
Citation: Khaksar, S.; Checker, L.;

Borazjan, B.; Murray, I. Design and

Evaluation of an Alternative Control

for a Quad-Rotor Drone Using

Hand-Gesture Recognition. Sensors

2023, 23, 5462. https://doi.org/

10.3390/s23125462

Academic Editor: Feng Jiang

Received: 13 April 2023

Revised: 26 May 2023

Accepted: 5 June 2023

Published: 9 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Design and Evaluation of an Alternative Control for a
Quad-Rotor Drone Using Hand-Gesture Recognition
Siavash Khaksar * , Luke Checker, Bita Borazjan and Iain Murray

School of Electrical Engineering, Computing and Mathematical Sciences, Curtin University,
Bentley, WA 6102, Australia; ltc@checker4.org (L.C.); bita.borazjani@curtin.edu.au (B.B.);
i.murray@curtin.edu.au (I.M.)
* Correspondence: siavash.khaksar@curtin.edu.au

Abstract: Gesture recognition is a mechanism by which a system recognizes an expressive and
purposeful action made by a user’s body. Hand-gesture recognition (HGR) is a staple piece of
gesture-recognition literature and has been keenly researched over the past 40 years. Over this time,
HGR solutions have varied in medium, method, and application. Modern developments in the areas
of machine perception have seen the rise of single-camera, skeletal model, hand-gesture identification
algorithms, such as media pipe hands (MPH). This paper evaluates the applicability of these modern
HGR algorithms within the context of alternative control. Specifically, this is achieved through the
development of an HGR-based alternative-control system capable of controlling of a quad-rotor drone.
The technical importance of this paper stems from the results produced during the novel and clinically
sound evaluation of MPH, alongside the investigatory framework used to develop the final HGR
algorithm. The evaluation of MPH highlighted the Z-axis instability of its modelling system which
reduced the landmark accuracy of its output from 86.7% to 41.5%. The selection of an appropriate
classifier complimented the computationally lightweight nature of MPH whilst compensating for
its instability, achieving a classification accuracy of 96.25% for eight single-hand static gestures. The
success of the developed HGR algorithm ensured that the proposed alternative-control system could
facilitate intuitive, computationally inexpensive, and repeatable drone control without requiring
specialised equipment.

Keywords: alternative control; finger tracking; human computer interface (HCI); hand gesture
recognition (HGR); media pipe hands (MPH)

1. Introduction
1.1. Background

Alternative-control algorithms consist of two main components, a non-standard
human–computer interface (HCI) and a command mapping algorithm [1–4]. An alternative-
control algorithm is considered successful in its application if the alternative HCI extends
upon the functionality offered by the conventional control medium. Within the literature,
the degree of this success is commonly appraised against the following criteria: higher
accuracy, ease of use without holding any equipment or instruments in hand, shorter user
learning cycle, lower cost, offers capabilities that are not available in traditional interfaces,
and computationally inexpensive [5].

This paper proposes the use of hand-gesture recognition (HGR) as an alternate HCI.
Gesture recognition is the mechanism by which a predefined physical action made by
a user is recognized by a system [6]. HGR has been an extensively researched topic over
the past 40 years [5], resulting in a plethora of different viable approaches. Modern HGR
applications use a machine-learning pipeline to achieve this recognition [5,7]. Within
literature, this pipeline is defined to consist of four subcomponents: data-acquisition
medium, gesture description, gesture-identification algorithm, and gesture-classification
algorithm [7–9].

Sensors 2023, 23, 5462. https://doi.org/10.3390/s23125462 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23125462
https://doi.org/10.3390/s23125462
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-1944-1418
https://orcid.org/0000-0003-1840-9624
https://doi.org/10.3390/s23125462
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23125462?type=check_update&version=1

Sensors 2023, 23, 5462 2 of 35

The application of HGR in alternative-control algorithms for drones has been a popular
area of research for several years. Various studies have investigated different combina-
tions of HGR subcomponents to optimise the process of recognising hand gestures and
translating these gestures into drone actions. In [10], the authors employed sensor fusion
between a mechanomyography band and a hand-mounted initial measurement unit (IMU)
to achieve robust control of an aerial drone using only the mechanical motion of the hand.
In [11], the authors utilised a single RGB camera with marker gloves to recognise static
gestures in combination with a hand-mounted IMU to recognise the dynamic motion of
these gestures. In [12], the authors used a single RGB camera input paired with MPH and a
long short-term memory neural network to achieve intuitive drone control that required no
calibration or specialised equipment. In [13], the authors created a drone control simulation
using a stereo camera (leap motion controller) as the primary input. In [14], the authors
constructed a novel glove-based HGR system that also provided vibrotactile feedback to
the system operator. The modern approaches cited above represent just a small subset
of the HGR implementations that have been applied in the context of alternative control.
These approaches vary in the selection of all four sub-components, the general taxonomy
of known approaches for each HGR subcomponent is explained in greater detail under
Section 1.2.

1.2. Existing Methods
1.2.1. Data-Acquisition Medium

The data-acquisition sources utilized by HGR algorithms can be defined into two
governing categories, these being image-based approaches and non-image-based ap-
proaches [8]. The image-based category contains the following subcategories: marker,
depth camera, stereo camera, and single camera. The non-image-based category contains
the following subcategories: glove, band, and non-wearable. Non-wearable technologies
have been omitted from this investigation as they are an emergent technology with limited
implementations available [8,15]. Marker-based approaches have also been omitted from
this investigation as they have been made largely obsolete by advancements in machine
perception [5,8]. The remaining viable components are illustrated in Figure 1.

Sensors 2023, 23, x FOR PEER REVIEW 2 of 34

gesture description, gesture-identification algorithm, and gesture-classification algorithm
[7–9].

The application of HGR in alternative-control algorithms for drones has been a pop-
ular area of research for several years. Various studies have investigated different combi-
nations of HGR subcomponents to optimise the process of recognising hand gestures and
translating these gestures into drone actions. In [10], the authors employed sensor fusion
between a mechanomyography band and a hand-mounted initial measurement unit
(IMU) to achieve robust control of an aerial drone using only the mechanical motion of
the hand. In [11], the authors utilised a single RGB camera with marker gloves to recognise
static gestures in combination with a hand-mounted IMU to recognise the dynamic mo-
tion of these gestures. In [12], the authors used a single RGB camera input paired with
MPH and a long short-term memory neural network to achieve intuitive drone control
that required no calibration or specialised equipment. In [13], the authors created a drone
control simulation using a stereo camera (leap motion controller) as the primary input. In
[14], the authors constructed a novel glove-based HGR system that also provided vibrotac-
tile feedback to the system operator. The modern approaches cited above represent just a
small subset of the HGR implementations that have been applied in the context of alter-
native control. These approaches vary in the selection of all four sub-components, the gen-
eral taxonomy of known approaches for each HGR subcomponent is explained in greater
detail under Section 1.2.

1.2. Existing Methods
1.2.1. Data-Acquisition Medium

The data-acquisition sources utilized by HGR algorithms can be defined into two
governing categories, these being image-based approaches and non-image-based ap-
proaches [8]. The image-based category contains the following subcategories: marker,
depth camera, stereo camera, and single camera. The non-image-based category contains
the following subcategories: glove, band, and non-wearable. Non-wearable technologies
have been omitted from this investigation as they are an emergent technology with limited
implementations available [8,15]. Marker-based approaches have also been omitted from
this investigation as they have been made largely obsolete by advancements in machine
perception [5,8]. The remaining viable components are illustrated in Figure 1.

Figure 1. HGR data-acquisition categories.

1.2.2. Gesture Description
There are three aspects that form the gesture descriptor within existing HGR algo-

rithms. These are the physiological scope of the gesture, the information interpreted from
the gesture, and the model used to represent the gesture [16]. All three of these factors
vary greatly between the HGR implementations detailed within the reviewed supporting
literature [6,16,17].

Physiological scope refers to the pre-set taxonomy used to define the physical nature
of the gestures [16]. The main distinctions that are made in the existing literature when

Figure 1. HGR data-acquisition categories.

1.2.2. Gesture Description

There are three aspects that form the gesture descriptor within existing HGR algo-
rithms. These are the physiological scope of the gesture, the information interpreted from
the gesture, and the model used to represent the gesture [16]. All three of these factors
vary greatly between the HGR implementations detailed within the reviewed supporting
literature [6,16,17].

Physiological scope refers to the pre-set taxonomy used to define the physical nature
of the gestures [16]. The main distinctions that are made in the existing literature when
defining this taxonomy are: the use of static or dynamic gesture set, the inclusion of wrist
motion, and the number of hands that are used to form single gestures.

The information interpreted from gestures by HGR algorithms has three categories:
spatial information, pathic information, and symbolic information [6]. Spatial information

Sensors 2023, 23, 5462 3 of 35

refers to the position of the gestures within the environment. Pointing gestures are an
example of gestures that convey spatial information. Pathic or temporal information is in-
terpreted from the velocity and path that an observed gesture takes within an environment.
Much like spatial information, this is typically observed from the world coordinates of the
observed gesture. Symbolic information refers to the shape the observed gesture makes and
is typically interpreted through joint angles’ calculation or shape-matching techniques [6].

Within HGR algorithms, the model used to represent an observed hand changes to
reflect the desired scope of input gestures [16]. As the number, complexity, and infor-
mation density of gestures increase, the complexity of the modelling method used must
also increase. Model complexity is directly proportional to the number of classifiable
landmarks that the model provides [16]. HGR modelling methods fall into two main cate-
gories: 3D-based models and appearance-based models. These models are demonstrated
in Figure 2.

Sensors 2023, 23, x FOR PEER REVIEW 3 of 34

defining this taxonomy are: the use of static or dynamic gesture set, the inclusion of wrist
motion, and the number of hands that are used to form single gestures.

The information interpreted from gestures by HGR algorithms has three categories:
spatial information, pathic information, and symbolic information [6]. Spatial information
refers to the position of the gestures within the environment. Pointing gestures are an
example of gestures that convey spatial information. Pathic or temporal information is
interpreted from the velocity and path that an observed gesture takes within an environ-
ment. Much like spatial information, this is typically observed from the world coordinates
of the observed gesture. Symbolic information refers to the shape the observed gesture
makes and is typically interpreted through joint angles’ calculation or shape-matching
techniques [6].

Within HGR algorithms, the model used to represent an observed hand changes to
reflect the desired scope of input gestures [16]. As the number, complexity, and infor-
mation density of gestures increase, the complexity of the modelling method used must
also increase. Model complexity is directly proportional to the number of classifiable land-
marks that the model provides [16]. HGR modelling methods fall into two main catego-
ries: 3D-based models and appearance-based models. These models are demonstrated in
Figure 2.

Figure 2. Hand-gesture modelling methods.

Less complex models such as the silhouette geometry model are preferably used for
simple HGR applications as they offer very few classifiable landmarks. Given that it is an
appearance-based model, it is computationally inexpensive to generate as it can be ex-
tracted directly from the image with little intermittent computation. These model styles
are best suited for low-response-time algorithms that specialize in lightweight and fast
operating applications. More complex models such as the 3D-skeleton model typically
offer up to 21 landmarks [16,18,19] for classification. These models require considerably
more computational power to generate accurately, but the 21 landmarks enable the calcu-
lation of exponentially more distinguishable gestures. Due to the higher computational
load required to generate the model, they are typically employed in control applications
where a higher accuracy and a more expansive data set are required [20].

1.2.3. Gesture Identifiers
Gesture identification is a catch all term that refers to the method by which a human

hand is detected as apart from its background and transformed into a computer model
used for classification [5,8]. This process is often referred to as feature extraction [21]. The
model referenced is an estimation of the human hand, and the model type is as described
in Section 1.2.2. The observational method used to collect the data from which the hand is
detected is the data-acquisition component discussed in Section 1.2.1. As there are a mul-
titude of different approaches for each combination of model and observation method,
this review focuses on modern methods that utilize single-camera visual observation
methods and 3D-skeleton representations [22].

Media pipe hands (MPH) is a complete and well researched on-device real time hand
identification solution designed to operate using a single RGB camera [18]. The output
produced is a list of 2.5D, 21-landmark skeleton models for each hand observed within
the input frame. MPH utilizes a computationally efficient two-stage pipeline: the first

Figure 2. Hand-gesture modelling methods.

Less complex models such as the silhouette geometry model are preferably used for
simple HGR applications as they offer very few classifiable landmarks. Given that it is
an appearance-based model, it is computationally inexpensive to generate as it can be
extracted directly from the image with little intermittent computation. These model styles
are best suited for low-response-time algorithms that specialize in lightweight and fast
operating applications. More complex models such as the 3D-skeleton model typically offer
up to 21 landmarks [16,18,19] for classification. These models require considerably more
computational power to generate accurately, but the 21 landmarks enable the calculation
of exponentially more distinguishable gestures. Due to the higher computational load
required to generate the model, they are typically employed in control applications where
a higher accuracy and a more expansive data set are required [20].

1.2.3. Gesture Identifiers

Gesture identification is a catch all term that refers to the method by which a human
hand is detected as apart from its background and transformed into a computer model
used for classification [5,8]. This process is often referred to as feature extraction [21]. The
model referenced is an estimation of the human hand, and the model type is as described
in Section 1.2.2. The observational method used to collect the data from which the hand
is detected is the data-acquisition component discussed in Section 1.2.1. As there are a
multitude of different approaches for each combination of model and observation method,
this review focuses on modern methods that utilize single-camera visual observation
methods and 3D-skeleton representations [22].

Media pipe hands (MPH) is a complete and well researched on-device real time hand
identification solution designed to operate using a single RGB camera [18]. The output
produced is a list of 2.5D, 21-landmark skeleton models for each hand observed within the
input frame. MPH utilizes a computationally efficient two-stage pipeline: the first stage
is a palm detector, and the second stage is the hand-landmark extraction method. This
pipeline was designed to minimize the computational load of 3D-skeleton identification in
two key methods. The first method uses a computationally inexpensive algorithm to locate
areas of interest within the image and then applies the landmark model only to these areas.

Sensors 2023, 23, 5462 4 of 35

The second method uses the tracking of identified hands between frames to reduce the
computation requirements necessary to perform identification of the subsequent frames.

InterHand2.6M (IHM) is a relatively new gesture-identification algorithm that uti-
lizes a single RGB camera and a pre-trained convolutional neural network (CNN) labelled
ResNet to achieve highly accurate feature extraction [19]. The output produced is a normal-
ized 3D, 21-landmark skeleton model for up to two hands, specifically tuned to detect and
correctly label the left and right hands of a single operator [19].

1.2.4. Gesture Classifiers

Gesture classification refers to the process by which a feature extracted by the
gesture-identification algorithm is classified as a particular gesture from a pre-defined
list [5,21]. The classification of input-gesture models is a typical machine-learning problem
and can be addressed by numerous different algorithms. Popular approaches include
decision trees, K-nearest neighbours (KNN), the hidden Markov model (HMM), artificial
neural networks (ANNs), naïve Bayes (NB), linear regression, bounds-based classification,
support vector machines (SVMs), and convolutional neural networks (CNNs). Modern
HGR approaches favour the use of classifiers that can handle high-dimensionality features
spaces and classify elements into many distinct non-linearly separable classes.

1.3. Contribution of the Paper

The primary contribution of this paper is the development of a cohesive, high acces-
sibility, low-cost, alternative-control algorithm. This paper used a multi-stage method to
identify, analyse, and clinically validate modern HGR components such as MPH. A cohe-
sive alternative-control algorithm was constructed by using the results of these analytical
stages to implement components that best complemented one another and satisfied the
overarching design criteria of the paper. This set of complimentary HGR components
operated at a high level of confidence and robustness against gesture confusion. The
developed HGR algorithm had a gesture-classification accuracy of 96.25% over an array of
eight input gestures, which is comparable to modern HGR algorithms [10–14]. The final
alternative-control algorithm was demonstrated using a quad-rotor drone, whereby the
algorithm was able to address its core developmental criteria and extend the functionality
of the drone’s conventional control medium. In comparison to modern alternative-control
systems for drones, the final algorithm presented in this paper provides an increased level
of accessibility, a higher computational efficiency, and a lower monetary cost. The increased
level of accessibility was achieved due to the clinical validation of MPH, which led to the
development of HGR systems that compensate for the Z-axis instability of the MPH model.
This meant that users are no longer required to maintain ideal hand orientation in front
of the input RGB camera, making the system easier to operate than other approaches that
utilise MPH [12]. Furthermore, the final solution does not require specialised equipment,
further increasing its accessibility and lowering its monetary cost [10,11,13,14]. Finally, the
computational requirements of the final solution are minimal when compared to other
vision-based HGR alternative-control algorithms [12,13].

The results achieved in this paper support the use of HGR algorithms such as MPH
in alternative-control applications. Thus, the framework used to develop the alternative-
control algorithm detailed in this paper could be re-applied to a multitude of other ap-
plications by simply reconfiguring the command mapping component. The secondary
contribution of this paper is the novel validation of MPH modelling accuracy. These
data can be used to inform future projects on how best to apply MPH to their respective
applications even in project scopes that extend beyond alternative control.

Sensors 2023, 23, 5462 5 of 35

2. Methods
2.1. Methodology Structure
2.1.1. Overview

The investigatory scope of this paper focused on using pre-existing gesture-recognition
components to construct an alternative-control algorithm. This methodology section is
focused on the selection, validation, and implementation of these standalone components
to form a cohesive final algorithm. To achieve this, each standalone component was
investigated, with subsequent investigations being adjusted to reflect the results of the
previous stages. This overview describes the structure of the investigatory method, the
governing criteria used to define each of the investigations, and the two key simplifications
used to manage the scope of the overall investigation.

Alternative-control algorithms consist of an HCI component and a command mapping
component. The HCI component selected for this project was HGR. From the literature
reviewed in Section 1.1, all HGR algorithms consist of the following four components: ges-
ture description, data-acquisition method, gesture identifier, and gesture classifier. With the
inclusion of a command mapping component, the list of components required by the final
solution was derived. The subsequent investigation used to select a final implementation
for each of these components was broken up into six stages. The first stage was the selection
of a gesture-description model. The second stage was the selection of a data-acquisition
method. The third stage was the selection of a gesture-identification algorithm. The fourth
stage was the validation of the selected gesture-identification algorithm. The fifth stage
was the selection of a gesture-classification algorithm. The sixth and final stage was the
derivation and tuning of a gesture-mapping component. The general structure of the
investigation is shown in Figure 3.

Sensors 2023, 23, x FOR PEER REVIEW 5 of 34

be used to inform future projects on how best to apply MPH to their respective applica-
tions even in project scopes that extend beyond alternative control.

2. Methods
2.1. Methodology Structure
2.1.1. Overview

The investigatory scope of this paper focused on using pre-existing gesture-recogni-
tion components to construct an alternative-control algorithm. This methodology section
is focused on the selection, validation, and implementation of these standalone compo-
nents to form a cohesive final algorithm. To achieve this, each standalone component was
investigated, with subsequent investigations being adjusted to reflect the results of the
previous stages. This overview describes the structure of the investigatory method, the
governing criteria used to define each of the investigations, and the two key simplifica-
tions used to manage the scope of the overall investigation.

Alternative-control algorithms consist of an HCI component and a command map-
ping component. The HCI component selected for this project was HGR. From the litera-
ture reviewed in Section 1.1, all HGR algorithms consist of the following four components:
gesture description, data-acquisition method, gesture identifier, and gesture classifier.
With the inclusion of a command mapping component, the list of components required
by the final solution was derived. The subsequent investigation used to select a final im-
plementation for each of these components was broken up into six stages. The first stage
was the selection of a gesture-description model. The second stage was the selection of a
data-acquisition method. The third stage was the selection of a gesture-identification al-
gorithm. The fourth stage was the validation of the selected gesture-identification algo-
rithm. The fifth stage was the selection of a gesture-classification algorithm. The sixth and
final stage was the derivation and tuning of a gesture-mapping component. The general
structure of the investigation is shown in Figure 3.

Figure 3. Investigation structure flow chart.

2.1.2. Defining Simplifications
As demonstrated in Section 1.2, due to the mature nature of HGR, there were numer-

ous unique approaches available for each of the four algorithm subcomponents. Given the
expansive scope of viable approaches, it was not feasible to investigate all possible sub-
component combinations directly. Consequently, to maintain the validity of the investi-
gation, three simplifications were defined to manage the scope of the investigation:
1. Components selected prior to the current stage of the investigation cannot be

changed. Implementations were only considered if they were applicable with the pre-
viously selected components. Selected components should not be changed to accom-
modate for the needs of a new proposed approach. For example, the data-acquisition
method selected in stage two could not be changed to accommodate for the require-
ments of a gesture-identification component proposed in stage three.

2. The selection of each component was to be made without consideration for future
components. The selection of each component was to be based on the applicable gov-
erning criteria, selection of previous components, and the relevant validation results.

Figure 3. Investigation structure flow chart.

2.1.2. Defining Simplifications

As demonstrated in Section 1.2, due to the mature nature of HGR, there were numer-
ous unique approaches available for each of the four algorithm subcomponents. Given the
expansive scope of viable approaches, it was not feasible to investigate all possible subcom-
ponent combinations directly. Consequently, to maintain the validity of the investigation,
three simplifications were defined to manage the scope of the investigation:

1. Components selected prior to the current stage of the investigation cannot be changed.
Implementations were only considered if they were applicable with the previously
selected components. Selected components should not be changed to accommodate
for the needs of a new proposed approach. For example, the data-acquisition method
selected in stage two could not be changed to accommodate for the requirements of a
gesture-identification component proposed in stage three.

2. The selection of each component was to be made without consideration for future com-
ponents. The selection of each component was to be based on the applicable governing
criteria, selection of previous components, and the relevant validation results.

3. The gesture-description and data-acquisition components were selected from the re-
viewed literature, without any new quantitative or qualitative analysis being performed.

Simplifications 1 and 2 enforced a linear investigation structure. By using this linear
method of selection, the number of applicable implementations reduced exponentially with

Sensors 2023, 23, 5462 6 of 35

each subsequent stage of the investigation. This reduced the scope of each investigation
stage to a workable level whilst maintaining the validity of the overall investigation.
However, these assumptions only worked to reduce the scope of the later stages of the
investigation. Hence, the inclusion of a third simplification was required to reduce the
scope of the earlier stages.

The third simplification removed the need for time-consuming experimental analysis
to be performed during the first two investigatory stages. This reduced the workload
required to analyse different implementations, allowing for a wider array of implementa-
tions to be investigated. This simplification did not compromise the validity of the overall
investigation for two key reasons. The first reason is that it is difficult to qualitatively or
quantitively analyse the effectiveness of different gesture-description and data-acquisition
methods without considering the HGR algorithms that are typically included within. The
most effective way to analyse complete solutions is to review the literature used to define
them, hence supporting the selection of these components following a literature review.
The second key reason is that the criteria relative to these two components are not defined
by analysable metrics, and as such can clearly be derived from the attributed literature in a
yes or no fashion.

By utilising Simplification 3 to inform the selection of the highest-level components
(Components 1 and 2), and then enforcing Simplifications 1 and 2, the scope of each in-
dividual section can be managed appropriately—facilitating an efficient derivation of the
final solution. Furthermore, the application of Simplification 3 enables the selection of Com-
ponents 1 and 2 within Sections 2.2 and 2.3 respectively, as no experimental investigation
was needed. This allowed for more specific testing to be defined for subsequent sections.

2.1.3. Governing Criteria

To ensure that a cohesive and effective final solution was developed over the course
of this investigation, a governing set of criteria were developed. The purpose of these
criteria was to augment the dependent and independent variables used within each in-
vestigatory stage, in a way that led to the development of an effective alternative-control
algorithm. That is, if the implementation selected for each component is selected because it
conforms best to the defined criteria, then the final solution will function as an effective
alternative-control system. The selected criteria were a subset of the list found in Section 1.1
of the literature review. These criteria were selected from the larger list to specifically
adhere to the design approaches used in [3,4] which successfully produced enervative and
effective solutions. The final set of governing criteria used in this project are listed below in
order importance:

4. Reliability in issuing the intended command: This criterion graded both the number of
unique commands the algorithms can issue, and the algorithm’s ability to distinguish
between these unique commands.

5. Reproducibility of the intended command: This criterion graded the algorithm’s
ability to robustly reproduce the same action when presented with the same user input.

6. Physically non-restrictive equipment or instrumentation: This criterion graded how
restrictive the algorithm’s control interface was, referring to both restrictions caused by
elements that were physically placed upon the user’s body or elements that required
the user to operate within a restricted space or in a restricted manner.

7. Ease of operation and shorter user learning cycle: This criterion graded how complex
or difficult to learn the control interface was, considering factors such as complexity
of inputs, complexity of input structure and physical difficulty to form inputs.

8. Computationally inexpensive: This criterion graded the computation requirements
for the algorithm’s operation and inversely the speed in which the algorithm could
operate at if given an abundance of computational resources.

9. Monetarily inexpensive: This criterion graded the general cost needed for the algo-
rithm to function, including the cost of the computational hardware required to run
the algorithm and the sensory hardware to acquire data.

Sensors 2023, 23, 5462 7 of 35

2.2. Stage One: Selection of Gesture-Description Model
2.2.1. Overview

The first stage of the investigation selected a gesture-description method that could
facilitate specific and repeatable control of a complex system. This stage was affected
by Simplification 3, which specified that the investigation type was a review and not a
quantitative or qualitative investigation. As stated in Section 1.2.2, the gesture-description
component of an HGR algorithm consists of three subcomponents: gesture type, gesture
information, and gesture model. All three subcomponents were evaluated individually
and selected per Governing Criteria 1, 4, and 5.

Due to the relevant simplification, the method used to determine the final implemen-
tation for these three subcomponents was a literature review. The options to be reviewed
for each of the subcomponents were derived directly from the reviewed literature and are
listed under each of the subcomponent’s justification sections.

The final values selected for these fields are as follows: for the gesture type, single-
hand static gestures were chosen; for the gesture information, symbolic information was
selected; for the gesture model, a three-dimensional, 21-landmark skeleton model was
selected. These values were selected for two key reasons. The first was to ensure that the
final solution met the relevant governing criterion, and the second was to ensure that the
simplest solution to these requirements was found.

2.2.2. Gesture-Type Selection Justification

The type of gestures observed had three main considerations to be analysed. The first
of these was the motion of observed gestures, either a static or dynamic gesture set. The
second was the scope of observation, specifically the inclusivity of wrist motion. Finally,
the scope and number of observable gestures was considered.

Static single-hand gestures were selected to ensure future components’ simplicity
and ease of understanding for operators. While dynamic or two-handed gestures also
conform to Criterion 4, the construction of an algorithm that operates using these gestures
would have been considerably more complex than an algorithm designed to recognise
static gestures [16]. Furthermore, single-hand static gestures are easier for an operator
to learn and perform consistently, decreasing the user learning cycle in comparison to
the more complex dynamic or two-hand gestures [16]. Thus, single-hand static gestures
were selected to simplify the computational restrictions and user learning cycle of the
final solution.

A wide range of gestures was initially proposed to avoid artificially biasing the
identification and classification components’ selection by providing an ample array of
gestures. The only restriction on the initial gesture set was that it had to contain gestures
defined by a recognised sign-language system. This was performed to ensure that the
selected gestures were easily recognisable and easily learned [22], aiding in the final
solution’s conformity to Criterion 4. An example gesture set is shown in Figure 4.

2.2.3. Gesture Model Selection Justification

The gesture-model selection was governed by two key factors, the computational
complexity required to generate each model and the number of classifiable landmarks
offered by each model. This selection aimed to balance these two factors by selecting a
modelling method that allowed for enough classifiable landmarks to differentiate between
the types of gestures detailed in Section 2.2.2, whilst not requiring excessive computational
power to generate. The modelling methods analysed are listed in Section 1.2.2. Given
the number and complexity of the possible gestures, the most applicable model was a
3D-skeleton model [18,19]. Appearance-based models were not applicable as their low
number of classifiable landmarks would limit the final algorithm’s ability to differentiate
between the desired input gestures [16]. More complex 3D models, such as 3D geometric
models and 3D textured volumetric models, were not applicable as the additional classi-
fiable landmarks they offer are not necessary to differentiate between the desired input

Sensors 2023, 23, 5462 8 of 35

gestures. Thus, the use of these models would needlessly increase the complexity of future
components without benefitting the final algorithm’s performance [16].

Sensors 2023, 23, x FOR PEER REVIEW 8 of 34

Figure 4. Sign language example hand-gesture set [23].

2.2.3. Gesture Model Selection Justification
The gesture-model selection was governed by two key factors, the computational

complexity required to generate each model and the number of classifiable landmarks
offered by each model. This selection aimed to balance these two factors by selecting a
modelling method that allowed for enough classifiable landmarks to differentiate between
the types of gestures detailed in Section 2.2.2, whilst not requiring excessive computa-
tional power to generate. The modelling methods analysed are listed in Section 1.2.2.
Given the number and complexity of the possible gestures, the most applicable model was
a 3D-skeleton model [18,19]. Appearance-based models were not applicable as their low
number of classifiable landmarks would limit the final algorithm’s ability to differentiate
between the desired input gestures [16]. More complex 3D models, such as 3D geometric
models and 3D textured volumetric models, were not applicable as the additional classi-
fiable landmarks they offer are not necessary to differentiate between the desired input
gestures. Thus, the use of these models would needlessly increase the complexity of future
components without benefitting the final algorithm’s performance [16].

2.2.4. Gesture Information Justification
The information derived from the gestures had four considerations, these being spa-

tial, pathic, symbolic, or affective [6]. Note that the selection of these information sources
was not mutually exclusive, i.e., one or all of them could be selected. Given the gesture
type selected in Section 2.2.2, symbolic information was the primary source of information
that was extracted from the observed gestures [6]. Additionally, the spatial information of
the three-dimensional skeleton landmark model was also used to calculate the joint angles
for each of the 15 observed joints. Stage four methodology will define the specific calcula-
tions required to perform this transformation.

2.3. Stage Two: Selection of Data-Acquisition Method
The second stage of the investigation was the selection of a data-acquisition method.

The purpose of this stage was to select a data-acquisition method capable of efficiently
and non-restrictively observing a human hand in a manner conducive to the production
of the selected gesture model. Similar to Section 2.2, the investigation process for this stage
was a literature review as defined by Simplification 3. The governing criteria relevant to
this section were Criteria 1, 2, 3, 5, and 6. To ensure that these criteria were satisfied, this
review assessed all of the HGR data-acquisition methods listed under Section 1.2.1. Each
of these solutions were analysed against the criteria listed above and compared against
one another to find an optimum solution.

Out of the analysed data-acquisition methods, single RGB cameras were the only an-
alysed approach that satisfied the applicable governing criteria. In contrast, the other data-
acquisition methods all posed notable drawbacks that would severely hinder the final

Figure 4. Sign language example hand-gesture set [23].

2.2.4. Gesture Information Justification

The information derived from the gestures had four considerations, these being spatial,
pathic, symbolic, or affective [6]. Note that the selection of these information sources was
not mutually exclusive, i.e., one or all of them could be selected. Given the gesture type
selected in Section 2.2.2, symbolic information was the primary source of information that
was extracted from the observed gestures [6]. Additionally, the spatial information of the
three-dimensional skeleton landmark model was also used to calculate the joint angles for
each of the 15 observed joints. Stage four methodology will define the specific calculations
required to perform this transformation.

2.3. Stage Two: Selection of Data-Acquisition Method

The second stage of the investigation was the selection of a data-acquisition method.
The purpose of this stage was to select a data-acquisition method capable of efficiently and
non-restrictively observing a human hand in a manner conducive to the production of the
selected gesture model. Similar to Section 2.2, the investigation process for this stage was
a literature review as defined by Simplification 3. The governing criteria relevant to this
section were Criteria 1, 2, 3, 5, and 6. To ensure that these criteria were satisfied, this review
assessed all of the HGR data-acquisition methods listed under Section 1.2.1. Each of these
solutions were analysed against the criteria listed above and compared against one another
to find an optimum solution.

Out of the analysed data-acquisition methods, single RGB cameras were the only
analysed approach that satisfied the applicable governing criteria. In contrast, the other
data-acquisition methods all posed notable drawbacks that would severely hinder the final
solution’s ability to satisfy these criteria. Specifically, depth cameras were omitted due to
their range and availability restrictions, which would jeopardise the final solution’s confor-
mity to Criterion 3 as the range restrictions will restrict users [8,24]; stereo cameras were
omitted due to their extensive computational requirements and focal pointing restrictions,
which would make satisfying Criteria 3 and 5 difficult [7,8,13]; and band and glove ap-
proaches were both omitted because of their direct opposition to Criterion 3 [8,10,11,14,15].

After these omissions, the single RGB camera was the only remaining viable approach.
However, single-camera approaches have some notable drawbacks that will need to be
addressed by future components. These are primarily the robustness issues associated with
background and operator hand, variability, and single viewpoint error sources such as
self-occlusion and transform inconsistency [8]. Despite these notable drawbacks, due to
the mature nature of this form of HGR [7], it is reasonable to assume that the selection of
appropriate future components can appropriately manage these drawbacks [7,12].

Sensors 2023, 23, 5462 9 of 35

2.4. Stage Three: Selection of Gesture-Identification Algorithm

The purpose of stage was to select a gesture-identification algorithm capable of extract-
ing hand features from the data returned by a single RGB camera. The extracted features
were to be arranged in the form of the desired three-dimensional skeleton model. The gov-
erning criteria relevant to this section were Criteria 1, 2, and 5. Additionally, the prospective
algorithms were also investigated as to their ability to minimize the drawbacks of single
RGB camera approaches, such as self-occlusion. A qualitative analysis was performed
to facilitate this selection, focusing on the computational cost of the implementation and
the observable localization accuracy of the prospective algorithms. This stage was only
intended to be a minor thresholding investigation, aimed less at comparing applicable
solutions and more towards ensuring the selected solution will be able to conform to the
governing criterion.

Given that there are a multitude of feature-extraction methods that are applicable for
HGR gesture identification, it was not feasible to test them all directly. Fortunately, this
expansive scope was reduced considerably by the three design simplifications. The previ-
ously selected gesture-description and data-acquisition components reduced the scope of
this investigation in the following ways: the removal of any method not initially developed
to return a three-dimensional skeleton model; the removal of any gesture-identification
approach not compatible with single RGB camera data; and only considering pre-existing
open-source implementations. After these reductions, three solutions were marked for
future investigation: media pipe hands, InterHands2.6M, and an OpenCV approach. These
three algorithms represented possible solutions that applied different pre-processing and
feature-extraction techniques and had drastically different computational loads.

The key dependent variables of this qualitative investigation were the localisation
accuracy of the skeleton model and the computational requirements needed to perform
feature extraction. These two dependent variables were analysed in two subtests. The
first test aimed to observe the computational requirements to set up and operate the three
algorithms. The second subtest aimed to observe the localisation capacity of the three
algorithms in variable environments.

10. Identifier Implementation: The aim of this subtest was to implement a baseline variant
of the three algorithms. The baseline variant of this method should be capable of
observing a single human hand and printing the angle of its 15 primary joints to the
terminal while also displaying the 3D-skeleton model on screen. The method used
to calculate these joint angles is described in Section 2.5. The purpose of this stage
is three-fold. Firstly, it serves to assess the operational readiness of the algorithms.
Secondly, it assesses the computational requirements necessary to implement the
algorithms. Finally, it acquires an operational version of said algorithms upon which
future testing would be performed. The key independent variables of this test are
the three different algorithms being tested. All algorithms are to be applied on the
same 2017 Mac Book Pro that operates using a 3.5 GHz Dual-Core Intel Core i7 CPU,
an Intel Iris Plus Graphics 650 1536 MB graphics card, 16 GB 2133 MHz LPDDR3 of
RAM, and 250.69 GB of storage.

11. Qualitative Analysis: The aim of this subtest was to qualitatively observe the im-
plemented algorithms’ localisation accuracy. This subtest was the first step towards
ensuring that the selected algorithm conforms to Criteria 1 and 2 and minimizing the
drawbacks of the selected data-acquisition method. This investigation stage aimed
to observe each algorithm’s accuracy in cases of self-occlusion, rotation, and trans-
lation using the operational version derived in the first subtest. The method for this
observation was relatively simple. First, a user’s hand was held in a constant position
in front of the camera. The displayed three-dimensional model was then recorded.
From this position, the hand was then rotated and translated around the camera’s
viewport. While these rotations and translations occurred, the displayed model was
constantly observed. These observations aimed to determine whether the algorithm
could maintain its localisation accuracy despite the movement. The final stage of the

Sensors 2023, 23, 5462 10 of 35

observation was to turn the hand so that certain aspects of the hand become occluded
from the camera’s POV. This was conducted to determine whether the algorithm
could still produce a model despite the occlusion of hand features.

2.5. Stage Four: Validaton of Selected Gesture-Identification Algorithm

The fourth stage of the investigation focused on the validation of the selected gesture-
identification algorithm. Specifically, this stage centred around the evaluation of the
accuracy and robustness of the model produced by the selected algorithm. This stage em-
ployed a clinically advised, quantitative approach that compared the joint angles derivable
from the model with the joint angles measured with a finger goniometer. The results of this
method were then used to determine the current algorithm’s conformation to Governing
Criterion 2. Due to the extensive nature of this validation process, it was not possible to
apply it to each of the gesture-identification algorithms analysed in Stage 3; hence, it was
only applied to validate the final selected identification algorithm.

The key dependent variable observed during this investigatory stage was the per-
centage accuracy of the generated model. The generated model, as specified in Stage 1,
was a three-dimensional skeleton hand model. The accuracy of the model was found by
calculating the percentage variance between the joint angles of the observed hand measured
by a goniometer and the joint angles calculated from the generated model. Joint-angle
comparison was used over other possible methods such as landmark-accuracy analysis or
joint-positional analysis because of the clinical support available for joint-angle measure-
ment. As a result of this, the joint angles could be measured directly and accurately using a
clinically defined method which provided an excellent reference value for comparison with
the model. In contrast to this, if landmark-accuracy analysis or joint-positional analysis
methods had been applied, considerable sources of error could have been introduced into
the reference value due to sources such as hand-size variation, joint-location variation, and
joint-observation variation.

The joint angles to be tested are the joint angles of the metacarpophalangeal, proximal
interphalangeal, and the distal interphalangeal joints of all fingers including the thumb.
For all joints’ measurements, the static arm of the finger goniometer was to be stabilized
against the proximal side of the joint with the hinge of the goniometer being placed directly
above the observed joint. If the participants knuckle was bulbous in nature such that
it prevented the goniometer from securely sitting above the joint, then the goniometer
was to be moved to the side of the finger, such that the goniometer’s hinge sat directly in
front of the observed joint. Once secured, the free arm of the goniometer was then lightly
pressed against the distal side of the observed joint. It is imperative that little to no force is
applied during this process as the goniometer is designed to move freely, and any excessive
application of force could alter the pose of the observed hand. Once the free arm of the
goniometer had contacted the distal side of the joint, the joint angle could then be recorded
to the nearest 5◦. This method was advised by Jayden Balestra [25].

Two methods that were applied to calculate the joint angles from the three-dimensional
model. The first method analysed was a conventional three-dimensional vector angle
calculation which first created two vectors: one traveling to the desired joint from the
previous attached joint and a second vector traveling from the joint to the next joint. Once
these vectors had been defined, a simple dot product calculation was then applied to
calculate the angle that existed between the two joints. A second method was used as a
backup, which simply ignored the depth component of the model and then performed the
same calculation performed above. This method was included to quantify whether the
three-dimensional nature of the model was aiding or limiting the model’s performance.
The code used to perform both calculations is shown in Appendix D.

In order to thoroughly test the robustness of the algorithm alongside its accuracy,
two independent variables—hand pose and hand orientation to camera—were changed
throughout the course of this stage:

Sensors 2023, 23, 5462 11 of 35

12. Hand pose: The first of these variables was the pose of the hand. In total, three
positions were investigated: a fully closed position, a partially closed position, and
a fully open position. These three positions were selected because they are stable,
easy to hold, repeatable positions, and again, because they were the advised positions
suggested by our clinical reference, Jayden Balestra [25]. Furthermore, these three
positions were used to simulate a full range of motion of the human hand, as it was
important to validate the accuracy of the model across a hand’s full range of motion.
An example of the three poses used are shown in Appendices A and B.

13. Hand orientation with respect to camera: The second independent variable that
was altered over the course of this analysis was the incident angle formed from the
camera’s point of view and the observed hand. By changing this angle of orientation,
the algorithm’s robustness against rotation and self-occlusion (the drawbacks of single
camera RGB solutions) could be quantitatively observed. For each of the three hand
poses defined above, four photos were taken: one from directly in front of the hand,
one from a 45◦ offset, one from a 90◦ offset, and one from a 180◦ offset. An example of
the four viewpoints used are shown in Appendices A and B. To ensure a high level
of accuracy within the test itself, a wide range of controls were put in place, to make
sure each stage of the analysis was repeatable and accurate.

14. Lighting: To avoid lighting variance, all tests were to be conducted in a well il-
luminated environment, specifically aiming that no shadowing be present on the
observed hand.

15. Background: Background variation is known to have an impact on the MPH modelling
process. As this is not a factor currently being analysed, a white backdrop was used for
all tests. A white backdrop was used to ensure that there was a high level of contrast
between the hand and the background to aid in the feature-extraction process.

16. Pose stability and body position: To ensure that the same position and viewpoint
angles were observed for each participant, two controls were put in place to manage
body position and hand stability. The first control is that participants are to kneel in a
comfortable position, with their forearm braced against the test bench. The test bench
is to contain a set of marks, indicating the appropriate positions for the background
and participant forearm.

17. Pitch, roll, and yaw of the camera: To ensure that the viewpoint orientation was
maintained across all participants, and only varied by the desired amounts between
tests, the Halide camera application was used [26].

18. General hand size/distance from camera: Whilst changes in participant hand size
were unavoidable, to avoid exacerbating these variations, a fixed camera distance
was used for all participants. This was performed by simply having fixed mounting
points for the camera on the test bench at the correct location and orientation for each
of the desired viewpoint angles.

The final testing procedure consisted of five stages; (i) establish the aforementioned
controls; (ii) the participant forms required hand pose; (iii) record the joint angles using
goniometer; (iv) photograph the hand from the required viewpoints, (v) re-measure the
joint angles using a goniometer. After the above procedure had been completed, the
two sets of measured joint angles were compared. If the results of the second set of
measurements failed to match the first, the test images were discarded, and the process was
repeated. This was conducted to confirm that the participant’s hand pose had remained
stable throughout the test. This process was repeated for each participant and for each pose.
A five-minute pause was taken between tests to ensure that participant fatigue did not
affect pose stability. The valid photos were passed to the selected gesture-identification and
angle-calculation algorithms, which generated a set of observed joint angles (the code used
to perform this stage of the process is referenced through Appendix D). These observed
joint angles were then compared against the goniometer measurements to generate a final
set of accuracy percentages.

Sensors 2023, 23, 5462 12 of 35

2.6. Stage Five: Selection of Gesture-Classifcation Algorithm

The purpose of the fifth stage of the investigation was to use a quantitative method
to select the gesture-classification algorithm that best complimented the selected gesture-
identification algorithm. The three relevant criteria for this stage are Governing Criteria
1, 2, and 5. From these three criteria, two quantitative metrics were calculated to inform
the final selection. These metrics were the classification accuracy of the tested algorithms
expressed in the form of confusion matrices and classification speed expressed in seconds
(used to reflect the computational requirements of the algorithms).

To ensure that the selected classifier complimented the selected gesture-identification
component, there were two possible scopes and criterion weightings defined for this stage
of the investigation. Each of the defined scopes was focused on a different possible outcome
which could have arisen from the results of Stage 4. Before defining the individual scopes,
there was another key scope reduction that applied to both cases. The selected classifier
must be a pre-trained solution, capable of classifying gestures of a globally recognised
sign-language. This reduction was made to conform with the paper problem statement,
and the selected gesture-description model. These two possible scopes are defined below:

19. If the Stage 4 results show that the selected gesture-identification algorithm can
accurately and robustly produce a model that reflects the user’s hand, then a low
dimensionality classifier built around the 15 single-dimension joint angles should
be investigated. The final selected algorithm is that which favours Criterion 5 over
Criteria 1 and 2. The algorithms to be investigated are decision trees, KNNs, and
linear regression [27].

20. If the Stage 4 results show a less than ideal model accuracy, then a higher input
dimensionality classifier which uses the original 21 three-dimensional coordinate
system (63 total dimensions) would be investigated. The final selected algorithm
is that which favours Criteria 1 and 2 over Criterion 5. Specifically, the algorithms
to be investigated are ANNs, SVM, linear regression, and a non-machine learning
bounds-based approach [27,28].

Regardless of the selected scope, the experimental method that would be used to
analyse the prospective classifiers remained the same. In either case, the dependent
variables of the investigation remained the classification accuracy and classification time.
The independent variables of this classification were the style and implementation of the
classifiers themselves. To ensure a fair investigation of the defined classifiers, the following
variables were kept constant:

21. Test data set: A custom data set was to be made for the selected classifiers. Ideally,
after the initial group of prospective classifiers had been defined, a common set of
ten gestures would be identified between the algorithms. Once this common gesture
set had been defined, ten images were created for each gesture and converted into
three-dimensional models using MPH. These 100 models formed the test data set for
this stage of the investigation. Note, to ensure that Criteria 1 and 2 were assessed
correctly, the hands present in the ten selected images varied, in scale, orientation,
and pose. By introducing these variations into the common data set, the algorithm’s
accuracy will be tested in a more robust fashion as they are not being tested in a
‘best-case scenario’.

22. Computation power provided to each algorithm: To ensure that no one algorithm is
favoured during this analysis process, all testing should be performed on the same
device, with no background processes running. When performing classification-time
testing, the time taken should only be considered for the ‘prediction stage’ of the
classifier. Specifically, this time value should exclude the time taken to initialize/train
the classifier, load the MPH model, and any time associated with the creation of the
confusion matrices.

The procedure for this investigation was relatively simple, a basic algorithm was used
to sequentially test each of the prospective pre-trained algorithms against the common

Sensors 2023, 23, 5462 13 of 35

data set. After each test, the prediction of the four classifiers was recorded in the respective
confusion matrices, and the time taken to perform that classification was stored in a CSV
file. Once all the test images had been fed into the algorithm, the final confusion matrices,
and time performance data were displayed on screen for evaluation.

2.7. Stage Six: Gesture Mapping and Tuning

The purpose of this stage of the investigation was to develop a gesture-mapping
component capable of translating classifiable gestures into drone actions. The mapping
method selected for this component was a one-to-one command mapping approach. This
approach was selected to conform with the design decisions made in [1–3,29] and served
as a good initial solution capable of demonstrating the functionality of the fully developed
HCI algorithm within the context of alternative control. This stage consists of two key
developmental sections. The first section was the initial declaration of a gesture dictionary
that translated observed gestures into commands. The second section was the tuning of
these commands to allow for smooth control of the drone. The primary relevant criterion
for this stage is Governing Criterion 4.

The DJI TELLO quad-rotor drone (mechanism specifications provided in Appendix E)
was selected to be controlled by this mapping component for three key reasons. The
first reason is that the physical characteristics of the drone made it well suited for use
in prototype implementations such as this. The drone is inexpensive, light, and slow
and has built-in collision recognition sensors and systems. These collision-mitigation
sensors limited the consequences experienced during testing, which was beneficial given
the experimental nature of the applied control algorithm. The second reason is that while
DJI TELLO does not offer a python API, the mobile application offered by DJI to operate
the drone has commands that can be easily replicated using Python’s built-in socket library.
This meant limited work was required to transfer controlling commands to the drone. The
final key benefit is the breadth of commands offered within the TELLO app. The TELLO
app offers numerous distinct commands ranging from simple operations, such as lift-off
and land, to complex tasks such as ‘do a barrel roll’.

The TELLO drone accepted two basic movement command sets, each containing six
unique commands. The first command set uses positional commands that move or turn
the drone by a fixed amount per transmitted command. The second command set uses
velocity commands, whereby each command updates the drone’s velocity in a certain way.
With the addition of the take-off and land commands, two unique sets of eight commands
were defined for investigation. In either case, the eight commands were mapped to the
eight gestures, most accurately classifiable by the completed HGR algorithm. Once this
mapping was complete, three key factors had to be experimentally tuned through a set
of test flights. These factors were: the time a gesture must be held before a command is
executed, the magnitude of a response once a command is executed, and the refresh rate
for command execution. The final command set and values for each of the above factors
were selected because they facilitated the control that best conformed to Criterion 4.

3. Results
3.1. Gesture-Identification Selection
3.1.1. Implementation Results

Three algorithms were considered and attempted to be implemented; these were
media pipe hands (MPH), InterHand2.6M, and an OpenCV extension of MPH titled CVZ.
However, due to the computational requirements to both train and operate, InterHands2.6M
was removed from further analysis during this stage. The training data required a 365-GB
download to attain all the necessary data to train the ResNet network for 30-fps operation.
The 365-GB download exceeded the total storage capacity of the host machine and as such
could not be completed.

MPH was successfully implemented using its open-source solution that included APIs
for both java and python [30]. The python API was used for this project. As mentioned

Sensors 2023, 23, 5462 14 of 35

in the Section 1.2.3, the computational requirements of MPH are minimal, as such it was
expected that MPH would be able to run at a high frame rate on the selected host machine.
MPH conformed to this expectation, continually maintaining its capped frame rate of 30 fps,
validating its conformity to Governing Criterion 5. The output of this implementation is
shown in Figure 5.

Sensors 2023, 23, x FOR PEER REVIEW 14 of 34

commands were defined for investigation. In either case, the eight commands were
mapped to the eight gestures, most accurately classifiable by the completed HGR algo-
rithm. Once this mapping was complete, three key factors had to be experimentally tuned
through a set of test flights. These factors were: the time a gesture must be held before a
command is executed, the magnitude of a response once a command is executed, and the
refresh rate for command execution. The final command set and values for each of the
above factors were selected because they facilitated the control that best conformed to
Criterion 4.

3. Results
3.1. Gesture-Identification Selection
3.1.1. Implementation Results

Three algorithms were considered and attempted to be implemented; these were me-
dia pipe hands (MPH), InterHand2.6M, and an OpenCV extension of MPH titled CVZ.
However, due to the computational requirements to both train and operate, Inter-
Hands2.6M was removed from further analysis during this stage. The training data re-
quired a 365-GB download to attain all the necessary data to train the ResNet network for
30-fps operation. The 365-GB download exceeded the total storage capacity of the host
machine and as such could not be completed.

MPH was successfully implemented using its open-source solution that included
APIs for both java and python [30]. The python API was used for this project. As men-
tioned in the Section 1.2.3, the computational requirements of MPH are minimal, as such
it was expected that MPH would be able to run at a high frame rate on the selected host
machine. MPH conformed to this expectation, continually maintaining its capped frame
rate of 30 fps, validating its conformity to Governing Criterion 5. The output of this im-
plementation is shown in Figure 5.

Figure 5. MPH output displaying the 21 coloured landmarks overlayed onto the input image and
the text based joint angle measurement model displayed through terminal.

The joint-angle calculations were handled by a python module that applied the cal-
culations described in Section 2.5. This module parsed the ‘hand’ objects produced by
MPH to acquire the 3D coordinates of the joints. These 3D coordinates were converted to
joint angles using the aforementioned calculations before displaying these angles using
the ascii art hand shown in Figure 5. An ascii art hand was used to visually display the
joint angles in the terminal, in order to ensure that they could be easily interpreted by the
user.

CVZ [31] was successfully implemented using its python API. Despite its lack of sup-
porting literature, CVZ was relatively easily to implement. CVZ only required one varia-
ble to be set which was the webcam input source directory. Once operational, CVZ’s per-
formance appeared to fluctuate greatly with frame rates ranging from 16 fps to 30 fps.
Unfortunately, CVZ also suffered from some considerable stability issues and had a re-

Figure 5. MPH output displaying the 21 coloured landmarks overlayed onto the input image and the
text based joint angle measurement model displayed through terminal.

The joint-angle calculations were handled by a python module that applied the calcu-
lations described in Section 2.5. This module parsed the ‘hand’ objects produced by MPH
to acquire the 3D coordinates of the joints. These 3D coordinates were converted to joint
angles using the aforementioned calculations before displaying these angles using the ascii
art hand shown in Figure 5. An ascii art hand was used to visually display the joint angles
in the terminal, in order to ensure that they could be easily interpreted by the user.

CVZ [31] was successfully implemented using its python API. Despite its lack of
supporting literature, CVZ was relatively easily to implement. CVZ only required one
variable to be set which was the webcam input source directory. Once operational, CVZ’s
performance appeared to fluctuate greatly with frame rates ranging from 16 fps to 30 fps.
Unfortunately, CVZ also suffered from some considerable stability issues and had a re-
occurring bug that would crash the code repetitively whenever two hands appeared
in-frame together. The initial output of CVZ is shown in Figure 6.

Sensors 2023, 23, x FOR PEER REVIEW 15 of 34

occurring bug that would crash the code repetitively whenever two hands appeared in-
frame together. The initial output of CVZ is shown in Figure 6.

Figure 6. CVZ output displaying the 21 red landmarks overlayed onto the input image and the
text based joint angle measurement model displayed through terminal.

As CVZ had the same 21-landmark model structure as MPH, only minor changes
were needed to be adapt MPH’s joint-angle calculation python module to match CVZ. The
only changes required were to adjust the code pair with CVZ’s landmark data structure.
After these changes, the joint information was able to be successfully calculated and dis-
played as shown in Figure 6.

The computational performances of CVZ and MPH were also observed during this
stage. Each algorithm’s computational performance was observed by recording the re-
fresh rate of the algorithm’s identification component. Specifically, this was achieved by
measuring the number of output the models returned per second. The output rate was
measured with both one and two hands on screen. MPH maintained a refresh rate of 13.22
outputs per second with two hands in frame and 14.04 with one hand in frame. CVZ main-
tained an output rate of 14.1 with one hand in frame and, as mentioned, would crash
whenever two hands came into frame.

3.1.2. Qualitative Analysis Results
Out of the three algorithms, two had been successfully implemented, these being

MPH and CVZ. The results of the qualitative analysis of both algorithms are detailed be-
low.

Resistance to Translation
Both MPH and CVZ were exposed to a simple translation of a closed fist, facing the

camera, around the cameras frame. This involved movements both toward and away from
the camera (changing scale) and movements vertically and horizontally across the images
frame (traditional translation). Neither algorithm showed signs of major landmark devia-
tion or angular fluctuation during this test.

Resistance to Rotation
Both algorithms were presented with a closed fist with the palm facing the camera,

the fist was then rotated about the axis along the operator’s forearm. Throughout this ro-
tation, both MPH and CVZ appeared to maintain a high degree of localisation accuracy,
as the displayed landmarks never deviated from their respective joints. Despite this, the
joint angles being displayed to the terminal did fluctuate greatly. This suggests that whilst
the feature-extraction/landmarking method used by both algorithms is robust against ro-
tation, the modelling method used may not be. This demonstrates that neither algorithm
is entirely robust against rotation, which is an issue that may need to be addressed by the
classification component.

Figure 6. CVZ output displaying the 21 red landmarks overlayed onto the input image and the text
based joint angle measurement model displayed through terminal.

As CVZ had the same 21-landmark model structure as MPH, only minor changes were
needed to be adapt MPH’s joint-angle calculation python module to match CVZ. The only
changes required were to adjust the code pair with CVZ’s landmark data structure. After
these changes, the joint information was able to be successfully calculated and displayed as
shown in Figure 6.

Sensors 2023, 23, 5462 15 of 35

The computational performances of CVZ and MPH were also observed during this
stage. Each algorithm’s computational performance was observed by recording the refresh
rate of the algorithm’s identification component. Specifically, this was achieved by measur-
ing the number of output the models returned per second. The output rate was measured
with both one and two hands on screen. MPH maintained a refresh rate of 13.22 outputs
per second with two hands in frame and 14.04 with one hand in frame. CVZ maintained an
output rate of 14.1 with one hand in frame and, as mentioned, would crash whenever two
hands came into frame.

3.1.2. Qualitative Analysis Results

Out of the three algorithms, two had been successfully implemented, these being MPH
and CVZ. The results of the qualitative analysis of both algorithms are detailed below.

Resistance to Translation

Both MPH and CVZ were exposed to a simple translation of a closed fist, facing the
camera, around the cameras frame. This involved movements both toward and away
from the camera (changing scale) and movements vertically and horizontally across the
images frame (traditional translation). Neither algorithm showed signs of major landmark
deviation or angular fluctuation during this test.

Resistance to Rotation

Both algorithms were presented with a closed fist with the palm facing the camera,
the fist was then rotated about the axis along the operator’s forearm. Throughout this
rotation, both MPH and CVZ appeared to maintain a high degree of localisation accuracy,
as the displayed landmarks never deviated from their respective joints. Despite this, the
joint angles being displayed to the terminal did fluctuate greatly. This suggests that whilst
the feature-extraction/landmarking method used by both algorithms is robust against
rotation, the modelling method used may not be. This demonstrates that neither algorithm
is entirely robust against rotation, which is an issue that may need to be addressed by the
classification component.

Resistance to Self-Occlusion

In this test, the hand was held with the palm directly facing the camera, being posi-
tioned directly along its axis of reception. Then, the hand was slowly tilted forward until
the fingers were directly facing the camera and the palm was completely obscured by the
fingers. MPH performed relatively well during this test, as its gesture-tracking component
was able to keep an understanding of the hand’s position even after the palm had become
completely obscured by the fingers. MPH was also able to maintain sensical joint readings
throughout this entire process. CVZ, on the other hand, did not fare as well during this
test. Once the hand was approximately 15◦ off its final position, the bounding box (pink
box displayed in Figure 6) raised an exception within the code, crashing the observation
algorithm. Thus, the conclusion of this third test was that MPH demonstrated robustness
toward self-occlusion and, in its present form, CVZ did not.

3.1.3. Final Selection

From the results detailed in Sections 3.1.1 and 3.1.2, MPH was selected as the final
gesture-identification component. MPH was selected because it was operationally stable,
the least computationally intensive, and demonstrated a high degree of robustness when
presented with translation and self-occlusion. These results demonstrate the potential that
MPH has to aid in the satisfaction of Criteria 1, 2, and 5.

Sensors 2023, 23, 5462 16 of 35

3.2. Gesture-Identification Validation Results
3.2.1. Measured Joint Angles

Tables 1–3 display the average joint-angle readings recorded for each of the three
poses. These joint-angle readings are the averaged results taken from the three participants
that were analysed during this study. The tables are organised to display the measured
angles for each joint, metacarpophalangeal (J1), proximal interphalangeal (J2), and distal
interphalangeal (J3), for each finger.

Table 1. Open-palm joint angles measured by goniometer.

Joint Number Thumb Index Middle Ring Pinkie

J1 162 178 175 178 178

J2 177 172 172 170 172

J3 180 177 180 180 180

Table 2. Partially closed palm joint angles measured by goniometer.

Joint Number Thumb Index Middle Ring Pinkie

J1 153 168 168 170 173

J2 157 93 92 87 97

J3 118 113 107 117 113

Table 3. Closed-palm joint angles measured by goniometer.

Joint Number Thumb Index Middle Ring Pinkie

J1 148 98 98 107 107

J2 143 82 83 82 90

J3 117 110 108 108 112

3.2.2. Calculated Joint Angles

Tables 4–15 display the joint angles calculated from MPH. The angles displayed are
the average angles that were returned from the three participants that completed testing.
The tables are broken up into three groups, with each group containing the angles recorded
for that pose. Within each group, there are four tables, with each table containing data
calculated from one viewpoint. Each table contains the joint angles calculated using
both the two-dimensional and three-dimensional methods of calculations. The tables
are organised to display the calculated angles for each joint, metacarpophalangeal (J1),
proximal interphalangeal (J2), and distal interphalangeal (J3), for each finger.

Table 4. Closed-palm joint angles calculated from the MPH model—front.

Joint Number
Thumb Index Middle Ring Pinkie

3D 2D 3D 2D 3D 2D 3D 2D 3D 2D

J1 151 156 142 142 144 144 142 140 132 128

J2 151 151 53 54 47 48 34 35 40 41

J3 105 100 164 161 127 115 136 128 147 143

3.2.3. Final Accuracy Percentages

As can be seen in Tables 16–19 below, the data in Sections 3.3.1 and 3.3.2 were compared
and condensed to generate two separate sets of accuracy data. The tables below display the

Sensors 2023, 23, 5462 17 of 35

average and minimum accuracy percentages across each viewpoint and across each finger.
The tables were further reduced to generate final set of figures for the 3D accuracy, which
had an average accuracy of 86.7% and a minimum accuracy of 41.5%, and the 2D accuracy,
which had an average accuracy of 83.8% and a minimum accuracy of 9.8%.

Table 5. Closed-palm joint angles calculated from the MPH model—45◦.

Joint Number
Thumb Index Middle Ring Pinkie

3D 2D 3D 2D 3D 2D 3D 2D 3D 2D

J1 140 138 133 157 123 133 112 112 91 85

J2 144 150 78 63 73 63 66 67 83 89

J3 147 148 133 132 120 123 120 120 118 111

Table 6. Closed-palm joint angles calculated from the MPH model—side.

Joint Number
Thumb Index Middle Ring Pinkie

3D 2D 3D 2D 3D 2D 3D 2D 3D 2D

J1 143 149 74 76 73 73 76 75 83 82

J2 154 163 107 103 95 94 92 93 95 95

J3 163 163 113 108 113 113 114 113 113 110

Table 7. Closed-palm joint angles calculated from the MPH model—back.

Joint Number
Thumb Index Middle Ring Pinkie

3D 2D 3D 2D 3D 2D 3D 2D 3D 2D

J1 159 161 125 135 121 156 116 148 108 118

J2 154 154 75 25 90 20 97 37 94 54

J3 105 105 163 170 155 173 143 170 157 163

Table 8. Partially closed palm joint angles calculated from the MPH model—front.

Joint Number
Thumb Index Middle Ring Pinkie

3D 2D 3D 2D 3D 2D 3D 2D 3D 2D

J1 152 154 145 156 154 164 161 176 156 160

J2 161 161 119 97 99 60 103 75 110 94

J3 108 105 124 98 138 132 126 116 122 115

Table 9. Partially closed palm joint angles calculated from the MPH model—45◦.

Joint Number
Thumb Index Middle Ring Pinkie

3D 2D 3D 2D 3D 2D 3D 2D 3D 2D

J1 141 142 145 166 158 171 165 170 151 151

J2 164 167 100 87 85 76 78 74 92 88

J3 132 132 129 126 127 124 127 128 134 135

Sensors 2023, 23, 5462 18 of 35

Table 10. Partially closed palm joint angles calculated from the MPH model—side.

Joint Number
Thumb Index Middle Ring Pinkie

3D 2D 3D 2D 3D 2D 3D 2D 3D 2D

J1 145 134 111 121 113 114 116 115 110 115

J2 142 146 113 113 107 106 104 104 121 122

J3 161 160 139 132 133 132 135 134 145 146

Table 11. Partially closed palm joint angles calculated from the MPH model—back.

Joint Number
Thumb Index Middle Ring Pinkie

3D 2D 3D 2D 3D 2D 3D 2D 3D 2D

J1 160 163 151 159 162 169 153 159 144 150

J2 153 153 100 89 84 38 91 63 102 85

J3 118 116 151 98 156 153 154 135 146 121

Table 12. Open-palm joint angles calculated from the MPH model—front.

Joint Number
Thumb Index Middle Ring Pinkie

3D 2D 3D 2D 3D 2D 3D 2D 3D 2D

J1 159 165 163 166 168 172 171 179 166 170

J2 175 175 168 175 169 178 171 173 171 171

J3 166 166 177 178 178 179 174 177 172 174

Table 13. Open palm joint angles calculated from the MPH model—45◦.

Joint Number
Thumb Index Middle Ring Pinkie

3D 2D 3D 2D 3D 2D 3D 2D 3D 2D

J1 149 149 151 167 164 171 171 172 168 169

J2 171 176 165 173 163 171 163 164 157 157

J3 169 170 175 175 175 175 175 175 172 172

Table 14. Open palm joint angles calculated from the MPH model—side.

Joint Number
Thumb Index Middle Ring Pinkie

3D 2D 3D 2D 3D 2D 3D 2D 3D 2D

J1 163 159 140 164 147 168 163 171 161 168

J2 169 174 165 169 157 169 161 171 169 172

J3 174 168 167 177 176 178 172 174 170 172

3.3. Gesture-Classsifier Selection
3.3.1. Scope Definition

As discussed in Section 2.6, there were two scopes of prospective classifiers available
for investigation. Given that the results of Stage 4 demonstrated the MPH’s module instabil-
ity, a second scope of algorithms were selected. In total, four pre-trained classifiers, which
utilised different classification techniques and had different computational loads, were
selected for further investigation under this section. The four algorithms are listed below:

Sensors 2023, 23, 5462 19 of 35

23. ANN classifier: Conventional machine-learning classifier built to classify Indian sign
language—sourced from [32].

24. Linear-regression classifier: Conventional machine-learning classifier built to classify
Russian sign language—sourced from [33].

25. SVM classifier: Conventional machine-learning classifier built to classify Indian sign
language—sourced from [34].

26. Bounds-based classifier: Non-machine-learning, statically defined classifier built to
classify ASLAN counting gestures—altered version, original found from [31].

Table 15. Open palm joint angles calculated from the MPH model—back.

Joint Number
Thumb Index Middle Ring Pinkie

3D 2D 3D 2D 3D 2D 3D 2D 3D 2D

J1 159 164 161 161 172 177 162 164 152 154

J2 176 177 174 176 171 177 175 179 168 175

J3 168 169 174 177 177 178 175 176 175 176

Table 16. Model accuracy calculated from 3D data—by finger.

Hand Position

Percentage Accuracy

Thumb Index Middle Ring Pinkie

Avg Min Avg Min Avg Min Avg Min Avg Min

Open 96.2% 92.0% 93.8% 78.7% 95.7% 84.0% 95.7% 91.0% 94.4% 85.4%

Partial 92.2% 63.6% 82.0% 66.1% 82.6% 54.2% 86.2% 68.2% 82.6% 63.6%

Closed 89.6% 60.7% 72.3% 50.9% 77.0% 53.1% 78.5% 41.5% 82.3% 44.4%

Table 17. Model accuracy calculated from 2D data—by finger.

Hand Position

Percentage Accuracy

Thumb Index Middle Ring Pinkie

Avg Min Avg Min Avg Min Avg Min Avg Min

Open 96.2% 92.0% 95.6% 84.3% 96.8% 89.1% 96.2% 92.1% 95.4% 86.5%

Partial 91.2% 64.4% 88.9% 72.0% 77.6% 41.3% 86.8% 67.6% 85.4% 66.5%

Closed 88.5% 60.7% 57% 9.8% 59.7% 16.9% 66.4% 22.0% 76.6% 38.9%

Table 18. Model accuracy calculated from 3D data—by viewpoint.

Hand Position

Percentage Accuracy

Front Forty-Five Side Back

Avg Min Avg Min Avg Min Avg Min

Open 96.8% 91.6% 94.5% 84.8% 93.2% 78.7% 96.0% 85.4%

Partial 88.6% 71.0% 90.0% 81.3% 76.1% 63.6% 85.7% 54.2%

Closed 67.8% 41.5% 86.3% 64.3% 84.8% 60.7% 80.7% 51.8%

As per Section 2.6, a common data set was developed such that the four classifiers
listed above could be directly compared against one another. After analysing the three
gesture sets recognisable by the four classifiers, it was found that they share eight common
gestures. A single participant was then imaged to generate the required ten sub-images,

Sensors 2023, 23, 5462 20 of 35

which were subsequently modelled using MPH to form the final data set, as shown in
Appendices A and B.

Table 19. Model accuracy calculated from 2D data—by viewpoint.

Hand Position

Percentage Accuracy

Front Forty-Five Side Back

Avg Min Avg Min Avg Min Avg Min

Open 97.6% 92.2% 96.3% 91.2% 94.1% 84.3% 96.2% 86.5%

Partial 91.3% 65.2% 90.3% 80.5% 76.9% 64.4% 85.6% 41.3%

Closed 53.2% 9.8% 81.9% 39.8% 84.9% 60.7% 58.0% 24.1%

3.3.2. Accuracy Results

Figures 7–10 display the confusion matrices used to quantitatively compare the clas-
sification accuracies of the four classifiers. The raw data from which these classifiers are
generated can be found through Appendix C. From the figures shown below, the non-
machine-learning bounds-based classifier performed the best on the given dataset, with an
accuracy of 96.25%. The second-best performing classifier was the SVM approach with an
accuracy of 81.3%, followed by ANN with an accuracy of 77.5%, and the linear regression
model with an accuracy of 70%.

Sensors 2023, 23, x FOR PEER REVIEW 20 of 34

3.3.2. Accuracy Results
Figures 7–10 display the confusion matrices used to quantitatively compare the clas-

sification accuracies of the four classifiers. The raw data from which these classifiers are
generated can be found through Appendix C. From the figures shown below, the non-
machine-learning bounds-based classifier performed the best on the given dataset, with
an accuracy of 96.25%. The second-best performing classifier was the SVM approach with
an accuracy of 81.3%, followed by ANN with an accuracy of 77.5%, and the linear regres-
sion model with an accuracy of 70%.

Figure 7. Confusion Matrix 1—bounds-based classifier accuracy.

Figure 8. Confusion Matrix 2—linear-regression classifier accuracy.

Figure 9. Confusion Matrix 3—ANN classifier accuracy.

Figure 7. Confusion Matrix 1—bounds-based classifier accuracy.

Sensors 2023, 23, x FOR PEER REVIEW 20 of 34

3.3.2. Accuracy Results
Figures 7–10 display the confusion matrices used to quantitatively compare the clas-

sification accuracies of the four classifiers. The raw data from which these classifiers are
generated can be found through Appendix C. From the figures shown below, the non-
machine-learning bounds-based classifier performed the best on the given dataset, with
an accuracy of 96.25%. The second-best performing classifier was the SVM approach with
an accuracy of 81.3%, followed by ANN with an accuracy of 77.5%, and the linear regres-
sion model with an accuracy of 70%.

Figure 7. Confusion Matrix 1—bounds-based classifier accuracy.

Figure 8. Confusion Matrix 2—linear-regression classifier accuracy.

Figure 9. Confusion Matrix 3—ANN classifier accuracy.

Figure 8. Confusion Matrix 2—linear-regression classifier accuracy.

Sensors 2023, 23, 5462 21 of 35

Sensors 2023, 23, x FOR PEER REVIEW 20 of 34

3.3.2. Accuracy Results
Figures 7–10 display the confusion matrices used to quantitatively compare the clas-

sification accuracies of the four classifiers. The raw data from which these classifiers are
generated can be found through Appendix C. From the figures shown below, the non-
machine-learning bounds-based classifier performed the best on the given dataset, with
an accuracy of 96.25%. The second-best performing classifier was the SVM approach with
an accuracy of 81.3%, followed by ANN with an accuracy of 77.5%, and the linear regres-
sion model with an accuracy of 70%.

Figure 7. Confusion Matrix 1—bounds-based classifier accuracy.

Figure 8. Confusion Matrix 2—linear-regression classifier accuracy.

Figure 9. Confusion Matrix 3—ANN classifier accuracy. Figure 9. Confusion Matrix 3—ANN classifier accuracy.

Sensors 2023, 23, x FOR PEER REVIEW 21 of 34

Figure 10. Confusion Matrix 4—SVM classifier accuracy.

3.3.3. Computational Performance Results
The purpose this section of the results was to quantitatively compare the computa-

tional performance of the four potential classifiers. As stated in Section 2.6, this was
achieved via a comparison of the time taken by each of the classifier to classify each of the
80 images. Figure 11 displays the computational performance data generated during this
testing. As displayed, the bounds-based classifier had the lowest classification time, aver-
aging 81.4 ms. The SVM and linear-regression classifiers had comparable performances,
both averaging 88 ms. The slowest of the four algorithms was the ANN model with an
average classification time of 196 ms.

Figure 11. Comparison of tested classifiers computational performance.

3.3.4. Final Classifier Selection
As per the selected scope for this investigation, the selection of the classifier aimed to

favour classification accuracy over computational speed. This preference was made to en-
sure the final algorithm conformed with Governing Criteria 1 and 2. As such, the bounds-
based classifier was selected because it had the highest classification accuracy. Fortu-
nately, the bounds-based classifier also had the lowest classification time, indicating that
it had the lowest computational requirement, suggesting that it also best conformed to
Governing Criterion 5.

3.4. Gesture-Mapping Selection and Tuning
With the selection of the gesture classifier complete, the HGR-based HCI component

for the alternative-control solution was complete. The final developmental stage of the
investigation could begin, with the development of the gesture-mapping component. As

Figure 10. Confusion Matrix 4—SVM classifier accuracy.

3.3.3. Computational Performance Results

The purpose this section of the results was to quantitatively compare the computational
performance of the four potential classifiers. As stated in Section 2.6, this was achieved via
a comparison of the time taken by each of the classifier to classify each of the 80 images.
Figure 11 displays the computational performance data generated during this testing.
As displayed, the bounds-based classifier had the lowest classification time, averaging
81.4 ms. The SVM and linear-regression classifiers had comparable performances, both
averaging 88 ms. The slowest of the four algorithms was the ANN model with an average
classification time of 196 ms.

Sensors 2023, 23, x FOR PEER REVIEW 21 of 34

Figure 10. Confusion Matrix 4—SVM classifier accuracy.

3.3.3. Computational Performance Results
The purpose this section of the results was to quantitatively compare the computa-

tional performance of the four potential classifiers. As stated in Section 2.6, this was
achieved via a comparison of the time taken by each of the classifier to classify each of the
80 images. Figure 11 displays the computational performance data generated during this
testing. As displayed, the bounds-based classifier had the lowest classification time, aver-
aging 81.4 ms. The SVM and linear-regression classifiers had comparable performances,
both averaging 88 ms. The slowest of the four algorithms was the ANN model with an
average classification time of 196 ms.

Figure 11. Comparison of tested classifiers computational performance.

3.3.4. Final Classifier Selection
As per the selected scope for this investigation, the selection of the classifier aimed to

favour classification accuracy over computational speed. This preference was made to en-
sure the final algorithm conformed with Governing Criteria 1 and 2. As such, the bounds-
based classifier was selected because it had the highest classification accuracy. Fortu-
nately, the bounds-based classifier also had the lowest classification time, indicating that
it had the lowest computational requirement, suggesting that it also best conformed to
Governing Criterion 5.

3.4. Gesture-Mapping Selection and Tuning
With the selection of the gesture classifier complete, the HGR-based HCI component

for the alternative-control solution was complete. The final developmental stage of the
investigation could begin, with the development of the gesture-mapping component. As

Figure 11. Comparison of tested classifiers computational performance.

Sensors 2023, 23, 5462 22 of 35

3.3.4. Final Classifier Selection

As per the selected scope for this investigation, the selection of the classifier aimed
to favour classification accuracy over computational speed. This preference was made
to ensure the final algorithm conformed with Governing Criteria 1 and 2. As such, the
bounds-based classifier was selected because it had the highest classification accuracy.
Fortunately, the bounds-based classifier also had the lowest classification time, indicating
that it had the lowest computational requirement, suggesting that it also best conformed to
Governing Criterion 5.

3.4. Gesture-Mapping Selection and Tuning

With the selection of the gesture classifier complete, the HGR-based HCI component
for the alternative-control solution was complete. The final developmental stage of the
investigation could begin, with the development of the gesture-mapping component. As
defined in Section 2.7, the development of this gesture-mapping component consisted of
two main stages, the first being the selection of the command set, and the second stage
being the tuning of the mapping component. This investigatory stage began with the
implementation of the position command system.

Following the analysis performed in Stage 5, it was known that the HGR algorithm
could accurately recognise the eight gestures present in the common data set. As only eight
gestures were required to operate the positional control system, one-to-one mapping could
be applied to construct the gesture dictionary shown in Table 20.

Table 20. Positional command set.

Gesture Identifier Command

1 Move along z axis (forward velocity)

2 Move along −z axis (backward velocity)

3 Move along y axis (upward velocity)

4 Move along −y axis (downward velocity)

5 Move along x axis (bank right)

6 Move along −x axis (bank left)

7 Set required movement along, x, y, and z axes to zero (stop)

8 Take-off or land (depending on whether in flight, or landed)

Through the implementation of a third-party, open source, python API [35], the above
commands were able to be transmitted to the TELLO drone. The positional based control
framework was then tested and tuned, using the flight paths defined in Figure 12.

Sensors 2023, 23, x FOR PEER REVIEW 22 of 34

defined in Section 2.7, the development of this gesture-mapping component consisted of
two main stages, the first being the selection of the command set, and the second stage
being the tuning of the mapping component. This investigatory stage began with the im-
plementation of the position command system.

Following the analysis performed in Stage 5, it was known that the HGR algorithm
could accurately recognise the eight gestures present in the common data set. As only
eight gestures were required to operate the positional control system, one-to-one mapping
could be applied to construct the gesture dictionary shown in Table 20.

Table 20. Positional command set.

Gesture Identifier Command
1 Move along z axis (forward velocity)
2 Move along −z axis (backward velocity)
3 Move along y axis (upward velocity)
4 Move along −y axis (downward velocity)
5 Move along x axis (bank right)
6 Move along −x axis (bank left)
7 Set required movement along, x, y, and z axes to zero (stop)
8 Take-off or land (depending on whether in flight, or landed)

Through the implementation of a third-party, open source, python API [35], the
above commands were able to be transmitted to the TELLO drone. The positional based
control framework was then tested and tuned, using the flight paths defined in Figure 12.

Figure 12. Test flight paths.

The most immediate concern from this initial implementation was the overloading
of the TELLO’s onboard command buffer. This was caused because the commands were
being transmitted at too great a rate for the TELLO drone to process. To solve this, the
time taken to recognise a gesture was increased to 500 ms. Whilst this did make the drone
appear slightly less responsive initially, it successfully prevented further overloading of
the buffer.

However, after these changes, the TELLO appeared to have periods of unresponsive-
ness during the testing in the final flight path. These periods of unresponsiveness were
accompanied by the TELLO drone continually reporting ‘error No valid IMU’. This error
was attributed to the use of the positional command system, and the method the TELLO
drone used to process incoming commands. If a command was received by the drone
whilst the drone was processing/reading its IMU data, the drone would abandon the task
and attempt to execute the command. As positional commands required IMU data to

Figure 12. Test flight paths.

Sensors 2023, 23, 5462 23 of 35

The most immediate concern from this initial implementation was the overloading
of the TELLO’s onboard command buffer. This was caused because the commands were
being transmitted at too great a rate for the TELLO drone to process. To solve this, the
time taken to recognise a gesture was increased to 500 ms. Whilst this did make the drone
appear slightly less responsive initially, it successfully prevented further overloading of
the buffer.

However, after these changes, the TELLO appeared to have periods of unresponsive-
ness during the testing in the final flight path. These periods of unresponsiveness were
accompanied by the TELLO drone continually reporting ‘error No valid IMU’. This error
was attributed to the use of the positional command system, and the method the TELLO
drone used to process incoming commands. If a command was received by the drone
whilst the drone was processing/reading its IMU data, the drone would abandon the task
and attempt to execute the command. As positional commands required IMU data to
execute, whenever this interrupt situation would occur, the command would fail, and the
drone would re-execute its previous command.

To combat this, the gesture dictionary was redefined to use the velocity command
system, as shown in Table 21. This command system did not require readings from the IMU
sensor; the TELLO drone executed the received commands immediately and consistently.
This resulted in the drone appearing more responsive and subsequently easier to control.
The same flight paths were used to tune the velocity control system.

Table 21. Velocity command set.

Gesture Identifier Command

1 Increase velocity along z axis (forward velocity)

2 Increase velocity along −z axis (backward velocity)

3 Increase velocity along y axis (upward velocity)

4 Increase velocity along −y axis (downward velocity)

5 Increase velocity along x axis (bank right)

6 Increase velocity along −x axis (bank left)

7 Set velocity along, x, y, and z axes to zero (stop)

8 Take-off or land (depending on whether in flight or landed)

The tuning for the velocity control system was the same as the tuning process used
for the positional control system. The gestures’ hold time remained the same, whilst the
command magnitude and command refresh times were both reduced. After this tuning
process, the final alternative-control algorithm was able to easily guide the drone through
the defined flight paths.

3.5. Performance Overview

With the completion of Stage 6, the final alternative-control algorithm had been fully
developed and proved to be functional. To ascertain the final performance of the solution,
it was re-analysed against the governing criteria.

27. Reliability in issuing the intended command: From the results of Stage 5, the final
solution proved to be capable of accurately distinguishing between the intended
commands within the command set. When combined with the mapping medium de-
veloped in Stage 6, the solution was able to reliably transmit the intended commands
to the chosen application medium. Hence, this criterion is satisfied.

28. Reproducibility of the intended command: From the results of Stage 4, the initial
confidence for the final solution’s conformity to this criterion was challenged due to
MPH lack of rotational robustness. However, through the implementation of a bounds-

Sensors 2023, 23, 5462 24 of 35

based classifier, the final solution was able to recognise commands robustly and
repeatably despite viewpoint and scale variations. Hence, this criterion is satisfied.

29. Physically non-restrictive equipment or instrumentation: Given the selection made
in Stage 2, the use of a single RGB camera ensured the final solution’s conformity to
this criterion. Furthermore, as per the results of Stage 5, the final HGR algorithm is
capable of recognising gestures from multiple viewpoints meaning the operator does
not have to maintain a perfect position in front of the camera. Hence, this criterion
is satisfied.

30. Ease of operation and shorter user learning cycle: Given the selection made in Stage 1,
the use of single-hand, static, sign language gestures ensured that the commands were
simple and easy to learn. When combined with the finely tuned, one-to-one gesture-
mapping component developed in Stage 6, natural and accessible drone control was
facilitated. Hence, this criterion is satisfied.

31. Computationally inexpensive: Through the computational analysis performed in
Stage 5, and the selection of MPH justified in Stage 3, the final solution was specifi-
cally selected to be as computationally lightweight as possible. Hence, this criterion
is satisfied.

32. Monetarily inexpensive: Given Stage 2’s selection of an inexpensive, non-specialised
data-acquisition method, and the low computational requirements of the final algo-
rithm, the final solution is monetarily efficient. Hence, this criterion is satisfied.

4. Discussion
4.1. Principal Findings

As previously mentioned, the MPH model accuracy was validated against goniometer
readings. The goniometer readings used as a baseline are illustrated in Tables 1–3. The joint
angles calculated from the MPH model are illustrated in Tables 4–15. The comparison of
these values produced the model accuracy percentages values summarized in Tables 15–18.
From these accuracy percentages, the Z-axis instability of the MPH model was characterized
(explained in greater depth in Section 4.2.2). This characterization was then used to inform
the selection of an initial list of prospective classifiers that were theorized to be able
to handle this instability. The classification accuracy of these prospective algorithms
was then tested using a common input data set, the results of this test are displayed in
Figures 7–11. The final accuracy performance proved that despite MPH’s drawbacks, it was
still applicable in an alternative-control setting as the now-complete HCI functioned at a
high confidence level. Section 3.4 then demonstrated how the control-mapping component
was created and tuned to apply the fully developed HCI to drone control. The final
performance of the algorithm was then judged against its original governing criteria and
demonstrated in the attached multi-media video in the Supplementary Materials section.

4.2. Results Analysis
4.2.1. Gesture-Identifier Selection Analysis

These results demonstrate the potential MPH has to aid in the satisfaction of Criteria
1, 2, and 5. As stated in the methodology defined in Section 2.4, the purpose of Stage
3 was to select a gesture-identification algorithm. Stage 3 achieved its purpose through
its selection of MPH based on the reasoning detailed in Section 3.1.3. As this was only a
threshold-qualitative investigation was simply intended to determine the applicability of
the selected solution, it had numerous limitations. The three significant limitations are the
lack of a quantitative analysis, the lacklustre computational power of the host machine,
and the limited investigation scope.

The first limitation of this stage was the use of a qualitative analysis method. Whilst
this was a valid baseline approach to observe and compare the algorithm’s general localisa-
tion accuracy, it fails to provide a solid metric from which the true localisation accuracy
of MPH can be extrapolated. The primary constraint this imprints onto the investigation
is that there are no quantifiable data proving that MPH is the most accurate solution out

Sensors 2023, 23, 5462 25 of 35

of the prospective algorithms. The accuracy of MPH modelling method will be analysed
in Stage 4, which does partially account for this. However, the true accuracy of MPH
localisation of its landmarks to the joints of the human hand remains largely unknown.

The second limitation arises from the lack of computational power provided by the
host machine. This limitation directly excluded InterHands2.6M, which has been proven
to be a feature-extraction method comparable to MPH [19]. Whilst MPH did success-
fully conform to the governing criteria relevant to this section, InterHands2.6M may have
had a superior accuracy or computational performance once trained. Unfortunately, this
limitation was unavoidable as the host machine chosen for this paper was the only ma-
chine available.

The third limitation is derived from the limited number of independent variables
that the tested gesture-identification algorithms were tested against. In an ideal setting, if
Stage 3 was to be expanded, the gesture-identification algorithms should also have been
tested against other sources of variance that are likely to be included in alternative-control
applications. These include but are not limited to background variation, operator hand
colour variation, operator hand size variation, and lighting variations. Whilst the failure
to include these does not invalidate the selection of MPH, it should be considered for
future work.

4.2.2. Gesture-Identifier Validation Analysis

As stated in the methodology section defined in Section 2.5, the primary purpose of
this stage was to validate the performance of the gesture-identification algorithm. The
results shown in Stage 4 achieved this purpose through the successful application of a
clinical method to ascertain the accuracy of the MPH model. The results of this investigation
effectively displayed the advantages and disadvantages of MPH, the disadvantages of
which must be mitigated by future components to ensure the final solution’s conformity to
the governing criteria.

From the data recorded during Stage 4, four trends about MPH model accuracy
became immediately apparent: confirmation of the high potential accuracy of MPH mod-
elling systems, the model’s susceptibility to rotation and pose due to its normalised depth
coordinate system, the innate benefit of the three-dimensional modelling system over a
conventional two-dimensional system, and the model’s resistance to self-occlusion. Each
of these observations had considerable implications for the future development of both
this alternative-control algorithm and for future applications seeking to implement MPH
(future implementations will be discussed in greater detail in Section 5).

The first key finding from the analysis performed during Stage 4 was the positive
observation of MPH potential accuracy. This key finding supported the observations made
in Stage 3, which are demonstrated in Tables 16 and 17. From these tables, MPH was shown
to be capable of accurately observing the digits of the human hand to a high degree, having
a maximum accuracy percentage of 96.2% while maintaining an average observational
accuracy of 86.7%. This alludes to MPH’s capability to satisfy Criterion 1, if coupled with
an appropriate classification algorithm that can handle the major disadvantages of MPH
which will be discussed next.

The second key finding was the observation that MPH robustness was severely limited
by its “2.5D coordinate system”. MPH uses a normalised depth component, meaning that
while the x and y components of a landmark’s coordinate are derived from the image’s
width and height, the z component is derived from a depth calculation between the
landmark and the wrist of the observed hand. This results in a model that is not a true
three-dimensional representation of the observed hand because the z coordinates have a
different scale to the x and y coordinates. MPH attempts to adjust for this by normalising the
z component to be within a similar numerical range to the x and y components. However,
as demonstrated in Tables 18 and 19, the percentage accuracy of the model can be seen to
vary greatly based upon the importance of the z coordinate in the angle calculations.

Sensors 2023, 23, 5462 26 of 35

Orientations that placed connected coordinates along the x and y planes with limited
changes in the z coordinate had notably higher accuracy values than orientations that
had large changes in the z coordinate. In other words, if the two vectors from which an
angle is calculated had large differences in their respective z values, i.e., the angle being
observed lay upon the z, y plane, the resultant angle would have a low accuracy. A good
example of this observation is a comparison between the percentage accuracy of the closed
pose when observed from the side and from the front. When observed from the front,
the average accuracy of the MPH model was only 67.8%, in comparison to the model’s
84.8% accuracy when observed from the side. From this demonstration, it can be inferred
that the normalisation method implemented by MPH fails to successfully equalise the
relative scales of the x, y, and z planes, causing the aforementioned instability to rotation.
This observation raises a concerning disadvantage for MPH. If this disadvantage is not
mitigated by future components, it will have to be mitigated by the operator. Specifically,
to ensure that Governing Criterion 1 is met, the operator will have to keep their hands in a
constant orientation with respect to the camera. This both limits the manoeuvrability of the
operator and makes the algorithm more difficult to use, jeopardising the final algorithm’s
conformity to Governing Criteria 3 and 4.

The third key finding was that despite the drawbacks of the 2.5D modelling system,
the depth component did have some notable benefits over a traditional 2D model. This
observation came from the direct comparison between the 2D angle calculations which
ignored the depth component and the 3D calculations which used the depth component.
While both systems struggled to handle rotation, the three-dimensional system was notably
more stable than the two-dimensional system. This can be directly observed by the overall
percentages stated in Section 3.2.3, whereby the three-dimensional system’s minimum
observed accuracy only dropped to 41.5% whilst the two-dimensional system fell to 9.8%.
This key finding was practically relevant when informing the selection of future compo-
nents. Future components were selected to avoid reductions in MPH model complexity,
such as the use of joint angles directly, or the removal of the z coordinate, instead favouring
the use of the full 21-landmarks, x, y, z coordinate system.

The final key finding was the quantitative validation of MPH resistance to self-
occlusion. This key finding validated MPH’s ability to handle one of the key limita-
tions of single camera RGB data acquisition, reinforcing its selection as the final gesture-
identification algorithm. Evidence for this key finding can be observed in Tables 18 and 19,
whereby the average and minimum joint accuracies calculated from the back and side
viewpoints remain comparable, if not favourable to angles calculated from the front on
viewpoints. As can be seen in Appendices A and B, many of the images taken from the side
and back viewpoint had fingers that were not able to be directly observed because they
were obscured by other parts of the hand. The fact that the angles calculated from these
images produced results similar, if not superior, to their non-obscured counter parts proves
MPH’s robustness against self-occlusion. This key finding again supports MPH’s selection,
as it demonstrates how it conforms to Governing Criteria 2 and 4.

However, during the Stage 4 investigation, two limitations were encountered. These
were the limited fidelity of the goniometer measurements and the limited number of poses
used. The goniometer used for this experiment had a measuring fidelity of 5◦ intervals.
These intervals meant that in almost every measurement, the joint angle was being rounded
to the nearest 5◦ mark as the observed angle often fell between these said marks. This
rounding could have contributed to the error percentages recorded in Stage 4. However,
as non-digital goniometers remain the industry standard for joint measurements [36], this
source of error had to be accepted. This leads into the second limitation that impacted the
Stage 4 investigation. Due to the specification to only use three governing poses to keep
consistency among all participants, these poses could not be adjusted to set the goniometer
to its nearest 5◦ mark. This prevented the immediate resolution of the error source above. If
a more flexible posing regime had been implemented, the poses could have been altered on

Sensors 2023, 23, 5462 27 of 35

a participant-by-participant basis to ensure that the goniometer was reading whole values,
rather than having to round to the nearest value.

4.2.3. Gesture-Classifier Selection Analysis

As stated in the methodology for Stage 5, the primary purpose of this stage was to
select a gesture classifier that best complimented the functionality of the selected gesture-
identification algorithm. The results shown in Stage 5 achieved this purpose through the
selection of a bounds-based classifier based on the reasoning shown in Section 3.3.4. Aside
from achieving its key purpose, this section produced another key finding which supported
the selection of MPH as the gesture-identification component. However, this investigation
stage also had three key limitations: the impact of gesture set reduction on pre-trained
classifiers, the tests’ limited data set, and the unexplained variations in the computational
performance data.

The most important finding produced by this investigatory stage, aside from the
selection of the classification algorithm, was the demonstration that MPH’s disadvantages
are surmountable. As can be seen from the confusion matrices shown in Figure 7, despite
the inherent variations in the MPH model, the bounds-based classifier was able to achieve
an extremely high level of accuracy.

This shows that when MPH is combined with the appropriate auxiliary systems, its
disadvantages can be minimised, maximising its effectiveness as a gesture-identification
algorithm. This was a key finding that served to both validate the selection of MPH within
this overall solution and look favourably on the implementation of MPH in future solutions.

The first key limitation that Stage 5 faced was the impact of gesture set reduction on
a pre-trained classifier. As the classifiers could not be re-trained to recognise the eight
newly defined gestures, a set of external controls had to be implemented to reduce their
classification ranges. This reduction came in the form of a simple cascading set of ‘if–
else’ statements that forced the classifiers to return the highest probability gesture out of
the eight-gesture subset, even if the classifier would have otherwise returned a different
gesture. This reduction had to be made to produce a proper confusion matrix. To prevent
this reduction from impacting upon the overall validity of this experiment, the time take
to complete this reduction was removed from the overall classification time. Ideally, the
classifiers would have been re-trained to only recognise the eight new defined gestures.

The second key limitation was the size and scope of the data set. Given that this was
one of the two secondary investigations performed over the course of this paper, it was
not deemed practical to develop a test data set with more than a thousand images. This
limited the level of testing that could be performed on the four classifiers. While it does not
invalidate the classifier selection made above, in an ideal setting, a larger data set would
have been used, with more edge-case gestures being included to really test the limits of the
classification algorithms.

The final limitation centred around the unexpected behaviour displayed toward the
end of Figure 11. Initially, it was assumed that each of the algorithm’s classification times
would remain largely consistent across the 80 input images. This was an assumption
based on the idea that the classification time would only fluctuate greatly if the size and/or
complexity of the input data changed. As the input data remained constant, in both size and
complexity across the 80 input models, the fluctuation remained unexplained. However, as
the selected classifier was consistently faster than the other classifiers even in the regions of
fluctuation, the validity of the final solution was not compromised by this limitation.

5. Conclusions

This project achieved its primary purpose by developing a functioning alternative-
control algorithm that extended the usability of a quad-rotor drone. This was achieved
through the development of an HGR algorithm that combined the functionality of MPH
and a bounds-based classifier. The final solution facilitated natural and accessible control
while being computationally inexpensive and not requiring the use of specialized camera

Sensors 2023, 23, 5462 28 of 35

equipment. The success of the final solution demonstrated the applicability of modern,
single-camera HGR algorithms within the confines of alternative control. Furthermore, the
clinical evaluation of MPH demonstrated MPH’s inherent advantages and disadvantages.
The success of the developed alternative-control algorithm shows that when handled
appropriately, MPH can be a powerful HGR tool that has applications within clinical and
control settings. However, future projects seeking to apply MPH must be mindful of the
algorithm’s limitations or risk failure. There are three main areas of future work related to
this paper, these being an extension of the applied methodology, the application of MPH’s
model validation data, and the application of the developmental framework used in this
paper alongside the final solution itself.

The first proposed area of future work is an extension of the method applied in this
paper. One area of this extension is the completion of a broader comparative review of
gesture-identification components, specifically aiming to extend upon the works of this
paper by including a quantitative comparison of landmark-localization accuracy in its
analysis of algorithms such as MPH and InterHands2.6M. Furthermore, another proposed
extension of this paper’s methodology is a data-based analysis of the final solution’s
performance. This could be achieved by grading the final solution and the TELLO drone’s
standard control mechanism against the governing criteria of this paper using quantitative
metric-based testing.

The second proposed area of future work is the application of the MPH model’s
validation data and joint-localization accuracy observations. The first area of application is
in clinical diagnoses, focusing on using MPH to generate joint angles accurate enough to
diagnoses illness and injury. As per the findings of this paper, MPH cannot do this directly
due to its modelling method’s instability; however, it could be achieved using sensor fusion.
One possible avenue would be using MPH’s joint-localisation accuracy to efficiently locate
points of interest and then modelling these joints in a true three-dimensional environment
using, for example, a stereo camera. The second setting is in rehabilitation, focusing on
using MPH’s current level of accuracy to observe the general motion of the human hand
and then acting upon this motion in a gamified environment.

The final proposed area of future work is the application of the developed alternative-
control algorithm and the framework used to construct it. The most immediate application
for the developed alternative-control algorithm is using it to extend the accessibility of
drone control to operators that cannot operate the standard control medium due to having
impaired dexterity. Another application for the developed algorithm is seeking to opti-
mise its computationally lightweight nature to foster its use in either embedded or edge
computing environments. The framework used to develop the final alternative-control
algorithm can be re-applied to a multitude of other alternative-control tasks. With the now
fully developed HGR component, all that would be required to re-tune the current solution
to control a new agent is the reconstruction of the command mapping component.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s23125462/s1, Video S1: Video demos for the paper.

Author Contributions: Conceptualization, I.M. and S.K.; data curation, L.C. and S.K.; formal analysis,
S.K. and L.C.; investigation, S.K., L.C. and B.B.; methodology, S.K. and I.M.; software, L.C. and S.K.;
supervision, I.M. and S.K.; validation, S.K., L.C. and B.B.; visualization, S.K., L.C. and B.B.; original
draft, S.K., L.C. and B.B.; review and editing, I.M., L.C., S.K. and B.B. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: This study was conducted in accordance with the Declara-
tion of Helsinki and approved by the Institutional Review Board (or Ethics Committee) of Curtin
University Ethics Committee (approval number HRE2021-0047, granted on 3 February 2021) and
(approval number HRE2022-0583, granted on 18 October 2022).

Informed Consent Statement: Informed consent was obtained from all subjects involved in this study.

https://www.mdpi.com/article/10.3390/s23125462/s1
https://www.mdpi.com/article/10.3390/s23125462/s1

Sensors 2023, 23, 5462 29 of 35

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to acknowledge Jayden Balestra from Climbit Physio
who supported the clinical validation of this paper’s algorithms.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Stage 4—Viewpoint and Pose Example

Pose
Viewpoint Offset

0◦ (Font) 45◦ (Forty) 90◦ (Side) 180◦ (Back)

Open

Sensors 2023, 23, x FOR PEER REVIEW 29 of 34

Appendix A. Stage 4—Viewpoint and Pose Example

Pose
Viewpoint Offset

0° (Font) 45° (Forty) 90° (Side) 180° (Back)

Open

Partial

Closed

Appendix B. Stage 5—Classification Analysis Data Set

Gesture Identifier Gesture Reference Image Models

1

2

3

Sensors 2023, 23, x FOR PEER REVIEW 29 of 34

Appendix A. Stage 4—Viewpoint and Pose Example

Pose
Viewpoint Offset

0° (Font) 45° (Forty) 90° (Side) 180° (Back)

Open

Partial

Closed

Appendix B. Stage 5—Classification Analysis Data Set

Gesture Identifier Gesture Reference Image Models

1

2

3

Sensors 2023, 23, x FOR PEER REVIEW 29 of 34

Appendix A. Stage 4—Viewpoint and Pose Example

Pose
Viewpoint Offset

0° (Font) 45° (Forty) 90° (Side) 180° (Back)

Open

Partial

Closed

Appendix B. Stage 5—Classification Analysis Data Set

Gesture Identifier Gesture Reference Image Models

1

2

3

Sensors 2023, 23, x FOR PEER REVIEW 29 of 34

Appendix A. Stage 4—Viewpoint and Pose Example

Pose
Viewpoint Offset

0° (Font) 45° (Forty) 90° (Side) 180° (Back)

Open

Partial

Closed

Appendix B. Stage 5—Classification Analysis Data Set

Gesture Identifier Gesture Reference Image Models

1

2

3

Partial

Sensors 2023, 23, x FOR PEER REVIEW 29 of 34

Appendix A. Stage 4—Viewpoint and Pose Example

Pose
Viewpoint Offset

0° (Font) 45° (Forty) 90° (Side) 180° (Back)

Open

Partial

Closed

Appendix B. Stage 5—Classification Analysis Data Set

Gesture Identifier Gesture Reference Image Models

1

2

3

Sensors 2023, 23, x FOR PEER REVIEW 29 of 34

Appendix A. Stage 4—Viewpoint and Pose Example

Pose
Viewpoint Offset

0° (Font) 45° (Forty) 90° (Side) 180° (Back)

Open

Partial

Closed

Appendix B. Stage 5—Classification Analysis Data Set

Gesture Identifier Gesture Reference Image Models

1

2

3

Sensors 2023, 23, x FOR PEER REVIEW 29 of 34

Appendix A. Stage 4—Viewpoint and Pose Example

Pose
Viewpoint Offset

0° (Font) 45° (Forty) 90° (Side) 180° (Back)

Open

Partial

Closed

Appendix B. Stage 5—Classification Analysis Data Set

Gesture Identifier Gesture Reference Image Models

1

2

3

Sensors 2023, 23, x FOR PEER REVIEW 29 of 34

Appendix A. Stage 4—Viewpoint and Pose Example

Pose
Viewpoint Offset

0° (Font) 45° (Forty) 90° (Side) 180° (Back)

Open

Partial

Closed

Appendix B. Stage 5—Classification Analysis Data Set

Gesture Identifier Gesture Reference Image Models

1

2

3

Closed

Sensors 2023, 23, x FOR PEER REVIEW 29 of 34

Appendix A. Stage 4—Viewpoint and Pose Example

Pose
Viewpoint Offset

0° (Font) 45° (Forty) 90° (Side) 180° (Back)

Open

Partial

Closed

Appendix B. Stage 5—Classification Analysis Data Set

Gesture Identifier Gesture Reference Image Models

1

2

3

Sensors 2023, 23, x FOR PEER REVIEW 29 of 34

Appendix A. Stage 4—Viewpoint and Pose Example

Pose
Viewpoint Offset

0° (Font) 45° (Forty) 90° (Side) 180° (Back)

Open

Partial

Closed

Appendix B. Stage 5—Classification Analysis Data Set

Gesture Identifier Gesture Reference Image Models

1

2

3

Sensors 2023, 23, x FOR PEER REVIEW 29 of 34

Appendix A. Stage 4—Viewpoint and Pose Example

Pose
Viewpoint Offset

0° (Font) 45° (Forty) 90° (Side) 180° (Back)

Open

Partial

Closed

Appendix B. Stage 5—Classification Analysis Data Set

Gesture Identifier Gesture Reference Image Models

1

2

3

Sensors 2023, 23, x FOR PEER REVIEW 29 of 34

Appendix A. Stage 4—Viewpoint and Pose Example

Pose
Viewpoint Offset

0° (Font) 45° (Forty) 90° (Side) 180° (Back)

Open

Partial

Closed

Appendix B. Stage 5—Classification Analysis Data Set

Gesture Identifier Gesture Reference Image Models

1

2

3

Appendix B. Stage 5—Classification Analysis Data Set

Gesture Identifier Gesture Reference Image Models

1

Sensors 2023, 23, x FOR PEER REVIEW 29 of 34

Appendix A. Stage 4—Viewpoint and Pose Example

Pose
Viewpoint Offset

0° (Font) 45° (Forty) 90° (Side) 180° (Back)

Open

Partial

Closed

Appendix B. Stage 5—Classification Analysis Data Set

Gesture Identifier Gesture Reference Image Models

1

2

3

Sensors 2023, 23, x FOR PEER REVIEW 29 of 34

Appendix A. Stage 4—Viewpoint and Pose Example

Pose
Viewpoint Offset

0° (Font) 45° (Forty) 90° (Side) 180° (Back)

Open

Partial

Closed

Appendix B. Stage 5—Classification Analysis Data Set

Gesture Identifier Gesture Reference Image Models

1

2

3

2

Sensors 2023, 23, x FOR PEER REVIEW 29 of 34

Appendix A. Stage 4—Viewpoint and Pose Example

Pose
Viewpoint Offset

0° (Font) 45° (Forty) 90° (Side) 180° (Back)

Open

Partial

Closed

Appendix B. Stage 5—Classification Analysis Data Set

Gesture Identifier Gesture Reference Image Models

1

2

3

Sensors 2023, 23, x FOR PEER REVIEW 29 of 34

Appendix A. Stage 4—Viewpoint and Pose Example

Pose
Viewpoint Offset

0° (Font) 45° (Forty) 90° (Side) 180° (Back)

Open

Partial

Closed

Appendix B. Stage 5—Classification Analysis Data Set

Gesture Identifier Gesture Reference Image Models

1

2

3

Sensors 2023, 23, 5462 30 of 35

Gesture Identifier Gesture Reference Image Models

3

Sensors 2023, 23, x FOR PEER REVIEW 29 of 34

Appendix A. Stage 4—Viewpoint and Pose Example

Pose
Viewpoint Offset

0° (Font) 45° (Forty) 90° (Side) 180° (Back)

Open

Partial

Closed

Appendix B. Stage 5—Classification Analysis Data Set

Gesture Identifier Gesture Reference Image Models

1

2

3

Sensors 2023, 23, x FOR PEER REVIEW 29 of 34

Appendix A. Stage 4—Viewpoint and Pose Example

Pose
Viewpoint Offset

0° (Font) 45° (Forty) 90° (Side) 180° (Back)

Open

Partial

Closed

Appendix B. Stage 5—Classification Analysis Data Set

Gesture Identifier Gesture Reference Image Models

1

2

3

4

Sensors 2023, 23, x FOR PEER REVIEW 30 of 34

4

5

6

7

8

Appendix C. Stage 5—Classification Raw Confusion Data

Linear
4 1 1 2 0 0 2 0
0 10 0 0 0 0 0 0
0 0 6 4 0 0 0 0

Sensors 2023, 23, x FOR PEER REVIEW 30 of 34

4

5

6

7

8

Appendix C. Stage 5—Classification Raw Confusion Data

Linear
4 1 1 2 0 0 2 0
0 10 0 0 0 0 0 0
0 0 6 4 0 0 0 0

5

Sensors 2023, 23, x FOR PEER REVIEW 30 of 34

4

5

6

7

8

Appendix C. Stage 5—Classification Raw Confusion Data

Linear
4 1 1 2 0 0 2 0
0 10 0 0 0 0 0 0
0 0 6 4 0 0 0 0

Sensors 2023, 23, x FOR PEER REVIEW 30 of 34

4

5

6

7

8

Appendix C. Stage 5—Classification Raw Confusion Data

Linear
4 1 1 2 0 0 2 0
0 10 0 0 0 0 0 0
0 0 6 4 0 0 0 0

6

Sensors 2023, 23, x FOR PEER REVIEW 30 of 34

4

5

6

7

8

Appendix C. Stage 5—Classification Raw Confusion Data

Linear
4 1 1 2 0 0 2 0
0 10 0 0 0 0 0 0
0 0 6 4 0 0 0 0

Sensors 2023, 23, x FOR PEER REVIEW 30 of 34

4

5

6

7

8

Appendix C. Stage 5—Classification Raw Confusion Data

Linear
4 1 1 2 0 0 2 0
0 10 0 0 0 0 0 0
0 0 6 4 0 0 0 0

7

Sensors 2023, 23, x FOR PEER REVIEW 30 of 34

4

5

6

7

8

Appendix C. Stage 5—Classification Raw Confusion Data

Linear
4 1 1 2 0 0 2 0
0 10 0 0 0 0 0 0
0 0 6 4 0 0 0 0

Sensors 2023, 23, x FOR PEER REVIEW 30 of 34

4

5

6

7

8

Appendix C. Stage 5—Classification Raw Confusion Data

Linear
4 1 1 2 0 0 2 0
0 10 0 0 0 0 0 0
0 0 6 4 0 0 0 0

Sensors 2023, 23, 5462 31 of 35

Gesture Identifier Gesture Reference Image Models

8

Sensors 2023, 23, x FOR PEER REVIEW 30 of 34

4

5

6

7

8

Appendix C. Stage 5—Classification Raw Confusion Data

Linear
4 1 1 2 0 0 2 0
0 10 0 0 0 0 0 0
0 0 6 4 0 0 0 0

Sensors 2023, 23, x FOR PEER REVIEW 30 of 34

4

5

6

7

8

Appendix C. Stage 5—Classification Raw Confusion Data

Linear
4 1 1 2 0 0 2 0
0 10 0 0 0 0 0 0
0 0 6 4 0 0 0 0

Appendix C. Stage 5—Classification Raw Confusion Data

Linear
4 1 1 2 0 0 2 0
0 10 0 0 0 0 0 0
0 0 6 4 0 0 0 0
0 0 0 10 0 0 0 0
0 1 0 1 7 0 0 1
0 0 0 7 0 3 0 0
0 0 0 0 0 0 10 0
1 0 3 0 0 0 0 6
ANN
10 0 0 0 0 0 0 0
0 5 0 0 0 5 0 0
1 0 5 1 0 0 3 0
0 0 0 10 0 0 0 0
0 0 0 0 10 0 0 0
0 0 0 0 0 10 0 0
0 0 0 0 4 0 6 0
0 4 0 0 0 0 0 6
SVM
10 0 0 0 0 0 0 0
0 10 0 0 0 0 0 0
2 0 6 1 0 1 0 0
0 0 0 10 0 0 0 0
0 0 0 0 9 1 0 0
0 0 0 0 0 10 0 0
0 0 0 0 0 0 2 8
0 2 0 0 0 0 0 8
Bounds-Based
10 0 0 0 0 0 0 0
0 10 0 0 0 0 0 0
0 0 10 0 0 0 0 0
0 0 0 10 0 0 0 0
0 0 0 0 10 0 0 0
0 0 0 0 0 10 0 0
0 0 0 0 0 0 10 0
2 0 0 0 1 0 0 7

Sensors 2023, 23, 5462 32 of 35

Appendix D. Code Methods

This displays the specific python calculation methods used by various aspects of
the report:

Sensors 2023, 23, x FOR PEER REVIEW 31 of 34

0 0 0 10 0 0 0 0
0 1 0 1 7 0 0 1
0 0 0 7 0 3 0 0
0 0 0 0 0 0 10 0
1 0 3 0 0 0 0 6
ANN
10 0 0 0 0 0 0 0
0 5 0 0 0 5 0 0
1 0 5 1 0 0 3 0
0 0 0 10 0 0 0 0
0 0 0 0 10 0 0 0
0 0 0 0 0 10 0 0
0 0 0 0 4 0 6 0
0 4 0 0 0 0 0 6
SVM
10 0 0 0 0 0 0 0
0 10 0 0 0 0 0 0
2 0 6 1 0 1 0 0
0 0 0 10 0 0 0 0
0 0 0 0 9 1 0 0
0 0 0 0 0 10 0 0
0 0 0 0 0 0 2 8
0 2 0 0 0 0 0 8
Bounds-Based
10 0 0 0 0 0 0 0
0 10 0 0 0 0 0 0
0 0 10 0 0 0 0 0
0 0 0 10 0 0 0 0
0 0 0 0 10 0 0 0
0 0 0 0 0 10 0 0
0 0 0 0 0 0 10 0
2 0 0 0 1 0 0 7

Appendix D. Code Methods
This displays the specific python calculation methods used by various aspects of the

report:

Figure A1. Three-dimensional joint-calculation method.

Sensors 2023, 23, x FOR PEER REVIEW 32 of 34

Figure A1. Three-dimensional joint-calculation method.

Figure A2. Two-dimensional joint-calculation method.

Appendix E
This appendix displays the specifications for the mechanism used to demonstrate the

functionality of the final alternative-control algorithm. The selected mechanism was a
TELLO Drone. Table A1 includes the general technical specifications for the drone. Figure
A3 is an image of the TELLO drone.

Table A1. TELLO specifications. Values reproduced from [37].

Aircraft

Flight Weight 80 g
Dimensions 98 × 92 × 41 mm
Propeller Diameter 76.2 mm

Built in Functions

Range Finder
Barometer
LED
Vision System
2.4 GHz 802.11n Wi-Fi

Electrical Interface Micro USB Charging Port

Flight Performance

Maximum Flight Range 100 m
Maximum Flight Time 13 min
Maximum Speed 8 m/s
Maximum Height 30 m

Battery Detachable Battery 3.8 V–1.1 Ah

Camera

Photo 5 MP (2592 × 1936)
FOV 82.6°
Video HD720P30
Format JPG (Photo), MP4 (Video)
EIS Yes

Figure A2. Two-dimensional joint-calculation method.

Appendix E.

This appendix displays the specifications for the mechanism used to demonstrate
the functionality of the final alternative-control algorithm. The selected mechanism was
a TELLO Drone. Table A1 includes the general technical specifications for the drone.
Figure A3 is an image of the TELLO drone.

Sensors 2023, 23, 5462 33 of 35

Table A1. TELLO specifications. Values reproduced from [37].

Aircraft

Flight Weight 80 g

Dimensions 98 × 92 × 41 mm

Propeller Diameter 76.2 mm

Built in Functions

Range Finder
Barometer
LED
Vision System
2.4 GHz 802.11n Wi-Fi

Electrical Interface Micro USB Charging Port

Flight Performance

Maximum Flight Range 100 m

Maximum Flight Time 13 min

Maximum Speed 8 m/s

Maximum Height 30 m

Battery Detachable Battery 3.8 V–1.1 Ah

Camera

Photo 5 MP (2592 × 1936)

FOV 82.6◦

Video HD720P30

Format JPG (Photo), MP4 (Video)

EIS YesSensors 2023, 23, x FOR PEER REVIEW 33 of 34

Figure A3. TELLO drone [38].

References
1. Mahmood, M.; Rizwan, M.F.; Sultana, M.; Habib, M.; Imam, M.H. Design of a Low-Cost Hand Gesture Controlled Automated

Wheelchair. In Proceedings of the 2020 IEEE Region 10 Symposium (TENSYMP), Dhaka, Bangladesh, 5–7 June 2020; pp. 1379–
1382. https://doi.org/10.1109/TENSYMP50017.2020.9230849.

2. Posada-Gomez, R.; Sanchez-Medel, L.H.; Hernandez, G.A.; Martinez-Sibaja, A.; Aguilar-Laserre, A.; Lei-ja-Salas, L. A Hands
Gesture System of Control for an Intelligent Wheelchair. In Proceedings of the 2007 4th International Conference on Electrical
and Electronics Engineering, Bursa, Turkey, 5–7 September 2007; pp. 68–71. https://doi.org/10.1109/ICEE.2007.4344975.

3. Hu, B.; Wang, J. Deep Learning Based Hand Gesture Recognition and UAV Flight Controls. Int. J. Autom. Comput. 2020, 17, 17–
29. https://doi.org/10.1007/s11633-019-1194-7.

4. Lavanya, K.N.; Shree, D.R.; Nischitha, B.R.; Asha, T.; Gururaj, C. Gesture Controlled Robot. In Proceedings of the 2017 Interna-
tional Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT), Mysore,
India, 15–16 December 2017; pp. 465–469. https://doi.org/10.1109/ICEECCOT.2017.8284549.

5. Premaratne, P.; Nguyen, Q.; Premaratne, M. Human Computer Interaction Using Hand Gestures. In Advanced Intelligent Com-
puting Theories and Applications; Springer: Berlin/Heidelberg, Germany, 2010; pp. 381–386. https://doi.org/10.1007/978-3-642-
14831-6_51.

6. Mitra, S.; Acharya, T. Gesture Recognition: A Survey. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2007, 37, 311–324.
https://doi.org/10.1109/TSMCC.2007.893280.

7. Guo, L.; Lu, Z.; Yao, L. Human-machine interaction sensing technology based on hand gesture recognition: A review. IEEE
Trans. Hum.-Mach. Syst. 2021, 51, 300–309. https://doi.org/10.1109/THMS.2021.3086003.

8. Liu, H.; Wang, L. Gesture recognition for human-robot collaboration: A review. Int. J. Ind. Ergon. 2018, 68, 355–367.
https://doi.org/10.1016/j.ergon.2017.02.004.

9. Damaneh, M.M.; Mohanna, F.; Jafari, P. Static hand gesture recognition in sign language based on convolutional neural network
with feature extraction method using ORB descriptor and Gabor filter. Expert Syst. Appl. 2023, 211, 118559. ISSN: 0957-4174.
https://doi.org/10.1016/j.eswa.2022.118559.

10. Ma, Y.; Liu, Y.; Jin, R.; Yuan, X.; Sekha, R.; Wilson, S.; Vaidyanathan, R. Hand Gesture Recognition with Convolutional Neural
Networks for the Multimodal UAV Control. In Proceedings of the 2017 Workshop on Research, Education and Development of
Unmanned Aerial Systems (RED-UAS), Cranfield, UK, 25–27 November 2019; pp. 198–203. https://doi.org/10.1109/RED-
UAS.2017.8101666.

11. Yoo, M.; Na, Y.; Song, H.; Kim, G.; Yun, J.; Kim, S.; Moon, C.; Jo, K. Motion Estimation and Hand Gesture Recognition-Based
Human–UAV Interaction Approach in Real Time. Sensors 2022, 22, 2513. https://doi.org/10.3390/s22072513.

12. Yeh, Y.-P.; Cheng, S.-J.; Shen, C.-H. Research on Intuitive Gesture Recognition Control and Navigation System of UAV. In Pro-
ceedings of the 2022 IEEE 5th International Conference on Knowledge Innovation and Invention (ICKII), Hualien, Taiwan, 22–
24 July 2022; pp. 5–8. https://doi.org/10.1109/ICKII55100.2022.9983607.

13. Tsai, C.-C.; Kuo, C.-C.; Chen, Y.-L. 3D Hand Gesture Recognition for Drone Control in Unity. In Proceedings of the 2020 IEEE
16th International Conference on Automation Science and Engineering (CASE), Hong Kong, China, 20–21 August 2020; pp. 985–
988. https://doi.org/10.1109/CASE48305.2020.9216807.

14. Lee, J.-W.; Yu, K.-H. Wearable Drone Controller: Machine Learning-Based Hand Gesture Recognition and Vibrotactile Feed-
back. Sensors 2023, 23, 2666. https://doi.org/10.3390/s23052666.

15. Jiang, S.; Kang, P.; Song, X.; Lo, B.P.L.; Shull, P.B. Emerging wearable interfaces and algorithms for hand gesture recognition: A
survey. IEEE Rev. Biomed. Eng. 2022, 15, 85–102. https://doi.org/10.1109/RBME.2021.3078190.

Figure A3. TELLO drone [38].

References
1. Mahmood, M.; Rizwan, M.F.; Sultana, M.; Habib, M.; Imam, M.H. Design of a Low-Cost Hand Gesture Controlled Automated

Wheelchair. In Proceedings of the 2020 IEEE Region 10 Symposium (TENSYMP), Dhaka, Bangladesh, 5–7 June 2020; pp. 1379–1382.
[CrossRef]

2. Posada-Gomez, R.; Sanchez-Medel, L.H.; Hernandez, G.A.; Martinez-Sibaja, A.; Aguilar-Laserre, A.; Lei-ja-Salas, L. A Hands
Gesture System of Control for an Intelligent Wheelchair. In Proceedings of the 2007 4th International Conference on Electrical and
Electronics Engineering, Bursa, Turkey, 5–7 September 2007; pp. 68–71. [CrossRef]

3. Hu, B.; Wang, J. Deep Learning Based Hand Gesture Recognition and UAV Flight Controls. Int. J. Autom. Comput. 2020, 17, 17–29.
[CrossRef]

4. Lavanya, K.N.; Shree, D.R.; Nischitha, B.R.; Asha, T.; Gururaj, C. Gesture Controlled Robot. In Proceedings of the 2017
International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT),
Mysore, India, 15–16 December 2017; pp. 465–469. [CrossRef]

https://doi.org/10.1109/TENSYMP50017.2020.9230849
https://doi.org/10.1109/ICEE.2007.4344975
https://doi.org/10.1007/s11633-019-1194-7
https://doi.org/10.1109/ICEECCOT.2017.8284549

Sensors 2023, 23, 5462 34 of 35

5. Premaratne, P.; Nguyen, Q.; Premaratne, M. Human Computer Interaction Using Hand Gestures. In Advanced Intelligent Computing
Theories and Applications; Springer: Berlin/Heidelberg, Germany, 2010; pp. 381–386. [CrossRef]

6. Mitra, S.; Acharya, T. Gesture Recognition: A Survey. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2007, 37, 311–324. [CrossRef]
7. Guo, L.; Lu, Z.; Yao, L. Human-machine interaction sensing technology based on hand gesture recognition: A review. IEEE Trans.

Hum.-Mach. Syst. 2021, 51, 300–309. [CrossRef]
8. Liu, H.; Wang, L. Gesture recognition for human-robot collaboration: A review. Int. J. Ind. Ergon. 2018, 68, 355–367. [CrossRef]
9. Damaneh, M.M.; Mohanna, F.; Jafari, P. Static hand gesture recognition in sign language based on convolutional neural network

with feature extraction method using ORB descriptor and Gabor filter. Expert Syst. Appl. 2023, 211, 118559, ISSN: 0957-4174.
[CrossRef]

10. Ma, Y.; Liu, Y.; Jin, R.; Yuan, X.; Sekha, R.; Wilson, S.; Vaidyanathan, R. Hand Gesture Recognition with Convolutional Neural
Networks for the Multimodal UAV Control. In Proceedings of the 2017 Workshop on Research, Education and Development of
Unmanned Aerial Systems (RED-UAS), Cranfield, UK, 25–27 November 2019; pp. 198–203. [CrossRef]

11. Yoo, M.; Na, Y.; Song, H.; Kim, G.; Yun, J.; Kim, S.; Moon, C.; Jo, K. Motion Estimation and Hand Gesture Recognition-Based
Human–UAV Interaction Approach in Real Time. Sensors 2022, 22, 2513. [CrossRef] [PubMed]

12. Yeh, Y.-P.; Cheng, S.-J.; Shen, C.-H. Research on Intuitive Gesture Recognition Control and Navigation System of UAV. In
Proceedings of the 2022 IEEE 5th International Conference on Knowledge Innovation and Invention (ICKII), Hualien, Taiwan,
22–24 July 2022; pp. 5–8. [CrossRef]

13. Tsai, C.-C.; Kuo, C.-C.; Chen, Y.-L. 3D Hand Gesture Recognition for Drone Control in Unity. In Proceedings of the 2020 IEEE 16th
International Conference on Automation Science and Engineering (CASE), Hong Kong, China, 20–21 August 2020; pp. 985–988.
[CrossRef]

14. Lee, J.-W.; Yu, K.-H. Wearable Drone Controller: Machine Learning-Based Hand Gesture Recognition and Vibrotactile Feedback.
Sensors 2023, 23, 2666. [CrossRef] [PubMed]

15. Jiang, S.; Kang, P.; Song, X.; Lo, B.P.L.; Shull, P.B. Emerging wearable interfaces and algorithms for hand gesture recognition:
A survey. IEEE Rev. Biomed. Eng. 2022, 15, 85–102. [CrossRef] [PubMed]

16. Rautaray, S.S.; Agrawal, A. Vision Based Hand Gesture Recognition for Human-Computer Interaction: A survey. Artif. Intell. Rev.
2015, 43, 1–54. [CrossRef]

17. Aggarwal, J.K.; Ryoo, M.S. Human Activity Analysis: A Review. ACM Comput. Surv. 2011, 43, 16:1–16:43. [CrossRef]
18. Zhang, F.; Bazarevsky, V.; Vakunov, A.; Tkachenka, A.; Sung, G.; Chang, C.L.; Grundmann, M. MediaPipe Hands: On-device

real-time hand tracking. arXiv 2020, arXiv:2006.10204. [CrossRef]
19. Moon, G.; Yu, S.-I.; Wen, H.; Shiratori, T.; Lee, K.M. InterHand2.6M: A dataset and baseline for 3D interacting hand pose estimation

from a single RGB image. In Computer Vision-ECCV 2020 (Lecture Notes in Computer Science); Springer: Berlin/Heidelberg, Germany,
2020; pp. 548–564. [CrossRef]

20. Ge, L.; Ren, Z.; Li, Y.; Xue, Z.; Wang, Y.; Cai, J.; Yuan, J. 3D hand shape and pose estimation from a single RGB image.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019;
pp. 10833–10842. [CrossRef]

21. Jindal, M.; Bajal, E.; Sharma, S. A Comparative Analysis of Established Techniques and Their Applications in the Field of Gesture
Detection. In Machine Learning Algorithms and Applications in Engineering; CRC Press: Boca Raton, FL, USA, 2023; p. 73.

22. Yasen, M.; Jusoh, S. A systematic review on hand gesture recognition techniques, challenges and applications. PeerJ Comput. Sci.
2019, 5, e218. [CrossRef] [PubMed]

23. American Sign Language. Wikipedia. Available online: https://en.wikipedia.org/wiki/American_Sign_Language (accessed on
3 April 2023).

24. Oudah, M.; Al-Naji, A.; Chahl, J. Hand Gesture Recognition Based on Computer Vision: A Review of Techniques. J. Imaging 2020,
6, 73. [CrossRef] [PubMed]

25. Balestra, J.; (Climbit Physio, Belmont, WA, Australia). Personal communication, 2022.
26. Xu, X.; Zhang, X.; Fu, H.; Chen, L.; Zhang, H.; Fu, X. Robust Passive Autofocus System for Mobile Phone Camera Applications.

Comput. Electr. Eng. 2014, 40, 1353–1362. [CrossRef]
27. Bhushan, S.; Alshehri, M.; Keshta, I.; Chakraverti, A.K.; Rajpurohit, J.; Abugabah, A. An Experimental Analysis of Various

Machine Learning Algorithms for Hand Gesture Recognition. Electronics 2022, 11, 968. [CrossRef]
28. Gadekallu, T.R.; Srivastava, G.; Liyanage, M.; Iyapparaja, M.; Chowdhary, C.L.; Koppu, S.; Maddikunta, P.K.R. Hand Gesture

Recognition Based on a Harris Hawks Optimized Convolution Neural Network. Comput. Electr. Eng. 2022, 100, 107836. [CrossRef]
29. Katsuki, Y.; Yamakawa, Y.; Ishikawa, M. High-speed human/robot hand interaction system. In Proceedings of the HRIACM/IEEE

International Conference on Human-Robot Interaction System, Portland, OR, USA, 2–5 March 2015; pp. 117–118. [CrossRef]
30. MediaPipe. MediaPipeHands [SourceCode]. Available online: https://github.com/google/mediapipe/tree/master/mediapipe/

python/solutions (accessed on 21 April 2022).
31. CVZone. HandTrackingModule [SourceCode]. Available online: https://github.com/cvzone/cvzone/blob/master/cvzone/

HandTrackingModule.py (accessed on 23 May 2022).
32. Soumotanu Mazumdar. Sign-Language-Detection [SourceCode]. Available online: https://github.com/FortunateSpy5/sign-

language-detection (accessed on 21 August 2022).

https://doi.org/10.1007/978-3-642-14831-6_51
https://doi.org/10.1109/TSMCC.2007.893280
https://doi.org/10.1109/THMS.2021.3086003
https://doi.org/10.1016/j.ergon.2017.02.004
https://doi.org/10.1016/j.eswa.2022.118559
https://doi.org/10.1109/RED-UAS.2017.8101666
https://doi.org/10.3390/s22072513
https://www.ncbi.nlm.nih.gov/pubmed/35408128
https://doi.org/10.1109/ICKII55100.2022.9983607
https://doi.org/10.1109/CASE48305.2020.9216807
https://doi.org/10.3390/s23052666
https://www.ncbi.nlm.nih.gov/pubmed/36904870
https://doi.org/10.1109/RBME.2021.3078190
https://www.ncbi.nlm.nih.gov/pubmed/33961564
https://doi.org/10.1007/s10462-012-9356-9
https://doi.org/10.1145/1922649.1922653
https://doi.org/10.48550/arXiv.2006.10214
https://doi.org/10.1007/978-3-030-58565-5_33
https://doi.org/10.48550/arXiv.1903.00812
https://doi.org/10.7717/peerj-cs.218
https://www.ncbi.nlm.nih.gov/pubmed/33816871
https://en.wikipedia.org/wiki/American_Sign_Language
https://doi.org/10.3390/jimaging6080073
https://www.ncbi.nlm.nih.gov/pubmed/34460688
https://doi.org/10.1016/j.compeleceng.2013.11.019
https://doi.org/10.3390/electronics11060968
https://doi.org/10.1016/j.compeleceng.2022.107836
https://doi.org/10.1145/2701973.2701984
https://github.com/google/mediapipe/tree/master/mediapipe/python/solutions
https://github.com/google/mediapipe/tree/master/mediapipe/python/solutions
https://github.com/cvzone/cvzone/blob/master/cvzone/HandTrackingModule.py
https://github.com/cvzone/cvzone/blob/master/cvzone/HandTrackingModule.py
https://github.com/FortunateSpy5/sign-language-detection
https://github.com/FortunateSpy5/sign-language-detection

Sensors 2023, 23, 5462 35 of 35

33. Dmitry Manoshin. Gesture_Recognition [SourceCode]. Available online: https://github.com/manosh7n/gesture_recognition
(accessed on 9 August 2022).

34. Halder, A.; Tayade, A. Real-time vernacular sign language recognition using mediapipe and machine learning. Int. J. Res.
Publ. Rev. 2021, 2, 9–17. Available online: https://scholar.google.com/scholar?as_q=Real-time+vernacular+sign+language+
recognition+using+mediapipe+and+machine+learning&as_occt=title&hl=en&as_sdt=0%2C31 (accessed on 16 August 2022).

35. Damia F Escote. DJITelloPy [SourceCode]. Available online: https://github.com/damiafuentes/DJITelloPy (accessed on
2 April 2022).

36. Hamilton, G.F.; Lachenbruch, P.A. Reliability of Goniometers in Assessing Finger Joint Angle. Phys. Ther. 1969, 49, 465–469.
[CrossRef] [PubMed]

37. TELLO SPECS. RYZE. Available online: https://www.ryzerobotics.com/tello/specs (accessed on 25 May 2023).
38. Tello. Wikipedia. Available online: https://de.wikipedia.org/wiki/Tello_(Drohne) (accessed on 25 May 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://github.com/manosh7n/gesture_recognition
https://scholar.google.com/scholar?as_q=Real-time+vernacular+sign+language+recognition+using+mediapipe+and+machine+learning&as_occt=title&hl=en&as_sdt=0%2C31
https://scholar.google.com/scholar?as_q=Real-time+vernacular+sign+language+recognition+using+mediapipe+and+machine+learning&as_occt=title&hl=en&as_sdt=0%2C31
https://github.com/damiafuentes/DJITelloPy
https://doi.org/10.1093/ptj/49.5.465
https://www.ncbi.nlm.nih.gov/pubmed/5804302
https://www.ryzerobotics.com/tello/specs
https://de.wikipedia.org/wiki/Tello_(Drohne)

	Introduction
	Background
	Existing Methods
	Data-Acquisition Medium
	Gesture Description
	Gesture Identifiers
	Gesture Classifiers

	Contribution of the Paper

	Methods
	Methodology Structure
	Overview
	Defining Simplifications
	Governing Criteria

	Stage One: Selection of Gesture-Description Model
	Overview
	Gesture-Type Selection Justification
	Gesture Model Selection Justification
	Gesture Information Justification

	Stage Two: Selection of Data-Acquisition Method
	Stage Three: Selection of Gesture-Identification Algorithm
	Stage Four: Validaton of Selected Gesture-Identification Algorithm
	Stage Five: Selection of Gesture-Classifcation Algorithm
	Stage Six: Gesture Mapping and Tuning

	Results
	Gesture-Identification Selection
	Implementation Results
	Qualitative Analysis Results
	Final Selection

	Gesture-Identification Validation Results
	Measured Joint Angles
	Calculated Joint Angles
	Final Accuracy Percentages

	Gesture-Classsifier Selection
	Scope Definition
	Accuracy Results
	Computational Performance Results
	Final Classifier Selection

	Gesture-Mapping Selection and Tuning
	Performance Overview

	Discussion
	Principal Findings
	Results Analysis
	Gesture-Identifier Selection Analysis
	Gesture-Identifier Validation Analysis
	Gesture-Classifier Selection Analysis

	Conclusions
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	References

