 (1.40) 3.14 (0.97) 
0.06 (0.96) 

-0.26 to 0.38 
0.06 

Hunt 2018 
(Progressive walking) 

39 4 months 3.2 (1.52) 3.18 (0.98) 
0.09 (0.94) 

-0.24 to 0.42 
0.09 

Shull 2013 
(Gait retraining – toe 
in) 

10 6 weeks 1.95 (0.76) 1.67 (0.75) 
-0.28 (0.61) 
-0.66 to 0.10 

-0.37 

Gaudreault 2011% 
(Exercise therapy) 

29 12 weeks -1.1 (0.60) -1.2 (0.60) 
-0.1 (0.49) 

-0.28 to 0.08 
-0.17 

Changed - Peak Knee Adduction Moment Impulse& 

Gaudreault 2011 
(Exercise therapy) 

29 12 weeks 94.1 (11.3) 88.2 (11.7) 
-5.90 (6.78) 

-8.48 to -3.32 
-0.87 

Holsgaard-Larsen 2017 
(Neuromuscular 
exercise) 

47 8 weeks 1.09 (0.45) Not reported 
0.05 (0.13) 
0.01 to 0.09 

0.38 

Hunt 2018 
(Gait retraining – toe 
out) 

40 4 months 0.84 (0.11) 0.82 (0.12) 
-0.04 (0.10) 

-0.07 to -0.01 
-0.38 

No change - Peak Knee Adduction Moment Impulse& 

Bennell 2010 
(Neuromuscular 
exercise) 

45 13 weeks 1.10 (0.40) 1.10 (0.40) 
0.05 (0.19) 

-0.01 to 0.11 
0.27 

Bennell 2014 
(Neuromuscular 
exercise) 

50 13 weeks 1.15 (0.37) 1.20 (0.36) 
0.02 (0.21) 

-0.05 to 0.09 
0.09 

Bennell 2014 
(Quads strengthening) 

50 13 weeks 1.21 (0.36) 1.23 (0.37) 
-0.02 (0.18) 
-0.07 to 0.03 

-0.11 

Hunt 2014 
(Gait retraining – toe 
out) 

16 10 weeks 1.33 (0.29) 1.24 (0.34) 
-0.08 (0.22) 
-0.20 to 0.04 

-0.37 

Hunt 2018 
(Progressive walking) 

39 4 months 0.86 (0.38) 0.87 (0.44) 
0.01 (0.10) 

-0.02 to 0.04 
0.1 

Changed – Peak Knee Extension Moment 

DeVita 2018^ 
(Strengthening) 

16 12 weeks 0.52 (0.27) 0.64 (0.28) 
0.12 (0.05) 
0.04 to 0.19 

0.43 

Foroughi 2011a 
(Sham exercise) 

28 6 months -1.74 (0.52) -2.21 (0.60) 
-0.47 (0.30) 

-0.59 to -0.35 
-0.81 

No change – Peak Knee Extension Moment 

Fisher 1997^ 
(Strengthening) 

10 2 months 0.26 (0.10) 0.24 (0.09) 
-0.02 (0.05) 
-0.06 to 0.02 

-0.21 

Foroughi 2011a 
(Strengthening)  

26 6 months -1.81 (0.44) -1.88 (0.41) 
-0.07 (0.22) 
-0.17 to 0.03 

-0.16 

Gaudreault 2011 
(Exercise therapy) 

29 12 weeks 0.66 (1.50) 0.49 (1.35) 
-0.17 (0.74) 
-0.45 to 0.11 

-0.12 

Changed - 2nd Peak Knee Adduction Moment 

Hunt 2018 
(Gait retraining – toe 
out) 

40 4 months 2.67 (0.40) 2.44 (0.30) 
-0.24 (0.27) 

-0.33 to -0.15 
-0.89 

Hunt (2014) 
(Gait retraining – toe 
out) 

16 10 weeks 2.87 (0.92) 2.57 (0.84) 
-0.3 (0.49) 

-0.57 to -0.03 
-0.62 

No change - 2nd Peak Knee Adduction Moment 

Foroughi 2011a 
(Strengthening)  

26 6 months -2.14 (1.34) -2.00 (1.28) 
0.14 (1.02) 

-0.34 to 0.62 
0.07 

Foroughi 2011a 
(Sham exercise) 

28 6 months -1.84 (0.94) -1.78 (0.91) 
0.06 (0.89) 

-0.31 to 0.43 
0.03 
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Hunt 2018 
(Progressive walking) 

39 4 months 2.63 (1.01) 2.69 (1.19) 
0.02 (0.27) 

-0.07 to 0.11 
0.07 

No change - Peak Knee Internal Rotation Moment 

Gaudreault 2011 
(Exercise therapy) 

29 12 weeks 0.66 (0.28) 0.61 (0.30) 
-0.05 (0.18) 
-0.12 to 0.02 

0.11 

Changed – Peak Knee Abduction Moment 

Wang 2016^ 
(Vibration + Quads 
strengthening) 

19 12 weeks 0.11 (0.04) 0.09 (0.06) 
-0.02 (0.02) 

-0.03 to -0.01 
-0.25 

No Change – Peak Knee Abduction Moment 

Wang 2016^ 
(Quads strengthening) 

20 12 weeks 0.11 (0.05) 0.09 (0.07) 
-0.02 (0.09) 
-0.06 to 0.02 

-0.07 

No change - Peak Knee External Rotation Moment 

Gaudreault 2011 
(Exercise therapy) 

29 12 weeks -0.27 (0.28) -0.25 (0.32) 
0.02 (0.18) 

-0.05 to 0.09 
0.11 

Kinematics (°)# 

No change - Knee Flexion Range 

Gaudreault 2011 
(Exercise therapy) 

29 12 weeks 58.0 (8.5) 59.5 (8.3) 
1.50 (4.63) 

-0.26 to 3.26 
0.18 

Shen 2008 
(Tai Chi) 

48 6 weeks 54.8 (6.6) 55.6 (5.7) 
0.80 (3.5) 

-0.32 to 1.92 
0.13 

Changed - Peak Knee Flexion during Early Stance 

Zhu 2016 
(Tai chi) 

23 24 weeks 18.01 (3.65) 21.03 (2.78) 
3.02 (2.39) 
1.93 to 4.11 

1.26 

No change - Peak Knee Flexion during Early Stance 

DeVita 2018 
(Strengthening) 

16 12 weeks -16.4 (7.50) -16.4 (5.60) 
0 (4.23) 

-2.34 to 2.34 
0 

Fisher 1997 
(Strengthening) 

10 2 months 11.5 (6.60) 10.4 (5.60) 
-1.10 (3.68) 
-4.51 to 2.31 

-0.17 

Gaudreault 2011 
(Exercise therapy) 

29 12 weeks 18.10 (6.80) 18.60 (7.30) 
0.50 (4.14) 

-1.07 to 2.07 
0.07 

No change - Peak Knee Adduction Angle 

Foroughi 2011b 
(Strengthening) 

26 6 months 1.87 (6.90) 0.14 (7.58) 
-0.82 (2.27) 
-1.95 to 0.31 

-0.23 

Foroughi 2011b 
(Sham exercise) 

28 6 months 3.49 (5.32) 2.67 (4.78) 
-0.5 (2.18) 

-1.55 to 0.55 
-0.16 

Gaudreault 2011 
(Exercise therapy) 

29 12 weeks 6.50 (5.00) 6.00 (5.00) 
-0.32 (1.25) 
-0.79 to 0.15 

-0.1 

Wang 2016 
(Vibration + Quads 
strengthening) 

19 12 weeks 8.80 (3.23) 8.75 (3.12) 
-0.05 (1.39) 
-0.72 to 0.62 

-0.02 

Wang 2016 
(Quads strengthening) 

20 12 weeks 8.85 (3.54) 8.79 (3.33) 
-0.06 (1.51) 
-0.77 to 0.65 

-0.02 

Changed - Peak Knee Abduction Angle 

Wang 2016 
(Vibration + Quads 
strength) 

19 12 weeks 5.14 (0.50) 4.89 (0.60) 
-0.25 (0.23) 

-0.36 to -0.14 
-0.41 

Wang 2016 
(Quads strength) 

20 12 weeks 5.2 (0.43) 4.9 (0.43) 
-0.3 (0.21) 
-0.4 to -0.2 

-0.53 

No change - Peak Knee Abduction Angle 

Gaudreault 2011 
(Exercise therapy) 

29 12 weeks -2.3 (5.60) -3.1 (6.60) 
-0.8 (2.52) 

-1.76 to 0.16 
-0.12 

Changed - Maximum Sagittal Angular Velocity during Stance^ 

Roper 2013 
(Aquatic treadmill) 

14 1 week 207 (47.30) 251 (36.20) 
44.3 (57.4) 
11.1 to 77.4 

0.77 

No change - Maximum Sagittal Angular Velocity during Stance^ 

Roper 2013 
(Treadmill) 

14 1 week 226 (88.70) 188 (51.40) 
-23.7 (58.8) 

-57.6 to 10.25 
-0.4 

Changed - Minimum Transverse Angular Velocity^ 

Roper 2013 
(Aquatic treadmill) 

14 1 week 201 (95.40) 293 (109.0) 
91.4 (93.9) 
37.2 to 146 

0.5 

No change - Minimum Transverse Angular Velocity^ 

Roper 2013 
(Treadmill) 

14 1 week 224 (107) 181 (88.8) 
-27.6 (56.2) 
-60 to 4.85 

-0.54 

No change - Max Sagittal Angular Velocity Swing^ 
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Roper 2013 
(Aquatic treadmill) 

14 1 week 299 (72.1) 337 (33.7) 
38.1 (76.7) 

-6.18 to 82.38 
0.5 

Roper 2013 
(Treadmill) 

14 1 week 315 (71.1) 292 (74) 
-25.5 (47.1)  
-52.7 to 1.69 

-0.54 

No change - Peak Knee External Rotation Angle 

Gaudreault 2011 
(Exercise therapy) 

29 12 weeks 5.2 (4.10) 4.9 (3.90) 
-0.3 (4.21) 

-1.90 to 1.30 
-0.07 

No change - Peak Flexion Angle during Swing 

Gaudreault 2011 
(Exercise therapy) 

29 12 weeks 65.1 (4.5) 66 (4.7) 
0.90 (2.54) 

-0.07 to 1.87 
0.19 

No change - Peak Knee Internal Rotation Angle 

Gaudreault 2011 
(Exercise therapy) 

29 12 weeks -3.2 (2.90) -3.7 (2.70) 
-0.5 (2.95) 

-1.62 to 0.62 
-0.18 

Changed - Acceleration Anterior-Posterior& 

Turcot 2009 
(Exercise therapy) 

24 12 weeks -0.88 (0.42) -0.74 (0.38) 
0.14 

p=0.02 
0.52 

Changed - Knee Angle at Initial Contact 

Zhu 2016 
(Tai chi) 

23 24 weeks 2.56 (3.10) 5.23 (2.50) 
2.67 (3) 

1.30 to 4.03 
0.89 

No change - Acceleration Medial-Lateral& 

Turcot 2009 
(Exercise therapy) 

24 12 weeks -0.56 (0.33) -0.57 (0.30) 
-0.01 

p=0.86 
0.05 

No change– Adduction-abduction range 

Gaudreault 2011 
(Exercise therapy) 

29 12 weeks 8.8 (3.60) 9.0 (3.40) 
0.2 (1.34) 

-0.31 to 0.71 
0.06 

No change - Internal-external rotation range 

Gaudreault 2011 
(Exercise therapy) 

29 12 weeks 8.3 (2.80) 8.5 (3.30) 
0.2 (3.23) 

-1.03 to 1.43 
0.06 

Change was defined as 95% confidence interval does not cross zero and standardised response mean >0.2.  
Abbreviation: CI, confidence interval; KFM, knee flexion moment PKAM; SD, standard deviation. #Movement parameter reported in 
° unless otherwise indicated (^°/second, &g). 

 

Appendix 3-6. Knee joint moment parameter standardised response mean 
compared with activity limitation and pain change for movement parameters that 
demonstrated a change in at least one study. 

 Movement 
parameter 

Activity Limitation (improvement) 
 

Pain (improvement) 

Author & year  
SRM 

Outcome 
measure 

Pre 
Mean 
(SD) 

Post 
Mean 
(SD) 

Change 
Mean (SD) 
95%CI or 

p value 
SRM 

 Outcome 
measure 

Pre 
Mean 
(SD) 

Post 
Mean 
(SD) 

Change 
Mean 
(SD) 

95%CI 
or p 
value 

SRM 

Changed - 1st Peak Knee Adduction Moment 
 

Bennell 2010 
(Neuromuscular 
exercise) 

0.34 
WOMAC 
function 

24.8 
(10.9) 

16.2 
(11.2) 

8.6 (7.18) 
6.27 to 
10.93 

1.2 

 
WOMAC 

pain 
7.7 (3) 

4.9 
(3.3) 

2.8 
(2.44) 
2.01 to 

3.59 

1.15 

       

 
NRS pain 

on 
walking 

4.3 (2) 
2.6 

(2.1) 

1.7 
(1.75) 
1.13 to 

2.27 

0.97 

Cheung 2018 
(Gait retraining) 

-2.62 
WOMAC 
function 

19.9 
(4.9) 

11.4 
(5.4) 

8.57 (3.01) 
6.41 to 
10.72 

2.84 

 
WOMAC 

pain 
6 (2.5) 

3.06 
(2) 

2.94 
(1.34) 
1.98 to 

3.9 

2.19 

Holsgaard-Larsen 
2017 
(Neuromuscular 
exercise) 

0.38 KOOS ADL 
68.2 

(15.5) 

Not 
report

ed 

6.96 (10) 
3.76 to 
10.16 

0.69 

 
KOOS 

pain 
61.6 

(13.7) 

Not 
report

ed 

7.23 
(9.63) 
4.15 to 
10.31 

0.75 

Hunt 2018 
(Progressive 
walking) 

0.35 
WOMAC 
function 

21.4 
(9.49) 

16.7 
(9.47) 

7.7 (9.46) 
4.5 to 10.9 

0.81 

 
WOMAC 

pain 
6.4 

(2.5) 
5.4 (3) 

1.5 
(2.95) 
0.5 to 

2.5 

0.51 

       

 NRS 
average 

pain past 
week 

3.7 
(1.87) 

2.3 
(1.8) 

1.8 
(1.77) 
1.2 to 

2.4 

1.01 
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Lim 2008 
(more neutrally 
aligned) 

0.56 
WOMAC 
function 

22.5 
(10.5) 

16.3 
(12.3) 

6.26 (6.99) 
3.30 to 

9.21 
0.89 

 
WOMAC 

pain 
7.14 

(2.92) 
4.56 

(3.38) 

2.6 
(2.25) 
1.65 to 

3.55 

1.15 

Lim 2008 
(more malaligned) 

1.33 
WOMAC 
function 

21.4 
(11.8) 

19.9 
(10.6) 

1.43 (7.14) 
-1.5 to 4.37 

No 
chang

e 

 
WOMAC 

pain 
6.62 
(3.08) 

5.7 
(3.38) 

0.92 (2.5) 
-0.1 to 
1.95 

No 
change 

Shull 2013 
(Gait retraining – 
toe in) 

-0.34 
WOMAC 
function 

15.6 
(15) 

6.1 
(4.8) 

9.52 
(11.94) 
0.97 to 
18.06 

0.59 

 
WOMAC 

pain 
6 (3.6) 3 (2.2) 

3 (2.70) 
1.07 to 

4.93 
0.91 

       
 NRS 

(worst 
pain) 

3.2 
(2.3) 

1.3 
(0.9) 

1.9 (1.93) 
0.52 to 

3.28 
0.91 

No change - 1st Peak Knee Adduction Moment 

Bennell 2014  
(Neuromuscular 
exercise) 

0.24 
WOMAC 
function 

26 
(9.1) 

18.3 
(9.6) 

7.5 (7.76) 
6.27 to 
10.93 

0.97 
 

WOMAC 
pain 

8.1 
(2.2) 

6.4 
(3.1) 

2.8 (2.43) 
2.01 to 

3.59 
1.15 

       

 
VAS 

overall 
pain 

54 
(13.3) 

34.1 
(23.6) 

19.9 
(21.3) 
13 to 
26.8 

0.97 

       

 
VAS pain 

on 
walking 

59.5 
(15) 

39.6 
(25.9) 

19.9 
(23.88) 
12.05 to 

27.75 

0.83 

Bennell 2014 
(Quads 
strengthening) 

-0.09 
WOMAC 
function 

28.2 
(9.9) 

20.1 
(9.8) 

8.1 (7.89) 
5.7 to 10.5 

0.92 
 

WOMAC 
pain 

8.8 
(3.3) 

6.4 
(2.9) 

1.7 (2.59) 
0.85 to 

2.55 
0.66 

       

 
VAS 

overall 
pain 

54.2 
(16.8) 

31.4 
(19.3) 

22.8 
(19.4) 

16.42 to 
29.18 

1.17 

       

 
VAS pain 

on 
walking 

55.3 
(22.4) 

40 
(22.9) 

15.3 
(22.69) 
8.4 to 
22.2 

0.67 

Brenneman 2015 
(Yoga) 

0.11 KOOS ADL 
74.9 

(15.8) 
87.1 

(11.1) 

11.3 
(14.65) 
6.48 to 
16.12 

0.77 

 
KOOS 

pain 
67.7 
(15.4) 

79.4 
(12.7) 

12 
(12.65) 
7.84 to 
16.16 

0.95 

Cheung 2018 
(Progressive 
walking) 

0.14 
WOMAC 
function 

17 
(4.96) 

15.3 
(4.76) 

1.7 (3.58) 
-0.86 to 

4.26 

No 
chang

e 

 
WOMAC 

pain 
4.4 
(2.2) 

4 (2.2) 
0.4 (1.81) 
-0.89 to 

1.69 

No 
change 

Foroughi 2011a  
(Strengthening) 

-0.02 
WOMAC 
function 

19.4 
(9.8) 

13.3 
(9.4) 

6.1 (7.08) 
2.78 to 

9.41 
0.63 

 
WOMAC 

pain 
5.6 
(3.2) 

3.8 
(2.7) 

1.8 (2.46) 
0.65 to 

2.95 
0.6 

Foroughi 2011a 
(Sham exercise) 

-0.1 
WOMAC 
function 

23.3 
(11.3) 

18.1 
(12) 

5.2 (8.61) 
1.65 to 

8.75 
0.44 

 
WOMAC 

pain 
5.6 
(3.2) 

4.4 
(3.7) 

1.2 (2.87) 
0.02 to 

2.38 
0.34 

Gaudreault 2011 
(Exercise therapy) 

-0.08 
WOMAC 
function 

24.9 
(14.1) 

10.1 
(9.7) 

14.84 
(9.68) 

11.16 to 
18.52 

1.13 

 
WOMAC 

pain 
7.92 
(3.67) 

2.55 
(2.66) 

5.37 
(2.76) 
6.52 to 

9.32 

1.6 

Hunt 2014 
(Gait retraining – 
toe out) 

-0.43 NA - - - - 
 

WOMAC 
pain 

7.4 
(3.4) 

5.3 
(2.9) 

2.1 (3.16) 
0.28 to 

3.92 
0.66 

       

 NRS pain 
over 

previous 
week 

4.5 
(1.7) 

2.6 
(1.8) 

1.9 (1.62) 
0.96 to 

2.84 
1.17 

Hunt 2018  
(Gait retraining – 
toe out) 

-0.03 
WOMAC 
function 

28.1 
(11.9) 

13 
(9.6) 

11.4 (9.58) 
8.25 to 
14.55 

1.19 
 

WOMAC 
pain 

7.6 
(3.16) 

4.2 
(2.96) 

2.7 (2.89) 
1.75 to 

3.65 
0.93 

       

 NRS 
average 

pain past 
week 

4.7 
(2.53) 

2 
(1.77) 

2.1 (1.82) 
1.5 to 

2.7 
1.15 

King 2008 
(Resistance 
training) 

0.28 KOOS ADL 
72.47 
(16.54

) 

73.21 
(14.41

) 

0.74 (9.76) 
-4.9 to 6.37 

No 
chang

e 

 
KOOS 

pain 

59.52 
(17.25

) 

62.28 
(15.78

) 

2.76 
(7.87) 

-1.79 to 
7.31 

No 
change 

       

 
NRS 
ADL 
pain 

1.76 
(1.82) 

1.69 
(1.79) 

0.07 
(1.45) 

-0.77 to 
0.91 

No 
change 

Sled 2010 
(Hip 
strengthening) 

-0.01 
WOMAC 
function 

19.6 
(11.4) 

18.15 
(12.4) 

1.45 (8.81) 
-1.37 to 

4.27 

No 
chang

e 

 
WOMAC 

pain 
5.55 
(2.78) 

4.78 
(3.31) 

0.77 
(2.55) 

-0.05 to 
1.59 

No 
change 

Wang 2016 
(Vibration + 
Quads 
strengthening) 

-0.04 
WOMAC 
function 

35.7 
(10.3) 

12.5 
(9.7) 

23.2 (7.39) 
19.64 to 

26.76 
2.31 

 
WOMAC 

pain 
13.2 
(3.5) 

6.7 
(2.8) 

6.5 (2.66) 
5.22 to 

7.78 
2 

       

 VAS pain 
on joint 
moveme

nt 

8.2 
(1.1) 

3.4 
(0.9) 

4.8 (0.86) 
4.38 to 

5.22 
4.69 
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Wang 2016 
(Quads 
strengthening) 

-0.06 
WOMAC 
function 

33.8 
(11.2) 

15 
(8.2) 

18.8 (7.67) 
15.21 to 

22.39 
1.8 

 
WOMAC 

pain 
12.7 
(4) 

1.9 
(0.5) 

10.8 
(3.69) 
9.07 to 
12.53 

2.4 

       

 VAS pain 
on joint 
moveme

nt 

8 (1.2) 
3.8 
(0.9) 

4.2 (0.93) 
3.77 to 

4.63 
3.82 

Changed - Peak Knee Adduction Moment Impulse 

Gaudreault 2011 
(Exercise therapy) 

-0.87 
WOMAC 
function 

24.9 
(14.1) 

10.1 
(9.7) 

14.84 
(9.68) 

11.16 to 
18.52 

1.13 

 
WOMAC 

pain 
7.92 
(3.67) 

2.55 
(2.66) 

5.37 
(2.76) 
6.52 to 

9.32 

1.6 

Holsgaard-Larsen 
2017 
(Neuromuscular 
exercise) 

0.38 KOOS ADL 
68.2 

(15.5) 

Not 
report

ed 

6.96 (10) 
3.76 to 
10.16 

0.69 

 
KOOS 

pain 
61.6 
(13.7) 

Not 
report

ed 

7.23 
(9.63) 
4.15 to 
10.31 

0.75 

Hunt 2018 
(Gait retraining – 
toe out) 

-0.38 
WOMAC 
function 

28.1 
(11.9) 

13 
(9.6) 

11.4 (9.58) 
8.25 to 
14.55 

1.19 
 

WOMAC 
pain 

7.6 
(3.16) 

4.2 
(2.96) 

2.7 (2.89) 
1.75 to 

3.65 
0.93 

       

 NRS 
average 

pain past 
week 

4.7 
(2.53) 

2 
(1.77) 

2.1 (1.82) 
1.5 to 

2.7 
1.15 

No change - Peak Knee Adduction Moment Impulse 

Bennell 2010 
(Neuromuscular 
exercise) 

0.27 
WOMAC 
function 

24.8 
(10.9) 

16.2 
(11.2) 

8.6 (7.18) 
6.27 to 
10.93 

1.2 
 

WOMAC 
pain 

7.7 (3) 
4.9 
(3.3) 

2.8 (2.44) 
2.01 to 

3.59 
1.15 

       
 NRS pain 

on 
walking 

4.3 (2) 
2.6 
(2.1) 

1.7 (1.75) 
1.13 to 

2.27 
0.97 

Bennell 2014  
(Neuromuscular 
exercise) 

0.09 
WOMAC 
function 

26 
(9.1) 

18.3 
(9.6) 

7.5 (7.76) 
6.27 to 
10.93 

0.97 
 

WOMAC 
pain 

8.1 
(2.2) 

6.4 
(3.1) 

2.8 (2.43) 
2.01 to 

3.59 
1.15 

       

 
VAS 

overall 
pain 

54 
(13.3) 

34.1 
(23.6) 

19.9 
(21.3) 
13 to 
26.8 

0.97 

       

 
VAS pain 

on 
walking 

59.5 
(15) 

39.6 
(25.9) 

19.9 
(23.88) 
12.05 to 

27.75 

0.83 

Bennell 2014  
(Quads 
strengthening) 

-0.11 
WOMAC 
function 

28.2 
(9.9) 

20.1 
(9.8) 

8.1 (7.89) 
5.7 to 10.5 

0.92 
 

WOMAC 
pain 

8.8 
(3.3) 

6.4 
(2.9) 

1.7 (2.59) 
0.85 to 

2.55 
0.66 

       

 
VAS 

overall 
pain 

54.2 
(16.8) 

31.4 
(19.3) 

22.8 
(19.4) 

16.42 to 
29.18 

1.17 

       

 
VAS pain 

on 
walking 

55.3 
(22.4) 

40 
(22.9) 

15.3 
(22.69) 
8.4 to 
22.2 

0.67 

Hunt 2014 
(Gait retraining – 
toe out) 

-0.37 NA - - - - 
 

WOMAC 
pain 

7.4 
(3.4) 

5.3 
(2.9) 

2.1 (3.16) 
0.28 to 

3.92 
0.66 

       

 NRS pain 
over 

previous 
week 

4.5 
(1.7) 

2.6 
(1.8) 

1.9 (1.62) 
0.96 to 

2.84 
1.17 

Hunt 2018 
(Progressive 
walking) 

0.1 
WOMAC 
function 

21.4 
(9.49) 

16.7 
(9.47) 

7.7 (9.46) 
4.5 to 10.9 

0.81 
 

WOMAC 
pain 

6.4 
(2.5) 

5.4 (3) 
1.5 (2.95) 

0.5 to 
2.5 

0.51 

       

 NRS 
average 

pain past 
week 

3.7 
(1.87) 

2.3 
(1.8) 

1.8 (1.77) 
1.2 to 

2.4 
1.01 

Changed - Peak Knee Extension Moment 

DeVita 2018 
(Strengthening) 

0.43 
WOMAC 
function 

17.7 
(9.7) 

6.8 
(9.5) 

10.9 (7.07) 
6.32 to 
15.14 

1.13 

 
WOMAC 

pain 
6.43 
(3.18) 

3.64 
(2.55) 

2.79 
(2.42) 
1.45 to 

4.13 

0.95 

Foroughi 2011a 
(Sham exercise) 

-0.81 
WOMAC 
function 

23.3 
(11.3) 

18.1 
(12) 

5.2 (8.61) 
1.65 to 

8.75 
0.44 

 
WOMAC 

pain 
5.6 
(3.2) 

4.4 
(3.7) 

1.2 (2.87) 
0.02 to 

2.38 
0.34 

No change – Peak Knee Extension Moment 

Fisher 1997 
(Strengthening)^ 
 

-0.21 

Jette 
Functional 

Index - 
Difficulty 

2.2 
(0.8) 

1.9 
(0.7) 

0.29 (0.59) 
-0.84 to 

0.25 

No 
chang

e 

 Jette 
Function
al Index - 

Pain 

1.79 
(0.53) 

1.40 
(0.25) 

0.38 
(0.41) 
0.76 to 

0.01 

0.78 

Foroughi 2011a 
(Strengthening)  

-0.16 
WOMAC 
function 

19.4 
(9.8) 

13.3 
(9.4) 

6.1 (7.08) 
2.78 to 

9.41 
0.63 

 
WOMAC 

pain 
5.6 
(3.2) 

3.8 
(2.7) 

1.8 (2.46) 
0.65 to 

2.95 
0.6 

Gaudreault 2011 
(Exercise therapy) 

-0.12 
WOMAC 
function 

24.9 
(14.1) 

10.1 
(9.7) 

14.84 
(9.68) 

11.16 to 
18.52 

1.13 

 
WOMAC 

pain 
7.92 
(3.67) 

2.55 
(2.66) 

5.37 
(2.76) 
6.52 to 

9.32 

1.6 

Changed - 2nd Peak Knee Adduction Moment 
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Hunt 2014 
(Gait retraining – 
toe out) 

-0.89 NA - - - - 
 

WOMAC 
pain 

7.4 
(3.4) 

5.3 
(2.9) 

2.1 (3.16) 
0.28 to 

3.92 
0.66 

       

 NRS pain 
over 

previous 
week 

4.5 
(1.7) 

2.6 
(1.8) 

1.9 (1.62) 
0.96 to 

2.84 
1.17 

Hunt 2018 
(Gait retraining – 
toe out) 

-0.62 
WOMAC 
function 

28.1 
(11.9) 

13 
(9.6) 

11.4 (9.58) 
8.25 to 
14.55 

1.19 
 

WOMAC 
pain 

7.6 
(3.16) 

4.2 
(2.96) 

2.7 (2.89) 
1.75 to 

3.65 
0.93 

       

 NRS 
average 

pain past 
week 

4.7 
(2.53) 

2 
(1.77) 

2.1 (1.82) 
1.5 to 

2.7 
1.15 

No change - 2nd Peak Knee Adduction Moment 

Foroughi 2011a  
(Strengthening)  

0.07 
WOMAC 
function 

19.4 
(9.8) 

13.3 
(9.4) 

6.1 (7.08) 
2.78 to 

9.41 
0.63 

 
WOMAC 

pain 
5.6 
(3.2) 

3.8 
(2.7) 

1.8 (2.46) 
0.65 to 

2.95 
0.6 

Foroughi 2011a 
(Sham exercise) 

0.03 
WOMAC 
function 

23.3 
(11.3) 

18.1 
(12) 

5.2 (8.61) 
1.65 to 

8.75 
0.44 

 
WOMAC 

pain 
5.6 
(3.2) 

4.4 
(3.7) 

1.2 (2.87) 
0.02 to 

2.38 
0.34 

Hunt 2018 
(Progressive 
walking) 

0.07 
WOMAC 
function 

21.4 
(9.49) 

16.7 
(9.47) 

7.7 (9.46) 
4.5 to 10.9 

0.81 
 

WOMAC 
pain 

6.4 
(2.5) 

5.4 (3) 
1.5 (2.95) 

0.5 to 
2.5 

0.51 

       

 NRS 
average 

pain past 
week 

3.7 
(1.87) 

2.3 
(1.8) 

1.8 (1.77) 
1.2 to 

2.4 
1.02 

Changed – Peak Knee Abduction Moment 

Wang 2016 
(Vibration + 
Quads 
strengthening) 

-0.25 
WOMAC 
function 

35.7 
(10.3) 

12.5 
(9.7) 

23.2 (7.39) 
19.64 to 

26.76 
2.31 

 
WOMAC 

pain 
13.2 
(3.5) 

6.7 
(2.8) 

6.5 (2.66) 
5.22 to 

7.78 
2 

       

 VAS pain 
on joint 
moveme

nt 

8.2 
(1.1) 

3.4 
(0.9) 

4.8 (0.86) 
4.38 to 

5.22 
4.69 

No change – Peak Knee Abduction Moment 

Wang 2016 
(Quads 
strengthening) 

-0.07 
WOMAC 
function 

33.8 
(11.2) 

15 
(8.2) 

18.8 (7.67) 
15.21 to 

22.39 
1.8 

 
WOMAC 

pain 
12.7 
(4) 

1.9 
(0.5) 

10.8 
(3.69) 
9.07 to 
12.53 

2.4 

        

 VAS pain 
on joint 
moveme

nt 

8 (1.2) 
3.8 
(0.9) 

4.2 (0.93) 
3.77 to 

4.63 
3.82 

No change - Knee Flexion Range 

Gaudreault 2011 
(Exercise therapy) 

0.18 
WOMAC 
function 

24.9 
(14.1) 

10.1 
(9.7) 

14.84 
(9.68) 

11.16 to 
18.52 

1.13 

 
WOMAC 

pain 
7.92 
(3.67) 

2.55 
(2.66) 

5.37 
(2.76) 
6.52 to 

9.32 

1.6 

Shen 2008 
(Tai Chi) 

0.13 
WOMAC 
function 

40.6 
(14.1) 

33 
(13.2) 

7.6 (10.09) 
4.37 to 
10.83 

0.55 
 

WOMAC 
pain 

16.3 
94.3) 

13.2 
(4.5) 

3.1 (3.62) 
1.94 to 

4.26 
0.7 

       

 VAS 
overall 
pain 

previous 
week 

3.4 (2) 
3.1 
(2.4) 

0.3 (2.06) 
-0.36 to 

0.96 

No 
Chang

e 

       
 

VAS Max 
pain 

5.2 
(2.3) 

4.1 
(2.8) 

1.1 (2.2) 
0.39 to 

1.81 
0.42 

Changed - Peak Knee Flexion during Early Stance 

Zhu 2016 
(Tai Chi) 

1.26 
WOMAC 
function 

24.7 
(12.95

) 

15.85 
(7.6) 

8.85 (7.76) 
5.32 to 
12.39 

1.14 
 

WOMAC 
pain 

8.46 
(4.9) 

5.15 
(3.24) 

3.31 
(2.89) 

2 to 4.63 
1.15 

No change - Peak Knee Flexion during Early Stance 

DeVita 2018 
(Strengthening) 

0 
WOMAC 
function 

17.7 
(9.7) 

6.8 
(9.5) 

10.9 (7.07) 
6.32 to 
15.14 

1.13 

 
WOMAC 

pain 
6.43 
(3.18) 

3.64 
(2.55) 

2.79 
(2.42) 
1.45 to 

4.13 

0.95 

Fisher 1997 
(Strengthening)^ 

-0.17 

Jette 
Functional 

Index - 
Difficulty 

2.2 
(0.8) 

1.9 
(0.7) 

0.29 (0.59) 
-0.84 to 

0.25 

No 
chang

e 

 Jette 
Function
al Index - 

Pain 

1.79 
(0.53) 

1.40 
(0.25) 

0.38 
(0.41) 
0.76 to 

0.01 

0.78 

Gaudreault 2011 
(Exercise therapy) 

0.07 
WOMAC 
function 

24.9 
(14.1) 

10.1 
(9.7) 

14.84 
(9.68) 

11.16 to 
18.52 

1.13 

 
WOMAC 

pain 
7.92 
(3.67) 

2.55 
(2.66) 

5.37 
(2.76) 
6.52 to 

9.32 

1.6 

Changed- Peak Knee Abduction Angle 

Wang 2016 
(Vibration + 
Quads 
strengthening) 

-0.41 
WOMAC 
function 

35.7 
(10.3) 

12.5 
(9.7) 

23.2 (7.39) 
19.64 to 

26.76 
2.31 

 
WOMAC 

pain 
13.2 
(3.5) 

6.7 
(2.8) 

6.5 (2.66) 
5.22 to 

7.78 
2 

       

 VAS pain 
on joint 
moveme

nt 

8.2 
(1.1) 

3.4 
(0.9) 

4.8 (0.86) 
4.38 to 

5.22 
4.69 
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Wang 2016 
(Quads 
strengthening) 

-0.53 
WOMAC 
function 

33.8 
(11.2) 

15 
(8.2) 

18.8 (7.67) 
15.21 to 

22.39 
1.8 

 
WOMAC 

pain 
12.7 
(4) 

1.9 
(0.5) 

10.8 
(3.69) 
9.07 to 
12.53 

2.4 

       

 VAS pain 
on joint 
moveme

nt 

8 (1.2) 
3.8 
(0.9) 

4.2 (0.93) 
3.77 to 

4.63 
3.82 

No change - Peak Knee Abduction Angle 

Gaudreault 2011 
(Exercise therapy) 

-0.12 
WOMAC 
function 

24.9 
(14.1) 

10.1 
(9.7) 

14.84 
(9.68) 

11.16 to 
18.52 

1.13 

 
WOMAC 

pain 
7.92 
(3.67) 

2.55 
(2.66) 

5.37 
(2.76) 
6.52 to 

9.32 

1.6 

Changed - Maximum Sagittal Angular Velocity during Stance 

Roper 2013 
(Aquatic treadmill) 

0.77 NA -  -  -  - 

 
VAS pain 
past week 

37.2 
(2.3) 

25.5 
(25.2) 

15.4 
(20.7) 
3.45 to 
27.35 

0.74 

No change - Maximum Sagittal Angular Velocity during Stance 

Roper 2013 
(Treadmill) 

-0.4 NA -  -  -  - 
 

VAS pain 
past week 

40 
(24.1) 

37.4 
(23.4) 

0.1 (19.2) 
-10.99 to 

11.19 

No 
change 

Changed - Minimum Knee Transverse Angular Velocity during Swing 

Roper 2013 
(Aquatic treadmill) 

0.5 NA -  -  -  - 

 
VAS pain 
past week 

37.2 
(2.3) 

25.5 
(25.2) 

15.4 
(20.7) 
3.45 to 
27.35 

0.74 

No change - Minimum Knee Transverse Angular Velocity during Swing 

Roper 2013 
(Treadmill) 

-0.54 NA -  -  -  - 
 

VAS pain 
past week 

40 
(24.1) 

37.4 
(23.4) 

0.1 (19.2) 
-10.99 to 

11.19 

No 
change 

Changed - Acceleration Anterior-Posterior 

Turcot 2009 0.52 NA -  -  -  - 

 
 WOMA

C pain 
196 

(93.6) 
63.7 
(66.4) 

137.77 
(93) 

93.03 to 
171.57 

1.42 

Changed - Knee Angle at Initial Contact 

Zhu 2016 
(Tai Chi) 

0.89 
WOMAC 
function 

24.7 
(12.95

) 

15.85 
(7.6) 

8.85 (7.76) 
5.32 to 
12.39 

1.14 
 

WOMAC 
pain 

8.46 
(4.9) 

5.15 
(3.24) 

3.31 
(2.89) 

2 to 4.63 
1.15 

Change was defined as 95% confidence interval does not cross zero and standardised response mean >0.2. 
Abbreviations: ADL, activities of daily living; CI, confidence interval; IQR, interquartile range; KOOS, Knee Injury and Osteoarthritis Outcome Scale; NA, not 
applicable; NRS, Numerical Rating Scale; PKAM, Peak knee adduction moment; SD, standard deviation; VAS, Visual Analogue Scale; WOMAC; Western Ontario 
McMaster Universities Osteoarthritis Index. 
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Appendix 3-7. Direction of a change in movement parameter, activity 
limitation and pain (count (%)) for movement parameters that did not demonstrate a 
change. 
 

 Activity Limitation  Pain  
 Improved 

No 
Change 

Worse  Improved 
No 

Change 
Worse 

Moments 

Knee flexion 
moment 

Increased 0 0 0  0 0 0 

No Change 10 (91%) 1 (9%) 0  11 (92%) 1 (8%) 0 

Decreased 0 0 0  0 0 0 
         

Peak knee internal 
rotation moment 

 

Increased 0 0 0  0 0 0 

No Change 1 (100%) 0 0  1 (100%) 0 0 

Decreased 0 0 0  0 0 0 
         

Peak knee external 
rotation moment 

Increased 0 0 0  0 0 0 

No Change 1 0 0  1 0 0 

Decreased 0 0 0  0 0 0 

Kinematics 
 

        

Knee flexion range Increased 0 0 0  0 0 0 

No Change 4 (100%) 0 0  1.66 (83%) 0.33 (27%) 0 

Decreased 0 0 0  0 0 0 
 

        

Peak knee adduction 
angle 

Increased 0 0 0  0 0 0 

No Change 5 (100%) 0 0  4 (80%) 1 (20%) 0 

Decreased 0 0 0  0 0 0 
 

        

Max sagittal angular 
velocity 

Increased 0 0 0  0 0 0 

No Change 0 0 0  1 1 0 

Decreased 0 0 0  0 0 0 
 

        

Peak knee external 
rotation angle 

Increased 0 0 0  0 0 0 

No Change 1  0 0  1  0 0 

Decreased 0 0 0  0 0 0 
 

        

Peak knee angle 
swing 

Increased 0 0 0  0 0 0 

No Change 1 0 0  2 (100%) 0 0 

Decreased 0 0 0  0 0 0 
 

        

Peak knee internal 
rotation angle 

Increased 0 0 0  0 0 0 

No Change 1  0 0  1  0 0 

Decreased 0 0 0  0 0 0 
 

        

Acceleration medial-
lateral 

Increased 0 0 0  0 0 0 

No Change 0 0 0  1 0 0 

Decreased 0 0 0  0 0 0 
         

Adduction-abduction 
range 

 

Increased 0 0 0  0 0 0 

No Change 1 0 0  1 0 0 

Decreased 0 0 0  0 0 0 
 

        

Internal-external 
rotation range 

Increased 0 0 0  0 0 0 

No Change 1 0 0  1 0 0 

Decreased 0 0 0  0 0 0 

Change was defined as 95% confidence interval does not cross zero and standardised response mean >0.2. 

Abbreviations: EMG, surface electromyography; VL, vastus lateralis; VM, vastus medialis; BF, biceps femoris; ST, semitendinosus. * 

Vote counting system – 1.0 vote per parameter. Where multiple measures were used for an outcome, the 1 vote was divided by the 

total number times used. For example, if pain was reported using WOMAC pain and NRS pain, then the vote was divided equally, 

therefore if WOMAC pain changed and NRS pain did not change the score was 0.5. See Table 3-4 for movement parameters that 

did demonstrate a change. 
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3.10 Summary of Chapter 3 

The aim of Chapter 3 was to systematically review cohort studies and 

randomised controlled trials to investigate how changes in knee joint movement 

parameters during functional activities relate to changes in activity limitation or pain 

after exercise intervention in people with knee osteoarthritis. A relationship between a 

change in a movement parameter and change in a clinical outcome (activity limitation 

or pain) occurred infrequently at a group level. Walking was the only activity that was 

biomechanically analysed despite negotiating stairs and transitioning to and from a 

chair also being recommended as part of the assessment of physical function in 

clinical guidelines. Limitations in methodology and participant characteristics within 

the included studies may have influenced the results and will be explored within 

Chapter 7 (the Discussion). Despite the findings of the systematic review, there is 

some evidence in low back pain research that suggests that appropriate 

methodological design and individualised assessment of participant characteristics 

may result in stronger relationships between change in movement patterns and 

clinical outcomes after targeted intervention. Considering there are similarities in 

biopsychosocial factors between people with low back pain and knee osteoarthritis, a 

similar finding might be potentially present in the population with knee osteoarthritis.  
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Chapter 4  

Study 2a: Human Activity Recognition 

 

Human Activity Recognition for People with Knee 

Osteoarthritis:  A Proof-of-Concept 

 

Assessing physical function outcomes is a core component for the 

guideline-based management of a person with knee osteoarthritis. Patient-reported 

outcome measures were selected as a measure of physical function in the systematic 

review presented in Chapter 3. Physical function is a multidimensional construct that 

includes aspects related to patient perception of function (patient-reported outcome 

measures) as well as objective performance of activities (performance tests and 

activity monitoring).  

Activity monitoring is one method of collecting data about actual physical 

performance of activities in free-living environments (such as work, home and in the 

community). The most common form of activity monitoring is through the use of 

accelerometers to measure energy expenditure. But this method of activity monitoring 

does not provide information about the particular activities that are being performed. 

IMU-based human activity recognition provides an opportunity to quantify 

performance of clinically relevant activities in free-living environments. Yet, at the 

time of this research, no studies had validated IMU-based human activity recognition 

systems on data collected from people who have knee osteoarthritis, an essential step 

prior to using such a system in free-living environments.  

This chapter presents a proof-of-concept study that explored the development 

of a human activity recognition system for people with knee osteoarthritis. The aim of 

this study was to explore the feasibility of using IMU data collected from people with 

knee osteoarthritis to train a machine learning model to classify clinically important 
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activities and phases of those activities. The activities selected align with guideline 

recommendations for the assessment of physical function in people with knee 

osteoarthritis, and the phases were selected as part of an algorithmic data handling 

pipeline that could be potentially used for subsequent biomechanical analysis. 

This chapter was published in the journal Sensors. 

Tan, J.-S., Beheshti, B. K., Binnie, T., Davey, P., Caneiro, J. P., Kent, P., Smith, A., 
O’Sullivan, P., & Campbell, A. (2021). Human Activity Recognition for People with 
Knee Osteoarthritis—A Proof-of-Concept. Sensors, 21(10). 
https://doi.org/10.3390/s21103381   

  

  

https://doi.org/10.3390/s21103381
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4.1 Abstract 

Clinicians lack objective means for monitoring if their knee osteoarthritis 

patients are improving outside of the clinic (e.g. at home). Previous human activity 

recognition models using wearable sensor data have only used data from healthy 

people and such models are typically imprecise for people who have medical 

conditions affecting movement. Human activity recognition models designed for 

people with knee osteoarthritis have classified rehabilitation exercises but not the 

clinically relevant activities of transitioning from a chair, negotiating stairs and 

walking, which are commonly monitored for improvement during therapy for this 

condition. Therefore, it is unknown if a human activity recognition model trained on 

data from people who have knee osteoarthritis can be accurate in classifying these 

three clinically relevant activities. Therefore, we collected inertial measurement unit 

(IMU) data from 18 participants with knee osteoarthritis and trained convolutional 

neural network models to identify chair, stairs and walking activities, and phases. The 

model accuracy was 85% at the first level of classification (activity), 89% to 97% at 

the second (direction of movement) and 60% to 67% at the third level (phase). This 

study is the first proof-of-concept that an accurate human activity recognition system 

can be developed using IMU data from people with knee osteoarthritis to classify 

activities and phases of activities. 

4.2 Introduction 

Osteoarthritis is one of the leading causes of disability (Ackerman et al., 2019; 

Vos et al., 2012). People with knee osteoarthritis have symptoms such as pain and 

stiffness that result in difficulty performing specific physical activities such as 

transitioning from a chair, negotiating stairs (Machado et al., 2008) and walking 

(Wilkie et al., 2007). A recent review on the application of machine learning for 

people with knee osteoarthritis identified that movement-based (biomechanical) data 

has predominantly been used for the purposes of diagnosis and prediction of 

outcome in people with knee osteoarthritis (Kokkotis et al., 2020). While there is 

growing interest in wearable sensor technology for use in clinical environments, no 

studies have investigated if machine learning approaches can assist with monitoring 
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improvement in the performance of clinically relevant activities outside of a clinical 

environment, for patients diagnosed with knee osteoarthritis (Kokkotis et al., 2020). 

There is high-quality evidence of improvements in pain and function following 

movement interventions, such as exercise, or surgical interventions. For people 

receiving these treatments, the leading medical society dedicated to researching 

osteoarthritis, the Osteoarthritis Research Society International, recommends that 

people who have a confirmed diagnosis of knee osteoarthritis are monitored for 

improvement in the performance of three specific and clinically relevant everyday 

activities; (a) transitioning from a chair, (b) negotiating stairs and (c) walking (Dobson 

et al., 2013). These movements are clinically relevant because they are related to pain, 

stiffness, and reduced ability to participate in society. 

To assess if someone diagnosed with knee osteoarthritis is improving because of 

a treatment, clinicians are currently limited to assessing the performance of clinically 

relevant painful activities only in observed conditions such as in a clinic. Usually, a 

clinician would watch their patient perform the activity, however a single observation 

in a clinic does not demonstrate if a person is avoiding or doing less of this activity 

when unobserved after leaving the clinic. 

Currently, the best method of assessing unobserved activities is to use 

questionnaires known as patient-reported outcome measures (Dobson et al., 2013). 

However, questionnaires can be unreliable because they assess a patient’s perception 

of their ability to perform an activity which does not objectively measure how many 

times or how they actually perform an activity when at home or at work. Wearable 

sensor technology has the potential to be used to help clinicians monitor the patient’s 

progress when they are unobserved. 

One type of wearable sensor, inertial measurement units (IMUs), can collect 

movement-based information that can be processed into clinically relevant 

biomechanical data through fusion (Weygers et al., 2020) or machine learning 

algorithms (Mundt, Koeppe, David, Witter, et al., 2020). These methods have been 

reported to provide biomechanical outputs that are useful for clinicians, such as 

kinematics (e.g. knee flexion angle or knee angular velocity) (Drapeaux & Carlson, 
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2020; Mundt, Koeppe, David, Witter, et al., 2020; van der Straaten et al., 2018) during 

a specific phase of an activity (e.g. stance phase of ascending stairs) when the patient 

is observed as part of an assessment in the clinic. 

IMUs enable data collection outside of the clinical environment and can be used 

when patients are unobserved. However, IMUs create large and unlabelled datasets 

making it difficult to identify which activities were performed, because the patient was 

unobserved. One approach to identifying when an activity or phase of an activity was 

performed from IMU data is through a machine learning approach known as human 

activity recognition. Human activity recognition models are built from algorithms to 

automate the process of classifying performance of human activities. As there is 

limited feasibility and practicality for clinicians to observe people with knee 

osteoarthritis in unobserved conditions, human activity recognition has the potential 

to provide clinically relevant activity data from large continuous datasets. Having a 

system that can automatically label when an activity was performed could be 

subsequently used to monitor if a patient is improving by providing objective data 

about whether they are performing an activity more frequently, or to segment the data 

so that it can be used for subsequent biomechanical analysis. 

The majority of human activity recognition models are built using traditional 

machine learning approaches (e.g. support vector machines, random forest, k-nearest 

neighbour); however, alternative approaches using deep neural networks such as 

convolutional neural networks (CNN) have recently demonstrated superior accuracy 

(Brock et al., 2017; Chen & Xue, 2015; Fridriksdottir & Bonomi, 2020; Jiang & Yin, 

2015). The benefit of a CNN model is that it automatically detects important features 

from input data, minimising programming requirements typically required for 

traditional machine learning approaches. In addition, deep learning approaches like 

CNN are able to handle nonlinear interactions between features, something which is 

limited when using traditional machine learning approaches where features are 

defined by the researcher. There are many laboratory studies that have reported the 

accuracy of classifying physical activities from IMU data (Arif & Kattan, 2015; 

Ascioglu & Senol, 2020; Charlton et al., 2017; Chen et al., 2015; Chen & Xue, 2015; 

Cust et al., 2019; Emmerzaal et al., 2020; Fridriksdottir & Bonomi, 2020; Hendry et 
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al., 2020; Huang et al., 2017; Jiang & Yin, 2015; Martinez-Hernandez & Dehghani-

Sanij, 2018, 2019; O’Reilly et al., 2018; Rast & Labruyère, 2020; Whiteside et al., 2017) 

using both traditional and deep learning approaches. Ramanujam et al. (2021) provide 

a review of the most up-to-date computational advances in deep learning for human 

activity recognition which is beyond the scope of this paper. 

There are multiple studies that have developed human activity recognition 

models to classify daily activities using the lower limbs (e.g. standing, walking, going 

up stairs, walking down a hill), with accuracy ranging from 83% to 98% using training 

data from healthy people (Arif & Kattan, 2015; Ascioglu & Senol, 2020; Charlton et 

al., 2017; Chen et al., 2015; Cust et al., 2019; Emmerzaal et al., 2020; Fridriksdottir & 

Bonomi, 2020; Hendry et al., 2020; Jiang & Yin, 2015; O’Reilly et al., 2018). Other 

studies have classified specific phases of activities like transitioning from sit to stand 

or the stance phase of walking, reporting accuracy >99% (Martinez-Hernandez & 

Dehghani-Sanij, 2018, 2019). In studies that have specifically developed human 

activity recognition models for people who have knee osteoarthritis, models have 

been reported to classify a variety of rehabilitation exercises with accuracy >97% 

(Chen et al., 2015; Huang et al., 2017). These studies are limited for two reasons. 

The first limitation is that these models have been trained and tested on healthy, 

typically young, participants rather than people with knee osteoarthritis (Arif & 

Kattan, 2015; Ascioglu & Senol, 2020; Chen et al., 2015; Emmerzaal et al., 2020; 

Fridriksdottir & Bonomi, 2020; Huang et al., 2017; Martinez-Hernandez & Dehghani-

Sanij, 2018, 2019; O’Reilly et al., 2018). These human activity recognition models have 

not yet been trained and tested on people who have been diagnosed with knee 

osteoarthritis. There is a substantial body of research demonstrating that movement 

characteristics of people who have knee osteoarthritis are significantly different from 

those of healthy people when performing activities like transitioning from a chair, 

negotiating stairs and walking (Astephen et al., 2008; Baliunas et al., 2002; Iijima et al., 

2018; Turcot et al., 2012). There is a high level of movement pattern variability across 

the population with knee osteoarthritis which is affected by structural severity 

(Astephen et al., 2008), gender (Kiss, 2011), perceived instability (Gustafson et al., 

2015). Therefore, it is currently unknown if a human activity recognition model could 
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accurately classify activities from training data collected from people who have knee 

osteoarthritis. 

Previous studies have demonstrated that human activity recognition models 

trained on data from healthy people are less accurate for use in people who have 

health conditions that affect how they move (Albert et al., 2012; Lonini et al., 2016). 

For example, using a support vector machine model trained on data from healthy 

people, Albert et al. (2012) reported significantly less accuracy of their model when 

tested on people who have Parkinson’s disease (75%), compared to healthy 

participants (86%). In another study using a random forest classifier, Lonini et al. 

(2016) reported a median accuracy that was 26% lower for classification predicting 

five activities when training data using healthy participants was tested on people who 

use knee–ankle–foot orthoses due to lower limb impairments. Together, these studies 

suggest that human activity recognition models trained on data from people who have 

abnormal movement characteristics because of medical conditions (e.g. knee 

osteoarthritis or Parkinson’s disease) result in poorer test accuracy in the patient 

population. 

The second limitation is that so far, studies that have developed human activity 

recognition for people who have knee osteoarthritis have only trained and tested 

human activity recognition models to classify rehabilitation exercises in healthy people 

(Chen et al., 2015; Huang et al., 2017; O’Reilly et al., 2018) rather than functional 

activities such as walking, standing from a chair or using stairs, which are activities 

most important for clinicians to monitor for improvement after being prescribed 

exercises or after surgery. 

To date, no studies have addressed these two limitations when reporting the 

development and validation of a human activity recognition model intended for use in 

people with knee osteoarthritis. Therefore, we aimed to develop a human activity 

recognition system that could classify the activities and phases of transitioning from a 

chair, negotiating stairs and walking using raw IMU training data from people who 

have knee osteoarthritis using CNN models. In this study, we have demonstrated a 

proof-of-concept that data collected from people who have a confirmed diagnosis of 

knee osteoarthritis can feasibly be used to train a human activity recognition model 
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using CNN architecture to classify clinically relevant activities and phases of activities 

at an acceptable level of accuracy. 

4.3 Materials and Methods 

Eighteen participants with the clinical diagnosis of knee osteoarthritis (National 

Institute for Health & Care Excellence, 2014) were recruited from local health 

provider clinics through direct referral and noticeboards. Inclusion criteria included 

≥3 months of pain, ≥4/10 pain on most days and moderate activity limitation (a 

single item on the Function, Daily Living subscale of the Knee injury and 

Osteoarthritis Outcome Score) (Roos & Lohmander, 2003). Exclusion criteria were 

previous lower limb arthroplasty, severe mobility impairments (e.g. neurological 

disorders, fracture) or an inability to complete the physical assessment due to 

language or cognitive difficulties. As soft tissue artefacts result in ‘noise’ in IMU data, 

to minimise the impact of this, participants were excluded if they had a body mass 

index (BMI) > 35 kg/m2 or >30 kg/m2 and relatively more soft tissue around the 

thigh with a waist-to-hip ratio (WHR) of ≤0.85 for women and ≤0.95 for men. All 

participants provided written informed consent and institutional ethics approval was 

obtained (HRE2017-0695) prior to data collection. The characteristics of participants 

are reported in Table 4-1. 

Table 4-1. Characteristics of participants 

Characteristics Mean (SD) Range 

Age (years) 66.2 (8.7) 49 to 82 
Female (%) 53%  
Weight (kilograms) 80.5 (15.9) 44 to 113 
Height (metres) 1.7 (0.1) 1.6 to 1.9 
Body mass index (kg/m2 26.6 (15.9) 17.8 to 33.4 

4.3.1 Data Collection 

Data were collected during a single session (average approximately 30 min) in a 

motion analysis laboratory. Height and weight data were collected using a manual 

stadiometer and calibrated digital scale prior to placing IMUs (v6 research sensors, 

DorsaVi, Melbourne, Australia) and retro-reflective markers on the participant. 

Participants then performed flexion–extension of the knee approximately 10 times as 
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warm-up movements for both knees. A standardised battery of functional activities 

was performed by participants that included: transitioning from a chair (5 trials of sit-

to-stand-to-sit on wooden box 40 cm in height), negotiating stairs (3 trials of a 3-stair 

ascent, 3 trials of a 3-stair descent with each step 20 cm in height) and walking (3 trials 

of a 5 m self-paced walk). 

4.3.2 Activities for Classification 

The levels of classification are outlined in Table 4-2. Three activities were 

classified at the first level, four at the second level and six at the third level. 

Table 4-2. Levels of Classification 

Level 1 Level 2 Level 3 

Chair  Sit down  

 Stand up   

Stairs  Stairs ascending Stance 

  Swing 

 Stairs 
descending 

Stance 

  Swing 

Walking  Stance 

  Swing 

4.3.3 Instrumentation 

Two data collection systems were used. To train the human activity recognition 

model, we used data from four DorsaVi IMUs placed on the thighs and shanks 

(Figure 4-1) of the participants. The IMUs included a triaxial accelerometer and 

gyroscope, weighed 17 grams and measured 4.8 x 2.9 x 1 centimetres. The location 

and number of sensors selected are the minimum number required to enable 

subsequent biomechanical analysis of both knees (e.g. knee joint flexion angle).  

To precisely label the start and end times of each trial, we used a second system, 

an 18 camera Vicon three-dimensional motion analysis system (Oxford Metrics Inc., 

Oxford, UK). The events defining the start and end times are described in Appendix 

4-1. This was required as the IMU data were not able to be directly labelled while 

collecting data in the laboratory. Therefore, we time-synchronised the IMU and Vicon 

systems to allow labelling of the start and end of each trial in the IMU data. 
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Synchronisation procedures were performed by placing IMUs in a wooden box (with 

three retro-reflective markers attached) and rotated 10 times, >90° around the IMU’s 

X axis during a single Vicon data collection trial. 

Figure 4-1. Placement of IMUs (purple) used for training the CNN models and 
Vicon marker (blue) placement for recording start and end times for each trial. 

 

The sampling frequency for the IMU and Vicon systems were 100 and 250 Hz, 

respectively. IMUs were placed in a standardised manner according to manufacturer 

instructions by an experienced musculoskeletal physiotherapist bilaterally on the lower 

limbs with double-sided hypoallergenic tape halfway between the superior edge of the 

greater trochanters and lateral epicondyles, halfway between the tibial tuberosities and 

anterior talocrural joints Figure 4-1. Twenty-eight retro-reflective markers for Vicon 

motion analysis were placed on anatomical landmarks of the pelvis and lower limb 

(Figure 4-1) consistent with previously published models which align with the 

International Society of Biomechanics recommendations (Wu et al., 2002). 

4.3.4 Human Activity Recognition System Development 

The architecture of the human activity recognition system we developed is 

detailed through sections 4.3.4.1 to 4.3.4.3 and summarised in Figure 4-2. Further 

details about the CNN and fully connected network are in Appendix 4-2. 
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Figure 4-2. Architecture of the proposed human activity recognition system. 

 

 

4.3.4.1 Data Preparation 

Raw IMU data (tri-axial accelerometer, gyroscope, and magnetometer) were 

offloaded and output as time stamped files for each sensor. The reference standard 

kinematic data were processed in Vicon Nexus software (Oxford Metrics Inc., 

Oxford, UK). Reconstructed Vicon quaternion data and the filtered raw orientation 

data from each sensor’s accelerometer, gyroscope and magnetometer were time-

synchronised by use of normalised cross-correlation using a customised LabVIEW 

program (National Instruments, Austin, TX, USA). Start and end times were exported 

for each activity for the raw IMU and reconstructed Vicon data. As there were a 

different number of samples for the stair phases (swing/stance), this resulted in an 

unbalanced dataset, which reduced model accuracy because of overfitting. Therefore, 

we balanced the dataset with an automated randomisation procedure, whereby the 

dataset was shuffled each time and the number of selected samples was balanced to 

optimise the accuracy of the model. Magnetometer data were then discarded as it was 

not required for the development of the human activity recognition model. 

4.3.4.2 Classification 

One contemporary method for human activity recognition model development 

is a machine learning approach known as deep learning. Deep learning uses a 
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programmable neural network that automatically learns classification features from 

raw data, reducing the programming requirements used for other traditional machine 

learning methods. This approach automatically identifies complex features, rather 

than using predefined time and frequency domain features required for traditional 

machine learning human activity recognition model approaches, such as support 

vector machines or k-nearest neighbour (Hou, 2020; Kautz et al., 2017; Sani et al., 

2017; Wu et al., 2002). A convolutional neural network (CNN) is one type of deep 

learning approach that can be used for high dimensional time-series data (LeCun et 

al., 2015) that outperforms traditional machine learning approaches (Brock et al., 

2017; Chen & Xue, 2015; Fridriksdottir & Bonomi, 2020; Jiang & Yin, 2015). 

Deep neural networks such as CNNs are ideal for handling image data, like 

those from IMUs time-series data, which can be arranged into a two-dimensional 

‘image’ as an input matrix. Features are then extracted automatically as each activity 

ideally represents a unique activity ‘image’ pattern (Figure 4-3). Input included triaxial 

(x, y, z) accelerometer and gyroscope data from all four IMUs resulting in a total of 24 

inputs. Each input was stacked column by column then segmented into fixed size 

windows according to the level of classification. The images were then converted 

from a segmented numerical data array of the 12 accelerometer and 12 gyroscope 

inputs into images by normalising the dataset to 0 to 255 range required for digital 

image production.  

Figure 4-3. Visual representation of Level 1 activity ‘image’ patterns. 
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Error! Reference source not found. depicts the CNN model architecture for each 

level of classification. Various architectures were tested using a different number of 

CNN layers, number of neurons in each layer, activation function, CNN kernel size, 

number of filters, max pooling size, number of dense layers in the fully connected 

part of the model, learning rate for ‘Adam’ optimisation, and number of epochs. To 

avoid overfitting, we used cross-validation (see section 4.4), data augmentation, 

adjusted the learning rate and used dropout and early stopping functions. Automatic 

feature extraction was performed at the first level of classification using two 

convolutional layers and three for the second and third level of classification. We 

developed a total of six models: one for level 1 (to classify between chair, stairs, and 

walking), one for level 2-Chair (to classify between Sit down and Stand up), one for 

level 2-Stairs (to classify between Stairs ascending and Stairs descending), one for level 

3-Stairs-Stairs ascending (to classify between Stance and Swing), one for level 3-Stairs-

Stairs descending (to classify between Stance and Swing), and finally one for level 3-

Walking (to classify between Stance and Swing). An optimisation algorithm (Adam) 

trained the model (Kingma & Ba, 2014) using different learning rates depending on 

the activity. 

4.3.4.3 Segmentation 

A decision tree was developed (Figure 4-4), with a separate model created for 

each activity. IMU data were segmented at fixed window sizes of 200, 100 and 40 

milliseconds for each subsequent level of classification (Figure 4-5). Each of these 

windows slid 10 milliseconds over the trial.  

Figure 4-4. Decision tree for three levels of activity classification – Level 1 Activity, 
Level 2 Direction, Level 3 Phase. 
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The fixed window size was optimised to train the model by testing multiple 

window sizes for each level of classification. To determine the best window size, we 

created a distribution graph for all the trials and selected the window size based on 

the 80th percentile. An additional training image was produced for each additional 10 

milliseconds where the duration was longer than the fixed window size. For example, 

if the trial length was 240 milliseconds, then there were five images created which 

allowed data augmentation. In situations where there was an overlapping window 

between two activities (e.g. Level 3 classification between swing and stance), the 

window was classified based on the higher prediction probability. 

Figure 4-5. Illustration of the segmented window sliding in 10 ms increments for 
each level of classification. Level 1—200 ms; Level 2—100 ms; Level 3—40 ms. 

 

4.4 Model Performance—Statistical Testing 

The accuracy of the models was evaluated using a leave-one-subject-out cross-

validation (LOSOCV) method (Gholamiangonabadi et al., 2020). This method of 

validation trains the model on all participants except one and independently tests the 

model on the participant that is ‘left out’ (e.g. trained on 17, tested on one). Tests are 

repeated until each participant has been left out, and the reported result is the average 

across all participants. This model was chosen as it is more clinically relevant, as 

LOSOCV provides an estimate that would more closely approximate the average 

accuracy for individual patients than other validation approaches 

(Gholamiangonabadi et al., 2020). We evaluated the accuracy (1), precision (2) and 

recall (3) of our model. In addition, we present a confusion matrix which depicts the 
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total of the binary (correct/incorrect) classifications from LOSOCV across all 

participants. 

1. 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

 

2. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

 

3. 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

 

4.5 Results 

All participants completed each activity per protocol. The overall accuracy 

across multiple levels of classification ranged from 60% to 97% (Table 4-3). 

Confusion matrices are presented in Figure 4-6 for each level of classification. 

 

Table 4-3. Accuracy of CNN models using leave-one-out cross-validation for each 
level of classification. 

 Accuracy 

1st Level Classification  
Chair, Stair, Walk 85% 

2nd Level Classification   
Chair - stand/sit 97% 
Stair - up/down 89% 

3rd Level Classification  
Stair up stance/swing 67% 

Stair down stance/swing 60% 
Walk stance/swing 67% 
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Figure 4-6. Confusion matrices for classification of activities/phases per 
classification level. 

Green cells represent correct classification and arrows represent the classification pathway from activities to 

phases of activities. Yellow cells represent the prediction accuracy. 

 

4.6 Discussion 

Previous literature reporting the development of human activity recognition 

models for people with knee osteoarthritis had not explored (a) the potential accuracy 

of a model trained on data collected from people who have knee osteoarthritis rather 

than healthy people, and (b) the capacity of such a model to classify activities related 

to the disability experienced by people with knee osteoarthritis rather than 

rehabilitation exercises. Therefore, the aim of this proof-of-concept study was to use 

IMU data collected from people who have knee osteoarthritis to train a human 

activity recognition system to classify clinically relevant activities and phases of those 

activities. 

While many previous human activity recognition studies have investigated novel 

computational methods to optimise human activity recognition models, we took a 

different approach and demonstrated two novel findings, that (a) a human activity 

recognition model can be trained on IMU data collected from participants who have 

knee osteoarthritis rather than healthy people, and (b) activities of transitioning from 

a chair, negotiating stairs and walking can be classified from training data collected 
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from this specific population. The model accuracy was 85% at the first level of 

classification, 89% to 97% at the second and 60% to 67% at the third. Our model 

performed with a high degree of accuracy compared to studies using the same 

validation approach (LOSOCV). 

4.6.1 Comparison of Human Activity Recognition System Accuracy to 

Previous Literature 

The results of our human activity recognition model (accuracy range 60% to 

97%) are consistent with previous studies that classified activities of the lower limb in 

healthy people and people with medical conditions that affect their movement (e.g. 

Parkinson’s disease) which have reported model accuracy between 75% and 99% 

(Albert et al., 2012; Arif & Kattan, 2015; Ascioglu & Senol, 2020; Deep & Zheng, 

2019; Emmerzaal et al., 2020; Fridriksdottir & Bonomi, 2020; Gholamiangonabadi et 

al., 2020; Lonini et al., 2016; Nguyen et al., 2017). These previous studies use a single 

human activity recognition model to classify between 5 and 12 activities resulting in 

an overall accuracy for the single model. As our human activity recognition system 

used a decision tree framework to classify both activities and phases of those activities 

for clinical purposes that are described in section 4.6.4, comparison of our model is 

limited because we developed multiple human activity recognition models for three 

levels of classification. Those three levels resulted in a total of six models with 

accuracy reported for each separate model (Figure 4-6). However, and despite this, 

the accuracy for the first and second level of classification (85% to 97%) are 

promising compared to previous studies that used a single model. 

At subsequent levels of classification, our model’s accuracy slightly improved at 

the second level of classification (range 89% to 97%), but at the third level of 

classification, swing and stance phases for stairs and walking, the accuracy (range 60% 

to 67%) was reduced. Usually, the accuracy of human activity recognition algorithms 

reduces for finer levels of classification as predictions become more complex. Our 

results are consistent with these previous studies, where reductions in accuracy for 

subsequent level classification have been reported to range between 4.2% and 16.4% 

(Hendry et al., 2020; Whiteside et al., 2017). While we compared the results of our 

models to previous human activity recognition literature, the considerable 
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heterogeneity between these studies reduces the capacity to make meaningful 

comparisons (O’Reilly et al., 2018). This heterogeneity arises from a wide variety of 

factors that include: the type of activities to be classified, the number and location of 

sensors, the number of activities, the number of training data samples (and 

participants), the population sampled (e.g. healthy, knee osteoarthritis, Parkinson’s 

disease) and the validation approach (e.g. LOSOCV or k-fold cross-validation). 

The model was more accurate when classifying activities where movement 

patterns are distinct. For example, at the first level of classification, a chair transition 

was most frequently classified correctly (recall 91% - 452 correct predictions from 499 

observations). We believe the higher accuracy for a chair transition is due to a unique 

activity pattern where both legs perform synchronised movements. On the other 

hand, negotiating stairs was misclassified as walking 23% of the time (130 incorrect 

predictions from 555 observations). As walking and negotiating stairs share similar 

features of a reciprocal movement pattern where one leg is swinging forward while 

the other is in stance moving backwards alternating in a rhythmical manner, 

misclassification between these two activities is commonly reported in studies that 

trained human activity recognition models using data from healthy participants 

(Ascioglu & Senol, 2020; Chen & Xue, 2015; Fridriksdottir & Bonomi, 2020). One 

solution recently reported is to combine neural network models to classify eight 

activities that included walking, walking uphill, walking down hill, ascending stairs, 

descending stairs and running – all activities that share a reciprocal pattern (Ascioglu 

& Senol, 2020). Combining CNN with another deep learning approach known as 

long short-term memory resulted in superior model performance with fewer 

misclassifications for activities that have reciprocal patterns compared to an 

independent CNN or long short-term memory models alone. 

4.6.2 Appropriate Validation Approaches for Clinical Populations 

The most important consideration when comparing the accuracy of a human 

activity recognition model is the validation approach. For IMU human activity 

recognition systems to be widely adopted and accepted by healthcare clinicians and 

researchers, the validation approach described in the machine learning field is very 

important. It is important for a clinician to know the average error that exists for 
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individual patients. For any particular patient where new data will be tested against the 

model, clinicians can have greater confidence in the accuracy of models that are 

validated with LOSOCV rather than other validation approaches (such as k-fold or 

70:30 cross-validation) (Gholamiangonabadi et al., 2020). 

Methods other than LOSOCV inflate the accuracy of models designed to be 

used on a single individual. For example, one study (Janidarmian et al., 2017) 

aggregated multiple human activity recognition datasets that represented multiple 

machine learning models, sensor types and placements that included ambulatory 

activities such as walking, ascending and descending stairs, and jogging, amongst 

others. They reported an accuracy of 96.4% when using a 10-fold cross-validation 

compared with a 79.9% using LOSOCV, representing a substantial 16.5% difference 

between these validation methods (Janidarmian et al., 2017). Similarly, in a human 

activity recognition model that included walking and multiple stationary activities in a 

sample of participants with Parkinson’s disease, the accuracy of a support vector 

machine classifier reduced from 92.2% using a 10-fold cross-validation to 75.1% 

when using a LOSOCV (Albert et al., 2012). Therefore, in comparison, the accuracy 

of our CNN models ranging from 85% to 97% at the first and second level of 

classification using LOSOCV is promising. 

Although LOSOCV has lower reported accuracy than some other validation 

approaches, it is preferred as it accounts for between-participant variability (Albert et 

al., 2012; Gholamiangonabadi et al., 2020; Janidarmian et al., 2017) which is important 

for a clinician who needs to know the average accuracy of a model as it applies to 

each new individual patient. 

4.6.3 The Importance of Representative Sampling 

Validating a model for populations who have movement impairments related to 

medical conditions is particularly important because they move differently from 

healthy people. In the introduction of this paper, we provided a detailed description 

of the importance of training human activity recognition models on data collected 

from people with medical conditions that affect their movement rather than healthy 

people. Briefly, previous studies have demonstrated that human activity recognition 

models trained on data from healthy people are less accurate when tested on data 
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collected from people with medical conditions that affect the way they move, 

reducing the model accuracy by up to 28% (Albert et al., 2012; Lonini et al., 2016). 

4.6.4 Clinical Application of Human Activity Recognition 

A central component of an initial clinical interaction is to establish a diagnosis. 

After a person is diagnosed with knee osteoarthritis, they should be referred for core 

interventions like movement rehabilitation or surgery because both these treatments 

are helpful to improve pain and ability to perform activities like transitioning from a 

chair, negotiating stairs and walking. However, currently clinicians do not have an 

objective method to use outside of the clinical environment to monitor if people are 

improving after treatment. Therefore, a human activity recognition system that can 

classify both clinically relevant functional activities and phases of those activities is 

potentially important for a clinician because it could help provide information about 

whether a person who has knee osteoarthritis is improving when outside of the clinic 

such as when at home or at work. 

There are two potential ways a human activity recognition system could be used 

for clinical purposes for a person with knee osteoarthritis when they are unobserved 

(at home or at work) while under the care of a clinician. Firstly, for the purposes of 

physical activity monitoring. For instance, one patient with knee osteoarthritis may 

avoid using the stairs due to a fear of falling. The clinician’s goal may be to increase 

use of stairs and therefore they could use a human activity recognition system to 

automatically and objectively count the number of times their patient used stairs 

during a period of physical activity monitoring. This is especially important as patient 

self-report of physical activity does not consistently correlate with wearable sensor-

based monitoring (Jasper et al., 2021; Kowalski et al., 2012). 

Secondly, a human activity recognition-IMU system could be used to segment 

the data for subsequent biomechanical analysis of activity phases for data collected 

when unobserved, outside of the clinic. Currently, most IMU systems can only be 

used in observed conditions where the start and end times of a data capture trial are 

known. Under unobserved conditions, for instance when a person is at home or at 

work, IMU data are unlabelled which currently requires a clinician to process long, 

continuous datasets which is time-consuming and therefore not feasible. Human 
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activity recognition provides a solution to segment the data for unobserved 

biomechanical analysis. For instance, a patient may have specific difficulties with the 

stance phase of descending stairs because of their stiff knee. The clinician’s goal in 

this situation may be to change specific biomechanical patterns with the aim of 

reducing knee stiffness during this activity. In this case, the clinician may use human 

activity recognition to identify a window in the IMU data when the stance phase 

occurred when walking down stairs for subsequent biomechanical analysis, to monitor 

if their patient can bend their knee more when going down stairs after they receive 

treatment. Therefore, a human activity recognition system that can automatically 

segment the data by labelling the start and end times of a phase of an activity, when 

the patient is unobserved, could help a clinician monitor improvement of a specific 

movement parameter (e.g. knee joint angle or force). 

4.6.5 Clinician and Patient Burden 

It is important that human activity recognition model development considers 

both the intended population that will wear the sensors (e.g. a patient with knee 

osteoarthritis) as well as the intended population that will use that information (e.g. a 

clinician). Therefore, the choice as to the number of IMUs should balance the patient 

burden of wearing multiple sensors with optimising the accuracy of the model and 

any potential clinical benefit that may ensue. We chose to use a total of four IMUs on 

each participant, with two sensors on each lower limb for two reasons. 

Firstly, studies have demonstrated higher accuracy with more sensors, especially 

across multiple body regions (Hendry et al., 2020; Lee et al., 2020). For example, 

using a 10-fold cross-validation, Lee et al. (2020) demonstrated a reduction in human 

activity recognition model accuracy of up to 8% when using inputs from three, rather 

than five IMUs when classifying six different squatting tasks (Janidarmian et al., 

2017). Secondly, a sensor placed on both the thigh and the shank is required for 

subsequent biomechanical analysis of the knee using current IMU fusion algorithms. 

We therefore believe that four IMUs strikes a balance between optimal accuracy and 

participant burden while providing clinically relevant information for knowing if a 

patient is improving during treatment. 
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Studies have determined the best location for IMU placement that optimises 

model accuracy from as few as one sensor in healthy people (Janidarmian et al., 2017). 

However, optimal sensor positions could differ in healthy people compared to those 

with medical conditions that affect their movement. Additionally, the purpose of the 

human activity recognition model needs to be considered, especially if biomechanical 

analysis is required which requires at least two sensors to estimate the movement 

parameters around a joint like the knee. Future human activity recognition model 

development for people who have medical conditions that affect their movement, 

such as people who have knee osteoarthritis, should carefully consider IMU 

placement for the two clinical purposes of (a) identifying activities to count the 

frequency or duration of performance, or alternatively, (b) as a means of segmenting 

data to capture a window of activity that could be used for subsequent biomechanical 

analysis. 

4.6.6 Strengths, Limitations, and Future Research 

This study is the first to describe the development of a human activity 

recognition model that (a) used training data collected from people who have knee 

osteoarthritis, (b) includes activities that are recommended by medical guidelines to 

monitor improvement in this population and (c) can identify not only activities but 

also phases of activities useful for biomechanical analysis. The training data for our 

human activity recognition model did not include a diverse range of participants, such 

as those who are severely disabled, obese, or have substantially different patterns of 

movement related to pain such as a ‘step-to’ gait pattern when using stairs. Future 

studies should include these diverse patient presentations to allow greater 

generalisability of a model. 

Validation of this IMU-based human activity recognition model is required 

using data collected in conditions outside a laboratory environment (e.g. clinic or 

home). With further development, this model could be used in a workflow for 

analysing data collected when a patient was unobserved in order to segment data for 

subsequent biomechanical analysis using IMU fusion algorithms or machine learning 

predictions for knee joint kinematics (angles and speed) and kinetics (force or 

moments). 
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While the accuracy of our models was high for the first and second levels of 

classification, the accuracy for the third level of classification was substantially less. 

Subsequent studies should explore how to optimise model accuracy over multiple 

levels of classification. 

Most of the published human activity recognition models have limited capacity 

to be used in unobserved conditions as people perform many diverse activities other 

than those on which the model was trained. The current model may therefore 

produce a significant number of false positive classifications in unobserved 

conditions. Future human activity recognition model development trained on data 

collected in laboratory conditions should also be validated for use in less controlled 

environments such as a clinic or in a person’s home. The investigation of approaches 

that combine CNN with other machine learning approaches (e.g. CNN long short-

term memory) is recommended as these approaches may further improve 

classification accuracy for activities that share similar features. Further investigation is 

warranted to explore the best number, location, and combination of sensors in the 

population with knee osteoarthritis. 

4.7 Conclusions 

Our results provide a proof-of-concept that data collected from people with 

knee osteoarthritis can be used to train human activity recognition models to classify 

clinically relevant activities, and phases of those activities that could be used for the 

purpose of monitoring an improvement due to treatment. This is the first study to 

develop a human activity recognition model from data collected from people who 

have knee osteoarthritis to classify clinically relevant activities and phases of activities 

in this population. The model accuracy was 85% at the first level of classification, 

89% to 97% at the second level of classification and 60% to 67% at the third level of 

classification. The performance of our models compares well to other studies that 

classified different activities using the same validation approach (LOSOCV). 

As we have demonstrated that these activities can be classified in the 

population, it may be possible to develop a human activity recognition system that 

can objectively measure the number of times a person who has knee osteoarthritis 
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performs an activity, as well as segment data to allow biomechanical analysis of these 

activities for data collected at home or at work. 
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4.9 Appendices 

Appendix 4-1 

Walking 
Stance 

• Event marker 1: Initial heel contact of stance limb  

• Event marker 2: Toe off of stance limb  
Swing   

• Event marker 1: Toe off of stance limb   

• Event marker 2: Initial heel contact of stance limb  
 
Transitioning to and from a chair 
Sit-to-stand 

• Event marker 1: From initiation of pelvis lift off (anterior/posterior 
movement of pelvic markers) 

• Event marker 2: Maximum height of pelvis markers in standing 

Stand-to-sit 

• Event marker 1: Pelvis moving back down (anterior/posterior movement of 
pelvic markers) 

• Event marker 2: Pelvis touch-down (anterior/posterior movement of pelvic 
markers ceases) 

 
Negotiating stairs 
Stance 

• Event marker 1: Initial contact of stepping limb with next step 

• Event marker 2: Toe off of stepping limb from the step  
 

Swing 

• Event marker 1: Toe off of swing limb from the step 

• Event marker 2: Initial contact of swing limb with next step 
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Appendix 4-2 
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4.10 Summary of Chapter 4 

For clinicians working with people with knee osteoarthritis, the assessment of 

physical function across multiple clinically important activities is limited to direct 

observation during a clinical encounter. Therefore, clinicians lack objective means of 

monitoring performance of clinically important activities like walking, negotiating 

stairs and transitioning to and from a chair in free-living environments, such as when 

a patient is at home or work. While many studies had developed human activity 

recognition systems for healthy populations, no machine learning human activity 

recognition systems had been developed from and validated on data collected from 

people with knee osteoarthritis. We aimed to develop a human activity recognition 

system for people with knee osteoarthritis. We provide a proof-of-concept that a 

human activity recognition system can be developed from IMU data collected from 

people with knee osteoarthritis for clinically important activities and phases of 

activities. Human activity recognition models could be refined for use in monitoring 

performance of activities in free-living environments and act as the first part of a data 

handling pipeline to assist with segmenting and labelling data for subsequent 

biomechanical processing. 
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Chapter 5  

Study 2b: Kinematic Prediction 

 

Predicting Knee Joint Kinematics from Wearable Sensor Data in  

People with Knee Osteoarthritis and Clinical Considerations for 

Future Machine Learning Models 

 

The results from the systematic review presented in Chapter 3 suggest there may 

be at least a proportion of the population with knee osteoarthritis where changing 

movement patterns is possible, and that change may be related to changes in clinical 

outcomes. One of the most investigated parameters was sagittal plane kinematics 

during walking. Within the systematic review one study demonstrated changes in 

sagittal plane angular kinematics during walking after Tai Chi (Zhu et al., 2016). There 

is also some indication in the literature outside of the systematic review that for 

people whose quadriceps strength increase, there is also a change in sagittal plane 

angular kinematics during walking (Davis et al., 2019). The systematic review did not 

find consistent group-level change in sagittal plane kinematics, but those findings do 

not suggest that individual-level change does not occur. 

Notably, walking was the only clinically relevant functional activity that was 

investigated in the studies included in the systematic review. Other clinically relevant 

activities, such as negotiating stairs and transitioning to and from a chair, were not 

investigated despite guidelines recommending assessment all three of these activities.  

Chapter 4 described the development of a human activity recognition system for 

multiple clinically relevant activities and phases of activities. This type of system has 

two potential uses (a) to monitor performance of clinically important activities in 

free-living environments, and (b) as the first part of a data handling pipeline that can 

segment and label the data for subsequent biomechanical analysis. 
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Here, Chapter 5 describes the development of an IMU-based kinematic 

prediction machine learning system for the prediction of sagittal plane kinematics 

during phases of multiple clinically important activities in people with knee 

osteoarthritis. This type of system could use segmented data output from the human 

activity recognition system presented in Chapter 4 as input to this subsequent step in 

a data handling pipeline.  

This chapter was published in the journal Sensors. 

Tan, J.-S., Tippaya, S., Binnie, T., Davey, P., Napier, K., Caneiro, J. P., Kent, P., 
Smith, A., O’Sullivan, P., & Campbell, A. (2022). Predicting Knee Joint Kinematics 
from Wearable Sensor Data in People with Knee Osteoarthritis and Clinical 
Considerations for Future Machine Learning Models. Sensors, 22(2). 
https://doi.org/10.3390/s22020446   
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5.1 Abstract 

Deep learning models developed to predict knee joint kinematics are usually 

trained on inertial measurement unit (IMU) data from healthy people and only for the 

activity of walking. Yet, people with knee osteoarthritis have difficulties with other 

activities and there are a lack of studies using IMU training data from this population. 

Our objective was to conduct a proof-of-concept study to determine the feasibility of 

using IMU training data from people with knee osteoarthritis performing multiple 

clinically important activities to predict knee joint sagittal plane kinematics using a 

deep learning approach. We trained a bidirectional long short-term memory model on 

IMU data from 17 participants with knee osteoarthritis to estimate knee joint flexion 

kinematics for phases of walking, transitioning to and from a chair, and negotiating 

stairs. We tested two models, a double-leg model (four IMUs) and a single-leg model 

(two IMUs). The single-leg model demonstrated less prediction error compared to the 

double-leg model. Across the different activity phases, RMSE (SD) ranged from 

7.04° (2.6°) to 11.78° (6.04°), MAE (SD) from 5.99° (2.34°) to 10.37° (5.44°), and 

Pearson’s r from 0.85 to 0.99 using leave-one-subject-out cross-validation. This study 

demonstrates the feasibility of using IMU training data from people who have knee 

osteoarthritis for the prediction of kinematics for multiple clinically relevant activities. 

5.2 Introduction 

People who have knee osteoarthritis commonly report pain and physical 

limitation performing functional activities such as walking, transitioning from a chair 

and negotiating stairs (Fukutani et al., 2016). During these activities they also use less 

sagittal plane range of movement (knee flexion) during particular phases of activities 

(e.g. stance phase of walking) compared to people who do not have osteoarthritis 

(Baliunas et al., 2002; Bouchouras et al., 2015; Hinman et al., 2002; McCarthy et al., 

2013). Clinicians are interested in the relationship between specific kinematic 

measures and clinical outcomes in people with knee osteoarthritis (Tan, Tikoft, et al., 

2021). For example, a person may have difficulty descending stairs because they do 

not use available knee flexion movement during the stance phase. Interventions such 

as exercise (Davis et al., 2019) and total knee replacement (Junsig Wang et al., 2019) 
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have demonstrated the ability to improve knee flexion angle during walking in people 

who have knee osteoarthritis. Clinical guidelines recommend that the performance of 

painful and limited activities are monitored over the course of treatment (Dobson et 

al., 2013). However, there are currently several limitations to clinicians being able to 

accurately quantify sagittal plane knee range of movement during functional activities 

in both clinical and free-living environments (e.g. patient’s home or work, or during 

recreation). 

Clinicians are unable to routinely access gold-standard optoelectronic motion 

analysis systems (e.g. Vicon) due to cost and space requirements. Smartphone 

camera-based technology is more accessible to clinicians and has demonstrated 

validity and reliability for measuring sagittal plane knee angles (Milanese et al., 2014). 

Both optoelectronic and smartphone camera-based systems require the patient to be 

observed within a fixed volume to record useful clinical information, precluding their 

use in a free-living environment. Inertial measurement units (IMUs) are a wearable 

sensor technology that is emerging as an alternative for biomechanical analysis, 

allowing a patient to move freely in clinical and free-living environments. Multiple 

scoping reviews have described the potential role of IMUs for the assessment of 

people with knee osteoarthritis (Cudejko et al., 2021; Kobsar et al., 2020) and 

following knee replacement surgery (Small et al., 2019). These reviews highlight the 

need for further investigation of IMU systems that can be used for monitoring 

biomechanics of patients in free-living environments. 

There is a substantial volume of research validating IMUs for estimating 

kinematics in laboratory environments (Binnie et al., 2021; Rast & Labruyère, 2020; 

van der Straaten et al., 2018), although two barriers exist for widespread clinical 

adoption. In uncontrolled environments such as in a clinic or in free-living 

environments, the presence of metallic equipment (e.g. chairs or railings) and devices 

such as mobile phones and computers can interfere with the magnetometer data 

which can affect the reliability of fusion algorithm estimates (de Vries et al., 2009; 

Schall et al., 2016), making the data unusable (Schall et al., 2016). Although some 

fusion methods have been described which use only accelerometers and gyroscopes, 

they require IMU calibration prior to each use (Teufl et al., 2019). To overcome the 
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magnetometer problem and calibration requirements, machine learning (a form of 

artificial intelligence) approaches have been used to predict kinematics (e.g. knee joint 

flexion angle) from only the raw accelerometer and gyroscope data (Argent et al., 

2019; Findlow et al., 2008). Although traditional machine learning requires the 

researcher to identify important features from the IMU data to train the model, a 

more contemporary approach is to use deep learning (a subfield of machine learning) 

that automatically detects features, minimising programming requirements 

(Hernandez et al., 2021; Mundt, Koeppe, David, Witter, et al., 2020; Rapp et al., 2021; 

Renani et al., 2021; Wouda et al., 2018). 

There are a small number of studies where deep learning models have been 

trained to predict knee joint angular kinematics for walking from IMU training data 

collected mostly from healthy people (Hernandez et al., 2021; Mundt, Koeppe, David, 

Witter, et al., 2020; Mundt, Thomsen, et al., 2020; Rapp et al., 2021; Renani et al., 

2021; Wouda et al., 2018). However, people with knee osteoarthritis experience 

significant difficulty with functional activities other than walking, such as negotiating 

stairs and transitioning to and from a chair. There is only one reported study using 

IMU data collected from participants who have knee osteoarthritis to train a deep 

learning model to predict sagittal plane knee kinematics, which was only for the 

activity of walking (Renani et al., 2021). No study has yet developed a deep learning 

model to predict knee joint kinematics for multiple, clinically important activities 

using IMU data collected from people with knee osteoarthritis. 

The aim of this study was to demonstrate a proof-of-concept for the feasibility 

of using IMU training data collected from people who have knee osteoarthritis 

performing three clinically relevant functional activities: walking, negotiating stairs, 

and transitioning to/from a chair, to train a deep learning model to predict knee joint 

flexion angles. The second aim was to determine if a single-leg model (two sensors on 

one leg) or double-leg model (two sensors on both legs) was more accurate. 
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5.3 Materials and Methods 

5.3.1 Study Design 

This study was a retrospective, prognostic study using continuous IMU data, 

collected from people with knee osteoarthritis who performed multiple clinically 

relevant activities, to predict knee joint sagittal plane kinematics. 

5.3.2 Participants 

Participants in this study were part of a broader investigation into the use of 

IMUs in people with knee osteoarthritis (Binnie et al., 2021; Tan, Beheshti, et al., 

2021). Seventeen participants with knee osteoarthritis were recruited from local 

physiotherapists, GP practices and local community centres. This number of 

participants mirrors other studies (Findlow et al., 2008; Stetter et al., 2020; Stetter et 

al., 2019; Wouda et al., 2018) and was thought to be sufficient to test the feasibility of 

this proof-of-concept study. Participants were included if they met the clinical 

diagnostic criteria for knee osteoarthritis (National Institute for Health & Care 

Excellence, 2014), had ≥3 months of pain, ≥4/10 pain on most days, and moderate 

activity limitation (single item on the Function, Daily Living sub-scale of the Knee 

injury and Osteoarthritis Outcome Score) (Roos & Lohmander, 2003). To minimise 

the effects of soft tissue artefact during motion capture that can introduce ‘noise’ into 

the data, we excluded participants with a body mass index (BMI) > 35 kg/m2 and 

those who had a BMI >30 kg/m2 with a waist-to-hip ratio (WHR) of ≤0.85 for 

women and ≤0.95 for men (those with greater soft tissue around the lower limbs). 

Participants were excluded if they had previous lower limb arthroplasty or mobility 

impairments due to other medical conditions (e.g. cognitive impairment, recent 

trauma, or neurological disorders). The study was approved by the Human Research 

Ethics Committee of Curtin University (HRE2017-0738). 

5.3.3 Data Collection 

Participants were initially screened for eligibility over the phone and 

subsequently attended a university motion analysis laboratory. After providing written 

informed consent, height and weight data were collected. IMUs and retroreflective 

markers were placed on the participants in a standardised manner by an experienced 
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musculoskeletal physiotherapist in the locations described in Figure 5-1. Participants 

performed 5 repetitions of knee flexion/extension as a warm-up on each knee. A 

standardised battery of functional activities was then performed that included 4 trials 

of stand-to-sit, 4 trials of sit-to-stand, 3 trials of 3-stair ascent, 3 trials of 3-stair 

descent, and 3 trials of a 5-metre self-paced walk. Participants rested for 30 s between 

trials and 60 s between activities. IMUs were removed after completion of the battery 

of functional activities and raw data were offloaded. 

Figure 5-1. IMU (purple) and Vicon marker (blue) placement. 

 

5.3.4 Instrumentation 

Four IMUs (v6 research sensors, DorsaVi, Melbourne, Australia) sampling at 

100 Hz (accelerometer 8G, gyroscope 2000 degrees/second) were attached to the 

lower limbs with double-sided hypoallergenic tape. The IMUs’ dimensions were 4.8 × 

2.9 × 1 centimetres, and they weighed 17 grams. Three-dimensional motion analysis 

was recorded with an 18 camera Vicon (Oxford Metrics Inc., Oxford, UK) sampling 

at 250 Hz. The relatively small reconstruction errors of <1 millimetre have resulted in 

the Vicon being considered the gold-standard motion analysis system (Ehara et al., 

1995; Richards, 1999). Twenty-eight retroreflective markers were placed on the 

participant’s pelvis and lower limbs using a cluster-based approach in alignment with 

International Society of Biomechanics recommendations (Wu et al., 2002). For this 

purpose, marker clusters were affixed to the IMUs (Figure 5-1), and anatomical 

markers were placed at the locations outlined in Figure 5-1. Additional markers were 
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applied to relevant joint centres for a static calibration trial, then removed (Besier et 

al., 2003), and the flexion/extension warm up trials were used to define the functional 

axis (Binnie et al., 2022). The sensor system was synchronised with the Vicon prior to 

being attached to the participant. IMUs in the same orientation were placed in a 

wooden box with retroreflective markers attached to the outside. The box was then 

rotated >90° ten times and recorded as a single trial in Vicon Nexus software (Oxford 

Metrics Inc., Oxford, UK) to facilitate subsequent time-synchronisation of the IMU 

and Vicon systems. 

5.3.5 Data Preparation 

Vicon trials were reconstructed and modelled using Vicon Nexus software. 

Gaps in trajectories were noted through visual inspection. Cubic spline interpolation 

was used to fill gaps of ≤20 frames (0.08 s), and if gaps were larger than this they 

were discarded. Kinematic trajectories were then filtered using a low-pass Butterworth 

filter with a 6 Hz cut-off frequency as determined by residual analysis. Vicon data 

were down-sampled from 250 to 100 Hz to allow time synchronisation with the IMU 

sensors. 

We used the raw triaxial accelerometer and gyroscope data from 4 IMUs that 

were output as individual timestamped files using the IMU proprietary software 

(MDMv6 Manager v6.883, DorsaVi). Reconstructed Vicon data and the filtered raw 

orientation data from each IMU were time synchronised by the use of normalised 

cross-correlation using a customised LabVIEW program (National Instruments, 

Austin, TX, USA). The event markers were automatically detected by the LabVIEW 

program. Events for phases of walking and stair trials were heel contact and toe-off 

for swing and stance phases. Sit-to-stand and stand-to-sit events were anterior and 

posterior movement of the pelvis. Start and end times from the raw IMU data were 

exported for each phase of activity for the raw IMU and reconstructed Vicon data, 

which were used as inputs into the model. All trials were visually inspected to validate 

the automated synchronisation and event markers. 

We input the affected leg, side of interest (leg being predicted), activity, 

direction of stair climbing and phase of activity as categorical variables into the model. 

In this study, we also investigate the interdependency between both legs by training 
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the model with two different structures of input data: double-leg, and single-leg. The 

double-leg model consisted of 38 input variables (24 accelerometer/gyroscope from 4 

IMUs and 14 categorical variables), whereas the single-leg model included 27 input 

variables (12 accelerometer/gyroscope from 2 IMUs, side, 14 categorical variables). 

There were a total of 6 inputs from each IMU, with the accelerometer and gyroscope 

providing an input for each orthogonal (XYZ) axis (resulting in 24 input for the 

double-leg model, and 12 inputs for the single-leg model). 

5.3.6 Deep Learning Model Development 

The target prediction variable was the knee flexion joint angle at each time 

step obtained from the Vicon motion capture for multiple activities from the raw 

IMU accelerometer and gyroscope data. 

One deep learning approach known as long short-term memory (LSTM) is 

suitable to handle discrepancies between steps in time-series data, where each trial 

differs in length (Mundt, Koeppe, Bamer, et al., 2020). LSTM also requires less 

pre-processing compared to other deep learning approaches, such as convolutional 

neural networks (CNNs), and is more suitable for real-time applications (Mundt et al., 

2021). Recently a N-layer feed-forward neural network (FFNN) demonstrated 

superior results for kinematic prediction of the lower limb compared to a recurrent 

neural network known as LSTM (Mundt, Koeppe, David, Witter, et al., 2020). FFNN 

generally uses all the data points to make the prediction, whereas LSTM only uses 

past data points, resulting in its reduced accuracy for the first few data points. We 

chose to use a further evolution of LSTM and FFNN known as bidirectional LSTM 

(BiLSTM), which has both recurrent and feed-forward characteristics because it 

transverses the input data twice, using both past and future data for predictions 

(Renani et al., 2021) to improve accuracy compared to LSTM (Siami-Namini et al., 

2019). BiLSTM has been successfully implemented for predicting knee joint 

kinematics during walking for people who have knee osteoarthritis or previous knee 

replacement (Renani et al., 2021). 

5.3.7 Model 

A previous study using IMU data to train a deep learning prediction model 

reported that the number of IMUs can affect kinematic prediction error (Hendry et 
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al., 2021). To explore the effect of using additional IMUs, we developed two models: 

double-leg and single-leg. The double-leg model uses data from 4 IMUs from both 

legs as input to predict the knee joint angle of the leg of interest, whereas the single-

leg model uses data from 2 IMUs from the leg of interest as input. 

The model architecture was based on a stacked BiLSTM model. As BiLSTM 

requires input data for each sequence to have the same length, sequences were 

padded to the maximum sequence length of the activity phase. A single masking layer 

was used as the first layer to ignore all padded values. Then, two separate BiLSTM 

hidden layers with 128 units and a rectified linear unit activation function extracted 

the features from the sequences. BiLSTM was set to output a value for each time step 

in the input data, resulting in returning the sequence. A dropout layer was added after 

each BiLSTM hidden layer to randomly drop some units together with their 

connections from the network to reduce overfitting. The dropout rate was set to 0.2 

and learning rate 0.0001. Finally, a separate fully connected time distributed output 

layer with linear activation was used to return the estimated joint angle (one for a 

single-leg input type and two for the double-leg input type). The proposed BiLSTM 

kinematic prediction model architecture is illustrated in Figure 5-2. 

Figure 5-2. Data preparation and model architecture of the proposed BiLSTM 
kinematic prediction models. 
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The model is trained using the adaptive momentum (Adam) optimisation 

algorithm (Kingma & Ba, 2014). The final model parameters were selected after the 

hyperparameter tuning process assessing the loss function and model metrics. In this 

study, we retained the same hyperparameters across all model training processes to 

investigate the influence of input data variation to the prediction model. The data 

processing, machine model and experimental results were developed and 

implemented using Python 3 with the libraries Pandas, Numpy, Scipy, Scikit learn, 

Keras and Tensorflow. 

5.3.8 Validation and Data Standardisation 

As a clinician needs to know the average accuracy of a predictive model for each 

new patient, we used a leave-one-subject-out cross-validation (LOSOCV) method, 

which is most appropriate as it accounts for between-participant variability 

(Gholamiangonabadi et al., 2020). The LOSOCV method sequentially trained the 

model on the data from all participants except for one, which was left out and used 

for testing. This procedure looped through the total number of participants, resulting 

in 17 kinematic prediction models. The dataset was separated into training, validation 

and test datasets. For each validation fold, data from 16 participants were separated 

into training (90%) and validation (10%) sets randomly based on the unique samples. 

Training data were used to optimise the model parameters, whereas validation data 

were used as the unseen data during the model training process to fine tune the 

parameters such as validation loss, batch size and learning rate. Finally, the model was 

tested on all samples for the left-out participant’s data. 

For each activity, we calculated the average root mean square error (RMSE), 

normalised RMSE (nRMSE – RMSE / peak to peak amplitude) (Ren et al., 2008), 

mean absolute error (MAE) and Pearson correlation coefficient (r) between the Vicon 

reference and predictions for time-series data. Correlation coefficients were averaged 

across participants using Fisher’s z transformation (Corey et al., 1998). The strength 

of the correlation was categorised as excellent (r > 0.9), strong (0.67 < r ≤ 0.9), 

moderate (0.35 < r ≤ 0.67) and weak (r ≤ 0.35) based on similar studies (Stetter et al., 

2020). In addition, we calculated the RMSE for the average maximum (peakRMSE) 

and minimum (minRMSE) knee flexion angles. 
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Each input variable and target variable were standardised for scale and 

distribution separately in each loop. Mean and standard deviation were computed 

only on the training data across all trials and all time points for each variable to 

prevent data leakage when applying pre-processing statistics. Validation and test data 

were standardised based on the corresponding mean and calculated from the training 

data used in each loop. A three-dimensional input shape is required for the BiLSTM 

model (N_samples, N_timesteps, N_features); therefore, input data are reshaped 

prior to being passed to the model. The number of samples collected from 

participants used to train the models is shown in Table 5-1. 

Table 5-1. Number of samples for each activity. 

Phase of Activity Samples (Participants) 

Sit-to-stand 61 (15) 
Stand-to-sit 61 (15) 
Walk swing 245 (17) 
Walk stance 244 (17) 
Stair up swing 130 (15) 
Stair up stance 87 (15) 
Stair down swing 83 (15) 
Stair down stance 44 (15) 

Total 955 (17) 

5.4 Results 

The participant characteristics are shown in Table 5-2. The accuracy of our two 

models is presented in Table 5-3. Examples of representative model prediction for 

each activity phase compared to the Vicon reference standard (based on RMSE) are 

presented in Figure 5-3. Overall, the difference between the double-leg and the 

single-leg model was small, with an RMSE difference ranging from 0.11° to 1.96° and 

MAE from 0.01° to 1.46° for time-series predictions. 

Table 5-2. Characteristics of participants. 

Characteristics Mean (SD) 

Age (years) 66.2 (8.7) 
Male (%) 59% 
Weight (kg) 80.3 (15.9) 
Height (cm) 173 (8.8) 
BMI (kg/m2) 26.6 (15.9) 
KOOS function 68.4 (12.6) 

BMI = body mass index, cm = centimetres, kg = kilograms, KOOS = Knee injury and  
  Osteoarthritis Outcome Scale, m = metres, SD = standard deviation. 



157 
 

Table 5-3. Knee flexion angle prediction error for time-series, peak and minimum 
estimates for each activity. 

Single-Leg Prediction Model 

    Sit-to-
stand 

Stand-
to-sit 

Walk Stair Down Stair Up 

Outcome Swing Stance Swing Stance Swing Stance 

Time- RMSE 
(°)(SD) 

8.24 9.3 9.7 7.04 11.78 8.22 10.41 8.99 

Series (3.02) (2.99) (3.86) (2.60) (6.04) (2.80) (5.11) (3.70) 

  
nRMSE 
(%)(SD) 

9.79 10.86 17.66 36.33 14.06 22.91 15.06 19.14 

(3.71) (3.78) (9.05) (14.39) (7.90) (9.99) (8.70) (10.00) 

  MAE 
(°)(SD) 

7.12 7.96 8.46 5.99 10.37 7.00 9.06 8.06 

  (2.87) (2.60) (3.45) (2.34) (5.44) (2.55) (4.54) (3.64) 

  r 0.99 0.99 0.98 0.85 0.99 0.96 0.98 0.98 

Peak RMSE 
(°)(SD) 

6.46 6.89 9.75 10.31 9.72 21.38 9.78 11.73 

  (2.48) (4.28) (6.21) (5.42) (3.72) (12.29) (6.65) (6.39) 

Minimum RMSE 
(°)(SD) 

6.92 7.71 7.35 6.21 8.07 6.07 10.33 8.04 

  (4.57) (5.77) (3.72) (2.99) (5.73) (4.69) (5.00) (5.76) 

Double-Leg Prediction Model 

  Sit-to-
stand 

Stand-
to-sit 

Walk Stair Down Stair Up 

Outcome Swing Stance Swing Stance Swing Stance 

Time- RMSE 
(°)(SD) 

7.27 8.10 9.81 8.19 12.85 10.19 10.17 9.61 

Series (1.72) (2.29) (3.98) (2.69) (5.63) (3.19) (4.63) (3.59) 

  
nRMSE 
(%)(SD) 

8.68 9.45 17.78 43.33 15.70 32.93 15.14 19.90 

(2.58) (2.89) (8.68) (16.55) (7.45) (23.18) (8.29) (8.50) 

  MAE 
(°)(SD) 

6.03 6.72 8.47 6.92 11.09 8.47 8.81 8.36 

  (1.69) (2.11) (3.52) (2.39) (5.07) (3.02) (4.25) (3.40) 

  r 0.99 0.99 0.97 0.74 0.98 0.92 0.98 0.96 

Peak RMSE 
(°)(SD) 

5.09 6.44 9.23 10.29 10.73 24.33 10.01 13.28 

  (2.97) (4.23) (5.65) (6.51) (5.39) (10.70) (8.22) (8.18) 

Minimum RMSE 
(°)(SD) 

6.49 6.15 8.76 6.60 11.21 8.99 10.36 7.79 

  (4.55) (4.13) (4.31) (2.37) (8.60) (3.79) (5.02) (5.36) 

° = degrees of movement, MAE = mean absolute error, r = Pearson correlation coefficient, RMSE = root 
mean squared error, nRMSE = normalised RMSE, SD = standard deviation. 
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Figure 5-3. Representative single-leg BiLSTM model prediction compared to 
Vicon reference for each activity phase. 
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The single-leg model demonstrated the smallest RMSE/MAE across activities 

(five of eight activities) for time-series predictions compared to the double-leg model. 

The double-leg model demonstrated the smallest RMSE/MAE for predicting 

simultaneous double-leg activities (sit-to-stand and stand-to-sit) compared with 

activities that require reciprocal movements of both legs (walking or stairs). 

Correlations between the reference Vicon system and the deep learning model 

were excellent (r > 0.9) for both the single-leg and double-leg models for all activities 

except for the stance phase of walking. The strongest correlation coefficient was for 

sit-to-stand, stand-to-sit and the swing phase of ascending stairs (r = 0.99). 

The peakRMSE and minRMSE for each activity was almost always lower than 

the time-series RMSE for large range activities (sit-to-stand, stand-to-sit and swing 

phases). For small range activities (stance phases), the minRMSE was always lower 

than the time-series RMSE, whereas the peakRMSE was always higher. 

5.5 Discussion 

The aim of this study was to establish a proof-of concept for the feasibility of 

using IMU data collected from people who have knee osteoarthritis for development 

of a deep learning model to predict sagittal plane knee joint angles for multiple 

clinically relevant activities. We developed a BiLSTM kinematic prediction model on 

IMU training data that included walking, negotiating stairs, and transitioning to/from 

a chair for people who have knee osteoarthritis. The prediction error (RMSE/MAE) 

between the reference Vicon system and kinematic predictions was lowest for the 

stance phase for walking and going down stairs, and highest for the swing phase for 

going down and up stairs. Although, as a proportion of the range used during each 

activity phase, the sit-to-stand and stand-to-sit had the lowest prediction error, the 

stance phase for walking and going down stairs had the highest prediction error 

(nRMSE). For time-series data, the shape of the predicted curve had a consistently 

excellent correlation (r > 0.9) to the Vicon system across activities. 

The second aim was to develop two types of models using training data from 

(a) two IMUs on one leg (single-leg) and (b) four IMUs on two legs (double-leg). The 

single-leg model demonstrated more frequent smaller errors and had excellent 
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correlations (r > 0.9) than the double-leg model across activities that require 

reciprocal, asymmetrical lower limb movement, such as walking and negotiating stairs; 

however, the difference in error between models was small. For activities that require 

bilateral simultaneous movement (sit-to-stand/stand-to-sit), the double leg model 

demonstrated smaller error. 

5.5.1 Comparison to Previous Literature 

In comparison to other deep learning models were that developed to predict 

knee joint kinematics just for walking, our BiLSTM model for multiple activities 

demonstrated prediction errors and correlations within the range of previous studies 

(RMSE 0.97° to 12.1°, r 0.94 to 0.99) (Hernandez et al., 2021; Mundt, Thomsen, et 

al., 2020; Rapp et al., 2021; Renani et al., 2021; Wouda et al., 2018). 

Only one other study has used deep learning to predict knee kinematics in 

people who have knee osteoarthritis for the activity of walking (Renani et al., 2021). 

Our model has the benefit of being more broadly applicable for real world use, when 

combined with human activity recognition, because of the inclusion of multiple 

clinically important activities for people who have knee osteoarthritis. The model by 

(Renani et al., 2021) demonstrated small average RMSE 2.9° (SD 1.1°) for time-series 

prediction of knee flexion/extension during walking using a BiLSTM model. Training 

data in that study was from four IMUs placed on the pelvis, thigh, shank and foot. In 

comparison, our BiLSTM model trained on data from only a thigh and shank IMU 

demonstrated substantially higher average RMSE during walking phases (single-leg 

model – stance 7.04° (SD 2.6°), swing 9.7° (SD 3.86°)). Their results may have 

demonstrated lower error because of the higher number of samples (n = 3943) 

compared to our study (n = 955), the additional IMUs placed on the pelvis and foot, 

the inclusion in our training data of activities other than walking, or the difference in 

validation approach. 

For validation of a IMU prediction model to be meaningful to a clinician, it 

has been suggested that the average level of error for each new person should be 

reported (Gholamiangonabadi et al., 2020), which is a strength of the LOSOCV 

method compared to the other validation methods (e.g. k-fold cross validation). Our 

results are similar to those of previous studies that use LOSOCV (Wouda et al., 
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2018), rather than studies that use other validation approaches (Hernandez et al., 

2021; Mundt, Thomsen, et al., 2020; Rapp et al., 2021; Renani et al., 2021), and studies 

that use real IMU data compared to those that use simulated IMU data (see section 

5.5.3.3.). For example, (Wouda et al., 2018) validated a LSTM model using IMU 

training data collected from a healthy population for time-series prediction of knee 

flexion during running. They used LOSOCV and reported an average RMSE of 12.1° 

(SD 1.5°). In comparison, our model achieved lower average RMSE for walking 

swing and walk stance of 9.7° (SD 3.8°) and 7.0° (SD 2.6°). Although our model 

demonstrated lower average error, there was higher variability, which may be the 

result of using training data that included multiple activities rather than the single 

activity of walking. Our model also demonstrated good ability to predict the shape of 

the kinematic curve with excellent correlations (r > 0.9) for time-series prediction of 

all but one activity, comparing well to the models by Wouda et al. (2018) (r = 0.94) 

and Renani et al. (2021) (r = 0.99). 

Using raw accelerometer and gyroscope data for training deep learning 

prediction models appears a promising tool to aid clinical decision making for 

clinicians managing people with movement disorders, such as knee osteoarthritis, as it 

mitigates the requirement for the magnetometer, which is prone to interference, 

especially in free-living environments where the magnetic field is not uniform 

(Weygers et al., 2020). However, deep learning approaches using real IMU data for 

the prediction of knee kinematics have not yet reached the consistent low error 

achieved by Kalman filter-based approaches that report RMSE as low as 1° for 

multiple clinically relevant activities (Teufl et al., 2019) or 5.04° using the proprietary 

software for the IMUs described in this study (Binnie et al., 2021). Various clinical, 

data handling and machine learning architecture considerations may help to reduce 

prediction error in future studies. 

5.5.2 Clinical Considerations for Kinematic Prediction Models 

Development of various machine learning models has the potential to have a 

significant impact for clinical populations, such as for people who have knee 

osteoarthritis. However, the majority of these studies have not described the clinical 

implications of such models; therefore, this section discusses clinical considerations 
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for future development of machine and deep learning models for prediction of joint 

kinematics. 

5.5.2.1 Variability of Movement in Clinical Populations 

Although our model demonstrated a very small error and a high correlation 

for some participants, this was not the case across all participants. It is well 

established that people who have musculoskeletal or neurological health conditions 

move differently than healthy populations (Astephen et al., 2008; Junsig Wang et al., 

2019; Zanardi et al., 2021). Across people who have knee osteoarthritis, there is 

diversity in movement patterns during functional activities related to disease severity 

(Astephen et al., 2008). Because of this heterogeneity of movement patterns across 

different conditions and even within a single diagnosis such as like knee osteoarthritis, 

it is important that models are trained and tested on the intended population for use. 

For example, (Renani et al., 2020) trained a CNN to predict spatiotemporal 

kinematics of the lower limb for people with knee osteoarthritis and after total knee 

replacement. Their model demonstrated consistently higher prediction error and 

variability across 12 spatiotemporal gait parameters for people that have knee 

osteoarthritis compared to people who had total knee replacement. Other studies 

have reported that the accuracy of human activity recognition models derived on data 

from healthy populations has had substantially reduced test accuracy in people who 

have health conditions, such as Parkinsonism (Albert et al., 2012; Lonini et al., 2016). 

It is currently unknown if the test accuracy of kinematic prediction models differs 

across populations. Given that people with knee osteoarthritis move differently and 

more variably than healthy people, the ability to generalise the kinematic prediction 

model accuracy between those populations should not be assumed. Future studies 

should consider testing prediction models on participants with health conditions of 

interest who demonstrate a range of movement impairments, and pain and disability 

levels. 

5.5.2.2 Selecting Clinically Important Activities and Movement Parameters 

The clinically relevant use for predicting sagittal plane knee joint angles is to 

monitor biomechanics during functional activities in free-living environments and 

in-clinic to aid clinical decision making. Specifically, particular phases of activities 
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(e.g. stance phase of ascending stairs) are of interest to clinicians because they are 

targets for rehabilitation. 

Prior to this study, machine learning models for predicting knee joint 

kinematics that could potentially be useful for people with knee osteoarthritis have 

only been trained and tested on walking data (Findlow et al., 2008; Hernandez et al., 

2021; Mundt, Koeppe, David, Witter, et al., 2020; Mundt, Thomsen, et al., 2020; Rapp 

et al., 2021; Renani et al., 2021; Renani et al., 2020). Unlike those studies where a 

kinematic prediction model was developed for walking, our model is the first to be 

trained and tested on a range of clinically relevant activities for a specific clinical 

population. Although walking is the most frequently performed activity of the lower 

limbs, we selected three activities (walking, negotiating stairs and transitioning 

to/from a chair) that are recommended as part of a clinical physical assessment in 

medical guidelines for knee osteoarthritis (Dobson et al., 2013). To improve clinical 

utility of machine learning prediction using IMU data, future studies should 

investigate kinematic prediction models for a broader range of clinically important 

activities. 

There are a broad range of kinematic and kinetic movement parameters that 

are of interest to clinicians and researchers for people with knee osteoarthritis (Tan, 

Tikoft, et al., 2021). Therefore, monitoring sagittal plane knee joint angles is only one 

movement parameter that could be recorded for clinically relevant activities in 

free-living environments. Other movement parameters are also of interest because of 

their relationship with structural progression of knee osteoarthritis. Knee adduction 

moment, for example, is associated with the progression of medial compartment knee 

osteoarthritis (Chehab et al., 2014; Miyazaki et al., 2002). There is early work 

investigating spatiotemporal kinematics (Renani et al., 2020), predicting knee 

moments and forces using deep learning approaches such as LSTM, CNN and ANN 

for the purposes of field monitoring (Mundt, Thomsen, et al., 2020; Stetter et al., 

2020; Stetter et al., 2019). To improve clinical utility of IMU machine/deep learning 

prediction models using IMU data, future studies should investigate integrating 

(Kobsar et al., 2020) human activity recognition (Tan, Beheshti, et al., 2021) with both 
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kinematic and kinetic prediction models (see section 5.5.3.1) for a broad range of 

clinically relevant activities that include but are not limited to the activity of walking. 

5.5.2.3 Reducing the Burden for Clinicians 

Some studies use up to 17 IMUs across the whole body to train deep learning 

models for kinematic prediction of the lower limbs (Renani et al., 2020; Wouda et al., 

2018). It is generally thought that having additional IMUs results in improved 

accuracy and reduced error for machine learning predictions using IMU data for 

human activity recognition (Hendry et al., 2020; Lee et al., 2020). However, having to 

use additional IMUs can be burdensome for clinicians. Our findings are similar to 

(Hendry et al., 2021), who investigated kinematic prediction for the hip and lumbar 

spine using IMUs to train a deep learning model for ballet dancers. They reported 

that their kinematic prediction model trained on only two IMUs placed on the lower 

limbs demonstrated less error (7.0°) than models that included additional training data 

from IMUs placed on the spine (7.8°). A novel finding in our study was that the 

prediction error with using data from only two IMUs on a single leg was less than that 

using four IMUs on two legs, which may be because of the asymmetrical and diverse 

nature of movement patterns that exist in people with knee osteoarthritis. Future 

studies should aim to determine the minimum number of IMUs required for specific 

conditions and activities, to reduce clinician burden. 

5.5.3 Considerations for Future Data Handling and Machine Learning Models 

5.5.3.1 Developing Data Handling Pipelines 

Previously published kinematic (Findlow et al., 2008; Hernandez et al., 2021; 

Mundt, Koeppe, David, Witter, et al., 2020; Mundt, Thomsen, et al., 2020; Rapp et al., 

2021; Renani et al., 2021; Renani et al., 2020; Wouda et al., 2018) and kinetic (Mundt, 

Koeppe, David, Witter, et al., 2020; Stetter et al., 2020; Stetter et al., 2019) prediction 

models are currently only useful in conditions in which the wearer of the IMUs is 

observed, such as in a clinical environment. This is because in free-living 

environments people wearing IMUs will perform other activities in addition to 

walking (e.g. transitioning to/from a chair and negotiating stairs). Therefore, 

biomechanical prediction models have limited use in free-living environments without 
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additional data processing that can automate the identification and labelling the long, 

continuous streams of data that are produced by IMUs. 

Our approach was to train the kinematic prediction model on labelled data 

that could potentially be output from a human activity recognition deep learning 

algorithm as part of a data handling pipeline. We previously established a proof-of-

concept about the development of a human activity recognition model (Tan, 

Beheshti, et al., 2021) that can segment data into the phases of clinically important 

activities described in this study, which could be the first component of a data-

handling pipeline. 

However, it is currently unknown which method of data segmentation is most 

useful, minimally burdensome for clinicians and computationally efficient. We 

selected phases of activities because clinicians are typically interested in data from 

phases, rather than the whole gait cycle (see section 5.5.2.2). Data in other studies has 

been segmented in a variety of ways including continuous walking (Hernandez et al., 

2021), three gait cycles (Findlow et al., 2008), or single gait cycles (Rapp et al., 2021; 

Renani et al., 2021). The higher-order data segmentation in those studies may prove 

to be clinically useful for use in a human activity recognition model that includes 

other activities (e.g. going up stairs or sit-to-stand), and integration with a gait event 

detection algorithm (Fadillioglu et al., 2020). 

5.5.3.2 Single vs. Multiple Models 

We developed a single kinematic prediction model to include training data 

from multiple activities, which provides more generalisability and precludes the need 

to model every activity (Stetter et al., 2019). However, there is uncertainty about the 

superiority of universal single models for prediction of kinematics across multiple 

activities compared to multiple models that predict only specific activities. (Stetter et 

al., 2019) reported the development of an ANN to predict knee joint forces for 16 

sports specific activities (e.g. walking, running, jumping, and cutting). They noted the 

possibility that their model had higher error compared to the study by (Wouda et al., 

2018) was because of their use of a single model for the multiple activities (Stetter et 

al., 2019). Contrary to this, our single model for multiple activities had lower RMSE 
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(Wouda et al., 2018) and stronger correlations (Findlow et al., 2008) than other 

approaches that only used training data from a single activity. 

Furthermore, our double-leg model performed better than the single-leg 

model for bilateral simultaneous activities of sit-to-stand and stand-to-sit. (Stetter et 

al., 2019) demonstrated a similar effect where there a single-leg model had higher 

error for two leg activities (jump take-off and two leg jump landing) compared to 

single-leg activities. 

These results together may indicate that, in future studies, activity-specific 

models should be directly compared to models trained to predict kinematics for 

multiple activities, and that models trained on both legs may impact the results of 

asynchronous movement such as walking. 

5.5.3.3 Augmented and Simulated Data 

One challenge of developing generalisable kinematic prediction models is the 

collection of a sufficient number of samples from a representative cohort of 

participants, a process which is burdensome. This challenge is highlighted by the large 

RMSE/MAE for the stair down stance, where there was the least number of training 

data for the model. One solution becoming increasing popular is to include 

augmented or simulated training data (Mundt, Koeppe, David, Witter, et al., 2020; 

Renani et al., 2021). Data augmentation involves manipulating the data by offsetting 

or warping the time or magnitude (Renani et al., 2021), while simulation involves 

developing synthetic IMUs from other biomechanical data sources (Mundt, Koeppe, 

David, Witter, et al., 2020). It has been demonstrated that by augmenting or 

simulating data results in a 27% to 45% improvement in RMSE, with improvements 

in knee flexion RMSE between 1.4° to 5.22° (Dorschky et al., 2020; Renani et al., 

2021). These approaches using simulated and augmented data may provide additional 

benefit in models trained on data collected from clinical populations, such as people 

with knee osteoarthritis. In addition, using augmented data may help reduce the 

impact of misplacement of sensors by either clinicians or patients. 
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5.5.3.4 Deep Learning Architecture 

We used BiLSTM following on from the work of (Renani et al., 2021). 

BiLSTM is proposed to improve prediction accuracy because it transverses the input 

data twice, using both past and future data points, compared to traditional LSTM 

(Siami-Namini et al., 2019). Future studies should investigate the performance of 

BiLSTM compared to traditional LSTM and other deep learning approaches for 

kinematic prediction. Although we used BiLSTM, there is some indication that 

combining multiple deep learning architectures, such as CNN with LSTM 

(ConvLSTM), can improve prediction accuracy for IMU data (Ascioglu & Senol, 

2020). Hernandez et al. (2021) demonstrated that this combined deep learning 

approach using ConvLSTM can provide good results for knee flexion time-series 

predictions (MAE 3° (SD 1.15°), r = 0.99) using a nested k-fold validation with a 70% 

training, 15% validation and 15% test approach (Hernandez et al., 2021). Researchers 

must further investigate the balance between predictive accuracy and the requirement 

for pre-processing of data. Mundt et al. (2021) tested the predictive accuracy of a 

CNN, LSTM and multilayer perceptron network for lower limb kinematics and 

kinetics. They demonstrated superior accuracy with a CNN for prediction of 

kinematics, although the pre-processing requirements are high for this type of model 

compared to LSTM, which may be more suited to real-time applications. 

5.5.4 Limitations 

Because this study was a proof-of-concept investigation, there are a number of 

limitations. We included only 17 participants, did not have a representative number of 

female participants, and excluded people with high BMI. These factors may limit the 

generalisability of our model for the broader population with knee osteoarthritis. 

Further, there was an unbalanced dataset with a significantly different number of trials 

across activities, which may have affected the results. This study included clinically 

relevant activities described in clinical guidelines for people who have knee 

osteoarthritis (Dobson et al., 2013). However, there are additional activities that 

people perform daily that were not included. A single model for predicting kinematics 

for multiple activities was used in this study, which may have affected the prediction 

error, and it is unclear if a universal model is feasible for all activities a person may 
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perform. Further investigation is required to determine the comparative accuracy of a 

single model for multiple activities versus individual models for each type of clinically 

relevant activity (or phase of activities) in clinical populations, such as people who 

have knee osteoarthritis. 

5.6 Conclusions 

This proof-of-concept study demonstrates that using IMU training data 

collected from people who have knee osteoarthritis to predict sagittal plane knee joint 

kinematics during multiple clinically important activities using a deep learning model 

is feasible. Our novel BiLSTM model demonstrated that using training data from as 

few as two IMUs placed on one leg performs with less error for most activities than 

with additional training data from IMUs on both legs. To be of clinical value, the 

model presented in this study could be combined with a human activity recognition 

system to monitor response to treatment in people with knee osteoarthritis. 
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5.8 Summary of Chapter 5 

Clinicians do not have access to laboratory-based motion analysis systems in 

clinical practice to help inform clinical reasoning. While IMU systems exist for 

biomechanical assessment in clinical practice, they are prone to error in environments 

where it is not possible to control electromagnetic interference, which impacts the 

reliability of fusion algorithms. We aimed to develop a sagittal plane angular kinematic 

machine learning prediction model from IMU data collected from people with knee 

osteoarthritis for multiple clinically important activities that was robust to 

electromagnetic interference, preventing the need for calibration. We developed a 

single model for predicting knee flexion angle during phases of walking, ascending, 

and descending stairs, and transitioning to and from a chair. We found that the 

single-leg model had less prediction error for walking and negotiating stairs compared 

to the double-leg model that was better for transitioning to and from a chair. This 

kinematic prediction model has the potential to be the second part of a data handling 

pipeline that uses data previously segmented from a human activity recognition 

prediction model.  
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Chapter 6  

Study 2c: Kinetic Prediction 

 

Deep Learning for Predicting Moments and Forces from 

Wearable Sensors in People with Knee Osteoarthritis 

 

Kinetic movement parameters such as knee adduction and flexion moment are 

associated with structural progression and symptoms associated with knee 

osteoarthritis (Chehab et al., 2014; D'Souza et al., 2022; Wilson et al., 2021). However, 

routine clinical practice does not currently involve monitoring changes in kinetic 

parameters. Chapter 4 provided a foundation for segmenting and labelling walking 

data using human activity recognition for stance and swing phases. Chapter 5 

provided a proof-of-concept that movement parameters can be predicted from IMU 

training data collected from people with knee osteoarthritis with comparable accuracy 

to studies in healthy people when a leave-one-subject-out cross-validation is used.   

While the systematic review presented in Chapter 3 suggests that there is an 

infrequent relationship between change in movement patterns and clinical outcomes, 

this conclusion was mostly based on group-level data. There is some indication in 

people with knee osteoarthritis, that strong relationships exist for individualised 

changes in movement patterns and clinical outcomes (Kobsar & Ferber, 2018). 

Previously published biomechanical prediction models for people with knee 

osteoarthritis have trained models on group data, as is standard practice, but for 

individualised prediction, additional data from the test participant may help reduce 

prediction error.  

The results from Chapter 5 also suggested that a single-leg model (using training 

data from four IMUs placed across two legs) provided superior accuracy for 

predicting sagittal plane angular kinematics for ambulatory activities compared to a 
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double-leg model (two IMUs placed on one leg). No studies had explored if double-

leg or single-leg models are more accurate for kinetic parameters during walking. 

Therefore, the aims of this study of predicting kinetics were to explore (a) the 

effect on the prediction error of using leave-one-subject-out cross-validation 

compared to participant-specific validation, and (b) if a single-leg model (two IMUs 

on one leg) or a double-leg model (four IMUs on two legs) was more accurate.  

 

A manuscript from this chapter has been submitted to a journal and is 

currently under review. 

Tan, J.-S., Tippaya, S., Binnie, T., Davey, P., Napier, K., Caneiro, J. P., Smith, A., 

O’Sullivan, P., Campbell, A., & Kent, P. Deep learning for predicting moments 
and forces from wearable sensors in people with knee osteoarthritis. 

 
 

  



175 
 

6.1 Abstract 

Clinicians are unable to assess abnormal knee loading of people with knee 

osteoarthritis in clinical practice or in free-living environments because of limitations 

accessing technology that is inexpensive, robust to electromagnetic interference and 

does not require calibration. The objective of this study was to train a deep learning 

model to predict knee joint moments and forces from accelerometer and gyroscope 

training data collected from people with knee osteoarthritis to explore: (a) the effect 

on prediction error for different validation approaches (leave-one-subject-out 

cross-validation (LOSOCV) and participant-specific validation), and (b) the effect of 

training the models on data from one or two legs. We trained bidirectional long short-

term memory models on data from 16 participants with knee osteoarthritis. The range 

of the results for moments were: normalised RMSE (nRMSE) (SD) = 22% (5%) to 

43% (15%), r = 0.71 to 0.8, and for forces: nRMSE = 16% (4%) to 57% (23%), r 

= 0.78 to 0.86 for forces. Prediction error (nRMSE) for the participant-specific 

validation was 9% to 36% lower than LOSOCV and the double-leg models were 1% 

to 23% lower than the single-leg models. This study demonstrates the feasibility of 

using movement sensor training data to predict knee moments and forces in people 

with knee osteoarthritis, and that prediction error is influenced by personalising a 

model and training those models on data from two legs rather than one. We 

developed clinically relevant deep learning models to predict knee kinetic parameters 

from wearable sensor data that could help monitor abnormal knee loading in free-

living environments. 

6.2 Introduction 

There is a substantial body of literature describing the clinical implications of 

abnormal knee joint loading in people with knee osteoarthritis (D'Souza et al., 2022; 

Tan, Tikoft, et al., 2021). After a diagnosis of knee osteoarthritis has been established, 

abnormal knee joint moments (e.g. increased knee adduction or flexion moments) 

(Chehab et al., 2014; D'Souza et al., 2022) and forces (e.g. medial contact force) 

(Wilson et al., 2021) during the stance phase of walking have been implicated as risk 

factors for structural progression of knee osteoarthritis and eventual knee 
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replacement (Hatfield et al., 2015). Therefore, there are a number of interventions 

that clinicians can provide that aim to reduce abnormal knee loading such as exercise 

(Tan, Tikoft, et al., 2021), orthotics (Radzimski et al., 2012), braces (Moyer et al., 

2015) and surgical approaches (Fantini Pagani et al., 2020).  

Clinicians are unable to access traditional motion analysis systems assess knee 

joint loading because they are expensive, require dedicated space and require technical 

expertise. Therefore, clinicians are unable assess joint moments or forces in clinic or 

in patient’s free-living environment (home or work) to help inform clinical decision 

making around selection of interventions. Inertial measurement units (IMUs) are one 

type of wearable movement sensor that could be used during consultations for a 

person with knee osteoarthritis.  

Hardware in IMUs typically include an accelerometer, gyroscope, and 

magnetometer which do not directly measure kinetic parameters. Therefore, the 

earliest approaches for estimating forces and joint moments using IMUs required 

kinematic modelling and calibration (Karatsidis et al., 2019; Koning et al., 2015; 

Konrath et al., 2019). However, electromagnetic interference can affect the 

magnetometer, and therefore kinematic modelling, making IMUs less reliable in 

uncontrolled conditions (e.g. free-living environment). One approach that does not 

require kinematic modelling nor calibration is to use machine learning to predict 

kinetic parameters from raw accelerometer and gyroscope data. 

Machine learning approaches, such as recurrent neural networks (long-short 

term memory (LSTM)) (Mundt, Koeppe, David, Bamer, et al., 2020; Mundt, 

Thomsen, et al., 2020) and feed-forward neural networks (Mundt, Koeppe, David, 

Witter, et al., 2020; Stetter et al., 2020; Stetter et al., 2019; Wang et al., 2020; Wouda et 

al., 2018), have been used to predict knee joint forces (Stetter et al., 2019) and knee 

joint moments (Stetter et al., 2020; Wang et al., 2020) from IMU data during the 

stance phase of gait of healthy people without knee osteoarthritis. There are two 

studies that have used IMU data collected from people with knee osteoarthritis to 

predict knee adduction moment (He et al., 2019; Wang et al., 2020), although models 

for predicting other moments or knee joint forces have not been investigated in this 

population.  
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Individualised assessment for people with knee osteoarthritis is recommended 

in clinical guidelines. There is indication in the literature that participant-specific 

machine learning approaches result in improved accuracy compared to population-

based models trained on data from healthy participants (Ahamed et al., 2019; Findlow 

et al., 2008; Rodríguez-Martín et al., 2017). However, the magnitude of this 

improvement has yet to be tested in the population with knee osteoarthritis.  

A recent study has demonstrated improved prediction accuracy for models 

trained on data from two legs to predict sagittal plane kinematics during walking 

compared to models trained on one leg (Tan et al., 2022). Although this has not yet 

been tested for kinetic models.  

The aim of this study was to develop a deep learning model to predict knee 

moments and forces using training data collected from people with knee osteoarthritis 

to explore (a) the effect on the prediction error using leave-one-subject-out 

cross-validation compared to participant-specific validation, and (b) if a single-leg 

model (two IMUs on one leg) or a double-leg model (four IMUs on two legs) was 

more accurate. This study is exploratory and was not designed as a head-to-head 

comparison with other prediction model algorithmic approaches. 

6.3 Methods and Materials 

We conducted an exploratory study using IMU data collected from people with 

knee osteoarthritis to train deep learning models to predict time-series and peak knee 

joint moments and forces for the stance phase of walking. 

6.3.1 Participants 

We recruited seventeen participants with knee osteoarthritis from local 

physiotherapists, general practitioners, and local community centres. Participants were 

included if they had a clinical diagnosis of knee osteoarthritis (National Institute for 

Health & Care Excellence, 2014), for more than three-months, with moderate 

(≥4/10) pain on most days and moderate activity limitation (single item on the 

Function, Daily Living sub-scale of the Knee injury and Osteoarthritis Outcome 

Score) (Roos & Lohmander, 2003). We excluded people with a body mass index 

(BMI) >35kg/m2 and those who had a BMI >30kg/m2 with a waist-to-hip ratio 
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(WHR) of ≤0.85 for women and ≤0.95 for men (those with greater soft tissue around 

the lower limbs) to minimise the potential for soft tissue artefact that can result in 

noise in the IMU signal. Participants were also excluded if they had mobility 

impairments unrelated to their knee osteoarthritis and if they had any cognitive 

impairments that would prevent them from being able to participate in data collection 

procedures. The institutional research ethics committee approved this study 

(HRE2017-0738).  

6.3.2 Data Collection and Instrumentation 

Data were collected in a motion analysis laboratory. Participant’s height and 

weight were recorded using a stadiometer and calibrated electronic scales after 

providing informed written consent. Four IMUs (v6 research sensors, DorsaVi, 

Melbourne, Australia) sampling at 100Hz were then attached to the participant by an 

experienced musculoskeletal physiotherapist in a standardised manner according to 

the manufacturer’s instructions using double sided hypoallergenic adhesive (Figure 

6-1).  

An 18-camera Vicon MX motion analysis system (Oxford metrics Inc., Oxford, 

UK) (sampling frequency 250Hz) and two AMTI force plates (AMTI, Watertown, 

USA) (sampling frequency 2000Hz) recorded data subsequently used to estimate the 

kinetic parameters used as the ground-truth (reference standard). This system has 

reconstruction errors of <1mm and is considered the gold-standard motion analysis 

system (Richards, 1999; Wu et al., 2002). Fourteen retro-reflective Vicon markers 

were placed on anatomical landmarks, and an additional fourteen markers over the 

four IMUs in accordance with a cluster based approach (Besier et al., 2003) that 

follows International Society of Biomechanics recommendations (Wu et al., 2002) 

(Figure 6-1). A static calibration trial was conducted for the Vicon system (Besier et 

al., 2003), with additional 10 retroreflective markers placed over the medial/lateral 

femoral epicondyles and malleoli, and on the calcaneum. Participants were asked to 

stand in their normal posture for five seconds to capture their neutral knee joint 

position, and additional markers were removed prior to motion capture. A functional 

axis approach was used  to define the joint centre (Binnie et al., 2022) using 

flexion/extension trials prior to the participant performing the functional activities. 
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The IMU and Vicon systems were synchronised by placing the IMUs in a wooden 

box with retroreflective markers attached to the outside then rotating box >90° ten 

times and recorded as a single trial in Vicon Nexus software (Oxford Metrics Inc., 

Oxford, UK). Each participant’s data was recorded in a deidentified manner. 

The participants were then instructed to perform a standardised battery of 

functional activities that included: a warm up for five repetitions of knee 

flexion/extension, transitioning from a chair (five trials of sit-to-stand-to-sit), 

negotiating stairs (three trials of a three-stair ascent, three trials of a three-stair 

descent) and walking (three trials of a five metre self-paced walk) which were 

collected for another study (Tan, Beheshti, et al., 2021). For this study only data from 

the stance phase of walking trials were used (three to four stance phases per trial).  

Figure 6-1. IMU (purple) and Vicon marker (blue) placement. 

 

6.3.3 Data Processing 

Data from each IMU were offloaded and output as timestamped files. The 

Vicon and force plate data were analysed post hoc in Vicon Nexus Software (Oxford 

Metrics Inc., Oxford, UK). Breaks in marker trajectories were visually inspected. We 

used cubic spline interpolation for breaks <20 frames (0.08 seconds) and for larger 

breaks the trial was discarded. A 6 Hz low pass digital filter (Butterworth) was 

applied, determined from a residual analysis. Inverse dynamics modelling was 

performed using a validated, reliable three-dimensional mathematical model (Besier et 
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al., 2003; Wu et al., 2002). Marker trajectories and ground reaction force data from the 

walking trials were output as timestamped files that were then used to calculate knee 

joint moments and forces.  

Movement data were further processed using a custom LabVIEW program 

(National Instruments, Texas, USA). First, the Vicon data were down-sampled to 

100 Hz to allow direct comparisons with the IMU data, and the two datasets were 

time-synchronised using normalised cross-correlation. Next, time points for the 

beginning and end of each stance phase were identified in the Vicon data. Finally, the 

program compiled and output the peak and time-series knee joint moments and 

forces for the Vicon data. Because the input data sequences were of different length, 

we time-normalised both sets of data to 101 data points (representing 0% to 100% of 

the stance phase). Joint moment and force amplitudes were normalised to body 

weight. Knee moments were expressed as external moments. Finally raw triaxial 

accelerometer and gyroscope data from the IMUs was organised into 24 columns for 

the double-leg model, and 12 columns for the single-leg model as sensor inputs into 

the machine learning model. 

6.3.4 Development of the Machine Learning Model 

The target prediction variables derived from Vicon and force plate data are were 

knee adduction and flexion moments, and knee compression and medial contact 

force. Separate models were developed for moments and forces. Input data included 

raw IMU accelerometer and gyroscope input data and categorical variables; affected 

leg, stance phase, and side. We selected a deep learning approach known as 

bidirectional long-short term memory (BiLSTM), previously used for predicting knee 

kinematics (Renani et al., 2021; Tan et al., 2022). BiLSTM allows for use of more data 

from which to make predictions as both past and future data points are used as input 

which make more accurate predictions for time-series data (Schache et al., 2008) 

compared with traditional LSTM (recurrent neural network) that only uses past data 

to make prediction or feed-forward neural networks that uses future data (Mundt, 

Koeppe, David, Witter, et al., 2020).  

We used a single BiLSTM model. Features were extracted using a single 

BiLSTM hidden layer of 32 units and a hyperbolic tangent activation function. For 



181 
 

each time step, the BiLSTM was set to output a corresponding value. To prevent 

overfitting, we used a dropout layer (dropout rate 0.3) after BiLSTM layer. The final 

layer was fully connected (dense) time distributed output layer with linear activation 

that provided the predicted output variables. Figure 6-2 depicts the BiLSTM kinetic 

prediction model workflow. An adaptive momentum (Adam) optimiser algorithm was 

used to train the model (Kingma & Ba, 2014). We optimised the hyperparameters by 

assessing the loss function and model metrics to determine the final model. Python 3 

was used for data processing, development of the machine learning model and 

processing final results using Pandas, Numpy, Scipy, Scikit learn, Keras, and 

Tensorflow libraries.  

Figure 6-2. BiLSTM kinetic prediction model workflow. 

 

6.3.5 Statistical Analysis 

Two validation methods were used to test the accuracy of the model. First, the 

leave-one-subject-out cross-validation (LOSOCV) approach trained the model using 

all data except for one participant’s, which was used as hold out data for testing the 

model. Second, a participant-specific approach extended the LOSOCV method, by 

including all but three trials from the single participant hold out data to the training 

data, with the remaining three trials used as the test set.  

For each LOSOCV fold, the data were randomised into 90% training (model 

optimisation), 10% validation (tuning parameters), then tested on the hold out data. 

For the participant-specific model, the additional training data were first added to the 
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larger dataset, prior to randomisation. Tuning the model parameters during the 

validation phase included adjusting the validation loss, batch size and learning rate.  

As a measure of model performance, the average accuracy of time-series data 

predictions were calculated, including root mean square error (RMSE), normalised 

RMSE (nRMSE) (RMSE normalised to the range of the data) (Ren et al., 2008), mean 

absolute error (MAE) and Pearson correlation coefficient (r). Fisher’s z 

transformation was used to reduce the bias of r value sampling distribution skew 

(Corey et al., 1998). Correlation coefficients were categorised as excellent (r > 0.9), 

strong (0.67 < r ≤ 0.9), moderate (0.35 < r ≤ 0.67) consistent with studies in this field 

(Stetter et al., 2019). The RMSE for the average maximum knee joint moments and 

forces were also calculated.  

For each validation loop, the scale and distribution of the input and output 

variables were standardised. To prevent data leakage during pre-processing of 

statistics, the mean and standard deviation were calculated only on training data for 

each trial and timepoint. Subsequently the validation and test data were standardised 

based on the resultant mean from the training data for each loop. The input data into 

the BiLSTM model were reshaped into three-dimensional matrix with N_samples, 

N_timesteps and N_features.  

6.4 Results 

The demographic data and average of the peak of the moments and forces for 

the 16 participants are presented in Table 6-1. Because of errors with their force plate 

data, one participant was removed from the dataset. For each participant, there were 

three trials of three to four stance phases, resulting in 157 observations across the 

cohort. The prediction error for the kinetic prediction models are presented in Table 

6-2. Appendix 6-1 provides a representative visual example of the prediction error 

between the model and reference standard (based on nRMSE) for each kinetic 

movement parameter. The difference in nRMSE between LOSOCV and participant-

specific validation are presented in Table 6-3 and the difference in nRMSE between 

double-leg and single-leg models is presented in Table 6-4.  
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Table 6-1. Participant Characteristics 

 All participants 

Characteristics Mean (SD) 

Age (years) 65.4 (8.3) 
Male (%) 50% 
Weight (kg) 80.6 (16.5) 
Height (cm) 173.9 (8.5) 
BMI (kg/m2) 26.5 (4.4) 
KOOS physical function  67 (13) 
Peak  

Flexion moment (Nm/kg)* 
 

0.53 (0.29) 
Adduction moment (Nm/kg)* 0.58 (0.13) 

Compression force (N/kg)* 9.74 (0.79) 
Medial force (N/kg)* 0.74 (0.72) 

BMI = body mass index, cm = centimetres, kg = kilograms, KOOS = Knee 
injury and Osteoarthritis Outcome Scale, m = metres, SD = standard 
deviation.*mean peak to minimum difference 

 

Table 6-2. Knee joint moment and force prediction error for time-series, and peak 
estimates during the stance phase of walking. 

  
RMSE (SD) 

nRMSE(%) 
(SD) 

MAE (SD) r 
Peak RMSE 

(SD) 

Flex moment (Nm/kg) 

LOSOCV 
Single 0.23 (0.08) 37 (14) 0.19 (0.07) 0.78 0.27 (0.08) 

Double 0.22 (0.07) 36 (13) 0.19 (0.07) 0.78 0.27 (0.11) 

PS 
Single 0.19 (0.05) 24 (5) 0.15 (0.04) 0.81 0.26 (0.16) 

Double 0.18 (0.04) 23 (5) 0.15 (0.03) 0.80 0.19 (0.14) 

Adduction moment (Nm/kg) 

LOSOCV 
Single 0.20 (0.06) 43 (15) 0.17 (0.06) 0.75 0.23 (0.11) 

Double 0.18 (0.06) 37 (13) 0.16 (0.06) 0.79 0.21 (0.09) 

PS 
Single 0.14 (0.03) 24 (5) 0.12 (0.03) 0.71 0.12 (0.06) 

Double 0.13 (0.03) 22 (5) 0.11 (0.02) 0.81 0.13 (0.06) 

Compression force (N/kg) 

LOSOCV 
Single 2.05 (0.74) 27 (10) 1.71 (0.69) 0.80 1.49 (0.67) 

Double 1.96 (0.63) 25 (9) 1.61 (0.58) 0.82 1.24 (0.6) 

PS 
Single 1.61 (0.36) 17 (4) 1.27 (0.3) 0.84 1.05 (0.53) 

Double 1.48 (0.36) 16 (4) 1.12 (0.27) 0.86 1.00 (0.56) 

Medial force (N/kg) 

LOSOCV 
Single 0.52 (0.16) 57 (23) 0.45 (0.14) 0.78 0.41 (0.19) 

Double 0.45 (0.13) 34 (10) 0.39 (0.12) 0.82 0.37 (0.19) 

PS 
Single 0.34 (0.07) 21 (4) 0.28 (0.06) 0.84 0.26 (0.14) 

Double 0.31 (0.06) 19 (4) 0.25 (0.05) 0.86 0.23 (0.16) 
SD = standard deviation, RMSE = root mean square error, nRMSE = normalised root mean square error, 
MAE = mean absolute error, r = Pearson’s correlation coefficient, LOSOCV = leave-one-subject-out cross-
validation, PS = participant-specific 
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Table 6-3. Difference in nRMSE (%) between LOSOCV and participant-specific 
validation for single-leg and double-leg models (positive favours participant-specific) 

 Single-leg model (%) Double-leg model (%) 
 LOSOCV Participant-

specific 
Difference LOSOCV Participant-

specific 
Difference 

Flexion moment 37 24 13 36 23 13 

Adduction 
moment 

43 24 19 37 22 15 

Compression force 27 17 10 25 16 9 

Medial force 57 21 36 34 20 14 

LOSOCV = leave-one-subject-out cross-validation 

Table 6-4. Difference in nRMSE (%) between double-leg models and single-leg 
models for LOSOCV and participant specific validation (positive favours double-leg 
models) 

 LOSOCV (%) Participant-specific (%) 
 Single-leg Double-leg Difference Single-leg Double-leg Difference 

Flexion moment 37 36 1 24 23 1 

Adduction moment 43 37 6 24 22 2 

Compression  

force 
27 25 2 17 16 1 

Medial force 57 34 23 21 20 1 

LOSOCV = leave-one-subject-out cross-validation 

The participant-specific cross-validation approach demonstrated less prediction 

error than the LOSOCV approach for both single-leg and double-leg models for all 

kinetic parameters. The double-leg prediction model had less error than the single-leg 

prediction model for all kinetic parameters. The difference in the nRMSE between 

the double-leg and single-leg prediction models ranged substantially (1% to 23%) for 

the LOSOCV approach but did not differ considerably for participant-specific model 

(1% to 2%).  

The model with the lowest error was the double-leg participant-specific model. 

Comparing the results for that model, compression force had the lowest nRMSE 

(16%), followed by medial force (20%), adduction moment (22%) and flexion 

moment (23%), with strong correlations (>0.8) with the Vicon-force plate ground-

truth.  
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6.5 Discussion 

We aimed to develop a machine learning model to predict knee joint moments 

and forces for the stance phase of walking using IMU training data collected from 

people who have knee osteoarthritis. We explored the effect of training the models 

on additional participant-specific data and the difference in prediction error for 

models trained on data from two legs (double-leg model) compared to data from one 

leg (single-leg model). The results indicate that participant-specific models 

demonstrated less prediction error compared to LOSOCV, and that double-leg 

models have lower prediction error compared to the single-leg models.  

Previous studies developed machine learning models to predict knee adduction 

moment in people with knee osteoarthritis (He et al., 2019; Wang et al., 2020). 

Building on those studies, our models also predict time-series flexion moment, 

compression and medial forces and their peaks. Together, these studies provide the 

groundwork for future IMU-machine learning kinetic prediction models for people 

with knee osteoarthritis that could be used for screening of biomechanical risk factors 

and monitoring change in movement patterns in response to interventions but are not 

intended to be an input to the clinical diagnosis of knee osteoarthritis. This study also 

provides novel insights into how the number of IMUs, and personalising prediction 

models can affect model prediction error.  

Across studies that have used training data from people with knee osteoarthritis 

there are differences in normalisation procedures for knee joint moments, statistical 

reporting, and validation approaches, which limits some comparisons. He et al. (2019) 

reported the prediction error for time-series knee adduction moment using a feed-

forward neural network (RMSE = 0.36 Nm/kg*m and r = 0.91) using an unspecified 

validation approach. Wang et al. (2020) reported prediction error (RMSE <0.004 

Nm/kg*m, R2 = 0.947) using a decision tree-based approach. The prediction error 

for their alternative artificial neural network model was reported differently (MAE = 

0.004 Nm/kg*m or <20% of average knee adduction moment, with an R2 = 0.956) 

using leave-one-out cross-validation (Wang et al., 2020). Our most comparable model 

(single-leg, LOSOCV) had a prediction error of RMSE 0.20 Nm/kg, r = 0.75. We 
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normalised moments and forces to body weight alone, while those studies normalised 

moments to body weight multiplied by height in metres (He et al., 2019) and 

centimetres (Wang et al., 2020). While our model demonstrated lower correlation 

compared to He et al. (2019), the differences in normalisation limit meaningful 

comparisons between RMSE/MAE results.  

Further limiting comparison is the inconsistency in cross-validation approaches 

used (Janidarmian et al., 2017). We selected LOSOCV because it would provide an 

estimate of the expected error for each new patient a clinician sees in clinical practice. 

It is not possible to directly compare results of Wang et al. (2020) and He et al. (2019) 

as they did not use LOSOCV. While Wang et al. (2020) reported using a leave-one-

out cross-validation approach for their artificial neural network, the validation 

approaches differ. When using leave-one-out cross-validation, data is shuffled across 

participants prior to input into the model, meaning that the model is not evaluated on 

data from a single participant during each fold, underestimating the prediction error 

for a new participant’s data. There is a clear need for consistent validation methods 

and reporting standards to facilitate comparison between IMU-machine learning 

studies.  

A more direct comparison can be made between the current study and two 

studies using IMU data from 13 healthy participants to train a deep learning model to 

predict knee joint moments (Stetter et al., 2020) and forces (Stetter et al., 2019) during 

the stance phase of walking. In those studies, feed-forward neural network models 

were trained on data from IMUs placed over the anterior thigh and shank and 

validated using a LOSOCV approach. They reported prediction error for knee 

adduction moment (RMSE = 0.18 Nm/kg, nRMSE = 22.3%, r = 0.71) and knee 

flexion moment (RMSE 0.26 = Nm/kg, nRMSE = 18.4%, r = 0.72), compression 

force (nRMSE = 14.2% and r = 0.87) and medial force (nRMSE = 27.7% and r = 

0.6). Our single-leg model validated using LOSOCV produced lower RMSE, higher 

nRMSE, and stronger correlations than the two feed-forward neural network models 

(Stetter et al., 2020; Stetter et al., 2019). Because of the complexity of clinical, 

statistical and machine learning factors involved in building a biomechanical 

prediction model there are a range of factors that can result in variable prediction 
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accuracy across studies. A range of factors could explain the difference in results 

between studies including differing movement patterns between people with knee 

osteoarthritis and those without, the number and type of ambulatory activities, age of 

participants, sensor placement, ground-truth kinematic modelling, number of training 

samples and the type of machine learning model architecture (e.g. BiLSTM vs feed-

forward neural network). Further investigation to explore the individual effects of 

clinical, statistical and machine learning factors is clearly warranted.  

 Machine learning models are most accurate when the variability in the data is 

low. Therefore, accuracy of IMU-machine learning prediction models can be affected 

because of the diversity in movement patterns across people with knee osteoarthritis. 

For example, one way to reduce the variability maximally is to train the model only on 

data from the test participant, rather than from a population-based model (Albert et 

al., 2012). However, collecting enough training samples is burdensome in a clinical 

environment. So, one way to accommodate for between participant variability is to 

refine the population-based model by the addition of participant-specific training data 

to the population-based training dataset. We demonstrated that adding participant-

specific training data to the model improves nRMSE by 9% to 15% for the double-

leg models and 10% to 36% for the single-leg models. This finding is consistent with 

other studies that have demonstrated that participant-specific IMU-machine learning 

prediction models outperform generic models for the prediction of lower limb 

kinematics (Findlow et al., 2008) and running pattern classification (Ahamed et al., 

2019) in healthy people, and improves detection of freezing of gait in people with 

Parkinson’s disease (Rodríguez-Martín et al., 2017). It is not possible to have the 

ground-truth (e.g. Vicon and force plate) data in a routine clinical encounter, systems 

would need to be created that allow patient-specific training data to be uploaded, 

matched to similar IMU data from a database that does have paired ground-truth 

data, and used to train a cloud-based real-time dynamic model building system for 

kinetic predictions.  

We previously found that single-leg models provide lower sagittal plane 

kinematic prediction errors for ambulatory activities compared to a double-leg models 

(Tan et al., 2022). Unlike those findings, the current study demonstrates lower 
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prediction error for double-leg compared to single-leg models. One possibility for this 

difference is that there may be a stronger relationship between kinetic parameters and 

bilateral leg movement than for kinematics. Another reason may be that there is a 

stronger relationship between movement patterns of both legs in the frontal plane 

than the sagittal plane. This is supported in the current study where when using the 

LOSOCV approach, medial force predictions were nRMSE 23% different, and 

adduction moment were nRMSE 6% different, while flexion moment and 

compression force were only 1% to 2% different between double-leg and single-leg 

models. There is consistency across this study and previous studies (Stetter et al., 

2020; Stetter et al., 2019) that prediction error for frontal plane movement parameters 

is higher than other movement planes. Further research should confirm if prediction 

error can be improved for frontal plane movement predictions using IMU 

combinations that consider both legs.  

6.5.1 Limitations 

 The population sampled was of ‘normal’ BMI which may have limited the 

generalisability of the results. Future research could investigate the current models are 

generalisable to populations with higher BMI. We selected kinetic prediction 

outcomes for the stance phase of walking as this measure is related to the structural 

progression of medial knee osteoarthritis. Therefore, it is unknown if the current 

models would be suitable for other functional activities, nor for data in free-living 

environments. Although consistent with prior research, the current sample size may 

limit generalisability of the model. Future studies could use larger samples that may 

include simulated or augmented data to overcome data collection requirements of 

additional participants (Mundt, Koeppe, David, Witter, et al., 2020; Renani et al., 

2021).  

6.5.2 Conclusion 

We have demonstrated the development of a deep learning approach for 

predicting knee joint moments and forces from raw accelerometer and gyroscope data 

in people with knee osteoarthritis. Training the BiLSTM model on data from four 

IMUs placed on two legs resulted in less prediction error that two IMUs on one leg. 

Participant-specific models had less prediction error than LOSOCV. IMU-machine 
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learning models could eventually be used in clinical practice to assess and monitor 

abnormal knee loading in people with knee osteoarthritis in clinical and free-living 

environments. 

6.6 Study Details 

6.6.1 CRediT Authorship Contribution Statement 

Jay-Shian Tan: Writing – original draft, Data Acquisition, Methodology, 

Investigation, Formal analysis, Data curation, Conceptualisation, Funding acquisition.  

Sawitchaya Tippaya: Writing – review & editing, Methodology, Investigation, 

Formal analysis, Data curation, Study design, Software, Visualisation. 

Tara Binnie: Writing – review & editing, Data Acquisition, Investigation. 

Paul Davey: Writing – review & editing, Data curation, Investigation, Software. 

Kathryn Napier: Writing – review & editing, Data curation. 

J.P. Caneiro: Writing – review & editing, Investigation. 

Anne Smith: Writing – review & editing, Investigation, Formal analysis, 

Methodology, Conceptualisation. 

Peter O’Sullivan: Writing – review & editing, Investigation, Conceptualisation. 

Amity Campbell: Writing – review & editing, Methodology, Investigation, 

Formal analysis, Conceptualisation. 

Peter Kent: Writing – review & editing, Methodology, Investigation, Formal 

analysis, Methodology, Conceptualisation, Supervision. 

6.6.2 Declaration of Competing Interest 

The authors declare that they have no known competing financial interests or 

personal relationships that could have appeared to influence the work reported in this 

paper. 

6.6.3 Acknowledgements 

An Australian Government Research Training Program Scholarship was 

received by the lead author to support his capacity to undertake this research. 



190 
 

6.7 Appendix 

Appendix 6-1 Representative double-leg BiLSTM participant-specific 
model prediction (blue) compared to reference standard (red) for the stance 
phase of gait. 
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6.8 Summary of Chapter 6 

Increased knee loading (e.g. knee adduction moment) is a risk factor for 

structural progression of knee osteoarthritis. Clinicians managing patients with knee 

osteoarthritis do not have access to technology for monitoring knee loading in free-

living environments. Generalisable models that provide predictions about an 

individual whose data was not included in machine learning model training have been 

previously developed for people with knee osteoarthritis. The effect of adding 

additional data from the test participant to the generalisable model had not been 

tested for predicting moments and forces in people with knee osteoarthritis. We 

aimed to explore (a) the effect of adding training data from a test participant to the 

generalisable model, and (b) if a single-leg model or double-leg model was more 

accurate. Adding data from the test participant consistently reduced prediction error 

for all moments and forces. The double-leg prediction model demonstrated less 

prediction error than the single-leg model for the stance phase of walking, in contrast 

to the findings in Chapter 5. With further testing and implementation, such a moment 

and force prediction model could be used secondary to human activity recognition 

prediction model to provide clinicians the ability to monitor knee loading in patients 

with knee osteoarthritis in clinical practice and free-living environments. 
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Chapter 7  

Discussion of Thesis 

 

The aims of this thesis were to:  

1. Systematically review cohort studies and randomised controlled trials to 

investigate how changes in knee joint movement parameters during 

functional activities relate to changes in activity limitation or pain after 

exercise intervention in people with knee osteoarthritis. 

2. Investigate how wearable sensor technology could be used to monitor 

activity avoidance and altered movement patterns in people with knee 

osteoarthritis: 

a. Develop an IMU-based, human activity recognition system that can 

classify clinically relevant activities and phases of activities (walking, 

negotiating stairs, and transitioning to and from a chair) for people 

with knee osteoarthritis; 

b. Develop machine learning prediction models for knee joint sagittal 

plane angular kinematics for multiple clinically important activities; 

and 

c. Develop machine learning prediction models for knee joint moments 

and forces for the stance phase of walking. 

This chapter discusses the main findings of this thesis through a clinical lens 

within the context of using machine learning approaches based on IMU data for 

monitoring physical function and movement patterns, and how these may relate to 

clinical outcomes of patient-reported activity limitation and pain. The strengths and 

limitations of this thesis are then described followed by a broad consideration for the 

integration of this technology in future clinical practice and research. 
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Summary of Findings 

Systematic Review – Chapter 3 

Research question 
Is there a relationship between changes in movement patterns and clinical 
outcomes? 

What this research adds  
The systematic review found a relationship between change in movement 
parameters and change in clinical outcomes occurred 24% of the time using group-
level data (from 20 studies), and 13% of the time using individual-level data (from 
two studies).  

Secondary findings 

• The most frequent movement parameters that had been investigated were:  
o First peak knee adduction moment (20 occasions); 
o Knee flexion moment (14 occasions); 
o Knee adduction moment impulse (8 occasions); and 
o Various measures of knee flexion angle (8 occasions). 

• Gait-retraining consistently resulted in both changes in movement 
parameters and in clinical outcomes: 

o Measures of knee adduction moment were the movement parameter 
that changed most frequently in a predictable, directional manner. 

o After gait retraining, the prevalence of any movement parameter 
changing was 45% (5/11 times tested). 

o The expected direction of change in knee adduction moment (Simic 
et al., 2013) occurred 100% of the time. 

Comparison to previous literature  
This study built upon a prior systematic review that investigated the effect of 
exercise on changes in knee adduction moment during walking (Ferreira et al., 2015) 
that did not find evidence of a relationship across two included studies. 

This systematic review  
(Tan, Tikoft, et al., 2021) 

(Ferreira et al., 2015) 

Included studies 

• 22 cohort studies and randomised 
controlled trials  

• Three randomised controlled trials 

Quantification of relationship 

• Relationship quantified using 
within-group change or correlation 
analysis 

• Relationship quantified using 
between-group difference 

Movement parameters 

• Knee kinematics, moments, and 
muscle activity 

• Only knee adduction moment 

Activities included in search strategy 

• Investigated any functional activity • Investigated only walking 
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Summary of Findings 

Human Activity Recognition – Chapter 4 
Research question 
What is the accuracy of a human activity recognition (HAR) system trained on IMU 
data from people with knee osteoarthritis to classify clinically relevant activities and 
phases? 

What this research adds 
This study is the first to report on the development and validation of a machine 
learning HAR system trained on IMU data from people with knee osteoarthritis. 
Classification accuracy of the deep neural network (CNN model) for a three-level 
classifier was 87% (activity), 89-97% (direction) and 60-67% (phase), and equivalent 
to the prediction accuracy for HAR systems trained on data from healthy people. 

Secondary findings 

• There was a reduction in accuracy between the first and third levels of 
classification, with an increase in accuracy between the first and second level 
of classification.  

Comparison to previous literature 
This study builds on earlier studies as previous HAR systems developed for healthy 
people have only classified activities, not the phases of activities, and those phases 
are useful for biomechanical analysis. Gholamiangonabadi et al. (2020) developed a 
CNN HAR system for 12 activities for healthy participants and reported a 69-79% 
accuracy. Also, for more granular levels of classification, that accuracy can reduce by 
4-16% (Hendry et al., 2020; Whiteside et al., 2017). 

Human activity recognition model  
(Tan, Beheshti, et al., 2021) 

(Gholamiangonabadi et al., 2020) 

Participants 

• 18 with knee osteoarthritis • 10 healthy participants from 
benchmarking dataset 

Activity 

• Level 1 (chair, stairs, walking) 

• Level 2 (sit down, stand up, stairs 
ascending, stairs descending) 

• Level 3 (stance and swing of 
walking and stairs) 

• Standing, sitting, walking, lying, 
stairs, waist bends forward, 
elevation of arms, crouching, 
cycling, jogging, running, jumping 

Number and location of IMUs 

• Four IMUs (bilateral thigh and 
shank) 

• Three IMUs (wrist, chest, ankle) 

Validation approach 

• Leave-one-subject-out cross-
validation 

• Leave-one-subject-out cross-
validation 
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Summary of Findings 

Kinematic Prediction – Chapter 5 
Research questions 

1. What is the prediction error of a machine learning prediction model for 
sagittal plane flexion angles, trained on IMU data from people with knee 
osteoarthritis?  

2. What is the prediction error of a single-leg model compared to a double-leg 
model? 

What this research adds 
This study is the first to report on the development of a BiLSTM model using IMU 
data for the prediction of knee flexion angle during multiple clinically important 
activities for people with knee osteoarthritis.  

Overall, the single-leg model (RMSE (SD) = 7.0° (2.6°) to 11.8° (6.0°), and r = 0.85 
to 0.99) demonstrated lower prediction error than the double-leg model (RMSE 
(SD) = 7.3° (1.7°) to 12.9° (5.6°), and r = 0.74 to 0.99).  

Secondary findings 

• The single-leg model outperformed double-leg model for asymmetrical 
activities (such as walking and stairs). 

• The double-leg model outperformed the single-leg model for symmetrical 
activities (sit-to-stand and stand-to-sit). 

Comparison to previous literature 

Only one other study has developed a BiLSTM model to predict knee flexion angle 
using IMU data collected from people with knee osteoarthritis. Renani et al. (2021) 

reported lower prediction error for their model (RMSE (SD) = 2.9° (1.1°) and 
r = 0.99) which may be due to differences participants and methods (outlined 
below).  

Kinematic prediction model 
(Tan et al., 2022) 

(Renani et al., 2021) 

Participants 

• 17 with knee osteoarthritis • 13 with knee osteoarthritis, 17 
with total knee replacement 

Activity 

• Swing and stance phases of 
walking, negotiating stairs, and 
transitioning to and from a chair 

• Only walking 
 

Number and location of IMUs 

• Two to four IMUs (unilateral or 
bilateral thigh and shank) 

• Four IMUs (pelvis, thigh, shank, 
foot) 

Validation approach 

• Leave-one-subject-out cross-
validation 

• 5-fold cross validation 
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Summary of Findings 

Kinetic Prediction – Chapter 6 
Research questions 

1. What is the prediction error of a machine learning kinetic prediction model 
trained on IMU data from people with knee osteoarthritis? 

2. How does the performance compare between generalisable vs individualised 
model? 

3. How does the performance compare between double-leg vs single-leg 
models? 

What this research adds 
This study is the first to report on the development of a BiLSTM model using IMU 
data for the prediction of multiple knee joint moments (flexion and adduction) and 
forces (compression and medial) for the stance phase of walking for people with 
knee osteoarthritis.  

For knee joint moments the range of prediction error was nRMSE (SD) = 22% 
(5%) to 43% (15%), r = 0.71 to 0.8, and for forces nRMSE = 16% (4%) to 57% 
(23%), r = 0.78 to 0.86 for forces. For knee adduction moment, prediction error 
was RMSE = 0.13 (0.03) Nm/kg, nRMSE = 22% (5%), r = 0.81. 

Secondary findings 

• Individualising models by adding participant-specific training data to the 
generalisable model improves nRMSE by 9% to 36%. 

• Double-leg models performed nRMSE 1% to 23% better than single-leg 
models. 

Comparison to previous literature 
Two previous studies that recruited participants with knee osteoarthritis had reported 
development of machine learning models for prediction of knee adduction moment 
using IMUs.   He et al. (2019) reported RMSE = 0.36 Nm/kg*m and r = 0.91 using 
a feed-forward neural network and Wang et al. (2020) reported RMSE <0.004 
Nm/kg*cm, R2 = 0.947 for a decision-tree approach, and MAE = 0.004 
Nm/kg*cm or <20% of average knee adduction moment, with an R2 = 0.956 for 
an ANN approach. Direct comparison of models described in previous studies and 
our model is constrained by differences in normalisation procedures and reporting 
metrics.  

Two other studies have reported on the development of ANN kinetic prediction 
models in healthy participants using identical normalisation procedures and reporting 
metrics to the study in Chapter 6 (Stetter et al., 2020; Stetter et al., 2019). For knee 
joint moments the range of prediction error was nRMSE (SD) = 18.4% to 22.3%, 
r = 0.71 to 0.72, and for forces nRMSE = 14.2% to 27.7%, r = 0.6 to 0.87. The 
strongest performing model (participant-specific, single-leg) produced lower 
RMSE, higher nRMSE, and stronger correlations than the two artificial neural 
network models (Stetter et al., 2020; Stetter et al., 2019). Considering the similarities 
between studies (below) the differences may be due to differences in the population 
or type of machine learning architecture. 
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Summary of Findings 

Kinetic Prediction – Chapter 6 cont… 

Comparison to previous literature (cont…) 

Kinetic prediction model 
(Tan et al., 2022 

submitted manuscript) 

(He et al., 2019; Wang et 
al., 2020) 

(Stetter et al., 2020; 
Stetter et al., 2019) 

Participants 

• 16 with knee 
osteoarthritis 

• Six (He et al., 2019) 
and 106 (Wang et 
al., 2020) with knee 
osteoarthritis 

• 13 healthy and 
young 
 

 

Kinetic parameters 

• Flexion and 
adduction moment 

• Compression and 
medial force 

• Only adduction 
moment 

 

• Flexion and 
adduction moment 
(Stetter et al., 2020) 

• Compression and 
medial force (Stetter 
et al., 2019) 

Machine learning architecture 

• BiLSTM • Feed-forward neural 
network (He et al., 
2019) 

• Decision tree and 
ANN (Wang et al., 
2020) 

• Feed-forward neural 
network 
 

 

 

Number and location of IMUs 

• Two to four IMUs 
(unilateral or bilateral 
thigh and shank) 

• One ankle IMU and 
six plantar pressure 
sensors (He et al., 
2019) 

• Two ankle IMUs 
(Wang et al., 2020) 

• Two IMUs (thigh 
and shank) 

 

 

Validation approach 

• Leave-one-subject-out 
cross-validation 

• Unspecified (He et 
al., 2019) 

• Leave-one-out 
cross-validation 
(Wang et al., 2020) 

• Leave-one-subject-
out cross-validation 
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7.1 Diversity Exists within the Population with Knee Osteoarthritis 

Knee osteoarthritis is a condition that affects not just the knee joint, but the 

whole person (Caneiro, O'Sullivan, et al., 2020; Hunter, 2018; Kittelson et al., 2014). 

During clinical encounters, a clinician contends with substantial differences in 

characteristics between individuals presenting with knee pain reflecting the diversity 

across the population with knee osteoarthritis. Activity limitation and pain are 

influenced by a complex interaction of changes in physiological structure, movement 

patterns, psychological distress, cognitions, and alterations in neurophysiology 

(Kittelson et al., 2014). There seems to be consistent evidence in the literature of 

differences in knee kinetic (e.g. knee adduction and flexion moment), kinematic (e.g. 

reduced knee flexion angles), and altered muscular activity parameters (e.g. 

hamstring/quadriceps co-contraction) in people with knee osteoarthritis compared to 

people who do not have the condition (Heiden et al., 2009; Mills et al., 2013; Sonoo et 

al., 2019). A role of the clinician is to determine the clinical relevance of an 

individual’s characteristics that are potentially responsive to intervention. Part of the 

diversity across the population with knee osteoarthritis relates to physical function, 

including the activities people find difficult and their affected movement patterns. 

Despite diversity in presentation across the population, clinical guidelines are 

clear that exercise is a core intervention that should be offered to all people with knee 

osteoarthritis to improve clinical outcomes (activity limitation and pain) (Bannuru et 

al., 2019). Previous research has suggested specific baseline movement parameters are 

related to structural progression and clinical outcomes (Chehab et al., 2014; Hall et al., 

2017; Henriksen et al., 2012; Marriott et al., 2019; Nie et al., 2019). Prior to the 

systematic review presented in Chapter 3, it was unclear if a relationship existed 

between changes in specific movement parameters and changes in clinical outcomes 

after exercise interventions, and therefore a review of this relationship was timely. 

The systematic review presented in Chapter 3 found that across cohorts of 

people with knee osteoarthritis, there was only a 24.5% co-occurrence of change 

between knee movement parameters and clinical outcomes after exercise 

interventions. It is not surprising our systematic review had a similar finding to other 
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reviews investigating the relationship. Our results are consistent with systematic 

reviews of movement- or exercise-based interventions in people with knee 

osteoarthritis (Ferreira et al., 2015; Richards et al., 2017) as well as other body regions 

including the low back (Laird et al., 2012; Wernli, Tan, et al., 2020) and shoulder 

(Nodehi Moghadam et al., 2020). Those reviews suggest a tenuous or absent 

relationship between changes in movement parameters and change clinical outcomes 

after movement or exercise-based interventions. There are multiple reasons why 

studies may not have identified a relationship between changes in movement 

parameters that co-occur with improvements in clinical outcomes. Firstly, it must be 

acknowledged that there may be no relationship between changes in movement 

parameters and clinical outcomes after exercise interventions. But there are several 

possible reasons why studies may not have demonstrated a relationship if it exists. 

Those reasons relate to study design (e.g. statistical approaches) while others relate to 

heterogeneity of biopsychosocial factors within the population of those who have 

knee osteoarthritis (Dell’Isola et al., 2016; Roman-Blas et al., 2020). To better 

understand this, the findings of this systematic review will be further unpacked in the 

context of group-level statistical analysis, the selection of outcome measures, 

individual patient characteristics, and type of intervention. 

7.1.1 Group-level Analyses  

To establish a relationship between changes in two outcomes, both randomised 

controlled trials and cohort studies are appropriate sources of information because 

this research question is not about treatment effect, it is about co-occurrence. Of the 

studies included in the systematic review presented in Chapter 3, 20 of the studies 

provided only group-level data about change for both movement and clinical patient-

reported outcomes, leaving just two studies that used correlation analyses to 

summarise this based on the strength of that relationship at an individual person-

level.  

Using group-level change is a blunt approach to explore the change relationship 

between two outcomes. Group-level change (average change) does not account for 

change relationships between outcomes at an individual person-level. Specifically, it 

does not provide information about whether the people who changed in one outcome 
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were the same people who changed in the other outcome. Therefore, it is unclear if 

those who improved in clinical outcomes are the same people who changed their 

movement patterns. In the systematic review when a group-level co-occurrence of 

change was not identified, it is possible that change relationships may have been 

identified had individual-level data been available and analysed using correlation.  

There were only two studies that reported using individual person-level data to 

investigate the relationship. In comparison, a similar systematic review in people with 

low back pain identified 27 studies that used correlation analysis between changes in 

movement patterns (lumbopelvic kinematics and muscle activity) and clinical 

outcomes (Wernli, Tan, et al., 2020). They reported that 31% of time when a 

correlation was tested there was a change relationship, although most of the included 

studies were of low quality (Wernli, Tan, et al., 2020). Altered movement patterns are 

one feature found consistently in the literature in both people with knee osteoarthritis 

and those who have low back pain (Laird et al., 2019), therefore, similarities in 

individual change relationships between movement patterns and clinical outcomes 

may exist between these populations. However, until additional cohort studies and 

randomised controlled trials are available that investigate change relationships 

between movement patterns and clinical outcome in people with knee osteoarthritis 

using correlation analysis (or other individual-level approaches, such as regression), 

the exact nature of the relationship remains unclear.  

7.1.2 Selection of Outcome Measures 

7.1.2.1 Biomechanical Assessment of Functional Activities 

No studies in the systematic review investigated movement parameters for 

activities other than walking, therefore, only co-occurrence of change in walking-

related movement parameters with clinical outcomes could be assessed. This is 

problematic because there is diversity in activity limitation amongst the population 

with knee osteoarthritis (Dobson et al., 2013; Fukutani et al., 2016; Machado et al., 

2008; Roos & Lohmander, 2003). For example, in a prospective longitudinal 

observational study of 491 people at high risk for developing knee osteoarthritis, 

negotiating stairs was the activity first associated with knee pain (Hensor et al., 2015). 

In a study of 184 people with knee osteoarthritis over the age of 55 years, the 
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prevalence of having any difficulty with standing from a chair was 73% and climbing 

a flight of stairs was 79% (Machado et al., 2008). Those findings are supported by an 

earlier study of 40 participants who had knee osteoarthritis that reported an activity 

limitation prevalence of 50% for negotiating stairs, 16% for gait and 9% performing 

sit to stand (Fisher et al., 1993).  

As walking was the only activity investigated, the results do not address the 

question about the relationship between a change in movement patterns and clinical 

outcomes for other clinically important activities. The search in the literature review 

presented in Chapter 3 discovered only one study that had investigated movement 

patterns and clinical outcomes during functional activities other than walking, 

although that study was excluded because they reported median change rather than 

mean change for clinical outcomes on the KOOS (McQuade & de Oliveira, 2011). 

After eight-weeks of machine-based strengthening exercise, they reported no group-

level changes in knee joint moments and muscle activity parameters during a step-up 

activity despite improvement in activity limitation and pain. While that study provides 

some preliminary evidence suggesting an absence of a relationship during that activity, 

further research is required to establish if that lack of a relationship is consistent 

across cohorts. Further research is also warranted to establish if there is a relationship 

between changing movement patterns for a broader range of activities that have a 

high prevalence of activity limitation in people with knee osteoarthritis.  

While it is important that movement parameters for other activities be 

investigated more broadly, there are also other considerations that may have affected 

our ability to identify change relationships within the systematic review. These include 

selection of patient-reported outcome measures, patient-specific activity limitations, if 

interventions are targeted appropriately, and individual participant characteristics (e.g. 

cognitions or baseline movement patterns).  

7.1.2.2 Patient-reported Outcome Measures 

In the systematic review, activity limitation and pain were most frequently 

assessed using patient-reported outcome measures, such as the WOMAC physical 

function and pain subscales (Bellamy et al., 1988), or the VAS/NRS for pain 

(Alghadir et al., 2018). The WOMAC and its subscales are recommended as part of 
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the OARSI core set of patient-reported outcomes for clinical trials (McAlindon et al., 

2015). When exploring the relationship between changes in movement parameters 

during functional activities and patient-reported outcome measures of activity 

limitation and pain, it is important to understand the psychometric properties of the 

patient-reported outcome subscales such as the WOMAC or VAS/NRS. Those 

properties have the potential to reduce the capacity to establish whether relationships 

exist between changes in movement parameters during specific activities and other 

clinical outcomes, as explained below. For example, the physical function sub-scale of 

the WOMAC is a 16-item outcome measure that provides information about patients’ 

perception of difficulty or pain performing  a range of clinically relevant physical 

activities rated from 0 (none) to 4 (extreme) (Figure 7-1). While the WOMAC is 

useful for assessing outcomes across the population with knee osteoarthritis, not all 

items are relevant to every individual. 

Figure 7-1. Items in the WOMAC subscales. 

Activity Limitation (Physical Function) Pain 

Descending stairs 
Ascending stairs 
Rising from sitting (sitting transition) 
Standing 
Bending to the floor 
Walking on flat surfaces 
Getting in and out of a car, or on or off a bus 
Going shopping 
Putting on your socks or stockings 
Rising from the bed 
Taking off your socks or stockings 
Lying in bed 
Getting in or out of the bath 
Sitting 
Getting on or off the toilet (sitting transition) 
Performance heavy domestic duties 
Performing light domestic duties 

Walking on a flat surface 
Going up and down stairs 
At night while in bed, pain disturbs 
your sleep 
Sitting or lying 
Standing upright 
 
 

Total possible score  = 64 Total possible score  = 20 

Maximum possible score for:
 Walking 

 Stairs 

 Sitting transition 

 
= 4 

= 8 

= 8 

Maximum possible score for:
 Walking 

 Stairs 

 Sitting 
transition 

 
= 4 

= 4 

= NA 
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Of the 16 items, there is one question about walking, two about using stairs 

(up/down stairs), and two about moving from sit-to-stand (rising from sitting, getting 

on or off the toilet) (Figure 7-1 bold). For people who only have limitations for more 

difficult activities, such as ascending stairs or heavy domestic duties, they may score 

no (0/4) difficulty or pain with walking. So, while the WOMAC is condition-specific 

for the population with knee osteoarthritis, the scores for each subscale can be 

considered as generalised, rather than activity-specific, measures of activity limitation 

and pain. Because there is diversity in activity limitation across the population with 

knee osteoarthritis, there is a potential washout effect when attempting to establish 

whether relationships exist between changes in movement parameters during specific 

activities and clinical outcomes.  

Another outcome used frequently across studies in the systematic review was 

the VAS 0 to 10 pain scale. Like the WOMAC, the VAS asks broad questions about 

pain, such as rating average pain in the past week. A more specific method of 

assessing pain, such as pain while performing specific activities (e.g. pain intensity 

when ascending stairs), may help to more precisely investigate the relationship 

between changes in movement patterns and improvement in pain. Therefore, the 

selection of patient-reported outcome measures and their psychometrics could impact 

the likelihood that a relationship is identified. The following section discusses how a 

relationship between changes in movement parameters and clinical outcomes could 

be investigated more precisely using more personalised patient-reported outcomes. 

7.1.2.3 Patient-Centred Assessment 

To help clinicians accommodate heterogeneous patient factors, clinical 

guidelines recommend individualised or patient-centred assessment for people with 

musculoskeletal condition such as knee osteoarthritis (Lin et al., 2020).  Although 

those recommendations are for clinical practice, research has yet to accommodate 

individualised assessment of movement parameters and clinical outcomes for people 

with knee osteoarthritis. It is clear from the systematic review that there was an 

infrequent group-level relationship between walking-related movement patterns and 

generalised measures of activity limitation and pain. Yet, because walking was the only 

activity that was biomechanically analysed, and generalised patient-reported outcomes 
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were used, the review was not able to capture information about the relationship 

between change in movement patterns and clinical outcomes based on individualised 

assessment of activities that were clinically relevant for each participant.  

For randomised controlled trials, it generally makes sense to use validated 

patient-reported outcome measures because they capture a broad range of important, 

condition-specific activity domains, across a particular clinical population. Similarly 

for movement parameters, studies have consistently selected only one type of activity 

(e.g. walking), because the activity is broadly important across a population. However, 

a more nuanced and patient-centred approach would be to investigate the relationship 

between changes in clinical outcomes and movement patterns or parameters by 

selecting an individual’s activity-specific patient-reported items and conduct a 

movement analysis for that same activity. No studies have yet done this in people 

with knee osteoarthritis.  

There have been attempts made to adapt the WOMAC physical function 

subscale to be more patient specific. For example, one method known as the 

WOMAC-top 5 is to have a patient select the top five items most important to them 

(Seror et al., 2008). In comparison, the Patient-Specific Functional Scale is entirely 

individualised, does not use predefined items, and it is sensitive to change in people 

with knee osteoarthritis (Horn et al., 2012). Using the Patient-Specific Functional 

Scale or WOMAC-top 5 instead of broader patient-reported outcome measures, like 

the WOMAC or VAS, may have significant implications for the ability to identify 

relationships more accurately between movement parameters and clinical outcomes. 

This would be particularly important if the intervention is also targeted toward a 

specific activity (which is discussed further in section 7.1.4).  

The Patient-Specific Functional Scale has been used in people with low back 

pain to explore the relationship between movement patterns and clinical outcomes 

using a single-case experimental design (Wernli, O'Sullivan, et al., 2020). This type of 

study design collects repeated measures of an outcome prior to, during and after an 

intervention, which allows for cross-correlation analyses between changes in 

movement patterns and clinical outcomes for individual participants (Borckardt et al., 

2008). That study in people with low back pain demonstrated a relationship between a 
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change in movement or posture and change in activity limitation or pain occurred 

74% of the time for the biomechanical assessment of activities that were based on an 

activity limitation reported in the Patient-Specific Functional Scale (Wernli, 

O'Sullivan, et al., 2020). This is in contrast to the same authors’ systematic review that 

reported a relationship 31% of the time when both movement and clinical outcomes 

were not individualised (Wernli, Tan, et al., 2020). More useful insight about the 

relationship may be found in people with knee osteoarthritis if future studies use a 

patient-reported outcome measure, like the Patient-Specific Functional Scale and 

conduct a biomechanical assessment of the same activity. 

7.1.3 Individual Patient Characteristics 

In previous sections, heterogeneity of individual activity limitation and 

movement patterns across the population with knee osteoarthritis were explored as 

potential reasons why the systematic review did not identify more frequent 

relationships between changes in movement parameters and clinical outcomes. That 

infrequent relationship may also be influenced by diversity across other patient 

characteristics. For example, movement patterns are affected by a complex interaction 

between the activity being performed, the environment, and individual 

biopsychosocial factors such as physiological structure, symptoms, behaviour, and 

cognitions (Dingenen et al., 2018; Hodges & Smeets, 2015).  

Examples of behaviour and cognitions related to knee biomechanics include 

knee confidence and fear of movement. Worse knee confidence has been related to: 

increased peak knee adduction angle during the stance phase of walking (Chang et al., 

2011); greater range of varus/valgus movement during mid stance (Skou et al., 2014) 

and higher levels of trunk flexion during walking (Hart, Collins, Ackland, Cowan, et 

al., 2015). Fear of movement has also been related to reduced hip abduction when 

side lunging (van der Straaten et al., 2020) and higher levels of trunk flexion during 

walking (Hart, Collins, Ackland, Cowan, et al., 2015). Therefore, consideration should 

also be given to how behaviours and cognitions may influence the relationship 

between movement patterns and clinical outcomes.  

There is also diversity in movement patterns across the population of people 

with knee osteoarthritis and therefore assessments and interventions that are not 
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individualised may have limited effect on movement patterns and clinical outcomes. 

For example, instructions for patients performing neuromuscular exercise include 

moving their knee over their middle toe, which is thought to modify knee loading 

towards that of people without knee osteoarthritis, promoting ‘optimal’ alignment 

(Ageberg & Roos, 2015; Bennell et al., 2014). But some participants may have no, or 

limited potential for change due to fixed deformity of the knee. In those cases, no 

change in movement pattern may be possible and therefore no relationship with 

clinical outcomes could occur. Other participants may present at baseline with 

‘normal’ movement patterns. Therefore, promoting ‘optimal’ alignment for a person 

with knee osteoarthritis who has normal movement patterns would likely result in no 

change in movement pattern, nor provide the possibility for a relationship with 

clinical outcomes to be present. Hypothetically, there is also the possibility that 

movement patterns that are considered ‘suboptimal’ are actually adaptive and pain 

relieving, or even clinically unrelated to a patient’s activity limitation or pain. For 

example, for people with severe structural knee osteoarthritis, cross-sectional studies 

have reported no association (Nie et al., 2019) or negative relationships (Hall et al., 

2017) between activity limitation and pain with knee adduction moment (Table 2-2). 

An individual’s characteristics or combination of those characteristics may influence 

the relationship between change in movement patterns and clinical outcomes in 

response to exercise interventions.  

7.1.4 Interventions 

The vast majority (90%) of studies in our systematic review reported within-

group improvements in activity limitation and pain, following an exercise intervention 

for people with knee osteoarthritis (see Chapter 3, Error! Reference source not 

found.). Changes in movement patterns were not consistently observed following 

generalised interventions, such as strength training and progressive walking exercise 

programmes (see Chapter 3, Appendix 3-6). Even neuromuscular exercise, an 

intervention that is specifically designed to reduce knee adduction moment, did not 

reduce knee adduction moment (see Chapter 3, Appendix 3-6).  

One possible reason that neuromuscular exercise and other general exercise 

interventions (e.g. walking, strength training) did not appear to consistently change 
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walking-related movement patterns was because the interventions did not specifically 

target changes in movement parameters during walking. In contrast, targeted 

interventions like gait retraining, that directly targeted a change in movement pattern 

during the activity of walking, was associated with consistent and predictable changes 

in movement patterns within the systematic review (see Chapter 3, Appendix 3-6). 

For example, first peak knee adduction moment changed in the expected direction 

after toe-in gait modifications (Richards et al., 2018; Shull, Shultz, et al., 2013; Shull, 

Silder, et al., 2013; Simic et al., 2013), whereas second peak knee adduction moment 

changed after toe-out modifications (Hunt et al., 2018; Hunt & Takacs, 2014; Simic et 

al., 2013). These predictable changes in gait related movement parameters may have 

resulted because gait retraining directly involves a modification of a movement 

pattern for the same activity that is undergoing biomechanical analysis. 

The concept of prescribing specific exercise that closely resembles the activity 

being biomechanically analysed has also been investigated in small pilot study of 13 

participants with knee osteoarthritis (Thorstensson et al., 2007). They investigated the 

effect of eight-weeks of neuromuscular exercise on knee adduction moment during 

walking and single-leg rise from a chair. Knee adduction moment reduced for a 

single-leg rise, but not for the stance phase of walking (Thorstensson et al., 2007). 

These results may have occurred because a single-leg rise is functionally more similar 

to exercises included within neuromuscular exercise programmes (e.g. a split squat) 

compared to walking. Future studies may clarify if neuromuscular exercise is more 

effective to change movement patterns for activities like sit-to-stand that more 

resemble a squatting movement compared to the activity of walking that does not 

resemble any movement described in common neuromuscular exercise programmes. 

Another possibility for the infrequent relationship between changes in 

movement parameters and clinical outcomes is that the interventions were not 

individualised to each participant’s personal characteristics. While some studies 

included in the review suggest the interventions were individualised, the aspect of the 

intervention that was individualised was the exercise dose, rather than their baseline 

movement pattern or other individual participant-specific characteristics. If 

individualised assessment of baseline movement patterns is found to be clinically 
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meaningful in a proportion of the population with knee osteoarthritis, interventions 

targeting movement patterns may demonstrate superior outcomes compared to non-

targeted interventions. In the literature review in Chapter 3, only one small 

randomised controlled trial (n = 20), investigated the effect of gait retraining 

individualised to each participant’s baseline movement patterns (Cheung et al., 2018). 

Participants were instructed to freely change their movement pattern by altering their 

foot progression angle, hip, and trunk position, while walking on an instrumented 

treadmill that provided real time visual feedback changes in knee adduction moment 

curve compared to baseline. No other study included in the review screened 

participants for their baseline movement patterns to guide the most appropriate 

exercise approach. Interestingly, this study by Cheung et al. (2018) demonstrated the 

largest within-group effect sizes across all forms of exercise for changes in first peak 

knee adduction moment, activity limitation and pain. Another baseline characteristic 

that may influence how a clinician may individualise exercise prescription is 

radiographic alignment. For example, another study included in the systematic review 

(Lim et al., 2008) reported greater improvement in pain for people who had a more 

neutral alignment at baseline compared to those who had varus deformity after a 12-

week quadriceps strengthening programme. Together these studies may suggest that 

individualised and targeted interventions might optimise the outcome when 

underlying participant characteristics and outcomes are considered. However, that has 

yet to be tested thoroughly in people with knee osteoarthritis.  

While the review search criteria were limited to include only exercise 

interventions, individualised patient-centred care also may provide a greater potential 

to change movement patterns and improve clinical outcomes, a concept that is 

explored in later sections. For example, addressing biopsychosocial factors like high 

BMI, fear or confidence have the potential to influence movement patterns and 

clinical outcomes (O’Sullivan et al., 2018; Preece et al., 2021).  

7.1.4.1 Kinesiopathological and Symptom Modification Approaches 

There are two dominant theoretical approaches to changing movement patterns. 

One theory is a kinesiopathological approach (Lehman, 2018) that aims to normalise 

altered movement parameters that are related to structural progression (e.g. knee 
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adduction moment). The other theory is a symptom modification approach where 

movement patterns are targeted for their potential capacity to change symptom 

response when performing an activity regardless of biomechanical risk factors for 

structural progression and without focus toward predefined ‘normal’ movement 

parameters (Lehman, 2018). The two approaches are not diametrically opposed. They 

have consistent aims about improving patients’ clinical outcomes over the course of 

treatment, however, the direction of change in movement parameters may or may not 

align. 

Interventions such as gait retraining (Hunt et al., 2018) and neuromuscular 

exercise (Ageberg & Roos, 2015) are examples of kinesiopathological approaches. 

While those approaches have demonstrated efficacy to improve activity limitation and 

pain (Bennell et al., 2010; Bennell et al., 2014; Hunt et al., 2018), it has not been 

demonstrated that that modifying movement patterns slows or prevents further 

structural changes. In the studies that target movement patterns based on a 

kinesiopathological approach, it is theoretically possible for some participants, that 

the modified movement patterns aggravated symptoms and/or worsened activity 

limitation, which would potentially explain the absence (on average) of a relationship.   

Alternatively, the symptom modification approach targets a change in 

movement patterns that is dependent on a reduction in symptom response (Lehman, 

2018; O’Sullivan et al., 2018; Preece et al., 2021). While the aims of many of the 

studies included in our systematic review were to reduce knee adduction moment and 

reduce pain, no study reported methods that monitored if changes in movement 

patterns established symptom control when performing painful activities. Targeting 

movement patterns for the purposes of symptom control has not been investigated in 

large-scale randomised controlled trials. Targeting symptom control through a change 

in movement pattern has been tested in a small pilot study of 11 people with knee 

osteoarthritis (Preece et al., 2021), which shows promising results. That study, 

however, does not provide evidence that changing movement patterns is necessary or 

sufficient to modify symptoms as there was no objective assessment of any 

movement parameters. Earlier in this thesis, a single-case experimental design study in 

people with low back pain was discussed, highlighting the high frequency of a 
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relationship (74%) across participants (Wernli, O'Sullivan, et al., 2020). That higher 

frequency of a relationship could be because the assessment of movement parameters 

and measures of activity limitation (Patient-Specific Functional Scale) were collected 

at an individual person-level, or that the activity that was biomechanically analysed 

aligned with the specific activity limitation (Wernli, O'Sullivan, et al., 2020). An 

additional factor may also be the intervention. One part of the intervention (Cognitive 

Functional Therapy) aims to achieve symptom control through targeting a change in 

individualised movement patterns for activities related to activity limitation 

(O’Sullivan et al., 2018). Therefore, alignment of the outcome measures and 

intervention may have also contributed to stronger relationships. Stronger 

relationships between changes in movement parameters and clinical outcomes may be 

found if an intervention is focused on controlling symptoms through targeting 

patient-specific activity limitation via modifying movement patterns for activities that 

align with their specific activity limitation. Biopsychosocial interventions like 

Cognitive Functional Therapy also target other aspects of an individual’s presentation 

like confidence and fear avoidance which can influence movement patterns (Chang et 

al., 2011; Hart, Collins, Ackland, & Crossley, 2015). Integrated biopsychosocial 

approaches may therefore have greater potential to impact movement patterns and 

clinical outcomes than unimodal interventions like exercise.  Further investigation is 

required that more closely considers individual patient biopsychosocial characteristics 

to clarify the clinical significance of changing of movement patterns in people with 

knee osteoarthritis.  

There is a diverse array of patient-specific characteristics that influence 

movement patterns and clinical outcomes in people with knee osteoarthritis. 

Clinicians and researchers may benefit from adopting technology-assisted data-driven 

advancements, to help clarify the relevance and importance of individual patient’s 

movement patterns and other characteristics that could help shape and deliver highly 

individualised interventions. This concept will be further explored in the following 

sections. 
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7.1.5 Summary 

The systematic review presented in Chapter 3 provided evidence of an 

infrequent relationship between changes in walking-related movement patterns and 

clinical outcomes when analysed using group-level data. Infrequent relationships 

between changes in movement patterns and clinical outcomes after exercise are 

potentially explained by the study design and participant characteristics within the 

included studies. It is unclear if similar findings would occur across other activities 

like negotiating stairs or transitioning to and from a chair as they have not yet been 

investigated. Group-level relationships do not account for individual-level change 

relationships, which would be best investigated using correlation analysis or similar. 

The type of patient-reported outcome measures to assess activity limitation and pain 

used within the included studies may have diluted the ability to establish a relationship 

with a change in movement patterns due to lack of individual specificity. To 

investigate relationships between change in movement patterns and clinical outcomes 

more precisely, biomechanical and patient-reported outcomes could be individualised 

and specific to personal activity limitation or pain associated with those activities. 

Unimodal interventions, such as exercise, may not be sufficient to address the 

complex biopsychosocial influences on an individual patient’s movement patterns. 

Interpreting the relevance of highly individual, complex biopsychosocial influences on 

movement patterns, activity limitation and pain may be facilitated using 

technology-driven approaches. 

7.2 From Small Data to Big Data 

Individualising assessment and intervention strategies that consider the 

complexity of the relationship between a patient’s biopsychosocial characteristics, the 

activity being performed, and the environment in which it is performed, may provide 

further insight into the relationship between movement patterns and clinical 

outcomes. Technology-driven advancements may help facilitate assessment of 

movement patterns in both clinical and free-living environments. Integration of 

technology assisted assessment may include IMU ‘big data’ and ‘small data’ 

approaches that could help shape and deliver individualised care. From small data that 

provides information about an individual (n = 1) (Hansen et al., 2014; Hekler et al., 
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2019), to big data that provides information about a population (e.g. people with knee 

osteoarthritis) – artificial intelligence (including  machine learning and deep learning) 

is poised to revolutionise how data is used to facilitate clinical decision making in 

healthcare (Lin, 2022).  

Small data can be used for monitoring individual outcomes to inform 

individualised interventions, and to help create big data models. On the spectrum 

from small to big volume data – a patient’s individual health outcomes are small data, 

whereas databases, electronic health records and clinical registries are examples of big 

data.  Somewhere between sits cohort studies, randomised controlled trials and 

machine learning models based on relatively small population samples. While a 

person’s health outcomes are small data pertaining only to that individual, their data 

has a high degree of dimensionality and is influenced by interactions between 

biopsychosocial factors.  

Big data was originally described as consisting of at least one of three core 

characteristics – volume, velocity and variety (Kitchin & McArdle, 2016; Laney, 2001). 

Volume describes the size of the data; velocity the frequency of generation or 

handling, recording, and publishing data; and variety the dimensionality or structure. 

However, it is unclear at what point data becomes ‘big’ (Kitchin & McArdle, 2016). 

When building machine learning models, each additional participant’s data makes the 

data ‘bigger’ and therefore potentially more generalisable across the population.  

Kongsted et al. (2020) suggested that models of care in the future will require 

ubiquitous technology for data capture as well as data storage solutions and data 

handling capabilities such as artificial intelligence. Alone, technologies like IMUs are 

unable to independently provide improvement in patient management. Machine 

learning models that use IMU data may be trained on a sample of participants prior to 

model development or be based on a dynamic prediction model that continually adds 

new participants data (or types of data) to a database, refining the model over time 

(Kongsted et al., 2020). Both those approaches use big data, requiring large volumes 

of data across a sample of the population to build a model. Big data approaches may 

be useful to build generalisable models for the population with knee osteoarthritis. 
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The IMU data collected for machine learning models in Chapters 4 to 6 

consisted of multiple individual participant’s small data, albeit that each person 

contributed thousands of multi-dimensional data points, that were combined to build 

small scale population-based machine learning prediction models. Combining small 

datasets from multiple research participants aims to train a machine learning model to 

be generalisable across the population on which it was trained. Taking this a step 

further, where IMU data is collected, structured in a standardised manner, and 

uploaded to a database to refine a machine learning model, it would be possible to 

create an even bigger, constant, and ever-growing dataset. A database containing 

enough IMU data from across the heterogeneous population with knee osteoarthritis 

could provide two opportunities – development of generalisable models trained on 

population data, or adaptive models that are highly individualised to participant-

specific characteristics of individual test participants (see section 7.3.4.3).  

It may be possible to develop generalisable, population-based machine learning 

models from a sufficiently large dataset for the entire population (or at least large 

subgroups) with knee osteoarthritis. Because leave-one-subject-out cross-validation 

trains a model on all the data except for one test participant, the machine learning 

models in Chapters 4 to 6 represent the test accuracy of a population-based model 

defined by the inclusion and exclusion criteria. In addition to the IMU data from each 

participant, the machine learning models in Chapters 4 to 6 included additional 

participant-specific information about which leg was affected, or in the case of 

bilateral symptoms, the most affected leg. Prior to the study presented in Chapter 6, it 

was unclear if additional small data that included the individual’s specific 

characteristics (i.e. the participant-specific model) would help further reduce 

prediction error for people with knee osteoarthritis. Individualising prediction models 

may be important as there are differences in movement parameters between people of 

differing knee osteoarthritis grade, sex, BMI, age, and psychological factors which 

may influence the precision of IMU prediction models (Chang et al., 2011; Favre et 

al., 2014; Segal et al., 2013; Verlaan et al., 2018). Those biopsychosocial or individual 

factors could be investigated as additional training data for a prediction model to 

determine if there is benefit on machine learning model performance.  
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Because of this significant heterogeneity across the population with knee 

osteoarthritis, more refined models may be required for specific subgroups or 

phenotypes (Dell’Isola et al., 2016; Dell’Isola & Steultjens, 2018). There may be 

subgroups within the population with knee osteoarthritis where the accuracy of 

human activity recognition and biomechanical prediction models would benefit from 

the addition of other data that could affect a person’s movement patterns. A 

sufficiently ‘big’ dataset may help to improve human activity recognition and 

biomechanical prediction models in the future, whereby a personalised model can be 

built from population data that most closely resembles an individual’s profile. It is 

conceivable that in the future, an automated, cloud-based, adaptive model building 

system could train and validate models that are suited to subgroups of the population 

or are individualised based on specific characteristics of the user, a concept that is 

explored later in this chapter. Some IMU manufacturers, such as DorsaVi 

(Melbourne, Australia), routinely store a cloud-based copy of all data collected using 

their sensors for such potential purposes. 

But in absence of a large database that includes IMU and potentially other 

clinically relevant information, a generalisable model can be refined for an individual 

with the addition of training data from a test participant. The results presented in 

Chapter 6 demonstrate improved prediction error of the model for a knee moments 

and forces when a generalisable model is ‘individualised’. That is, when some of the 

test participant’s data is added to the training dataset of the generalisable model, that 

dataset then includes data from all participants as well as some of data from the 

person on which the model is also being tested. While this approach improved the 

prediction error substantially (nRMSE 9% to 36%, Table 6-3), the required level of 

clinically significant accuracy has yet to be established (see section 7.3.4).  

How a person moves is only one part of a clinical assessment. Additional 

aspects of a patient’s presentation might be combined with biomechanical data, 

providing higher levels of dimensionality (increased variety) for bigger data 

approaches to facilitate a clinician to provide precision medicine. Big data approaches 

could help identify patient subgroups or phenotypes that may be more responsive to 

an intervention, or combinations of interventions, to help guide clinical decision 



216 
 

making (Ahmed et al., 2020). To individualise care, machine learning systems using 

IMU data for human activity recognition and/or biomechanical prediction could 

assist with clinician- or self-monitoring to facilitate behaviour change interventions 

(Patel et al., 2015). Monitoring a patient’s response to an intervention using IMU data 

collected in clinical or free-living environments, could help inform clinical decision 

making and help improve motivation and intervention adherence (see section 7.4.4) 

(Papi et al., 2015). In the future, it may be possible that a clinician could upload an 

individual patient’s data into an online artificial intelligence system trained on high 

dimensional big data (i.e. deidentified data from population based electronic health 

records) which compares the patient’s individual, small data, to the broader 

population to assist with clinical decision making. The discussion below will focus on 

how machine learning prediction models that use IMU data can assist with 

monitoring movement of an individual with knee osteoarthritis to inform clinical 

reasoning. 

7.3 IMU-Machine Learning Models for People with Knee Osteoarthritis 

The three studies presented in Chapters 4 to 6 provide novel and clinically 

relevant approaches for the use of machine learning for handling IMU data in people 

with knee osteoarthritis. Data provided by those models could be used to provide 

clinically important information to facilitate clinical reasoning. Those models were 

developed to overcome clinical limitations for the assessment of physical function 

described in section 2.3.2 and to overcome the calibration and electromagnetic 

interference limitations of IMU. The three IMU prediction models were designed for 

(a) human activity recognition, (b) kinematic prediction, and (c) kinetic prediction, 

using deep learning approaches that could be potentially used in an automated data 

handling pipeline. The machine learning prediction models presented in this thesis 

provide the groundwork for further development of a data handling pipeline that 

could eventually be implemented in clinical practice to aid the assessment of activity 

avoidance (movement quantity) and movement patterns (movement quality) in people 

with knee osteoarthritis. 
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A recent systematic review has identified that IMU models for people with knee 

osteoarthritis have been studied independently (Kobsar et al., 2020), without 

consideration about how they would be used in a data handling pipeline for data 

collected in free-living environments. A handling pipeline for IMU data intended for 

use in people with knee osteoarthritis has previously been investigated in only one 

study (Emmerzaal et al., 2020). However, that study validated their human activity 

recognition machine learning model on healthy participants, which may have 

contributed to implementation issues when their system was used in people with knee 

osteoarthritis. In comparison, the machine learning models in this thesis were 

validated on people with knee osteoarthritis. While the pipeline of machine learning 

models in this thesis have yet to be tested in a clinical context, the series of prediction 

models were developed with the consideration of what information a clinician might 

find useful to inform clinical reasoning. The concept of a machine learning data 

handling pipeline and potential clinical implementation will be further explored in 

later sections.  

The three studies in Chapters 4 to 6 have substantially contributed to the 

limited number of peer-reviewed publications that have trained and validated machine 

learning models using data collected from people with knee osteoarthritis (He et al., 

2019; Renani et al., 2021; Renani et al., 2020; Wang et al., 2020). We developed the 

first machine learning model for human activity recognition that was trained and 

tested on people with knee osteoarthritis (Chapter 4). The selected activities were 

based on clinical guidelines for assessment of physical function (Dobson et al., 2013) 

while movement parameters were based on previous research suggestive as being risk 

factors for structural progression (Chehab et al., 2014) or because of relationships 

with baseline clinical outcomes (Hall et al., 2017; Henriksen et al., 2012; Marriott et 

al., 2019; Nie et al., 2019).  

Prior to the study presented in Chapter 5, all machine learning models based 

on IMU data for the prediction movement parameters in people with knee 

osteoarthritis have been only for the activity of walking (He et al., 2019; Renani et al., 

2021; Renani et al., 2020; Wang et al., 2020). This pattern in the research is consistent 

with the results of the systematic review presented in Chapter 3, where walking was 
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the sole focus of biomechanical analysis in studies that also looked at clinical 

outcomes. While the field of research investigating these machine learning models for 

clinical populations is in its infancy, people with knee osteoarthritis have difficulty 

with a range of activities. Therefore, there is a clinical imperative that future studies 

should include models or data handling pipelines that provide data about a broader 

range of activities other than walking. 

Renani et al. (2021) were the first to develop a sagittal plane angular kinematic 

machine learning model for walking, trained and tested on IMU data from people 

with knee osteoarthritis (n = 13) and those who had received a total knee replacement 

(n = 17). Their bidirectional LSTM model was designed to predict triaxial knee and 

hip angular kinematics (flexion/extension, abduction/adduction, and 

internal/external rotation) for the sole activity of walking. In contrast, our approach 

in Chapter 5 included one movement parameter (knee flexion angle) for multiple 

activities. Our approach is generalisable across activities, while the approach by 

Renani et al. (2021) is generalisable across movement parameters for only one activity. 

Renani et al. (2021) reported a mean (SD) RMSE of 2.9° (1.1°) and r = 0.99 for knee 

flexion/extension angle, compared to our walking results of RMSE 7.04° (2.6°) to 

9.7° (3.86°), r = 0.85 to 0.98. While the performance of the model by Renani et al. 

(2021) initially seems stronger, several factors may have influenced the results 

including the type of participants (knee osteoarthritis and knee arthroplasty), 

differences in the number of activities included in training data, validation approaches 

and training sample sizes. Those factors require further consideration in future head-

to-head testing between the multiple activity approach used in our study, compared to 

the multiple movement parameter approach proposed by Renani et al. (2021). Future 

studies should also extend on the initial work by Renani et al. (2020) for 

spatiotemporal gait parameters such as including step and stride length, step width, 

toe out angle, cadence, stance, and swing times. 

Machine learning prediction of knee adduction moment from IMU data has 

previously only focused on knee adduction moment during the stance phase of 

walking (He et al., 2019; Wang et al., 2020). The study in Chapter 6, also describes a 

model for the stance phase of walking but expands on these studies by providing 
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predictions for knee flexion moment, compression force, and medial force. It is not 

yet clear if these models for moments and force during the stance phase of walking 

are suitable for other activities. There are significant resource limitations in motion 

analysis laboratories in conducting research into kinetic analysis for other activities, 

especially using stairs. While we were able to calibrate our Vicon camera volume for a 

three-step staircase, we did not use a staircase with integrated force plates, precluding 

our ability to have a reference standard to be able to develop kinetic prediction 

models for negotiating stairs. Custom designed staircases with integrated force plates 

have been described (Whatling et al., 2010), but most motion analysis laboratories do 

not have access to these systems. Therefore, without the gold-standard reference 

standard, machine learning kinetic prediction models for negotiating stairs use do not 

seem likely to be developed in the near future. This may impact clinical utility of 

machine learning kinematic prediction models for patients presenting with stair 

related activity limitation.  

To ensure individualised assessment is possible, future machine learning 

prediction models based on IMU data should be developed across a range of 

kinematic and kinetic movement parameters for a range of clinically important 

activities. Implementation in clinical practice would also require a user interface to 

allow selection of specific movement parameters for selected activities allowing a high 

level of individualisation. Advancement towards clinical implementation requires 

consideration of a broad range of factors, from current clinical practice to up-to-date 

technical knowledge of machine learning architecture and optimisation of an end user 

interface. This would require co-design input from important stakeholder groups to 

improve user experience including patients, clinicians, clinical researchers, data 

scientists and end-user application developers (graphic designer/software engineer) 

(Marvel et al., 2018; Noorbergen et al., 2021). Two factors that may help to minimise 

perceived barriers in adopting IMU technology in clinical practice include the 

development of appropriate user interfaces and ensuring outcomes are clinically 

important and useful to inform clinical decision making (Papi et al., 2016). One study 

has investigated usability and utility of an IMU interface for people with knee 

osteoarthritis that was designed for the purposes of human activity recognition and 
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knee joint loading (Emmerzaal et al., 2020). An iterative process was used for the 

development of the final user interface informed by feedback from clinicians and 

patients. They reported good usability of the patient interface, but poorer clinician 

perceived utility, highlighting the need for strong interface design supported by a 

robust human activity recognition system validated on the intended end user 

population (see section 2.5.5 and 2.5.7). Additional co-design work is required that 

includes a range of stakeholders. Having representatives for all stakeholder groups 

would more likely result in a user friendly and accessible interface, with greater clinical 

utility, that integrates a pipeline of machine learning models in like those presented 

within this thesis. 

7.3.1 Bias and Limitations of Machine Learning Studies 

Artificial intelligence approaches are set to disrupt healthcare (Jiang et al., 2017) 

although care is required in its design as there is increasing recognition that artificial 

intelligence is inherently biased (Parikh et al., 2019). Machine learning prediction 

models are only as good as the data on which they are trained and are affected by 

unintended and societal biases (e.g. racism, weight stigma, sexism) (Parikh et al., 

2019). Machine learning in healthcare has the potential to be affected by missing data, 

inappropriate sample sizes and classification or measurement error that may 

unintentionally adversely impact vulnerable populations (Gianfrancesco et al., 2018).   

The machine learning models reported within this thesis were trained on data 

from a subset of the diverse population who have knee osteoarthritis. The 

participants appeared to have a BMI, knee osteoarthritis grade, activity limitation, and 

pain, that were representative of populations described in the majority of randomised 

controlled trials (Fransen et al., 2015) and cohort studies. Therefore, the machine 

learning models may be of use in future clinically oriented studies, and for patients 

who meet the same inclusion criteria. However, because there were inclusion and 

exclusion criteria, there is potentially variability in how the prediction models would 

perform across populations that differ from those in the sample. For example, 

participants were 60% male, predominantly Caucasian, with an average BMI ~25 

kg/m2, and age of 66 years. It has been reported that there are sex-specific (Segal et 

al., 2013), race-specific (Sims et al., 2009), BMI-specific (Verlaan et al., 2018), and age-
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specific (Favre et al., 2014) differences in movement patterns in people with knee 

osteoarthritis. Therefore, further investigation needs to explore if these factors need 

to be included in models to optimise performance of human activity recognition and 

biomechanical prediction models for people with knee osteoarthritis. Consideration 

of these factors is of critical importance to minimise cultural biases in future machine 

learning models for people with knee osteoarthritis. It is also unknown how the 

models within this thesis perform across the different levels of self-reported activity 

limitation, pain intensity and radiological grade. Those factors have the potential to 

also impact the results and requires exploration in future studies to identify any such 

limitations of machine learning models that use IMU data.  

Performance of machine learning prediction models may be affected by the 

location where the data was collected. IMU data used to train the models in Chapters 

4 to 6 were collected in laboratory conditions. Therefore, there is uncertainty about 

how the models will perform when tested on data collected in free-living 

environments. Considering there is some indication in the literature that people move 

differently when observed compared to when they are in free-living environments 

(Brodie et al., 2016; Hillel et al., 2019), machine learning models trained on laboratory 

data may have diminished validity in free-living environments. For example, in 20 

young healthy participants, Gyllensten and Bonomi (2011) reported a drop in 

prediction accuracy from 92% to 75% for an activity recognition neural network that 

used waist-mounted accelerometer data collected in a laboratory compared to a home 

environment. Future studies must consider training models on data collected in free-

living condition or validate laboratory-based models in free-living environments.  

7.3.2 Selecting Appropriate Activities 

There is no consensus about the type and number of activities that should be 

included for training phase machine learning prediction models. Ideally, if a model is 

generalisable, the selected activities should be broad enough in scope to be relevant 

for the majority of the population with the condition, while sufficiently narrow that 

data provided to a clinician is clinically meaningful. The models presented in Chapter 

4 to 6 were developed for the activities of walking, negotiating stairs and transitioning 

to and from a chair, as they are thought to be the activities most commonly affected 
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in people with knee osteoarthritis (Dobson et al., 2013). However, people perform a 

range of other activities (e.g. performing exercise, walking on an incline, and stepping 

over an object, turning around a corner) which may require modifications to the 

human activity recognition classifier. But including additional activities may affect 

model performance. 

A system that is individualised would need to accommodate other activities by 

including only activities of interest as part of training the machine learning model and 

excluding activities that are not of interest at the point of classification. Use of a 

sufficiently large ‘big data’ database that includes a range of potentially clinically 

important activities may help avoid that limitation. Including other activities would 

require a significant amount of additional data to be collected or alternatively the 

addition of simulated or augmented data (Renani et al., 2021) (see section 7.3.4.1). To 

train individualised models only on selected activities of interest from a larger cloud 

database (see section 7.3.4.3) may help to limit the number of activities on which the 

model is trained, preserving model performance. Excluding activities outside of the 

training dataset at the point of classification would require those activities to be 

labelled as ‘unknown’ based on an algorithm that evaluates the probability that the 

wearer was not performing any activities within the training dataset (Emmerzaal et al., 

2020). Both big data and exclusion-based methods are likely to be important for 

implementation but have yet to be tested.  

7.3.3 Minimising the Burden for Patients and Clinicians 

The foundation for obtaining clinically useful information from machine 

learning models that use IMU data has been established across knee osteoarthritis and 

other health conditions (He et al., 2019; Rast & Labruyère, 2020; Tan, Beheshti, et al., 

2021; Tan et al., 2022; Wang et al., 2020; Wang et al., 2021). Machine learning 

architecture will continue to be optimised for specific clinical conditions, and ongoing 

academic and commercial research focused on improving hardware and software will 

influence the costs and access of integrating technology into clinical practice. 

However, adopting new technology comes with the burden of learning the benefits 

and limitations of a system.  
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For machine learning based on IMU data to be adopted into routine clinical 

practice, it is essential that developers of this technology minimise the burden for 

both patients and clinicians. Accounting for bias within and limitations of previous 

studies will help to reduce this burden. Other factors that may influence clinicians 

adopting IMU-machine learning systems include data handling and processing 

requirements, the number of IMUs required, and IMU placement limitations. 

7.3.3.1 Automated Data Segmentation and Labelling 

IMU datasets can be very large, especially if collected over many hours from 

multiple sensors. A recent systematic review by Kobsar et al. (2020) has found that 

studies using IMU in people with knee osteoarthritis have not developed integrated 

data handling pipelines for human activity recognition and biomechanical outcomes. 

This is of concern as processing IMU data in clinical practice can be time consuming, 

particularly so for unlabelled data collected in free-living environments. The series of 

machine learning models presented in this thesis were designed to be used 

sequentially as an automated data handling pipeline to provide clinically important 

information. However, the proposed pipeline still requires proof-of-concept testing. 

Human activity recognition and biomechanical prediction models that are 

designed to be integrated assist in minimising the time burden for clinicians by 

removing the need for them to develop expertise and spend time processing and 

labelling IMU data. Our CNN human activity recognition model in Chapter 4 was 

designed with a sliding window data sampling approach (Figure 4-5) which provides 

the opportunity to output the start and end times of an activity or phase of an activity 

and therefore label an activity in a long data stream. This provides an automated 

method of segmenting the data for subsequent biomechanical analysis and is an 

alternative method to gait event detection (Fadillioglu et al., 2020). However, we did 

not use the human activity recognition model for segmentation of data in subsequent 

studies. A true test of clinical utility for an integrated system will require exploration 

of whether a data handling pipeline can be created using the human activity 

recognition model to effectively segment data for subsequent biomechanical analysis. 

While this is theoretically straightforward and intuitively the next step, it is untested. 
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7.3.3.2 Technology Needs to Be Convenient 

Convenience is a key determining factor related to adoption of technology by 

health care workers (Arkorful et al., 2020), and a key practical issue that may affect 

compliance wearing sensor based technology. Prediction models requiring fewer 

IMUs would theoretically improve the patient and clinician burden as fewer IMUs 

would be more discrete, reduce the time burden of organising adhesive and placing 

IMUs accurately, as well as reduce data processing time.  

We elected to place IMUs on the thigh and shank to explore the performance of 

single-leg compared to double-leg models. In comparison, Renani et al. (2021) trained 

their kinematic prediction model on four IMUs placed on the pelvis, thigh, shank, and 

foot for walking. They demonstrated lower prediction error than both the single- or 

double-leg models, possibly suggesting that four IMUs may be better placed across 

different body regions rather than across two legs. However as other explanations 

may account for those differences (e.g. classifying multiple activities vs only walking), 

further investigation is required to explore the best number and location of IMUs in 

head-to-head trials.  

While fewer IMUs is more convenient, a potential trade-off exists between the 

number of IMUs and a model’s prediction error. In Chapters 5 and 6, we explored 

the effect on prediction accuracy of two different types of models that included input 

data from different numbers of IMUs. The single-leg model was trained on data from 

two IMUs placed on the leg of interest, while the double-leg model included training 

data from two additional IMUs on the contralateral leg. In Chapters 5 the single-leg 

sagittal plane angular kinematic model demonstrated lower prediction error than the 

double-leg model for the activities of walking or negotiating stairs. We concluded that 

a single-leg model (2 IMUs on one leg) may be more appropriate for ambulatory 

activities where each leg is moving asynchronously – for instance, when one leg is 

swinging the other is in stance. In direct contrast, for sit-to-stand and stand-to-sit the 

double-leg model was more accurate. However, the differences in prediction error 

between the single-leg and double-leg kinematic prediction models were small and 

potentially not clinically significant. Therefore, two IMUs on a single leg may be 

preferable because of the convenience factor, compared to placing twice as many 
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IMUs and processing twice as much data. As IMU based prediction models evolve, 

such design trade-offs will be an on-going consideration.   

While we found that single-leg models had less prediction error for walking in 

our kinematic model, it was unclear prior to the study in Chapter 6 if double- or 

single-leg models were more accurate for kinetic prediction. The results in Chapter 6 

suggest that double-leg (LOSOCV) models are up to 23% more accurate for medial 

force predictions, 6% more accurate for knee adduction moment, but only 1% to 2% 

different for compression force and flexion moment (Table 6-4). This may suggest 

there is a stronger relationship between how each leg moves in the coronal plane than 

for other planes of movement. Also, when individualising the model, there was only 

1% to 2% difference in prediction error for coronal plane movement parameters, 

which may suggest that across the population with knee osteoarthritis, there may be 

higher variability in the coronal plane movement parameters. This has two significant 

implications for future development of kinetic prediction models for medial force and 

knee adduction moment, (a) for generalisable models double-leg models may be 

preferred, and (b) if individualised models are developed, single-leg models may be 

sufficient. Further studies are required to compare model performance using those 

approaches and explore convenience for the user using a greater number of IMUs 

compared to collecting data within a consultation to help train an individualised 

model.   

The most convenient situation would be to have a single IMU that provides 

sufficient information to train a machine learning model with minimal prediction 

error. Machine learning models have been trained on data from as few as one IMU 

for the purposes of human activity recognition and predicting movement parameters 

of the lower limbs. A number of studies have investigated the performance of 

biomechanical prediction models using a single IMU placed on different body regions 

on healthy participants (Coskun et al., 2015; Jiang et al., 2020; Lee & Lee, 2022; Lim 

et al., 2020; Sung et al., 2022). While those studies provide preliminary evidence that 

single IMUs can be used to predict a range of movement parameters in healthy 

people, it is unclear how those models perform for people with knee osteoarthritis. 

Future studies need to determine the number and best location of IMUs required to 
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maximise model performance while minimising inconvenience for different 

populations.  

In both multiple and single IMU arrangements, IMU misplacement requires 

consideration. Accurate placement increases the burden and misplacement may 

impact the validity of the results. Future investigation needs to investigate the impact 

of IMU misplacement and focus on the development of machine learning prediction 

models using IMU data that are robust to variability in sensor placement.  

Another factor that impacts user convenience is the type and number of 

technologies used within a prediction model. IMUs might be only one part of an 

integrated human activity recognition or biomechanical prediction machine learning 

model. For example, a range of environmental and body worn technology has been 

used for human activity recognition, including cameras, smart watches, smart 

shoes/pressure soles, global positioning systems, and Wi-Fi signals (Qiu et al., 2022). 

Combinations of technology may be required to optimise model performance but 

increasing number of technologies integrated impact user burden. To ensure 

convenience of use for both the wearer and clinician, the required technology for any 

machine learning system needs to use sensor data that is as unobtrusive as possible, 

has limited privacy issues, is affordable, and harnesses technology that is readily 

available in society.   

7.3.4 When is Accurate, Accurate Enough? 

Clinicians collect outcomes, and for those outcomes to be clinically useful, their 

statistical performance must be known. Clinically meaningful data can help to inform 

clinical reasoning. However, defining clinically meaningful performance of a machine 

learning model is complex. For human activity recognition there are no guidelines 

that determine what level of accuracy (overall accuracy), precision (positive predictive 

value) or recall (sensitivity) is clinically meaningful. Incorrect activity classifications 

will impact user burden, and therefore should be optimised. Ideally machine learning 

biomechanical prediction models would be as precise as gold-standard motion 

analysis systems. Yet error is ever present and needs to be interpreted within a clinical 

context. For implementation to occur, machine learning models using IMU data may 

need to integrate additional individual patient characteristics (e.g. BMI, sex, 
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psychosocial factors), include only relevant activities, potentially be individualised, 

have robust validation performed for data collected in free-living environments, and 

have methods for handling activities the system was not designed to detect. The 

prediction error is dependent on those factors and others including the population, 

intra-participant variability, inter-participant variability, the activity, and the type of 

movement parameter.  

In biomechanical research, a common error threshold to determine clinically 

relevant reliability (McGinley et al., 2009) and validity (Robert-Lachaine et al., 2017; 

Robert-Lachaine et al., 2020) is 5°. Physiotherapists on average demonstrate a visual 

accuracy threshold of 12° for detecting a change in movement across body regions 

for single plane movement (Abbott et al., 2022). Also available are smart phone 

camera-based apps that when compared to the gold-standard Vicon system have been 

reported to have mean difference 5° (95% limits of agreement ranging -17.6° to 7.6°, 

and a minimum detectable change of 6°) (Krause et al., 2015). Although smart phone 

camera-based apps are not possible use across unrestricted free-living environments 

(i.e. outside the field of view). 

The acceptable level of accuracy is a clinical decision rather than a statistical one, 

and likely to be context specific. For biomechanical predictions to have any meaning 

in clinical practice, the change in a movement parameter must be larger than the 

measurement error of the outcome measure. The degree of clinically acceptable 

prediction error would differ depending on the activity of interest. For example, a 5° 

change in knee flexion is likely to be more clinically meaningful for the stance phase 

during walking where the sagittal plane range of movement is relatively small 

compared to sit-to-stand where 5° is arguably trivial. Therefore, clinicians need to 

consider that the system they adopt should be at least as accurate as any expected 

changes in their patient’s movement pattern to be confident a true change in 

movement has occurred.  

For knee joint kinematics measured with IMUs, a systematic review by Poitras 

et al. (2019) reported strong evidence that the RMSE ranges between 1° to 11.5° and 

correlation coefficients (r) between 0.4 to 1. While the RMSE tells a clinician how 
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similar the prediction model is to the reference standard (the average distance 

between the prediction and reference standard), the r values indicate if the model has 

a relationship with the reference standard, which for a pattern of movement is a 

non-linear prediction. The pattern of movement is important if additional calculations 

are made in reference to the time scale, such as the rate of change of a movement 

parameter (e.g. degrees/second, knee adduction impulse (Nm/kg/s) – outcomes that 

may be of clinical interest. The results of the kinematic prediction model presented in 

Table 5-3 show that the RMSE is on the higher end of the reported range of IMU 

studies that use traditional methods of estimating kinematics (e.g. Kalman filter) 

(Poitras et al., 2019). Multiple changes could be made to optimise the accuracy, 

including enhancing the training dataset, developing activity specific models, 

individualising prediction models, or refinement of machine learning architecture. 

7.3.4.1 Enhancing the Training Dataset 

Collecting biomechanical data is time and resource heavy. We recruited 18 

participants for the machine learning studies as that number was consistent with the 

number of participants in other studies (range n = 6 to 30) (Findlow et al., 2008; He 

et al., 2019; Renani et al., 2021; Stetter et al., 2020; Stetter et al., 2019; Wouda et al., 

2018). With further data cleaning for studies in Chapter 5 and 6, the training dataset 

required two participant’s data to be removed. Data cleaning is required because it is 

common in biomechanical studies that not all collected data is of sufficient quality 

due to procedural issues or technological malfunction.  

The machine learning models within this thesis were trained only on the actual 

data collected from the IMU and Vicon (+ / - force plate) systems. Using simulated 

or augmented data in addition to the actual collected data is one way of increasing the 

sample size and variability within the training dataset. Simulating IMU data involves 

using the reference standard (e.g. Vicon) data to develop additional simulated 

samples, while augmenting data involves creating additional samples by offsetting or 

warping the magnitude or time domains (Figure 7-2). 
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Figure 7-2. Examples of augmented data. 

 

Note. “Various data augmentation methods used to generate synthetic kinematic data: (a) magnitude offset, (b) 
magnitude warping, (c) combined magnitude offset and magnitude warping, (d) time warping, and (e) 
combined time warping and magnitude warping.” From " The Use of Synthetic IMU Signals in the Training of 
Deep Learning Models Significantly Improves the Accuracy of Joint Kinematic Predictions" by M.S. Renani, 
A.M. Eustace, C.A. Myers, and C.W. Clary, 2021, Sensors, 21(17), p. 6. (https://doi.org/10.3390/s21175876). 
Copyright 2021 by the authors (Creative Commons) 

 
Performance of IMU-machine learning models improves when trained on 

simulated or augmented data (Dorschky et al., 2020; Mundt, Koeppe, David, Witter, 

et al., 2020; Renani et al., 2021). There is some evidence that combining simulated and 

augmented data with real IMU training data when predicting sagittal plane angular 

kinematics improves prediction error by 30% (Dorschky et al., 2020) to 50% (Renani 

et al., 2021), but only has limited impact (6%) on kinetic parameter prediction 

(Dorschky et al., 2020). This more substantial improvement in kinematic prediction 

compared to kinetic prediction has been replicated with authors concluding that for 

kinetic parameters, accuracy seems to be improved with more noise from soft tissue 

artefact in the data than from the size of the augmented data set (Mundt, Koeppe, 

David, Witter, et al., 2020). Augmenting data to introduce ‘jittering’ to simulate noise 

(e.g. soft tissue artefact) in the data can improve kinetic prediction model 

performance (Um et al., 2017). Simulating and augmenting data helps to reduce 

researcher burden by reducing the number of participants required and trials 

collected, while augmented data has the added benefit of introducing variability into 



230 
 

the model which may help to improve accuracy and generalisability. Further 

investigation using these approaches on the models presented within this thesis may 

help reduce prediction error.  

Another consideration is a ‘data-centric’ approach to building machine learning 

models (Ng, 2021). Traditional approaches to building machine learning models have 

focused on what is known as a ‘model-centric’ approach whereby model performance 

is enhanced through optimising machine learning architecture and training 

procedures. The data-centric approach to enhancing performance of machine learning 

models was proposed by globally recognised leader in artificial intelligence Andrew 

Ng. He suggests that while 80% of a machine learning system depends on the input 

data, and 20% on the machine learning model, only 1% of the research has focused 

on optimising data and 99% of research has focused on optimising machine learning 

architecture (Ng, 2021). Some aspects of a data-centric approach to developing 

machine learning prediction models for IMU data include focusing on consistency of 

data collection methods, assessing of data quality and data cleaning (Mazumder et al., 

2022). While we had specific protocols and processes developed for those purposes, 

further investigation should focus on optimising those aspects of developing the 

machine learning model that would further enhance the training dataset.  

7.3.4.2 Developing Activity-specific Models  

Most machine learning biomechanical prediction models are trained on a single 

activity, limiting their generalisability for use in free-living environments (He et al., 

2019; Lim et al., 2020; Mundt, Koeppe, David, Witter, et al., 2020; Mundt, Thomsen, 

et al., 2020; Renani et al., 2021; Wang et al., 2020 ). The most straight forward method 

of developing a machine learning biomechanical prediction model for multiple 

activities would be to collect IMU data from a sufficiently large number of activities 

to develop a single generalisable model. Yet, there are a wide range of activities that 

are performed by an individual and across different populations, which may affect the 

validity of a model. In Chapter 5, we trained a deep learning model to predict sagittal 

plane angular kinematics for a range of clinically important activities for people with 

knee osteoarthritis (walking, negotiating stairs and transitioning to and from a chair) 

(Dobson et al., 2013). But it is unclear if this approach, combing all activities together 
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to train a model, affects model performance. The results of Chapter 5 demonstrate 

that when a biomechanical prediction model is trained on multiple activities the 

model performance is not equal across activities – a concept that is supported in the 

two studies by Stetter et al. (Stetter et al., 2020; Stetter et al., 2019). Participants in 

those studies had two IMUs placed on the thigh and shank on a single leg. For our 

single-leg kinematic models, we identified higher prediction error for activities where 

both legs are doing the same movement (e.g. sit-to-stand) compared to activities 

where each leg is doing different movement (e.g. walking). Consistent with our 

findings, previous studies reported higher prediction error for two-leg synchronous 

activities (e.g. jumping) compared to asynchronous activities (e.g. walking) (Stetter et 

al., 2019). Together these findings suggest that either double-leg models are more 

appropriate for symmetrical two leg activities or that separate activity specific models 

may be required for each activity.  

While differences in requirements of the lower limbs during different activities 

seem to drive the difference in model performance, this has not yet been extensively 

tested and requires further investigation. Further, it is possible that some movement 

parameters may be more accurate when trained on data that considers both lower 

limbs (double-leg model) rather than only the one being predicted (single-leg model), 

a concept that was previously explored in the previous section 7.3.3.2. 

7.3.4.3 Individualising IMU-Machine Learning Prediction Models 

Customisable (e.g. for activities only relevant to the patient) and individualised 

models (i.e. enhanced by the patient’s own data) may improve machine learning 

prediction models that use IMU data. The study presented in Chapter 6 set out to 

explore the effect of individualising a machine learning prediction model by adding 

some data from the test participant to the training of the model that included data 

from all other participants. We found 9% to 36% better performance across kinetic 

movement parameters (Table 6-3) when the models were individualised. This 

approach would presumably improve the performance of the human activity 

recognition and sagittal plane angular prediction models in Chapters 4 and 5, but this 

has yet to be tested. 
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Depending on how a machine learning data handling pipeline for IMU data 

was created, there would be different requirements on a clinician and patient to 

collect and process the relevant data. During a clinical encounter, one option would 

be to have the patient first assessed by a clinician, leave the clinic, then wear the IMUs 

in the required environment, after which the (small) data would be offloaded and 

uploaded to a local IMU system where the machine learning pipeline would provide 

predictions for which activities were performed and the selected movement 

parameters (Figure 7-3).   

Figure 7-3. Generalisable prediction model workflow 

 

Generalisable models have previously been attractive because if trained on a 

sufficiently large number of the heterogeneous population, they can be applied more 

broadly across that population. But generalisable models have limitations for complex 

systems like people who have knee osteoarthritis, and the various biopsychosocial 

factors that affect movement patterns. Previous sections within this discussion 

chapter have highlighted the limitations of making clinical decisions about an 

individual patient from group-based data. It is clear that in a clinical setting, ideally, 

both clinical outcomes and measures of physical function are individualised and 

personally meaningful.  

As the future of healthcare grows to include options for instantaneous 

uploading and processing of data files, one method of individualising models is to use 

data from a single person with knee osteoarthritis to help improve the prediction 

accuracy of generalisable models when applied to that same person. Personalised 

models have also improved prediction accuracy for other populations. For example, 

for people with Parkinson’s disease, Rodríguez-Martín et al. (2017) developed a 

machine learning model to predict freezing of gait episodes, demonstrating an 11% 
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improvement in personalised models compared to a generalisable model using a 

leave-one-subject-out cross-validation approach.  

However, in clinical practice there is no reference standard (e.g. Vicon and force 

plates), which is a significant limitation for the methods used in Chapter 6 to 

personalise the models. In a clinic it may be possible to use a non-gold-standard 

system like Microsoft Kinect for estimating kinematics (Pfister et al., 2014) as a 

reference standard, albeit with reduced precision than Vicon. But there seems to be 

no commercially available motion analysis systems that also integrate force plate data 

required to establish kinetic reference standards. Therefore, one solution would be to 

develop dynamic individualised prediction models instead of a single generalisable 

prediction model. A dynamic approach that aims to accommodate for heterogeneity 

could use a ‘closest match’ method to machine learning model building whereby there 

is a cloud database housing large datasets (big data) from a diverse range of people 

with knee osteoarthritis (Figure 7-4).  

Figure 7-4. Closest match model building based on patient’s clinic data 

 

During the patient-clinician physical assessment, the patient would wear the 

IMUs, perform relevant activities and the clinician would then upload their personal 

small dataset to the cloud-based system that houses the database. The cloud-based 

system then compares the patient’s data to that in the database, identifies selected 
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people’s data from the database that is the closest match to the patient and 

automatically trains a new, personalised model for the patient. Theoretically, a highly 

personalised model would include IMU data, and possibly other patient-specific data 

across a range of domains may improve machine learning model performance. 

If future studies demonstrate that adding highly personalised data improves 

performance of generalisable IMU-machine learning prediction models, big data 

approaches to creating highly personalised IMU-based monitoring systems may be 

eventually included in routine clinical practice and help inform individualised 

management. 

7.3.4.4 Health Researchers, Clinicians, and Data Scientists Working Together 

The studies presented within Chapters 4 to 6 of this thesis represent an 

interdisciplinary approach that brought together experts in clinical practice, data 

science, health research, biomechanics, biostatistics, and data management. Clinicians 

are experts in diagnostics and the management of health conditions. They understand 

how a condition affects a person based on their foundational knowledge and skills, 

research evidence, and practical experience, which are combined with expertise in 

interacting with individual patients. Importantly, clinicians can provide insight into 

practical considerations about workflow when using technology in practice (Figure 

7-3 and Figure 7-4). Health researchers are experts in conducting quantitative or 

qualitative studies for populations with health conditions to, amongst other aims, help 

aid clinicians in clinical decision making. As health data continues to grow with 

integration of technology, data scientists bring expertise in handling large datasets to 

find patterns in data through various methods that can include machine learning and 

other statistical methods. Into the future, it is essential that experts in each of these 

fields work together to optimise technology driven applications like machine learning 

models that use IMU data. 

Technology facilitated healthcare is becoming increasingly ubiquitous, but more 

commonly than not, health researchers and clinicians do not have the technical 

expertise to handle large data sets like those produced by IMUs, nor develop machine 

learning models. This may provide an explanation as to why most IMU-based 

machine learning studies cited within this thesis involved data scientists or machine 
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learning experts but not health researchers or clinicians. While those studies provide 

important foundational work that may help answer clinical questions, the focus on 

those studies is usually model-centric (Ng, 2021), one of optimising machine learning 

architecture or comparing different type of machine learning models. An alternative, 

more data-centric approach is to work with collaborators with diverse but 

complementary skill sets. Together, they can ensure that high quality, clinically 

meaningful training data (described earlier in this section) is collected to help design 

machine learning models to output information that is clinically useful. Further work 

is required that take advantage of knowledge from a range of stakeholders to ensure 

any system that is to be eventually implemented optimises not just machine learning 

model architecture, but also clinical and practical considerations about how the 

information would eventually be used.  

7.3.5 Summary 

The findings presented in Chapters 4 to 6 provide one of the earliest bodies of 

work describing the development of machine learning using IMU data for human 

activity recognition and biomechanical prediction in people with knee osteoarthritis 

for clinically relevant activities. Those studies build on foundational work that 

developed IMU prediction models in healthy populations and a limited number of 

studies that included people with knee osteoarthritis. Prior to this body of work, 

machine learning models for IMU data intended for use in people with knee 

osteoarthritis had been developed as discrete systems, including only the single 

activity of walking, and typically only for single movement parameters. The proposed 

pipeline of machine learning models addresses a key gap in the literature that 

considers data handling requirements for implementation in clinical practice, 

providing information about multiple clinically relevant activities and movement 

parameters. Prior to implementation of IMUs and machine learning data handling 

pipelines in clinical practice, there is a requirement for a significant amount of 

research to address a number of clinical and machine learning methodological 

questions. With further investigation, machine learning models like those presented in 

this thesis may provide researchers and clinicians a tool that could help assess 
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individualised baseline movement patterns or monitor changes in movement patterns 

over time to augment patient-reported outcomes and performance-based testing.  

7.4 IMUs as part of Individualised Assessment and Management 

The systematic review in Chapter 3 reported a tenuous relationship between 

changes in movement parameters and clinical outcomes in people with knee 

osteoarthritis. Section 7.1 unpacked the reasons why the studies included in the 

systematic review did not consistently find a relationship with one concept being the 

heterogeneity of patient characteristics across the population. In order to 

accommodate heterogeneity, there are calls for individualised assessment and 

management in clinical practice (Caneiro, O'Sullivan, et al., 2020; Kongsted et al., 

2020; Lin et al., 2020). To facilitate individualised assessment, IMUs paired with 

machine learning approaches could help facilitate monitoring of patients in free-living 

environments. This section will explore the intersection of clinical practice, clinical 

biomechanical research and IMU monitoring for the purposes of individualised 

assessment and management.  

7.4.1 Towards Individualised Assessment and Management 

Prior to implementation of IMUs and machine learning data handling 

approaches in clinical practice, there is a need to establish the type of patient profiles 

that may benefit from monitoring of activities and movement patterns that might be 

amenable to modification using targeted interventions. Across the population of 

people with knee osteoarthritis, heterogeneity exists across many aspects of a patient’s 

presentation (Dell’Isola et al., 2016) and response to intervention (Knoop et al., 

2011). Improved treatment response may occur should heterogeneity be accounted 

for, although there is currently no clear evidence for this in people with knee 

osteoarthritis. Therefore, there have been calls for greater focus on individualised and 

multidimensional assessment and interventions for people with knee osteoarthritis 

(Caneiro, O'Sullivan, et al., 2020; Holden et al., 2021; Hunter, 2018; Hutting et al., 

2022; Karsdal et al., 2014; Kittelson et al., 2014; Kongsted et al., 2020; Rausch 

Osthoff et al., 2018) and other musculoskeletal conditions (Caneiro, Roos, et al., 

2020).  
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One step towards individualising assessment and management for people with 

knee osteoarthritis is using an approach known as phenotyping (Lane et al., 2011). 

Phenotyping is characterising subgroups or clusters of people based on multiple 

observable common data points across a population with a health condition 

(Dell’Isola et al., 2016; Felson, 2010; Kittelson et al., 2014; van Spil et al., 2020). There 

are multiple studies now demonstrating that different clinical phenotypes of knee 

osteoarthritis exist that have different levels of activity limitation and pain (Dell’Isola 

et al., 2016; Dell’Isola & Steultjens, 2018; Felson, 2010; Kittelson et al., 2014; Knoop 

et al., 2011; Roman-Blas et al., 2020). One of those phenotypes that is estimated to 

represent 12% to 22% of the population with knee osteoarthritis is related to 

biomechanical alterations that may respond more favourably to individualised 

interventions that target movement patterns (Dell’Isola et al., 2016; Roman-Blas et al., 

2020). 

Phenotyping in people with knee osteoarthritis demonstrates that biomechanical 

factors such as specific movement parameters or movement patterns may be more 

clinically relevant for some people, and less for others. That diversity in clinical 

relevance of movement patterns was not considered within the studies included 

within the systematic review presented in Chapter 3 in people with knee 

osteoarthritis, nor in a similar systematic review in people with low back pain (Wernli, 

Tan, et al., 2020). However, when study designs can accommodate heterogeneity, 

there seems to be stronger relationships between movement patterns and clinical 

outcomes for people with low back pain (Wernli, O'Sullivan, et al., 2020; Wernli et al., 

2021). The results of the systematic review and others that demonstrated similar 

findings may have been different should the studies included only participants with a 

biomechanical phenotype.  

In the future, it may be possible to assess each patient or research participant 

using machine learning human activity recognition and biomechanical prediction 

models like those presented in Chapters 4 to 6. Should the models be integrated into 

a data handling pipeline, a machine learning IMU system could facilitate assessment 

of movement patterns that match a biomechanical phenotype. Individualised 

assessment using machine learning-based systems of IMU data for the prediction of 
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knee moments and forces, like that presented in Chapter 6 could help identify 

baseline biomechanical risk factors for structural progression (Chehab et al., 2014). 

There remains the possibility that interventions that target movement patterns or 

knee joint malalignment could slow the structural progression in knee osteoarthritis. 

For example, there is evidence that people with knee osteoarthritis who have more 

toe out have reduced odds of structural progression over 18 months compared to 

those who have less toe out (Chang et al., 2007). That suggests that gait retraining 

(Hunt et al., 2018), an intervention demonstrated to successfully reduce knee 

adduction moment in Chapter 3, may be a suitable option to modify biomechanical 

risk factors for structural progression. Further studies should investigate if reductions 

in knee adduction moment is a mediator of slower structural progression in people 

with knee osteoarthritis. Should future research demonstrate the ability to slow 

progression of structural change through various movement-based or exercise 

interventions, machine learning systems of IMU data are well positioned to monitor 

improvement or worsening of biomechanical risk factors in both clinical practice and 

research. 

Recently there are detailed descriptions about the framework for comprehensive 

individualised biopsychosocial interventions for people with knee osteoarthritis 

(Preece et al., 2021) that were adapted from Cognitive Functional Therapy for people 

with low back pain (O’Sullivan et al., 2018). The proposed intervention (Cognitive 

Muscular Therapy) described by Preece et al. (2021) is a biopsychosocial approach for 

the management of people with knee osteoarthritis that targets maladaptive beliefs 

and behavioural responses, reduction of muscular co-contraction and knee loads, and 

functional retraining. The approaches described by Preece et al. (2021) and O’Sullivan 

et al. (2018) suggest that management may target movement patterns only after sound 

clinical reasoning that establishes a justifiable relationship between movement 

patterns and activity limitation or pain. Currently, no studies have used a 

comprehensive individualised assessment using IMU data as the key input for 

individualised management and provided details about changes in both biomechanical 

and clinical outcomes in people with knee osteoarthritis. Machine learning pipelines 
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of IMU data for prediction of clinically relevant activities and biomechanics could 

help address this gap in the literature. 

7.4.2 Individualised Movement Patterns can be Clinically Relevant 

The authors of the OARSI recommendations for performance-based tests to 

assess physical function in people with knee osteoarthritis suggest that IMU 

technology could be used for both activity monitoring and motion analysis to 

complement patient-reported outcome measures and performance-based tests 

(Dobson et al., 2013). There are several studies demonstrating the clinical application 

IMUs for people with knee osteoarthritis (Kobsar & Ferber, 2018; Kobsar et al., 

2017; Wang et al., 2021) and other health conditions (Dorsch et al., 2014; Ginis et al., 

2016; Kent et al., 2015; Wernli, O'Sullivan, et al., 2020). Some studies have 

demonstrated a relationship between changes in movement parameters and clinical 

outcomes. For example, an experimental single-case series of low back pain 

demonstrated a relationship between a change in movement measured with IMUs, 

and change in activity limitation or pain occurred 74% of the time when the 

biomechanical outcomes were selected based on an activities reported in the Patient 

Specific Functional Scale (Wernli, O'Sullivan, et al., 2020). For the majority of the 

participants (10/12) in that study, there was a strong correlation (r ≥ 0.5) between 

changes in movement pattern and clinical outcome for at least one biomechanical 

outcome. The authors of that study concluded that patients were demonstrating a 

‘less protective’ movement pattern because of consistent changes across participants 

with increases in range of movement and speed with reduced muscle activation across 

a range of activities. 

There is also early work demonstrating that IMUs data can be used to track 

participant-specific movement patterns in people with knee osteoarthritis (Kobsar & 

Ferber, 2018). That study used principal component analysis to reduce the high 

dimensionality of baseline accelerometer gait features, followed by a traditional 

machine learning approach (support vector machine) to determine if change occurred. 

Those results demonstrated that change in individualised principal component 

acceleration patterns from IMUs is highly correlated with patient-reported outcome 

measures (KOOS) (Spearman’s rank correlation coefficient = 0.78, r = 0.95) (Kobsar 



240 
 

& Ferber, 2018). They used linear acceleration from three IMUs placed on the lower 

back, thigh, and shank to train and test the machine learning model. However, linear 

accelerations are not a typical movement parameter that have clear clinical relevance 

based on established evidence that could help guide clinical decisions, like those 

described in section 2.1.3.1 and 2.1.4. More traditionally, angular kinematics, joint 

forces or moments or muscle activity parameters have been used as measures of 

impairment or abnormal movement patterns. One issue recognised by Kobsar and 

Ferber (2018) is that univariate analysis of changes in commonly investigated 

movement parameters like knee adduction moment have questionable sensitivity, 

especially in group-based assessment for change – a consideration that is supported 

by the findings of the systematic review presented in Chapter 3. The authors describe 

the clinical application of their system would be to explain the percentage change or 

graphical representation of change for clinicians. That type of system could provide 

important information about change in acceleration data and change in clinical 

outcomes following an intervention. However, to our knowledge there are no studies 

that have identified if specific baseline acceleration characteristics are biomechanical 

risk factors like those studies that have investigated knee adduction moment. It is 

therefore unclear which baseline acceleration characteristics may be potential targets 

for clinical intervention to improve clinical outcomes or slow structural progression. 

In contrast, cross-sectional literature suggests that knee joint kinematic, kinetic and 

muscle activity parameters are related to clinical outcomes or structural progression 

which may have greater potential to inform clinicians about which movement 

patterns to target as part of a patient’s overall management. 

7.4.3 IMUs are Suited to Assessing Two Clinical Paradigms  

IMUs have the potential to assist with clinical reasoning by collecting 

information that can be used by clinicians about the patient’s baseline movement 

patterns and changes in movement patterns over time. Monitoring could be used to 

track progression or change in biomechanical status. Two clinical paradigms exist 

relevant to monitoring a patient using IMUs – (a) monitoring biomechanical risk 

factors for structural progression, and (b) assessment of avoidance behaviours and 

maladaptive movement patterns. 
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7.4.3.1 Monitoring of Biomechanical Risk Factors 

In the future, risk profiles could be identified that provide the opportunity for 

secondary prevention strategies (Mahmoudian et al., 2018) to be implemented that 

have the potential to slow the clinical and structural progression of knee 

osteoarthritis. Granted, it is currently unclear which patients respond to interventions 

that target movement parameters, and if those changes are causally linked to 

prevention of structural progression. But should research identify that some 

individuals be more responsive to a targeted change in movement patterns, part of a 

risk profile assessment in clinical practice could include IMU motion analysis in 

clinical and free-living environments.  

For the activity of walking; knee adduction and flexion moments (Chehab et al., 

2014) and less toe-out (Chang et al., 2007) are all risk factors for structural 

progression of medial knee osteoarthritis. Authors of those studies unanimously 

conclude that interventions should target these risk factors. Therefore, machine 

learning prediction models using IMU data, such as that presented in Chapter 4 and 6, 

provide an opportunity to assess and monitor risk factors like knee adduction 

moment.  

Personal structural and biological risk factors also exist which could also be 

monitored, such as age, BMI, and genetic factors as part of a larger machine learning 

model for prediction of risk of structural progression (Cui et al., 2020; Silverwood et 

al., 2015). Other psychosocial (e.g. mood, fear, confidence) and lifestyle factors (e.g. 

sleep) associated with activity limitation and pain (Lentz et al., 2020) could also be 

monitored. As the cost of IMU systems continues to reduce, and artificial intelligence 

enters the mainstream of day-to-day clinical practice, clinicians may be provided with 

tools capable of recognising pre-clinical knee osteoarthritis and provide early 

intervention strategies targeted towards preventing or reducing structural progression. 

Alternatively, a clinician and patient may collectively wish to focus on monitoring 

activities or movement patterns for the purposes of addressing avoidance behaviours 

or maladaptive movement patterns that are related to activity limitation and pain. 
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7.4.3.2 Avoidance Behaviours and Maladaptive Movement Patterns 

Pain is thought to directly result in altered movement patterns (Hodges & 

Smeets, 2015; Hodges & Tucker, 2011). One alternative explanation for avoidance 

behaviours and altered movement patterns is that people with knee osteoarthritis 

adopt a ‘careful mobility’ strategy (Maly, 2009). Similar interpretations have been 

made across body regions describing ‘protective’ movement patterns (Hodges & 

Tucker, 2011; O’Sullivan et al., 2018). This interpretation is supported by both 

qualitative and quantitative studies. People with knee osteoarthritis describe adjusting 

their behaviour by avoiding or reducing pain provoking activities (Darlow et al., 2018; 

Maly & Krupa, 2007; Vlaeyen & Linton, 2000, 2012; Wallis et al., 2019). There is also 

evidence of fear and reduced confidence performing day-to-day activities (Caneiro et 

al., 2021; Maly & Krupa, 2007; Wallis et al., 2019), which can affect movement 

patterns (Hart, Collins, Ackland, Cowan, et al., 2015).  

 Together, changes in mobility and other behaviour in people with knee 

osteoarthritis can be interpreted as a means of protecting themselves from the 

experience of pain or of avoiding harm to their knee (Maly, 2009). Initially, 

behavioural responses to pain are considered to be adaptive, protective and helpful, 

but only in the short-term. Longer-term changes are thought to be maladaptive, 

provocative and unhelpful because they have a tendency to increase load, reduce 

movement and reduce movement variability during daily activities that collectively 

result in ongoing pain (Hodges & Tucker, 2011; O’Sullivan et al., 2018). Therefore, 

one potential intervention strategy for people with knee osteoarthritis, includes 

targeting maladaptive movement patterns during patient-specific clinically relevant 

activities for the purpose of symptom modification (Lehman, 2018; O’Sullivan et al., 

2018; Preece et al., 2021).  

7.4.4 Assessing Avoidance Behaviours and Maladaptive Movement Patterns 

Patient-reported outcome measures, performance tests and monitoring of 

physical activity intensity do not provide objective data about the number of times or 

the length of time a person performs a range of clinically important activities in 

free-living environments. In qualitative studies, both patients and clinicians expressed 

the belief that IMU systems could be helpful for monitoring physical function, 
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motivating patients, and providing the clinician personalised information to assist 

with clinical decision-making (Papi et al., 2015; Papi et al., 2016). The machine 

learning models presented in this thesis provide a potential to objectively quantify 

IMU data to help assess activity avoidance behaviours or monitor biomechanical risk 

factors. For a clinician, having that information may help facilitate treatment selection 

or help provide motivating feedback to the patient. While there is evidence that IMUs 

in the form of an accelerometer provide information about physical activity intensity 

or active versus sedentary time (Frimpong et al., 2020), those approaches do not 

provide adequate richness of detail about which clinically relevant activities were 

performed, but rather the position or general movement of the body. For example, 

some wearable sensors like the activePAL can provide information about time spent 

sitting, standing, lying, and stepping, which are relevant activities for a person with 

knee osteoarthritis (Frimpong et al., 2020). However, that technology does not 

provide information about other clinically important activities such as whether a 

patient used the stairs or stood from a chair, nor directly provide biomechanical 

information about (potential) clinically relevant movement parameters.  

An IMU-human activity recognition system like that presented in Chapter 4 has 

the potential to provide valuable information for a clinician about avoidance 

behaviours for specific activities (see section 7.4.4.1). Additionally, such a system 

could segment and label data for subsequent biomechanical processing as part of a 

data handling pipeline. It would then be theoretically possible to extract clinically 

useful biomechanical data from the segmented and labelled samples. Segmenting and 

labelling data would reduce the computational resources required and time spent by a 

clinician analysing many hours of biomechanical data.  

During a consultation, a clinician may observe careful mobility strategies such as 

activity avoidance behaviours or maladaptive movement patterns and be interested in 

quantifying their observations using technology. Some clinicians have already adopted 

devices, such as smartphone biomechanical analysis applications and IMUs (based on 

fusion algorithms) into their assessments to quantify movement patterns, although 

those technologies have their limitations (see section 2.3.2.2 and 2.4.2). The machine 

learning prediction models using IMU data for kinematics (Chapter 5) and kinetics 
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(Chapter 6) provide a potential solution for the limitations that exist for current 

technology used in clinical practice. Beyond screening biomechanical risk factors, two 

other potential applications for IMUs include monitoring activity avoidance and 

maladaptive movement patterns. 

7.4.4.1 Monitoring Activity Avoidance 

Careful mobility strategies may initially be adaptive to minimise acute pain. 

However, when pain is persistent, such behavioural responses may become 

maladaptive and result in reduced mobility, deconditioning and ongoing activity 

limitation and pain (Vlaeyen & Linton, 2000, 2012). One potential method of 

assessing avoidance behaviours could be to use IMUs record the amount of time or 

the frequency that a patient engages with an activity (Sparkes et al., 2019). Machine 

learning human activity monitoring using IMU data has the potential to provide 

information about the actual performance of clinically important activities in free-

living environments. Two possible options for activity recognition are through the use 

of event detection algorithms (Fadillioglu et al., 2020), or machine learning based 

human activity recognition (Chapter 4). To provide data about activity avoidance, 

further development is required that integrates the human activity recognition 

machine learning model into a system that can provide information on time or 

frequency of activity engagement. In the future, human activity recognition could aid 

a clinician in their management of a patient by recording data that provides them 

objective information about avoidance behaviours. Combining patient-reported 

outcomes with human activity recognition based on IMU data could provide a 

clinician with a broader understanding of a patient’s physical function and avoidance 

behaviours than patient-reported outcomes alone.  

The following section is a hypothetical case scenario that draws together 

patient-specific information, clinical reasoning and how machine learning human 

activity recognition based on IMU data could be integrated in the management of a 

patient with knee osteoarthritis. 
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CASE STUDY – NELLIE 

Nellie developed insidious onset knee pain in her mid-50s. Now 

a decade later, she has recently experienced increasing symptoms over 

the past 6 months, resulting in her avoiding activities. She can walk as 

far as she likes and does not have pain when sitting or standing. Nellie 

tells her physiotherapist that she has difficulty with ascending 

staircases at work and home because of her knee osteoarthritis, 

resulting in avoidance behaviours that result in her using the elevator 

at work. At home Nellie goes upstairs, one step at a time, sideways, 

always leading with her pain free leg despite being capable of using a 

reciprocal gait pattern.  

Her physiotherapist records outcome measures, including the 

Patient-Specific Functional Scale and Stair Climb Performance Test 

(Dobson et al., 2013). On the Patient-Specific Functional Scale, Nellie 

rates the difficulty using stairs as 8/10 at work, and she takes 22 

seconds to ascend and descend a nine-step staircase.  

In her physiotherapy consultations, she progresses well, building 

strength and confidence ascending a small staircase in the clinic with a 

reciprocal gait pattern. However, she still avoids stairs at work because 

she lacks confidence. The physiotherapist suggests that Nellie wear 

some IMUs to collect some information about how she is moving 

during the day. The clinician shows Nellie how to place the IMUs on 

her legs. She goes to work and completes a normal day. Data from the 

IMUs is uploaded to a cloud-based storage service, and automatically 

processed using the human activity recognition machine learning 

algorithm for people with knee osteoarthritis. No instances of 

ascending stairs are noted during work hours, with only one occasion 

before work and a few after work. 

Both Nellie and the physiotherapist agree, while the 

performance in the clinic has improved, they need to try some 
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behavioural modifications (O’Sullivan et al., 2018; Preece et al., 2021) 

to build her confidence relating to stair use at work. One behavioural 

intervention includes setting up a reminder system to encourage Nellie 

to use the staircase. She agrees that a few days per week she will wear 

the IMUs for the purposes of using that data to count the number of 

times she uses the staircase each day.  

The first day after commencing the behaviour change 

intervention while wearing the IMUs, Nellie used the staircase on two 

occasions. By the final workday and third time wearing the IMUs, 

Nellie used the stairs on five occasions. After four more weeks of 

wearing the IMUs, the IMU-based human activity recognition system 

indicates Nellie is using the staircase at work consistently more than 

eight times per day. She rates her difficulty ascending the staircase as 

3/10 on the Patient Specific Functional Scale and now takes 15 

seconds to ascend and descend nine stairs. 

This case scenario demonstrates how different physical function outcomes can 

provide different information for a clinician and how outcomes can be individualised, 

in this case towards collecting information about the use of stairs. As part of that 

assessment of physical function, machine learning prediction models for human 

activity recognition can help provide a fuller picture of physical function for a 

clinician based on actual performance during a usual workday. 

There are certainly aspects that a clinician would need to consider, such as the 

number of days required to establish a stable baseline, number of days worn to 

establish change has occurred, the patient’s technological literacy, internet speeds for 

uploading data, the validation and statistical accuracy of the model (see section 7.3.4), 

and further work is required to develop a real-time system. However, the hypothetical 

case scenario above demonstrates the potential of human activity recognition to 

provide information to both the physiotherapist and patient about changes in how a 

person engages with activities performed in free-living environments.  
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7.4.4.2 Monitoring Maladaptive Movement Patterns 

As already discussed, careful mobility strategies (i.e. altered movement patterns) 

may be adaptive in the short term but maladaptive in the long term (Vlaeyen & 

Linton, 2000, 2012). While changes in movement patterns may not be related to 

improvement in activity or pain at a group-level (Chapter 3), there remains the 

possibility that individualised assessment and monitoring of movement patterns could 

help target management. There is preliminary evidence that targeting individualised 

maladaptive movement patterns for the purposes of symptom control in people with 

knee osteoarthritis is possible as part of a broader integrated biopsychosocial 

intervention (Preece et al., 2021).  

Two common patterns that exist in the population of people with knee 

osteoarthritis when walking are a ‘quadriceps avoidance pattern’ (Al-Zahrani & 

Bakheit, 2002; Fisher et al., 1997; Messier et al., 1992) and a ‘flexion loading pattern’ 

(Childs et al., 2004; Hart, Collins, Ackland, Cowan, et al., 2015; Heiden et al., 2009). 

During the stance phase of walking, a person with a quadriceps avoidance pattern 

maintains the knee in relative extension, whereas a person with a flexion loading 

pattern maintains the knee in relative flexion. To monitor changes in these two types 

of patterns (or other individual patterns), a clinician could use a data from IMUs.  

In the first part of the IMU data handling pipeline, a human activity recognition 

system could segment and label data of specific activity directions (e.g. stand-to-sit) or 

phases (e.g. stance phase of descending stairs) of interest. Those data could be 

subsequently handled by biomechanical estimation or prediction methods to provide 

information about an individual’s movement parameters. Possible methods for 

biomechanical estimation include fusion algorithms for estimating kinematics 

(Weygers et al., 2020), inverse dynamics for estimating kinetics (Karatsidis et al., 2019) 

or alternatively, machine learning to predict both kinematics and kinetics 

(Chapters 5 and 6).  

 Together, IMU facilitated human activity recognition and biomechanical 

analysis could provide a more comprehensive understanding about improvements in a 

patient’s maladaptive avoidance behaviours and movement behaviours. That 

information could help provide insight into the relationship between movement 
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patterns, activity limitation, and pain. The machine learning models based on IMU 

data have the potential to help individualise physical assessment of people with knee 

osteoarthritis for people seeking healthcare, as well as inform clinical research 

including relationships between movement patterns and clinical outcomes. There is 

potential for healthcare of the future to include telehealth and real time biofeedback 

applications outside of clinical environments by harnessing rapidly improving 

technology including improved internet speeds, cloud-based servers, optimised 

machine learning models and IMUs. 

7.4.5 Summary 

Clinical guidelines recommend individualised assessment and management for 

people with knee osteoarthritis. One approach to individualising assessment of 

movement patterns to support clinical decision making and facilitate individualised 

management is using IMUs. Machine learning data handling pipelines for IMU data 

have the potential to facilitate assessment of biomechanical risk factors for structural 

progression as well as monitor activity avoidance and maladaptive movement patterns 

during a clinical encounter or in free-living environments. With further development 

of machine learning models that use IMUs data, potentially combined with other 

improving technologies, there are opportunities for remote monitoring that may 

benefit telehealth and real time biofeedback. 
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7.5 Strengths and Limitations of Thesis 

The systematic review in Chapter 3 has both methodological and clinically 

relevant strengths. Methodological strengths include prospective registration, use of 

PRISMA reporting guidelines and GRADE assessment. The search strategy was 

facilitated by a senior faculty librarian, and two independent reviewers. As the 

question was about a relationship, rather than efficacy, another strength is the 

inclusion of cohort studies and randomised controlled trials, and reporting on within-

group change or correlation analysis rather than between-group mean difference. This 

review also has the additional benefit of including a wide range of movement 

parameters. However, because the overall quality of the included studies was low, 

most studies reported only within-group mean change, and the only activity that was 

investigated across studies was walking, the resultant confidence of our findings is 

limited. Additional limitations include risk of selective reporting bias (studies were not 

prospectively registered), language bias (only English) and publication bias. We also 

estimated means and standard deviations for studies that did not report those values 

at one time point which may have introduced some imprecision.  

The machine learning studies have a range of strengths. Most notably, the work 

within Chapters 4 to 6 represents an interdisciplinary collaboration between clinicians, 

clinical researchers, data scientists, biomechanists, and biostatisticians using a 

data-centric approach to developing the machine learning models. We present in 

Chapters 4 to 6 the key components of an innovative data handling pipeline for the 

use of IMU technology for people with knee osteoarthritis. Each model’s 

performance was comparable to that reported in previous studies that included 

healthy participants or those with other health conditions when using similar 

validation approaches. In Chapter 4, we present the first machine learning human 

activity recognition system validated on people with knee osteoarthritis. One 

important strength of the human activity recognition system was that it was designed 

with two key clinical ideas in mind, (a) identifying activities recommended in 

guidelines for assessment of physical function, and (b) identifying directions of 

movement or phases of activities that would be useful for subsequent biomechanical 

analysis. The primary strength of the kinematic prediction model was the inclusion of 
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multiple activities, rather than only walking, potentially increasing its generalisability. 

Similarly, a strength of the kinetic prediction model was the inclusion of multiple 

movement parameters, rather than only knee adduction moment. Those 

biomechanical prediction studies also lay the ground for future studies that might 

consider the use of double- or single-leg models or patient-specific model 

development.  

The machine learning studies also have several limitations. The sample size for 

the proof-of-concept machine learning studies were based on previous studies (Arif et 

al., 2015; Findlow et al., 2008; Fridriksdottir et al., 2020; Hendry et al,. 2020; Stetter et 

al., 2020; Stetter et al., 2019; Wouda et al., 2018), but were not properly powered. 

Now that the studies within this thesis have established the prediction accuracy of 

deep learning models, further sufficiently powered studies are required.  While the 

machine learning models have comparable accuracy to previous studies, improving 

that accuracy may be required for clinical implementation. However, the acceptable 

level of accuracy for clinical decision making is not yet clear and is likely to be 

context-specific, dependent on decision-making about clinical factors, machine 

learning architecture, and data collection approaches. Most notably, the participants 

included in the study were predominantly male and of normal BMI which is not 

representative of the broader population with knee osteoarthritis and potentially limits 

the generalisability of the models. As the models were trained and validated on data 

collected in a laboratory environment, it is not yet clear if they are valid for data 

collected outside of a laboratory environment, especially on differing chair or step 

heights. The models were developed as proof-of-concept and therefore included only 

a small number of participants which may limit generalisability. The proposed data 

handling pipeline for IMU data using the human activity recognition and 

biomechanical prediction models has yet to be tested and different machine learning 

architecture have not yet been tested in head-to-head comparisons. Participant-

specific models developed in Chapter 6 require a reference standard to train the 

model, which is not available in clinical practice. Big data approaches such as training 

models from a database using a ‘closest match’ is an alternative approach. 
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Collectively, these limitations and others are discussed within earlier sections of this 

thesis alongside potential solutions.  

7.6 Future Directions 

The research in this thesis brought together concepts relevant to clinical 

practice, clinical research, and data science using IMU data and machine learning to 

facilitate individualised clinical assessment and management. The intersection of these 

concepts provides considerable opportunity for future research, and ideas about such 

future research have been integrated into each section of this discussion. There is 

interdependence between (a) exploring if it is clinically important to target a change in 

movement patterns and objectively quantify changes in movement parameters, and 

(b) developing data handling systems suitable to answer those questions of clinical 

importance that could also eventually be implemented in clinical practice.  

IMUs have the potential to be able to collect individual person-level data, across 

multiple environments, allowing them to be used beyond a research laboratory. IMUs 

could be used to capture individual person-level movement data about activities 

identified on a patient-reported outcome measure such as the Patient-Specific 

Functional Scale. To replicate a clinical encounter or the patient’s daily life, IMU data 

for such studies could be collected in clinical or free-living environments rather than a 

laboratory where people may move differently (Brodie et al., 2017; Brodie et al., 2016; 

Del Din et al., 2016; Dreischarf et al., 2016; Renggli et al., 2020; Robles-García et al., 

2015; Weiss et al., 2011). A pipeline using machine learning models for both human 

activity recognition and biomechanical prediction could be developed and tested to 

output a range of movement parameters for each individual. Using a single-case 

experimental design using cross-correlations (Wernli, O'Sullivan, et al., 2020), or 

ideally a clinical trial using mediation analysis (Kent et al., 2019), an intervention could 

be introduced that targets a change in selected movement parameters for each 

individual based on each patient’s symptom response (O’Sullivan et al., 2018; Preece 

et al., 2021). 

Yet the proposed IMU system necessary to test the relationship between a 

change in movement parameters and clinical outcomes requires significant 
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development before implementation. Testing of the head-to-head performance of 

machine learning models is required for population-based generic models compared 

to individualised models (Ferrari et al., 2022). The current models need further 

validation for data collected in free-living environments. Large datasets (Ghorbani et 

al., 2021) or databases of IMU data from people with knee osteoarthritis may be 

required to be developed to build those models. Information contained within those 

databases ideally would include IMU data for multiple clinically important activities, 

levels of activity limitation and pain, as well as other biopsychosocial data that may 

influence the relationship between movement parameters and clinical outcomes 

(Dingenen et al., 2018). For the development of individualised models, pattern 

matching algorithms are needed that are designed to identify similar profiles across 

IMU and other biopsychosocial data to accommodate for heterogeneity across the 

population with knee osteoarthritis. While a database may help facilitate development 

of individualised models for human activity recognition allowing real-world 

assessment of activity avoidance behaviours, more nuanced systems that can provide 

information about the length of time or frequency a person performs an activity will 

be required. Data-centric approaches should also be considered to improve the 

performance of prediction models by optimising training data. For example, future 

studies could compare different methods for data collection, assessment of data 

quality, data cleaning, the effect of adding data from people with knee osteoarthritis 

to models designed for healthy people and explore the effect of adding simulated or 

augmented data to the training phase of model building (Mazumder et al., 2022; Ng, 

2021).  

7.7 Conclusions of Thesis 

The relationship between movement patterns and activity limitation or pain in 

people with knee osteoarthritis is complex and challenging to assess, yet clinicians are 

tasked with determining the relevance of movement patterns in their clinical practice. 

The systematic review in Chapter 3 did not support the notion of a relationship 

between changes in movement patterns and changes in clinical outcomes. Several 

limitations existed in the current literature that preclude a clear understanding about a 

relationship at an individual person-level, despite guidelines clearly recommending 
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individualised assessment and management of people with knee osteoarthritis. 

Chapters 4 to 6 provide the groundwork for a possible solution to facilitate the 

individualised assessment of movement patterns using IMUs. With appropriate 

refinement of machine learning models there would potentially be an opportunity to 

explore the relationship between movement patterns and clinical outcomes while also 

addressing some of the limitations found within the current literature. 

The machine learning models presented in this thesis were designed to address a 

gap in the research that is currently a significant barrier to implementation – that of 

how data collected in a free-living environment could potentially be handled to 

provide clinically relevant information. These models can handle IMU data in a way 

that is robust to electromagnetic interference and does not require calibration. The 

human activity recognition model presented in Chapter 4 provides a novel approach 

that could be useful for monitoring activity avoidance behaviours or segmenting data 

for subsequent biomechanical analysis. A data handling pipeline has been described 

that utilises machine learning models for human activity recognition followed by 

biomechanical prediction across various activities and movement parameters. With 

further work, the proposed pipeline could facilitate individualised assessment and 

monitoring of maladaptive movement patterns which may help clinical decision 

making. Establishing the performance of such a pipeline creates potential 

opportunities in both clinical practice and research for biomechanical risk prediction 

as well as telehealth and biofeedback. 

Assessment of movement is only one part of the bigger clinical and data science 

picture. In the future, ‘small data’ from individualised biopsychosocial assessment 

(potentially including IMU data) may be leveraged to build large databases that could 

be used for clinical and research purposes. Personalised artificial intelligence models 

could be developed from ‘big data’ to facilitate clinical decision making or implement 

preventative measures that could help address the growing burden of knee 

osteoarthritis and other musculoskeletal health conditions.  
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