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Chapter I: Introduction 

 

Quite simply, meteorites are rocks that fall from the sky. The more than 60,000 recovered samples in the global 

meteorite collection represent many parent and source bodies including Mars, Luna, and an array of Asteroids.  

Organizations such as the Global Fireball Observatory (GFO; Devillepoix et al. 2020) are uniquely enabled to 

observe their atmospheric entry to Earth and triangulate the meteoroids’ luminous, ablative flight using their 

overlapping camera stations to image the night sky. From these observations, planetary scientists can predict both 

where the resulting meteorite landed on the Earth’s surface, as well as infer where they most-recently originated 

from in the solar system. Recovering these meteorites bequeaths a wealth of inter-planetary knowledge upon 

whosoever recovers and worships them analytically. Although networks such as the Desert Fireball Network 

(DFN; Bland et al. 2012) have been sufficiently automated to facilitate this process, one logistical bottleneck 

remained: meteorite recovery.  

 

The main focus of this PhD project aimed to develop a novel methodology employing drones and machine learning 

to address this problem: recovering meteorites with greatly reduced human labor. Unfortunately, 18 months into 

the project the global pandemic COVID-19 reached Western Australia and severely disrupted my progress towards 

completing this goal. Unsure when life would return to a relatively normal state, I was forced to adjust my PhD 

project in the possible scenario that I would be unable to see the meteorite recovery system to fruition, due to travel 

and work restrictions. This adjustment added the analysis and in-depth characterization of the meteorites that were 

previously recovered by the DFN, to my PhD project.  

 

While writing the manuscript for the Murrili meteorite, I began thinking about how this detailed meteorite 

information could be used in the future. One personal research interest of mine, since I began working as a research 

assistant, was the utilization and extraction of resources in space, or In Situ Resource Utilization (ISRU). The 

continuity of my work, from collecting the meteorite from its natural landing place, progressing to geochemical 

analysis, and finally finishing with theorizing about future uses of meteoritic ores in space, warrants the title of 

this thesis: “Farm to Table Meteorites: An End to End Exploration of the Solar System’s Past, Present and Future” 

 

These three projects, although related in subject material to form a cohesive story from meteorite fall, to find, to 

characterization, to future use, forced me to grow and develop a wide set of tools and skills to overcome such a 

great methodologically diverse set of problems. The next Chapter (II) details these methodologies and the 

significance of each of the four peer-reviewed manuscripts I published for my PhD thesis. 
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Chapter II: Significance and Methodology 

 

Abstract 

 

This chapter first outlines the significance of the main body Chapters: III, IV, V, & VI, and fits them into the 

context of advancing planetary science, from considerably expediting the meteorite recovery process, to adding a 

well-defined data point in the growing collection of orbital meteorites, to possible future uses of these meteorites 

in their native space environments. Although each of the following chapters contains a methodology section, the 

current chapter includes the methodological deleted scenes reel that I used to accomplish my PhD thesis. 

 

Significance 

 

 Meteorite Searching with Drones and Machine Learning (MAPS and ApJL) 

 

Every night and day extraterrestrial material falls into the Earth’s upper atmosphere. The largest and most robust 

breed of this material originates from asteroids, which most often orbit between Mars and Jupiter. The atmospheric 

entry of these meteoroids is so energetic that their outer sections vaporize and luminesce across sky. Those that 

appear brighter than Venus (in the night sky), are called fireballs. Of the fireballs that the DFN observes, about 

5% are able to survive, in one or multiple pieces, the ablative, ‘bright flight’ atmospheric entry to eventually slow 

enough to terminal velocity before they land on the surface of the Earth, becoming a meteorite. The Desert Fireball 

Network (DFN; Bland et al., 2012; Howie et al., 2017) is one of many networks (Spurný et al., 2006; Trigo-

Rodríguez et al., 2006; Colas et al., 2015) whose mission aims at observing and recovering these ‘orbital 

meteorites’. We call them as such because their atmospheric entry was photographically recorded well enough to 

determine their pre-entry orbit, from which planetary scientists can infer their orbital evolution within the Solar 

system (example: Jenniskens et al., 2012). Inversely, the shooting star observations from fireball networks are also 

used to predict where a surviving meteorite may have landed, using numerical simulations and weather models.  

 

Until now, the best way to recover these orbital meteorites was to assemble a group of people, show them what a 

meteorite looks like, and lead them to walk in a line 2~10 m apart, scanning the ground for the fallen meteorite 

until it is found. This is inefficient. From the institutional knowledge of the DFN, I estimate that it takes 6 people 

~30 days to cover a fall line. Combining this with a rough estimate (based on the Vigilance Decrement in Human 

Factors Psychology, (See et al., 1995)) that a human has a ~50 % chance of recognizing the meteorite, I estimate 

that it takes an average of 360 labor-days to recover a fallen meteorite. This is somewhat supported by our success 

rate of 20 %, considering we have embarked on ~40 searching trips with a total of 8 recovered meteorites 

(averaging ~300 days per recovered meteorite).  

 

The two papers that I published, first in Meteoritics and Planetary Science (MAPS, Anderson et al., 2020), and 

later in The Astrophysical Journal Letters (ApJL, Anderson et al., 2022), both detail the methodology and approach 

we used to recover a meteorite with drones and machine learning, which was accomplished using 12 labor-days 

(when considering a single, full scale survey trip alone). Our success in the second of these two papers has and 
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will enable planetary scientists to more quickly recover meteorites, allowing more time and effort to be focused 

on characterizing the population of near Earth, and Asteroid Belt objects, and how mass is transferred between 

solar system bodies. 

 

 

The Murrili (H5) Meteorite (MAPS) 

 

This line of scientific discovery clearly acts as a perfect segue into the subject of the next published paper which 

I have included in my thesis: the characterization of orbital meteorites recovered from the DFN. Although I was 

not present for the recovery, initial characterization, and sample allocation for the Murrili (H5) meteorite, the scope 

of my PhD was expanded to include the interpretation of the results from this meteorite’s analytical studies 

(Anderson et al., 2021a), as well as begin and facilitate the analyses of the 4 new meteorites that were recovered 

during my PhD. As my statistical fate would have it, 7 of the 8 DFN meteorites (including Murrili) are classified 

as ordinary chondrites, which are so named because of their common nature, comprising ~80% of the meteorites 

in the global collection (Meier, 2022). 

 

The main noteworthy anomaly that we observed in Murrili was the incongruent results from the shock state 

analyses performed via X-ray Computed Tomography (CT) and Optical Thin Section analysis. The preferential 

foliation of the metal grains within the meteorite indicate that Murrili likely experienced moderate to significant 

shock loading (overbearing pressure), while the behavior of transmitted light through the thin-section seems to 

suggest a more mild shock history. In this paper we also note that the CT data and the thin-section were sampled 

from separate regions of the meteorite. This may suggest that ordinary chondrites are less uniformly shocked on 

the demiscale (~10 cm) than previously thought. 

 

Space Resource Utilization Using The Silicate-Sulfuric Acid Process 

 

Given the above-mentioned advances in planetary science, I couldn’t help but wonder: what can we do with all 

this information, about meteorites and where they come from? This led me to write the fourth paper and final main 

body chapter of this thesis: The Silicate Sulfuric Acid Process (SSAP; Anderson et al., 2021b). It outlines a 

theoretical process which incorporates some industry proven ore-processing techniques, to refine material on the 

Moon, Mars and asteroids. The main products of the SSAP are iron metal and silica grains, both of which would 

serve as ideal feedstock to create steel and spacecraft-quality windows on these heavenly bodies. 

 

The significance of this paper lies in the exploration of non-volatile element resources in space. Whereas most 

ISRU studies focus on exploiting water or carbon dioxide ice to manufacture fuel on other planetary bodies, the 

creation of solid structures and products is often overlooked, even though their importance cannot be overstated. 

Even if the process that I proposed does not result in a feasible implementation, it will hopefully spur further 

exploration and consideration around harvesting resources in space for on-site construction. 
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Methodology 

 

 Meteorite Searching with Drones and Machine Learning 

 

  Drone Operations 

 

I used two drones for this portion of the project, the first being the DJI Mavic Pro for data collection early in the 

project, as well as follow up searching once a meteorite candidate had been identified while in the field. The second 

drone I used was the DJI M300 with a Zenmuse P1 camera (48 MP, 35 mm lens), for surveying, as well as training 

data collection later in the project. The high cost of the M300 system (25,000 AUD) made it necessary for me to 

prove the feasibility of this approach using the less expensive Mavic Pro (2,000 AUD), hence why I used it for 

early data collection, as no other option was available. Prior to purchasing the M300, we borrowed or rented the 

use of SPECTRE UAV’s M600 and Sony 𝛼7rIII (42 MP camera) when we needed to test large-scale surveying 

components of the project. Since we acquired the M300 though, we use it exclusively for data collection, to ensure 

minimal variation in quality between survey and training data.  

 

For the Mavic Pro, I connected its remote controller via USB cable to our Ipad to get the largest possible view 

from the camera and flew it manually with the DJI GS Pro application when collecting images. The M300 has its 

own remote controller that doubles as the smart device to allow for manual control, complex flight routes, 

computer-planned flights, etc., and additionally has an HDMI output to mirror the touch screen display to a 

separate monitor. Training data collection (which is explained in more detail in the next section) consisted of flying 

the Mavic at a height between 5 and 8 m (12-18 m for the M300), while another person placed a ‘meteorite’ on 

the ground, stepped back ~1-2 m and pointed at it for ~5 s. I would then take an image with the drone, and we 

would repeat the process often using different ‘meteorites’, placed in different backgrounds local to within 30 cm 

of the ‘meteorite’. 

 

Later in the process, once meteorite candidates proceeded to the point of warranting a second drone visit, with the 

Mavic Pro, I typed each candidate’s GPS coordinate into GS Pro’s (Ipad) waypoint flight mode, then activated the 

flight. These waypoint flights usually consisted of 10-20 candidates per flight, maintaining an altitude of 20 m. 

When the drone approached a waypoint, I paused the automated flight and took manual control, and guided the 

drone to the candidate while I viewed the original image on the computer as well as the live feed. Once the drone 

was ~1 m from the ground with the candidate in frame, I took at least 3 pictures as well as video (for later viewing 

since the live feed is lower resolution than saved data). 

 

Planning the survey flights for the M300 mostly occurred on my desktop computer, prior to the trip. It started with 

a map provided by the DFN team which showed the bounds of the 90% probability area, from their Monte Carlo 

simulations and darkflight propagation (Towner et al., 2022). From the .kml file they provided, I looked for any 

large elevation variations and areas within, using Google Earth. Using its polygon tool, I created 4 or more slightly 

overlapping polygons such that each polygon maintained an elevation variation of ±3 m. I saved each of these 

polygons as separate .kml files onto an SD card which was inserted into the M300’s smart controller. Using the 

controller, I could save and plan flights by importing the saved .kml files. All of this was done prior to a trip. 

 

To power these drones, the field trips required a 2 kW gasoline generator, set to ‘eco’ mode to conserve fuel 

automatically when the current draw was not at maximum. The only exception to this occurs when the machine 
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learning model is training, in which case we set it to full throttle, due to previously encountered black outs on the 

computer. The M300 came equipped with a charging case capable of housing all of our 8 batteries (4 flight sets), 

charging only 2 of the 8 batteries (1 set) at once. This mostly allowed for continuous survey flights until ~5 hours 

into the day, at which time a 30-45 minute break is usually needed to allow the charging rate to catch up. During 

midday and afternoon, when the temperatures of the batteries could reach ~45 ℃ by the end of a flight, we placed 

the empty, hot batteries into a camp refrigerator (set to its coldest setting; powered by either the generator or the 

dual battery-solar panel system installed on our vehicle) before recharging. The smart controller for the M300 also 

had a removable battery which was recharged by the charging station, separate from the flight batteries. The 

batteries for the Mavic Pro had 2 chargers that could house a total of 5 batteries (5 flight sets) and charge 2 batteries 

at once. These did not encounter the same high temperatures as the M300, and we had enough batteries (6 total) 

to fly the Mavic Pro non-stop, though the Ipad required recharging twice per day. 

 

 

  Machine Learning - Training 

 

Using the Drone Operations and methodology described above, we collected training data. This consisted of two 

parts: meteorite (True; 1) and non-meteorite (False; 0) images. We collected non-meteorite images by flying the 

drone parallel to the fall line (~200 m offset), easily resulting in as many as 500 images, each of which contain 

~9000 tiles, often totaling more than 1,000,000 tiles. The meteorite images were a little more tricky. I originally 

tried procedurally editing meteorites onto native backgrounds, but these models never achieved a high validation 

accuracy when applied to images of real black rocks and meteorites on the ground. Next we would gather rocks 

onsite that roughly looked ‘meteoritic’, meaning no particular extremely elongated axis, and roughly rounded on 

its edges, but not necessarily rounded as a whole. We painted these blacks with black spray paint, using both matte 

and glossy flavors. We used these ‘synthetic meteorites’ as stand-ins for real meteorites, as early tests showed us 

they were indistinguishable from real meteorites at our resolution (1.8 mm/pixel). We placed the rocks in a line 

~3-10 m apart (20-40 at a time), ensuring the ~30 cm radius background in which each rock was placed is notably 

different than the last. This ensured good variety for the model, since the background could easily change between: 

desert pavement, bush, grass, dead tree, different kinda bush, flowering bush, other flowering bush, red dirt, brown 

dirt, desiccation cracks, white rocks, beige rocks, grey rocks, roo poo, etc.  

 

While the pilot flew the drone, another person would walk along the line ~2-3 m to one side and point to the 

nearest rock as they walked past it. The pilot would follow along with the drone taking 1 picture per rock pointed 

to. We used these fake meteorites early in the process to show the feasibility of the concept, which is proven and 

discussed in Anderson et al. (2020). Once we were able to positively identify, with the algorithm, the real 

meteorites Madura Cave (L6) and Mundrabilla Fault (H5), we included real meteorites when collecting images. 

For the field trip included in Anderson et al. (2022), we used the real meteorites: Mulga North (H6), Wiluna (H5), 

and Camel Donga (Eucrite), all supplied by Peter Downes and Geoff Deacon at the Western Australian Museum. 

These totaled to 28 stones ranging in size from 2 to 14 cm (when measured on their longest axis). Since I would 

be summarily executed if any of these samples were lost, one person would place one meteorite on the ground and 

point to it, while the drone pilot took an image, then repeated the process with the same rock 5-10 times before 

returning the rock to its sample case, and selecting a new sample. Ensuring that each emplacement was in a 

different spot and orientation with respect to the last. Each method of data collection, whether it be with real or 

synthetic meteorites, would usually yield ~100,000 tiles with ‘meteorites’ for training. Next, we labeled (in the 

machine learning sense) our true images using ImageJ on our field computer. The fastest way to do this labelling 

was to load ~14 images into ImageJ, convert them into a stack (so that I could scroll through those selected with 
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the mouse wheel), and use the rectangle tool to identify and record the bounds of the meteorite. This was simply 

done by setting the results option to display X and Y bounds as well as the image name, and press the ‘m’ key 

whenever I drew a satisfying rectangle around the meteorite, finally exporting to a .csv or .txt file. I would repeat 

this in ImageJ until all had been labeled. This process is outlined in Figure 1 in Anderson et al. (2020). 

 

The next phase is a semi-automated pipeline of sorts (see the Appendix for full code). In python we used the Pillow 

and numpy modules to generate 125x125 pixel tiles from both the True and False images. The False images were 

fully split into tiles with a stride set to 125 randomly rotated and changed the brightness, for the M300 this totalled 

9126 per image. Using the True images, with the location information for the meteorites in each frame, I generated 

tiles by striding over the image (10 pixels), keeping the meteorite fully in frame each time, then rotating each of 

those strides 90°, ×3 iterations and randomly adjusting the brightness before saving. For the Kybo-Lintos (DFN 

09; internal label, not official name) trip, this totaled (~50,000) true tiles and (>1,000,000) false tiles. This 

imbalance presented itself as the next problem: keeping the data set balanced during training.  

 

To do this, I employed what I call ‘revolver training’. Essentially it works by generating all of our training data 

which usually amounted to 1,000,000 - 4,000,000  False tiles and ~50,000 True tiles (taken only from local data). 

We then added 50,000 more True tiles generated from data collected on other trips, bringing the total number of 

True tiles to ~100,000. We then split 20% (~20,000) of the True tiles into a separate set for validation, which the 

model did not use for training. The model did however predict on this validation set during training, to provide 

feedback on how well the model was training. The remaining 80,000 True tiles formed the True half of the training 

set, which did not change for the course of the training. The False half was formed many times throughout the 

course of a training session.  

 

Before I continue, I will explain some of the terminology. A training session is broken into epochs, each of which 

can be thought of as a single round of training, in which the model trains on all of the target data, once. In an 

epoch, the model will use all of the data in a training set to adjust its own weights, ideally improving the model’s 

accuracy. If, like in our case, the training set is too large to be loaded into the GPU’s local memory (12 GB), the 

dataset can be broken into batches which are fed to the model. Once the model has seen the whole target dataset 

by training on each batch, the epoch is complete. At the end of an epoch, the model, with its newly updated weights, 

will report its predictions on both the training and validation set, producing training and validation accuracy. In 

our case an epoch typically lasted ~30-90 seconds. 

 

For revolver training, we used all the True training tiles, described above, as well as some of the False tiles at one 

time. Every 10 epochs I would automatically pause the training, move the 80,000 False tiles being used in training, 

out of the training set directory, and back to the False pool. The program I wrote would then randomly select 

80,000 False tiles from the pool, and move these to the training set directory, forming the new training set, upon 

which the model trained for 10 epochs, before repeating the process again. This procedure would continue until 

the model had seen all of the False tiles twice. This approach to training would allow us to keep a balanced ‘training 

set’ during training epochs, while also enabling the model to see all of our False tiles. If you’ve been paying 

attention, you may have noticed a lack of discussion about the False validation set, because there wasn’t one. Since 

the validation set in no way affects training, I only included True tiles within it in order to monitor the meteorite 

detection chance of the model. For the model I trained to use at the Kybo-Lintos fall, the model achieved a 99.93% 

training accuracy and a 91.05% validation accuracy. Training took ~2 hours on our field computer. 
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  Machine Learning - Prediction 

 

Once the revolver training had produced a high-accuracy model, we began predicting on our survey data using 

said model. This was automated such that the computer could process one flight’s worth of images, with no human 

input required. One survey flight (30 min) worth of images usually took 60-90 min to process with the algorithm. 

The function that predicts over the images begins by looking for previously saved logs within the same directory, 

which can indicate if the function completed its predictions over all of the images for a flight. This is an important 

safety feature in the non-rare event that the computer loses power midway through predicting on a flight of images. 

This log checking step allows the model to pick up where it left off, with minimal data loss or recomputation. The 

function is mostly optimized though could be improved slightly. It works by opening each image (CPU), splitting 

into tiles (CPU), and feeding them to the GPU for prediction. Once the GPU has completed its prediction, the 

results are handed to a multiprocessing thread on the CPU to save the results, so that the next image can begin 

being processed at the same time. In the past we would pre-enter a prediction threshold, so that the function could 

highlight the over-threshold (interesting) tiles, though later in the process, when we became better at limiting false 

positives, this became cumbersome. Instead, now we simply save the prediction values of each tile for all images, 

x-y bounds, and original image name, so that later we can parse the results and select a threshold that better suits 

the distribution. I also wrote an option to still pre-enter the prediction value. When the results of each image were 

saved into individual .csv files, a histogram of the predictions for said image was also saved. This allowed me to 

quickly quantify how the model was performing for a flight, I often paused the prediction function to retrain. 

 

  Detection Sorting - False Positives vs Meteorite Candidates 

 

The first step in sorting false positives from meteorite candidates began with reviewing the histograms produced 

by the prediction function. Figure 2 in Anderson et al. (2022) shows the difference between a good and bad 

distribution. Images that produced histograms like B were flagged for retraining, in which the entire image was 

used to make tiles for a new retraining set. If the rate of detections was too much (greater than 2 per image with a 

70% confidence threshold), we would stop the prediction currently working on a flight of images and retrain it. In 

other instances when the detection was more tolerable, we just did the retraining after the main prediction and re-

processed the few problematic images.  From this point, the detections were sorted through a 4 stage elimination 

process: grid GUI (Stage I), zoom-pan GUI (Stage II), drone follow up (Stage III), in-person follow up (Stage IV) 

 

Now that we had selected the detections for humans to view, we passed these interesting tiles into the first GUI 

that I made (Stage I). This grid-sorting GUI worked by displaying 9 tiles in a 3x3 grid to the user. The user would 

identify which of the tiles resembled a meteorite by pressing the corresponding number on the keypad (Figure 1). 

Once the meteorite-like tiles had been identified, the user pressed the ‘Enter’ button on the keypad to advance to 

the next set. The ‘-’ button on the keypad would take the user to the previous set, while ‘Backspace’ eliminated 

the selections for the current set, incase of a mistake by the user. The program would also have a uniform 

probability of displaying 0, 1 or 2 tiles from the training data set, within the grid of 9. These acted as tests for the 

user, with the passed-test rate displayed at the top of the window. Although this was a good metric for 

understanding each user’s performance, it more importantly forced the user to slow down and seriously consider 

each of the 9 tiles, preventing them from ‘mashing’ the ‘next’ button which would likely cause them to overlook 

meteorite candidates. This Stage I was designed as a first pass at any detections from the model, to quickly 

differentiate between dark spots (for later inspection) from obvious false positives (for elimination (bushes, blank 

patches of sand/dirt, etc.)). 
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Figure 1. The grid sorting GUI, that allows users a first pass at the model detections. The typical dimensions for 

the field of view (for each detection) was 67 x 67 cm. 

 

Once all of the detections for a flight had been inspected via the grid GUI, we inspected the surviving candidates 

in the zoom-pan GUI (Stage II). This GUI is mostly comprised of code from user: 

https://stackoverflow.com/users/7550928/foobar167. Our modifications allow for easier selection of the images to 

be viewed, while also enabling us to quickly move to the next image in the selected directory. This GUI, like its 

name implies, displays an entire 48 MP image from the drone with the meteorite candidate tile outlined in a yellow 

box, allowing the user to move to any part of the image and zoom in and out. This step was important, because it 

allowed for up close inspection of each candidate individually to scrutinize its features, which often led to false 

positive elimination, since the grid GUI was only designed for the user to differentiate dark spots from obvious 

false positives. The Stage II GUI also allowed the user to inspect nearby features, which help us to eliminate more 

nuanced false positives such as animal droppings (Figure 2)  

 

https://stackoverflow.com/users/7550928/foobar167
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After each candidate had either passed through or been eliminated at Stage II, we compiled the surviving 

candidates manually into the DJI GS Pro app on the ipad, to plan follow up flights (Stage III) for the Mavic Pro. 

This is one bottleneck that should be alleviated in the future. Ideally, we would sort the candidates to minimize 

total travel distance, save to a .kml file, then export to a flight planning app. After the flight has been planned we 

begin the mission with the Mavic Pro, making sure to consider the location and current actions of the M300 survey, 

to avoid collision. As an added safety measure, the M300 flew at a height of 15 m, while the Mavic Pro was 

programmed to fly at 30 m to further mitigate a collision risk. When the Mavic arrived at a candidate, we paused 

the flight and manually descended the drone until it hovered ~1 m over the candidate, using the original image as 

a guide. If we could eliminate this candidate during flight, we would. If we were still unsure however, we would 

take 2-3 images with the Mavic for later inspection, since the live-feed has a lower resolution than images saved 

to the drone, which could then be inspected post-follow up flight on our field computer.  

 

 

Figure 2. This figure shows the field of view and magnification of the zoom-pan gui as well as the limitations of 

the grid sorting gui. The background is a full image taken from the Zenmuse P1, the enlarged area is a typical 

view with the zoom-pan GUI (though not at maximum magnification), the limits of the grid gui’s field of view is 

outlined in blue. When we originally sorted this detection, it seemed interesting enough to double check, though 

upon doing so, we realized it was likely ‘roo-poo. 

 

The final, Stage IV, of candidate elimination consisted of an in-person visit. We did this by loading the candidate 

coordinates into a GPS and walking out to its location, carrying the ipad with the original survey images of these 

candidates, as well as the Mavic drone in its case. Although we found each of the candidates fairly easily, taking 
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the smaller drone along with us ensured that we could find the candidate in case it eluded us. In the case of the 

Kybo-Lintos trip that yielded a recovered meteorite, we only visited 4 meteorite candidates in person, with each 

one taking ~30-45 min to walk to. Assuming that future trips may not be so lucky with an early detection, an 

electric mountain bike may prove to be invaluable for quickly moving from one candidate to another. 

 

 

Figure 3. Images of the recovery of DFN 09, the first orbital meteorite to be recovered with a drone. (Clockwise 

from top left): The fusion crust of the meteorite, note the terrestrial alteration near the bottom; The scale of the 

whole rock (with a 14 cm felt pen for scale); The recovery team standing over the rock; Field setup, with 

computers and charging equipment in the tray of the 4WD vehicle; Image from the closeup of the meteorite, 

taken with the Mavic pro; The original image in which the meteorite appeared, with annotated yellow box 

showing the model detection. 

 

On the Kybo-Lintos trip, we found the meteorite which appeared as the 3rd candidate we visited in person (Figure 

3). The previous candidates we visited were remotely convincing but not overwhelmingly so. So when we first 

saw the would-be meteorite in the 2nd stage, and later the 3rth stage, I personally thought that it was the most 

convincing candidate we had seen so far, indistinguishable from the training data I was accustomed to labeling. 

Although we initially picked up the rock to inspect it, we immediately returned it to its original place. We then 

took dozens of pictures of the meteorite with a DSLR camera, and with the Mavic pro at various altitudes from 1 

to 30 m. Once we were satisfied with the pictures taken, we used metal tongs to place the meteorite into a teflon 

bag which was placed into a cloth bag for contamination and physical protection, respectively. We also used a 
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nearby rock (being sure to use one of its untouched surfaces) to gently gather groundsoil directly adjacent to (<10 

cm) the meteorite, which would serve as a background or control measurement in the event the meteorite were a 

carbonaceous chondrite and analyzed for organic content. 

 

 Meteorite Characterization 

 

Once the meteorite has been recovered one question (though really many questions) remains: what do we do with 

them? As I said in Chapter I, because of Covid-19, the scope of my PhD project was expanded to include the 

analysis of the meteorites we recovered. Although much of the curation and sample processing for the two 

meteorites included in my thesis (Dingle Dell (L/LL5) and Murrili (H5)) was done prior to my arrival, the 

characterization of these two rocks was completed by me. Since Murrili fell and was recovered before Dingle Dell, 

it was the primary focus of analysis, and hence was fully published and included in my thesis. The characterization 

of Dingle Dell, however, was completed but still in the review stage, and therefore not eligible to be included in 

my thesis. My work did however also include the sample processing and classification of new meteorites that were 

recovered since I arrived (Arpu Kuilpu (H5), Madura Cave (L5)).  

 

Much of the work I did interpreting the results for Murrili (H5) and Dingle Dell (L/LL5) does not make for an 

exciting methodological explanation, since most of it included simply reading published literature for other similar 

orbital meteorite characterizations, and comparing our results to theirs. I will however overview the new tool I 

developed to help expedite this process, as well as the sample handling pipeline. The first step when we received 

a new meteorite, began by imaging (with a digital camera) the exterior of the meteorite to document its fusion 

crust (completed by Wesley Lamont (Curtin HIVE), and Gregor MacGregor (Curtin School of Design and the 

Built Environment)). This would produce a 3D, exterior model of the meteorite (Madura Cave (L5)).  

 

Next, our collaborator, Belinda Godel at CSIRO in Kensington, WA, would map the interior of the meteorite using 

X-ray Computed Tomography (CT). This data product would inform us of the general type of the meteorite, as we 

could differentiate between high (metal), medium (chromite, troilite), and low density (silicate) areas in the 

meteorite. If the whole meteorite was small enough (~5 cm on its longest dimension) we could make use of the 

micro-CT scanner, yielding a voxel (3D pixel) size of ~15 microns3 / voxel. If the meteorite was larger than this 

however, we would use the medical CT (~200 microns3 / voxel, at CSIRO) for the main mass, and send a ~50 g 

consolidated mass (separated from the main mass) to our collaborator, Jon Freidrich at Fordham University and 

The American Museum of Natural History (AMNH), for fine resolution CT scanning (~10 microns3 / voxel). Fine 

resolution CT scans, either of the main mass or a smaller piece would allow Jon Friedrich to calculate the porosity, 

bulk and grain density (given the mass), as well as the metal grain foliation of the sample (if it were an ordinary 

chondrite), which could help constrain its shock history.  

 

After the initial CT scan at CSIRO, I broke the meteorite open/into small chips in one of two ways, either using a 

hammer and a Cr-V chisel, or a hand-turned wedge press. We avoided using a saw to prevent contamination from 

both the blade and the lubricant (usually water) which would contact all of the cut surface and likely soak further 

into the rest of the meteorite. Breaking the meteorite, although a less precise approach, benefited from only having 

a single point of contact between the tool and the sample, greatly limiting the amount of contamination. We usually 

tried to remove a ~50 g wedge which could, though not in a preferential way, include fusion crust used for fine 

resolution CT imaging. Removing such a wedge usually created ~10 small chips (0.5~2 g each) of the meteorite. 
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I would embed 2 chips of the meteorite into 2 thick-section epoxy mounts, which I then polished and coated with  

aerosolized carbon. These thick-sections were then imaged for us using the Scanning Electron Microscope (SEM) 

at the John de Laeter Centre (JdLC) at 3 micron2 / pixel, giving us a relative element map (values reported between 

0-255, not calibrated, absolute counts). Analyzing these results was really annoying and tedious, consisting of 

manually importing the relevant element maps (Fe, Cr, S, Mg, Al, and Si; Ni map shown in Figure 4) into GIMP 

(GNU Image Manipulation Program), converting each of the binary images into RGB, overlaying them 

sequentially, adjusting some of the colors, then using the color select tool to count the number of pixels based on 

each color/mineral represented (7 total). This was repeated for a total of three times, for each thick section. I was 

able to automate this process, such that one keystroke would do all of this. 

 

 

 
 

Figure 4. An SEM map displaying the Ni concentrations throughout the sample (3 µm/pixel). Faint Ni signal 

indicates Kamacite (5-10 wt% Ni), while brighter pixels indicate Taenite (~40 wt% Ni; enlarged subsection).  

 

Using python (see Appendix for code), I imported the element maps and overlaid the S, Fe, and Cr maps together, 

with each color channel representing a different element (Red-S, Green-Iron, Blue-Cr); we called this the opaque 

map, since the minerals identifiable here (Figure 5) are opaque (Teanite-Kamacite, Troilite, Chromite). In the 

opaque map, the python script also makes adjustments based on the Cr and Fe content. In pixels where the Cr 

channel is higher than 200, the color of the pixel is changed to pink (230, 30, 145) to more easily identify the 

chromite. For Fe, if the value is below 200 and S is below 20, the Fe channel (Green) is changed to zero, for each 

pixel. This first threshold makes the olivine and pyroxene more consistent, and allows troilite to appear as orange 

(red + green). If Fe is higher than 200, the color of the whole pixel is changed to grey (100, 100, 100), to represent 

Fe-Ni metal. Separate from the opaque map, the script also overlays the Ca, Si and Mg images to form the silicate 

map (Figure 5), in which no colors or channels are adjusted. Adding the silicate and opaque map together yields 

the combined mineral map, in which the major minerals are easily distinguishable (Figure 6). 

 

To train the neural network in the script, I loaded the mineral map into Image J and used the rectangle tool to select 

areas within the image that contained one mineral. The pixels within these areas formed the training set on which 
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the model was trained, effectively being loaded as (3x1 array ‘images’), into 1 of 8 categories (Chromite, high-Ca 

Pyroxene, low-Ca Pyroxene, Olivine, Plagioclase, Troilite, Phosphate minerals, and Fe-Ni metal). The model 

architecture is fairly simple and small, consisting of x6 Dense layers (10 neurons each, ReLu activation function) 

followed by a final Dense layer with 8 neurons and a softmax activation function. The model then predicts on each 

pixel and returns a 8x1 array containing the confidence values (between 0 and 1), or the likelihood, that the pixel 

in question belongs to each of the 8 categories (minerals) that I defined. Usually this worked out such that the 

highest value in this returned array was >0.9, while the other values were below 0.001, which made mineral 

determination easy. Unfortunately, some pixels return confidence values with no clearly defined answer, where 

the maximum value is ~0.3, with a median and average near 0.2. For these hard-to-determine cases, I suspect that 

the SEM resolution was not high enough to prevent two minerals from occasionally appearing in the same pixel, 

causing an unusual, in-between color. These pixels are instead counted as unknowns, usually accounting for ~1-

2% of the modal mineralogy for a thick section.  

 

 

Figure 5. A flow chart illustrating how the automated python script constructs the various mineral maps from 

SEM-generated element maps. The S, Cr, Si, Ca, and Mg maps are converted to the colors shown, without any 

alteration to the values within the image. The Fe map is thresholded to Green, Grey, or zero depending on the 

value to more clearly represent Fe-Ni metal, FeS, and silicates. 
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I tested this script by performing both the 

manual and automated analyses for the new (at 

the time) meteorites Arpu Kuilpu (H5) and 

Madura Cave (L5), and comparing the results. 

The automated modal mineralogical analysis 

fell within the error established by using the 

manual method, validating this approach. 

After I determined the modal mineralogy using 

the SEM and the python tool, I took the thick-

sections to the Centre for Microscopy 

Characterization and Analysis (CMCA) at the 

University of Western Australia, and with the 

help of Malcom Roberts, determined mineral 

chemistry via Electron Probe Microanalysis 

(EPMA). The best way we accomplished this 

was for me to navigate around the sample 

using the joystick, knob, and buttons controls 

of the EPMA machine while looking at the 

SEM mineral map on my nearby laptop. This 

allowed me to more clearly identify which 

mineral my selection point was focused on, 

since the EPMA only showed a greyscale 

Backscatter Electron (BSE) image. Although I 

selected all of the xy-coordinates to measure 

on each thin section, Malcolm Roberts 

calibrated the raw data to measured standards. 

I used the calibrated data to calculate mineral 

chemistry, and thus petrologic type, by 

comparing the average mol% of Ca in low-Ca 

pyroxene to published values (Scott et al., 

1986). By this point in the meteorite analysis, 

I had sufficient information to officially 

classify the meteorite with the Meteoritical 

Bulletin. 

 

Once we knew what type of meteorite we had 

on our hands, we could allocate and send 

samples to the rest of our collaborators, since 

some analyses are unnecessary or 

interpretations altered, depending on the 

meteorite type. I should also mention that  

 

Figure 6. The final mineral map of Arpu Kuilpu (H6) (DFN 06). Although some altered chondrules can be 

identified, the texture is indicative of an equilibrated ordinary chondrite.  
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besides packaging and shipping the samples, I took no part in the lab work to produce and process the raw data 

for each measurement, besides those listed above (SEM/EPMA). Most of our collaborators ask for <500 mg of 

fusion-free meteorite to make their destructive measurements, so as an added margin we typically send between 

0.5-1 g chips to each collaborating institution, all of which are listed in Table 1. The exception to this is the ~50 g 

secondary mass (mentioned earlier). This chunk of space rock was usually sent first to Matthias Laubenstein at the 

Italian National Institute for Nuclear Physics, who measured for and calculated the terrestrial age of the meteorite 

using short-lived radionuclides. The second analytical visit the secondary mass made was to Robert Macke at the 

Vatican Observatory who used laser-scanning and ideal gas pycnometry to measure bulk and grain density, and 

porosity.  

 

Table 1. This table lists all of the collaborators, their institutions, the analyses they perform, and the sample type 

they require, with which I collaborated during the meteorite analysis portion of my thesis. 

Collaborators Institution Analysis Sample Type 

Belinda Godel, 

Lionel Esteban 

CSIRO - Kensington CT Whole rock or Consolidated Piece 

Fred Jourdan, 

Celia Mayers 

JdLC Ar-Ar Chronology Individual silicate grains 

The TIMA Team JdLC SEM Thick Section 

Malcom Roberts University of Western 

Australia 

EPMA Thick Section 

Kees Welten, 

Marc Caffee 

University of California – 

Berkeley & Purdue 

University 

Cosmogenic 

Radionuclides 

Total of 0.5 g (pieces) 

Henner Busemann, 

Maden Colin, 

Matthias Meier 

ETH Zurich Noble Gases Total of 0.5 g (pieces) 

Robert Macke Vatican Observatory Helium 

Pycnometry 

Main Mass, or consolidated piece above 

50 g 

Jon Friedrich Fordham University Bulk Chemistry Total of 500 mg (pieces) 

Jon Friedrich American Museum of 

Natural History 

CT Main Mass, or consolidated piece above 

50 g 

Qing-Zhu Yin, 

Matthew Sanborn 

University of California – 

Davis 

Cr Isotopes Total of 0.5 g (pieces) 

Richard Greenwood,  

Ian Franchi 

The Open University O Isotopes Total of 0.5 g (pieces) 

Karen Ziegler University of New Mexico O Isotopes Total of 0.5 g (pieces) 

Jason Dworkin, 

Hannah McLain 

NASA – Goddard Space 

Flight Center 

Organic and Amino 

Acid Content 

Total of 0.5 g (pieces), 

Adjacent soil sample  

Matthias Laubenstein The Italian National Institute 

for Nuclear Physics  

Short Lived 

Radionuclides 

Main Mass, or consolidated piece above 

50 g 

Anthony Jull University of Arizona Terrestrial Age Total of 0.5 g (pieces) 
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The final visit of the secondary mass was to Jon Friedrich at Fordham University/AMNH, who took a CT scan of 

the meteorite at fine resolution, if the whole meteorite was too large for the micro-CT machine at CSIRO. 

 

Some analyses are able to be performed rather quickly, while others can take 6 months or more, but once they had 

each been completed for a particular meteorite I would start to assemble the manuscript. Since there were so many 

methods performed upon each unsuspecting piece of space debris, I condensed each methodological description 

for the main text of the manuscript, but spared no detail in the supplementary materials to sate the hardcore 

meteoriticists. I then read an array of published materials on geochemical properties of other ordinary chondrites, 

as well as literature regarding the dynamical evolution of meteoroids and collisional families within the asteroid 

belt. From these texts I made interpretations for the genetic, or geochemical origins of the meteorite at hand, and 

how its originating body dynamically evolved over time to deliver such a rock to Earth. The entire time I was 

characterizing these meteorites, I wondered: what can the meteorites be used for? What resources could they 

possess?  

 

The Silicate Sulfuric Acid Process 

 

My introduction to space resources began when I first met my later-to-be first research supervisor, Dr Phil Metzger. 

In our first conversation he told me about his most recent research project using heat to extract water from select 

meteorites and simulated lunar soil. He then proceeded to talk about permanently shadowed crater regions on the 

poles, but especially the southern pole of the Moon, and how they harbored water ice. At first, I was skeptical, so 

I looked it up later and it was totally true. Ever since, I feel as though nearly all of my professional efforts should 

be made toward using space resources to improve the human experience and the preservation of Earth.  

 

My first thoughts were rather crude: what temperatures were required to liberate various gasses from asteroidal, 

lunar or martian regolith? This was the perfect query for investigation via Thermogravimetric Analysis (TGA). A 

TGA experiment holds a powderized sample under vacuum, suspended from a weight balance to measure the mass 

of the sample as the apparatus is heated to high (>1000 ℃) temperatures. Electively, a gas characterizing 

instrument (mass or infrared spectrometer) can be connected in-line between the experiment chamber and the 

vacuum pump, to better record the sample’s gas release behavior as a function of temperature. I should also note 

that TGA and evolved gas analysis was the main focus of my summer internship at NASA Goddard Space Flight 

Center. During my literature review, I noticed that these experiments reported high (>1600 ℃) melting 

temperatures for the major minerals of possible space ores. So, I started thinking of possible options to reduce the 

temperature required for thermal decomposition, causing gas release.  

 

Like much of the work for this paper, I delved deep into the literature which reported using meteorites as the target 

for TGA and noticed that while most of these studies (Garenne et al., 2014; King et al., 2015; Gilmour et al., 2019) 

were concerned with the volatilization behavior of water, they also report the release of sulfur bearing gasses near 

950 ℃. I then began to think of possible uses for sulfur, inevitably leading me to sulfuric acid, which has shown 

an ability to dissolve silicate minerals (Van Herk et al., 1989; King et al., 2011; Lazaro et al., 2012) the major 

mineral group of the moon, mars and many asteroids (Heiken et al., 1991; Bland et al., 2004; Dunn et al., 2010; 

McSween et al., 2010; Nakamura et al., 2011). By using my basic understanding of chemistry accompanied by an 

expansive literature review (see Reference list in Chapter VI (Anderson et al., 2021b)), I theorized that the silicate 

minerals could be dissolved in an acid solution, then dried into metal sulfate compounds, which could be further 

heated until decomposing into metal oxides (at <1000 ℃). By careful prior separation, it is also possible to isolate 



   

 

32 

 

silica particles from the solution (Lazaro et al., 2012), whose uses are discussed later. From the metal oxides, iron 

oxide can be reduced to iron metal with the proper application of carbon monoxide at a modest temperature 

(<800 ℃), an already established industry process known as carbo-thermal reduction. These iron metal particles 

would serve as the perfect feedstock for laser-sintering 3D printing, an ideal process to be carried out on planetary 

surfaces and possibly micro-gravity. The silica particles, earlier separated from the ion-acid-aqueous solution, 

could be used to create fused silica, which is used to make spacecraft windows (Salem et al. 2013). 

 

Again, most of the conceptual invention of this process originated from reading copious amounts of published 

papers related to individual, incorporated aspects of the process. During the first round of review, the reviewers 

suggested/insisted that I calculate the Gibbs Free Energy for each reaction to show that it was thermodynamically 

favorable. For this portion I used my knowledge of physics, chemistry, algebra, differential equations, and 

thermodynamics, as well as my proficiency in python (see Appendix for code) to create a collection of scripts to 

calculate the Gibbs Free Energy and progression of the reaction for various temperatures and pressures. This also 

required tabulated values (enthalpy (H) and entropy (S)) for each compound I evaluated, which I mostly acquired 

from the National Institute of Standards and Technology (NIST). Some compounds (minerals mostly but not most 

minerals) were not well characterized so I had to source the values from individual studies and assumed no thermal 

variation. This decision-assumption duo could be risky and cause miscalculation, but we had no other option as 

no other data was available.  

 

Fortunately, most substances had data available through NIST, often beyond 1000 ℃, though they were presented 

in a compact form (Figure 7), which I had to unpack with calculations. As shown in Figure 7, I saved the table of 

polynomial coefficients for the given temperature ranges, as a .csv file for each compound. I used these files and 

a python script to calculate H and S for each compound at each temperature, saving G (as a function of temperature) 

to a separate .csv file. From here, calculating the Gibbs Free energy for a reaction at a particular temperature was 

easy by simply following the derivation below. Though this was only accurate for a pressure of 1 atm, I wanted to 

show that some of these reactions, particularly the thermal decomposition steps, would benefit from lower 

pressures of medium to hard vacuum (104 - 108 atm). Using this derivation, I calculated the pressure and 

temperature-dependent Gibbs Free Energy for each reaction at 1 atm, 10-4 atm, and 10-8 atm, across temperatures 

from 20 ℃ to 1400 ℃.  

 

Once I had calculated the Gibbs Free energy for each of these temperature-pressure scenarios, used the relation to 

the Equilibrium Constant (Keq) and its own definition to predict the progression of reaction, and therefore the 

concentrations of each reactant and product in each scenario. This last part about reactant/product concentration 

required some clever algebra and judicious use of Pascal’s triangle, in conjunction with a python-based polynomial 

solver, to evaluate completely. By plotting the value of ΔG and Keq for each constant pressure considered (1, 10-4, 

and 10-8 atm), it was easy to see ideal pressure-temperature conditions to force a reaction to proceed. 

 

The final numerical characterization I applied to the theoretical SSAP was an estimation of the products from a 

few different ores types. As stated in the paper, the main products of the SSAP are oxygen gas, Fe metal, and SiO2 

nano particulates, with other metal oxides (MgO, CaO, Al2O3) as secondary products. So I calculated the mass of 

each of these products produced if the SSAP was performed at 100% efficiency. 
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Figure 7. The data page for condensed phase thermochemistry available on the NIST website. Although it does 

not explicitly list entropy or enthalpy, I calculate them using the polynomial (Shomate Equation) and coefficients 

provided. Note that this data assumes atmospheric pressure. 

 

 

Gibbs Free Energy Derivation 

 

For example, take the reaction below: the thermal decomposition of iron(II) sulfate into iron(III) oxide, 

oxygen, and sulfur dioxide. 

 

2 FeSO4 (s) ↔ Fe2O3 (s) + 2 SO2 (g) + ½ O2 (g)  

 

We can define some terms and relation, such as the Gibbs Free Energy (G) for a substance (given tabulated 

values for Enthalpy (H) and Entropy (S), which are both temperature (T) dependent (dependence denoted by T 

subscript)). Note:   G2FeSO4 = 2 GFeSO4 

 

TG2FeSO4 = TH2FeSO4 - T TS2FeSO4 
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To calculate the change in Gibbs Free Energy for a reaction, to determine if the reaction is spontaneous across 

a range of temperatures, we use: 

 

ΔG = Gproducts - Greactants 

 

Applied to our situation: 

 

TΔG = (TGFe2O3 + TG2SO2 + TG½ O2 ) -  TG2FeSO4 

 

But oh no! This is only good for predicting our reaction at atmospheric pressure, while our process calls for 

vacuum in some scenarios. Not to worry, here’s some differential equations to the rescue. First we define Gibbs 

Free Energy and Enthalpy, combine the equations, then take the general derivative (where U is internal energy, 

P is pressure, V is volume): 

 

G = H - TS 

 

H = U + PV 

 

G = U + PV – TS  

 

∂G = ∂U + (P ∂V + V ∂P) - (T ∂S + S ∂T) 

 

Then we assume a quasi-static and reversible reaction (both of which are a bit of a stretch but the math is an 

estimation for reality anyways; Q is heat), such that: 

 

∂U = ∂Q - P∂V 

 

∂Q = T∂S 

 

Substituting into the ∂G equation:  

 

∂G = T∂S - P ∂V + (P ∂V + V ∂P) - (T ∂S + S ∂T) 

 

Simplifying into: 

 

∂G =  V ∂P - S ∂T 

 

 

Now we assume that for this particular instance we’re considering only one temperature and how the Gibbs 

Free Energy for the reaction changes when we keep T constant and vary P (don’t worry we can recalculate 

with a different T later on but 𝝏P is what we’re concerned about). This means ∂T = 0, and we can rewrite the 

above equation as: 
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(∂G

∂P
) ∂T=0 = V 

 

Note the 𝝏T = 0 subscript denotes the change in G with respect to P, at constant temperature. Now we can 

substitute/rearrange the ideal gas law (PV = nRT) into the above equation’s right hand side, then integrate both 

sides with respect to P: 

 

∫
∂G

∂P
∂P = ∫

𝑛𝑅𝑇

𝑃
∂𝑃

𝑃2

𝑃1

𝑃2

𝑃1

 

 

∫ ∂𝐺 = ∫
𝑛𝑅𝑇

𝑃
∂𝑃

𝑃2

𝑃1

𝑃2

𝑃1

 

 

Gp2 – Gp1 = nRT ln|
𝑃2

𝑃1
| 

 

We also know that P1 is 1 atm, meaning that Gp1 is just TG at 1 atm, so we can simplify this even further to: 

 

TPG = TG + nRT ln|P| 

 

 

This equation above is the pressure dependent Gibbs Free Energy (below, note the TP subscript). For legal 

reasons I must state that n is the number of moles of gas, R is the ideal gas constant (8.3145 J mol-1 K-1), P is 

pressure (atm), and ln is the natural logarithm. This equation is applied to each substance that is in a gaseous 

phase. So for the decomposition of iron(II) sulfate into iron(III) oxide, sulfur dioxide, and oxygen, this equation 

would only be applied to the last two products, since they are in the gaseous phase. 

 

 

But wait, there’s more! Ever wanted to get serious about calculating the concentrations of the products and 

reactants? Wait no more! By using the following two wonder-equations we can calculate a single number, the 

equilibrium constant: Keq, which is directly related to the [concentrations] of the reactants and products.  

 

TPΔG = -RT ln|Keq| 

 

Keq = 
[𝐶]𝑐[𝐷]𝑑

[𝐴]𝑎[𝐵]𝑏
 

 

Given the general reaction: 

 

a A + b B ↔ c C + d D 

 

So for our reaction: 

      

2 FeSO4 ↔ Fe2O3 + 2 SO2 + ½ O2 
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We can write our concentrations in terms of each other, for fun let’s write it in terms of FeSO4. Take a moment 

to wrap your head around this system of equations, recalling conservation of mass. 

 

1 - [FeSO4]  = [SO2] 

 

½ (1 - [FeSO4]) = [Fe2O3] 

 

¼ (1 - [FeSO4]) = [O2] 

 

And for more fun we can rewrite… 

 

[FeSO4] = a 

 

We can then substitute the above relations into the Keq-Concentration Equation 

 

Keq = (½
(1−𝑎))

1
(1−𝑎)2(¼(1−𝑎))

1 2⁄

𝑎2
 

 

And rewrite things a couple times… 

 

4 a2 Keq   = (1 - a)7/2 

 

16 a4 K2
eq = (1 - a)7 

 

Then use Pascal’s triangle to expand the right side of the equation above and ones like it, as this arithmetic was 

completed for each reaction.  

 

 

16 a4 K2
eq = 1 - 7a + 21a2 - 35a3 + 35a4 - 21a5 + 7a6  - a7 

  

Re-written as: 

  

0 = 1 - 7 a + 21 a2 - 35 a3 + (35 - 16 K2
eq) a4 - 21 a5 + 7 a6 - a7   

 

This is a fabulous equation, because we can enter the coefficients (1, -7, 21,…) into a polynomial solver (I used 

numpy.roots() in python) to calculate the possible values of ‘a’ that make this equation equal to zero.  What this 

meant in practice is that for each reaction I would use the calculated values of ΔG at various pressures (10, 1, 

10-4, and 10-8 atm; totaling 4 arrays) to calculate the Keq for each constant pressure across the temperature 

range made available by the data. For an example, imagine that a temperature and a pressure combine for our 

beloved example reaction (FeSO4 decomposition), such that Keq = 1. Plugging this in gives us (roots = np.roots((-

1, 7, -21, 19, -35, 21, -7, 1))): 
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array([ -0.51446146+1.33414631j, -0.51446146-1.33414631j, 

           0.65650296+1.18949791j,  0.65650296-1.18949791j, 

           0.2177188  +0.29589001j,  0.2177188  -0.29589001j, 

           0.2804794  +0.j        ]) 

 

 

 

For this example, our solution, the correct value of a, and therefore the concentration of FeSO4, is the final 

element in the above array (0.2804794+0.j) as it is the only option with no imaginary component and is within 

the range from 0 to 1. By substituting the value of our concentration (0.2804794) into the relations above, we 

can calculate the concentrations of the other compounds in the reaction. By repeating the calculations for our 

predetermined Pressure-Temperature conditions (from 20 ℃ to 1400 ℃, or maximum temperature for which 

data was available; 10, 1, 10-4, and 10-8 atm discreet pressures), we can calculate, TPΔG and Keq,.  

 

As seen in above plot of our beloved reaction, it becomes spontaneous (TPΔG = 0) near 700 ℃ (1000 K) 

depending on the pressure.  
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In the plot above I’ve taken the Keq values at 1 and 10-8 bar (left and right, respectively), calculated the 

concentrations of all the reactants and products in terms of relative abundance, and plotted them as a function 

temperature (recall the system of equations with all concentrations in terms of FeSO4). Note the lower 

temperature required for low-pressure decomposition. I repeated all of these steps for each reaction step listed 

in Anderson et al. 2021a 

 

 

Yields Derivation 

 

The final bit of math I did for this chapter was the calculations of the mass of the final products from the SSAP. 

For each ore (H, L, LL, CI, CM,-like asteroids, lunar highlands, lunar mare, and a Martian global average), I 

retrieved data from the literature (see Chapter IV references), specifically the abundances of various minerals 

in the ores and their mineral chemistries so that I could calculate the total number of mols of each end member 

on the reactant side, given 1 ton of the silicate-only ore. For an example I’ve shown the possible yield from just 

the Fayalite (Fe2SiO4; Olivine) in H chondrites. We start by normalizing each silicate mineral abundance to 

the total silicate abundance: 

 

 

 

𝑤𝑡%𝑜𝑙𝑖𝑣𝑖𝑛𝑒𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑤𝑡%𝑜𝑙𝑖𝑣𝑖𝑛𝑒

𝑤𝑡%𝑜𝑙𝑖𝑣𝑖𝑛𝑒 +𝑤𝑡%𝑝𝑦𝑟𝑜𝑥𝑒𝑛𝑒 +𝑤𝑡%𝑝𝑙𝑎𝑔𝑖𝑜𝑐𝑙𝑎𝑠𝑒
 

 

molivine = (1000 kg) * wt%olivine normalized 

 

nmols Fa = molivine * mol%Fa weighted 

 

 

 

For instance, H chondrites have an average Olivine abundance of 32.86 wt%, which has an average Fayalite 

(Fe2SiO4) composition of 18.47 mol% (74.26 wt% total silicates). We can use this and the molar mass (amu 

subscript) of Fayalite and Forsterite (Mg2SiO4) to calculate the weighted mol percent, and therefore the 

number of mols of Fayalite: 

 

 

𝑚𝑜𝑙%𝐹𝑎𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =
𝐹𝑎𝑚𝑜𝑙%

𝐹𝑎𝑚𝑜𝑙%𝐹𝑎𝑎𝑚𝑢 + 𝐹𝑜𝑚𝑜𝑙%𝐹𝑜𝑎𝑚𝑢
 

 

nmols Fa = 536.67 

 

   

Using the series of reactions laid out in Anderson et al. (2021b), I articulated the total number of mols of each 

product (Fe-metal, O2, etc.) and finally calculated the final mass. 

 

Fe2SiO4 + 2 H2SO4 ↔ 2 FeSO4 + 2 H2O + SiO2 
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2 FeSO4 ↔ Fe2O3 + 2 SO2 + ½ O2 

 

Fe2O3 + 3 CO ↔ 2 Fe + 3 CO2 

 

3 CO2 ↔ 3 CO + 
3

2
 O2 

 

Knowing that H2O, SO2 and CO are reused in this process, we can see that for every mol of Fayalite, 2 mols 

each of Fe metal and O2, as well as 1 mol of SiO2 are created. This means that for an H chondrite, the 

Fayalite (536 mols) could produce 1072 mols each of Fe metal and O2, and 536 mols of SiO2. Using this 

information and the relation between molecular mass and total mass, calculating the mass of each product 

was trivial: 

 

mproduct = molsproduct * mmolecular 

 

mFe = (1072 mols) * (0.055845 kg/mol) 

 

 

Calculations like these were repeated for every ore, with every mineral end member. The total products for an 

ore were then summed together and presented in Table 3 of Anderson et al. (2021b). 
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Abstract 

  

We present a novel methodology for recovering meteorite falls observed and constrained by fireball 

networks, using drones and machine learning algorithms. This approach uses images of the local terrain 

for a given fall site to train an artificial neural network, designed to detect meteorite candidates. We have 

field tested our methodology to show a meteorite detection rate between 75-97%, while also providing 

an efficient mechanism to eliminate false-positives. Our tests at a number of locations within Western 

Australia also showcase the ability for this training scheme to generalize a model to learn localized terrain 

features. Our model-training approach was also able to correctly identify 3 meteorites in their native fall 

sites, that were found using traditional searching techniques. Our methodology will be used to recover 

meteorite falls in a wide range of locations within globe-spanning fireball networks. 

 

 

INTRODUCTION 

 

Fireballs and meteors have been observed since antiquity by Chinese, Korean, Babylonian and Roman 

astronomers (Bjorkman 1973), while meteorites and their unique metallurgical properties have also been 

known and used by various cultures around the world from Inuit tools (Rickard 1941) to Egyptian 

ceremonial daggers (Comelli et al. 2016), their connection to each other and to asteroids as source bodies 

was not proposed until the 19th century, with the fall of the l’Aigle meteorite (Biot 1803, Gounelle, 2006). 

Since this link was established, meteorites have, and continue to offer unique insights into the history of 

the solar system, as well as the contemporary characteristics, both physical and chemical, of asteroids, 

the Moon and Mars. Unfortunately, the overwhelming majority of these ~60,000 samples have no spatial 

context since their falls were not observed, leaving their prior orbits uncharacterized. Less than 0.1 % of 

meteorites in the global collection were observed well enough during their atmospheric entry to properly 

constrain their orbits (Meier 2017; Borovička et al. 2015; Jenniskens et al. 2020). This ultra-rare subset 

of meteorites afford some of the most valuable information pertaining to extra-terrestrial geology, since 

their physical and geochemical properties, along with their orbital histories can be combined to 



   

 

   

 

characterize the nature of asteroid families, and therefore possible parent bodies, that inhabit the same 

orbital space. 

 

The best methodology for recovering meteorites with corresponding orbits, utilizes fireball camera 

networks, which use automated all sky camera stations in an overlapping arrangement such that a 

potential fireball can be imaged by two or more stations. From these observations, scientists can 

triangulate an atmospheric trajectory, from which a pre-entry orbit and a fall area can also be calculated. 

The first success of such a system was demonstrated in Czechoslovakia in 1959, with the Pribram 

meteorite fall (Ceplecha 1961). This event spurred the establishment of the Czech fireball network 

(Spurný et al. 2006), along with multiple networks across the globe (McCorsky and Boeschenstein, 1965; 

Halliday et al. 1996; Oberst et al. 1998; Bland 2004; Brown et al. 2010; Colas et al. 2014; Gardiol et al. 

2016; Devillepoix et al. 2020). 

 

 

The Desert Fireball Network 

 

An ideal location for one of these networks was determined to be the Nullarbor region in Western and 

South Australia, due to its low humidity, sparse vegetation and typically clear skies (Bevan and Binns, 

1989), thus the Desert Fireball Network (DFN) was born (Bland et al. 2012). Since its inception, the 

DFN has been responsible for the recovery of four confirmed meteorite falls: Bunburra Rockhole, Mason 

Gully, Murrili, and Dingle Dell (Spurný et al. 2012; Towner et al. 2011; Bland et al. 2016; Devillepoix 

et al. 2018), all of which have well constrained orbits. To date, the network covers approximately 30% 

of the land mass of Australia, with more than 50 camera stations (Howie et al. 2017). On average it 

observes 300 fireballs per year, typically 5 of which result in a meteorite fall. 

 

For every fireball event observed by multiple camera stations, the bright flight trajectory is triangulated. 

If a terminal mass (meteorite fall) is predicted, we incorporate wind models into Monte Carlo simulations 

in order to estimate the likely fall area (Sansom et al. 2015; Howie et al. 2017; Jansen-Sturgeon et al. 

2019). Since the fireball appears only as a streak of light, crucial attributes pertaining to the object such 

as size, mass and shape, are all co-dependent variables. This means that the predicted fall location results 

in a line, along which all of these parameters vary (Sansom et al. 2019). Inherent uncertainties and gaps 

in reported wind conditions at altitudes all along the flight, lead to a variation of ~250 m on either side 

of this fall line. Each predicted fall zone is entirely dependent on the conditions of the fireball, though 

typical events can result in a fall zone 2-4 km2 in area. The decision to search for a particular meteorite 

is dependent on many factors, from the geometry and confidence of the trajectory triangulation, to local 

terrain features and geographic accessibility. Once the team has determined the fidelity of the 

triangulation and conditions of the fall area itself, a searching trip is commissioned to look for the fallen 

meteorite. 

 

 

Meteorite Recovery 

 

Traditional methods for meteorite recovery include two main strategies, petal searching and line 

searching. Petal searching involves sending individuals out from a central point, walking alone or in 

small groups in a loop, typically a few km long, looking for and collecting meteorites along the way. This 

method generally covers a larger area but comes with a higher risk of missing meteorites in the area 

covered. Since this method is usually implemented in strewn fields or in areas with older surface ages 



   

 

   

 

and higher meteorite density, such as the Nullarbor (Bevan 2006), where the objective is to recover older 

meteorite finds, missing some meteorites is less detrimental. 

 

Alternatively, line searching is more useful when trying to recover a meteorite fall with a well constrained 

fall line, like those observed through a fireball network. The DFN implements this strategy by assembling 

searchers in a line, spaced 5-10 m apart, then sweeping the area ~250 m on either side of the fall line on 

foot. This approach is usually able to cover 1-2 km2 for each trip, assuming 6 people search 8 hours per 

day, for 10 days. The Antarctic Search for Meteorites (ANSMET) uses a similar method, only they are 

not restricted by a fall line, and instead cover the area with greater spacing while mounted on 

snowmobiles (Eppler 2011). The benefit of the line method is higher fidelity on the area covered, due to 

overlapping fields of view by the searchers, although generally, less area is covered with this method. 

 

When considering both the number of meteorites found by the DFN, and the number of searching trips 

it has commissioned (4 and ~20 respectively), the success rate remains at ~20%. This relatively low rate 

combined with the cost (~20,000 AUD) of sending six people on trips for two weeks at a time necessitates 

an improvement in the meteorite recovery rate, particularly due to the establishment and expansion of 

the Global Fireball Observatory (Devillepoix et al. 2019). 

 

Previous Drone-Meteorite Recovery Methods 

 

The gargantuan strides that have been made in the last 10 years in the manufacture of high resolution 

DSLR cameras and commercial drones capable of carrying them, have opened the possibility of using 

both to aid in the recovery of meteorites. Previous attempts have been met with mixed to promising 

results. Moorhouse (2014) in his honors thesis, explored the possibility of using a hyper-spectral camera 

mounted to a drone to look for the possibly unique spectral signature of meteorites. This approach is 

unfeasible in our framework since the best hyper-spectral cameras are prohibitively expensive (>100,000 

AUD), and more importantly, would limit our area coverage rate to little more than 0.1 km2 per day, due 

to low spatial resolution in the camera. Further complications arise from the fact that Moorhouse used a 

spectral library of meteorite interiors, rather than meteoritic fusion crust, which is what would appear on 

the surface of fresh meteorite falls. Although meteorite fusion crusts could have a unique spectra 

compared to typical terrestrial environments, this is not explored in his work. Su (2017) focused on the 

feasibility of using magnetic sensors suspended from a drone, but this method would preclude us from 

finding non-magnetic meteorites, and also limited our area coverage to less than 0.1 km2 per day. This 

approach would also be the most susceptible to obstacles on the ground and changes in local elevation, 

since they prescribe flying at a 2 m altitude. 

 

Citron et al. (2017) relied on an RGB camera to survey an area, and used a machine learning algorithm 

to identify likely meteorites in the images. Their tests resulted in a meteorite detection rate of 50% and 

encountered a false positive rate of ~4 per 100 m2. These results are very promising and seem to be 

limited mainly by the performance of the drone and camera hardware. The other limitation is false 

positives, and more importantly, how to separate them from from promising meteorite candidates. This 

is a crucial detail when considering that a typical fall line (>2 km2), analyzed with their model, could 

have over 100,000 detections, all of which must be examined by a human in one way or another.  

 

The work of Zender et al. (2018) also employed an RGB camera to image meteorites in native 

backgrounds. They showed the unique reflectance signature of meteorites in each color channel and 



   

 

   

 

created an algorithm to detect these signatures. This approach was able to detect half of their test-

meteorites, though it did suffer from a high rate of false positives. 

 

AlOwais et al. (2019) also used an RGB camera, while additionally investigating the utility of a thermal 

imaging system. They also train a number of neural networks to detect meteorites within images. One of 

their chief priorities was to create such an image processing system that would fit on-board their 

surveying drone. With this in mind, they elected to use transfer learning (Pan and Yang 2009) from a 

handful of smaller pre-trained neural networks, to detect meteorites. Their training resulted in a high 

model accuracy using images taken from the internet, as well as photo-shopping cropped meteorite-

images onto terrain backgrounds. These results are promising and await validation in the form of field 

tests. 

 

Our previous work on drone-meteorite recovery is described in Anderson et al. (2019). In this previous 

iteration, we trained a machine learning model on a synthetic dataset. We created it by taking survey 

images from a drone, splitting them into tiles, then overlaying the tiles with cropped meteorite images. 

Although training on these tiles yielded a high training accuracy, it was unable to consistently identify 

real test-meteorites placed on the ground, mostly likely because the training data lacked the native 

lighting conditions and shadows seen in the real test-meteorite images.  

 

Here, we report on updated methods to achieve a practical system for recovering meteorites using drones 

and machine learning. Such a system must fulfill the following 6 requirements to be effective: 

1) Survey at least 1 km2/day, 

2) Meteorite recovery chance (success rate) greater than 50% 

3) Portable to different terrains/locations 

4) Deployable by 3 people or less (1 vehicle) 

5) Total cost <40,000 AUD (2 traditional searching trips) 

6) Data processing rate equal to data surveying rate (including model prediction, and false-positive 

sorting) 

 

 

METHODS 

 

Drone and Camera Hardware 

 

In recent years, the number of options for consumer and commercial drones has grown dramatically, with 

many options including fixed-wing, multi-copter, vertical takeoff/landing, and even blimps. The designs 

with the most flight-proven heritage, at our price range, are fixed-wing and multi-copters. Our previous 

experience has shown that fixed wing models produce too much image blur and are unable to achieve a 

meaningful image resolution due to lower limits on most models’ cruising altitude. Given these 

constraints we chose a DJI M600 drone to perform full scale tests as well as surveys of our fall sites. This 

drone was able to carry our camera and gimbal payload with mass to spare for possible later upgrades. It 

was also able to perform pre-planned survey flights, with meter-scale GPS precision, for more than 15 

min at a time.  

 

We also decided to use an RGB camera, since these systems are both scalable and widespread, as opposed 

to thermal or hyper-spectral cameras that are more expensive, specialized and are only capable of smaller 

spatial resolutions. We specifically chose a Sony A7R Mk. 3 (42 MPixel), with a 35 mm Lens, set to take 

images with a 1/4000 sec exposure, at f/4.5, and an ISO of 320. The total cost of the camera, drone, 



   

 

   

 

batteries, and accessories was 30,000 AUD, well below the 40,000 AUD limit we self-imposed in Criteria 

(5). 

 

We used the DJI GO 4 app to control the drone manually during training data collection flights, while 

the survey flights were planned and executed using the DJI GS Pro app. With this equipment, we 

conducted tests at varying altitudes and determined that an image resolution of 1.8 mm/pixel (15 m 

altitude) would be sufficient to detect most of our typical meteorite falls (0.3 kg – 4 kg). This would 

allow meteorites to appear in the image between a size of 18 and 60 pixels in diameter. Using this fixed 

resolution value, we found that this system could survey approximately 1.3 km2/day, when we flew nearly 

continuously for 7 hrs per day, easily fulfilling Criteria (1). Although we had 12 hours of daylight at the 

time of our full scale test, we found that surveying less than 2.5 hours after sunrise or before sunset 

produced long shadows that resulted in an unacceptably high rate of false positives.  

 

 

Machine Learning Software 

 

Since a meteorite would appear to be small (18-60 pixels) relative to the total size of the image (42 

MPixel), we decided to split each image into 125x125 pixel-tiles with a stride of 70. This allowed a 

meteorite to fully appear in at least one tile, to maximize the chance of detection and minimize false 

positives. These tiles were then fed to a binary image classifier, a type of deep convolutional neural 

network, to separate uninteresting terrain (0) from meteorite suspects (1). We considered any prediction 

over 0.9 confidence to be a detection, or a possible meteorite.  

 

We implemented our neural network by constructing a model in python using tensorflow (Abadi et al. 

2015) and keras (Chollet 2015), the architecture of which is shown in Table 1. Although a sufficiently 

deep architecture is important when training a neural network, the training data itself is the most 

important factor, especially in our case where we trained the model from randomized initial weights 

(from scratch), rather than using a pre-trained network. This means that for a given fall site we needed 

numerous, diverse examples of both True (meteorite) and False (non-meteorite) tiles. The False tiles were 

relatively easy to assemble. We simply took a survey of an area without any meteorites,  and made all of 

the images into False tiles. 

 

The True tiles required a bit more effort. Since all the meteorites we would be searching for would have 

fallen within the last 10 years, they would all have intact, dark fusion crusts covering their surface. Fresh 

meteorites such as these also tend to be minimally altered, making them more analytically valuable to 

the meteorite community. This consideration limited the number of real meteorites that were available to 

us to use in data sets. To artificially bolster the number of True tiles we could generate, we also used 

stones with desert varnish surfaces, a dark, slightly shiny exterior that develops on some rocks in hot 

deserts (Engel and Sharp 1958), as ‘synthetic’ meteorites. At each site we also found stones that had a 

plausible meteoritic shape (non-jagged and without a noticeable elongated axis) and painted them black. 

Using this combination of fusion-crusted meteorites, desert varnish stones and painted stones, we always 

had enough samples to make a substantial number of True tiles.  

 

Our procedure for making these tiles is illustrated in Figure 1. Step 1 consisted of laying out the stones 

in a line at the fall site, spaced more than 1 m apart, and then imaging them with the drone. This line 

could be either in the fall zone, or just outside of it, in order to train the model on similar backgounds. 

We gave a 1 m separation to ensure that two stones would not appear in the same tile, when we augmented 



   

 

   

 

the data later on. We found the best way to accomplish this stone-imaging was for one person to walk ~3 

m parallel to the line of black stones, and point to each one, while another person manually flew the 

drone at the prescribed survey altitude, following the first person. Physically pointing out each individual 

stone allowed us to annotate each stone only once, avoiding a possible double appearance of a particular 

stone in both the training and validation sets. For Step 2, we drew a tight bounding box around each stone 

and recorded the box’s height, width and position in the image. These annotations were completed using 

ImageJ (Schneider et al. 2012). We typically laid out ~100 stones at a time; 15% of these stones and their 

resultant tiles are set aside for validation, not used in training. This ensured that the validation set only 

consisted of stones that the model had never seen, as opposed to unseen permutations of stones that the 

model was already familiar with. 

 

Table 1. Meteorite-Detecting Neural Network Architecture 
 

Layer type Filters (conv.) / 

neurons   (dense) 

Kernel size Stride size Activation function 

Convolutional 2D 30 3 1 Rectified Linear Unit 

Batch Normalization     

Max Pooling  2 2  

Convolutional 2D 60 3 1 Rectified Linear Unit 

Batch Normalization     

Max Pooling  2 2  

Convolutional 2D 120 2 2 Rectified Linear Unit 

Batch Normalization     

Max Pooling  2 1  

Convolutional 2D 240 3 1 Rectified Linear Unit 

Batch Normalization     

Max Pooling  2 1  

Flatten     

Dense 100   Rectified Linear Unit 

Dropout 30 %    

Dense 50   Rectified Linear Unit 

Dense 25   Rectified Linear Unit 

Dense 5   Rectified Linear Unit 

Dropout 30%    

Dense 5   Rectified Linear Unit 

Dense 1   Sigmoid 

 

 

 



   

 

   

 

At Step 3, we took each annotation, in both the training and validation sets, and strode by 15 pixels in 

both axes over each meteorite, creating a new tile at each stride, while keeping the stone fully in the tile 

frame. Each of those tiles was then rotated in intervals of 90 degrees and saved for each permutation. 

These strides and rotations force each rock to appear in nearly every position of a tile, without any 

preference in local directionality, i.e. shadows and windblown vegetation. We repeat this data-collection 

process at different times of the day, at different sections of the fall line, to include as much variety as 

possible. Details like these are crucial when making a widely generalized training set. This process ideally 

generates ~50,000 True tiles for the training set. To assemble the False tiles, we flew the drone 350 m, 

parallel to the fall line, taking images all along the way. By splitting the images into tiles, we generated 

~2,500,000 False samples.  The process of laying out stones, imaging everything, and making the 

annotations typically took an hour. 

 

 
 

Fig. 1. Our workflow for obtaining meteorite training data. Step 1 consists of laying out the stones on the 

ground >1 m apart, and imaging them at a 1.8 mm/pixel resolution. Step 2 shows how we record the 

position, height and width of each rock in the full-sized image, by drawing a bounding box. Step 3 is 

where we generate the tiles to be used for training and validation.  

 

Since dramatically unbalanced datasets can negatively affect training (Miroslav and Matwin 1997), we 

could only train with as many False tiles as we had True tiles, to keep a 1:1 ratio. A simplified example 

of unbalanced datasets is a training set containing 1 True and 99 False samples. Mathematically speaking, 

the shortest path to the model achieving a high accuracy would be for it to label everything false, resulting 

in an accuracy of 99%. Obviously, this kind of solution is useless, which is why we must maintain a ratio 

as close to 1:1 as possible. We did this by randomly selecting 50,000 False tiles from the pool of 2.5 

million, and combining them with the 50,000 True tiles, to form the whole training set. We also included 

~8,000 False tiles from the 2.5 million into the validation set, ensuring they did not also appear in the 

training set. 

 



   

 

   

 

We trained on our dataset for 150 epochs (rounds of training), using a batch size of 250, with 400 steps 

per epoch, which ensured that each tile is seen by the model once per epoch. The validation set was 

evaluated at the end of each epoch, also using a batch size of 250 with 64 steps. For smaller datasets, we 

adjusted our batch size and steps per epoch such that the product of these two values equaled the size of 

the training set. 

 

Once the model completed training, we judged its utility based on its meteorite detection chance, and 

rate of false positives. The meteorite detection chance was determined by predicting on each of the True 

tiles in the validation set, and dividing the number predictions over 0.9 confidence by the total number 

of tiles. This provided a metric for how well the model could correctly identify new black rocks that it 

had never seen. For the false positive rate, we wanted to obtain a more widespread and representative 

value that would reflect model performance across the whole fall zone. So we randomly selected 50 

images from the survey of the fall line and predicted on them with the model, recording the average 

number of detections across all the images. 

 

Model Detection Sorting Interface 

 

An issue we anticipated with any model we would train, was the processing of false positives. Even in 

best case scenarios, where we assume a model accuracy of 99.999%, with ~8,500 tiles per image and 

~650 images per flight, a model would return approximately 5,500 detections per flight, and more than 

150,000 per fall line. Thus, we required a tool to help searchers efficiently examine each of these model-

detections, and determine which of these were obvious false positives and which ones required further 

investigation. We created a graphical user interface in python using the Tkinter module to accomplish 

this task (Figure 2). 

 

The program displays nine detections at a time, in a 3x3 grid pattern. Each grid space is mapped to 

numbers 1-9 on a standard keyboard’s keypad (1 for lower left, 5 for middle-center, 9 for upper right). 

Each detection is displayed such that the frame is centered on the detection tile, outlined in a yellow box 

(~25 cm on one side), and extends 70 pixels beyond the target tile, to give the user context of the larger 

area. Below the grid, 3 images of meteorites are displayed, scaled from the smallest to the largest 

meteorite possible for that fall site (lowest mass with iron density, to highest mass with chondritic density, 

respectively). This allows users to easily reference how big a meteorite should appear in the tiles. If the 

user decides that the tile likely contains a meteorite, they press the number on the keypad corresponding 

to that grid space, before advancing to the next set. The program also allows the user to remove their 

responses from the current set of 9 tiles, as well as go back to the previous set. 

 

Through testing trails, we determined that the average user could sort through ~120 tiles per minute.  

Assuming 150,000 detections per fall line, the task of sorting through this data would take over 20 labor-

hours. This problem of staying focused over long periods of time is known as ‘vigilance ’ by human 

factors psychologists, who have observed decrements in user performance over extended task sessions 

(See et al. 1995). To mitigate such decrements in vigilance, we ensured that each user would only sort 

for 20-minute increments. This was chosen as a conservative time limit according to Teichner (1974), 

who found the vigilance decrement to be fully observed 20-35 minutes into a task. Additionally, to reduce 

the consequence of individual errors, each tile was inspected by two separate users. We also anticipated 

that the overwhelming majority of detections would be false positives, thereby counter-productively 

enticing the users to speed through the tiles, without properly inspecting each one. The resulting 

consequence of such task parameters has been shown in signal detection literature to result in the missed 



   

 

   

 

detection of such rare signals (Stanislaw & Todorov 1999), in our case the user-detection of a meteorite. 

To combat this, we added a test function to the program, whereby each set of nine tiles had a uniform 

probability of containing 0, 1 or 2 test tiles, taken from the training set. This forced the user to slow down 

and select, on average, one tile per set, thus reducing the rarity of a “hit”.  

 

A final failsafe was included in this sorting task, such that once the user missed two test tiles during a 

sorting session, the program would shut down, forcing the user to take a break. The user’s score of 

successfully completed tests, along with the number of meteorite candidates identified, are shown at the 

top of the display. Both of these strategies; increasing the “hit” rate and providing performance feedback, 

have been shown to combat the vigilance decrement (Hancock et al. 2016). Once two users sorted through 

the detections for a flight, we overlaid the original images with bounding boxes around meteorite 

candidates. We also set aside the false positives, so that we may use them for retraining if needed. 

 

 

Fig. 2. Our sorting user interface we designed to aid in the separation of candidates from false positives. 

Test tiles (True tiles from the model training set) for this set appear in the center-left and center-right 

positions. Users press the corresponding number on the keypad to mark the tile(s) as a likely meteorite.



   

 

   

 

 

 

RESULTS 

 

We conducted small scale tests of our methodology by visiting 4 sites in Western Australia and training 

a model at each location. Although they were not at real meteorite fall sites, they were all located within 

the DFN’s operational area, and could conceivably be representative of future fall sites. These sites and 

the results from the models we trained for them are listed in Table 2. For these smaller tests, we only 

obtained training data for ~30 synthetic and real meteorites, and surveyed less than 0.1 km2 at each site. 

 

Table 2. Distinct models at various locations within the DFN. Model performance is dependent on the 

size of the training dataset. 
 

Location (Lat, Long) Total Number of 

Training Tiles  

Training 

Accuracy  

Meteorite 

Detection 

False 

Positives 

(per image) 

Ledge Point (-31.151, 115.395) 16,352 92.58 % 68.5 % 21.7 

Dalgaranga (-27.635, 117.289) 30,874 97.03 % 85.6 % 6.5 

Lake Kondinin (-32.496, 118.192) 32,348 96.85 % 86.7% 5.1 

Balladonia (-32.370, 124.790) 98,470 98.73 % 93.2 % 1.3 

 

We also conducted a full test of our methodology by visiting one of our fall sites, DN150413_01, North-

East of Forrest Airport, Western Australia (30.764 S, 128.184 E). We obtained training data for this fall 

site at different times during the day (morning, cloudy mid-morning, midday, early afternoon, and late 

afternoon). Over the course of two days we also surveyed 2 km2 of the fall zone, so that we could identify 

meteorite candidates for secondary inspection in an upcoming expedition. We also placed 4 painted rocks, 

unseen by the model, within the survey area and recorded their GPS coordinates. This served as a test of 

our ability to use the model to correctly identify a meteorite candidate, correctly sort it using the user 

interface, and accurately correlate the image’s GPS coordinates to the those recorded by our handheld 

unit. During the survey, each of three team-members were assigned a distinct role during survey-flight 

operations. The first team-member's job was to fly the drone and calibrate the camera, the second oversaw 

data collection and backups on the computer, and the third was responsible for cooling and charging the 

batteries.  

 

When we returned from the field, we trained a model on our RTX 2080 Ti (11 GB RAM) GPU, with an 

Intel i9-9000 CPU for approximately 3 hours (150 epochs). This resulted in a final training accuracy of 

99.07% and a validation accuracy of 98.65%. Furthermore, we achieved a meteorite detection chance of 

98.71%, and a false positive rate of 2.5 per image. Using the trained model, the detection algorithm was 

able to process 1 day’s images in 22 hours. The model returned a combined total of 92,595 detections for 

the two-day survey, which we were able to sort through in 12 hours, excluding breaks. Sorting through 

all of our detections yielded 752 meteorite candidates, some of which are shown in Figure 3. Of the four 

test rocks we laid out, we successfully located three of them (by comparing GPS coordinates) using our 

prescribed searching methods, meaning that we successfully met fulfilled criteria: (2).  

 



   

 

   

 

Four months after this initial trip, when the COVID-19 travel restrictions were lifted in Western Australia, 

we revisited the same site North-East of Forrest Airport. We began by inspecting ~20 of the 749 

candidates in-person and noticed that they generally belonged to one of two populations: dark stones 

(most likely iron-rich siliceous rock), and small holes in the ground (<7 cm in diameter) most likely made 

by small animals. The small hole population was far more numerous than the dark stone group and were 

easy to distinguish in the images, once we knew which features to look for. We then sorted through the 

remaining ~700 candidate images and narrowed the list to 32 candidates that did not appear to be holes 

in the ground. Unfortunately after inspecting these remaining candidates, we found that none of them 

were meteorites 

 

 

 

Fig 3. The meteorites recovered North-West of Forrest Airport (left) and South of Madura (Right). 

Although these two were not recovered using the full surveying methodology, they serve as valuable 

demonstrations for the feasibility of our approach. 

 

 

On this same follow-up trip, we also visited a second, separate fall site located North-West of Forrest 

Airport. For this site, we employed the traditional line searching technique and found the meteorite on 

the afternoon of the first day. Using our Mavic Pro drone, we took ~100 images of this meteorite (Fig. 3, 

left) from a top down view, with heights ranging from 1 to 30 m. We also generated training data at this 

site, trained a model, and used it to predict on 86 of these images (those in which the meteorite was 

between 10 and 80 pixels in diameter). The model was able to correctly identify the meteorite in 84 of 

the 86 images, or 97%. 

 

During a separate trip, whereby two members of our research group were scouting a third fall site South 

of Madura, Western Australia, for an upcoming six-person searching trip, they discovered the meteorite 

in question (Fig. 3, right), on the dirt road which roughly bisected the predicted fall line. They also used 

the Mavic Pro to take images of the meteorite from altitudes of 2 to 30 m, and created training data on-

site. When they returned from the trip, we trained a model and predicted on the 27 meteorite images, 

finding that the model correctly identified the meteorite in 24 of the images (88% success rate). At the 

writing of this manuscript, these two meteorites have not yet been registered with the Meteoritical 

Bulletin, as their classifications are forthcoming. 

 



   

 

   

 

An additional and final test of our approach involved using our Forrest-NE model to predict on a drone-

image of an older meteorite find, shared with us by a volunteer meteorite hunter who regularly searches 

in the Nullarbor. We found that the model correctly identified the old chondrite with a prediction value 

of 1.0: a perfect match. 
 

 

 

DISCUSSION AND FUTURE WORK 

 

Our smaller tests (Table 2) show that more training data makes for a more robust model in terms of both 

meteorite detection and false positives, reinforcing the notion that more training data makes for a better 

model. These tests also showcase the portability of our methodology, accounting for variations in 

available training data, which successfully satisfies Criteria (3). 

 

The results of the full test, while not a total success, are a promising prospect for the future of meteorite 

recovery. Not only is this methodology capable of locating test meteorites analogues, it is able to cover 

a fall zone nearly 6 times faster than a traditional line-search, when accounting for invested labor. If we 

assume that in the future we would predict on images and sorting through detections in the field, this rate 

of data processing can keep pace with data collection through a combination of switching sorting users 

and simply taking breaks, satisfying the final outstanding Criteria (6).  

 

There are two possibilities as to why the full test did not result in a complete success of recovering the 

meteorite. The first explanation is that our methodology failed at some stage of the searching, whether 

the model failed to detect the meteorite, or we failed to label the detection as a candidate. The second 

possibility was that we did not cover enough of the fall line. Since the initial surveying trip was limited 

to two days, we were only able to cover 2 km2  of the entire 5 km2 fall zone. Our other successes with the 

models correctly identifying two fresh falls and one old find, all in situ, lead us to believe that the second 

explanation is more likely. For this reason, we plan on returning to the Forrest-NE fall site and surveying 

the remainder of the fall zone. 

 

We will also embark on an extensive surveying campaign of all of our meteorite fall sites. We initially 

plan on training a new model for each fall site, using randomly initialized weights. Though as we gain 

more training data from a range of diverse fall sites, we will investigate the possibility of combining data 

sets and training a ‘base model’ who’s final weights will then be used as the initial weights for each new 

model we train. This future approach may improve the generalizability of our models and reduce training 

time on-site.  

 

The python software that we have created, as well as our trained model weights, will be made available 

to collaborators upon request, so that the entire meteoritics community can benefit from this new method 

of semi-automated meteorite recovery. 
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Abstract 

 

We report the first-time recovery of a fresh meteorite fall using a drone and a machine learning algorithm. 

The fireball was observed on 1st April 2021 over Western Australia by the Desert Fireball Network, for 

which a fall area was calculated for the predicted surviving mass. A search team arrived on site and 

surveyed 5.1 km2 area over a 4-day period. A convolutional neural network, trained on previously-

recovered meteorites with fusion crusts, processed the images on our field computer after each flight. 

Meteorite candidates identified by the algorithm were sorted by team members using two user interfaces 

to eliminate false positives. Surviving candidates were revisited with a smaller drone, and imaged in 

higher resolution, before being eliminated or finally being visited in-person. The 70 g meteorite was 

recovered within 50 m of the calculated fall line, demonstrating the effectiveness of this methodology 

which will facilitate the efficient collection of many more observed meteorite falls. 

 

 

1. Introduction 

 

Besides recording the conditions of the proto-planetary nebula and the early Solar System, meteorites also 

offer insights into the contemporary physical and chemical compositions of Asteroids and other terrestrial 

bodies (Cuzzi et al. 2008; Nakamura et al. 2011). Some of these meteorites fall in regions on Earth where 

fireball observatory networks are active, making it possible to record the trajectory of the fireball as it 

ablates material from the originating meteoroid. For some fireballs, this data can then be used to simulate 

both forward and backward in time to predict where the resulting meteorite landed on Earth and where the 

meteoroid originated in the solar system. Thus, recovering and analyzing these ‘orbital meteorites’ with 

constrained, prior orbits provides an incredibly unique insight into the geology and dynamic behaviour of 

the asteroid belt and the nature of mass transfer between the belt and the inner solar system. The Desert 
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Fireball Network (DFN) (Bland et al. 2012; Howie et al. 2017) is one of many research groups (Oberst et 

al. 1998; Spurný et al. 2006; Trigo-Rodríguez et al. 2006; Olech et al. 2006; Colas et al. 2015) within the 

Global Fireball Observatory (Devillepoix et al. 2020) that makes this possible. 

  

 

 

 
 

Figure 1. The DFN 09 meteorite fall at Kybo Station, Western Australia. (Clockwise from top) Fireball 

observations from DFN camera stations at Mundrabilla Station and O’Malley Siding, and their location 

within WA; The 5 km2, 90% certainty searching area (transparent white), the best fit fall line (red markers), 

and the location of the recovered meteorite (yellow star); Pre-impact orbit for the DFN 09 meteoroid (a = 

2.597 ± 0.017 AU, e = 0.7707 ± 0.0018, i = 0.3567 ± 0.0053◦, ω = 85.862 ± 0.015◦ , Ω = 191.90282 ± 

0.00073◦ 39 (1σ uncertainties)). 
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In the past, recovering meteorites within a predicted area often consisted of 4-6 people walking 5-10 m 

apart, sweeping the area until the meteorite is found. This was labor intensive and suffered from a relatively 

low success rate of ~20%, considering how many of our trips (~40) have returned with one of our 8 

meteorites. This was partially due to the fact that an entire fall zone could rarely be covered in one trip. 

This has prompted efforts by multiple groups to recover meteorites using drones and machine learning 

which massively reduces the time and labor required (Citron et al. 2017; 2021; Zender et al. 2018; AlOwais 

et al. 2019). Our previous efforts (Anderson et al. 2019; 2020) have shown the ability of our methodology 

to positively identify already-recovered fresh meteorites, awaiting an opportunity to fully test our searching 

strategy.  

 

On the night of April 1st 2021 such an opportunity presented itself as a meteorite fell over the Western 

Nullarbor on the Lintos Paddock of Kybo Station, Western Australia (Figure 1). Unfortunately, only two 

DFN camera stations, both to the East, were able to capture the event which caused the relatively short fall 

line to have considerable longitudinal uncertainty, expanding the area with a 90% likelihood of containing 

the meteorite to a total of 5.1 km2 (Figure 1), with a predicted mass of the meteorite being between 

150 and 700 g. These fall conditions were promising enough to warrant a fieldtrip to survey the 

entire fall zone with a drone. The first three days we spent onsite consisted of surveying with a 

drone, and processing data with our machine learning algorithm. On the fourth and final day we 

visited meteorite candidates with the drone and in person, and recovered the 70 g meteorite. 

 

2. Methods 

 2.1 Fireball Observations and Modelling 

 

Although the detailed analysis of the fireball and its orbit will be the subject of a future publication, here 

we briefly explain the data and methods that allowed us to predict the searching area. These analyses were 

done prior to the recovery, and have not been revised since. On 1 April 2021, two Desert Fireball Network 

observatories imaged a bright 3.1 s fireball (Figure 1), which was reported to the DFN team by our 

automated detection software (Towner et al. 2020), while astrometric calibration is performed following 

the methodology detailed in Devillepoix et al. (2018). 

 

In total, 78 data points were recorded from just two observatories located at Mundrabilla station and 

O'Malley siding, 149 km and 471 km from the end point, respectively (Figure 1). The nominal trajectory 

started at 87 km altitude at 25.4 km/s, and the bolide was observed down to 25 km at 8.4 km/s, on a 64 deg 

slope. Because of the distance of the viewpoints and a low convergence angle of planes of 28 deg, 

observation conditions were not ideal, resulting in a poorly constrained trajectory. To estimate the 

variability in the trajectory, in a similar manner to Devillepoix et al. (2021), we use a Monte Carlo approach, 

randomising astrometric observations within errors, generating 1000 clones. This analysis shows a 500 m 

standard deviation on the end point. 
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For estimating the surviving mass of the object, we use the alpha-beta method from Gritsevich et al. 

(2012) and Sansom et al. (2019). The noisy velocity data resulted in a poorly constrained surviving mass 

between 150 and 700 g, assuming a spherical to rounded brick shape, a bulk density of 3.5 g/cm3, and a 

shape change parameter of 2/3. We model the atmospheric conditions numerically using the Weather 

Research and Forecasting (WRF) model version 4.0 with the Advanced Research WRF dynamic solver 

(Skamarock et al. 2019) with 3 model runs starting on 2021-04-01 at 00UT, 06UT, and 12UT, all giving 

similar models. 

 

Using these atmosphere models, we then propagate bright flight observations to the ground using the dark 

flight model from Towner et al. (2021). The uncertainty on the mass, and the uncertainty on the positions 

are the dominant sources of uncertainty. Thanks to the dominant wind being more or less in the same 

direction as the fireball, the small mass end of the fall line was somewhat compacted. From these 

simulations, we defined two search areas at different confidence levels: a 90 % confidence level yielding a 

search area of 5 km2 (Figure 1), and a 99 % confidence level which gives a significantly larger search area 

of 8 km2. 

 

To compute the pre-encounter orbit, we start by modelling the initial speed with an Extended Kalman 

Filter/Smoother (Sansom et al. 2015), applied to the nominal trajectory. Using the integrator from Jansen-

Sturgeon et al. (2019), we then propagate the position of the meteoroid backwards until it is 10× outside 

the sphere of influence of the Earth-Moon system. The position is then propagated forward to the date of 

impact, ignoring the influence of the Earth and the Moon. From this point we convert position/velocity to 

ecliptic orbital elements (J2000). To quantify errors, we repeat this process using Monte Carlo 

randomization of the initial velocity vector within uncertainties. The resultant pre-impact, orbital 

parameters for this meteoroid were (Figure 1): Semi-major axis a = 2.597 ± 0.017 AU, eccentricity e = 

0.7707 ± 0.0018, inclination i = 0.3567 ± 0.0053◦, argument of perihelion ω = 85.862 ± 0.015◦ , longitude 

of ascending node Ω = 191.90282 ± 0.00073◦ 39 (1σ uncertainties). 

 

 2.2 Drone Surveying and Machine Learning 

 

Our field-based work is a continuation of the methodology presented in Anderson et al. (2020). For this trip 

we used a DJI M300 drone with a Zenmuse P1 camera (44 MP) to survey the 5.1 km2 fall line at 1.8 

mm/pixel with 20% overlap among images in each direction, which took between 2.5 and 3 days to 

complete. This ground sampling distance would image the meteorite at an apparent size between 15-65 

pixels in diameter, due to inherent uncertainties in meteoroid properties during the fall. If the meteorite 

were predicted to have a significantly larger mass, we would increase the survey height to keep the same 

apparent size. We processed the data on-site using a desktop computer with an RTX 2080 Ti GPU. Our 

algorithm could process one flight’s worth of images (~30 min) in approximately 65 min. 

 

Our algorithm works by taking a full 44 MP image and splitting it into tiles (125 x 125 pixels) with a 70 

pixel overlap in each direction, to ensure the meteorite has a chance to appear fully in at least one tile. Each 
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tile is fed into the binary image classifier presented in Anderson et al. (2020), constructed using python and 

keras (Chollet et al. 2015) which scores each tile from 0 (non-meteorite) to 1 (meteorite). To obtain True 

(meteorite) training data, we relied on our library of meteorite images from previous trips as well as taking 

new images of the real meteorites: Camel Donga (Eucrite), Mulga North (H6) and Wiluna (H5) (supplied 

by the Western Australian Museum), at the fall zone. In total, we used 28 individual stones from these 

3 meteorite falls, ranging in size from 2 to 14 cm (on their longest dimension). We repeated meteorite 

image collection each day and for each weather condition that affected illumination. Our True pool was 

comprised of all the meteorites we imaged on-site and an equal number again sourced from our library, 

totalling ~100,000 tiles. To create False tiles (non-meteorites) we took images from the surveyed fall zone 

at random, checked to ensure there were no meteorites in the frame, and split them into tiles. These totalled 

to more than 1 M depending on the day of the flights being sampled.  

 

To maintain a balanced training set, while also sampling as much of our dataset as possible, we employed 

what we call ‘rotation training’. To form a training set, we use a constant 80% of our True pool (with 20% 

kept for validation) and randomly select an equal number from the False pool, then we train for 5 epochs 

(rounds of training). After this we deselect these False tiles and randomly select a new False set from the 

pool, then repeat the training process until the model had worked through the False pool twice. The 

validation set contained only True tiles, so that we could monitor the most important performance metric: 

meteorite detection chance. We initially trained the model until it rotated through the False pool twice. By 

the end of training, we achieved a training accuracy of 99.93%, and a validation accuracy (meteorite 

detection chance) of 91%.  

 

As we predicted on each flight from our first day of surveying, we monitored the quality of the prediction 

by viewing the distribution of confidence values for a given image, in the form of a histogram (Figure 2). 

When the distribution for an image resembled that of Figure 2A, we were satisfied, while images that 

produced a histogram like Figure 2B were flagged as ‘problem images’. We believe they contain physical 

features from the survey area that were not yet included in the training data, causing the model to infer 

generously, creating more unnecessary false positives to sort later in the process. We inspected some of 

these images, split them into tiles and added them to the False pool. We later retrained on this augmented 

False pool, though only for two epochs and one rotation. Using the retrained model we would re-predict on 

these problem images, which usually resulted in a more palatable confidence distribution.  

 

We inspected meteorite candidate tiles in 4 stages (Figure 3). The first stages were identified by the model 

to have a confidence >0.7, and we inspected them using the 3x3 grid graphical user interface (GUI) 

described in Anderson et al. (2020), which was ideal for eliminating obvious false positives. The user would 

be given a 3x3 grid displaying 9 tiles, with some being sourced from the True pool as tests for the user, to 

characterize their own performance. They identified interesting tiles by typing the corresponding key on 

the number pad before moving to the next set. Uninteresting tiles were added to the false pool, while those 

of interest became second stages that were further inspected in a separate image viewer that allowed pan 

and zoom control over the whole image. If the candidate was still of interest, it became a third stage. To 

inspect the third stages, we compiled all of their GPS coordinates from one survey flight and planned a new 

waypoint flight using our DJI Mavic Pro drone and GS Pro app. The Mavic was ideal for this task as it 
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could lower to ~ 1 m altitude with much lower assumed risk than the more expensive M300. When the 

autopilot flew the drone to a waypoint (at ~20 m altitude), we paused the mission and manually lowered 

the drone directly above the candidate, using the original survey image and prediction box as a guide. If the 

entire team could confidently eliminate that candidate we would remove it, otherwise we took 2-3 pictures 

for later inspection and proceeded via autopilot to the next waypoint. Since live-feed transmission from the 

drone provided a lower resolution than its camera, we reviewed the images on our field computer in camp. 

Any candidates that survived this scrutiny proceeded to the fourth stage: in-person inspection. 

 

Figure 2. Favorable and unfavorable prediction distributions from two images. Given a 70% confidence 

threshold, Image/Distribution A will return 3 meteorite candidates, while Distribution B will return >100 

candidates. B-like images are later used for retraining. For clarity, the number of detections displayed in 

image B is capped at 50 
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3. Results and Discussion 

 

Using the above methodology, we recovered the meteorite <50 m from the best-fit fall line, appearing in 

the 88th image from the 3rd flight on the 1st day, with an apparent diameter of 27 pixels and a confidence 

score of 1: a perfect match. Although we have not yet classified the meteorite, its fusion crust (Figure 5) 

resembles that of other chondrites. It consists of one 70 g piece, approximately 5x4x3 cm, with a 

preferentially smoothed side. Initial CT scans show chondrules along with a mixture of metal and sulfide 

grains indicative of an equilibrated chondrite. Analysis of our two thick section samples via Scanning 

Electron Microscope and Electron Microprobe, which can definitively determine meteorite type, is 

forthcoming. 

 

Figure 3. The four stage process for eliminating false positives and verifying meteorite candidates. (From 

Left to Right) 1) Grid GUI. 2) Zoom-pan GUI. 3) Drone visit. 4) In-person visit. 

 

While this meteorite is a great discovery that will hopefully spur the efficient collection of further 

meteorites, we also made some important discoveries about or methodology. Our data processing rate for 

both the machine learning algorithm and manual candidate sorting must be improved in the future, or the 

length of the trips must be extended as the meteorite appeared on the 3rd/43 survey flights. We were able 

to process 4 flights, totalling 5096 images, which produced 46,501,000 tiles for our algorithm, 

identifying 56384 first stage candidates (Figure 3). Using our candidate elimination process, we 

produced 259 second stage candidates, visiting 38 of these as third stages with the Mavic Pro, 

finally searching for 4 candidates in person (fourth stage). These 4 candidates (including the 

recovered meteorite) are shown in Figure 5 along with 4 training tiles for comparison. If we were 

instead required to process all 57,255 images, we would not have been able to complete it onsite, 

and would have to return on a later trip to follow up on meteorite candidates. That being said, the 

meteorite was located <50 m from our ‘ideal’ fall line, which is surprising considering the side-to-

side uncertainty in the fall line. With this in mind, we may in the future prioritize searching the 

area immediately around the ideal fall line. 
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Figure 4. The recovered meteorite as seen in person (top two), and from the survey drone (bottom one). For 

scale, a 15 cm long felt pen is placed next to the meteorite (top right). The yellow box in the bottom image 

is 22 cm on one side. 

 

Before we embark on our next searching trip to one of our 35 unvisited, logged meteorite falls, we 

must alleviate some logistical bottlenecks in our system. This includes locally networking laptops 

to our main processing computer on site to allow more than one team member to sort meteorite 

candidates from false positives at a time. For each new fall that we visit we will also bring 

meteorites to retrain our model on generated, local training data to enhance meteorite detection 
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chance and mitigate false positives. In lieu of real meteorites, images of black-painted rocks 

collected on site can also work (Anderson et al. 2020). 

 

Although we recovered the meteorite we did not really train a meteorite detection algorithm, 

instead,  we created an anomaly detector, in this case trained for the Nullarbor. During the course 

of devising this strategy, we encountered false positives such as tin cans, bottles, snakes, 

kangaroos, and piles of bones from multiple animals. We also notice that when we predict on 

survey images taken directly over our campsite, the algorithm ferociously identifies our items and 

equipment, none of which is represented in the training data. We hope that our findings and 

methodology prove useful for training neural networks in other low-occurrence or anomaly 

detection problems, such as wildlife monitoring, or search and rescue. 

 

 

 

 

 

 

Figure 5. (Top row) 4 meteorites tiles selected from our training data, (Middle) The recovered meteorite, 

(Bottom) the other 3 meteorite candidates visited for a second time with the Mavic Pro, and later inspected 

in-person. 
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ABSTRACT 

 

Murrili, the third meteorite recovered by the Desert Fireball Network, is analyzed using mineralogy, oxygen 

isotopes, bulk chemistry, physical properties, noble gases, and cosmogenic radionuclides. The modal 

mineralogy, bulk chemistry, magnetic susceptibility, physical properties and oxygen isotopes of Murrili 

point to it being an H5 ordinary chondrite. It is heterogeneously shocked (S2-S5), depending on the method 

used to determine it, although Murrili is not obviously brecciated in texture. Cosmogenic radionuclides 

yield a cosmic ray exposure age of 6-8 Ma, and a pre-atmospheric meteoroid size of 15-20 cm in radius. 

Murrili’s fall and subsequent month-long embedment into the salt lake Kati Thanda, significantly altered 

the whole rock, evident in its Mössbauer spectra, and visual inspection of cut sections. Murrili may have 

experienced minor, but subsequent impacts after its formation 4475.3 ± 2.3 Ma, which left it 

heterogeneously shocked. 

INTRODUCTION 

 

Meteorites are an important resource for understanding the origin and evolution of our solar system and 

come to us for free. Pieces of this precious material shower Earth every year but falls are rarely witnessed. 

This means that important context is missing from the meteoritic record; that is, what is the general geologic 

origin of these precious rocks? The Desert Fireball Network (Bland et al. 2012; Howie et al. 2017) provides 

a basic framework to determine that context for these rocks, allowing their source region in the solar system 

to be constrained. Every meteorite that has characterized orbit provides unique information that can be used 

to better interpret the structure of the solar system. Murrili (pronounced moo-rree-lee) is the 3rd meteorite 

recovered by the Desert Fireball Network (Bland et al. 2016), after Bunburra Rockhole (anomalous 

achondrite), and Mason Gully (H5) (Spurný et al. 2012; Dyl et al. 2016). 

 

Sansom et al. (2020) reported observations of a fireball lasting 6.1 s, entering the atmosphere with a speed 
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of ~13.7 km s-1 at an altitude of 85 km, before slowing to ~3 km s-1 at an altitude of 18 km at the end of its 

luminous flight phase.  From these observations they determined that the meteoroid’s pre-entry orbit had a 

semi major axis of 2.521±0.075 AU, an eccentricity of 0.609±0.012 and an inclination of 3.32±0.060 deg. 

Orbits like this, with low inclination and near the 3:1 mean-motion resonance with Jupiter, are not 

uncommon for other H5 chondrites with determined orbits (Jenniskens 2013; Meier 2017). 

 

The meteorite fell in Kati Thanda (Lake Eyre) National Park, South Australia, the land of the Arabana 

people, on 27 November 2015. The rock specifically fell into South Lake Eyre, in a region referred to as 

‘Murrili’ by the Arabana peoples. Kati Thanda (Lake Eyre) is one of the largest landlocked lakes (>9,500 

km2) in the world. The lake rarely fills completely, but even during dry seasons there is usually some water 

remaining in smaller sub-lakes. The surface is comprised of a thin layer of halite and gypsum salts on top 

of brine-saturated, fossiliferous, thick clay mud (Habeck-Fardy and Nanson 2014). 

 

This fall site posed a serious challenge for recovery. The calculated fall site was 6 km from the nearest 

“shore” (Figure 1). Initial reconnaissance from light-aircraft identified what appeared to be an impact 

feature in the surface of the lake close to the predicted fall site (Figure 1 inset). Our expedition to recover 

the meteorite was guided by members of the Arabana people, the traditional custodians of the land. In the 

time between the fall and the expedition (roughly 1 month), rain had obscured the original impact site. 

However, searching on foot and with quad bikes, in tandem with aerial and drone surveys, led to the 

successful recovery of the stone from a depth of 43 cm in the lake. It was recovered on 31st December 2015, 

<50 m away from the predicted fall line (Sansom et al. 2020).  

 

Here, we present details of the classification, physical attributes, chronology and geochemistry of this 

meteorite. 

 

 

Figure 1. Excerpted from the Curdimurka map sheet of the Kati Thanda area of South Australia (Krieg et 

al., 1992).  Purple circle shows where Murrili was recovered.  Inset shows aerial photo of the lake 

showing visible ‘impact’ made by the meteorite. 
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SAMPLE ALLOCATION AND ANALYTICAL METHODS 

 

A single, fusion-crusted, heart-shaped, stone, measuring ~13 × 7 × 6 cm, weighing 1.68 kg, was retrieved 

(Figures 2 and 3). From this main mass, two small wedges and a thin slab were cut for examination and 

analyses (Figure 4). The cut surfaces reveal extensive alteration, due to the interaction with the salty lake 

clays, despite there being no obvious broken surfaces. Samples of altered and unaltered meteorite were 

distributed to a consortium of international researchers.  Details of the allocated materials and methods are 

summarized in Table 1. We examined both altered and unaltered regions using optical microscopy and 

computed tomography. Various laboratories analyzed wedges, chips and powders for oxygen isotope and 

bulk composition, cosmogenic nuclides, porosity/density, and Mössbauer spectroscopy.  Details of each 

method are described below. 

 

Figure 2. Full mass of the Murrili meteorite, just after recovery from Lake Eyre South 

 

Optical Mineralogy 

We examined two thin sections of Murrili using a Nikon Eclipse LV100 POL microscope at Curtin 

University in both transmitted (plane and polarised) and reflected light.  

 

Computed Tomography  

Two separate labs carried out X-ray Computed Tomography (CT)– CSIRO (Perth, Western Australia) and 

the American Museum of Natural History (New York, USA).  

 

CSIRO – The sample was scanned in 3D by X-ray computed tomography (CT) using a Siemens 

SOMATOM definition AS medical scanner installed at the Australian Resources Research Centre (ARRC, 

Kensington, Western-Australia) allowing the rapid 3D scanning of drill cores. The instrument was 

calibrated using air as well as a set of five in-house rock standards of known density which are suitable for 

mineral resources applications (standards have densities varying from 2.7 to 4.3 g/cm3). The energy of the 

beam was set-up to have maximal phase contrast between the different minerals of interest (accelerating 

voltage of 140 kV and x-ray beam current of 1000 mA). The voxel size (a pixel in 3D) for this overview 

CT scan was 220 x 220 x 100 µm. The voxel size is dictated by the size of the sample – in this case the 

large meteorite meant that the overall resolution was relatively low. The XCT data was processed and 

analysed using workflows developed across scale for mineral resource applications (Godel et al. 2006; 

Godel 2013). 
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Figure 3. Full mass of the Murrili meteorite – ruler scale is cm.  Inset shows close up of fusion crust 

texture – cracks are infilled with what is most likely lake sediments. 

 

Fordham/AMNH– X-ray microtomography data was collected on one of the smaller wedges (a ~50g 

pyramid-shaped chunk of Murrili) at the American Museum of Natural History using a GE phoenix v|tome|x 

s240 μCT system operating with a polychromatic x-ray tube. Data was collected at several resolutions. The 

entire wedge was imaged at a resolution of 50.5 µm3/voxel edge. A subsection was imaged at a resolution 

of 10.0 µm3/voxel. The latter conditions are known to be adequate for observing morphology and size 

distributions of metal and sulfide grains in ordinary and other chondrites as well as examining inter-granular 

porosity structures in partially compacted samples (Friedrich et al. 2008; 2013; 2017). From the 3D datasets, 

features can be visibly identified and digitally isolated for quantitative examination, and 2D slices 

(tomograms) can be extracted. Typical tomographic slices of this volume are shown in Figure 5. 

 

We used the method presented in Friedrich et al. (2008; 2013) to quantify the magnitude of foliation of 

metal grains within Murrili. Our method produces a numerical value for the strength factor, C (Woodcock 

1977; Woodcock and Naylor, 1983). The higher the numerical strength factor, the more pronounced the 

common orientation of the metal grains and the greater the foliation. 
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Table 1. Sample allocations and methods used in this study, listed by institution. 

Method Institution(s) Sample type  

Optical Microscopy  

(Shock Analysis) 

Western Australian 

Museum / Curtin 

University 

Thin Section 

X-ray Computed Tomography 

(Density and Porosity) 

CSIRO – Kensington / 

American Museum of 

Natural History 

Whole Rock / 50 g 

Wedge 

Gas Pycnometry  

(Density and Porosity) 

Vatican Observatory / 

University of Central 

Florida (UCF) 

50 g Wedge (same 

sample used for CT) 

Scanning Electron 

Microscopy/Electron Microprobe 

Microanalysis 

(Modal Mineralogy and Mineral 

Composition) 

Curtin University / 

University of Western 

Australia 

Thick Section 

Laser-assisted Fluorination 

(Oxygen Isotope Analysis) 

Open University 30-400 g chips 

Inductively Coupled Mass 

Spectrometry 

(Bulk Chemistry) 

Fordham University 4 x 120 mg chips 

Mössbauer Spectroscopy 

(Terrestrial Alteration) 

University of New South 

Wales – Canberra 

300 mg powder 

Noble Gas Analysis  

(Cosmic Ray Exposure age (CRE) 

and 74horoughl size) 

Swiss Federal Institute of 

Technology – Zurich 

100 mg chip 

Cosmogenic Radionuclides 

(CRE and meteoroid size) 

University of California 

– Berkeley 

1.1 g chip 

40Ar-39Ar Dating / 38Ar CRE  

(Impact Heating Age/ CRE) 

Curtin University 2 g (fragments) 

 

 

Density, volume, porosity, and magnetic susceptibility 

We measured bulk volume and density on the same 50g piece that was CT scanned by the AMNH (see 

above), using a NextEngine ScannerHDPro laser scanner at high resolution (Macke et al. 2015) located at 

UCF, with a digital scan analysis performed at the Vatican Observatory. The laser scanner produced a 3-

dimensional computer model of the meteorite, from which the volume enclosed by the outer surface could 

be calculated in the software.  

 

Grain volume and density was determined using helium ideal gas pycnometry using a Quantachrome 

Ultrapyc 1200e following the procedure outlined in Macke (2010). Porosity is calculated from these two 

densities: P = 1 – ρbulk/ρgrain, where ρbulk is the density of the whole rock, including pore spaces, while ρgrain 

excludes pore spaces. Magnetic susceptibility was measured using an SM-30 handheld device, with 

volumetric and shape corrections according to Gattacceca et al. (2004) and Macke (2010). 

 

Mineral compositions and modes  

 

We determined modal mineralogy on a thick section of Murrili using a Tescan Integrated Mineral Analyzer 
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(TIMA) housed in the Digital Mineralogy Hub (DMH) of the John de Laeter Centre at Curtin University. 

The automated modal analysis of the TIMA instrument was not optimized for meteorites, therefore, we 

generated mineral modes from element maps, using the methods outlined in Ford et al. (2008). 

 

Mineral compositions were determined on the same thick section. Silicon, Mg, Ti, Cr, Fe, Ca, Al, and Na 

were measured in olivine, orthopyroxene, clinopyroxene, and chromite, with a JEOL 8530F electron 

microprobe based in the Centre of Microscopy, Characterization and Analysis (CMCA) at the University 

of Western Australia. The probe was operated with an accelerating voltage of 20kV and beam current of 

20nA. Well-known standards were used for calibration of the elements.  

 

Oxygen Isotopic Analysis  

 

Oxygen isotope analysis was carried out at the Open University using an infrared laser-assisted fluorination 

system (Miller et al. 1999; Greenwood et al. 2017). All analyses were obtained on approximately 2 mg 

aliquots drawn from a larger homogenized sample powder, with a total mass of approximately 100 mg, 

prepared by crushing clean, interior, whole rock chips. Oxygen was released from the sample by heating in 

the presence of BrF5. After fluorination, the oxygen gas released was purified by passing it through two 

cryogenic nitrogen traps and over a bed of heated KBr. Oxygen gas was analyzed using a MAT 253 dual 

inlet mass spectrometer. Overall system precision, as defined by replicate analyses of our internal obsidian 

standard is: ±0.053‰ for δ17O; ±0.095‰ for δ18O; ±0.018‰ for Δ17O (2σ) (Starkey et al. 2016).  

 

We report oxygen isotopic analyses in standard δ notation, where δ18O has been calculated as: δ18O = 

[(18O/16O)sample/ (18O/16O)ref – 1] × 1000 (‰) and similarly for δ17O using the 17O/16O ratio (where ref is 

VSMOW: Vienna Standard Mean Ocean Water). For comparison with the ordinary chondrite analyses of 

Clayton et al. (1991) Δ17O, which represents the deviation from the terrestrial fractionation line, has been 

calculated as: Δ17O = δ17O – 0.52 x δ18O. 

 

 

 

Bulk composition  

We determined bulk trace and major element compositions using Inductively Coupled Mass Spectrometry 

(ICPMS) at Fordham University, with methods described in Friedrich et al. (2003) and Wolf et al. (2012). 

We analyzed four individual chips of Murrili (126.1, 136.6, 120.5, 114.8 mg). In each aliquot, the material 

used for the analyses was a combination of altered and unaltered material, since the alteration was too 

intermingled to separate. We used a combination of concentrated HF and HNO3 in a high-pressure 

microwave digestion system at 185 °C, for 15 min, to initially dissolve each chip, then we took the resulting 

solution to incipient dryness on a hotplate. This was followed by treatment with concentrated HclO4 and a 

further drying to completely dissolve the samples. The dissolved samples were taken up in 1% HNO3 and 

analyzed with a ThermoElemental X-Series II ICPMS with the methods outlined in Friedrich et al. (2003) 

for trace elements and Wolf et al. (2012) for major and minor elements. In addition to the Murrili samples, 

a procedural blank and the Allende Standard Reference Meteorite were simultaneously analyzed for 

calibration purposes.  

 

 

 

Mössbauer Spectroscopy  

In the scope of meteorite analyses, we use Mössbauer spectroscopy to measure the oxidation states of Fe in 

the sample. In ordinary chondrites, Fe0 and Fe2+ are of extraterrestrial origin, occurring in metallic iron, 



   

 

76 

 

troilite and silicates, while Fe3+ in iron oxides forms solely due to terrestrial contamination, for ordinary 

chondrites.  By measuring the relative abundance of Fe3+ to all other iron oxidation species in the sample, 

we can obtain a quantitative measurement of the meteorite’s weathering state (Bland et al. 1998).  

 

The Mössbauer spectra were obtained at room temperature using a standard transmission spectrometer with 

a 57CoRh source. The spectrometer’s drive system was calibrated using a 6µm α-Fe foil. The spectra were 

fitted using a non-linear, least-squares, full-hamiltonian method. 

 

Noble gas analyses  

He and Ne were measured on an in-house-built sector field noble gas mass spectrometer at ETH Zurich, 

according to a protocol most recently described in detail by Meier et al. (2017). Two fusion-crust-free 

samples with masses of 45.9 and 22.6 mg, respectively, were wrapped in Al foil, loaded into the sample 

holder and pumped to ~10-10 mbar while being heated to 80°C for one week to desorb atmospheric gases. 

For gas extraction, the samples were dropped into a crucible and heated in a single step to ca. 1700°C by 

electron bombardment. Both sample analyses were bracketed by blank (empty Al foil) analyses. For 

analysis of all He and Ne isotopes as well as the potentially interfering species (H2
18O+, 12C16O2

++, H35,37Cl+), 

we separated He, Ne from Ar using a cryotrap cooled with liquid nitrogen. Interferences were negligible, 

and blank levels contributed <0.01% for He and <5% for Ne isotopes. For Ar, the blank contribution was 

inexplicably high (>50%), which eventually led us to discard the Ar data completely, for this approach. 

Noble gas concentrations and ratios were then used to determine the cosmogenic (cosmic-ray produced) 
3He and 21Ne concentrations using  multi-component deconvolutions with radiogenic (for He only), 

cosmogenic and phase Q (or air) endmembers. We used both model-based (“L&M09”, Leya & Masarik, 

2009) and empirically determined (Dalcher et al., 2013) production rates to calculate the cosmic-ray 

exposure ages from the cosmogenic concentrations. Uranium-Thorium-Helium radiogenic gas retention 

ages (4He was corrected for cosmogenic contributions) were calculated based on assumed Th, U 

concentrations of 42 ppb and 13 ppb, respectively, typical for H chondrites (Kallemeyn et al. 1989). 

 

Cosmogenic Radionuclide analysis 

We used a chip of ~1.13 g for analysis of the cosmogenic radionuclides 10Be (half-life=1.36 x 106 y), 26Al 

(7.05 x 105 y) and 36Cl (3.01 x 105 y). We crushed the sample in an agate mortar and separated the magnetic 

(metal) from the non-magnetic (stone) fraction. The magnetic fraction was purified by ultrasonic agitation 

in 0.2N HCl at room temperature, to remove attached troilite. After rinsing the metal four times with MilliQ 

water and once with ethanol, the separation yielded 146 mg of relatively clean metal, corresponding to 13 

wt% bulk metal. The metal fraction was further purified by ultrasonic agitation in concentrated, room 

temperature HF for 15 min to dissolve attached silicates, yielding ~140 mg of purified metal. We dissolved 

~66 mg of the purified metal in 1.5N HNO3 along with a carrier solution containing 1.47 mg Be, 1.64 mg 

Al, and 4.85 mg Cl. After dissolution we took a small aliquot (~3.6%) of the dissolved sample for chemical 

analysis (Mg, Fe, Co, Ni) by ICP-OES and used the remaining solution for radionuclide separation 

following procedures described in Welten et al. (2011). The chemical analysis of the dissolved sample 

yields a Mg concentration of 0.074 wt%, indicating that the purified metal contained ~0.4-0.5 wt% of 

silicate contamination.  

 

After separating and purifying the Be, Al and Cl fractions, the 10Be/Be, 26Al/Al and 36Cl/Cl ratios of these 

samples were measured by accelerator mass spectrometry (AMS) at Purdue University’s PRIME Lab 

(Sharma et al. 2000). The measured ratios were normalized to those of well-known AMS standards 

(Nishiizumi 2004; Nishiizumi et al. 2007; Sharma et al. 1990) and converted to concentrations in 

disintegrations per minute per kg (dpm/kg). The 10Be and 26Al concentrations in the metal fraction were 

corrected for small contributions of 10Be (1%) and 26Al (5.5%) from the stone fraction.  
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We also dissolved 106 mg of the stone fraction of Murrili, along with 2.93 mg of Be carrier and 3.68 mg 

of Cl carrier, in concentrated HF/HNO3 by heating the mixture for 24 h inside a Parr 77horou digestion 

bomb at 125 °C. After cooling off, we separated the Cl fraction as AgCl, and removed Si as SiF4 by repeated 

fuming with ~0.5 ml concentrated HclO4. The residue was dissolved in diluted HCl and a small aliquot was 

taken for chemical analysis by ICP-OES. After adding ~5.2 mg of additional Al carrier to the remaining 

solution, we then separated and purified the Be and Al fractions and measured the isotopic ratios of the Be, 

Al and Cl fractions by AMS. Results of the chemical analysis and AMS measurements of both the metal 

and stone fraction are shown in Tables 2 and 3, respectively. 

 
38Ar age 

Cosmic ray exposure (CRE) ages were also calculated based on the spallation of Ca to 38Ar due to the 

interaction of cosmic rays with the sample. To determine the amount of 38Ar in the sample per gram of Ca 

(Hennessy and Turner; 1980) we use the cosmochron approach which consists of an isotope correlation 

diagram with 38Ar/36Ar vs. 37Ar/36Ar (Levine et al., 2007). The exposure age is calculated assuming a 

nominal production rate of 38Ar from spallation of Ca of 1.81 x 10-8cm3 STP 38Ar/gram of Ca/Ma for 

plagioclase, 2.30 x 10-8cm3 STP 38Ar/gram of Ca/Ma for pyroxene and a half-way value of 2.05 x 10-8cm3 

STP 38Ar/gram of Ca/Ma for matrix which comprises similar quantities of comminuted plagioclase and 

pyroxene, best suited for the asteroid belt (Eugster and Michel, 1995; Korochantseva et al. 2005). As 

plagioclase has very low concentrations of Fe and Ti and as the 38ArC production rate from Ca is ca. 90 and 

10 times that of Fe and Ti, respectively, the contribution of the latter elements to the total 38Arc is negligible 

(Turner et al., 2013). For a full description of the approach, see Kennedy et al. (2013). 

 
40Ar-39Ar ages 

To determine the Ar-Ar age of Murrili, we analyzed 2g of material without fusion crust, which we prepared 

by disaggregating a larger slice to extract fragments of mineral (pyroxene and plagioclase) as well as whole 

chondrules. Most of our results are derived from pyroxene grains. 

 

Samples were irradiated for 40 hours and subsequently analyzed at the Western Australian Argon Isotope 

Facility (WAAIF) using a MAP 215-50 Mass Spectrometer equipped with a 10.4 µm CO2 laser for stepped 

heating for 60 seconds, in accordance with Jourdan et al. (2020). 

 

RESULTS 

 

In this section we present the results of each previously listed method. We start with physical properties, 

proceeding to chemistry and finishing with chronology. In the discussion section we combine these results 

to weave together the history of the Murrili meteorite and its subsequent fall to Earth. 

 

 

Physical Properties  

As discussed in the introduction, Murrili consists of a single stone roughly 15 cm in longest dimension.  It 

is heart-shaped with a continuous fusion crust, which shows small cracks filled with terrestrially weathered 

material (Figures 3 and 4).  The exterior also shows several large indentations, but there are no obvious 

broken surfaces.   

 

Visual inspection of the cut surfaces of Murrili shows a heavily altered interior with a heterogeneously 

distributed reddish stain in the hand specimen (Figure 4). The whole rock CT scan does not reveal obvious 
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boundaries that would indicate brecciation, although a brecciated texture cannot be entirely ruled out 

(Figure 5). Cracks are evident cutting through the fusion crust and running across whole slices. The 

weathering, however, is not linearly distributed away from such cracks and the alteration does not seem to 

affect metal uniformly, as grains both within and away from altered areas appear to be unoxidized (Figure 

4). 

 

Figure 4. The Wedge used for He pycnometry, magnetic susceptibility and µCT scans. 

 

Alteration 

Both of the 57Fe Mössbauer spectra for the ‘unaltered’ and ‘altered’ materials in Murrili spectra are well-

fitted with five components. The paramagnetic doublets of olivine and pyroxene account for 70 to 76 % of 

the spectral area. Troilite (FeS), Fe3+ and FeNi metal comprise the remainder of the spectra. The most 

prominent difference between the two spectra is the relative spectral area contribution of the paramagnetic 

Fe3+ component. The ‘unaltered’ sample has an Fe3+ area of slightly more than 3 % whereas the ‘altered’ 

sample has around 12% relative area. This dramatic increase in the relative amount of the paramagnetic 

Fe3+ component comes at the expense of the olivine, pyroxene and metal components; the relative amount 

of troilite remains constant. This increase in Fe3+ points to an aggressive weathering process (Bland et al. 

1998), in this case likely related to 30-day storage in warm, brine-saturated mud at the Lake Eyre fall site.   

 

Another indicator of aggressive weathering may be drawn from the relative area of the silicates (olivine 

and pyroxene) compared to the metal. The ‘unaltered’ spectrum has 76.1 ± 6 % relative area for the silicates 

and 6.8 ± 4 % FeNi metal, yielding a silicate to metal ratio of 11.2 ± 8. For the ‘altered’ spectrum these 

numbers are 70.0 ± 6 %, 4.6 ± 4 % and 15.2 ± 14, respectively. The olivine to pyroxene ratios are 1.59 and 

1.57 for the ‘altered’ and ‘unaltered’ spectra, respectively, putting Murrili firmly in the H-classification 

according to the work of Wolf et al. 2012. However, the classification work of Verma￼ suggests that our 

silicon content should be accompanied by about twice as much FeNi metal than we measured, to place 

Murrili in the ‘H’ region. We ￼suggest ￼that aggressive weathering of the FeNi component produced the 

paramagnetic ferric component which is possibly goethite or akaganéite.  
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Density and Porosity 

We determined bulk density and porosity for Murrili, using both computed tomography and helium 

pycnometry. Course-resolution (220x220x100 μm/voxel) CT gave a bulk volume of 467.5 cm3 for the 

whole rock, which combined with the total mass of Murrili (1.68 kg), yielded a bulk density of 3.6 g cm-3. 

Although the course-resolution CT was not detailed enough to resolve micro-cracks to obtain a high-fidelity 

value for porosity, we were able to deduce a porosity of 3.4%. CT imaging at the highest resolution in this 

study (10.0 μm3/voxel) did not reveal any visible porosity, which suggests that the main source of Murrili’s 

porosity is due to microcracks rather than larger vugs or intergranular porosity (Friedrich and Rivers 2013). 

The bulk density recorded by helium pycnometry of the 50 g wedge is 3.47 ± 0.01 g cm-3, consistent with 

the results from the CT imaging and data extraction. Helium pycnometry also yielded a value of 3.59 ± 0.01 

g cm-3 for grain density, which is a measure of the rock’s density excluding interior void spaces. Combining 

bulk and grain density from helium pycnometry allowed us to determine a porosity of 3.4 ± 0.4% for 

Murrili. 

 

Figure 5. Typical x-ray µCT tomogram or “slice” of the middle portion of a ~50g wedge (Figure 4a) of 

the Murrili H chondrite collected at a resolution of 10.0 µm/voxel. The higher the greyscale intensity, the 

higher the density of the material.  The brightest material is reduced Fe-Ni metal. The slightly darker 

spots are troilite.  The silicates, making up the majority of the meteorite, are the medium grey material.  

The black area around the rock is air. Occasional round silicate shapes (chondrules), often outlined by 

troilite, can be distinguished perceived in the tomogram. The area toward the bottom is a fusion crusted 

surface.  The straight surfaces of the rock are saw-cut surfaces.   

 

Shock 

The shock state of Murrili differs significantly between the results of the optical microscopy and fine-

resolution CT. We investigated two thin sections, taken from both altered and unaltered regions, using 

optical microscopy. We examined 25 olivine grains in both thin sections, and found their extinction features 

to be straight to slightly undulatory, indicating a low, S2 shock state (Stöffler et al., 1991, 2018).  

 

Using reflected light microscopy, we also examined the Fe,Ni metal and sulfide in the thin sections. The 
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metallography is typical of an undisturbed, slowly cooled ordinary chondrite. In a polished mount briefly 

etched with a 5% Nital solution, kamacite (bcc Fe,Ni metal) shows a single set of slightly annealed and 

dilated Neumann bands as the only indication of mild (<130 kb), mechanical shock-loading at low 

temperature. Many grains of taenite (fcc Fe,Ni metal) are polycrystalline, frequently comprising up to three 

juxtaposed taenite crystallites each delineated by tetrataenite rims and cloudy etching zones. Large grains 

(several hundred µm) of zoned taenite show internal decomposition to plessite (kamacite + taenite). Troilite 

(FeS) is generally fractured and, under crossed polarized reflected light, shows undulose, feathery, 

extinction. This feature is also typical of low-temperature, mechanical strain. No grains of native copper 

appeared in our analysis; however, grains of chromite are abundant. In terms of shock level, the 

metallographic features observed in the opaque phases in Murrili would equate to undulose extinction in 

the ferro-magnesian silicates. In the polished mount examined, no indication of foliation, or any other 

directional fabric was observed in the metallic phases. 

 

The high-resolution CT images taken from the 50 g wedge show significant metal-grain foliation.  The 

collective orientation of metal grains observed in the 50 g wedge have a foliation strength factor of 0.75 

(Figure 6), which is consistent for a chondrite having experienced significant (S4-S5) shock-related 

compaction, contrary to the thin section microscopy analysis. 

 

It is important to note that the two thin sections were taken from a separate area than the 50 g wedge. Upon 

further inspection of the course-resolution CT of the whole rock, we do not see evidence of metal foliation 

in the thin section-sampled region, while the wedge’s original area does reveal foliation. This non-

uniformity in the foliation texture, along with low-shock features in the thin sections may suggest a 

heterogenous shock state across Murrili.  

 

Figure 6. a) Orientation of reduced metal grains and b) stereogram density diagram for the Murrili H 

chondrite. These are lower hemisphere equal area projections. The orientation strength factor (see text) of 

0.755 suggests Murrili experienced significant impact-related compaction. 
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Modal Mineralogy   

The mineralogy of Murrili is typical for ordinary chondrites, being dominated by olivine and pyroxene. The 

backscattered-electron (BSE) image and elementally-derived mineral maps of Murrili’s thick section are 

shown in Figure 7.  The modal mineralogy of Murrili is plotted in Figure 8, shown with published values 

for H Chondrite meteorites (McSween et al. 1991; Dunn et al. 2010), for comparison. Relative to other H 

chondrites, there is a slight increase in orthopyroxene relative to olivine which is generally associated with 

reduction processes.  However, there is a coupled decrease in the abundance of plagioclase.  This variation 

could be related to the distribution of Ca in the sample.  

Figure 7. Images of thin section TS1 of Murrili. (a) Backscattered-electron (BSE) image; (b) Chemistry 

map created by combining maps for 7 elements – Ca, Si, Mg, Fe, Ni, S, and Cr. This map distinguishes 9 

distinct chemistries that are tied to the mineralogies listed in the legend.  CPX/Plag mix is a very fine-

grained mixture of these two phases and are not distinguished at the resolution of the map.  Scale bar is 

the same for both images.   
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Figure 8 – Murrili’s modal mineralogy based on TIMA and point counting, compared to average H 

chondrite values. 

 

Composition 

Mineral Compositions 

Average elemental compositions of olivine, orthopyroxene and chromite, obtained using Electron Probe 

Micro-Analysis (EPMA) are shown in Table 2.   Analysis of 15 olivine grains results in an average fayalite 

value of 18.8 ± 0.5, indicating a significant amount of equilibration has occurred (consistent with the 

textural features of the sample).   Orthopyroxene (N = 7) has an average Fs value of 16.3 ± 0.3 and an 

average Wo value of 1.1 ± 0.3.  Additionally, Figure 9 plots the abundance of fayalite against ferrosilite in 

Murrili Fe-Mg silicates, which suggests that, chemically speaking, Murrili is an H chondrite. 

 

Bulk chemistry  

We collected data on 53 major, minor, and trace elements (Figure 10). Typically, errors are <12% RSD.  

Lithophiles (Zr-Ba, n=29) have a mean CI and Mg normalized abundance of 0.84 ±0.08 (1σ). Kallemeyn 

et al. (1989) demonstrated that ordinary chondrites possess a mean CI and Mg normalized abundance of 

0.9, indicating that Murrili is an ordinary chondrite. Within the ordinary chondrites, total siderophile 

element content increases in the order: LL→L→H. Siderophile elements in Murrili (Re-Pd, n=9; Figure 

10) have a mean CI and Mg normalized abundance of 1.30 ± 0.15 (1σ), within errors of the H chondrite 

range of values.  

 

It is likely that the slight enrichment in calcium, barium and sodium relative to other lithophiles are related 

to terrestrial contamination, due to the month spent buried in Kati Thanda.  
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Figure 9 – Ferrosilite (Fs) value of orthopyroxene vs Fayalite (Fa) value of olivine for Murrili. 

 

Table 2.  Average olivine, orthopyroxene and chromite mineral compositions in Murrili.  Number of 

analysed grains in parenthesis.  Fa, Fs, Wo, and Chromite endmembers calculated EPMA data.   Low total 

for chromite likely due to missing elements from analysis – most likely Mn and V which can be up to 1wt % 

each in ordinary chondrites (Bunch et al, 1967) which were not included in the EPMA analysis set up. 
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Figure 10.   CI and Mg normalized elemental abundances in the Murrili H5 chondrite.  

 

Oxygen isotopic composition  

The compositional classification of Murrili as H ordinary chondrite is further supported by its oxygen 

isotopic composition. We analyzed a minimally-altered piece of Murrili (δ 17O = 2.764 ± 0.016‰; δ 18O = 

3.988 ± 0.056‰; and δ 17O = 0.691 ± 0.013‰) as well as an altered region (δ 17O = 2.848 ± 0.016‰; δ 18O 

= 4.182 ± 0.039‰; and δ 17O = 0.673 ± 0.004‰) (errors 1σ), shown in Figure 11. Both isotope analyses 

indicate consistent H chondrite classification for Murrili, falling well within the restricted range for H 

chondrites defined by McDermott et al. (2016) (δ 18O = 4.16 ± 0.42 ‰; δ 17O = 0.73 ± 0.08 ‰ (n=20)). 

There is a slight shift to a lower δ 17O value and a higher δ 18O value in the altered piece compared to the 

unaltered piece. It is however, important to note that in terms of its oxygen isotope composition, the degree 

of alteration is very limited when taking into account the 2σ errors on the respective analyses. 
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Figure 11.  Oxygen isotopic composition (D17O vs d18O) of Murrili (both altered and unaltered) relative 

to the Ordinary Chondrite groups (from Clayton et al., 1991). D17O is a measure of the relative difference 

from the Terrestrial Fractionation line (TFL) which is defined to be 1.  Positive numbers are on parallel 

slope ½ lines above the TFL and negative numbers are below. Murrili plots unambigously within the H 

grouping of ordinary chondrite meteorites. 

 

Chronology and Meteoroid Size 

He and Ne components 

The Ne isotopic composition is almost identical with the cosmogenic endmember (i.e., nearly all 21Ne is 

cosmogenic; see Table 4).  A minor trapped component, theoretically allowed within uncertainties and 

contributing no more than ca. 2% of the total Ne, might be of Earth atmospheric (air) or phase Q origin – 

the calculated concentration of cosmogenic 21Ne does not depend on the choice of the trapped endmember. 

Similarly, the He isotopic composition of Murrili is best explained by a simple combination of cosmogenic 

He (all 3He, and a fraction of the 4He, determined by 4Hecos/3Hecos = ~6) and radiogenic He (the remaining 
4He after subtraction of 4Hecos).  While some atmospheric He might theoretically be present too, it would 

likely be accompanied by corresponding amount of atmospheric Ne, which already has to be very minor as 

found above. In combination, air He (with 4He/20Ne = ~0.3) cannot contribute more than 0.003% of the 

measured total He.  
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Meteoroid Size 

Using the cosmogenic noble gas and radionuclide results, we are able to estimate the pre-atmospheric size 

of the meteoroid that delivered Murrili to Earth. We assume that the radionuclides are saturated, i.e., that 

the meteorite was exposed as a small object in space for >5 Ma. The 36Cl/10Be ratio of 4.33 ± 0.18 in the 

metal fraction is in good agreement with the 36Cl/10Be-10Be correlation that was obtained from a large set 

of meteorites with long exposure ages (Lavielle et al. 1999). The 26Al/10Be ratio of 0.71 ± 0.02 in the metal 

fraction also matches the average saturation ratio of 0.71 ± 0.05 that was found in a large set of meteorites. 

We thus conclude that the 36Cl, 26Al, and 10Be concentrations in Murrili were all produced by a single 

cosmic-ray exposure stage >5 Ma (as independently confirmed by cosmogenic noble gases, see below). 

 

The measured 10Be and 26Al concentrations in the stone and metal fraction of Murilli (Table 3) and the 

stone/metal ratio of 87/13, yield bulk 10Be and 26Al concentrations in Murrili of 19.1 ± 0.3 and 51.4 ± 1.2 

dpm/kg, respectively. These values are consistent with production rates in a relatively small object with a 

radius R = 10-20 cm (Figure 12). The concentration of cosmogenic 10Be (5.6 dpm/kg) in the metal sample 

of Murilli is ~15% higher than the maximum calculated 10Be production rates in the center of an object of 

10 cm radius (L&M09). This suggests that the calculated 10Be production rates in the metal fraction are too 

low. This is not implausible, since the uncertainty in the absolute production rates are estimated at 10-15% 

in the model calculations of L&M09. We increased the 10Be production rates of L&M09 in the metal phase 

– somewhat arbitrarily – by 15% to obtain better agreement with measured 10Be concentrations of up to 

~6.5 dpm/kg in the metal fraction of small chondrites. The measured 10Be concentrations in the stone and 

metal phase yield a radius of 15-20 cm for Murrili and a relatively shallow shielding depth of 3-4 cm (Figure 

13). This depth is somewhat lower than the one of >20 cm derived from the 22Ne/21Ne ratio, but the inferred 

size overlaps (see below). 

 

Finally, the measured 36Cl concentration of 6.7 dpm/kg in the stone fraction is consistent with calculated 
36Cl production rates in objects of 20-65 cm in radius (Figure 13). However, these calculated production 

rates only include spallation reactions on K, Ca, Ti, Fe and Ni, while objects larger than ~30 cm in radius 

also have a significant contribution of 36Cl from neutron-capture on Cl, which can increase the total 36Cl 

production rates by up to a factor of 3-5 (Welten et al. 2001). Since the measured 36Cl concentration in 

Murrili shows no evidence of neutron-capture produced 36Cl, this result is also consistent with a relatively 

small pre-atmospheric size. Based on the cosmogenic radionuclide data, we conclude that the Murrili 

meteorite probably came from an object with a pre-atmospheric radius of 15-20 cm. 

 

Assuming a simple, single stage exposure, we can also use the model of L&M09 to derive the production 

rates of 3He and 21Ne for Murrili, either using the 22Ne/21Ne ratio as shielding parameter or the 26Al 

concentration, which is more sensitive to shielding and shows a good correlation with the 21Ne production 

rate in objects <50 cm in radius.  

 

Based on the Ne isotopic composition of Murrili (22Ne/21Ne = 1.10), only the smallest modelled meteoroid 

given by L&M09 (with R = 10 cm) can be excluded, since all shielding depths have 22Ne/21Ne > 1.10. Since 

no R = 15 cm model is provided by L&M09, we technically cannot exclude the radius suggested by the 

radionuclide and fireball results (ca. 15 cm). The next-larger meteoroid provided by L&M09, with R = 20 

cm, has a compatible zone at a shielding depth of 14±1 cm. For even larger modelled meteoroids, the 

compatible zone moves to slightly more shallow shielding depths (e.g., 10±1 cm within a R = 50 cm 

meteoroid). The measured (average) 3He/21Ne ratio of 5.2 is close to the range of values expected under 

these shielding conditions (ca. 5.2 to 5.6, depending on R), providing further support for a small pre-

atmospheric size and minimal to no gas loss during its transfer to Earth.  
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Figure 12. Comparison of measured 10Be concentrations in the metal phase (a) and in stone and metal 

phase (b) in Murrili with calculated production rates of 10Be in metal and stone fraction of H-chondrites 

using the model of Leya and Masarik (2009). The 10Be production rates in the metal fraction were 

increased by 15%. 
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Table 3. Measured concentrations of major/minor elements (in wt%) and of cosmogenic radionuclides (in 

dpm kg-1) in the purified metal and non-magnetic (“stone”) fraction of the Murrili H5 chondrite fall. The 

Mg concentration of 0.074 wt% in the metal fraction indicates that the metal contains ~0.45 wt% of 

silicate contamination. 

 

Element Metal Stone 

 65.9 mg 106.0 mg 

Mg 0.074 16.2 

Al nd 1.21 

K nd 0.12 

Ca nd 1.37 

Ti nd 0.067 

Mn nd 0.23 

Fe 90.7 15.0 

Co 0.48 0.011 

Ni 7.9 0.64 
10Be 5.63 ± 0.05 21.1 ± 0.3 
26Al 3.99 ± 0.12 58.4 ± 1.4 
36Cl 24.4 ± 0.4 6.70 ± 0.11 

 

 

 

Figure 13. Comparison of measured 36Cl concentration in the stone fraction of Murrili with calculated 

depth profiles from the model of Leya and Masarik (2009). Production rates include spallation reactions 

on K, Ca, Ti, Fe and Ni. 
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Table 4: Noble gas concentations and derived values. All concentrations are given in units of 10-8 cm3 

STP/g. Given uncertainties include sample mass uncertainties. The last column gives the inverse-variance 

weighted average of the two samples. 

 

Sample Murrili NG-1 Murrili NG-2 Adopted Value 

Mass (mg) 45.9 22.6 - 

Noble gas concentrations 
 

 
3He 11.3±0.4 12.6±0.8 11.5±0.3 
4He 976±32 1420±94 1020±30 
20Ne 1.91±0.06 2.39±0.16 1.98±0.06 
21Ne 2.01±0.07 2.54±0.17 2.08±0.06 
22Ne 2.22±0.07 2.80±0.19 2.29±0.07 

Derived values 
 

 
21Necos 2.00±0.12 2.53±0.21 2.07±0.17 
3Hecos/21Necos 5.62±0.01 4.97±0.01 5.18±0.01 
22Necos/21Necos 1.105±0.002 1.103±0.003 1.104±0.002 
4Herad 917±42 1360±130 961±40 

 

 

Cosmic Ray Exposure (CRE) 

In addition to extrapolating a pre-atmospheric entry size for the meteoroid, the cosmic-ray produced 3He 

and 21Ne concentrations are used to calculate the CRE age. For the noble gas interpretation (excluding Ar), 

we used the inverse-variance-weighted concentrations of 11.5 (3He) and 2.07 (21Ne) × 10-8 cm3 STP/g. The 

empirically derived 3He and 21Ne production rates of (1.65-1.78) × 10-8 cm3 STP/(g Ma) and (3.2-3.4) × 10-

9 cm3 STP/(g Ma) (L&M09; Dalcher et al. 2013), yield a CRE age of 6.1-7.0 Ma. This determines the time 

elapsed since Murrili was separated as a small object from its parent body in the asteroid belt, and overlaps 

with the main CRE age peak at ~7 Ma (Marti and Graf 1995) or ~6-10 Ma (Herzog & Caffee, 2014) for H 

chondrites. 

 

Based on the measured 26Al concentration of 51.4 dpm/kg for the Murrili H chondrite, the model of L&M09 

yields 3He and 21Ne production rates of 1.65 and 0.27 x 10-8 cc STP/g/Ma, respectively, for Murrili. This 

method yields CRE ages of 7.0 Ma for 3He and 7.7 Ma for 21Ne, which still overlap within error with the 

main H chondrite CRE age cluster at 6-10 Ma (Figure 14). Radiogenic 4He (corrected for a cosmogenic 

contribution with 4Hecos/3Hecos = 5.2) yields a U,Th-He age of 2.7±0.1 Ga. 

 

Using the 38Ar data, gathered from 9 samples of Murrili, we calculate a weighted mean CRE age of 7.12 ± 

0.41 Ma. The relative agreement of values obtained from 3He, 21Ne and 38Ar, suggest minimal noble gas 

loss during atmospheric entry, or during its terrestrial residence. 

 
40Ar-39Ar Age  

Our 40Ar-39Ar dating analysis yielded three plateaus and two smaller plateaus, all concordant with an 

average age of 4475.3 ± 2.3 Ma. Across our 17 samples there was little variation in age results, although 2 

samples did yield ages up to 1 Ga younger than the rest. This suggests minor subsequent impact heating 

events, that had different results on the Ar system, depending on the crystal size and type, along with local 

porosity.  
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Figure 14. Cosmic Ray Exposure (CRE) ages for other H chondrites. Murrili falls into the (possibly 

double) peak around 6-8 Ma. 
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DISCUSSION 

 

Classification 

The bulk olivine and pyroxene compositions of Murrili fall squarely within the H-chondrite fields (Figures 

7, 8, 9). The siderophile elements are more diagnostic than the lithophile elements (Figure 10), in line with 

the metal/sulfide ratio. The oxygen isotopic composition also confirms that Murrili is an H-type ordinary 

chondrite. Its magnetic susceptibility (log χ = 5.30) too, is consistent with other, weathered, H chondrites. 

The modal mineralogy of Murrili is broadly consistent with ordinary chondrites, being dominated by Fe-

Mg silicates and containing metal and sulfide in a proportion roughly similar to that of H chondrites 

(McSween et al, 1991; Dunn, et al, 2010). The modal mineralogy derived from the thin section supports 

the estimate derived from CT scan density percentages.   Of the whole rock, 73% has a density consistent 

with silicate mineralogy – the remaining 27% comprises metal, sulfide and minor minerals (phosphates and 

chromite, etc..). It is interesting to note that the modal mineralogy of the thin section shows a high 

abundance of orthpyroxene relative to olivine and a significant decrease in abundance of plagioclase 

relative to other chondrites – which may indicate a slight variation in oxidation states compared to other H-

chondrites, or potentially a redistribution of Ca. Mason Gully, another fall recovered by the DFN, showed 

this modal mineralogical anomaly as well (Dyl et al 2016).   

The lack of distinct chondrule boundaries, the absence of striated pyroxene, the lack of chondrule glass, an 

overall recrystallised texture and the equilibrated silicate mineral compositions (Fa18.8±0.5; Fs16.4±0.3; 

Wo1.1±0.3; Scott et al 1986), indicate that the petrographic type of this meteorite is most consistent with type 

5.  The morphologies of the CT scans of both the main mass and the 50 g piece support this. 

 

The above modal mineralogy, mineral chemistry, morphologies, and isotopic compositions, indicate that 

Murrili is an H5 chondrite with extensive weathering.  We will discuss shock features in detail below but 

based on a difference between features in thin section and CT scans, impact affected this rock 

heterogeneously and Murrili is a likely a breccia with indistinct lithic clasts. 

 

Terrestrial Alteration 

Cut surfaces reveal pervasive alteration with rusty staining heterogeneously distributed in a wormy pattern 

(Figure 4). Results from Mossbauer spectroscopy (Figure 16) point to an aggressive weathering process. 

Both of these results are consistent with the length of time Murrili resided in the salt lake environment, 

allowing alteration to occur throughout the low-porosity rock. There is no difference in mineral composition 

between the altered and unaltered regions, though there are discrepancies between the two regions in the 

Mössbauer analyses, and the oxygen isotope measurements. 

 

Physical properties 

Density and Porosity 

For a fresh fall with an assumed low shock state (proposed by thin section analysis), Murrili’s porosity of 

3.4% is very low. The average H fall is about 10% porous while most S1s within the H falls are between 

about 7-14 % porous, with porosity decreasing as shock increases (Consolmagno et al. 1998). 

 

Shock 

The thin sections we examined showed an overall low (S2) shock state apparent in undulose extinction in 

numerous olivine grains, while the fine resolution tomographs of the 50 g wedge show metal foliation, 

indicative of moderate (S4-S5) shock loading (Friedrich et al. 2008). The course resolution tomographs of 

the whole meteorite show that metal foliation is present throughout the most of the rock, including the 

region that the wedge was taken from, but excluding the locality where the thin sections were sampled.  
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Although we did not observe brecciation at the micro scale in either of our thin sections or in our CT 

tomographs, larger cracks are apparent in the wedge we used for both helium pycnometry and fine 

resolution CT (Figure 4a). Due to the heterogeneous nature of its shock features, as well as a lack of micro-

scale brecciated texture, Murrili is most likely brecciated at the cm-dm scale. 

 

Chronology 

The 40Ar-39Ar age of Murrili is dated to 4475.3 ± 2.3 Ma which fits well with  other H Chondrites (Trieloff 

et al. 2003). Although we recorded some minor variation in 2 of samples, which may suggest post-formation 

impact events, we do not see apparent evidence of major brecciation. This most likely suggests minor 

impact events just after recrystallization. This chronological anomaly, along with the heterogenous nature 

of Murrili’s shock state will be investigated further in a forthcoming publication. 

 

Murrili has a cosmic-ray exposure age (CRE) that falls within the broad 6-10 Ma peak in the CRE age 

histogram of the H chondrites (Graf & Marti, 1995). Graf and Marti (1995) suggested that this peak, which 

contains about ~50% of the H-chondrites, might be a double peak, with ages around ~6 Ma more prominent 

for H5 chondrites than for other petrographic types of H chondrites, which typically have CRE ages around 

~8 Ma (Figure 15). The CRE age of Murrili, which is between 6.1 and 7.7 Ma depending on the method 

chosen, cannot provide further support for this pattern. The relatively high 3He/21Ne ratio suggests that 

Murrili is derived from a rather small meteoroid with a radius of ~20 cm (certainly >10 cm). This is 

compatible with the estimated radius of ~14 cm inferred by Sansom et al. (2020) from the photographic 

observations of the fireball, and the estimated radius of 15-20 cm from the cosmogenic radionuclide data. 

 

 

CONCLUSIONS 

 

Murrili formed as an H5 chondrite on its parent body 4475.3 ± 2.3 Ma, experiencing subsequent but minor 

impacts which left it heterogeneously shocked and brecciated at the cm-scale. Approximately 6-8 Ma, 

Murrili’s precursor meteoroid was separated from its parent body, at a size of 15-20 cm in radius. Just prior 

to its collision with Earth, the meteoroid had an orbit with a semi-major axis of ~2.5 AU with a low 

inclination, near the 3:1 mean resonance with Jupiter, which is not uncommon for other orbitally-

determined H5s.  

 

The meteoroid entered the Earth’s upper atmosphere at a speed of ~13 km/s, over South Australia on the 

night of November 27th, 2015 at 9:15 pm (local time). After it stopped ablating, it eventually fell into the 

salt lake: Kati Thanda (South Lake Eyre), punching through the upper crust of the lake, embedding itself 

42 cm below the surface. Although there was no standing water on the surface of the lake during the fall, 

the clay soil below the surface was saturated with a salt brine, which heavily weathered some portions of 

the meteorite before it was recovered a month later. The main characteristics of Murrili, and how we 

measured them are listed in Table 4. 

 

Although Murrili has been 92horoughly characterized here, one anomaly remains unexplored with this 

meteorite: its shock history. Most of the 40Ar-39Ar measurements for Murrili indicate an age of 4475.3 ± 

2.3 Ma, except for two readings that yield ages up to 1 Ga younger. This, combined with Murrili’s 

heterogeneous shock state requires further study into its shock history. 
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Table 4. Summary of the characteristics appearing in the Murrili meteorite. 

Property Results Method 

Petrologic Type H5 Optical Microscopy, 

Computed Tomography, 

Laser Assisted Fluorination, 

TIMA, Electron Microprobe, 

Magnetic Susceptibility 

Porosity 3.4 % 

3.4 ± 0.4% 

Computed Tomography 

Helium Pycnometry 

Bulk Density 3.6 g cm-3 

3.47 ± 0.01 g cm-3 

Computed Tomography 

Helium Pycnometry 

Grain Density 3.59 ± 0.01 g cm-3 Helium Pycnometry 

Magnetic Susceptibility (log χ) 5.30 Magnetic Susceptibility  

Fe(III)/Total Fe 3-12 % Mössbauer Spectroscopy 

Shock Classification S2 

S4-S5 

Optical Microscopy 

Computed Tomography 
40Ar-39Ar Age 4475.3 ± 2.3 Ma 40Ar-39Ar Dating 

Cosmic Ray Exposure Age 6.1-7 Ma 

7 Ma 

7.7 Ma 

7.12 ± 0.41 Ma 

Empirical Derivation 

L&M09 Model (3He) 

L&M09 Model (3He) 
38Ar concentration 

Meteoroid Size (radius) 15-20 cm 

14 cm 

Noble Gas concentrations 

Kalman Filter (Sansom et al. 

2020) 
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Abstract 

 

Volatile elements and compounds found in extra-terrestrial environments are often the target of In Situ 

Resource Utilization (ISRU) studies. Although water and hydroxide are most commonly the focus of these 

studies as they can be used for propellant and human consumption; we instead focus on the possible 

exploitation of sulfur and how it could be utilized to produce building materials on the Moon, Mars and 

Asteroids. We describe the physical and chemical pathways for extracting sulfur from native sulfide 

minerals, manufacturing sulfuric acid in situ, and using the produced acid to dissolve native silicate 

minerals. The final products of this process, which we call the Silicate-Sulfuric Acid Process (SSAP), 

include iron metal, silica, oxygen and metal oxides, all of which are crucial in the scope of a sustainable, 

space-based economy. Although our proposed methodology requires an initial investment of water, oxygen, 

and carbon dioxide, we show that all of these volatiles are recovered and reused in order to repeat the 

process. We calculate the product yield from this process if it were enacted on the lunar highlands, lunar 

mare, Mars, as well as an array of asteroid types. 

 

 

1. Introduction 

 

Humanity’s renewed interest in deep-space exploration will bring to bear countless challenges we as a 

species have not yet faced. As humans plan to depart from Earth for longer durations and further distances 

than ever before, they must be equipped with an increasingly large stockpile of resources in order to survive 

and thrive on their voyages. An alternative to this ‘bring everything’ approach, is to instead make use of 

the resources present at the various destinations, such as the Moon and Mars. This concept is known as in 

situ resource utilization (ISRU), and although the basic principle is not a novel idea [1], its numerous 
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demonstrations and theoretical implementations are emerging at a faster rate than ever before [2,3,4,5]. 

 

Previous ISRU studies have investigated a wide range of possibilities for extracting and utilizing materials 

from celestial bodies across the solar system, from rare earth elements on certain asteroids [6], to the 

constructional uses of regolith for radiation shielding on the Moon and Mars [7]. Much of this current 

literature regarding ISRU focuses on extracting volatile elements, chiefly oxygen and hydrogen, which are 

often locked away in the form of non-volatile minerals. The importance of these two resources cannot be 

understated, since they can be used not only as breathable air and potable water for human consumption 

but could also serve as propellant for rocket engines [5,8,9]. To that end, carbon also plays an important 

role in martian ISRU, since it can be combined with hydrogen to make fuel for methane-based rocket 

engines [10,11,12]. Extracting volatile elements and refining propellants on the surfaces of the Moon and 

Mars will significantly reduce the mass required to launch from Earth, and therefore the cost of spacecraft 

for interplanetary missions. That being said, we focus on an often overlooked volatile element that is present 

on the Moon, Mars and numerous asteroids: sulfur.  

 

A study by Vaniman et al. [13] illustrated possible uses for lunar sulfur, from sealants to electricity 

generation and storage. A series of experiments have also evaluated the mechanical properties and 

durability of concrete made from lunar soil simulant and elemental sulfur  [14,15]. Unfortunately the 

deterioration of such concretes due to simulated lunar thermal cycling and degassing under vacuum has 

reduced the interest in this application in recent years.   

 

Here, we will instead explore the physical and chemical pathways for manufacturing sulfuric acid (H2SO4) 

from native sulfur in order to dissolve silicate minerals, also native to these bodies. Doing so would produce 

considerable amounts of iron metal, silica, oxygen as well as other useful building materials for permanent 

human settlement in space. We call this methodology: The Silicate-Sulfuric Acid Process (SSAP). Although 

mineral processing for ISRU using sulfuric acid has been examined in the past [16, 17], harvesting oxygen 

from the less abundant mineral ilmenite (FeTiO3) was the main focus. In this paper, a variety of highly-

abundant silicate minerals are the principle focus for refinement into building materials. 

 

Using a relatively small investment of other volatile elements including carbon, oxygen, and hydrogen, this 

process could be carried out on the Moon, Mars, and many Asteroids. Although this initial investment could 

be costly, many of these elements can be found in situ especially for mission profiles where the primary 

goal is to extract water, such as on C-type asteroids, the lunar poles, and high-latitude locations on Mars. 

The other main invested volatile, carbon, is also found on C-type asteroids, as well as on the surface and 

atmosphere of Mars. Furthermore, we will show that the SSAP allows for inherent recycling of the invested 

volatile elements, for continuous reuse. 

  

1.1 Sulfur Availability 

 

In the ordinary and carbonaceous chondrite meteorite groups, which originated from S and C-type asteroids, 

respectively [18,19,20], sulfur is fairly abundant (~2.5 wt%). In ordinary chondrites it is almost entirely 
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contained in the mineral troilite (FeS) [21], while carbonaceous chondrites usually contain pyrrhotite (Fe1-

0.8S) and pentalandite ((Fe, Ni)9S8) instead [22]. Martian dust can contain 2.5 wt% sulfur [23], while sulfates 

(e.g. MgSO4, FeSO4) are regularly detected in martian soils [24,25]. On the Moon, troilite exists across 

most of the surface, although in comparatively low abundance (<0.5 wt%) [26]. In the permanently 

shadowed crater regions near the poles, the sulfur content could be as high as 1 wt% in the form of SO2 ice 

[27]. Although sulfur may not be one of the most abundant elements on these bodies, its presence as a minor 

element still offers an opportunity to utilize it. 

 

1.2 Silicate-Bound Resources 

 

 Silicate minerals are an obvious target for acid-driven dissolution, since they are abundant on 

essentially all terrestrial bodies. They usually exist in the general formula: αiSijOk; where α can represent 

Mg, Fe, Ca, Al, Na, K, or other metals present within the crystal lattice. On the Moon, silicate minerals 

mostly consist of plagioclase (CaAl2Si2O8), pyroxene ([Mg,Fe]2Si2O6) and some olivine ([Mg,Fe]2SiO4), 

totaling more than 70 vol% of the regolith [28]. Similarly, most soils on Mars have a total silicate abundance 

near 80 wt%, where it is also mostly composed of plagioclase, pyroxene and olivine [29]. On C-type 

asteroids, with similar mineralogies to CM and CI meteorites, silicates in the form of olivine and water-

bearing phyllosilicates, collectively account for between 75 and 95 % of the total weight [22]. Meanwhile 

S-type asteroids contain mostly olivine and pyroxene with some plagioclase, totaling between 75 and 90 

wt% of these bodies [30, 19]. Once the metal components in these minerals are liberated they would be 

extremely valuable and useful for building large structures and other essential hardware off-world. 

 Iron is a prime example since it is already widely used for building large structures here on Earth, 

particularly when it is combined with other elements to form steel. Currently, the only way to obtain steel 

off-world is to launch it into orbit from Earth, a very expensive means of construction. Alternatively, 

producing iron metal at the desired destination could significantly reduce mission costs when the goal is to 

make large, permanent structures and equipment in space. 

 Silica (SiO2), another main product of the SSAP, can serve as the precursor for fused quartz, which 

has been used as spacecraft windows on the Space Shuttle orbiters and the International Space Station [31]. 

Fused quartz is made by melting silica grains (~1650 °C) either under vacuum or in an inert atmosphere. 

Due to this high melting temperature, fused quartz can be used in some high temperature environments. 

This additionally makes it a possible candidate for constructing some of the equipment required for the 

processes we describe below.  

 As previously discussed, oxygen has obvious applications for human space exploration, since it 

can be used as breathable air. When carefully combined with hydrogen it can also be used as rocket 

propellant; otherwise it forms pure water for both human consumption and industrial processes. 

 The various oxides formed by the SSAP have an extensive variety of niche uses, possibly the most 

useful of which is the molten electrolysis of aluminum oxide to form pure metal. Although this refinement 

is not a focus of this paper, aluminum metal could feed into the fabrication of lightweight, high-strength 

alloys. 
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2. Physical and Chemical Pathways of the SSAP 

 

 The proposed Silicate-Sulfuric Acid Process consists of four main stages. The first stage contains 

optional pre-processing steps so that the SSAP can be compatible with other resource extraction methods 

such as water harvesting. The second stage entails the synthesis of sulfuric acid, either from indigenous 

minerals or from recycled sulfur, water and oxygen. The third stage then uses this sulfuric acid to dissociate 

the silicate minerals into silica and sulfate minerals; the former of which is a final product and is removed 

from further processing. The sulfates are then thermally decomposed, and some of their products reduced 

to form metal and simple oxides in the fourth and final stage. Each of these stages is discussed below in 

further detail. Fig. 1 provides an overview of the SSAP in the form of a flow diagram.  

 

 

Fig. 1. This flowchart illustrates the chemical reaction pathways for the SSAP, while also 

highlighting the recycling of oxygen, sulfur dioxide, carbon monoxide and water. For simplicity, 

this shows only the processing of fayalite (Fe2SiO4). Final products are signified by a green circle, 

input reactants are outlined by trapezoids, and named reactions steps (see text) appear in rectangles. 

The upper half of this figure shows two pathways for processing troilite, either through thermal 

decomposition (left) or acid-dissociation (right) when sulfuric acid is available.  
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For each of the reaction steps, we calculate the change in Gibbs free energy (ΔG), at 20 °C and 1 bar, from 

reported values in the NIST Standard Reference Database [32]. Eq. (1) shows this relation to enthalpy (H), 

entropy (S) and temperature (T). For the minerals that did not appear in this database, we compiled their 

thermodynamic properties from individual sources (listed in supplementary materials). Although this 

approach of combining multiple databases for comparison and calculation is not ideal, it does provide an 

estimate for the energy requirements at each step. 

 

ΔG = ΔH – TΔS  (1) 

 

We also calculate Gibbs free energy at pressures of 10-2, 10-5, and 10-8 bar (Gp) for each compound 

we assess, using Eq. (2), where R is the ideal gas constant, n is number of moles of gas, and P is 

pressure. From these Gp values, we also calculate the temperature-dependent equilibrium constant 

(Keq) at those pressures via Eq. (3). This enables us to predict the equilibrium composition of each 

reaction using Eq. (4) and (5), where a compound’s concentration is signified by square brackets 

(e.g. [A]). This is especially important for reactions that involve thermal decomposition, as we will 

show that performing these steps under vacuum can significantly reduce the temperatures required 

for the reaction to proceed. 

 

Gp = G + nRTln(P)  (2) 

 

Keq =𝑒
(
−𝛥𝐺𝑝

𝑅𝑇
)
                (3) 

 

 Keq = 
[𝑋]𝑥[𝑌]𝑦

[𝐴]𝑎[𝐵]𝑏
            (4) 

 

aA +bB = xX + yY       (5) 

 

 

2.1 Pre-processing 

  

Ideally the first step in the SSAP consists of mechanically crushing larger silicate rocks to reduce the 

average particle size, which would allow for a quicker reaction with the sulfuric acid. This can be bypassed 

if regolith is used instead of large boulders or rocks. The bulk material should also be magnetically separated 

to extract native Fe-Ni metal grains present on the Moon and some asteroids [21, 28]. Although these metal 

grains could be processed along with the silicates, doing so would be redundant as iron metal is an end 

product of the SSAP. Magnetic separation on the Moon could also separate the weakly magnetic mineral 

ilmenite from the silicates, which can separately be reduced into iron metal, titanium oxide and oxygen 

[33,34,35].  
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As we discussed earlier, water is possibly the most valuable resource to be harvested off-world. To avoid 

further complicating its extraction, water-bearing minerals and regoliths can be heated, and their evolved 

vapors collected in a cold trap, prior to the rest of the material being subjected to the SSAP. On the Moon, 

this means that water-ice rich regoliths [36] should be heated to 150 °C in order to sublimate the ice into 

vapor [37]. For C-type asteroids, the phyllosilicates should be heated to liberate the lattice-bound OH- 

molecules [38], which will also recrystallize much of the phyllosilicates into olivine [39]. Alternatively, if 

sulfuric acid were applied to water-bearing ores prior to heating, the silicates would still dissociate but the 

aqueous solution will be more dilute, which would likely slow the reaction rate.  

 

2.2 Sulfuric Acid Synthesis 

 

The sulfuric acid synthesis stage of the SSAP consists of thermal decomposition of sulfide minerals, 

followed by the industry-proven wet sulfuric acid process (WSA) [40], which creates sulfuric acid from 

sulfur-bearing gases.  The main ore for sulfur on the Moon and S-type asteroids comes in the form of troilite 

(FeS), whereas for C-type asteroids, the slightly more sulfur-rich pyrrhotite (Fe(1-0.8)S) is the dominant 

sulfide mineral [22]. For simplicity in our description we assume that the sulfides appear in their 

stoichiometric flavor troilite (FeS). For Mars, the main sulfur-ore consists of sulfates (e.g. MgSO4, FeSO4) 

which can be heated to release SO2 gas and form solid oxides (discussed later in Reaction 8).  

 

 

2 FeS (s) + 284 kJ mol-1           →  2 Fe (s) +  S2
 (g)    (R1) 

S2 (g)       + 2 O2 (g)  →  2 SO2 (g) + 680 kJ mol-1  (R2) 

2 SO2 (g) + O2 (g)  →  2 SO3 (g) + 142 kJ mol-1  (R3) 

2 H2O (l) + 2 SO3 (g)   →  2 H2SO4 (aq) +   90 kJ mol-1  (R4) 

 

Reaction 1 shows the thermal decomposition of troilite and yields both iron metal and sulfur gas by heating 

to approximately 1250 °C in vacuum. More sulfur-rich minerals such as pyrrhotite and pyrite will begin 

releasing their sulfur component before this temperature [41]. This decomposition has been explored in 

meteorite heating experiments [38] which show that CM chondrites undergo a minor sulfur volatilization 

event around 550°C, followed by a major outgassing event at 1200 °C. In these experiments, the sulfide 

minerals were not separated from the rest of the meteorite sample when they were heated and formed SO2 

gas rather than pure S2. It is unclear how much, if any of the iron in the sulfides was oxidized into Fe2O3 or 

Fe3O4 in this more oxygen-available environment. If the sulfide minerals were instead isolated from the rest 

of the bulk material before they were heated, the resultant gas would more likely be comprised of pure 

sulfur, while the iron within the sulfides would not likely be oxidized, resulting in pure iron metal. This 

iron metal is the first product harvested from the SSAP. 

 

If pure sulfur gas is produced in Reaction 1, it must be exothermically combined with oxygen to yield sulfur 

dioxide (Reaction 2). If the thermal decomposition of the sulfide minerals results instead in sulfur dioxide, 

then Reaction 2 can be bypassed. The sulfur dioxide is then subjected to the WSA process (Reactions 3-4), 

whereby the gas is oxidized in the presence of a vanadium oxide catalyst between 400 and 620 °C (Reaction 
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3), in order to form sulfur trioxide. It is important to note that this catalyst is not depleted during the reaction 

and can be reused. The resulting sulfur trioxide is then exothermically hydrated before being condensed to 

form highly concentrated sulfuric acid in Reaction 4. Although Reactions 2-4 require an investment of 

oxygen and hydrogen, we will show in later stages that they will be recovered and can be reused, such that 

no volatiles are lost or wasted. 

 

Alternatively, pre-existing sulfuric acid either brought to location or created in earlier processing, can be 

reacted with troilite to produce iron sulfate and hydrogen sulfide gas (Reaction 5).  The resulting gas can 

then be burned with oxygen to form water and sulfur dioxide (Reaction 6), both of which are used in the 

above reactions to produce sulfuric acid. The processing of the iron sulfate in Reaction 5, will be elaborated 

on further in the next subsection. This alternative approach may be more logistically feasible since the 

sulfide and silicate minerals would not need to be separated prior to their reaction with the acid. This 

approach would also be ideal on the martian surface, as the main sulfuric ores are various sulfates [29] that 

should dissolve in sulfuric acid. 

 

 

FeS (s) + H2SO4 (aq)   → FeSO4 (s) + H2S (g) + 103 kJ mol-1 (R5) 

H2S (g) + 3/2 O2 (g)   → H2O (g) + SO2 (g) + 504 kJ mol-1 (R6) 

 

2.3 Silicate Dissolution and Silica Extraction 

 

Once the sulfuric acid is synthesized, the SSAP proceeds to the next stage: silicate dissolution. By 

combining the acid with the silicate minerals (Reaction 7), this stage produces silica, water, and sulfate 

minerals; the last of which will be broken down further in final stage of the SSAP. The reactions between 

the silicates and the acid are listed in Table 1.  

 

αiSijOk (s) + H2SO4 (aq)→ αmSO4 (aq/s) + H2O (l) + SiO2 (s)  (R7) 

 

Although we list the pure end-members of these minerals, nearly every silicate grain native to terrestrial 

bodies is actually a solid solution, with a varying proportion of the appropriate metal cation coexisting in 

the same crystal lattice. It is for simplicity that we examine the reactions of the pure end members with 

sulfuric acid. 

 

A suite of previous experiments describe in detail, the acid-silicate reactions listed in Table 1 

[42,43,44,45,46]. The results of these experiments show the general trend that the silicate minerals are 

broken down into a hydrated amorphous silica gel, while the cations (Fe, Mg, etc.) are released into the 

water-acid solution and eventually precipitate into their hydrated sulfate counterparts. Minor amounts of 

iron oxides also form from olivine when the initial aqueous sulfuric acid solution is less concentrated [43]. 

The mixture should be mechanically perturbed or mixed to prevent a nonreactive product layer to form on 

the surface of unreacted silicate grains. Since previous experiments did not mix or perturb the rock-acid 

mixtures, it is unclear exactly how quickly this step will progress. 
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Table 1. The generalized reactions between sulfuric acid and the end-members of each silicate mineral. 

Change in Gibbs free energy was calculated for 20 ºC at 1 bar. The silica and sulfate products will both 

precipitate and be dissolved in solution depending the conditions of the reaction chamber. The negative 

values for ∆G in this table indicate that each reaction is exothermic and will proceed under standard 

temperature and pressure. 

 

Reactants  

 

 

 

 

 

 

→ 

 

Products 

Silicates 

(s) 

Sulfuric Acid 

(aq) 

Water 

(l) 

Silica 

(s/aq) 

Sulfates 

(s/aq) 

∆Gº  [kJ mol-1]  

(20 °C, 1 bar) 

Mineral Endmember Formula      

Olivine Fayalite Fe2SiO4 2 H2SO4  2 H2O     SiO2 2 FeSO4 -292 

Forsterite Mg2SiO4 2 H2SO4  2 H2O     SiO2 2 MgSO4  -258 

Pyroxene Ferrosilite Fe2Si2O6 2 H2SO4  2 H2O 2 SiO2 2 FeSO4 -1220 

Enstatite Mg2Si2O6 2 H2SO4  2 H2O  2 SiO2 2 MgSO4  -270 

Wollastonite Ca2Si2O6 2 H2SO4  2 H2O 2 SiO2 2 CaSO4 -2080 

Plagioclase Anorthite CaAl2Si2O8 4 H2SO4 4 H2O 2 SiO2 CaSO4,  

Al2(SO4)3 

-2250 

 

   

Once all of the initial silicates have reacted with the acid, the fluid can be evaporated such that any excess 

water or acid can be collected for later use. The evaporation will cause the ions in the solution to precipitate 

into the sulfates listed in Table 1. At this point most of the solid products will still likely contain water and 

can be dehydrated by heating to 100 °C under vacuum. This released water can be immediately reused in 

Reaction 4. This step of separating water and unreacted acid from dissolved components is one of 

the key factors that will determine the overall efficiency of the entire SSAP in terms of energy. 

Adding more acid-water solution at the beginning of Reaction 7 will cause it to progress more 

quickly; however this also requires more energy to evaporate the remaining liquid. In later sections 

we estimate discuss efficiency bottlenecks for the SSAP. 

 

2.4 Metal and Oxide Production 

 

The final stage of the SSAP produces iron metal, oxygen, as well as metal oxides, via thermal 

decomposition and carbothermal reduction. The sulfates previously produced in Reaction 7 (Table 1) can 

be intermixed for this next step, since calcium, aluminum, magnesium and iron(II) sulfate each have distinct 

thermal decomposition temperatures. Heating the sulfates will decompose the iron(II) sulfate into iron(III) 

oxide (Fe2O3), sulfur dioxide, and oxygen, as shown in Reaction 8 (Table 2). Simultaneously, the aluminum 

sulfates will decompose into aluminum oxide, sulfur dioxide and oxygen. Since iron(III) oxide is 
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ferromagnetic, while aluminum oxide, calcium and magnesium sulfate are diamagnetically susceptible, the 

iron(III) oxide can be magnetically separated before further heating. The remaining magnesium and calcium 

sulfates will thermally decompose into their corresponding metal oxides at higher temperatures. The 

equilibrium compositions for each of these reactions is shown in Fig. 2. Further refining these oxides into 

pure metals (Al, Mg, Ca) is not addressed in this work; we will only describe the extraction of iron metal 

from iron(III) oxide.  

 

αiSO4 (s) → αmOj (s) + n O2 (l) + SO2 (g)   (R8) 

 

Table 2. Generalized thermal decomposition reactions for produced sulfates. The Oxides described here 

are in their simple form (MgO:Magnesia, Al2O3:Alumina). The positive values attained for ∆Gº indicate 

that heat-energy is required for the reaction to proceed (see Fig. 2). These reactions are collectively 

referred to as Reaction 8. 

 

Reactants  

 

 

 

→ 

 

Products 

Sulfate 

(s) 

Sulfur Dioxide 

(g) 

Oxygen 

(g) 

Oxide 

(s) 

∆Gº [kj/mol] 

(20 °C, 1 bar) 

2 FeSO4  2 SO2  ½ O2  Fe2O3 306 

2 MgSO4  2 SO2      O2  MgO 557 

2 CaSO4  2 SO2      O2  CaO 868 

 Al2(SO4)3  3 SO2   3/2 O2  Al2O3 621 

 

The gases produced in Table 2 can be collected and reused in Reactions 2 and 3 to produce more sulfuric 

acid. Although not all the invested oxygen is recovered from iron(III) oxide the final steps will net a 1 mole 

surplus of O2. 

 

Iron metal is produced by reducing iron(III) oxide using carbon monoxide in Reaction 9. Although Chen et 

al. [47] show that this process consists of multiple steps:  Fe2O3 →  Fe3O4 →  FeO →  Fe, oxidizing the 

ambient CO atmosphere all along the way, we forgo these intermediates and represent the reaction more 

concisely. 

 

Fe2O3 (s) + 3 CO (g)     →  2 Fe (s) + 3 CO2 (g)  + 28 kJ mol-1 (R9) 

                                                                    CeO2 Catalyst 

3 CO2 (g) + 772 kJ mol-1 → 3 CO (g) + 3/2 O2 (g)   (R10) 

 

 

The final step of the SSAP is to recover the oxygen locked away in the carbon dioxide at the end of Reaction 

9, while also replenishing the supply of carbon monoxide for repeating the very same reaction. This is done 

by electrolyzing CO2 with a cerium oxide catalyst near 500 °C [48], shown in Reaction 10. We would like 

to note that the energy required that we list in Reaction 10 is likely an overestimate since we do not consider 

the effects of the catalyst in our calculations. Now that the CO gas has been replenished for repeat use, 1 

mole of O2 has also been created for every 2 moles of iron metal produced, and the SSAP is complete. 
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3. Results and Discussion 

 

We have calculated the theoretical yield of the SSAP for each terrestrial body listed in Table 3. We assume 

an initial silicate mass of one ton, with mineral chemistry and abundance representative of each particular 

body. By taking the product of each mineral’s abundance and its end member molar percentage, we 

calculated the total number of moles of each silicate end member. With this, we use Reactions 7-10 to 

 

Fig. 2. The calculated equilibrium compositions for each major sulfate species at 1 bar (left column) and 

10-8 bar (right column). This shows the general trend that reducing the ambient pressure lowers the 

temperatures required for the reactions to proceed. Note the legend at the bottom of the figure. The Y axes 

represent molar abundance of each compound. 
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calculate how many moles, and by extension kilograms, of each resource could be produced from the SSAP. 

For H, L, and LL chondrites (S-type asteroids) we obtained average mineral abundances from [30], and 

mineral compositions from [49,50,51]. For C-type asteroids we used mineral data reported by [22] for the 

meteorites: Murchison, Orgueil and Allende (CM, CI, CV chondritesrespectively). The C and S-type 

asteroid calculations include contributions from native sulfides. For the lunar highlands and mare 

calculations, we averaged the bulk chemical compositions reported in [28] including  the ilmenite and 

sulfide contributions. This calculation assumes that the ilmenite cannot be separated by pre-processing and 

is included in the silicate dissolution step (Reaction 7). For the martian calculations we averaged the values 

reported in [29] across both models and localities (Gusev and Meridiani), but we did not include 

contributions from native sulfates, which would increase the total yield of iron metal and oxygen. 

 

Table 3. Theoretical yield for various solar system bodies, assuming 100% efficient processing of 1000 kg 

of native silicates. The Oxides described here are in their simple form (e.g. MgO:Magnesia, Al2O3:Alumina, 

etc.) 

 

Body Recoverable Resource [kg] Reference 

Luna Fe 

(metal) 

O2 SiO2 Al2O3 MgO CaO H2O TiO2  

Mare 143 31 492 143 100 123 - 46 [28] 

Highlands 53 13 475 237 85 142 - 8 [28] 

Mars 121 35 514 124 77 96 - - [29] 

Asteroids    

C-type  

(CI-Orgueil 

mineralogy) 

65 3 430 - 436 - 118 - [22] 

C-type  

(CM-Murchison 

mineralogy) 

375 125 260 - 174 - 87 - [22] 

C-type  

(CV-Allende 

mineralogy) 

267 53 393 4 359 2 - - [22] 

S-type  

(H Chondrite 

mineralogy) 

132 27 509 25 323 20 -  - [30,49,50,51] 

S-type  

(L Chondrite 

mineralogy) 

170 35 490 22 308 20 - - [30,49,50,51] 
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S-type  

(LL Chondrite 

mineralogy) 

164 40 473 21 304 18 - - [30,49,50,51] 

 

 

 3.1 Products and Uses 

 

Our calculations show that a significant quantity of building material can be obtained on the Moon, Mars, 

and asteroids (Fig. 2). Table 3 shows that CM-like C-type asteroids are the most fruitful candidate for the 

SSAP, as it would produce the most iron metal and oxygen, with harvested water being an added benefit. 

Resource utilization on S-type asteroids would particularly benefit from the SSAP, as they would be 

otherwise considered relatively resource-poor, due to their lack of native water, while also hosting a 

relatively high abundance of sulfur. For some C-type asteroids, we list water as a SSAP-product only 

because their silicates contain significant native water that is incidentally released, otherwise water is not a 

product of the SSAP. For lunar operations, the lunar mare would be preferable to the lunar highlands in 

terms of a more useful product yield, since it is more highly concentrated in iron which can be used in 3D 

printing (discussed below).  As for the longevity of SSAP operations at a destination, Mars may be the best 

candidate since it has abundant water ice as well as the highest relative abundances of carbon and sulfur. 

This would allow for higher tolerances in volatile loss. 

 

On the lunar surface, the SSAP could considerably contribute to the Artemis program’s goals of establishing 

a sustainable presence on the surface on the Moon, by providing some building materials in situ.  The 

produced iron metal will likely take the form of small particles, which can be used as the feedstock for 

direct metal laser sintering to 3D print components or structures including landing pads, radiation shields, 

or electrical wire. The silica produced here will also likely be in granular form, which can be melted in a 

cast to produce windows for future habitats. Alumina is a natural insulator of  electricity, making it ideal 

for encasing power cables for extra-terrestrial solar power plants. As we mentioned earlier, alumina could 

be further reduced into aluminum metal, although this pathway is beyond the scope of the SSAP. 

 

We envision a logistical framework, whereby a cargo spacecraft could deliver to a planetary surface: a 

metal 3D printer, a casting furnace, and a SSAP-refinery including some initial sulfuric acid, water, and 

carbon dioxide. The refinery could begin producing silica for the furnace and iron for the printer, to 

construct the hull or main body of a habitat in situ. Later cargo missions can deliver robotic workers and 

more specialized components such as airlock doors or life support systems to be installed. Although the 

mission architecture for the Artemis program prescribes an Earth-fabricated habitat, any attempts at 

permanent human settlement will likely require a process to create infrastructure in situ. 
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3.2 Engineering and Logistical Considerations 

 

Although most of the steps within our proposed process are supported by a suite of previous experiments 

including some industry-proven methodologies, its effectiveness should be validated by performing these 

techniques on lunar, martian, and asteroid regolith simulants. These experiments will help to determine 

reaction rates and will characterize some of the engineering challenges that will inevitably become apparent.  

 

The first experimental validation should be focused on the feasibility of processing the bulk material, not 

solely the silicates, for a given locale. For instance, the magnetic force required for collecting native iron 

metal and iron oxide must be determined. This is especially important for martian regolith, which contains 

considerable iron oxide. Once the separation is complete, the remaining non-magnetic material should be 

dissolved in acid (Reaction 7) to determine what problems, if any, might arise from insoluble impurities 

while also characterizing the reaction rate. Previous experiments [46] also indicate that Reaction 7 

progresses more quickly if the temperature is slightly elevated. Keeping Reaction 7 in thermal contact with 

Reaction 8 (thermal decomposition) may be an efficient way to conserve energy.  

 

The overall efficiency of the SSAP will be heavily influenced by the efficiency of Reaction 7. The less 

water and mechanical perturbations required to fully react the silicates (or non-magnetic material) will 

reduce the overall energy requirements for this step. Unfortunately we cannot accurately calculate the total 

energy required to enact the SSAP from start to finish, as it is unclear which hydrated sulfates would form 

(monohydrate, pentahydrate, etc.) in Reaction 7. Additionally, an accurate calculation would require 

knowledge of the power and duration needed to operate the vacuum systems in Reaction 8. These reasons 

underline the need for experimental investigation in the future. 

 

As we briefly mentioned in the previous subsection, the long term viability of the SSAP will also depend 

on how much of the volatile compounds can be retained, especially when trapping evolved gases in 

Reaction 8. Having the ability to replenish volatile elements (sulfur, oxygen, carbon, hydrogen) in situ will 

alleviate strict leak tolerances for the processing equipment. This makes Mars and C-type asteroids more 

forgiving in terms of volatile loss, while the Moon and S-type asteroids are relatively volatile poor and 

therefore less forgiving. Striking a balance between chamber pressure and heating in Reaction 8 will also 

influence energy efficiency and volatile loss. As Fig. 2 shows, decreasing overbearing pressure during 

sulfate decomposition will also decrease the temperatures required to drive off the sulfur-bearing gases, but 

will also require a more robust and energy intensive vacuum system. Validation experiments should 

explore this balance to determine which pressure and temperature profiles are most efficient to fully 

decompose the sulfates. 

3.3 Comparison to other ISRU Methodologies 

 

Although we cannot accurately calculate the energy requirements of the SSAP, we can qualitatively 

compare its inherent strengths and weaknesses to a collection of other ISRU techniques: molten salt 

electrolysis (modified FCC Cambridge Process), vapor phase pyrolysis, and hydrogen reduction. An 

inherent advantage that all of these methods have over the SSAP, is their experimental characterization. 
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Molten salt electrolysis [52,53], specifically one modified for lunar surface operations [54] can essentially 

reduce all oxides and silicates into metallic alloys, while also releasing nearly all the oxygen present. This 

benefit comes at the cost of the required operating temperature. While the SSAP will need to reach similar 

operating temperatures as this approach (~950 °C), this is only the peak temperature required, while salt 

electrolysis will need to maintain this temperature for the duration of the process. Special consideration will 

also need to be taken when choosing which salt and anode to use such that they are not depleted or corroded 

respectively, though this concern is relatively minor. 

 

Like salt electrolysis, vapor phase pyrolysis [55,56,57] can also reduce the native minerals into metals while 

also liberating all the oxygen. A major benefit of pyrolysis is its relative simplicity: heating up the rocks 

they vaporize. This heating however is also the major drawback, since the temperatures required are in 

excess of 2000 °C.  

 

Another approach for reducing minerals into metals, while also harvesting oxygen involves using hydrogen 

[34] on the bulk material. This process works mostly on ilmenite, reducing it into titanium oxide and iron 

metal, while releasing some oxygen (~5 wt% [58]) at the same time. Unfortunately this approach has a 

lesser effect on silicates. This approach also requires operating temperatures which are slightly higher than 

the SSAP’s peak temperature. An advantage to this approach is its simplicity compared to the SSAP and 

could conceivably be performed as a pre-processing step for the SSAP. 

 

4. Conclusions 

In this paper, we have presented the physical and chemical pathways for the proposed Silicate-Sulfuric 

Acid Process, which aims to manufacture building materials from abundant resources found in situ on major 

planetary bodies such as the Moon, Mars and asteroids. Although this approach has not yet been tested, it 

allows for inherent recycling of volatile elements, such that little to no material must be supplied after the 

initial investment. This proposed ISRU approach could provide substantial building materials including 

iron metal for 3D printing, silica for window construction, as well as modest amounts of oxygen gas. The 

next step for further investigating the utility of the SSAP lies in experimental validation. 
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equlibrium constant graph we plot 3 vertical lines: 1 solid black at Keq = 1, and 2 dotted black 

lines at Keq = 0.01; 100. These arbitrarily show where the reaction will contain significant 

amount of both reactants and products. 
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SM Table 1. List of sources for thermodynamic data. All compounds not listed here were 

sourced from NIST Chemistry Webook [32]. 

 

Compound Reference 
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Fe2Si2O6 [65] 
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Chapter VII: Conclusions 

 

 Work Done 

 

The work outlined in this thesis has completed three main accomplishments: 1) The recovery of an observed 

meteorite fall using drones and machine learning; 2) Characterizing an orbital meteorite recovered by the 

Desert Fireball Network; 3) Devise a new methodology for harvesting useable resources on the Moon, Mars 

and Asteroids. The first accomplishment has alleviated the final bottleneck for meteor(oid/ite) science in 

the Desert Fireball Network, allowing us to now recover meteorites at much faster rate, and at a far lower 

cost of both time and effort. Where before, an orbital meteorite would be recovered with 300 labor-days of 

effort, we reduced this to 12 labor-days (though this may be an optimistic estimate based on only 1 attempt, 

which happened to be a success). Another advantage with this approach is its portability to other meteorite 

fall locations, since it relies on easily obtained, local image data to train the neural network to peak 

performance. The second accomplishment outlined in this work, has allowed meteoriticists another 

perspective viewing the dynamical and geochemical nature of small bodies and asteroidal debris in the solar 

system. Although Murrili inhabits a well-studied place in meteoritics (equilibrated H chondrites), it 

constitutes another brick laid into the foundation of understanding how small debris is created, then 

transferred all across the solar system. Its anomalous impact-shock features also indicate a lack of current 

understanding regarding how impact shock pressure is propagated through the fabric of chondritic 

meteorites. The third accomplishment that I have presented here, outlines and explores the possible uses of 

extra-terrestrial sulfur, specifically when it is repurposed as sulfuric acid. In that chapter I explore often 

overlooked components of extra-terrestrial ores that would prove to be invaluable in the context of a space-

based economy. 

 

 Work To Do 

 

Although this thesis contains a plethora of completed works and new techniques, like any good science 

project, the work has really just begun. For the new meteorite searching approach, a few bottlenecks still 

remain, the most prohibitive of which involves verifying 3rd stage candidates. The current system requires 

a drone pilot to manually type a list of GPS coordinates (the locations of meteorite candidates) into the GS 

Pro app before launching the automated flight mode, in which the smaller Mavic Pro visits each waypoint 

for a follow up inspection. This pre-flight setup often takes nearly as long as the flight itself and does not 

currently feature a shortest-path or ‘traveling salesperson’ algorithm to minimize flight time. Furthermore, 

our searching framework would greatly benefit from increased person-mobility in the context of 4th stage 

meteorite candidate elimination. Considering that current team members must walk, sometimes more than 

1 km, to make an in-person visit to finally confirm or eliminate a candidate's meteorite status, an electric 

mountain bike with reinforced tires would easily expedite this final step. Adjustments should also be made 

to reduce the number of false positives users must sort, while also optimizing the machine learning code 

such that data processing would ideally keep in pace with data collection. Other small improvements can 

also be made to the python code which makes the entire system possible. Improvements such as a user 

interface that allows users to run particular pieces of code and process data would massively expand the 

accessibility of this system to other meteorite hunters around the globe.  

 

The characterization of collected meteorites will continue and continue to advance our understanding of 

small debris in near earth space. Although ordinary chondrites are unfairly considered by some 

meteoriticists to be ‘boring’, constructing a dataset with in-depth details from a wide array of analytical 

techniques, across dozens or hundreds of these extraordinary chondrites will undoubtedly illuminate the 
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connection between meteorites and their asteroidal origins, and could unravel secrets of low-gravity impact 

processing.  

 

The Silicate Sulfuric Acid Process awaits the next obvious step: experimental characterization. An 

experiment campaign targeting ordinary chondrites, carbonaceous chondrites, and Martian and Lunar 

regolith simulants would first characterize which minerals could be magnetically separated from the rest of 

the mostly silicate ore. The next step is the most crucial, where we would characterize the efficiency at 

which sulfuric acid dissolves the remaining non-magnetic ore. From there, we would explore the outgassing 

behaviour of the sulfate products and specifically try to decompose iron(II) sulfate into iron oxide, for 

further reduction into iron metal.  
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Appendix A (Meteorite Searching Code) 

 

 

# -*- coding: utf-8 -*- 

""" 

Created on Thu Sep  6 22:26:21 2018 

 

@author: seamus (seamus.anderson@postgrad.curtin.edu.au) 

 

 

This is the main function library for the machine learning side othe drone searching process. 

 

 

 

 

 

Function overviews: 

  

 

 img_splitter(IMG, shape): 

  This function takes an image and splits it into more images, specified by the 'shape' 

input  

  and returns a list containing the smaller patches of the larger image. 

  

 predict_and_highlight(model_path, folder, input_shape, pred_thres=0.9, silent=True): 

  This function takes an image and splits it into more images, specified by the 'shape' 

input  

  and returns a list containing the smaller patches of the larger image. 

  

 list_files(folder, f_type='.jpg'): 

  Takes a folder and file extention, and returns all the filenames (fullpaths) in that 

  directory with that extention. 

 

 add_mets_to_tiles(met_folder, tile_folder, dest_folder, resize_lim=5): 

  This takes a folder of meteorite images and a folder of tile images. For each tile image, 

it  

  randomly selects a meteorite and overlays it onto the tile with a random orientation,  

  random size at a random location. Also saves the images into a given destination 

folder. 

   

 make_synth_set(img_folder,  

       met_folder,  
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       save_folder,  

       img_shape  = (100,100),  

       met_size_lims = (20,50) ): 

  Makes a synethic training set, using a folder with background images, folder of 

  meteorite images, and name of where to save the new images. 

 

""" 

 

import pandas as pd 

import matplotlib.pyplot as plt 

 

import os 

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'    

os.environ['TF_ENABLE_AUTO_MIXED_PRECISION'] = '1'  

import sys 

import csv 

import PIL 

import time 

import keras 

import shutil 

 

import datetime 

import numpy   as np 

#import matplotlib.pyplot as plt 

from datetime import datetime as dtm 

from PIL import ImageDraw, ImageFont, ImageFilter, ImageEnhance 

from os.path import split as osplit 

from os.path import join  as ojoin 

 

from keras  import regularizers 

from keras.models import Sequential 

from keras.layers import Conv2D, MaxPooling2D, Activation, Dropout, Flatten, Dense, 

normalization, AveragePooling2D 

 

from keras.preprocessing.image import ImageDataGenerator 

from keras.callbacks import ModelCheckpoint, EarlyStopping 

import multiprocessing as mp 

from multiprocessing import Pool 

 

import random 

 

 # This allows for other proccess to run on the GPU 
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 #  You may want to block this out or change it depending on your system 

from keras.backend.tensorflow_backend import set_session 

import tensorflow as tf 

config = tf.ConfigProto() 

config.gpu_options.allow_growth = True 

config.log_device_placement  = True 

sess = tf.Session(config=config) 

set_session(sess) 

 

 

 

#####################################################################################

################################# 

#####################################################################################

################################# 

#####################################################################################

################################# 

 

 

 

def list_files(folder, f_type='.jpg', exclude=None): 

 '''Takes a folder and file extention, and returns all the filenames (fullpaths) in that 

     directory with that extention. 

      

    ** NOTE this can work for any sub-dir or file if you replace the extention with what ** 

  * you want to look for         

        * 

  

 Inputs: 

   folder  [str]   full path to the folder to be searched 

   f_type  [str]   file extention including the '.' 

   exclude [str]   key char/string to exclude when looking for files 

    

 Outputs 

   files [list] full path to files containing 'f_type' extention, sorted 

 ''' 

   

  # List contents of the given 'folder' 

 contents = os.listdir(folder) 

  # Prep list for files to be extracted 

 files = [] 

  # Loops through all the items found in 'folder' 
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  #  adds them to the return list 'files', if file extention matches 

 for i in range(len(contents)): 

  if(f_type.upper()  in contents[i].upper()): 

   files.append(os.path.join(folder, contents[i])) 

  if((exclude != None) and (exclude.upper() in contents[i].upper())): 

   files.remove(os.path.join(folder, contents[i])) 

 

 

 

 return sorted(files) 

 

 

 

#####################################################################################

################################# 

#####################################################################################

################################# 

#####################################################################################

################################# 

 

 

 

def copy_files(src_dir, dest_dir, num, prefix='', contains=None, random=True, move=False): 

 '''Simple copy function (great for revolver training), it randomly grab files from a dir and 

copies 

 them to a new one. Option to move instead of copy. 

  

 Inputs: 

   src_dir  [str]   directory with images to copy/move 

   dest_dir  [str]   directory images are copied to 

   num   [int]   number of files to move 

   prefix  [str]   Optional add string to front of copied filename 

   contains [str]   Optional check for string in image names 

   random  [bool]  True if you want to randomly select 

   move  [bool]  True if you want to move instead of copy 

  

 Outputs: 

   [void] 

  

 Dependencies: 

   list_files() 
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 ''' 

  

  

 if(contains != None): 

  fnames = list_files(src_dir, contains) 

 else: 

  fnames = list_files(src_dir) 

  

  # Make dest dir 

 if(not os.path.exists(dest_dir)): 

  os.mkdir(dest_dir) 

  

  # Optional shuffle 

 if(random == True): 

  np.random.shuffle(fnames) 

   

 if(num > len(fnames)): 

  num = len(fnames) 

  

  # Actually move 

 for i in range(num): 

  dest_fname = os.path.join(dest_dir, (prefix + os.path.split(fnames[i])[1])) 

  

  if(move == True): 

   os.rename(      fnames[i], dest_fname) 

    

  else: 

   shutil.copyfile(fnames[i], dest_fname) 

  

 return 

 

 

 

 

#####################################################################################

################################# 

#####################################################################################

################################# 

#####################################################################################

################################# 
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def img_splitter(img_array, tile_shape=(125,125), stride=70, img_num=None): 

 '''This function takes an array and returns tiles of size 'tile_shape' with overlap characterized 

by 'stride'.  

  This is usually used for make_synth_set() and predict_and_highlight(). 

  

 Inputs: 

    img_array  [array] the image to be split, in array format 

    tile_shape [tuple] size (y, x) of the tiles to be created 

    stride   [int]   number of pixels to stride over in each dimension, before 

making a new tile 

 Outputs: 

    tiles    [list]  each element contains a 2d array, which is the cropped 

tile 

    xys  [list]  each element contains a 1d array, which is the corners 

[y1,y2,x1,x2] of the tile in the original image 

 ''' 

  # Don't mess with the original image 

 img = np.copy(img_array) 

  

  # Preparing the returns 

 tiles = [] 

 xys   = [] 

  

  # Window width for x and y 

 wy = tile_shape[0] 

 wx = tile_shape[1] 

  # Number of times to stride through the image  

 y_num = (img.shape[0] // stride) - (wy // stride) 

 x_num = (img.shape[1] // stride) - (wx // stride) 

 

  # Keep track of image number (depreciated) 

 if(img_num == None): 

  img_num = 0 

  

  

  # Start splitting from the top right corner of the image 

  #  splitting most of the image 

 for i in range(y_num): 

  y1 = i * stride 

  y2 = i * stride + wy 
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  for j in range(x_num): 

   x1 = j * stride  

   x2 = j * stride + wx 

    

   tiles.append( img[y1:y2, x1:x2]) 

   xys.append(np.array([y1,y2, x1,x2, img_num])) 

    

    

  # Right edge of the image    

 for i in range(y_num): 

  x1 = img.shape[1] - wx   

  x2 = img.shape[1]     

  y1 = (i * stride) + ( img.shape[0] - ((y_num - 1) * stride + wy)) 

  y2 = y1 + wy 

   

  tiles.append( img[y1:y2, x1:x2]) 

  xys.append(np.array([y1,y2, x1,x2, img_num])) 

 

 

  # Bottom edge of the image 

 for i in range(x_num): 

  x1 = (i * stride) + ( img.shape[1] - ((x_num - 1) * stride + wx) ) 

  x2 = x1 + wx 

  y1 = img.shape[0] - wy 

  y2 = img.shape[0] 

   

  tiles.append( img[y1:y2, x1:x2]) 

  xys.append(np.array([y1,y2, x1,x2, img_num])) 

 

 

 

 return tiles, xys 

 

 

 

 

#####################################################################################

################################# 

#####################################################################################

################################# 

#####################################################################################

################################# 
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def make_false_set(set_dir, dest_dir, stride=125, tile_shape=(125,125), img_lim=60): 

 ''' 

 This function makes false tiles out of whole images. Within 'set_dir' there should be a subdir 

'false_imgs', which contains images with no meteorites. 

 There can also be a file within 'set_dir' called 'false_regions.txt' with callouts for false regions 

in the images in 'set_dir'. Format should reflect ImageJ output 

  

 Inputs: 

   set_dir  [str] fullpath to dir where source images are stored 

   dest_dir [str] fullpath to dir where the tiles will be saved 

   stride  [int] stride in which the kernel moves over the image 

(current presets allow for no overlap) 

   tile_shape [tuple] shape of output tiles (2D) 

   img_lim     [int]   limit to the number of fully false images to use for tiles (some 

sets have >400 false_imgs)  

   

 Outputs: 

   void 

  

 ''' 

  

  # Create ouput dir if it doesn't exist 

 if(not os.path.exists(dest_dir)): 

  os.mkdir(dest_dir) 

 

  # Allocate sub-function splitting and saving tiles 

 def split_n_save(fname, dest_dir, stride=50, tile_shape=(125,125)): 

  img_arr = np.asarray(PIL.Image.open(fname)) 

   # Split images 

  tiles, xys = img_splitter(img_arr, stride=stride, tile_shape=tile_shape) 

   # save each tile 

  for j in range(len(tiles)): 

      # set name,                                        # img name                                    

# num 

   sname = os.path.split(set_dir)[1] + '__' + os.path.split(fname)[1].split('.')[0] + 

'__' + str(j) + '.jpg' 

   sname = os.path.join(dest_dir, sname) 

   tile  = PIL.Image.fromarray(tiles[j]) 

    # Randomly adjust brightness 

   factor = np.round((np.random.random() + 0.5), 2) 
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   enhan  = ImageEnhance.Brightness(tile) 

   ntile  = enhan.enhance(factor) 

   ntile.save(sname) 

    

  return len(tiles) 

   

   

   

 

 ''' Create tiles from /false_imgs subdir ''' 

 '''--------------------------------------''' 

  

 false_dir = os.path.join(set_dir, 'false_images') 

 print('Creating False tiles, from subdir') 

 if(os.path.exists(false_dir)): 

  fnames = list_files(false_dir) 

   # Trim number of images to use for tile-making 

  if(len(fnames) > img_lim): 

   random.shuffle(fnames) 

   fnames = fnames[:img_lim] 

   # Make Tiles 

  for i in range(len(fnames)): 

   split_n_save(fnames[i], dest_dir, stride=stride, tile_shape=tile_shape) 

      

 

 

 

 ''' Create tiles from /set_dir/false_regions.txt ''' 

 '''--------------------------------------------- ''' 

  

 false_regions = os.path.join(set_dir, 'false_regions.txt') 

 print('Creating False tiles, from user-labelled regions') 

 if(os.path.exists(false_regions)): 

  df = pd.read_csv(false_regions, sep='\t') 

   

   # Go through each line in false_regions.txt callout 

  for i in range(len(df)): 

   line  = df.iloc[i] 

    # Filename construction/declaration 

   try: 

    fname = os.path.join(set_dir, (line['Label'].split(':')[1] + '.jpg')) 

    IMG   = PIL.Image.open(fname) 
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   except: 

    fname = os.path.join(set_dir, (line['Label'].split(':')[1] + '.JPG')) 

    IMG   = PIL.Image.open(fname) 

    

    # we don't use split_n_save() here because we only want part of the 

img not the whole thing 

   img   = np.asarray(IMG)   

   tiles, xys = img_splitter(img[line['BY']:(line['BY'] + line['Height']), 

line['BX']:(line['BX'] + line['Width'])], stride=stride, tile_shape=tile_shape) 

 

    # Save each tile 

   for j in range(len(tiles)): 

          # set name,                                        

# img name                      # num 

    sname = os.path.split(set_dir)[1] + '__' + 

os.path.split(fname)[1].split('.')[0] + '__' + str(j) + '.jpg' 

    sname = os.path.join(dest_dir, sname) 

    tile  = PIL.Image.fromarray(tiles[j]) 

     # randomly adjust brightness 

    factor = np.round((np.random.random() + 0.5), 2) 

    enhan  = ImageEnhance.Brightness(tile) 

    ntile  = enhan.enhance(factor) 

     # Save 

    ntile.save(sname) 

     

 

 return 

    

    

 

 

 

#####################################################################################

################################# 

#####################################################################################

################################# 

#####################################################################################

################################# 

 

 

def crop_met_imgs(folder, train_dir, eval_dir, stride=10, tile_l=125, eval_percent=0.2, silent=False): 

 ''' 
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 This function makes meteorite tiles from their original images, using callouts from 

'meteorite_locations.txt' within 'folder'. 

 The text file should be in ImageJ output format. 

 

 

 Inputs: 

   folder    [str]  fullpath to the directory containing the images and the 

'.txt' file containing meteorite locations in each image 

   train_dir  [str] fullpath to dir where training tiles are saved 

   eval_dir  [str] fullpath to dir where evaluation tiles are saved 

   stride     [int] number of pixels to stride over the feature in 

each step 

   tile_l    [int] height-width of the tiles 

   eval_percent [float] percentage of lines in text file to set aside for validation 

   silent   [bool] False means print everything, pretty sure this 

feat. is outdated 

 

 Outputs:  

   [void] 

 

 ''' 

   

  # Create output dirs 

 if(not os.path.exists(train_dir)): 

  os.mkdir(train_dir) 

 if(not os.path.exists(eval_dir)): 

  os.mkdir(eval_dir) 

  

  # Get image names and txt filenames 

 contents  = list_files(folder) 

 txt_fname = list_files(folder, 'met')[0] 

  

 df = pd.read_csv(txt_fname, sep='\t') 

 

  # Prep log file  

 sname = os.path.join(eval_dir, 'original_image_details.txt') 

 f = open(sname, 'w') 

 f.write('N\tprob\tfilename\tx1\tx2\ty1\ty2\n') 

 

 

 

  # Loop through each position listed in txt file 
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 for i in range(len(df)): 

  string = '\r\tCurrent meteorite location: ' + str(i+1) + '/' + str(len(df) + 1)  

   

  if(silent != True): 

   sys.stdout.write(string) 

   sys.stdout.flush() 

   

  line = df.iloc[i] 

  

   # Filename construction/declaration 

  if(':' in line['Label']): 

   img_fname = line['Label'].split(':')[1] 

   img_fname = list_files(folder, img_fname)[0] 

  else: 

   img_fname = line['Label'] 

   img_fname = os.path.join(folder, img_fname) 

   

  IMG      = PIL.Image.open(img_fname) 

   

  img = np.asarray(IMG) 

 

  cx  = float(line['BX']) 

  cy  = float(line['BY']) 

  w   = float(line['Width']) 

  h   = float(line['Height']) 

 

 

   # Some mathy declaration stuff that I can't remember why it works but it does  

  mx1 = cx  

  mx2 = cx + w 

  my1 = cy  

  my2 = cy + h  

   

  x_num = int( (tile_l - w) // stride) 

  y_num = int( (tile_l - h) // stride) 

 

  x1 = int(mx2 - tile_l) 

  y1 = int(my2 - tile_l) 

  x2 = int(x1  + tile_l) 

  y2 = int(y1  + tile_l) 
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   # Making training tiles 

  if(i <= len(df) * (1 - eval_percent)):  

   save_dir = train_dir 

  if(i >  len(df) * (1 - eval_percent)):  

   save_dir = eval_dir 

  string = str(i) + '\t' + '1.0' + '\t' + img_fname + '\t' + str(x1) + '\t' + str(x2) + '\t' + 

str(y1) + '\t' + str(y2) + '\n' 

  f.write(string) 

    

   # Iterate through the strides 

  for j in range(x_num): 

   while( x1 < 0 ): 

    x1 += stride 

    x2 += stride 

    j  += 1 

   if(x2 > img.shape[1]): 

    break 

 

   for k in range(y_num): 

    while( y1 < 0 ): 

     y1 += stride 

     y2 += stride    

     k  += 1 

    if(y2 > img.shape[0]): 

     break 

  

    tile = np.copy(img[y1:y2, x1:x2]) 

 

     # Rotate each possible stride 

    for l in range(4): 

      # Save  

     TILE  = PIL.Image.fromarray(tile).rotate((l*90)) 

     sname = os.path.join(save_dir, 

(str(i)+'_'+str(j)+'_'+str(k)+'_'+str(l)+'-'+ '__' + os.path.split(folder)[1] + '__' + 

os.path.split(img_fname)[1])) 

      # Random Brightness adjustment 

     factor = np.round((np.random.random() + 0.5), 2) 

     enhan  = ImageEnhance.Brightness(TILE) 

     ntile  = enhan.enhance(factor) 

      #SAVE 

     ntile.save(sname) 
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    y1 += stride 

    y2 += stride 

 

  

   x1 += stride 

   x2 += stride 

   y1  = int(my2 - tile_l) 

   y2  = int( y1 + tile_l) 

 

 

 f.close() 

 string = '\r\tCurrent meteorite location: ' + str(i+1) + '/' + str(len(df) + 1)  

  

 if(silent != True): 

  sys.stdout.write(string) 

  sys.stdout.flush() 

  print('\n\n') 

 

 return 

 

 

#####################################################################################

################################# 

#####################################################################################

################################# 

#####################################################################################

################################# 

 

 

def make_training_set(imgs_dir, set_dir, tstride=12, fstride=70, tile_l=125, eval_percent=0.2, 

keep_extra=False):  

 ''' This func takes raw images from training data collection, and makes True and False, 

Training and  

 Validation training sets (tiles).  

  

 Inputs: 

   imgs_dir [str] fullpath to directory of images, which contains 

meteotire images, annotation file, and subdir with false images 

   set_dir  [str] fullpath to saving directory, sub dirs for train and 

validation will be created within 

   tstride  [int] stride length for true tiles 

   fstride  [int] stride length for false tiles 
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   tile_l  [int] length of one side of the tiles (tiles will be square) 

  

 Outputs:  

   void 

  

  

 4 June 2021 

 ''' 

  

  # Delcare directories  

 ftemp_dir   = os.path.join(set_dir, 'extra_false') 

  

 train_dir = os.path.join(set_dir, 'train_dir') 

 valid_dir = os.path.join(set_dir, 'valid_dir') 

 train_f_dir = os.path.join(train_dir, 'False') 

 train_t_dir = os.path.join(train_dir, 'True') 

 valid_f_dir = os.path.join(valid_dir, 'False') 

 valid_t_dir = os.path.join(valid_dir, 'True') 

  

 if(not os.path.exists(train_dir)): 

  os.mkdir(train_dir) 

 if(not os.path.exists(valid_dir)): 

  os.mkdir(valid_dir) 

 if(not os.path.exists(train_f_dir)): 

  os.mkdir(train_f_dir) 

 if(not os.path.exists(train_t_dir)): 

  os.mkdir(train_t_dir) 

 if(not os.path.exists(valid_f_dir)): 

  os.mkdir(valid_f_dir) 

 if(not os.path.exists(valid_t_dir)): 

  os.mkdir(valid_t_dir) 

  

   

 ''' 

  # Make true tiles 

 p = mp.Process( target = crop_met_imgs, 

     args   = [imgs_dir, train_t_dir, valid_t_dir, tstride, tile_l, 

eval_percent, False] ) 

 p.start() 

 ''' 

 

 crop_met_imgs( imgs_dir,     # imgs_dir 
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     train_t_dir,    # train_dir 

     valid_t_dir,    # eval_dir 

     stride      = tstride,  

     tile_l   = tile_l,  

     eval_percent = eval_percent,  

     silent   = False) 

  

  

  # Make False tiles 

 make_false_set( imgs_dir,    # set_dir  

     ftemp_dir,     # dest_dir 

     stride  = fstride,  

     tile_shape = (tile_l,tile_l),  

     img_lim  = 100)  

  

  

  # Get count of True tiles 

 n_train_t = len(list_files(train_t_dir, '.jpg')) 

 n_valid_t = len(list_files(valid_t_dir, '.jpg')) 

  

  

  # Copy False tiles 

   # Valid  

 copy_files(ftemp_dir, valid_f_dir, n_valid_t, move=True) 

   # Train 

 copy_files(ftemp_dir, train_f_dir, n_train_t) 

  

  

  # Remove temp tiles 

 if(keep_extra == False): 

  shutil.rmtree(ftemp_dir) 

  

  

  # Write to log file 

 sname = os.path.join(set_dir, 'training_set_log') 

 strr  = 'N train tiles: ' + str(2*n_train_t) + '\n' + 'N valid tiles: ' + str(2*n_valid_t) 

 f = open(sname, 'w') 

 f.write(strr) 

 f.close() 

  

  

 return  
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#####################################################################################

################################# 

#####################################################################################

################################# 

#####################################################################################

################################# 

 

 

 

 

def highlight_annotes(folder, dest_dir, h_w=4): 

 '''This function highlights, in full images, the meteorites a user has marked to use as training 

tiles. This is good for  

     making examples for the human test dir, used by the gui. *Note* the bounding boxes are 

intentionally off-center of the meteorite. 

     The bounding boxes ARE NOT representative of the prior human annotation, they are all 

125x125 

  

 Inputs: 

   folder   [str]  full path to the folder containing full images, with mets 

in the frame, dir should also contain 

                    'meteorite_locations.txt' to indicate where the 

mets are located. 

   dest_dir [str] fullpath to destination dir where images will be saved  

   h_w      [int]  highlight width for the bounding box  

  

  

 ''' 

  # Make destination directory 

 if(not os.path.exists(dest_dir)): 

  os.mkdir(dest_dir) 

   

  # Intake meteorite locations 

 met_loc_fname = os.path.join(folder, 'meteorite_locations.txt') 

 f = open(met_loc_fname, 'r') 

 lines = f.readlines()[1:]   # ignore header line 

 f.close() 
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  # Make log file 

 log_fname = os.path.join(dest_dir, 'candidate_locations.txt')  

 if(os.path.exists(log_fname)): 

  log = open(log_fname, 'a') 

 else: 

  log = open(log_fname, 'w') 

  log.write(('Y1\tY2\tX1\tX2\tImage')) 

  

  # Go through each meteorite instance 

 for i in range(len(lines)): 

  content = lines[i].split('\t') 

   # Open image 

  img_fname = list_files(folder, content[1].replace('Stack:',''))[0] 

  overlay_sname = os.path.join(dest_dir, (os.path.split(folder)[1] + '+candidate_' + 

os.path.split(img_fname)[1])) 

  if(os.path.exists(overlay_sname)): 

   img_fname = overlay_sname 

   

  img = PIL.Image.open(img_fname) 

  

   # Figure out where to draw bounding boxes 

    # Add random variance, so they are not all centered exactly 

  yvar = 63 - float(content[5]) / 2. 

  xvar = 63 - float(content[4]) / 2. 

  

  cy = int(float(content[3]) + float(content[5]) / 2. + np.random.randint((-1*yvar), 

yvar)) 

  cx = int(float(content[2]) + float(content[4]) / 2. + np.random.randint((-1*xvar), 

xvar)) 

  

  y1 = cy - 63 

  y2 = y1 + 125 

  x1 = cx - 63 

  x2 = x1 + 125  

   

  xys  = np.array([y1,y2,x1,x2]) 

    

    # write the suspect's tile locations in log 

  string = str('\n' + str(xys[0]) +  

      '\t' + str(xys[1]) +  

      '\t' + str(xys[2]) +  

      '\t' + str(xys[3]) +  
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      '\t' + os.path.split(overlay_sname)[1] )   

  

  log.write(string) 

   

    # Annotate the overlay image at the tile's location 

  draw = PIL.ImageDraw.Draw(img) 

  draw.line([xys[2], xys[0], xys[2], xys[1]], fill='yellow', width=h_w) # Left  

  draw.line([xys[3], xys[0], xys[3], xys[1]], fill='yellow', width=h_w) # Right  

  

  draw.line([xys[2], xys[1], xys[3], xys[1]], fill='yellow', width=h_w) # Bottom 

  draw.line([xys[2], xys[0], xys[3], xys[0]], fill='yellow', width=h_w) # Top 

  draw.text([xys[2], xys[0]],  str(i) ) 

 

   # Save the overlain image 

  img.save(overlay_sname) 

 log.close() 

   

 return 

 

#####################################################################################

################################# 

#####################################################################################

################################# 

#####################################################################################

################################# 

 

 

def 

summarize_train_sets(imgs_dir='/data0/Seamus_data/MET_searching/keras_train/full_images_all'

, st=12, side=125): 

 ''' 

 This function summarizes all the training data we have on hand in graph format. The training 

sets should be subdirs located within 'imgs_dir' 

  

  

 Inputs: 

   imgs_dir [str] fullpath to dir containing full images with meteorites 

and text files with location callouts 

   st   [int] stride? idk 

   side  [int] length of one tile on one side 

  

 Outputs: 
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   void   

    

 

 ''' 

 

 dirs = list_files(imgs_dir, '', '.') 

 

 dfs    = [] 

 diams  = [] 

 labels = [] 

  

  # Go through each 'training_set' subdir 

 for i in range(len(dirs)): 

  print(osplit(dirs[i])[1]) 

  met_log = ojoin(dirs[i], 'meteorite_locations.txt') 

  df = pd.read_csv(met_log, sep='\t') 

  df['set']     = [osplit(dirs[i])[1] for j in range(len(df))]  

  df['n_tiles'] = [(int((side - df['Width'].iloc[j])/st) * int((side - df['Height'].iloc[j])/st)) * 

4 for j in range(len(df))] 

  df['diam']    = [np.mean((df['Width'].iloc[j], df['Height'].iloc[j])) for j in 

range(len(df))] 

   

  diam = np.array(df['diam']) 

  label = ('(' + str(len(df)) + ')' + osplit(dirs[i])[1]) 

   

  diams.append(diam) 

  labels.append(label) 

  dfs.append(df) 

  

  

 full_df = pd.concat(dfs) 

 tot_n_tiles = np.sum(full_df['n_tiles']) 

  

 print('Number of annotations: ', len(full_df)) 

 print('Total number of tiles: ', tot_n_tiles )  

 

  # Make log file 

 full_df.to_csv(ojoin(imgs_dir, 'training_sets_log.csv'), index=False) 

 

  # Make plot 

 plt.title('Annotations Histogram') 

 plt.xlabel('Pixel Diameter') 
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 plt.ylabel('Number of annotations') 

 plt.xlim((10,150)) 

 plt.hist(diams, bins=40, stacked=True, label=labels) 

 plt.grid() 

 plt.legend() 

 plt.savefig(ojoin(imgs_dir, 'training_sets_hist.png')) 

 plt.show() 

 

 return 

 

 

 

#####################################################################################

################################# 

#####################################################################################

################################# 

#####################################################################################

################################# 

 

 

def train_meteorite_network(train_dir, tile_size = (125, 125), n_batch_size  = 300, n_epochs =  250, 

n_epoch_steps =  50,  valid_dir = False, n_valid_steps=10, save_as = False, saved_model   = False, 

auto_calc_steps=True): 

 '''This function takes a training directory full of sorted images, containing  

   meteorites and non meteorites, and trains a CNN model. It saves the model 

and other meta 

   in a sub dir in 'train_dir'. 

    

 Inputs: 

   train_dir  [str]   full path to the training directory (with true and false 

sub_dirs) 

   tile_size  [tuple] = (100, 100) 

    size of the training images (or tiles) 

   n_batch_size  [int]   = 20 

    number of images (tiles) per batch 

   n_epochs   [int]   = 100 

    number of epochs to train 

   n_epoch_steps [int]   = 100 

    steps per epoch 

   n_valid_split [float] = 0.25 

    percentage of the images saved for validation 

   valid_dir  [str] 
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    Fullpath to the validation directory, if you wan it different from the 

training data 

   save_as    [str]   = False 

    Optional save name for the model (not fullpath), otherwise, save name 

will be generated based on time of creation 

   saved_model   [str]   = False 

    Optional filepath to a saved model to continue training 

  

 Outputs: 

   model_sname    [str]  full path to .h5 model file 

 

   model-YYYY-MM-DD.h5  [file] weighted model trained on the given data 

found in train_dir 

   model-YYYY-MM-DD.png [file] training history-plot of the model 

  

  

 ''' 

 

 

 ''' Preparing Names, directories, and files'''  

 '''----------------------------------------''' 

 

 os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1'    

 

  # Setting save name for the sub_dir, and by extention model and plot name 

  #  The name is generated using the time it was made 

 time = str(datetime.datetime.now()) 

 time = time.replace(' ', '__') 

 time = time.replace(':', '-') 

 time = time.replace('.', '-') 

  

 temp_name = ('model_' + time ) 

 

  # Save model as given name (optional) 

 if(save_as!= False): 

  temp_name = save_as 

   

 models_dir = os.path.join(os.path.split(train_dir)[0], ('models-' + os.path.split(train_dir)[1])) 

 save_dir   = os.path.join(models_dir, temp_name) 

  

  # Check for and make generic models dir and specific dir for this model 

 if(os.path.exists(models_dir) == False): 
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  os.mkdir(models_dir) 

 if(os.path.exists(save_dir)   == False): 

  os.mkdir(save_dir) 

   

  # Preparing model log and plot names 

 model_sname = temp_name + '.h5' 

 model_sname = os.path.join(save_dir, model_sname) 

  

 plot_sname  = temp_name + '.png' 

 plot_sname  = os.path.join(save_dir, plot_sname) 

  

 txt_sname   = temp_name + '_log.txt' 

 txt_sname   = os.path.join(save_dir, txt_sname) 

  

 

 

 '''Constructing model architecture'''  

 '''-------------------------------''' 

 

  # Constructing a model 

 model = Sequential() 

 

 # good model starts with 24 filters, then doubles at every layer 

 

   # Liam's Seamus-modified arc. 

 model.add(Conv2D(30, 3,  strides=1,  

      input_shape=(tile_size[0], tile_size[1], 3)   ))    

 model.add(          Activation('relu')) 

 model.add(       

 normalization.BatchNormalization() ) 

 model.add(MaxPooling2D((2,2), 2)    ) 

 

 model.add(Conv2D(60, 3,   strides=1)  ) 

 model.add(          Activation('relu')) 

 model.add(       

 normalization.BatchNormalization() ) 

 model.add(MaxPooling2D((2,2), 2)) 

 

 model.add(Conv2D(120, 3, strides=1)) 

 model.add(          Activation('relu')) 

 model.add(       

 normalization.BatchNormalization() ) 
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 model.add(MaxPooling2D((2, 2), 2)) 

  

 model.add(Conv2D(240, 3, strides=1)) 

 model.add(          Activation('relu')) 

 model.add(       

 normalization.BatchNormalization() ) 

 model.add(MaxPooling2D((2, 2), 2)) 

 

 

 model.add(Flatten()        ) 

 model.add(Dense(1000)         ) 

 model.add(Activation('relu')     ) 

  

 model.add(Dropout(0.5)        ) 

  

 model.add(Dense(150)) 

 model.add(Activation('relu')) 

 

 model.add(Dropout(0.5)        ) 

 

 model.add(Dense(1)         ) 

 model.add(Activation('sigmoid')     ) 

   

 

 model.summary() 

 

  

  # Compile the model 

 model.compile(loss     = 'binary_crossentropy', 

      optimizer = 'rmsprop', 

      metrics   = ['accuracy']   ) 

 

 

 

 '''Declaring Hyperparameters, and defining train/val data from directories''' 

 

  # Load optional saved model and its log file 

 if(saved_model != False): 

  model  = keras.models.load_model(saved_model) 

  old_log   = '' 

  old_log_name = saved_model[:-3] + '.txt' 

  if(os.path.exists(old_log_name)): 
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   f    = open(old_log_name, 'r')  

   old_log = f.read() 

   f.close() 

 

  # Preparing training and validation data  

 train_datagen = ImageDataGenerator(rescale    = 1./255. , 

            validation_split = 0   ) 

 valid_datagen = ImageDataGenerator(rescale        = 1./255. , 

          validation_split = .99 ) 

 

 

 train_generator = train_datagen.flow_from_directory( 

   train_dir, 

   target_size = tile_size, 

   batch_size  = n_batch_size, 

   class_mode  = 'binary', 

   subset     = 'training') 

 

 

  

  # Preparing validation data 

 valid_generator = None 

 valid_steps  = None  # These are set 0 incase you don't want to validate (not 

recommended) 

 

  # Validate on same population of images as training 

 if(valid_dir != False):   

 

  valid_steps     = n_valid_steps 

  val_batch_size  = n_batch_size 

   

  if(auto_calc_steps ==True): 

   true_dir  = os.path.join(valid_dir, 'True') 

   false_dir = os.path.join(valid_dir, 'False') 

   n_total_tiles = len(list_files(false_dir)) + len(list_files(true_dir)) 

   n_valid_steps = int(n_total_tiles / n_batch_size) 

   

   

  valid_generator = valid_datagen.flow_from_directory( 

     valid_dir, 

     target_size = tile_size, 

     batch_size  = val_batch_size, 
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     class_mode  = 'binary', 

     subset  = 'validation', 

     shuffle=True) 

  

 

  

  # Setup checkpoint 

  #  *NOTE* this only works when validation is present 

 backup_name = os.path.join(os.path.split(model_sname)[0], ('backup_' + 

os.path.split(model_sname)[1]))  

 checkpoint  = ModelCheckpoint(backup_name, 

          monitor = 'val_acc', 

          mode   = 'max', 

          save_best_only = True) 

 #es = EarlyStopping(monitor='val_acc', mode='max', patience=50) 

  

  # Auto calculate steps 

 if(auto_calc_steps == True): 

  true_dir  = os.path.join(train_dir, 'True') 

  false_dir = os.path.join(train_dir, 'False') 

  n_total_tiles = len(list_files(false_dir)) + len(list_files(true_dir)) 

  n_epoch_steps = int((n_total_tiles / n_batch_size) / 3 )    # 

Manually set to reduce steps by factor of 5 

              

     

 ############################################## 

 

 ''' Train the model ''' 

 '''-----------------''' 

 

 hist = model.fit_generator( 

     train_generator, 

     steps_per_epoch  = n_epoch_steps, 

     epochs       = n_epochs, 

     validation_data  = valid_generator,   

     validation_steps = n_valid_steps,  

     callbacks   = [checkpoint], 

     shuffle          = True 

       ) 

  

  # Getting history and summary of model training 

 model.summary() 
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 history = hist.history 

 

 

 

 

 

 '''Saving model and accessory files ''' 

 '''---------------------------------''' 

 

 

 model.save(model_sname) 

  

  # Writing text log file 

 with open(txt_sname, 'a+') as file: 

   

  file.write(str(datetime.datetime.now())) 

   # Giving credit to optional saved model 

  if(saved_model != False): 

   string = ('\n\nThis model was trained using pre-existing model: '  

       + saved_model + '\n' )  

   file.write(string) 

   string = ('\n\nPrevious Log: ' + '\n\n' + old_log + '\n\n') 

   file.write(string) 

   

   # Writing training history and summary to text file 

  string = ('\n\nTrained from directory:  ' + train_dir  + 

      '\nTraining Params:'  + 

      '\nBatch Size   = '  + str(n_batch_size)   + 

      '\nEpochs    = '  + str(n_epochs)    +   

      '\nEpoch Steps  = '  + str(n_epoch_steps)  + 

      '\nTile Size   = '  + str(tile_size)   +  

      '\nHistory: '    +  

      '\n\tAccuracy:\n '  + str(history['acc'][-1]) ) 

   

 

  string = string + '\n\n' 

  file.write(string) 

  file.write('Summary:\n') 

  model.summary(print_fn=lambda x: file.write(x + '\n')) 

  file.write('\n\n\n') 

 file.close() 
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 os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'    

 

 

 plt.title('Training History') 

 plt.xlabel('Epoch') 

 plt.ylabel('Accuracy') 

 plt.ylim((0,1)) 

 plt.plot(np.arange(n_epochs), history['acc'],     'r-',  label='Training') 

 plt.plot(np.arange(n_epochs), history['val_acc'], 'b--', label='Validation') 

 plt.legend(loc='lower right') 

 plt.savefig(plot_sname) 

 plt.clf() 

 

 

 return model_sname 

 

 

 

 

 

#####################################################################################

######################### 

#####################################################################################

######################### 

#####################################################################################

######################### 

  

  

  

  

 

def revolver_train(train_data_dir, model_sname, saved_model=False, n_epochs=8): 

 ''' This function revolves the false training data every 'n_epochs' to give the model a chance 

to train on everything 

   in the instances (most) where there's waaaayy to much false data to keep pace with 

true tiles 

  

 - 'train_data_dir' should be 'train_sets' in accordance with training_pipeline() 

  

 -This assumes True tiles already in train_dir 

  

 ''' 
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 print('Started Revolver training') 

  # Pointing out directory paths  

 false_pool = os.path.join(train_data_dir, 'false_pool') 

 valid_dir  = os.path.join(train_data_dir, 'valid_dir')  

 train_dir  = os.path.join(train_data_dir, 'train_dir') 

 if(True): 

  true_dir  = os.path.join(train_dir, 'True') 

  false_dir = os.path.join(train_dir, 'False') 

   # Clear false_dir if it exists, then make a fresh one 

  if(os.path.exists(false_dir)): 

   shutil.rmtree(false_dir) 

   os.mkdir(false_dir) 

   

  

  # Count number of true and false tiles 

 n_true_tiles  = len(LIB.list_files(true_dir)) 

 n_false_tiles = len(LIB.list_files(false_pool)) 

  

 n_revolutions = int(n_false_tiles / n_true_tiles) * 2 

 

 print('Number of True tiles:  ', n_true_tiles) 

 print('Number of False tiles: ', n_false_tiles) 

 print('Number of Revolutions: ', n_revolutions) 

 time.sleep(1) 

  

  # Start training revolutions (move false tiles in; train; move false tiles out) 

 for i in range(n_revolutions): 

   # Copy False tiles over to train_dir 

  src  = false_pool  

  dest = false_dir 

  num  = n_true_tiles 

   

  LIB.copy_files(src, dest, num) 

   

   # train 

  saved_model = LIB.train_meteorite_network(  

          train_dir,  

          tile_size  

 = (125, 125),  

          n_epochs  

 = n_epochs,  
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          valid_dir  

 = valid_dir,  

          save_as  

 = model_sname,  

          saved_model    = 

saved_model,  

          auto_calc_steps

 = True          ) 

           

   # Remove False dir and therefore tiles from train_dir (make it ready for the 

next one) 

  shutil.rmtree(false_dir) 

   # Make new empty false_dir 

  os.mkdir(false_dir) 

 

 

 return 

  

 

 

#####################################################################################

######################### 

#####################################################################################

######################### 

#####################################################################################

######################### 

  

  

 

# Experimental version, may contain bugs 

 

 

def predict_on_dir_2(model_path, folder, input_shape=(125,125), pred_thresh=0.9, stride=70, h_w= 

4, gpu_batch_size=190, silent=False): 

 ''' This function takes a trained model and a folder of images, to make predictions  

   overlain on the original images.  

  

 Inputs: 

   model_path   [str]   Fullpath to the trained model 

   folder     [str]   Fullpath to the folder of images to predict on 

   input_shape  [tuple] Shape the model requires as an input (2d) 

   pred_thres   [float] Threshold for highlighting a patch 
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   stride     [int]   Number of pixels to stride over when predicting 

on an image 

   h_w     [int]   Highlighter width 

   n_cores   [int] Number of cores to use in process 

   gpu_batch_size [int] Batch size for the gpu 

   silent    [bool]  If != True, print info during runtime 

    

 Outputs: 

   total_predictions   [int]  

    Total number of predictions across all the images 

   predictions.txt  [file] 

    Lists information about each image predicted on, along with function  

     parameters used. 

   overlayed image(s)  [file(s)] 

    The original images are overlaid with white boxes around patches  

     with a high probablity of containing a meteorite (spicified by 

'pred_thres'). 

     These overlays are stored in sub-folder: 'folder\\predictions'. 

      

 Dependencies: 

   list_files():   lists images to be predicted on in 'folder' 

 

 

  

 ''' 

 times = [] 

 t0 = dtm.now() 

    

 

 ''' Check for previous prediction attempt, or start a new interim log ''' 

 '''-------------------------------------------------------------------''' 

 

 imgs_dir      = ojoin(folder, 'images') 

 interim_fname = ojoin(folder, 'interim_log.txt') 

 

 

  # Previous attempt detected # 

  #---------------------------# 

 if(os.path.exists(interim_fname) == True): 

  resumed = True 

  print('Previous prediction attempt detected') 
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   # Reference directories 

  f = open(interim_fname, 'r') 

  save_dir = f.read().replace('\n', '') 

  f.close() 

  hist_dir    = ojoin(save_dir, 'histograms') 

  overlay_dir = ojoin(save_dir, 'suspect_images') 

  predcsv_dir = ojoin(save_dir, 'prediction_csvs') 

  all_results_fname = ojoin(save_dir, (osplit(folder)[1] + '_all_results.txt')) 

   # get fnames to predict on 

  finished_images = list_files(predcsv_dir, '.csv') 

  all_images      = list_files(imgs_dir,    '.jpg') 

  fnames          = []  # Fnames to predict on 

   

   # Get list of completed images, from pred csv dir 

  for i in range(len(finished_images)): 

   finished_images[i] = osplit(finished_images[i])[1] 

   

  for i in range(len(all_images)): 

   image_name = osplit(all_images[i])[1].replace('.JPG', '.csv') 

   if(image_name not in finished_images): 

    fnames.append(all_images[i]) 

    

    

 

  # First attempt (no existing interim or final log) # 

  #--------------------------------------------------# 

 else: 

  resumed = False 

  if(silent != True): 

   print('This is the first logged prediction attempt') 

   # Prep predictions (output) folders 

  time_str = str(dtm.now()).replace(' ', '_').replace(':', '-').split('.')[0] 

  pred_name   = 'predictions_' + time_str 

  pred_name   = osplit(model_path)[1].replace('.h5', '_') + pred_name 

  save_dir = ojoin(folder, pred_name) 

  hist_dir    = ojoin(save_dir, 'histograms') 

  overlay_dir = ojoin(save_dir, 'suspect_images') 

  predcsv_dir = ojoin(save_dir, 'prediction_csvs') 

  all_results_fname = ojoin(save_dir, (osplit(folder)[1] + '_all_results.txt')) 

  os.mkdir(save_dir) 

  os.mkdir(hist_dir) 

  os.mkdir(overlay_dir) 
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  os.mkdir(predcsv_dir) 

   # get image fnames to predict on 

  fnames = list_files(imgs_dir, '.jpg') 

   # start new interim log 

  interim_log = open(interim_fname, 'w') 

  interim_log.write(save_dir) 

  interim_log.close() 

    

    

 

  # Load model # 

  #------------# 

 model  = keras.models.load_model(model_path) 

 if(silent != True): 

  print('Loading Model:\n\t' + model_path) 

  print('Predicting on folder:\n\t' + folder) 

 

 

  # Define Multi-process function for saving predictions # 

  #------------------------------------------------------# 

 def save_predictions(preds, xys, fname, predcsv_dir, hist_dir): 

  short_fname = os.path.split(fname)[1] 

   # Convert preds and xys to arrays 

  xys         = np.asarray(xys) 

  pred_arr    = np.zeros(len(preds)) 

  for j in range(len(preds)): 

   pred_arr[j] = float(preds[j][0]) 

   # Construct dataframe 

  df = pd.DataFrame({ 'pred_val': pred_arr, 

       'Y1':  xys[:,0], 

       'Y2':  xys[:,1], 

       'X1':  xys[:,2], 

       'X2':  xys[:,3],      

       'fname': [short_fname for i in 

range(len(preds))] }) 

   # Save csv 

  sname = os.path.join(predcsv_dir, short_fname).replace('.JPG','.csv') 

  df.to_csv(sname, index=False) 

   

   # Save histogram 

  histsname = ojoin(hist_dir, short_fname.replace('.JPG','.png')) 
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  plt.title(osplit(fname)[1]) 

  plt.ylabel('Number') 

  plt.xlabel('Prediction value') 

  plt.xlim((0, 1.3)) 

  plt.hist(pred_arr, bins=20, log=True) 

  plt.savefig(histsname) 

  plt.clf() 

   

  return 

  

  

  

  

 ''' Predict on each image ''' 

 '''-----------------------''' 

 

 jobs = [] 

  # Loop through each image 

 for i in range(len(fnames)): 

  print(osplit(fnames[i])[1]) 

   # Open image  

  img = PIL.Image.open(fnames[i]) 

  img_array = np.asarray(img) 

  img.close() 

  del img 

   # Split image 

  tiles, xys = img_splitter(img_array, tile_shape=input_shape, stride=stride) 

   # Predict on image 

  preds = model.predict(np.asarray(tiles)/255., batch_size=gpu_batch_size) 

   # Save predictions to csv 

  p = mp.Process( target = save_predictions, 

      args   = [preds, xys, fnames[i], predcsv_dir, hist_dir]   ) 

  jobs.append(p) 

  p.start() 

   

   

 if(len(fnames) > 0): 

  p.join() 

  

 predtime = dtm.now() - t0 
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 ''' Round up all the results ''' 

 '''--------------------------''' 

  

 t1 = dtm.now() 

  

  # Compile the csv's into one file 

 csv_fnames = list_files(predcsv_dir, '.csv') 

 csv_dfs    = [pd.read_csv(csv_fnames[i]) for i in range(len(csv_fnames))] 

  

 final_df_sname = os.path.join(save_dir, 'all_predictions.csv') 

 final_df       = pd.concat(csv_dfs) 

 final_df.to_csv(final_df_sname) 

  

  # Make histogram of all the prediction values from the entire directory 

 hist_sname = os.path.join(save_dir, 'all_predictions_hist.png') 

 all_preds  = final_df['pred_val']  

 string     = '' 

 for i in np.arange(9, 0, -1): 

  n_fp    = len(np.where(all_preds > (i*0.1))[0]) 

  string += '>0.' + str(i) + ': ' + str(n_fp) + '\n' 

   

 string += '>0.01: ' + str(len(np.where(all_preds > 0.01)[0])) + '\n' 

  

 plt.title(('All results: ' + osplit(folder)[1])) 

 plt.ylabel('Number') 

 plt.xlabel('Prediction value') 

 plt.xlim((0, 1.3)) 

 plt.text(1.025, 1000, string) 

 plt.hist(all_preds, bins=20, log=True) 

 plt.savefig(hist_sname) 

 plt.clf() 

  

 

  # Write final log file 

 final_pred_log_fname = ojoin(folder, ('final_prediction_log_' + osplit(save_dir)[1] + '.txt')) 

 if(not os.path.exists(final_pred_log_fname)):  

  n_imgs = len(list_files(imgs_dir)) 

  dt     = t1-t0 

  avg_t  = dt.total_seconds() / len(fnames) 

  notes  = ''  

  n_suspects = len(np.where(all_preds > (0.9))[0]) 
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  n_sus_per_img = n_suspects / float(n_imgs) 

  if(resumed == True): 

   notes = 'This prediction was stopped, then resumed. Times may not be 

accurate.' 

   

  final_log_string = ('Final prediction log'   + '\n' + 

       'Start Time: ' + str(t0) + '\n' + 

       'End Time:   ' + str(t1) + '\n' + 

       'Delta Time: ' + str(dt) + '\n' +  

       'Directory:  ' + folder     + '\n' + 

       'Model:      ' + model_path + '\n' +  

       'N Suspects over 0.9:    ' + str(n_suspects)    + 

'\n' + 

       'Suspects per image:     ' + str(n_sus_per_img) 

+ '\n' +     

       'Total Number of images: ' + str(n_imgs)        + 

'\n' + 

       'Avg time per img [sec]: ' + str(avg_t)         + 

'\n' +  

       'Notes:\n\n\t ' + notes 

       ) 

  f = open(final_pred_log_fname, 'w') 

  f.write(final_log_string) 

  f.close() 

 

 

 os.remove(interim_fname) 

 

  

  # If pred threshold is given, make the overlays and select tiles of interest 

 if(pred_thresh != None): 

  pull_preds(save_dir, pred_thresh, h_w=h_w) 

  

  

 return save_dir 

 

 

 

 

################################################################# 

################################################################# 

################################################################# 
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def save_overlay(args): 

   # Open csv 

 csv_fname   = args[0] 

 imgs_dir    = args[1] 

 thresh      = args[2] 

 overlay_dir = args[3] 

 problem_dir = args[4] 

 problem_thresh = args[5] 

  

 h_w = 4 

  

  

 df = pd.read_csv(csv_fname) 

 suspects = df[df['pred_val'] > thresh] 

   

  # If nothing is over-threshold, skip this image/csv 

 if(len(suspects) == 0): 

  return 

   

 

 this_fname  = df['fname'].iloc[0] 

 img_fname   = ojoin(imgs_dir, this_fname) 

 

  # If there are too many over-threshold things, save it in a separate folder 

 if(len(suspects) > problem_thresh): 

  new_name = os.path.join(problem_dir, this_fname) 

  shutil.copyfile(img_fname, new_name) 

 

  return 

   

 overlay_sname = ojoin(overlay_dir, ('predicted_' + osplit(img_fname)[1])) 

   

  # Open Image 

 img       = PIL.Image.open(img_fname) 

 img_array = np.asarray(img) 

 mask      = np.zeros(img_array.shape, bool)     

 

  # Save csv of overthreshold predictions, in pred dir 

 thresh_sname      = ojoin(osplit(overlay_dir)[0], osplit(overlay_sname)[1].replace('.JPG', 

'.csv')) 

 suspects['fname'] = [osplit(overlay_sname)[1] for i in range(len(suspects))] 
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 suspects.to_csv(thresh_sname, index=False) 

 

 

  # Sort the suspects 

 sorted_df = suspects.sort_values(['pred_val'], ascending=False) 

   

 tpreds = np.asarray(sorted_df['pred_val']) 

 txys   = np.asarray(sorted_df[['Y1','Y2','X1','X2']]) 

   

 draw = PIL.ImageDraw.Draw(img) 

  

  # Loop through each suspect in the image and overlay with a bounding box 

 for j in range(len(tpreds)): 

  xys = txys[j] 

   

   # Check if this tile is overlapping with a previously saved one 

  if(np.sum(mask[xys[0]:xys[1], xys[2]:xys[3]]) == 0):  

    # Mask this tile, (don't save again) 

   mask[xys[0]:xys[1], xys[2]:xys[3]] = 1 

    

    # Annotate the overlay image at the tile's location 

   draw.line([xys[2], xys[0], xys[2], xys[1]], fill='yellow', width=h_w) # Left  

   draw.line([xys[3], xys[0], xys[3], xys[1]], fill='yellow', width=h_w) # Right 

   

   draw.line([xys[2], xys[1], xys[3], xys[1]], fill='yellow', width=h_w) # Bottom 

   draw.line([xys[2], xys[0], xys[3], xys[0]], fill='yellow', width=h_w) # Top 

   #draw.text([xys[2], xys[0]],  str(tpreds[j]) ) 

   

   

 img.save(overlay_sname) 

   

 ####### THis may cause problems ##########3 

 ######################################## 

 img.close() 

 del img 

   

 return 

 

# 208 /257 

 

 

def pull_preds(pred_dir, thresh, problem_thresh=50, h_w=4): 
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 '''This function gathers the prediction values and locations for all the images that have 

already been inferred on by the model. 

     Any tile that is over threshold is complied into 'pred_dir/predictions.txt' to use later for 

sorting. This func also overlays the images 

     with bounding boxes. 

      

 Inputs: 

   pred_dir [str]  the prediction directory within a flight or image dir, if 

image/flight dir is given, it defaults to the first pred_dir it can find 

   thresh  [float] user-defined threshold between 0 and 1, typically 0.9  

   h_w   [int]   highlighter width for overlaying bounding boxes 

    

 Ouputs: 

   pred_dir/predictions.txt [file] csv with over-thresh pred values, 

locations and image names. 

   

 ''' 

  

 

 ''' Figure out where we are ''' 

 '''-------------------------''' 

 

 imgs_dir    = os.path.join(os.path.split(pred_dir)[0], 'images')  

 overlay_dir = os.path.join(pred_dir, 'suspect_images') 

 problem_dir = os.path.join(pred_dir, 'problem_images') 

 csv_dir     = os.path.join(pred_dir, 'prediction_csvs') 

  

 if(not os.path.exists(overlay_dir)): 

  os.mkdir(overlay_dir) 

 if(not os.path.exists(problem_dir)): 

  os.mkdir(problem_dir) 

  

 ''' MP function for saving overlay ''' 

 '''---------------------------------''' 

 

  

  

 ''' Go through each image ''' 

 '''-----------------------''' 

  

 csv_fnames = list_files(csv_dir, '.csv') 
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 args = [[csv_fnames[i], imgs_dir, thresh, overlay_dir, problem_dir, problem_thresh] for i in 

range(len(csv_fnames))] 

  

  

 with Pool(processes=8) as pool: 

  pool.map(save_overlay, args) 

  

  

 

 

  

  # Combine overthresh csv into one 'predictions.txt' for the gui to read  

 csv_fnames = list_files(pred_dir, '.csv', 'all_predictions.csv') # chill out, its ignoring 

all_predictions.csv 

 csv_dfs    = [pd.read_csv(csv_fnames[i]) for i in range(len(csv_fnames))] 

  

 sname =  str(thresh) + '+_detections.txt' 

 final_df_sname = os.path.join(pred_dir, sname) 

 final_df       = pd.concat(csv_dfs) 

 final_df       = final_df[['Y1','Y2','X1','X2','fname']] 

  

 final_df.to_csv(final_df_sname, sep='\t', index=False) 

  

  # Get rid of redundant csvs 

 for i in range(len(csv_fnames)): 

  os.remove(csv_fnames[i]) 

   

  

 return 

  

   

   

 

 

################################################################ 

################################################################ 

################################################################ 

 

# Current Working Version 
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#####################################################################################

################################# 

#####################################################################################

################################# 

 

 

 

 

def all_preds_to_tiles(pred_dir): 

 ''' 

 This function makes tiles from all over-threshold predictions, this is good for an initial 

retrain, where you've just predicted on a set of 

  images you know to be false.  

   

 Inputs: 

   pred_dir  [str] fullpath to predictions directory within img-

containing dir 

    

 Outputs: 

   tile(s)  [files] the tiles that the model thought were meteorites 

  

  

 ''' 

  # Directory declaration 

 log_fname = os.path.join(pred_dir, 'detections.txt') 

 sus_dir   = os.path.join(pred_dir, 'suspect_images') 

 tile_dir  = os.path.join(pred_dir, 'all_tiles') 

 img_dir   = os.path.split(pred_dir)[0] 

 img_dir   = os.path.join(img_dir, 'images') 

  

 if(not os.path.exists(tile_dir)): 

  os.mkdir(tile_dir) 

 

 f = open(log_fname, 'r') 

 lines = f.readlines()[1:] 

 f.close() 

  

 

 prev_fname = 'init' 
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 for i in range(len(lines)):  

  sl = lines[i].replace('\n','').split('\t') 

  img_fname = os.path.join(img_dir, sl[-1].replace('predicted_', '')) 

   

   

  if(prev_fname != img_fname): 

   img = np.asarray(PIL.Image.open(img_fname)) 

   

  TILE  = PIL.Image.fromarray(img[int(sl[0]):int(sl[1]), int(sl[2]):int(sl[3])]) 

  sname = os.path.join(tile_dir, (str(i) + 'tile.JPG')) 

 

  TILE.save(sname) 

  prev_fname = img_fname 

   

  sys.stdout.write((str(i) + '/' + str(len(lines)))) 

  sys.stdout.flush() 

   

 return 

 

 

 

 

#####################################################################################

################################# 

#####################################################################################

################################# 

#####################################################################################

################################# 

 

 

 

def pull_sorted(flight_dir, n_sorters=1, h_w=4): 

 '''This function takes the path to a directory of full images, with its completed 

sorted_predictions sub dir. 

  It then slices out the 'N' tiles for retraining. And compiles a list of the 'Y' candidates 

 

 Inputs: 

   flight_dir [str] full path to directory with full images, with a completed and 

sorted /*predictions* sub-dir  

   n_sorters  [int] number of complete sorting logs in */predictions* sub dir. ex: 

'seamus_sorting_log_complete.txt' 

   h_w        [int] highlight width for bounding box around detection/candidate 
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 ''' 

 

  # Init names and paths 

 img_dir   = os.path.join(flight_dir, 'images') 

 pred_dir  = list_files(flight_dir, 'predictions', '.txt')[0] 

 sort_logs = list_files(pred_dir,   'sorting_log_complete') 

 follow_up_dir = os.path.join(pred_dir, 'follow_up_candidates')   

 retrain_dir   = os.path.join(pred_dir, 'tiles_for_retrain') 

  

  

 ''' Check for: 

   -final_prediction_log 

   -sorting_log_complete 

   -out_folder ''' 

  # Check for existing ouput dirs, make them if they don't exist 

 if(not os.path.exists(follow_up_dir)): 

  os.mkdir(follow_up_dir) 

 if(not os.path.exists(retrain_dir)): 

  os.mkdir(retrain_dir) 

   

  # Stop program if insufficient sorting or no final log 

 if(len(list_files(flight_dir, 'final_prediction_log')) == 0): 

  print('No final log detected...\n\tAborting...') 

  return 

 if(len(sort_logs) < n_sorters): 

  print('Insufficient completed sorting logs...\n\tAborting...') 

  return 

 

 

 ''' Make txt file for candidates''' 

 candid_fname = os.path.join(follow_up_dir, 'candidate_locations.txt') 

 candid_f = open(candid_fname, 'w') 

 candid_f.write('Y1\tY2\tX1\tX2\tImage') 

 candid_out_list = [] 

 

 sort_lines = [] 

 

 ''' Read sorting logs ''' 

 for i in range(len(sort_logs)): 

  f = open(sort_logs[i], 'r') 

  sort_lines.extend(f.readlines()[6:]) 
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  f.close() 

 

 prev_fname = '' 

 

 

 ''' Sort into 'follow ups' vs 'retrain' '''   

  # Loop through each 'prediction' 

 for i in range(len(sort_lines)): 

  print(sort_lines[i]) 

   # Yes case 

  if('Y\t' in sort_lines[i]): 

   sl = sort_lines[i].split('\t') 

 

   orig_img_fname = sl[-1].replace('\n', '') 

   orig_img_fname = orig_img_fname.replace('predicted_', '') 

   orig_img_fname = os.path.join(img_dir, orig_img_fname) 

    

   sname = 'candidate_' + os.path.split(orig_img_fname)[1] 

   sname = os.path.join(follow_up_dir, sname) 

    # Check to see if this image has previous candidates in it 

   if(os.path.exists(sname)): 

    IMG = PIL.Image.open(sname)    

   else: 

    IMG = PIL.Image.open(orig_img_fname) 

 

    # Draw bounding box 

   draw = PIL.ImageDraw.Draw(IMG) 

   draw.line([int(sl[4]), int(sl[2]), int(sl[4]), int(sl[3])], fill='yellow', width=h_w) 

# Left  

   draw.line([int(sl[5]), int(sl[2]), int(sl[5]), int(sl[3])], fill='yellow', width=h_w) 

# Right    

   draw.line([int(sl[4]), int(sl[3]), int(sl[5]), int(sl[3])], fill='yellow', width=h_w) 

# Bottom 

   draw.line([int(sl[4]), int(sl[2]), int(sl[5]), int(sl[2])], fill='yellow', width=h_w) 

# Top   

    # Save image   

   IMG.save(sname) 

    

    # Save entry into candidate log 

   string = '\n' + sl[2] + '\t' + sl[3] + '\t' + sl[4] + '\t' + sl[5] + '\t' + 

os.path.split(sname)[1] 

   candid_out_list.append(string) 



   

 

171 

 

 

 

   # False positive for retraining 

  if(('I\t' and 'Y\t') not in sort_lines[i]): 

   sl = sort_lines[i].split('\t')   

   orig_img_fname = sl[-1].replace('\n', '') 

   orig_img_fname = orig_img_fname.replace('predicted_', '') 

   orig_img_fname = os.path.join(img_dir, orig_img_fname) 

   sname = sl[-1].replace('\n', '') 

   sname = sname.replace('\t', '_')  

   sname = os.path.join(retrain_dir, sname).replace('predicted_', ('retrain_' + 

str(sl[2]) + '_'+ str(sl[3]) + '_'+ str(sl[4]) + '_'+ str(sl[5]) + '_')) 

    # Check to see if this tile has already been saved    

   if(os.path.exists(sname)): 

    continue      

   if(prev_fname == orig_img_fname): 

    IMG = IMG 

   else: 

    IMG  = PIL.Image.open(orig_img_fname) 

   tile = np.asarray(IMG)[int(sl[2]):int(sl[3]), int(sl[4]):int(sl[5])] 

   TILE = PIL.Image.fromarray(tile) 

   TILE.save(sname) 

    

   prev_fname = orig_img_fname 

  

 candid_out_list = list(dict.fromkeys(candid_out_list)) 

 for i in range(len(candid_out_list)): 

  candid_f.write(candid_out_list[i]) 

 

 

 candid_f.close() 

 

 return 

 

  

#####################################################################################

################################# 

#####################################################################################

################################# 

#####################################################################################

################################# 
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def eval_model(model_path, met_folder, real_met_folder='../real_mets/tiles', full_img_folder=None, 

pred_thresh=0.9, input_shape=(125,125), n_cores=5, silent=False): 

 '''This function takes a model, unique meteorite tiles and full images, in order to evaluate 

   the percentage of meteorites it will recognize and the average number of false 

positives per image. 

 

 Inputs: 

   model_path    [str]   full path to the .h5 model to be evaluated 

   met_folder     [str]   folder containing 'fake' meteorite tiles  

   real_met_folder [str] fullpath to dir with real meteorite tiles, NOTE: there 

should be 1 subdir which contains the tiles (blame keras) 

   full_img_folder [str]   folder containing full images (no meteorites) 

   pred_thresh   [float] prediction threshold, preds below this are not 

counted 

   input_shape   [tuple] pixel shape of tiles used in the model 

   silent     [bool]  if False, print updates/results 

 

 Outputs: 

   <model_fname>_eval.txt [file] log file of the evaluation 

 

 

 ''' 

  # Load model 

 model = keras.models.load_model(model_path) 

  

 

 

 ''' Predict on 'fake' meteorite tiles ''' 

 '''-----------------------------------''' 

  

 tile_fnames = list_files(met_folder) 

 tile_preds  = [] 

 pred_count  = 0.0 

 

 met_log_fname = model_path.replace('.h5', '_fakemet_preds.csv') 

 

 

  # Loop through each meteorite tile and predict 

 for i in range(len(tile_fnames)): 
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  tile = np.asarray(PIL.Image.open(tile_fnames[i])).reshape(1, 125, 125, 3) 

  pred = float(model.predict(tile / 255.)[0]) 

  tile_preds.append(pred) 

   

  if(pred >= pred_thresh): 

   pred_count += 1.0 

   

  tile_fnames[i] = osplit(tile_fnames[i])[1] 

   

   

  # Percent of meteorite tiles labelled 'True' 

 tile_percent = pred_count / float(len(tile_fnames)) 

 

  

  # Write tile predictions to .csv 

 df = pd.DataFrame({'pred_val':  tile_preds, 

        'fname':     tile_fnames   }) 

 df.to_csv(met_log_fname, index=False) 

  

  

  # Make Histogram 

 tile_preds = np.asarray(tile_preds) 

   

 string = '' 

 for i in np.arange(9, 0, -1): 

  n       = np.round((len(np.where(tile_preds > (i*0.1))[0]) / len(tile_preds) * 100), 2) 

  string += '>0.' + str(i) + ': ' + str(n) + '\n' 

  

 plt.title((osplit(model_path)[1] + ' Met detection')) 

 plt.ylabel('Num Predictions') 

 plt.xlabel('Prediction Value') 

 plt.xlim((0,1.3)) 

 plt.text(1.025, 100, string) 

 plt.hist(tile_preds, bins=20, log=True) 

 plt.savefig(met_log_fname.replace('preds.csv', 'hist.png')) 

  

  

  

  

  

 ''' Predict on REAL meteorite tiles ''' 

 '''---------------------------------'''   
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  # Init REAL met folder 

 test_datagen = ImageDataGenerator(rescale=1./255) 

 test_generator = test_datagen.flow_from_directory( 

      real_met_folder, 

      target_size = (125,125), 

      color_mode  = 'rgb', 

      shuffle  = False, 

      class_mode  = 'binary', 

      batch_size  = 400         ) 

 

  # Get Fnames of real met tiles 

 fnames  = test_generator.filenames 

 n_tiles = len(fnames) 

 

  # Make dictionary for meteorites (group together permutations) 

 new_fnames = [] 

 

 for i in range(len(fnames)): 

  new_fnames.append('__'.join(fnames[i].split('__')[1:])) 

 

 new_fnames = list(dict.fromkeys(new_fnames)) 

 new_preds  = [[] for i in range(len(new_fnames))] 

 new_stds   = [[] for i in range(len(new_fnames))] 

 

  # Predict 

 preds = model.predict_generator(test_generator, steps = 61) 

 

  # Group together preds based on original image fnames 

 for i in range(len(preds)): 

  for j in range(len(new_fnames)): 

   if(new_fnames[j] in fnames[i]): 

    new_preds[j].append(preds[i]) 

     

  # Condense preds into mean and std for each original img 

 for i in range(len(new_preds)): 

  arr = np.asarray(new_preds[i]) 

  #np.where(arr > 0.9, 1, 0) 

  new_stds[i]  = np.std(arr) 

  new_preds[i] = np.mean(arr) 
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  # Save REAL met preds to csv 

 real_met_sname = model_path.replace('.h5', '_real_met_preds.csv') 

 

 df = pd.DataFrame() 

 df['fname']     = new_fnames 

 df['pred_mean'] = new_preds 

 df['pred_std']  = new_stds 

 df.sort_values(['pred_mean'], inplace=True) 

 df.to_csv(real_met_sname) 

 

  # Make Histogram 

 plt.clf() 

 plt.hist(preds, bins=20, log=True) 

 plt.savefig(real_met_sname.replace('preds.csv', 'hist.png')) 

 

  # Get size of meteorites(from 'meteorite_locations.txt' files, should be already 

compiled in /real_mets) 

 real_met_sizes_fname = os.path.join(os.path.split(real_met_folder)[0], 'real_met_sizes.csv') 

 real_met_sizes_df = pd.read_csv(real_met_sizes_fname) 

  

 df['diam'] = [0 for i in range(len(df))] 

  

  # Match diams to fnames in preds df/csv 

 for i in range(len(df)): 

  for j in range(len(real_met_sizes_df)): 

   if(df['fname'].iloc[i] == real_met_sizes_df['fname'].iloc[j]): 

    df['diam'].iloc[i] =  real_met_sizes_df['diam'].iloc[j] 

     

     

  # Make Scatterplot 

 plt.clf() 

 plt.ylabel('Prediction Value') 

 plt.xlabel('Pixel Diameter of Meteorite') 

 plt.figure(figsize=(10,10)) 

 for i in range(len(df)): 

  if('Mad' in df['fname'].iloc[i]): 

   plt.errorbar(df['diam'].iloc[i], df['pred_mean'].iloc[i], 

yerr=df['pred_std'].iloc[i], fmt='bo')  

  if('Mun' in df['fname'].iloc[i]): 

   plt.errorbar(df['diam'].iloc[i], df['pred_mean'].iloc[i], 

yerr=df['pred_std'].iloc[i], fmt='ro')  
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 plt.savefig(real_met_sname.replace('preds.csv', 'scatter.png')) 

  

 

  

 """ 

 ''' Predict on full images, to find false positive rate ''' 

  

 overlay_dir, tile_count, proc_rate = predict_and_highlight(model_path, full_img_folder, 

input_shape=input_shape, n_cores = n_cores ) 

 n_false_pos = float(tile_count) 

 n_full_imgs = float(len(list_files(full_img_folder))) 

 

  # Rate of false positives per image 

 false_pos_avg = n_false_pos / n_full_imgs 

 

 

 

 time_str = str(dtm.now()) 

 time_str = time_str.replace(' ', '_') 

 time_str = time_str.replace(':', '-') 

 time_str = time_str.split('.')[0] 

 

 output_str = ( time_str +  

     '\nEvaluated Model:   ' + os.path.split(model_path)[1] +  

     '\nMeteorites Found:  ' + str(int(pred_count)) + '/' + 

str(len(tile_fnames)) + '  (' + str(np.round(tile_percent*100, 1)) + ' %)' +   

     '\nAvg. False pos.:   ' + str(np.round(false_pos_avg, 1)) +  '

 (n_imgs=' + str(int(n_full_imgs)) + ')' + '\n' + 

     '\nAvg ime per img:   ' + str(proc_rate) + ' [sec]' + '\n' ) 

 

 

  # Print results and write to file 

 if(silent != True): 

  print(output_str) 

 

 sname = model_path.split('.')[0] + '_eval.txt' 

 sname = os.path.join(os.path.split(model_path)[0], ('eval_' + os.path.split(model_path)[1][:-

3] + '.txt')) 

 f = open(sname, 'a') 

 f.write(output_str) 

 f.close() 
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 """ 

 

 

 

 return #(tile_percent, false_pos_avg) 

 

 

 

 

#####################################################################################

######################################################## 

#####################################################################################

######################################################## 

#####################################################################################

######################################################## 

 

 

 

 

def make_overview(survey_dir): 

 ''' 

 This function creates a .csv overview which summarizes which directories (or flights) have 

been predicted on, their results,  

  as well as progress towards sorting the false positives. 

   

 Inputs: 

   survey_dir [str] fullpath to the survey dir which contains subdirs 

containing images from a flight 

   

 Outputs: 

   survey_dir/overview.csv [file] Summary file  

   

 ''' 

  

 pd.option_context('display.max_rows', None, 'display.max_columns', None) 

  

 flight_dirs = list_files(survey_dir, 'flight') 

  

 df = pd.DataFrame(columns=['Flights Num.', 'N Images', 'ML Prediction', 'Detections', 

'Sorter A', 'Sorter B', 'N Candidates'], index=None) 

  

  



   

 

178 

 

  

  # Loop through each flight dir 

 for i in range(len(flight_dirs)): 

   # get n_images 

  imgs_dir = ojoin(flight_dirs[i], 'images') 

  imgs = len(list_files(imgs_dir)) 

   

   # check for prediction 

  pred_dirs  = list_files(flight_dirs[i], 'predictions') 

  final_logs = list_files(flight_dirs[i], 'final') 

  inter_logs = list_files(flight_dirs[i], 'interim') 

   

  csvs_dir   = list_files(pred_dirs[0], 'csvs')[0] 

  if(len(final_logs) != 0): 

   pred = 'Completed' 

  if(len(pred_dirs) == 0):   

   pred = 'Not Started' 

  if(len(inter_logs) != 0): 

    

   n_done = len(list_files(csvs_dir, '.csv')) 

   pred   = str(int( float(n_done) / float(imgs) * 100 )) + '%' 

    

   # Detections 

  det_fname = ojoin(pred_dirs[0], 'detections.txt') 

  if(not os.path.exists(det_fname)): 

   detections = 0 

  if(    os.path.exists(det_fname)): 

   f = open(det_fname, 'r') 

   detections = len(f.readlines()) - 1 

 

   # check for sorting  

  sorts = ['', ''] 

  sort_logs = list_files(pred_dirs[0], 'sorting_log') 

   

  for j in range(len(sort_logs)): 

   if(j == 2): 

    break 

   if('complete'     in sort_logs[j]): 

    sorts[j] = 'Completed' 

   if('complete' not in sort_logs[j]): 

    sorter_name = osplit(sort_logs)[1].replace('_sorting_log.txt', '') 

    sorts[j] = sorter_name 
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   # check for candidates 

  if('Completed' in sorts): 

   com_sort_log = list_files(pred_dirs[0], 'complete')[0]  

   f = open(com_sort_log, 'r') 

   lines = f.readlines() 

   f.close() 

   cands = lines - 1 

    

  if('Completed' not in sorts): 

   cands = 0 

   

    

  df = df.append({ 

             'Flight Num.':      osplit(flight_dirs[i])[1],  

             'N Images':       imgs, 

             'ML Prediction':    pred, 

             'Detections':     suspects, 

             'Sorter A':       sort, 

             'Sorter B':       sortB, 

             'N Candidates':   cands },  

              

             ignore_index=True) 

   

  

 df = df.append({ 

      'Flight Num.':     'total',  

      'N Images':      df['images'].sum(), 

      'ML Prediction':  '', 

      'Detections':    df['suspects'].sum(), 

      'Sorter A':     '', 

      'Sorter B':     '', 

      'candidates':  df['candidates'].sum() }, ignore_index=True) 

  

  

  

  

 sname = ojoin(survey_dir, 'overview.csv') 

 df.to_csv(sname, index=False) 

 try: 

  os.system(('xdg-open ' + sname)) 

  return 
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 except: 

  return 

  

#####################################################################################

######################################################## 

#####################################################################################

######################################################## 

#####################################################################################

######################################################## 

 

 

 

def equalize_train_set(train_dir): 

 ''' 

 This function moves excess tiles from 'False' /subdir to an 'Extra' one, this is good for making 

balanced retraining sets 

  

 ''' 

  # Identify True/False subdirs 

 true_dir  = os.path.join(train_dir, 'True') 

 false_dir = os.path.join(train_dir, 'False') 

  

  # Make subdir for extra false tiles (to be moved into)Untitled  

 extra_f_dir = os.path.join(os.path.split(train_dir)[0], 'Extra_false_equalized') 

 extra_t_dir = os.path.join(os.path.split(train_dir)[0], 'Extra_true_equalized') 

 if(not os.path.exists(extra_t_dir)): 

  os.mkdir(extra_t_dir) 

 if(not os.path.exists(extra_f_dir)): 

  os.mkdir(extra_f_dir) 

  

  # Count number of tiles to move 

 n_true  = len(list_files(true_dir)) 

 n_false = len(list_files(false_dir)) 

 n_extra = n_false - n_true 

  

  # Too many true tiles 

 if(n_extra < 0): 

   # List false tiles and shuffle 

  true_tiles = list_files(true_dir) 

  random.shuffle(true_tiles) 

  

   # Move 
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  for i in range(abs(n_extra)): 

   tile_name = true_tiles[i] 

   new_name  = os.path.join(extra_t_dir, (str(i) + '.jpg')) 

   os.rename(tile_name, new_name) 

  

  # Too many false tiles 

 if(n_extra > 0): 

  # List false tiles and shuffle 

  false_tiles = list_files(false_dir) 

  random.shuffle(false_tiles) 

  

  # Move 

  for i in range(n_extra): 

   tile_name = false_tiles[i] 

   new_name  = os.path.join(extra_f_dir, (str(i) + '.jpg')) 

   os.rename(tile_name, new_name) 

  

   

 return 

 

 

 

 

# -*- coding: utf-8 -*- 

""" 

Created on Mon Mar  4 21:07:34 2019 

 

@author: 19418948 

""" 

 

 

 

 

import os 

 

import tkinter 

from datetime import datetime as dtm 

import time 

import numpy as np 

import multiprocessing as mp 
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from tkinter import Tk, Label, Button, filedialog, Entry, Canvas, IntVar 

from PIL import ImageTk, Image, ImageOps, ImageDraw 

 

 

 

#####################################################################################

########### 

#####################################################################################

########### 

#####################################################################################

########### 

 # This is the directory to the images thrown up every 5-10 falses in a row 

global human_test_dir 

human_test_dir = r'/data0/Seamus_data/MET_searching/keras_train/human_test_dir' 

#####################################################################################

########### 

#####################################################################################

########### 

#####################################################################################

########### 

 

 

def list_files(folder, f_type='.jpg', exclude=None): 

 '''Takes a folder and file extention, and returns all the filenames (fullpaths) in that 

     directory with that extention. 

      

    ** NOTE this can work for any sub-dir or file if you replace the extention with what ** 

  * you want to look for         

        * 

  

 Inputs: 

   folder  [str]   full path to the folder to be searched 

   f_type  [str]   file extention including the '.' 

   exclude [str]   key word or phrase to exclude when looking for files 

    

 Outputs 

   files [list] full path to files containing 'f_type' extention 

 ''' 

   

  # List contents of the given 'folder' 

 contents = os.listdir(folder) 

  # Prep list for files to be extracted 
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 files = [] 

  # Loops through all the items found in 'folder' 

  #  adds them to the return list 'files', if file extention matches 

 for i in range(len(contents)): 

  if(f_type.upper()  in contents[i].upper()): 

   files.append(os.path.join(folder, contents[i])) 

  if((exclude != None) and (exclude.upper() in contents[i].upper())): 

   files.remove(os.path.join(folder, contents[i])) 

 

 

 

 return files 

 

 

 

 

#####################################################################################

########### 

#####################################################################################

########### 

#####################################################################################

########### 

 

#####################################################################################

########### 

#####################################################################################

########### 

#####################################################################################

########### 

 

 

 

class Boulder: 

 

 def __init__(self, master): 

   

   

  ''' Startup window, username input, flight select ''' 

  '''-----------------------------------------------''' 

   

   

   # Create window 
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  self.master = master 

  master.title("Boulder") 

   

   # Print welcome message 

  global user 

  global welcome 

  init_str = '''This interface is designed to help meteorite searchers sort through  

 tiles deemed to have a high probability of containing a meteorite.  

  

 Please enter your name to get started.''' 

 

   

  welcome = Label(master, text=init_str) 

  welcome.pack() 

   

   # Text entry box for username 

  self.user = Entry(master)    

  self.user.pack() 

   

   # Set up Button for selecting folder, which will later start 

  self.proceed_b = Label(master, text="Press <Return> to select meteorite tiles 

directory") 

  self.proceed_b.pack() 

   

  master.bind("<Return>", self.proceed) 

 

 

 

 ##############################################################################

##################   

 ##############################################################################

################## 

 ##############################################################################

##################  

  

  # This function is where the meat of the sorting happens 

 def proceed(self, master): 

  global you_fucked_up_fname 

  global extra 

   

  # This displays the real meteorites on the periphary for reference 

  #============================================================== 
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  #you_fucked_up_fname = 

'/data0/Seamus_data/MET_searching/keras_train/drone_searching/gui/graphics/misc/fucked_up1.g

if' 

  you_fucked_up_fname = 'graphics/misc/you-fucked-up.jpg' 

  bun1_fname = 'graphics/display_examples/bunburra_1_alpha.png' 

  bun2_fname = 'graphics/display_examples/bunburra_2_alpha.png' 

  murr_fname = 'graphics/display_examples/Murilli_alpha.png' 

 

 

 

   # How many extra pixels to pad the suspect tile with 

  extra = 70  # tile dimension (125, 125, 3)  

 

 

   # Make real meteorite size scale bars 

  img_scale =   5   # [pix/cm] 

  img_scale =   1.5  # [mm/pix] 

  

  size_lims  = np.array([75, 57.5, 40])  # Upp->Med->Low  [mm] (diameter) 

  size_lims /= img_scale      # size lims is now in 

[pix] 

  

    

  bun1 = Image.open(bun1_fname) 

  bun2 = Image.open(bun2_fname) 

  murr = Image.open(murr_fname) 

   

  bun1_r = bun1.size[0] / bun1.size[1] 

  bun2_r = bun2.size[0] / bun2.size[1] 

  murr_r = murr.size[0] / murr.size[1] 

  

   

   

  newsize1 = ( int(size_lims[2]), int(size_lims[2]/bun1_r) ) 

  newsize2 = ( int(size_lims[1]), int(size_lims[1]/bun2_r) ) 

  newsize3 = ( int(size_lims[0]), int(size_lims[0]/murr_r) ) 

 

 

  bun1 = bun1.resize(newsize1) 

  bun2 = bun2.resize(newsize2) 

  murr = murr.resize(newsize3) 
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  self.bun1  = ImageTk.PhotoImage(bun1) 

  self.bun2  = ImageTk.PhotoImage(bun2) 

  self.murr  = ImageTk.PhotoImage(murr) 

 

  #============================================================== 

 

 

 

 

  global sorting_log 

  global time_log_fname 

  global pred_lines 

  global img_dir 

  global not_folder 

  global met_folder 

  global t0 

  global test_fname 

   

 

  global last_yes 

  last_yes = IntVar() 

  last_yes.set(0) 

 

   # This is the user's position in the predictions   

  global j 

  j = IntVar() 

  j.set(0)   

 

   

   

  #human_test_dir = 

r'E:\ML\time_of_day_training\synth_sets\Feb15_sets\all_times_comp\True' 

  global human_test_fnames 

  human_test_fnames = list_files(human_test_dir) 

  #input_folder = 

'/hdd/Forrest_survey_dir_SSD1/Flight_01/no_doubles_predictions_2020-06-03_13-27-04' 

 

 

   

   # Record input folder selection from user  

   #  and get tile filenames  

  os.chdir('/data0') 
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  input_folder = filedialog.askdirectory() 

  img_dir      = os.path.join(input_folder, 'suspect_images') 

  pred_fname   = os.path.join(input_folder, 'detections.txt') 

  pred_file    = open(pred_fname, 'r') 

  pred_lines   = pred_file.readlines()[1:] 

  pred_file.close() 

   

   

   # Get entered username 

  username  = self.user.get() 

   

   # Delete welcome message, username text box, and folder select button 

  self.user.pack_forget() 

  self.proceed_b.pack_forget() 

  welcome.pack_forget() 

   

   

   

  ########################### 

  ''' Make or resume logs ''' 

  '''---------------------''' 

  ########################### 

   

   

   # Make sorting log for this user  

  sorting_log    = os.path.join(input_folder, (username + '_sorting_log.txt')) 

   

   

   # Check for previous sorting log 

  if(os.path.exists(sorting_log) == True): 

    # Read and split by entries 

   f = open(sorting_log, 'r') 

   log_content = f.readlines() 

   f.close() 

    # Loop through each sorting entry to find the most recently sorted jpg, 

note this is a decrement for loop 

   for i in range(len(log_content)-1, 0, -1): 

     # Check for a real file log line 

    if(('.jpg' in log_content[i]) or 

       ('.JPG' in log_content[i]) ): 

     last_line = log_content[i] 

      # find the index value for pred_lines 
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     for k in range(len(pred_lines)): 

      if(pred_lines[k] in last_line): 

       pred_lines = pred_lines[k+1:]   

     # k is the last one sorted, so start a the next one: k+1 

       print('Previous log found, resuming at:', 

pred_lines[0]) 

       break 

     break 

 

 

   # If first attempt, add header 

  if(os.path.exists(sorting_log) == False): 

   header_str = ('\n==========================================\n' 

+  

        'User:     \t' + username    + '\n' 

+ 

        'Date\Time:    \t' + str(dtm.now()) + '\n' +  

        'Sorted from folder:\t' + input_folder   + '\n' + 

        'Meteorite [Y/N]   \tY1\tY2\tX1\tX2\tImage \n' 

 ) 

   f = open(sorting_log, 'w') 

   f.write(header_str) 

   f.close() 

   

 

 

 

 

  ##################### 

  ''' Setup display ''' 

  '''---------------''' 

  ##################### 

   

   

   

  string = ("If you're not sure, label it a meteorite!\n\n" + "Press the number 

corresponding to the grid position (lower left is 1, upper right is 9" 

           + "\nPress <Enter> (on keypad) to advance and '-' (also on keypad) to go back") 

  inst = Label(self.master, text=string) 

  inst.pack() 
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   # Determine number of test tiles this round, and in what grid position they 

will be  

  global num_test_tiles 

  global test_positions 

  global user_responses 

  global first_set 

  global n_fuck_ups 

   

  n_fuck_ups = 0 

   

  first_set = True 

 

  num_test_tiles = IntVar() 

  num_test_tiles.set(np.random.randint(0,3)) 

 

  user_responses = [] 

  if(num_test_tiles.get() > 0): 

   test_positions = np.random.randint(0, 9, num_test_tiles.get()) 

  else: 

   test_positions = [] 

    

    

   # Designate current real samples to be shown, accounting for how many test 

there will be 

  global current_lines 

  current_lines = pred_lines[j.get() : (j.get() + 9 - num_test_tiles.get())] 

  x = 0 # x is an iterator through this set of real tiles 

   

  t0 = dtm.now() 

   #-# Display each tile; real sample or otherwise 

    # Start by making a blank PIL Image instance 

  DISP_IMG = Image.new('RGB', (835,835), color='white') 

   

     # Allocate lists to store this batch's tiles and xy corrds  

  tiles = mp.Manager().list(range(9)) 

   

     # Write function for loading each tile, later used in multi-

processing 

  def get_tile(img_fname, xys, i): 

    # load full image 

   full_img = ImageOps.expand(Image.open(img_fname), border= (3*extra), 
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fill='black') 

   tile = Image.fromarray(np.asarray(full_img)[ xys[0]:xys[1], xys[2]:xys[3] ]) 

   draw = ImageDraw.Draw(tile) 

   draw.text([10,10],  (str(i+1) + ' - ' + os.path.split(img_fname)[1] )) 

   tiles[i] = tile 

   return 

   

   

 

   

  jobs = [] 

   # Get each sus tile or test tile 

  for i in range(9): 

    # CASE: Test tile  

   if(i in test_positions): 

    test_txt_fname = list_files(human_test_dir, 

'candidate_locations.txt')[0] 

    test_f = open(test_txt_fname, 'r') 

    test_lines = test_f.readlines()[1:] 

    test_f.close() 

    test_line = test_lines[ np.random.randint(0, len(test_lines)-1) ]  

    sl = test_line.split('\t') 

    img_fname = os.path.join(human_test_dir, sl[-1].replace('\n', '')) 

    y1 = int(sl[0]) - extra  + (3 * extra) 

    y2 = int(sl[1]) + extra  + (3 * extra) 

    x1 = int(sl[2]) - extra  + (3 * extra)   

    x2 = int(sl[3]) + extra  + (3 * extra) 

    xys = (y1,y2,x1,x2) 

    

    # CASE: Real sample 

   else: 

    sl = (current_lines[x].replace('\n', '')).split('\t') 

    x += 1 

    img_fname  = os.path.join(img_dir, sl[-1]) 

    y1 = int(sl[0]) - extra  + (3 * extra) 

    y2 = int(sl[1]) + extra  + (3 * extra) 

    x1 = int(sl[2]) - extra  + (3 * extra)   

    x2 = int(sl[3]) + extra  + (3 * extra)   

    xys = (y1,y2,x1,x2) 

   

    

   p = mp.Process(target = get_tile,  
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         args   = [img_fname, xys, i]) 

   jobs.append(p) 

   p.start() 

    

  for job in jobs: 

   job.join() 

 

 

   # paste tiles onto display image 

  for i in range(9): 

   if(i==0): 

    paste_pos = (10,  560) 

   if(i==1): 

    paste_pos = (285, 560)  

   if(i==2): 

    paste_pos = (560, 560) 

   if(i==3): 

    paste_pos = (10,  285) 

   if(i==4): 

    paste_pos = (285, 285) 

   if(i==5): 

    paste_pos = (560, 285) 

   if(i==6): 

    paste_pos = (10,  10) 

   if(i==7): 

    paste_pos = (285, 10)    

   if(i==8): 

    paste_pos = (560, 10) 

    

    

   DISP_IMG.paste(tiles[i], paste_pos) 

 

  self.DISP_IMG = ImageTk.PhotoImage(DISP_IMG) 

  

  global win_w 

  global win_h 

  win_w = 1000 

  win_h = 1000 

  

  disp_text = 'Number of Fuck Ups: ' + str(n_fuck_ups) 

 

   # Make Window 
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  self.canvas = Canvas(self.master, width=win_w, height=win_h) 

  self.canvas.create_text( win_w/2, int(0.06 * win_h), anchor='center', text=disp_text) 

  self.canvas.create_image(win_w/2, win_h/2,           anchor='center', 

image=self.DISP_IMG) 

  self.canvas.create_image(int(win_w  /4), int(win_h*0.95),          anchor='center', 

image=self.bun1) 

  self.canvas.create_image(int(win_w  /2), int(win_h*0.95),          anchor='center', 

image=self.bun2) 

  self.canvas.create_image(int(win_w*3/4), int(win_h*0.95),          anchor='center', 

image=self.murr) 

  self.canvas.pack() 

  t0 = dtm.now() 

      

        # Binding functions to keystrokes 

  self.master.bind('<KP_1>', self.s1) 

  self.master.bind('<KP_2>', self.s2) 

  self.master.bind('<KP_3>', self.s3) 

  self.master.bind('<KP_4>', self.s4) 

  self.master.bind('<KP_5>', self.s5) 

  self.master.bind('<KP_6>', self.s6) 

  self.master.bind('<KP_7>', self.s7) 

  self.master.bind('<KP_8>', self.s8) 

  self.master.bind('<KP_9>', self.s9) 

   

  self.master.bind('<KP_Enter>',    self.advance) 

  self.master.bind('<KP_Subtract>', self.retreat) 

  self.master.bind('<BackSpace>',     self.strike)   

 

  global n_cands 

  n_cands = 0 

 

  global n_tests 

  n_tests = int(num_test_tiles.get()) 

 

  global start_time  

  start_time = dtm.now() 

   

 

 ######################################################### 

 #########################################################      

 ######################################################### 
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 def s1(self, master): 

  print('1') 

  user_responses.append('1') 

 def s2(self, master): 

  print('2') 

  user_responses.append('2') 

 def s3(self, master): 

  print('3') 

  user_responses.append('3') 

 def s4(self, master): 

  print('4') 

  user_responses.append('4') 

 def s5(self, master): 

  print('5') 

  user_responses.append('5') 

 def s6(self, master): 

  print('6') 

  user_responses.append('6') 

 def s7(self, master): 

  print('7') 

  user_responses.append('7') 

 def s8(self, master): 

  print('8')  

  user_responses.append('8') 

 def s9(self, master): 

  print('9')  

  user_responses.append('9') 

   

 def strike(self, master): 

  if(len(user_responses) == 0): 

   return 

  else: 

   print('Removing "', user_responses[-1], '" from user_responses ') 

   user_responses.pop() 

    

    

  

  

  

 ######################################################### 

 #########################################################      
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 ######################################################### 

  

  

 def advance(self, master): 

  print('Advance') 

  global n_fuck_ups 

  global user_responses 

  global test_positions 

  global first_set 

  global n_cands 

  global n_tests 

  global num_test_tiles 

  global current_lines 

 

   

  first_set = False 

   

   # Eliminate duplicates 

  yes_tiles = list(set(user_responses)) 

   

   # Check for test(s) 

  for i in range(len(test_positions)): 

   if(str(test_positions[i]+1) not in yes_tiles): 

    n_fuck_ups += 1 

    

   

   # Record Yes-No status of every real tile 

  x = 0  # x is kind of like an iterator within each set of displayed samples, with: global 

j acting as the first in the set 

  for i in range( num_test_tiles.get() + len(current_lines) ): 

   if(i in test_positions): 

    continue 

   if(str(i+1) in yes_tiles): 

    f = open(sorting_log, 'a+') 

    new_line = ( 'Y\t\t' + pred_lines[j.get()+x] ) 

    f.write(new_line) 

    f.close() 

    x += 1 

    n_cands += 1 

   if(str(i+1) not in yes_tiles): 

    f = open(sorting_log, 'a+') 

    new_line = ( '\tN\t' + pred_lines[j.get()+x] ) 
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    f.write(new_line) 

    f.close() 

    x += 1 

     

   

   # Set start iterator for new set 

  j.set(j.get() + x ) 

   

   

   # Check if you're done 

  if(j.get() >= (len(pred_lines) - 1) ): 

   os.rename(sorting_log, sorting_log.replace('.', '_complete.')) 

   print('Done sorting this flight!') 

   exit() 

   

   

   # Clear old display 

  self.canvas.pack_forget() 

    

    

   # Make New Display 

  

   

    # Determine number of test tiles this round, and in what grid position 

they will be  

 

  num_test_tiles = IntVar() 

  num_test_tiles.set(np.random.randint(0,3)) 

     

 

  user_responses = [] 

  if(num_test_tiles.get() > 0): 

   test_positions = np.random.randint(0, 9, num_test_tiles.get()) 

   if(len(test_positions) == 2): 

    while(test_positions[0] == test_positions[1]): 

     test_positions[1] = np.random.randint(0, 9) 

  else: 

   test_positions = [] 

    

   # Designate current real samples to be shown, accounting for how many test 

there will be 

  try: 
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   current_lines = pred_lines[j.get() : (j.get() + 9 - num_test_tiles.get())] 

   print('current_lines ',len(current_lines)) 

  except: 

   current_lines = pred_lines[j.get():] 

   print('Last Line, current_lines ', len(current_lines)) 

   

   

   

  x = 0 # x is an iterator through this set of real tiles 

   

  t0 = dtm.now() 

   #-# Display each tile, real sample or otherwise 

    # Start by making a blank PIL Image instance 

  DISP_IMG = Image.new('RGB', (835,835), color='white') 

   

     # Allocate lists to store this batch's tiles and xy corrds  

  tiles = mp.Manager().list(range(len(current_lines) + num_test_tiles.get())) 

   

     # Write function for loading each tile, later used in multi-

processing 

  def get_tile(img_fname, xys, i): 

    # load full image 

   full_img = ImageOps.expand(Image.open(img_fname), border= (3*extra), 

fill='black') 

   tiles[i] = Image.fromarray(np.asarray(full_img)[ xys[0]:xys[1], 

xys[2]:xys[3] ]) 

 

   

  jobs = [] 

  for i in range(len(current_lines) + num_test_tiles.get()): 

    # Test tile case 

   if(i in test_positions): 

    test_txt_fname = list_files(human_test_dir, 

'candidate_locations.txt')[0] 

    test_f = open(test_txt_fname, 'r') 

    test_lines = test_f.readlines()[1:] 

    test_f.close() 

    test_line = test_lines[ np.random.randint(0, len(test_lines)-1) ]  

    sl = test_line.split('\t') 

    img_fname = os.path.join(human_test_dir, sl[-1].replace('\n', '')) 

    y1 = int(sl[0]) - extra  + (3 * extra) 

    y2 = int(sl[1]) + extra  + (3 * extra) 
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    x1 = int(sl[2]) - extra  + (3 * extra)   

    x2 = int(sl[3]) + extra  + (3 * extra) 

    xys = (y1,y2,x1,x2) 

    

    # Real sample case 

   else: 

    try: 

     sl = (current_lines[x].replace('\n', '')).split('\t') 

    except: 

     print('Read line error, i: ', str(i) ,' x: ', str(x), '\n', 

'\n'.join(current_lines)) 

     print(test_positions) 

     exit() 

    x += 1 

    img_fname  = os.path.join(img_dir, sl[-1]) 

    y1 = int(sl[0]) - extra  + (3 * extra) 

    y2 = int(sl[1]) + extra  + (3 * extra) 

    x1 = int(sl[2]) - extra  + (3 * extra)   

    x2 = int(sl[3]) + extra  + (3 * extra)   

    xys = (y1,y2,x1,x2) 

   

 

   p = mp.Process(target = get_tile,  

         args   = [img_fname, xys, i]) 

 

   jobs.append(p) 

   p.start() 

    

  for job in jobs: 

   job.join() 

 

 

   # paste tiles onto display image 

  for i in range(9): 

   if(i==0): 

    paste_pos = (10,  560) 

   if(i==1): 

    paste_pos = (285, 560)  

   if(i==2): 

    paste_pos = (560, 560) 

   if(i==3): 

    paste_pos = (10,  285) 
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   if(i==4): 

    paste_pos = (285, 285) 

   if(i==5): 

    paste_pos = (560, 285) 

   if(i==6): 

    paste_pos = (10,  10) 

   if(i==7): 

    paste_pos = (285, 10)    

   if(i==8): 

    paste_pos = (560, 10) 

    

    

   DISP_IMG.paste(tiles[i], paste_pos) 

 

  self.DISP_IMG = ImageTk.PhotoImage(DISP_IMG) 

  

  global win_w 

  global win_h 

 

  win_w = 1000 

 

  win_h = 1000 

 

   

   

  dt = dtm.now() - start_time 

  dt = str(dt) 

  sp = dt.split('.')[0] 

  sp = sp.split(':') 

  sp = sp[1] + ':' +sp[2] + ' [mm:ss]' 

 

  disp_text = ('Elapsed Time:         \t' + sp + '\n' +  

      'Passed Tests:         \t' + str(n_tests - n_fuck_ups ) + ' \ ' + 

str(n_tests) +'  (' + str(np.round((n_tests + 1 - n_fuck_ups)/(n_tests+1)*100,2)) + '%)\n' + 

      'Candidates Identified:\t' + str(n_cands) + '\n' +  

      'Progress:             \t' + str(j.get()) + ' / ' + str(len(pred_lines)) 

+ '  ' + str(np.round(j.get() / len(pred_lines)* 100, 4) ) + '%' ) 

 

   # Make Window 

 

  self.canvas = Canvas(self.master, width=win_w, height=win_h) 

  self.canvas.create_text( win_w/2, int(0.04 * win_h), anchor='center', text=disp_text) 
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  self.canvas.create_image(win_w/2, win_h/2,           anchor='center', 

image=self.DISP_IMG) 

  self.canvas.create_image(int(win_w  /4), int(win_h*0.95),          anchor='center', 

image=self.bun1) 

  self.canvas.create_image(int(win_w  /2), int(win_h*0.95),          anchor='center', 

image=self.bun2) 

  self.canvas.create_image(int(win_w*3/4), int(win_h*0.95),          anchor='center', 

image=self.murr) 

  self.canvas.pack() 

 

  t0 = dtm.now() 

 

      

        # Binding functions to keystrokes 

 

  self.master.bind('<KP_1>', self.s1) 

  self.master.bind('<KP_2>', self.s2) 

  self.master.bind('<KP_3>', self.s3) 

  self.master.bind('<KP_4>', self.s4) 

  self.master.bind('<KP_5>', self.s5) 

  self.master.bind('<KP_6>', self.s6) 

  self.master.bind('<KP_7>', self.s7) 

  self.master.bind('<KP_8>', self.s8) 

  self.master.bind('<KP_9>', self.s9) 

   

  self.master.bind('<KP_Enter>',    self.advance) 

  self.master.bind('<KP_Subtract>', self.retreat) 

   

  n_tests += int(num_test_tiles.get()) 

   

   

   

   

   

 ######################################################### 

 #########################################################      

 ######################################################### 

  

   

 def retreat(self, master): 

  global first_set 

  global n_cands 
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  global n_tests 

  global test_positions 

   

   

  if(first_set == True): 

   print('First set, cannot go back!') 

   return 

  else: 

   print('Retreat') 

  first_set = True 

 

   

   # Set start iterator for previous 9 samples 

  j.set(j.get() - 9) 

   

  

   # Clear last 9 entries in the log file 

  f = open(sorting_log, 'r') 

  lines = f.readlines()[:-9]   

  f.close() 

   

  f = open(sorting_log, 'w') 

  for line in lines: 

   f.write(line) 

  f.close()  

   

   

   # Clear old display 

  self.canvas.pack_forget() 

    

    

   # Make New Display 

   

    # Skip test tile allocations 

  global num_test_tiles 

 

  num_test_tiles = IntVar() 

  num_test_tiles.set(0) 

 

  user_responses = [] 

 

  test_positions = [] 
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   # Designate current real samples to be shown 

  global current_lines 

  current_lines = pred_lines[j.get() : (j.get() + 9) ] 

  x = 0 # x is an iterator through this set of real tiles 

   

  t0 = dtm.now() 

   #-# Display each tile, real sample or otherwise 

    # Start by making a blank PIL Image instance 

  DISP_IMG = Image.new('RGB', (835,835), color='white') 

   

     # Allocate lists to store this batch's tiles and xy corrds  

  tiles = mp.Manager().list(range(9)) 

   

     # Write function for loading each tile, later used in multi-

processing 

  def get_tile(img_fname, xys, i): 

    # load full image 

   full_img = ImageOps.expand(Image.open(img_fname), border= (3*extra), 

fill='black') 

   tiles[i] = Image.fromarray(np.asarray(full_img)[ xys[0]:xys[1], 

xys[2]:xys[3] ]) 

 

   

  jobs = [] 

  for i in range(9): 

    # Test tile case 

   if(i in test_positions): 

    test_txt_fname = list_files(human_test_dir, 

'candidate_locations.txt')[0] 

    test_f = open(test_txt_fname, 'r') 

    test_lines = test_f.readlines()[1:] 

    test_f.close() 

    test_line = test_lines[ np.random.randint(0, len(test_lines)-1) ]  

    sl = test_line.split('\t') 

    img_fname = os.path.join(human_test_dir, sl[-1].replace('\n', '')) 

    y1 = int(sl[0]) - extra  + (3 * extra) 

    y2 = int(sl[1]) + extra  + (3 * extra) 

    x1 = int(sl[2]) - extra  + (3 * extra)   

    x2 = int(sl[3]) + extra  + (3 * extra) 

    xys = (y1,y2,x1,x2) 
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    # Real sample case 

   else: 

    sl = (current_lines[x].replace('\n', '')).split('\t') 

    x += 1 

    img_fname  = os.path.join(img_dir, sl[-1]) 

    y1 = int(sl[0]) - extra  + (3 * extra) 

    y2 = int(sl[1]) + extra  + (3 * extra) 

    x1 = int(sl[2]) - extra  + (3 * extra)   

    x2 = int(sl[3]) + extra  + (3 * extra)   

    xys = (y1,y2,x1,x2) 

   

 

   p = mp.Process(target = get_tile,  

         args   = [img_fname, xys, i]) 

   jobs.append(p) 

   p.start() 

    

  for job in jobs: 

   job.join() 

 

 

   # paste tiles onto display image 

  for i in range(9): 

   if(i==0): 

    paste_pos = (10,  560) 

   if(i==1): 

    paste_pos = (285, 560)  

   if(i==2): 

    paste_pos = (560, 560) 

   if(i==3): 

    paste_pos = (10,  285) 

   if(i==4): 

    paste_pos = (285, 285) 

   if(i==5): 

    paste_pos = (560, 285) 

   if(i==6): 

    paste_pos = (10,  10) 

   if(i==7): 

    paste_pos = (285, 10)    

   if(i==8): 

    paste_pos = (560, 10) 
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   DISP_IMG.paste(tiles[i], paste_pos) 

 

  self.DISP_IMG = ImageTk.PhotoImage(DISP_IMG) 

  

  global win_w 

  global win_h 

  win_w = 1000 

  win_h = 1000 

  

  disp_text = ('Number of Passed Tests: ' + str(n_tests - n_fuck_ups ) + ' \ ' + str(n_tests) 

+'  (' + str(np.round((n_tests - n_fuck_ups)/n_tests,2)) + '%)\n' + 

     str(j.get()) +' / ' + str(len(pred_lines)) + '  ' + 

str(np.round(j.get() / len(pred_lines) * 100, 4) ) + '%' ) 

   # Make Window 

  self.canvas = Canvas(self.master, width=win_w, height=win_h) 

  self.canvas.create_text( win_w/2, int(0.06 * win_h), anchor='center', text=disp_text) 

  self.canvas.create_image(win_w/2, win_h/2,           anchor='center', 

image=self.DISP_IMG) 

  self.canvas.create_image(int(win_w  /4), int(win_h*0.95),          anchor='center', 

image=self.bun1) 

  self.canvas.create_image(int(win_w  /2), int(win_h*0.95),          anchor='center', 

image=self.bun2) 

  self.canvas.create_image(int(win_w*3/4), int(win_h*0.95),          anchor='center', 

image=self.murr) 

  self.canvas.pack() 

  t0 = dtm.now() 

      

        # Binding functions to keystrokes 

  self.master.bind('<KP_1>', self.s1) 

  self.master.bind('<KP_2>', self.s2) 

  self.master.bind('<KP_3>', self.s3) 

  self.master.bind('<KP_4>', self.s4) 

  self.master.bind('<KP_5>', self.s5) 

  self.master.bind('<KP_6>', self.s6) 

  self.master.bind('<KP_7>', self.s7) 

  self.master.bind('<KP_8>', self.s8) 

  self.master.bind('<KP_9>', self.s9) 

   

  self.master.bind('<KP_Enter>',    self.advance) 

  self.master.bind('<KP_Subtract>', self.retreat) 
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################################################# 

################################################# 

################################################# 

 

 

 

 

 

root   = Tk() 

my_gui = Boulder(root) 

root.mainloop() 

 

 

 

 

 

 

# -*- coding: utf-8 -*- 

# Advanced zoom example. Like in Google Maps. 

# It zooms only a tile, but not the whole image. So the zoomed tile occupies 

# constant memory and not crams it with a huge resized image for the large zooms. 

import random 

import tkinter as tk 

from tkinter import ttk 

from PIL import Image, ImageTk 

import os 

 

class AutoScrollbar(ttk.Scrollbar): 

 ''' A scrollbar that hides itself if it's not needed. 

  Works only if you use the grid geometry manager ''' 

 def set(self, lo, hi): 

  if float(lo) <= 0.0 and float(hi) >= 1.0: 

   self.grid_remove() 

  else: 

   self.grid() 

   ttk.Scrollbar.set(self, lo, hi) 

 

 def pack(self, **kw): 

  raise tk.TclError('Cannot use pack with this widget') 
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 def place(self, **kw): 

  raise tk.TclError('Cannot use place with this widget') 

 

class Zoom_Advanced(ttk.Frame): 

 ''' Advanced zoom of the image ''' 

 def __init__(self, mainframe, path): 

  ''' Initialize the main Frame ''' 

  ttk.Frame.__init__(self, master=mainframe) 

   

   

  title = os.path.split(path)[1] 

   

  self.master.title(title) 

  # Vertical and horizontal scrollbars for canvas 

  vbar = AutoScrollbar(self.master, orient='vertical') 

  hbar = AutoScrollbar(self.master, orient='horizontal') 

  vbar.grid(row=0, column=1, sticky='ns') 

  hbar.grid(row=1, column=0, sticky='we') 

  # Create canvas and put image on it 

  self.canvas = tk.Canvas(self.master, highlightthickness=0, 

        xscrollcommand=hbar.set, 

yscrollcommand=vbar.set) 

  self.canvas.grid(row=0, column=0, sticky='nswe') 

  self.canvas.update()  # wait till canvas is created 

  vbar.configure(command=self.scroll_y)  # bind scrollbars to the canvas 

  hbar.configure(command=self.scroll_x) 

  # Make the canvas expandable 

  self.master.rowconfigure(0, weight=1) 

  self.master.columnconfigure(0, weight=1) 

  # Bind events to the Canvas 

  self.canvas.bind('<Configure>', self.show_image)  # canvas is resized 

  self.canvas.bind('<ButtonPress-1>', self.move_from) 

  self.canvas.bind('<B1-Motion>',  self.move_to) 

  self.canvas.bind('<MouseWheel>', self.wheel)  # with Windows and MacOS, but not 

Linux 

  self.canvas.bind('<Button-5>',   self.wheel)  # only with Linux, wheel scroll down 

  self.canvas.bind('<Button-4>',   self.wheel)  # only with Linux, wheel scroll up 

  self.canvas.bind('y', self.YES) 

  self.canvas.bind('n', self.NO) 

  self.image = Image.open(path)  # open image 

  self.width, self.height = self.image.size 

  self.imscale = 1.0  # scale for the canvaas image 
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  self.delta = 1.3  # zoom magnitude 

  # Put image into container rectangle and use it to set proper coordinates to the image 

  self.container = self.canvas.create_rectangle(0, 0, self.width, self.height, width=0) 

  # Plot some optional random rectangles for the test purposes 

   

  ''' 

  minsize, maxsize, number = 5, 20, 10 

  for n in range(number): 

   x0 = random.randint(0, self.width - maxsize) 

   y0 = random.randint(0, self.height - maxsize) 

   x1 = x0 + random.randint(minsize, maxsize) 

   y1 = y0 + random.randint(minsize, maxsize) 

   color = ('red', 'orange', 'yellow', 'green', 'blue')[random.randint(0, 4)] 

   self.canvas.create_rectangle(x0, y0, x1, y1, fill=color, activefill='black') 

  self.show_image() 

 

  ''' 

 

 def scroll_y(self, *args, **kwargs): 

  ''' Scroll canvas vertically and redraw the image ''' 

  self.canvas.yview(*args, **kwargs)  # scroll vertically 

  self.show_image()  # redraw the image 

 

 def scroll_x(self, *args, **kwargs): 

  ''' Scroll canvas horizontally and redraw the image ''' 

  self.canvas.xview(*args, **kwargs)  # scroll horizontally 

  self.show_image()  # redraw the image 

 

 def move_from(self, event): 

  ''' Remember previous coordinates for scrolling with the mouse ''' 

  self.canvas.scan_mark(event.x, event.y) 

 

 def move_to(self, event): 

  ''' Drag (move) canvas to the new position ''' 

  self.canvas.scan_dragto(event.x, event.y, gain=1) 

  self.show_image()  # redraw the image 

 

 def YES(): 

  print('Yes') 

  

  

 def NO(): 
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  print('No') 

 

 

 def wheel(self, event): 

  ''' Zoom with mouse wheel ''' 

  x = self.canvas.canvasx(event.x) 

  y = self.canvas.canvasy(event.y) 

  bbox = self.canvas.bbox(self.container)  # get image area 

  if bbox[0] < x < bbox[2] and bbox[1] < y < bbox[3]: pass  # Ok! Inside the image 

  else: return  # zoom only inside image area 

  scale = 1.0 

  # Respond to Linux (event.num) or Windows (event.delta) wheel event 

  if event.num == 5 or event.delta == -120:  # scroll down 

   i = min(self.width, self.height) 

   if int(i * self.imscale) < 30: return  # image is less than 30 pixels 

   self.imscale /= self.delta 

   scale  /= self.delta 

  if event.num == 4 or event.delta == 120:  # scroll up 

   i = min(self.canvas.winfo_width(), self.canvas.winfo_height()) 

   if i < self.imscale: return  # 1 pixel is bigger than the visible area 

   self.imscale *= self.delta 

   scale  *= self.delta 

  self.canvas.scale('all', x, y, scale, scale)  # rescale all canvas objects 

  self.show_image() 

 

 def show_image(self, event=None): 

  ''' Show image on the Canvas ''' 

  bbox1 = self.canvas.bbox(self.container)  # get image area 

  # Remove 1 pixel shift at the sides of the bbox1 

  bbox1 = (bbox1[0] + 1, bbox1[1] + 1, bbox1[2] - 1, bbox1[3] - 1) 

  bbox2 = (self.canvas.canvasx(0),  # get visible area of the canvas 

     self.canvas.canvasy(0), 

     self.canvas.canvasx(self.canvas.winfo_width()), 

     self.canvas.canvasy(self.canvas.winfo_height())) 

  bbox = [min(bbox1[0], bbox2[0]), min(bbox1[1], bbox2[1]),  # get scroll region box 

    max(bbox1[2], bbox2[2]), max(bbox1[3], bbox2[3])] 

  if bbox[0] == bbox2[0] and bbox[2] == bbox2[2]:  # whole image in the visible area 

   bbox[0] = bbox1[0] 

   bbox[2] = bbox1[2] 

  if bbox[1] == bbox2[1] and bbox[3] == bbox2[3]:  # whole image in the visible area 

   bbox[1] = bbox1[1] 

   bbox[3] = bbox1[3] 
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  self.canvas.configure(scrollregion=bbox)  # set scroll region 

  x1 = max(bbox2[0] - bbox1[0], 0)  # get coordinates (x1,y1,x2,y2) of the image tile 

  y1 = max(bbox2[1] - bbox1[1], 0) 

  x2 = min(bbox2[2], bbox1[2]) - bbox1[0] 

  y2 = min(bbox2[3], bbox1[3]) - bbox1[1] 

  if int(x2 - x1) > 0 and int(y2 - y1) > 0:  # show image if it in the visible area 

   x = min(int(x2 / self.imscale), self.width)   # sometimes it is larger on 1 pixel... 

   y = min(int(y2 / self.imscale), self.height)  # ...and sometimes not 

   image = self.image.crop((int(x1 / self.imscale), int(y1 / self.imscale), x, y)) 

   imagetk = ImageTk.PhotoImage(image.resize((int(x2 - x1), int(y2 - y1)))) 

   imageid = self.canvas.create_image(max(bbox2[0], bbox1[0]), max(bbox2[1], 

bbox1[1]), 

              anchor='nw', 

image=imagetk) 

   self.canvas.lower(imageid)  # set image into background 

   self.canvas.imagetk = imagetk  # keep an extra reference to prevent garbage-

collection 

  print('reached end of show_img()') 

 

 

 

 

''' 

 

 

path = 

'/data0/Seamus_data/MET_searching/keras_train/full_images_all/Lake_Grace_1/DJI_0046.JPG'  # 

place path to your image here 

root = tk.Tk() 

app = Zoom_Advanced(root, path=path) 

root.mainloop() 

 

''' 
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Appendix B (Meteorite Classification Code) 

 

 

''' 

Seamus Anderson 

29 Jan 2020 

 

This library is used to process data from meteorite analyses. 

 

 

''' 

import gc 

import numpy as np 

import PIL.Image 

import os 

import sys 

import pandas as pd 

import keras 

import matplotlib.pyplot as plt 

 

from keras.models import Sequential 

from keras.layers import Dense 

from keras.utils  import to_categorical 

 

import matplotlib.pyplot as plt 

 

 

import skimage 

 

 

PIL.Image.MAX_IMAGE_PIXELS = None 

 

 

 

#####################################################################################

#################################################### 

#####################################################################################

#################################################### 

#####################################################################################

#################################################### 
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def list_files(folder, f_type='.jpg', exclude=None): 

 '''Takes a folder and file extention, and returns all the filenames (fullpaths) in that 

     directory with that extention. 

      

    ** NOTE this can work for any sub-dir or file if you replace the extention with what ** 

  * you want to look for         

        * 

  

 Inputs: 

   folder  [str]   full path to the folder to be searched 

   f_type  [str]   file extention including the '.' 

   exclude [str]   key word or phrase to exclude when looking for files 

    

 Outputs 

   files [list] full path to files containing 'f_type' extention 

 ''' 

   

  # List contents of the given 'folder' 

 contents = os.listdir(folder) 

  # Prep list for files to be extracted 

 files = [] 

  # Loops through all the items found in 'folder' 

  #  adds them to the return list 'files', if file extention matches 

 for i in range(len(contents)): 

 

  if(f_type.upper()  in contents[i].upper()): 

   files.append(os.path.join(folder, contents[i])) 

  if((exclude != None) and  

     (exclude.upper() in contents[i].upper()) and  

           (contents[i] in files)): 

    

   files.remove(os.path.join(folder, contents[i])) 

 

 

 

 return sorted(files) 
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#####################################################################################

#################################################### 

#####################################################################################

#################################################### 

#####################################################################################

#################################################### 

 

 

 

def crop_imgs(folder, out_folder, xys, f_type='.jpg'): 

 ''' This crops images all images contained in 'folder' according the bounds 'xys'. 

 

 Inputs: 

   folder     [str]  fullpath to the folder of images 

   out_folder [str]     fullpath to destination of the images    

   xys     [array]  bounds of the desired crop [x1,x2,y1,y2] 

   f_type    [str]  extension of the file type (with '.' included) 

 

 ''' 

 

  # Make output folder 

 if(not os.path.exists(out_folder)): 

  os.mkdir(out_folder) 

 

  # Get filenames fo images to crop 

 fnames = list_files(folder, f_type=f_type) 

  

  # Loop through each file and crop 

 for i in range(len(fnames)): 

  sys.stdout.write( ( '\r' + str(i+1) + ' / ' + str(len(fnames)) ) ) 

  sys.stdout.flush() 

 

  sname = os.path.join(out_folder, ('cropped_' + os.path.split(fnames[i])[1]) ) 

   

  img  = PIL.Image.open(fnames[i]) 

  simg = img.crop((xys[0], xys[2], xys[1], xys[3])) 

 

  simg.save(sname) 

 

 print('\n\n') 
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 return 

 

 

#####################################################################################

#################################################### 

#####################################################################################

#################################################### 

#####################################################################################

#################################################### 

 

 

def prep_TIMA_imgs(dirr, f_type='.png', elem_delim='-'): 

 ''' Prepares TIMA images into mineral maps to be predicted on. Images can be any size so 

long as they are the same size. 

 This func assumes each element map is reported on all 3 color channels eg: [122,122,122], 

[241,241,241], from 0-255. 

 Element maps must be listed like 'Ca-' for Calcium or 'S- for Sulfur', name your files 

accordingly 

 It makes use of the following element maps: Ca, Si, Mg, S, Fe, Cr 

  

        ========================= 

 This func is optimized for ### Ordinary Chondrites ### 

        ========================= 

 

 ''' 

 print('### Making Mineral Map ###') 

 

 Fe_color = (100, 100, 100) # Grey 

 Cr_color = (230,  30, 145) # Pink 

 Tr_color = (250, 160, 3) # Orange 

   

  # Threshold Fe metal 

 Fe_thresh = 200 

 

 

  #Make save folder 

 save_dir = os.path.join(dirr, 'generated_files') 

 if(not os.path.exists(save_dir)):  

  os.mkdir(save_dir) 
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  # Get filenames     

 map_fnames = list_files(dirr, f_type=f_type, exclude='.hdr') 

 

  # Open images 

 for i in range(len(map_fnames)): 

  if(('Ca' + elem_delim) in map_fnames[i]): 

   Ca_map = np.asarray(PIL.Image.open(map_fnames[i])).copy().astype('int') 

  if(('Si' + elem_delim) in map_fnames[i]):   

   Si_map = np.asarray(PIL.Image.open(map_fnames[i])).copy().astype('int') 

  if(('Mg' + elem_delim) in map_fnames[i]): 

   Mg_map = np.asarray(PIL.Image.open(map_fnames[i])).copy().astype('int') 

  if(('S'  + elem_delim) in map_fnames[i]): 

   S_map  = np.asarray(PIL.Image.open(map_fnames[i])).copy().astype('int') 

  if(('Fe' + elem_delim) in map_fnames[i]): 

   Fe_map = np.asarray(PIL.Image.open(map_fnames[i])).copy().astype('int') 

  if(('Cr' + elem_delim) in map_fnames[i]): 

   Cr_map = np.asarray(PIL.Image.open(map_fnames[i])).copy().astype('int') 

  if(('Ni' + elem_delim) in map_fnames[i]): 

   Ni_map = np.asarray(PIL.Image.open(map_fnames[i])).copy().astype('int') 

  if(('Ti' + elem_delim) in map_fnames[i]): 

   Ti_map = np.asarray(PIL.Image.open(map_fnames[i])).copy().astype('int') 

  print(map_fnames[i]) 

 

 print('Img Shape: ',Ca_map.shape) 

 

 ydim = Ca_map.shape[0] 

 xdim = Ca_map.shape[1] 

  

 sil_map = np.zeros(Ca_map.shape) 

 

 sil_map[:,:,0] = Ca_map[:,:,0]  #Red 

 sil_map[:,:,1] = Si_map[:,:,0]   #Green 

 sil_map[:,:,2] = Mg_map[:,:,0]  #Blue 

 

 del Ca_map 

 del Si_map 

 del Mg_map 

  

 gc.collect() 

  

 opq_map = np.zeros(S_map.shape) 
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 opq_map[:,:,0] =  S_map[:,:,0]     #Red 

 opq_map[:,:,1] = Fe_map[:,:,0] + Ni_map[:,:,0] #Green 

 opq_map[:,:,2] = Cr_map[:,:,0]     #Blue 

 

 #del S_map 

 del Fe_map 

 del Cr_map 

 

 gc.collect() 

  

 print('converted colors... ') 

 

  # Mask and paint the Cr chromite pixels to pink 

 opq_map[np.where(opq_map[:,:,2] > 80)] = Cr_color 

   

 print('Cr converted') 

  

  # Get rid of silicate Fe signature, keep for troilite 

 #opq_map[np.where(opq_map[:,:1] < 130 ), 1] = 0 

  

 opq_map = np.where(opq_map[:,:,1] < 100, 0, opq_map[:,:,1]) 

  

 print('Fe trimmed') 

  

  # Convert metal to grey (over-threshold) 

 opq_map[np.where(opq_map[:,:,1] >= 100)] = Fe_color 

  

 print('Metal converted') 

  

 opq_map[np.where(S_map[:,:,0] < 200)] = Tr_color 

  

  

 ''' 

  

 for i in range(opq_map.shape[0]): 

  print(i, '  ',opq_map.shape[0])  

   

   

  for j in range(opq_map.shape[1]): 

    

    # This is iron rich-ish silicates, get rid of iron color 

   if(opq_map[i, j, 1] < Fe_thresh and S_map[i, j, 0] < 20    ): 
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    opq_map[i,j,1] = 0 

    # This is metal, convert to grey 

   if(opq_map[i, j, 1] >= Fe_thresh ):  # and np.max(opq_map[i,j]) 

== opq_map[i,j,1] 

    opq_map[i, j] = Fe_color 

    # Do nothing for Troilite 

     

 ''' 

 

 

  

 

 print('saving silicate and opaque maps...') 

 

  # Save the Opaque and Silicate maps 

 SIL_MAP = PIL.Image.fromarray(sil_map.astype('uint8')) 

 OPQ_MAP = PIL.Image.fromarray(opq_map.astype('uint8')) 

  

 SIL_MAP.save(os.path.join(save_dir, 'Silicate-Ca_Si_Mg_map_RGB.png')) 

 OPQ_MAP.save(os.path.join(save_dir,    'Opaque-S_Fe_Cr_map_RGB.png'))  

 

 

  # Sum the two maps 

 sum_map = sil_map + opq_map 

 

  # Sanitize any out of bounds pixel values, before transform into int 

 sum_map = np.where(sum_map > 255, 255, sum_map) 

 

  # Save sum_map 

 SUM_MAP = PIL.Image.fromarray(sum_map.astype('uint8')) 

 

 SUM_MAP.save(os.path.join(save_dir, 'sum_map.png')) 

 

 

 

 

 

 

 return 

 

 

#####################################################################################
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#################################################### 

#####################################################################################

#################################################### 

#####################################################################################

#################################################### 

 

 

 

 

def predict_on_map(img_path, model_path, results_map=False): 

 ''' 

 

 

 

 ''' 

 print('### Predicting on Mineral Map ###') 

  # Load the model and img 

 model = keras.models.load_model(model_path) 

 mapp  = np.asarray(PIL.Image.open(img_path)) 

 

 

 categories = np.array([ 

    'Chromite', 

    'Diopside', 

    'Enstatite', 

    'Fe metal', 

    'Olivine', 

    'Phosphates', 

    'Plagioclase', 

    'Troilite', 

    'Other-Unk']) 

  # g/mL 

 densities = np.array([  4.79, 

       3.4, 

       3.2, 

       8.0, 

       2.7, 

       3.14, 

       2.68, 

       4.61, 

       3.5    ]) 
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  # Mask off black pixels (non-minerals) 

 sum_mapp = np.sum(mapp, axis=2) 

 coords   = np.where(sum_mapp != 0)   

 mask     = np.zeros((mapp.shape[0], mapp.shape[1]), dtype=bool) 

 mask[coords] = True  # Color pixels are now True in  

 

 

  # Predict on non black pixels 

 pixels = mapp[mask] 

 preds  = model.predict(pixels) 

 

  # Clean up predictions 

 preds = np.where(preds<0.5, 0, 1)  

 

  # Count up the minerals and calculate the volume percentage for each flavor 

 min_count   = np.sum(preds, axis=0)  

 vol_percent = 100 * (min_count / float(len(preds))) 

 vol_percent = np.append(vol_percent, (100-np.sum(vol_percent))) 

 

 wt_percent = 100 * vol_percent * densities / np.sum(vol_percent * densities) 

 

 

 

  # Save Data/results 

 sname = os.path.join(os.path.split(img_path)[0], 'mineral_abundances.csv') 

 df    = pd.DataFrame({'Phase': categories, 'Vol_percent': vol_percent, 'Wt_percent': 

wt_percent}) 

 df.to_csv(sname, index=False) 

 

 

 print('Weight_percent:\n') 

  # Print results just for funsies 

 for i in range(len(wt_percent)): 

  print(wt_percent[i], '\t', categories[i]) 

   

  # RGB 

  # Make results map overlay  

  # this doesn't work yet 

  

 if(results_map==True): 

  print('Making Results File') 

  colors = np.array([ [230, 30,145],  #Cr   0 
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       [139, 69, 19],  #Cpx  1 

       [  0,200,200],  #Opx  2 

       [100,100,100],  #Metal  3 

       [  0,  0,255],  #Olivine 4 

       [255,  0,  0],  #Phos  5 

       [  0,255,  0],  #Plag  6 

       [255,165,  0] ]) #Sulf  7 

            #unk 

 8 

            #blank 

 9 

   

  unk_color = (255,255,255) #unk 

 

  result_map = np.copy(mapp)  

  key_map    = np.ones(result_map.shape[:2]) * 9 

 

   # Loop through each instance of pixels predicted on 

  for i in range(len(coords[0])): 

    # If result is unknown 

   if(np.sum(preds[i]) == 0 ): 

    color = unk_color 

    # Otherwise   

   else: 

    #color = colors[np.where(preds[i]==1)] 

    color = np.dot(preds[i], colors)    

 

    

 

   result_map[coords[0][i], coords[1][i]] = color 

 

 

   # Save  

  result_map = result_map.astype('uint8') 

 

  sname = os.path.join(os.path.split(img_path)[0], 'results_map.png')  

  MAPP  = PIL.Image.fromarray(result_map) 

  MAPP.save(sname) 

  

   

 

   # Down sample the results map 
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  kernel = (3,3) # y,x 

  stride = 1 

   

   

 

 

 

 

 

 

 

 

  ''' 

  for i in range(len(colors)): 

   this_color_locs = np.where(preds[:,i]==1) 

 

   color_coords = yxs[this_color_locs]    

    

   for j in range(len(color_coords)): 

    coord = color_coords[j] 

    result_map[coord[0], coord[1],:] = colors[i]    

    

 

  unk_locs     = np.where(np.sum(preds, axis=1)==0) 

  color_coords = yxs[unk_locs]   

     

  for i in range(len(color_coords)): 

   coord = color_coords[i] 

   result_map[coord[0], coord[1],:] = unk_color 

  ''' 

 

 

 return 

 

 

 

 

#####################################################################################

#################################################### 

#####################################################################################

#################################################### 

#####################################################################################
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#################################################### 

 

 

 

def prep_train_data(map_fname, csv_dir): 

 ''' 

 

 list_files will sort csvs alphabetically, so they must be named (see below) to keep consistent 

vector values 

  

 Chromite 0 

 Diopside 1   

 Enstatite 2 

 Fe_metal 3 

 Olivine  4 

 Phosphate 5 

 Plag  6 

 Troilite 7 

 

 other (no vector) 

 

 ''' 

 

  # Open map image and csv list of pixel locations 

 mapp = np.asarray(PIL.Image.open(map_fname)) 

 

 csvs = list_files(csv_dir, '.csv', 'all') 

 

  # Prep output dataframe, which will contain actual pixel values 

 cols = ['Red','Green','Blue','Label','Vector'] 

 

 final_df= pd.DataFrame(columns=cols) 

 

 

  # Loop each csv (mineral type) 

 for i in range(len(csvs)): 

  current_df = pd.read_csv(csvs[i]) 

  name = os.path.split(csvs[i])[1].split('_pixels')[0] 

 

   # Loop each pixel(s) listed in the csv 

  for j in range(len(current_df)): 

    # Set X and Y bounds 
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   x1 =      current_df['BX'    ].iloc[j] 

   x2 = x1 + current_df['Width' ].iloc[j] 

   y1 =      current_df['BY'    ].iloc[j] 

   y2 = y1 + current_df['Height'].iloc[j] 

    

   pixels      = mapp[y1:y2, x1:x2][0] 

    

   for k in range(len(pixels)):    

    pix = pixels[k] 

    final_df = final_df.append({'Red':    pix[0],  

           'Green':  

pix[1],  

           'Blue':   pix[2],  

           'Label':  name,  

           'Vector': i},  

          

 ignore_index=True) 

 

   print(final_df) 

   exit() 

 

  # Save compiled training data 

 sname = os.path.join(csv_dir, 'all_training_data.csv') 

 final_df.to_csv(sname, index=False) 

  

 

 

 

 ''' 

 # Old version 

  

  # Loop each csv (mineral type) 

 for i in range(len(csvs)): 

  current_df = pd.read_csv(csvs[i]) 

  name = os.path.split(csvs[i])[1].split('_pixels')[0] 

   

   # Loop each pixel(s) listed in the csv 

  for j in range(len(current_df)): 

   pix      = mapp[current_df[['BY']].iloc[j], current_df[['BX']].iloc[j]][0] 

   final_df = final_df.append({'Red':    pix[0],  

          'Green':  pix[1],  

          'Blue':   pix[2],  
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          'Label':  name,  

          'Vector': i},  

          ignore_index=True) 

 

 ''' 

 

 

 

 return 

 

 

#####################################################################################

#################################################### 

#####################################################################################

#################################################### 

#####################################################################################

#################################################### 

 

 

 

 

def train_mineral_network(fname): 

 ''' 

 

 9 Categories 

 

 Chromite 0 

 Ca Px  1   

 Px   2 

 metal  3 

 olivine  4 

 phos  5 

 plag  6 

 sulf  7 

 

 other 

 

 ''' 

 print('### Training neural network ###') 

 

 categories = np.array([ 

    'Chromite', 
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    'Ca Px', 

    'Px', 

    'Fe_metal', 

    'Olivine', 

    'Phos', 

    'Plag', 

    'Sulf']) 

 

  # Build a model 

 model = Sequential() 

 

 model.add(Dense(10, input_dim=3,  activation='relu')) 

 model.add(Dense(10,     activation='relu')) 

 model.add(Dense(10,     activation='relu')) 

 model.add(Dense(10,     activation='relu')) 

 model.add(Dense(10,     activation='relu')) 

 model.add(Dense(10,     activation='relu')) 

 model.add(Dense( 8,     activation='softmax')) 

 

 model.compile(  loss      = 'categorical_crossentropy', 

     optimizer = 'adam', 

     metrics   = ['accuracy'] ) 

 

   

 df = pd.read_csv(fname) 

 

  # Get training data 

 x = df[['Red', 'Green', 'Blue']] 

 

 y = to_categorical(df['Vector']) 

 

  # Fit model to data 

 model.fit(x, y, epochs=100, shuffle=True, steps_per_epoch=8) 

 

  # Save trained model 

 model.save('OC_mineral_model.h5') 

 

 

 

 return 
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#####################################################################################

#################################################### 

#####################################################################################

#################################################### 

#####################################################################################

#################################################### 

 

 

 

 

 

#####################################################################################

#################################################### 

#####################################################################################

#################################################### 

#####################################################################################

#################################################### 
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Appendix C (ISRU Code) 

 

 

# -*- coding: utf-8 -*- 

""" 

Spyder Editor 

 

This is a temporary script file. 

""" 

import os 

import time 

import numpy as np 

import matplotlib.pyplot as plt 

import pandas as pd 

 

 

def list_files(dirr): 

 out   = os.listdir(dirr) 

 files = [] 

 for i in range(len(out)): 

  files.append(os.path.join(dirr, out[i])) 

     

 return files 

 

 

 

''' 

 

Cp° = A + B*t + C*t2 + D*t3 + E/t2 

H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H 

S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G 

''' 

 

 

 

def C(c, t): 

 return c[0] + c[1]*t + c[2]*t**2. + c[3]*t**3 + c[4]/(t**2) 

     

     

def H(c, t): 

 return c[0]*t + c[1]*(t**2)/2. + c[2]*(t**3)/3. + c[3]*(t**4)/4. - c[4]/t + c[5] 

 

 

def S(c, t): 

 return c[0]*np.log(t) + c[1]*t + c[2]*(t**2)/2. + c[3]*(t**3)/3. - c[4]/(2*t**2) + c[6] 
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''' Calculate H, S and C at each T avail ''' 

'''--------------------------------------''' 

 

    # Get filenames 

dirr = '../Thermo_csvs' 

fnames = list_files(dirr) 

dictt  = [] 

final_dfs = [] 

 

    # Loop through each filename 

for j in range(len(fnames)): 

  # Read this csv 

 df = pd.read_csv(fnames[j]) 

 name = os.path.split(fnames[j])[1].replace('.csv', '')  

 

  # Account for multiple coeff sets 

 cols = df.columns 

 pieces = [] 

 for i in range(len(cols)-1): 

   # Determine temp range 

  strr = cols[i+1].split(' - ') 

  t = np.arange(float(strr[0]), float(strr[1]), 1)/1000. 

  c = np.asarray(df[cols[i+1]]) 

 

 

  temp_df = pd.DataFrame({'T': t*1000, 

                    'H': H(c,t), 

                    'S': S(c,t), 

                    'C': C(c,t)}) 

  pieces.append(temp_df) 

 

     

 # Concat multiple coeff sets (temp ranges) 

 if(len(pieces) > 1): 

  final_df = pieces[0] 

  for i in range(len(pieces) - 1): 

   final_df = pd.concat([final_df, pieces[i+1]], ignore_index=True) 

 

 else: 

  final_df = pieces[0] 

   

   

 dictt.append(name) 

 final_dfs.append(final_df) 
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l = 2000 

 

 

dictt.append('Fe2Si2O6') 

final_dfs.append(pd.DataFrame({'T': np.arange(300, 2300), 

                               'H': [-1437 for i in range(l)], 

                               'S': [249   for i in range(l)]})) 

 

dictt.append('Mg2Si2O6') 

final_dfs.append(pd.DataFrame({'T': np.arange(300, 2300), 

                               'H': [-3036 for i in range(l)], 

                               'S': [259   for i in range(l)]})) 

 

dictt.append('Fe2SiO4') 

final_dfs.append(pd.DataFrame({'T': np.arange(300, 2300), 

                               'H': [-1478 for i in range(l)], 

                               'S': [151   for i in range(l)]})) 

 

dictt.append('CaAl2Si2O8') 

final_dfs.append(pd.DataFrame({'T': np.arange(300, 2300), 

                               'H': [99 for i in range(l)], 

                               'S': [3.2   for i in range(l)]})) 

 

dictt.append('FeTiO3') 

final_dfs.append(pd.DataFrame({'T': np.arange(300, 2300), 

                               'H': [-1200 for i in range(l)], 

                               'S': [182   for i in range(l)]})) 

 

dictt.append('CaSO4')   #  

final_dfs.append(pd.DataFrame({'T': np.arange(300, 2300), 

                               'H': [-1433 for i in range(l)], 

                               'S': [106   for i in range(l)]})) 

 

 

dictt.append('Al2SO43') 

final_dfs.append(pd.DataFrame({'T': np.arange(300, 2300), 

                               'H': [-3430 for i in range(l)], 

                               'S': [259   for i in range(l)]})) 

 

 

dictt.append('Ca2Si2O6') 

final_dfs.append(pd.DataFrame({'T': np.arange(300, 2300), 

                               'H': [-1630 for i in range(l)], 

                               'S': [81    for i in range(l)]})) 
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dfs = final_dfs 

 

 

for i in range(len(dfs)): 

 dfs[i]['Name'] = dictt[i] 

 

 

'''---------------------------------''' 

 

 

''' Calculate del_G for a given set of reacts/prods ''' 

'''-------------------------------------------------''' 

 

def G(react, prod, rmols, pmols, name): 

 '''This function takes in lists of dataframes, which contain the H, S and C values  

    for each molecule/element. 

     

    Inputs: 

            react  [list]  each list-element is a df for a reactant 

            prod   [list]  each list-elemetn is a df for a product 

            rmols  [list]  number of mols in balanced equation, in order with 'react' 

            pmols  [list]  number of mols in balanced equation, in order with 'prod' 

         

    Ouputs: 

            del_H  [array]  Change in enthalpy for reaction [kj/mol*K] 

            del_S  [array]  Change in entropy  for reaction [J/mol*K] 

  

 ''' 

 plot_dir = 'GK_plots' 

  

 R = 8.3144626  # [J/molK] 

 condensed = ['Al', 

                 'Al2O3', 

                 'Ca', 

                 'CaO', 

                 'Mg', 

                 'MgO', 

                 'FeO', 

                 'Fe', 

                 'Fe2O3', 

                 'Ti', 

                 'TiO2', 

                 'Mg2Si2O6', 

                 'Mg2SiO4', 

                 'Fe2Si2O6', 

                 'Fe2SiO4', 

                 'FeSO4', 
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                 'MgSO4', 

                 'CaSO4', 

                 'Al2SO43', 

                 'CaAl2Si2O', 

     'Ca2Si2O6' 

                 ] 

     

  # Determine the weakest link for temps reported 

 all_chems = prod + react 

 Tmaxs, Tmins = [], [] 

 for i in range(len(all_chems)): 

  Tmaxs.append(np.max(all_chems[i]['T'])) 

  Tmins.append(np.min(all_chems[i]['T'])) 

 Tmaxs = np.asarray(Tmaxs) 

 Tmins = np.asarray(Tmins) 

 Tmax  = np.min(Tmaxs) 

 Tmin  = np.max(Tmins) 

 T     = np.arange(Tmin, Tmax+1, 1)      # Common temperature array for all prod/react 

 

  # Prepare arrays for calculation 

 Hprods  = np.zeros(int(Tmax-Tmin+1)) 

 Hreacts = np.zeros(int(Tmax-Tmin+1)) 

 Sprods  = np.zeros(int(Tmax-Tmin+1)) 

 Sreacts = np.zeros(int(Tmax-Tmin+1)) 

 Cprods  = np.zeros(int(Tmax-Tmin+1)) 

 Creacts = np.zeros(int(Tmax-Tmin+1)) 

 Gprods  = np.zeros((3, int(Tmax-Tmin+1)))   # These are pressure corrections for delG, 

 Greacts = np.zeros((3, int(Tmax-Tmin+1)))   #  to be added later 

 

 Gp = np.zeros((3, len(T))) 

 p = (10**(-2),      # relative pressures in [bar] 

   10**(-5),  

   10**(-8)) 

 

 ''' Plot Gibbs of each react and prod ''' 

 '''-----------------------------------''' 

 

 markers = ['r-', 'g--', 'b-.', 'y:', 'k', 'k', 'k', 'k', 'k' ]  

 

 fig, axs = plt.subplots(1,2) 

 

 fig.suptitle(('G [kj/mol]: ' + name)) 

 fig.set_size_inches(10, 5) 

 axs[0].set_xlabel('Temperature [K]') 

 axs[0].set_ylabel('G [kJ/mol]') 

 axs[0].axhline(0, color='black') # x = 0 

 axs[1].set_xlabel('Temperature [K]') 

 axs[1].set_ylabel('G [kJ/mol]') 
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 axs[1].axhline(0, color='black') 

 

 

         # Sum vals for prods 

 for i in range(len(prod)): 

 

   # Find index for temp, for this df 

  ind1  = prod[i].index[prod[i]['T'] == Tmin][0]   # .tolist() 

  ind2  = prod[i].index[prod[i]['T'] == Tmax][0]   # .tolist() 

  H = np.asarray(prod[i]['H'].loc[ind1:ind2]) 

  S = np.asarray(prod[i]['S'].loc[ind1:ind2]) 

      

        # Find G correction for pressure 

  for j in range(len(p)): 

   Gp[j] = (pmols[i] *R *0.001 *T *np.log(p[j]))  #[kJ/mol] 

   if(prod[i]['Name'].iloc[0] in condensed): 

    Gp[j] = 0 

 

  Hprods += H * pmols[i] 

  Sprods += S * pmols[i] 

  Gprods += Gp 

 

  G_this = (H - T*S) * pmols[i] 

  axs[1].plot(T, G_this, markers[i], label=prod[i]['Name'].iloc[0]) 

 

 

 Gp = np.zeros((3, len(T))) 

         

     

        # Sum vals for reacts 

 for i in range(len(react)): 

  ind1  = react[i].index[react[i]['T'] == Tmin][0] 

  ind2  = react[i].index[react[i]['T'] == Tmax][0] 

  H = np.asarray(react[i]['H'].loc[ind1:ind2]) 

  S = np.asarray(react[i]['S'].loc[ind1:ind2]) 

 

    # Find G correction for pressu 

  for j in range(len(p)): 

   Gp[j] = (rmols[i] *R *0.001 *T *np.log(p[j])) 

 

 

  Hreacts += H * rmols[i] 

  Sreacts += S * rmols[i] 

  Greacts = Greacts + Gp 

 

  G_this = (H - T*S) * rmols[i] 

  axs[0].plot(T, G_this, markers[i], label=react[i]['Name'].iloc[0]) 
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  # Finish this plot 

 

 

 axs[0].title.set_text('Reactants') 

 axs[1].title.set_text('Products') 

 axs[0].legend() 

 axs[1].legend() 

 

 plt.tight_layout() 

 #plt.show() 

 plt.clf() 

 

 

 

  # Find del_H and des_S (final-inital) 

 del_H = Hprods - Hreacts 

 del_S = Sprods - Sreacts 

 

 del_G = del_H - (T.T*( 0.001*del_S)) # Divide by 1000 because S is reported in J/molK 

                                   # H is reported in kJ/mol 

  # ^G is now T corrected 

  # Now we will correct for pressure 

 P_del_G = np.asarray([del_G for i in range(4)]) 

 del_Gp  = Gprods - Greacts      # Pressure correction component   

 P_del_G[1:, :] = P_del_G[1:, :] + del_Gp  

 

 

 

 del_G_str = ' del_G: \t' + str(np.round(del_G[0])) 

 print('\n', name.replace('_', '').replace('$', ''), 

    '\n\t' + del_G_str) 

     

 

         

           # Find eq point 

 if(np.sum(abs(del_G)) != abs(np.sum(del_G))): 

 

  TT_ind = np.argmin(abs(del_G)) 

  T_Temp = np.round(T[TT_ind]) 

  T_str = ' Eq T [K]: \t' + str(T_Temp) 

 

  print('\t' + T_str) 

  #plt.text(T[TT_ind], del_G[TT_ind], str(T_Temp)) 

 

 

 

 ''' Plot Gibbs and K_eq ''' 
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 '''---------------------''' 

 

 fig, axs = plt.subplots(1,2) 

 

 fig.suptitle(name) 

 fig.set_size_inches(10, 5) 

 axs[0].title.set_text('Gibbs Free Energy') 

 axs[0].set_xlabel('Temperature [K]') 

 axs[0].set_ylabel('G [kJ/mol]') 

 axs[0].axhline(0,color='black') # x = 0 

 #plt.text(T[0], del_G[0], np.round(del_G[0]))  

 

 

 P_str   = ['1 bar', 

               '$10^{-2}$ bar', 

               '$10^{-5}$ bar', 

               '$10^{-8}$ bar'] 

 for i in range(len(P_del_G)): #len(P_del_G) 

  axs[0].plot(T, P_del_G[i], markers[i], label=P_str[i]) 

   

 axs[0].legend() 

   

 

 K_eq = np.exp((-1* P_del_G  )      / (R * 0.001 * T )) 

 #Q    = np.exp((P_del_G - P_del_G[0]) / (R * 0.001 * T )) 

 K_eq = np.where(K_eq < 10**(-200), 10**(-200), K_eq) 

 #Q    = np.where(Q    < 10**(-200), 10**(-200), Q) 

 

 print('\t K_eq: \t', np.median(K_eq)) 

 axs[1].title.set_text('Equilibrium constant') 

 axs[1].plot(T, 100   * np.ones(len(T)), 'k--') # x = 0 

 axs[1].plot(T,   0.01* np.ones(len(T)), 'k--') 

 axs[1].plot(T,         np.ones(len(T)), 'k-') 

 axs[1].set_ylabel('$K_{eq}$') 

 axs[1].set_xlabel('') 

 

 for i in range(len(K_eq)): 

  axs[1].plot(T, K_eq[i], markers[i], label=P_str[i]) 

     

 axs[1].set_yscale('log') 

 axs[1].legend()  

 axs[1].set_ylim() 

 

 plt.tight_layout() 

 

 sname = os.path.join(plot_dir, name.replace('$', '').replace('(', '').replace(')', '').replace('>', 

'').replace(' ','').replace('/','')  ) 
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 plt.savefig(sname) 

 plt.clf() 

 

 

 

 

 ''' Use K_eq to find the concentrations (T)  ''' 

 

 '''[Mg, Ca]SO4 decomp    ''' 

 

  

  # KK is K_eq at 1 bar 

 KK = K_eq[0] 

 A  = np.zeros(len(KK)) 

  

  # Move through KK as a func of T 

 for i in range(len(KK)): 

   # Solve for A at every K_eq(T) 

   

  ''' Al Sulf 

  kterm = 55 - ((3**9)/8.* KK[i]**2) 

  p = np.poly1d([-1, 11, -55, 145, -290, 442, -442, 290, -145, kterm, -11, 1]) 

  ''' 

  ''' FeSO4  

  kterm = 35 - (16* KK[i]**2) 

  p = np.poly1d([-1, 7, -21, kterm, -35, 21, -7, 1]) 

  ''' 

  ''' [Ca, Mg]SO4   

  kterm = 10 - (2* KK[i]**2) 

  p = np.poly1d([-1, 5, -10, kterm, -5, 1]) 

  ''' 

  kterm = 5 - KK[i]/4. 

  p = np.poly1d([-1, kterm, -10, 10, -5, 1]) 

 

 

  roots = p.r 

   

  for j in range(len(roots)): 

   if(np.real(roots[j]) >= 0   and 

      np.imag(roots[j]) == 0    # and  np.real(roots[j]) <= 1  

      ): 

     

    A[i] = np.real(roots[j]) 

 

    if(A[i] > 0.99270 ): 

     A[i] = 0.99270 
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 B = 3 * A 

 C = 2 *  (1 - A)  

 D = 3 *  (1 - A) 

 

 

 plt.clf() 

 

 fig, axs = plt.subplots(2,1) 

 

 fig.suptitle('Carbothermal Reduction') 

 

  

 

 

 axs[0].plot(T, A, 'k-',  label='$Fe_2O_3$') 

 axs[0].plot(T, B, 'k--', label='$CO$') 

 axs[0].plot(T, C, 'g-.', label='$Fe$') 

 axs[0].plot(T, D, 'b:',  label='$CO_2$') 

 

  

   # KK is K_eq at e-4 bar 

 KK = K_eq[3] 

 A  = np.zeros(len(KK)) 

  

  # Move through KK as a func of T 

 for i in range(len(KK)): 

   # Solve for A at every K_eq(T) 

  ''' Al Sulf   

  kterm = 55 - ((3**9)/8.* KK[i]**2) 

  p = np.poly1d([-1, 11, -55, 145, -290, 442, -442, 290, -145, kterm, -11, 1]) 

  ''' 

  ''' FeSO4  

  kterm = 35 - (16* KK[i]**2) 

  p = np.poly1d([-1, 7, -21, kterm, -35, 21, -7, 1]) 

  ''' 

  ''' [Ca, Mg]SO4  

  kterm = 10 - (2* KK[i]**2) 

  p = np.poly1d([-1, 5, -10, kterm, -5, 1]) 

  '''  

  '''  Fe2O3 Carbothermal reduc  ''' 

  kterm = 5 - KK[i]/4. 

  p = np.poly1d([-1, kterm, -10, 10, -5, 1]) 

 

  roots = p.r 

   

  for j in range(len(roots)): 

   if(np.real(roots[j]) >= 0   and 

      np.imag(roots[j]) == 0    # and  np.real(roots[j]) <= 1  
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       ): 

     

 

    if(A[i] != 0): 

     print('Double Root!', T[i]) 

         

    A[i] = np.real(roots[j]) 

     

    if(A[i] > 0.99270 ): 

     A[i] = 0.99270 

 

 

 B = 3 * A 

 C = 2 *  (1 - A)  

 D = 3 *  (1 - A) 

 

 

 axs[1].set_xlabel('Temperature [K]') 

 

 axs[1].plot(T, A, 'k-',  label='$Fe_2O_3$') 

 axs[1].plot(T, B, 'k--', label='$CO$') 

 axs[1].plot(T, C, 'g-.', label='$Fe$') 

 axs[1].plot(T, D, 'b:',  label='$CO_2$') 

 #axs[1].legend() 

 

 

 fig.add_subplot(111, frameon=False) 

 # hide tick and tick label of the big axis 

 plt.tick_params(labelcolor='none', which='both', top=False, bottom=False, left=False, right=False) 

  

 plt.ylabel("Relative Abundance") 

 axs[1].grid() 

 axs[0].grid() 

 

 axs[0].set_xlim((300, 1400)) 

 axs[1].set_xlim((300, 1400)) 

 

 plt.tight_layout() 

 #plt.show() 

      

 

 

 

 return del_G 

 

 

#print(dfs) 
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###################################### 

 

# Layout Each Reaction 

 

####################################### 

plt.clf() 

plt.text(1, 1, 'Start New Calc') 

#plt.show() 

plt.clf() 

 

""" 

 

del_G = G([dfs[dictt.index('H2')],   dfs[dictt.index('FeSO4')]], 

          [dfs[dictt.index('H2O')],   dfs[dictt.index('SO2')], dfs[dictt.index('Fe2O3')] ], 

 

          [1, 2], 

          [1, 2, 1], 

          '$H_2 (g) + 2 FeSO_4 (s)  -> H_2O (l) + SO_2 (g) + Fe_2O_3 (s)$') 

 

del_G = G([dfs[dictt.index('H2')],   dfs[dictt.index('CaSO4')]], 

          [dfs[dictt.index('H2O')],   dfs[dictt.index('SO2')], dfs[dictt.index('CaO')] ], 

          [1, 1], 

          [1, 1, 1], 

          '$H_2 (g) + CaSO_4 (s)  -> H_2O (l) + SO_2 (g) + CaO (s)$') 

 

 

 

del_G = G([dfs[dictt.index('H2')],   dfs[dictt.index('Fe2O3')]], 

          [dfs[dictt.index('H2O')],   dfs[dictt.index('Fe')] ], 

          [3, 1], 

          [2, 3], 

          '$H_2 (g) + 2 Fe_2O_3 (s)  -> 2 Fe (s) + 3 H_2O (g-l)$') 

 

""" 

 

 

 

 

 

 

''' 

# FeS + H2SO4   -> FeSO4 + H2S 

 

 

del_G = G([dfs[dictt.index('FeS')],   dfs[dictt.index('H2SO4')]], 

          [dfs[dictt.index('FeSO4')], dfs[dictt.index('H2S')] ], 

          [1, 1], 
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          [1, 1], 

          '$FeS (s)+ H_2SO_4 -> FeSO_4 (s) + H_2S (g)$') 

 

 

# H2S + 3/2*O2  -> H2O + SO2 

 

del_G = G([dfs[dictt.index('H2S')],   dfs[dictt.index('O2')]], 

          [dfs[dictt.index('H2O')],   dfs[dictt.index('SO2')] ], 

          [1, 1.5], 

          [1, 1], 

          '$H_2S (g) + 3/2 O_2 (g)  -> H_2O (l) + SO_2 (g)$') 

 

 

####################################### 

 

 

# FeS         -> Fe + 0.5* S2 

 

del_G = G([dfs[dictt.index('FeS')]], 

          [dfs[dictt.index('Fe' )], dfs[dictt.index('S2')] ], 

          [1], 

          [1, 0.5], 

          '$FeS (s) -> Fe (s) + 1/2 S_2 (g)$') 

 

# FeS   + O2      -> Fe + SO2 

 

del_G = G([dfs[dictt.index('FeS')], dfs[dictt.index('O2')]], 

          [dfs[dictt.index('Fe' )], dfs[dictt.index('SO2')] ], 

          [1, 1], 

          [1, 1], 

          '$FeS (s)+ O_ (g) -> Fe (s) + SO_2 (g)$') 

 

 

#2  FeS   + 7/2 O2      -> Fe2O3 + 2 SO2 

 

del_G = G([dfs[dictt.index('FeS')], dfs[dictt.index('O2')]], 

          [dfs[dictt.index('Fe2O3' )], dfs[dictt.index('SO2')] ], 

          [2, 3.5], 

          [1, 2], 

          '$2 FeS (s)  + 7/2 O_2-> Fe_2O_3 (s) +2  SO_2 (g)$') 

 

 

 

################################################### 
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# 0.5*S2 + O2     -> SO2 

 

del_G = G([dfs[dictt.index('S2')], dfs[dictt.index('O2')]], 

          [dfs[dictt.index('SO2' )]] , 

          [0.5, 1], 

          [1], 

          '$1/2 S_2 (g)+ O_2  (g)   -> SO_2 (g)$') 

 

# SO2 +0.5* O2    -> SO3 

 

 

del_G = G([dfs[dictt.index('SO2')], dfs[dictt.index('O2')]], 

          [dfs[dictt.index('SO3' )]] , 

          [1, 0.5], 

          [1], 

          '$SO_2 (g)+ 1/2 O_2(g)     -> SO_3 (g)$') 

 

 

# SO3 +H2O ->   H2SO4 

 

 

del_G = G([dfs[dictt.index('SO3')], dfs[dictt.index('H2O')]], 

          [dfs[dictt.index('H2SO4' )]] , 

          [1, 1], 

          [1], 

          '$SO_3(g) + H_2O (l) -> H_2SO_4 (aq)$') 

 

 

######################################### 

 

# Mg2SiO4 + 2*H2SO4     -> 2*H2O + 2*MgSO4 + SiO2  

 

del_G = G([dfs[dictt.index('Mg2SiO4')], dfs[dictt.index('H2SO4')]], 

          [dfs[dictt.index('H2O' )],     dfs[dictt.index('MgSO4')], dfs[dictt.index('SiO2')]], 

          [1, 2], 

          [2, 2, 1], 

          '$Mg_2SiO_4 (s)+ 2 H_2SO_4 (aq)   -> 2 H_2O(l) +  MgSO_4(s) + SiO_2$') 

 

 

# Mg2Si2O6 + 2*H2SO4    ->  2*H2O + 2*MgSO4 + 2*SiO2  

 

del_G = G([dfs[dictt.index('Mg2Si2O6')], dfs[dictt.index('H2SO4')]], 

          [dfs[dictt.index('H2O' )],     dfs[dictt.index('MgSO4')], dfs[dictt.index('SiO2')]], 

          [1, 2], 

          [2, 2, 2], 

          '$Mg_2Si_2O_6(s) +  *H_2SO_4 (aq)   -> 2 H_2O + 2 MgSO_4(s) + 2 SiO_2 (s)$') 
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# Ca2Si2O6 + 2*H2SO4    ->  2*H2O + 2*CaSO4 + 2*SiO2  

 

del_G = G([dfs[dictt.index('Ca2Si2O6')], dfs[dictt.index('H2SO4')]], 

          [dfs[dictt.index('H2O' )],     dfs[dictt.index('CaSO4')], dfs[dictt.index('SiO2')]], 

          [1, 2], 

          [2, 2, 2], 

          '$Ca_2Si_2O_6(s) +  *H_2SO_4 (aq)   -> 2 H_2O + 2 CaSO_4(s) + 2 SiO_2 (s)$') 

 

 

############################################################## 

 

del_G = G([dfs[dictt.index('Mg')], dfs[dictt.index('O2')]], 

          [dfs[dictt.index('MgO' )]], 

          [1, 0.5], 

          [1], 

          '$Mg + 1/2 O_2   -> MgO $') 

 

 

 

 

# Fe2SiO4 + 2*H2SO4 -> 2*H2O + 2*FeSO4 + SiO2 

 

del_G = G([dfs[dictt.index('Fe2SiO4')], dfs[dictt.index('H2SO4')]], 

          [dfs[dictt.index('H2O' )],     dfs[dictt.index('FeSO4')], dfs[dictt.index('SiO2')]], 

          [1, 2], 

          [2, 2, 1], 

          '$Fe_2SiO_4 (s)+ 2 H_2SO_4 (aq)   -> 2 H_2O + 2 FeSO_4(s) + SiO_2 (s)$') 

 

 

# Fe2Si2O6 + 2*H2SO4    -> 2*H2O + 2*FeSO4 + 2*SiO2 

 

del_G = G([dfs[dictt.index('Fe2Si2O6')], dfs[dictt.index('H2SO4')]], 

          [dfs[dictt.index('H2O' )],     dfs[dictt.index('FeSO4')], dfs[dictt.index('SiO2')]], 

          [1, 2], 

          [2, 2, 2], 

          '$Fe_2Si_2O_6(s) +  2H_2SO_4    -> 2 H_2O + 2 FeSO_4(s) + 2 SiO_2 (s)$') 

 

# CaAl2Si2O8 + 4*H2SO4  -> CaSO4 + Al2(SO4)3 + 4*H2O + 2*SiO2 

 

del_G = G([dfs[dictt.index('CaAl2Si2O8')], dfs[dictt.index('H2SO4')]], 

          [dfs[dictt.index('CaSO4')],      dfs[dictt.index('Al2SO43')], dfs[dictt.index('H2O')], 

dfs[dictt.index('SiO2')]], 

          [1, 4], 

          [1, 1, 4, 2], 

          '$CaAl_2Si_2O_8(s) + 4 H_2SO_4 (aq)  -> CaSO_4(s) + Al_2(SO_4)_3(s) + 4 H_2O (l) + 2 SiO_2 

(s)$') 
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############################################ 

 

# 2*FeSO4           -> Fe2O3 + 2*SO2 + 1/2*O2 

 

del_G = G([dfs[dictt.index('FeSO4')]], 

          [dfs[dictt.index('Fe2O3' )], dfs[dictt.index('SO2')], dfs[dictt.index('O2')]], 

          [2], 

          [1, 2, 0.5], 

          '$2 FeSO_4           -> Fe_2O_3 + 2 SO_2 + 1/2 O_2$') 

 

# 2*MgSO4               -> 2*MgO + 2*SO2 + O2 

 

del_G = G([dfs[dictt.index('MgSO4')]], 

          [dfs[dictt.index('MgO' )],  dfs[dictt.index('SO2')], dfs[dictt.index('O2')]], 

          [2], 

          [2, 2, 1], 

          '$2 MgSO_4               -> 2 MgO + 2 SO_2 + O_2$') 

 

 

# CaSO4                 -> CaO +     SO2 + 1/2*O2 

 

del_G = G([dfs[dictt.index('CaSO4')]], 

          [dfs[dictt.index('CaO')],  dfs[dictt.index('SO2')], dfs[dictt.index('O2')]], 

          [2], 

          [2, 2, 1], 

          '$CaSO_4       -> CaO +     SO_2 + 1/2 O_2$') 

 

 

 

 

# Al2(SO4)3             -> Al2O3 + 3*SO2 + 3/2*O2 

 

del_G = G([dfs[dictt.index('Al2SO43')]], 

          [dfs[dictt.index('Al2O3')],  dfs[dictt.index('SO2')], dfs[dictt.index('O2')]], 

          [1], 

          [1, 3, 1.5], 

          '$Al_2(SO_4)_3             -> Al_2O_3 + 3 SO_2 + 3/2 O_2$') 

 

 

######################################## 

 

 

# Fe2O3 + 3*CO      -> 3*CO2 +  2*Fe 
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del_G = G([dfs[dictt.index('Fe2O3')], dfs[dictt.index('CO')]], 

          [dfs[dictt.index('CO2' )], dfs[dictt.index('Fe')]], 

          [1, 3], 

          [3, 2], 

          '$Fe_2O_3 + 3 CO     -> 3 CO_2 +  2 Fe$') 

 

 

# Fe2O3 + 3*CO      -> 3*CO2 +  2*Fe 

 

del_G = G([dfs[dictt.index('Fe2O3')], dfs[dictt.index('H2')]], 

          [dfs[dictt.index('H2O' )], dfs[dictt.index('Fe')]], 

          [1, 3], 

          [3, 2], 

          '$Fe_2O_3 + 3 H_2     -> 3 H_2O +  2 Fe$') 

 

 

 

 

# 3*CO2                -> 3*CO + 3/2*O2 

 

del_G = G([dfs[dictt.index('CO2')]], 

          [dfs[dictt.index('CO' )], dfs[dictt.index('O2')]], 

          [3], 

          [3, 1.5], 

          '$ 3 CO_2  -> 3 CO + 3/2 O_2$') 

 

######################################## 

 

# S -> 1/2 S2 

 

del_G = G([dfs[dictt.index('S')]], 

          [dfs[dictt.index('S2' )]], 

          [1], 

          [0.5], 

          '$S -> +1/2 S_2$') 

 

 

 

 

# MgO + CO -> Mg + CO2 

 

del_G = G([dfs[dictt.index('MgO')],  dfs[dictt.index('CO' )]], 

          [dfs[dictt.index('Mg' )],  dfs[dictt.index('CO2')]], 

          [1, 1], 

          [1, 1], 

          'MgO + CO -> Mg + CO2') 
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# MgO + H2  -> Mg + H2O 

 

 

del_G = G([dfs[dictt.index('MgO')],  dfs[dictt.index('H2' )]], 

          [dfs[dictt.index('Mg' )],  dfs[dictt.index('H2O')]], 

          [1, 1], 

          [1, 1], 

          'MgO + H2  -> Mg + H2O') 

 

# CaO + CO -> Ca + CO2 

 

del_G = G([dfs[dictt.index('MgO')],  dfs[dictt.index('CO' )]], 

          [dfs[dictt.index('Mg' )],  dfs[dictt.index('CO2')]], 

          [1, 1], 

          [1, 1], 

          'CaO + CO -> Ca + CO2') 

 

# Al2O3 + 3*CO -> 2*Al + 3*CO2 

 

del_G = G([dfs[dictt.index('Al2O3')],  dfs[dictt.index('CO' )]], 

          [dfs[dictt.index('Al' )],    dfs[dictt.index('CO2')]], 

          [1, 3], 

          [2, 3], 

          'Al2O3 + 3*CO -> 2*Al + 3*CO2') 

     

del_G = G([dfs[dictt.index('TiO2')],  dfs[dictt.index('CO' )]], 

          [dfs[dictt.index('Ti'  )],  dfs[dictt.index('CO2')]], 

          [1, 2], 

          [1, 2], 

          'TiO2 + 2*CO -> Ti + 2*CO2') 

 

''' 

 

 

 

 


