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The conventional parametric approach for financial risk measure estimation in-
volves determining an appropriate quantitative model, as well as a suitable historical
sample period in which the model can be trained. While a lion’s share of the exist-
ing literature entertains the identification of the most appropriate model for different
types of financial assets, or across conflicting market conditions, little is known
about the optimal choice of a historical sample period size (or window size) to train
the model and estimate model parameters. In this paper, we propose a method to
identify an optimal window size for model training when estimating risk measures,
such as the widely-utilised Value-at-Risk (VaR) or Expected Shortfall (ES), under
the generalised hyperbolic subclasses. We show that the accuracy of VaR estimates
may increase significantly through our proposed method of optimal window size
detection. In particular, our results demonstrate that, by relaxing the usual restric-
tion of a fixed window size over time, superior VaR forecasts may be produced as a
result of improved model parameter estimates.

Keywords: Hyperbolic, MSCI, Normal-inverse Gaussian, Value-at-Risk, Variance-gamma,
Window size.

1. Introduction

An increasing number of studies in the ongoing literature has been dedicated to modelling the
behaviour and characteristics of financial time series. Noticeably, a significant portion of these
studies also includes contributions toward the estimation of financial risk measures. To adequately
estimate financial risk measures, a robust methodology that can unequivocally describe the continuous
movements of the time series needs to be identified at the onset. Subsequently, a procedure is
implemented to accurately estimate the respective risk measures. Such a procedure typically involves
specifying a sample period size (or window size) to employ the historical data for model training and
the estimation of model parameters. This is usually imposed through a rule-of-thumb method instead
of an adequate optimisation approach. However, errors in the estimation of model parameters may
be exacerbated through an opaque choice of window sizes, leading to inferior risk measure estimates.
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Notwithstanding the above, there is a shortfall in the current literature on the identification of an
optimal window size to effectively estimate model parameters when forecasting risk measures (such
as VaR or ES). In practice, window sizes are often arbitrarily selected without any clear consensus
or robust methodology. However, evidence from a number of prior research papers suggest that most
estimation procedures (parametric or non-parametric) are sensitive to changes in window size (see,
for example, Chen and Spokoiny, 2009; Halbleib and Pohlmeier, 2012; Sharma, 2012; Laker et al.,
2017). In particular, a larger window size often results in low variance of estimates but raises the risk
of modelling bias. On the contrary, small window sizes produce estimates that react efficiently to
changing market conditions, but suffers from larger variations. Hence, the identification of an optimal
window size becomes a critical task. Related studies on improving parameter estimation includes, but
is not limited to, exponential smoothing, structural breaks, regime switching and adaptive point-wise
estimation (see Cizek et al., 2009).

A wealth of models and methods for risk measure estimation have already been proposed in the
existing body of knowledge. Prominent methodologies include, among others, the use of extreme
value analysis (McNeil and Frey, 2000), the generalised lambda distribution (Corlu and Corlu, 2015)
and quantile regression (Engle and Manganelli, 2004). In this paper, we focus on another popular
class of distributions for describing financial returns, namely the generalised hyperbolic distributions
(GHDs), when estimating risk measures. Such family of distributions are particularly suitable for
capturing stylised facts, such as asymmetric and varying tail behaviours (including semi-heavy and
heavy tails), embedded within financial data. The novel work of Eberlein and Keller (1995) was
among the first to apply these extreme value distributions to financial modelling. The successes of
GHDs in modelling financial data were further advocated by various subsequent studies, such as
Eberlein and Prause (2002), Aas and Haff (2006), Hu and Kercheval (2007), and Huang et al. (2014),
among others.

In this paper, we first deploy a GARCH(1,1) model in describing the daily returns volatility of our
chosen dataset, the MSCI All Country World Index (ACWI). Specifically, we allow the distribution
of the resulting GARCH(1,1) innovations to follow different subclasses of the GHDs (namely, the
hyperbolic (HYP), the normal-inverse Gaussian (NIG), the generalised hyperbolic skewed-t (GHSt)
and the variance-gamma (VG) subclasses). We show that the resulting VaR estimates, using the
above models, can change considerably across different window sizes on the same out-of-sample set.
This challenges the common practice of utilising an arbitrary fixed window size, and motivates a
need for determining optimal window sizes when estimating risk measures.

We contribute to the existing literature by proposing a method to identify the required optimal
window size, and show that such a method may effectively improve the estimation of model parameters
and the resulting VaR forecasts. Furthermore, we proceed with a method that follows a daily
rolling window procedure to detect an optimal size for each iteration. Our findings demonstrate the
importance of relaxing the usual fixed window size restriction, and allow for time-varying window
sizes when forecasting VaR. To the best of the authors’ knowledge, there exists no literature relating
to window size optimisation in VaR estimation under the GHD framework. In addition, although
prior research exists in identifying systematic breaks (or structural breaks) and the maximum period
of stability (see, for example, Spokoiny, 2009; Hardle et al., 2003), very few have been applied under
the GHD framework. Hence, our study also provides further insight towards the limited research on
GHDs’ benefits in financial risk modelling.
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The remainder of this paper proceeds as follows. In Section 2, we present the VaR methodology.
Discussions around the subclasses of GHDs and optimal window size derivations are provided in
Sections 3 and 4, respectively. Finally, we reveal our empirical results in Section 5 and conclude the
paper in Section 6.

2. Value-at-Risk

While there are criticisms on the use of VaR, it remains a popular benchmark risk measure among
banks and financial institutions for evaluating and estimating financial risks. In particular, it is
directly linked to the adequate amount of market risk capital that financial entities must set aside to
compensate for unprecedented large losses, as recommended by the Basel Committee on Banking
Supervision. Even with the ongoing migration towards the more sophisticated Expected Shortfall
as a measure of risk, in accordance with Basel III, VaR continues to be widely utilised by market
participants in conjunction. Hence, further research to improve the forecast of VaR may continue to
bear fruit for the fragile financial sector.

Formally, VaR is defined as a threshold amount such that the probability of the realised loss on a
portfolio, over a given time horizon, exceeding this value is equal to a pre-specified confidence level.
For a sequence of daily log-returns, R,, on an existing portfolio, we assume R; = u; + 0, Z;, where Z;
represents the innovation characterised by some marginal distribution Fz(z). The parameters y, and
o are measurable with respect to ;_1, all information on the process up to time ¢ — 1. Furthermore,
if Fgr(r) denotes the distribution of R;, we can deduce that

r— 1
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Consequently, we can express VaR for day ¢ + 1, with probability of exceedance equal to 1 — p, as
VaRp(l + 1) = Mr+1 + O'[+]Zp, (2)

where z,, denotes the lower p’ h quantile of Z;. For forecasting purposes, we need to first specify a
model for the dynamics of the mean, y;.1, and volatility, o;;. We utilise the celebrated GARCH(1,1)
process for the volatility and the AR(1) process for the mean, i.e.,

2 2 2
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where &; = 07 Z;, a9 > 0,a; > 0,8 > 0,a; + B < 1, and ¢ is the AR(1) coefficient.

Following McNeil and Frey (2000), we fit the GARCH(1,1) model using a pseudo maximum
likelihood (PML) procedure, which minimises the assumptions about the distribution of innovations,
and estimates ;.1 and o4 using standard one-day ahead forecasts. We further suggest this to be
amalgamated with the assumption that the innovations are distributed according to a GHD subclass,
and estimate the resulting z, accordingly. This may then be implemented in a rolling window
procedure to produce daily out-of-sample forecasts of VaR. Consequently, as per standard procedure,
the resulting forecasts are then backtested against the realised daily returns observed. We utilised two
widely-accepted backtests for VaR, namely, the Kupiec likelihood ratio test (Kupiec, 1995) and the
Christoffersen conditional coverage test (Christoffersen et al., 2001). While the former tests for the
unconditional coverage of the correct number of exceedances in our VaR estimates, the latter tests
for the conditional coverage.
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3. Generalised hyperbolic distributions (GHD)

GHDs, such as the HYP, NIG, VG and GHSt distributions, have the ability to cater for asymmetric,
heavy and semi-heavy tailed datasets. They enable researchers to model data across a wide variety of
disciplines, including finance and economics. By adequately capturing the above-mentioned stylised
facts embedded in financial data, the resulting VaR estimates may also be greatly improved (see,
for example, Huang et al., 2014). In this section, we shall introduce the full GHD and its range of
subclasses.

3.1 The full GHD model
The probability density function (pdf) of the full GHD is given by

(02 = B (8% + (e = ) P Ko (0574 (= 02 exp(Blx - o)
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where K is the modified Bessel function of the third kind with order j (Abramowitz and Stegun,
1972), and p is the location parameter. It should also be noted that the domain of the parameters
must satisfy the following conditions

6>0,|8] <a,if1=0,

6>0,|8 <a,ifd<0,

6=>0,|8] <a,ifd>0,
where 0 serves as a scaling factor, a determines the shape, 5 determines the skewness, and A influences
the kurtosis (Necula, 2009). We utilise the maximum likelihood estimation (MLE) for parameter
estimates of all GHD subclasses. The various subclasses of the GHD can be obtained by considering

different assumptions and asymptotic behaviours of the parameters above. We demonstrate this in
the sequel.

3.2 The Hyperbolic (HYP) distribution

The HYP distribution (with A4 = 1) allows us to determine the shape of the distribution by controlling
both the gradient and skewness parameters. The HYP distribution is characterised by having a
hyperbolic log-density function and exponential tails. A random variable follows the HYP distribution
if its pdf is given by

NP =B oG m e,
206K, (5a? - 57)

fuyp(x) = 5
where K| denotes the Bessel function of the third kind with order 1. The parameters a and S, with
a > 0and 0 < |B| < a, represent the gradient and the skewness, respectively. Finally, § > 0 is the
scale parameter and u € R is the location parameter.

3.3 The Normal-Inverse Gaussian (NIG) distribution

The NIG distribution is well-known for its ability to capture the asymmetric semi-heavy tails of
financial returns (Andersson, 2001; Venter and de Jongh, 2002). In particular, the NIG distributions
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are most appropriate when the two extreme tails of the returns distribution to be modelled are not
too heavy (Aas and Haff, 2006). The pdf of the NIG, as a subclass of GHDs with 2 = —1/2, can be

expressed as
K (a\/62 +(x - u)2)
VO + =

where K; denotes the Bessel function of the third kind with order 1.
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3.4 The Variance-Gamma (VG) distribution

The VG distribution has tails that decrease less rapidly than that of a Gaussian distribution. Such a
characteristic makes the VG a suitable model for phenomena where extreme values are more probable
than in the case of a Gaussian distribution, such as logarithmic returns from financial assets (Madan
and Seneta, 1990). We attain the pdf of the VG distribution from the full GHD when A4 > 0 and
0 — 0. Hence, we have

A _
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where K(4-1/2) denotes the Bessel function of the third kind with order A — 1/2.

fve(x) = @)

3.5 The Generalised Hyperbolic Skewed-t (GHSt) distribution

Finally, the pdf of the GHSt distribution is obtained by letting @ — || in the full GHD. This results
in the following expression

2124352 g|1/2=AK (\/ﬂ2 @+ (- u>2)) exp(Bx - 1))
e (Ve )

for 8 # 0and 4 < 0. If 8 = 0, we obtain the non-central (scaled) Student’s ¢-distribution. Notably,
the GHSt distribution exhibits one heavy polynomial tail and one semi-heavy exponential tail. This
unique property makes the GHSt distribution particularly dissimilar to the range of subclasses
mentioned above. More importantly, it allows the GHSt distribution to uniquely model skewed data
with dissimilar tail behaviours, which are commonly observed in financial data (Aas and Haff, 2006).

. ®)
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4. Optimal window size

The choice of an appropriate window size can affect the resulting model parameter estimates, and
consequently the accuracy of the final VaR forecasts. However, identifying an optimal window size
remains a difficult task. In the current literature, most analyses are conducted by utilising a fixed
window size that is arbitrarily chosen according to a rule-of-thumb, or is only tested against a few
alternative choices in order to determine an appropriate size. The chosen window size is then used
to perform a rolling window procedure to estimate VaR at each time step of the out-of-sample data.
Even though such methods of window size selection are deemed reasonable by prior studies, it can
produce biased parameter estimations and inadequate VaR forecasts as a result. To remedy such
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drawback, a more effective procedure that can accommodate varying window sizes at each time step
needs to be derived. Moreover, for robustness, the said procedure needs to optimise some criterion
related to time homogeneity. In our current study, we deploy five different criteria for selecting an
optimal window size at each rolling window iteration. The window sizes are chosen to either (i)
minimise or maximise the standard deviation; (ii) minimise or maximise the kurtosis; or (iii) include
a change-point with a fixed right-end point. While the reasons for our choice of (i) and (ii) are more
apparent for risk measure focus, with the estimation of tail events, the justification for (iii) is more
inline with the notion of structural breaks detection in a given dataset.

A change-point is defined as a location in the dataset in which the statistical properties of the
sequence experiences a significant change. We identify change-points optimally using the at-most-
one-change-point (AMOC) procedure (Silva and Teixeira, 2008) and the binary segmentation (Bin-
Seg) procedure (Scott and Knott, 1974), with variance as the optimisation measure. The detection
of a change-point can be viewed as a hypothesis test, whereby the null, Hy, corresponds to no
change-point, and the alternative, Hy, advocates the existence of a change-point. The likelihood ratio
method (i.e., AMOC) involves calculating the maximum likelihood under both hypotheses above.
Subsequently, the ratio is maximised over all possible change-point locations. The BinSeg approach,
on the other hand, is a generalisation of the AMOC, whereby the data sequence is segmented into
two parts once a change-point is detected. Finally, each segment is then tested for change-points and
the process continues until a pre-specified threshold is reached, or until no further change-points are
identified.

5. Data and Empirical Results

In our study of optimal window size detection and the proposed varying window size approach, we
use daily log-returns of the MSCI ACWI index over a 15-year period, ranging from 27 August 2001
to 25 August 2016. The MSCI ACWI is a flagship global index that aims to capture equity returns
of large- and mid-cap stocks across 23 developed and 24 emerging markets. This offers investors a
fully integrated view of exposure to all sources of equity returns using just a single index.

Table 1 shows the descriptive statistics of the original return series over the entire sample period,
as well as the resulting innovations after fitting the GARCH(1,1) model to the same data. The large
excess kurtosis of the original return series is a common characteristic found in financial data, which
implies a vast tail deviation from that of the Gaussian distribution. In addition, we observe that the
resulting GARCH(1,1) innovations still exhibit heavy tails, albeit to a lesser degree. These are both
well-known stylised facts of financial time series (Cont, 2001).

Notably, the heavy-tails of the residuals are even more pronounced when we implement a rolling

Table 1. Summary statistics for MSCI ACWI and its GARCH innovations.

Data Mean Std. dev. Min Max Excess Skewness
kurtosis
ACWI —0.000130 0.010289 —-0.089030 0.073713 8.172448 0.396315

Innovations  0.041017 0.999549  -3.841127 6.237750 1.311213  0.303292




OPTIMAL WINDOW SIZE DETECTION FOR GHD-BASED VAR 21

— Kurt
z 4 =~ Kurt_Res
= _
3 —
w -
o
I I I I I I I
0 500 1500 2500
Index

Figure 1. Rolling excess kurtosis for ACWI returns and its GARCH innovations (1000-day rolling
window size).

window procedure to analyse the varying kurtosis over time. Figure 1 records the time-varying
excess kurtosis of the original return series, as well as the corresponding innovations, when iterated
at each time step through a 1000-day rolling window procedure. It is evident that the conditional
kurtosis can deviate significantly from that of a Gaussian distribution at isolated time periods within
the return series (as depicted by the sudden spikes and long periods of consistent non-zero values).

To encapsulate the effects of window size selection, we first conduct a VaR estimation procedure
using a fixed window size approach. Our estimation procedure is then repeated across a range of
different window sizes on the same dataset. Specifically, we will estimate the rolling window daily
VaR at each time step of the out-of-sample period (from day 1501) using fixed window sizes ranging
from 100 to 1500 days (at 25-day increments). For each window size, we forecast the daily VaR
using the GARCH(1,1) filter with a conditional distribution following a GHD subclass. Finally, the
sequence of VaR estimates are then backtested against the actual daily returns observed, and the
respective p-values recorded.

Under both the Kupiec likelihood ratio and the Christoffersen conditional coverage tests, where
the null hypothesis advocates for the model being ‘correct’ or well-specified, a higher p-value is
desired. In Table 2, we present the mean, standard deviation, minimum, maximum and coefficient
of variation (CV) of the different p-values obtained for both backtests across the various GHD
subclasses. Interestingly, across all GHD subclasses evaluated, a range of 400-500 days appears to
be the optimal choice when implementing a fixed window size. Figures 2 to 6 presents the changing
p-values, for both the Kupiec and Christoffersen tests, across the range of fixed window sizes. These
observations provide further empirical evidence that the performance of VaR models may depend
heavily on the appropriate choice of window sizes. Apart from our explicit evidence to infer 400-500
days as an optimal range for window sizes, we observe that a larger window size tends to consistently
produce inferior VaR estimates across all GHD subclasses. On the contrary, smaller window sizes,
which allows more emphasis on recent market data, tends to provide more ideal VaR estimates.

To implement a varying window size selection process, within a rolling window procedure, an
optimising criterion is needed to determine an adequate window size at each iteration. We shall utilise
a wide range of different criteria and compare the resulting model performances through the two
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Table 2. Summary statistics of VaR backtesting p-values from Kupiec and Christoffersen tests, using
rolling fixed window sizes ranging from 100 to 1500 days, at the 97.5% VaR level.

GHD VaR test Mean Std. dev. Min Max Window size CvV
subclass for max
GHD Kupiec 0.006118 0.006207 0.000731 0.037242 400 1.014557
Christoffersen  0.021915  0.018777  0.002515 0.107563 400 0.856805
HYP Kupiec 0.006556  0.006174 0.000478  0.027580 400/475 0.941610
Christoffersen  0.023240 0.019076  0.001644  0.084333 400/475 0.820814
NIG Kupiec 0.006569 0.006794 0.000310 0.037242 400 1.034228
Christoffersen  0.023146  0.020220 0.001061  0.107563 400 0.873588
VG Kupiec 0.003027 0.003771 0.000198 0.027580 400 1.245834
Christoffersen  0.011702  0.011861  0.000676  0.084333 400 1.013565
GHSt Kupiec 0.005125 0.005726 0.000478  0.037242 400 1.117432
Christoffersen  0.018682  0.017402  0.001644 0.107563 400 0.931458
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Figure 2. p-values of Kupiec and Christoffersen tests for rolling fixed window sizes ranging from
100 to 1500 days when using GHD.
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Figure 3. p-values of Kupiec and Christoffersen tests for rolling fixed window sizes ranging from
100 to 1500 days when using HYP.
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Figure 4. p-values of Kupiec and Christoffersen
100 to 1500 days when using NIG.
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Figure 5. p-values of Kupiec and Christoffersen
100 to 1500 days when using VG.

Kuplec

0.000 0010 0.020

600

1000

1400

win.size

23

oo
(:)_ —
O o
w |
5 2
o
o
(:)_ —
o
200 600 1000 1400
win.size

tests for rolling fixed window sizes ranging from

o
(:)_ —
o o
® |
5 34
(=]
o
(:)_ —
o
200 600 1000 1400
win.size

tests for rolling fixed window sizes ranging from

o
o
o
o |
£ I
5 o
o
o
o
200 600 1000 1400
win.size

Figure 6. p-values of Kupiec and Christoffersen tests for rolling fixed window sizes ranging from

100 to 1500 days when using GHSt.
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Table 3. VaR backtesting p-values from Kupiec and Christoffersen tests under varying window sizes
across different optimising criteria.

GHD VaR Max. Min. std. Max Min Change-point
subclass  test std. dev. dev. Kurtosis Kurtosis AMOC BinSeg
GHD Kupiec 0.176607 < 0.000001 0.002444  0.005169 0.020189  0.027580
Christoffersen  0.332875 0.000004  0.010141 0.019968 0.065124  0.084333
HYP Kupiec 0.176607 < 0.000001  0.002444 0.005169 0.020189 0.010451
Christoffersen  0.332875 0.000001 0.010140 0.019968 0.065124  0.037132
NIG Kupiec 0.140315 < 0.000001 0.003574 0.003574 0.010451 0.014609
Christoffersen  0.287102  0.000001 0.014331 0.014331 0.037132  0.049541
VG Kupiec 0.176607 < 0.000001 0.001652 0.005169 0.020189  0.014609
Christoffersen  0.332875 < 0.000001  0.007076  0.019968 0.065124  0.049541
GHSt Kupiec 0.140315 < 0.000001 0.001652 0.002444 0.010451 0.014609

Christoffersen  0.287102 < 0.000001  0.007076  0.010141 0.037132  0.049541

standard backtests. Firstly, we select an optimal window size for each iteration of the rolling window
according to a maximum standard deviation, minimum standard deviation, maximum kurtosis and
minimum kurtosis, over the different window sizes ranging from 100 to 1500 days (at 25-day
increments). Secondly, we utilise two change-points procedures, namely, AMOC and BinSeg, for
identifying the change-point(s) within each rolling window (with the base window size set to 1500
days). For AMOC, the period between the change-point and the most right-end point in a given
rolling window is selected. For BinSeg, the period between the largest change-point and the most
right-end point of the rolling window is selected instead. Finally, the different VaR estimates are
obtained through the various optimal window sizes detected per criteria and backtested accordingly.

Table 3 presents the Kupiec test and Christoffersen test p-values for the varying window size
procedure using the different optimisation methods mentioned above. The minimum standard devia-
tion, maximum kurtosis and minimum kurtosis appears to be inadequate as optimising criteria, each
exhibiting poorer results in comparison to the average performance of the alternative fixed window
size approach (as shown in Table 2). Surprisingly, while producing superior results to that of the
above-mentioned trio, the two change-point procedures seem to be marginally better or on par with
the average performance of using fixed window sizes (at a 5% confidence level). However, both
AMOC and BinSeg are still less robust than using an optimal fixed window of 400 days (when such a
window size may be determined a priori). The selection of varying window sizes through maximum
standard deviation overwhelmingly outperforms the alternative criteria, as well as the fixed window
approach. It also consistently produces the highest p-values among all criteria across the various
GHD subclasses. Overall, our results also demonstrate that a GARCH(1,1) with a conditional distri-
bution of either the GHD, HYP or VG is the most robust model for forecasting VaR in MSCI ACWI
returns.

Figure 7 shows the changing window sizes at each rolling window iteration for the maximum
standard deviation, AMOC and BinSeg optimising criteria. Notably, the changes in optimal varying
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Figure 7. Varying window sizes over time using various selection criteria (red = max standard
deviation, green=AMOC, blue=BinSeg).

window sizes over time also reflect the market conditions that ensued. For instance, the recommended
optimal window size contracts sharply during periods of market distress, which adequately allows
rolling windows to capture more recent data that better represents the prevailing market downturn.
This is clearly exemplified by the infamous 2008 Global Financial Crisis, the subsequent Eurozone
crisis, as well as the 2015-2016 selloff triggered by the Chinese stock market turbulence (as depicted
in Figure 7). While both the maximum standard deviation and BinSeg criteria are efficient in
following market trends, the AMOC, with the restriction of at most one change-point detection, tend
to suffer from excessive lags in its response.

6. Limitations and concluding remarks

In this paper, we examine how the accuracy of VaR estimates, under conditional GHD subclasses,
may vary depending on the choice of an appropriate window size when estimating model parameters.
Forecasting performances were measured according to the widely-accepted Kupiec likelihood ratio
and the Christoffersen conditional coverage tests. Evidently, our analyses showed that the robustness
of VaR models rely heavily on the appropriate selection of window sizes for parameter estimation. In
order to identify an optimal window size (for each rolling window iteration), we investigated several
possible optimisation methods to enable a time-varying window size procedure, and compared our
results to that of the classical fixed window implementation. The optimising criteria employed to
select a suitable varying window size were given by either maximising or minimising the standard
deviation, maximising or minimising the kurtosis, using an AMOC procedure, or using a BinSeg
procedure. It is worthwhile noting that the AMOC and BinSeg procedures appeared to be only as
good as the average performance of the fixed window size approach, and worse off when an optimal
fixed window size is utilised. Maximising the standard deviation under the varying window size
approach seemed to produce the best risk forecasting results under the GHD framework. Our findings
advocate the critical need to optimise window sizes prior to parameter estimation when forecasting
VaR. Moreover, it is necessary to relax the usual restriction of a fixed window size, and allow for
time-varying window sizes instead. Lastly, it is necessary to evaluate a range of optimising criteria
in order to identify the most appropriate criterion to deploy.

An important caveat to our study is the limited number of criteria investigated for optimal window
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size selection. Further research may include implementing other attractive methods, such as the
adaptive pointwise estimation (see CiZek et al., 2009) or segment neighbourhood procedure for
change-point identification (see Auger and Lawrence, 1989), and analysing the accuracy of resulting
VaR forecasts. Additionally, it may be worthwhile to explore whether the suitability of selection
criteria, or procedure, may change significantly under different market conditions (when certain
stylised facts may become extreme), or when different distributional assumptions for the data series
are implemented. Finally, with the recommended migration towards Expected Shortfall (as per the
latest Basel Accords), further studies of optimal window sizes detection to improve ES estimation is
paramount.
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