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Abstract 

Soil is a valuable source of forensic trace evidence due to its transferability and 

extensive heterogeneity across different locations, however, it is often underutilised 

within criminal investigations due to challenges associated with its analysis and 

interpretation. While there are many different types of soils encountered around the 

world, no single method is suitable for the forensic analysis of all soils. There is also 

minimal research exploring the analysis of specifically arid, sandy soils and their role 

as geological evidence in a forensic context, like those found on the Swan Coastal 

Plain in Perth, Western Australia. Analysis of these soils is especially challenging due 

to their quartz-dominated nature and very low levels of clay and organic matter, and 

this is made further difficult by the trace quantities of soil commonly encountered in 

forensic casework. It is therefore important to have reliable, validated methods for 

the forensic analysis of these soils, as well as for the interpretation and 

communication of the results generated. This thesis explores a multi-faceted 

approach that utilises spectroscopic techniques in combination with chemometrics 

to demonstrate objective characterisation and differentiation of arid, sandy soil 

samples for forensic purposes. The findings educate on the potential value of sandy 

soils when used for site discrimination in a forensic context, in order to allow for the 

optimised use of soil evidence in forensic laboratories in locations that experience 

soils like these. 

Microspectrophotometry (MSP) was performed on the quartz-recovered fine 

fractions of soils to provide an objective colour measurement, and this data was 

subsequently analysed using principal component analysis (PCA) and linear 

discriminant analysis (LDA) for the discrimination of soils based on their locations. 

Only a few soils were able to be differentiated due to noisy, irreproducible 

reflectance spectra, and most of these soils were distinctly coloured. MSP spectra 

were also converted into L* a* b* colorimetric values prior to chemometric analysis, 

however, this method was unable to provide any beneficial separation over visual 

examination of the soil. Hence, MSP analysis was recommended for use in forensic 
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pairwise comparisons to detect subtle differences in colour, or to provide a statistical 

measure of differentiation for highly coloured soils. 

Vibrational spectroscopy was used to chemically characterise the quartz-recovered 

fine fractions of the same soils. Initially, Raman spectroscopy was performed on 

these soil samples. However, it was unsuccessful at providing any chemical 

information due to fluorescence swamping of the spectra. Background corrections 

showed no beneficial effect. Attenuated total reflectance Fourier transform infrared 

(ATR-FTIR) spectroscopy was performed in combination with PCA and LDA, and 

successfully illustrated many inorganic and organic components within the soils that 

allowed for their differentiation. This resulted in the full discrimination of all soil 

samples based on their original locations, and the classification of 93.2% of samples 

to their correct locations. The remaining incorrectly classified samples displayed 

variability between duplicate samples, indicating sampling inconsistencies or high 

levels of heterogeneity within these sites, however, this could potentially be 

improved through the inclusion of additional principal components (PCs) when 

conducting LDA. Overall, ATR-FTIR analysis showed great potential for further 

differentiation of visually similar sandy soils compared to MSP. 

The quartz-recovered fine fractions of the same soils were analysed using X-ray 

diffraction (XRD). When combined with PCA, data allowed for the discrimination of 

most soil samples based on their locations, however, some sites showed significant 

intra-site variability. Due to limitations on the number of samples, LDA predictive 

models were not able to accurately classify soils to their original locations, despite 

the degree of discrimination achieved. However, the XRD data showed improved 

discrimination of some soils that were more challenging to differentiate using the 

ATR-FTIR data, highlighting the potential of a multi-model, sequential approach. A 

reproducibility study was also conducted by comparing results obtained through the 

use of three different XRD instruments that varied in age and capabilities. This 

preliminary research showed variations in the quality of data did affect the results, 

however, all instrumentation achieved similar overall discrimination of soils and 

predictive accuracies, demonstrating robustness of the method. 
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A combined analytical sequence was then proposed and applied to a blinded case 

simulation to showcase its suitability for use within the context of forensic casework. 

Using the combined spectroscopic and chemometric sequence, an unknown 

“recovered” sample was able to be associated with a single reference soil and 

discriminated from the other soils. The multiple different techniques employed 

produced varying results, however, these results offered complementary 

information that was able to be interpreted collectively to discriminate between the 

reference soils and identify the source of the “recovered” soil with greater 

confidence. The use of chemometric methods to interpret the data provided an 

objective, statistical measure of the similarities and/or variation between samples 

that could be presented as weighting for evidence in court. Hence, this approach was 

deemed suitable for incorporation into forensic casework to provide discrimination 

between similar sandy soil samples in an objective manner. 
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1.1 Soil as forensic evidence 

Soil is a valuable but underutilised source of forensic trace evidence (1-5). It can be 

used in criminal investigations to establish connections between people, places, and 

objects, and is generally retrieved from a suspect’s clothing, footwear, vehicle, or 

crime scene (2-4, 6-10). Soil evidence can be of significant value to investigators due 

to its heterogeneity and transferability (10, 11). It can be analysed by a range of 

different techniques to collect large amounts of detailed information on its 

composition, which is known to vary extensively with location (10, 11). Even though 

neighbouring soil systems tend to be closely related, they each may have distinctive 

geology, flora and fauna, topography, and history that could allow for their 

differentiation and identification (3, 10, 12, 13). When this data is interpreted 

correctly, soil can make a great tool for reconstructing previous events, as well as for 

forensic intelligence (12, 14-18). However, despite its huge potential, soil is not 

frequently used as a form of forensic trace evidence due to challenges associated 

with the reliability of its analysis and interpretation (19, 20).  

In a forensic context, the majority of soil evidence is urban in origin, containing a 

mixture of inorganic mineral grains, organic matter, a living microbiome, and man-

made materials (1, 3, 6, 21). The underlying chemical and physical properties of soil 

are naturally in a state of change, leading to a highly complex and dynamic material 

(2, 8-10, 12, 13). As a result of this, the development, implementation, and 

acceptance of standardised soil analysis procedures has been challenging (12, 16, 21, 

22). While several techniques hold the potential for forensic soil analysis, rigorous 

method validation is a prerequisite for these methods to be routinely adopted (8, 9, 

13). There has also been a reported increase in the prevalence of soil evidence in 

recent international criminal investigations, leading to increased demand for more 

reliable techniques for objective forensic examination of soils (4, 8, 13).  

While there is a current demand for the increased use of soil evidence to assist in 

solving crime, there is still an absence of any in-depth investigations in published 

literature into arid, sandy soils, such as those found on the Swan Coastal Plain, and 

their role as geological evidence in a forensic context. Understanding the frequency 



 3 

and nature of a particular trace is central to being able to evaluate its source (23, 24); 

this is particularly true for soils, as their properties can fluctuate greatly across 

different locations. Soil evidence is also often overlooked for its potential to be used 

as an investigative tool throughout criminal investigations (14, 24). If the science 

behind the analysis of forensic soil samples is strong enough, it could be used in 

instances to lead police to previously undiscovered locations of interest for further 

examination (8, 12, 14).  

This thesis aims to educate on the potential value of sandy soils when used for site 

discrimination in a forensic context, in order to allow for the reintroduction of soil 

evidence back into forensic laboratories in dry, arid locations that experience soils 

like these. By developing methods that can reliably and objectively analyse these 

sandy soils and identify their differentiating features, it is possible to produce results 

that are admissible as forensic evidence in court. 

1.2 Soil formation and composition 

This section is intended to provide a broad overview of soil formation (pedogenesis) 

and composition, as this forms the basis of the discussion on why soils differ by 

location. As with other forms of forensic trace evidence, such as fibres, it is important 

to understand their origin processes and prevalence in order to better interpret their 

likely characteristic features (25, 26). However, this thesis only focusses on the 

comparison of surface soils in a forensic context, as these are the traces that are most 

likely to be transferred during the occurrence of a crime. Hence, the following 

sections do not cover the geological pedogenesis process in detail, nor do they 

provide extensive information on soil horizons and classification systems, as this was 

considered to be outside the scope of this thesis. 

1.2.1 The formation of soils 

Soil can be generally defined as the loose materials, or regolith, found above the 

bedrock of a given geological region (1, 13). The formation of soils is related to the 

products of weathering; in-situ rock is broken down through a variety of processes, 

such as wind and water erosion, and plant and animal activities. The unconsolidated 
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regolith may combine with organic matter shed from neighbouring plants and 

animals to form a young soil. Time, additional sedimentation, biota, and the leaching 

action of water will then create layers known as soil horizons, distinguished by colour, 

structure, texture, and/or chemistry (Figure 1.1). In addition to in-situ soil formation, 

weathering and erosion of rock particles may also occur until the rock particles reach 

a size that is small enough to be transported and deposited by rainfall, ocean 

currents, rivers, and wind. The transported regolith may then also combine with 

organic matter, either during the process of transportation, such as within a river 

system, or after deposition, such as a wind-blown (aeolian) dune. 

 

Figure 1.1 The process of soil formation. 

1.2.2 The composition of soil 

Soil is made up of varying proportions of inorganic rock particles and mineral grains, 

chemical precipitates, organic plant and animal matter, and bacteria (3, 6, 13). The 

inorganic components of soil are derived through weathering of the underlying 

parent material to produce minerals and rock fragments, as well as through 

anthropogenic means, such as the addition of builder’s sand (17, 27). Minerals are 

solid, naturally occurring elements, or compounds that are made up of several 

different elements, arranged in specific crystal structures. Their physical and 
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chemical properties are determined by both their chemical compositions and crystal 

structures (17). Primary minerals are those that have formed from primary igneous 

rocks via solidification processes, and secondary minerals are then formed from 

further weathering or alteration of these primary minerals (28). While there are 

several thousand different minerals that exist, only 20 – 30 of these are commonly 

found in soils above trace concentrations, such as quartz, feldspars, iron oxides, 

aluminium oxides, carbonates, and clay minerals (1, 17, 29). A typical soil sample, 

however, will contain a mixture of only 5 – 10 different major minerals present in 

amounts that can be detected by routine analysis techniques (1, 17, 29). 

The organic components of soil originate from surrounding plant and animal material 

(8). Soil organic matter consists of mixtures of lipid and wax compounds, proteins, 

carbohydrates, humic acids, cellulose, hemicellulose, complex polysaccharides, 

lignin, suberin, and cutin, derived from living plants, roots, and organisms, as well as 

decomposing plant and animal remains (humus) (6, 17). The biological activity of 

microorganisms present within the soil degrades the residual plant and animal 

matter, which can then significantly affect the soil structure, fertility, and water 

holding capacity (30). Characteristic patterns of these compounds found within the 

surrounding vegetation are mirrored by the surrounding soil, providing information 

on the site history and associated environmental conditions (6, 17, 31). These 

compounds can persist for long periods of time and can vary over spaces as small as 

several metres, making them useful markers for site discrimination (6, 17, 32). 

Managed soils that have been purposefully altered can also contain organic 

compounds from the application of manures, composts, or mulches to the soil (17). 

For these reasons, surface soil tends to contain higher levels of organic content than 

the underlying layers (33). 

Additionally, soils contain vast communities of microbes, fungi, and other 

microorganisms, which can vary widely over extremely small spaces (2, 12, 34). These 

populations are determined and supported by the nutrients and waste material 

produced by the surrounding flora and fauna (31). The presence of some plants can 

also affect the conditions of the soil, such as moisture content, which will directly 

impact soil organisms (31). These living organisms are responsible for the production 
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of proteins, which in their complete sets are referred to as ‘proteomes’ (35). These 

can vary qualitatively and quantitatively at any given time, under defined conditions 

(35). They also deposit an abundance of deoxyribonucleic acid (DNA) in the soil, 

adding to the DNA left behind by other animals that live in, dig through, defecate, or 

die and decay in the soil (18). While present in abundance, these microbial 

communities are very sensitive to exogeneous factors, and can be dramatically 

altered by time, weather, or disturbance of the soil by human practises, such as 

farming (12, 17). 

Because of the prevalence of soil, there are many other materials that are commonly 

encountered within its mixture. These can include pollen spores, glass fragments, 

asphalt or brick fragments, fossils, road marking beads, or other artificial materials 

introduced anthropogenically, such as litter (21, 29). These are dependent on the 

type of land use surrounding the soil and the accessibility of the location to the 

public. 

1.2.3 Factors affecting soil composition 

The composition of soil is largely site-specific and highly complex, with its mineralogy, 

elemental distribution, and organic matter varying depending on the underlying 

parent source material, age and weathering of deposits, climate, topography, land 

use, local pollution, the surrounding vegetation, the microorganisms present in the 

soil, animal residues, and artefacts of human activities (6, 10, 13, 14, 19, 36). For this 

reason, soils that are in neighbouring locations may have very distinctive 

compositions if they are subject to different external factors. 

As discussed above, parent source material (underlying bedrock) will determine the 

major types of minerals present within the soil as it is eroded into small particles (17, 

27, 31). It will also affect the overall soil texture. Biological activity at the site will 

considerably influence the soil composition, largely related to the organic matter and 

microbial communities (6, 17, 31). This can range from soil disturbance due to the 

movement of larger animals, as well as their defecation and decay, to mechanisms 
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with which the microbes and plant systems extract or deposit nutrients within the 

soil.  

The other primary factors influencing soil composition are climate, topography, and 

time. The climate that the soil is exposed to, e.g., temperatures, rainfall, wind, and 

humidity, has a direct effect on its weathering; soils that are exposed to heavier 

rainfall with strong drainage will typically experience higher levels of leaching, and 

regions with stronger wind currents will generally produce more weathered soils that 

are mixed in origin. The topography, or relief, of a landscape will also affect the rate 

of erosion, transport, and deposition of sediments, which in turn will alter the soil 

composition on a local scale. Lastly, the ageing of soils over extensive periods of time 

will also directly affect the composition of the soil; as soil ages, it is transported across 

locations and exposed to the elements, until it is finally buried by more material and 

compacted underneath the ground’s surface. Older soils generally have higher levels 

of mineral breakdown, and therefore contain lesser amounts of clays, nutrients, and 

organic matter. Studies have shown than significant temporal variation can be 

observed in the organic content of soils (32). 

1.2.4 Composition of forensic soils 

Soils that are commonly utilised as trace evidence within forensic investigations tend 

to originate from areas nearby the main population density, and are therefore 

generally urban soils, rather than agricultural (24). This means that forensic soils are 

particularly affected by human activity, movement, and contamination (14). Soil 

samples are often recovered from public parks, garden beds, and road verges, and 

are characterised by their high levels of heterogeneity resulting from the addition of 

various materials to these sites, such as mulch or fertilizers, and mixing of the soil 

material through activities such as landscaping or high levels of traffic (24, 37). Soil 

samples collected from crime scenes are also often contaminated with other forms 

of trace evidence, such as glass, fibres, or hair. These should be separated and 

analysed appropriately alongside the soil, to maximise the potential value of the 

evidence (17). 
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Often, by the time a forensic soil sample is collected for analysis, it has been 

unintentionally sampled and then mixed with multiple other sources (10, 14, 17, 38, 

39); for example, soil collected from a person of interest’s shoe will represent all 

instances where the shoe made contact with soil, both before and after the alleged 

event in question, and the portion of the soil adhering to the shoe may preferentially 

favour particles of a certain size based on the width of the tread marks. Sample may 

also be lost during subsequent activities involving the use of the item, prior to 

forensic analysis (39). Even if the item was not subject to further use between the 

crime and the collection of evidence, these events can be separated by lengthy 

periods of time, causing temporal mismatches in the soil conditions (40). Forensic 

soil samples are therefore generally not a true representation of the bulk soil 

material (10, 14, 17, 38).  

1.3 Swan Coastal Plain 

One example of a region that contains several soil systems in close proximity is that 

of the Swan Coastal Plain in Perth, Western Australia. Approximately 200 million 

years ago, the Australian continental plate started drifting away from the African and 

Indian plates, causing a rift valley known as the Perth Basin (41). This basin now 

extends over 170 000 km2, from the easterly Darling Fault line, past the current 

coastline and into the Indian ocean (41). Over time, the coastline has gradually grown 

westwards as more sediments have been deposited over the top of the basin, 

creating the Swan Coastal Plain. Three deposition processes are responsible for this: 

marine (sediment brought to the shore from the ocean), aeolian (sediment wind-

blown inland from the shore), and alluvial (sediment from the easterly upland areas 

brought down by rivers, gravity, and rain) (42-44). Whilst this sedimentary system is 

currently stable, these processes are still occurring today. The Swan Coastal Plain 

now encompasses the majority of the Perth metropolitan region, and encapsulates 

four main soil systems; the Quindalup, Spearwood, and Bassendean dunes, as well 

as the Pinjarra Plain (Figure 1.2) (36, 45). While the four systems are closely related, 

they each have distinctive geology, flora and fauna, and topography that allow for 

their differentiation and identification. 
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Figure 1.2 Diagram detailing the different dune systems of Western Australia's Swan Coastal Plain, in 

which the capital city, Perth, is situated (from Pitts, Lewis, and Newland (46)). 
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The Quindalup dunes (pictured in Figure 1.3) are situated nearest to the coast, and 

are the youngest of all the systems; their formation began at the end of the last ice 

age approximately 10,000 years ago, however, in most places along the coast they 

are less than 1000 years old (41, 43). These marine/aeolian, cream-coloured soils are 

mostly composed of medium to fine-grained quartz sand and calcium carbonate 

marine fragments, causing them to be quite alkaline (43, 44, 47). The degree of soil 

development is apparent through the immature soil profiles, minimal quantities of 

humus, and high carbonate soil content (42, 47). Calcite is underneath the surfaces 

in the form of limestone pipes throughout, as well as a solid base at the bottom of 

the dunes, known as the Tamala Limestone (48). This limestone can be dissolved by 

water to form hollowed-out caves along the coastline (44). 

 

Figure 1.3 Soil from the Quindalup dune system, located within the Swan Coastal Plain in Perth, 

Western Australia (from Middle (49)). 

Slightly inland of the Quindalup dunes are the Spearwood Dunes (pictured in Figure 

1.4), formed during the Pleistocene glacial and interglacial periods approximately 

80,000 – 40,000 years ago (36, 43). These dunes are raised higher than the other 

dune systems and have the most variation in their soils, containing a mixture of 

red/brown, yellow, and pale yellow/grey sands (42, 43). The medium to course sand 
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grains are generally coated with layers of iron and aluminium oxides, which 

determines the colour of the sands and also increases their capacity to retain 

phosphorus (50). As they age however, the iron and aluminium coatings are leached, 

causing them to lose their distinct colouring over time (41, 43). For this reason, the 

darkest coloured sands occur to the west of the dune system, and the lighter 

coloured sands to the east. The Spearwood dunes are similarly situated on Tamala 

limestone bedrock, however, only the western margin of the dune system contains 

limestone pipes throughout, produced by calcium carbonate from former marine 

material (36, 42, 51). The soils within this system are believed to have originated from 

complex processes, containing large amounts of quartz with some calcium carbonate 

shell fragments, and smaller quantities of feldspars and heavy minerals (41, 43, 52). 

 

Figure 1.4 Soil from the Spearwood dune system, located within the Swan Coastal Plain in Perth, 

Western Australia (from Middle (49)). 

Farthest from the coast are the Bassendean dunes (pictured in Figure 1.5); these 

were formed during the middle Pleistocene period approximately 800,000 – 125,000 

years ago, making them the oldest of the dune systems (43, 44). Due to their age, the 

coatings on the sand grains have been predominantly washed away, making these 

soils the most leached, infertile, and acidic (43, 51). This has also made it difficult to 
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determine their origin, however, it is generally believed that they were formed by 

aeolian and/or marine processes (41, 44). The white, yellow, and grey Bassendean 

sands contain minimal clay or silt, very low levels of nutrient elements, and hence, 

little organic matter (52). These dunes exhibit low-lying hills throughout, and the 

regions between these can contain layers of iron and humus podzols underneath 

their surface, formed by the poor drainage in these areas (43, 51, 52). 

 

Figure 1.5 Soil from the Bassendean dune system, located within the Swan Coastal Plain in Perth, 

Western Australia (from Middle (49)). 

Bordering the eastern edge of the Bassendean dunes is the Pinjarra Plain (pictured 

in Figure 1.6). This region is flat and low lying, formed alluvially by the major rivers 

that run through the Swan Coastal Plain (42, 44, 48). The soils within this system are 

relatively complex. While they contain kaolinite and other clays eroded from the 

Darling Scarp and carried down by rivers and streams, finally being deposited as fans 

of alluvium, there is also sand in the soils where they overlay and mix with the 

Bassendean and Spearwood dunes (43, 44). Contributions from the Ridge Hill Shelf, 

which constitute colluvial materials from the Darling Scarp, are also found within this 

particular area (42, 43). This has resulted in a large amount of clay with many layers 

of soils underneath that range in age (53). Given the clay nature of these soils 
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combined with the low-lying topography, the Pinjarra region is naturally poorly 

drained and holds excess surface water for most of winter, but this also makes it 

more fertile than the other systems (43). The Pinjarra Plain occupies approximately 

one third of the Swan Coastal Plain, however, most of it has been cleared for 

agriculture in recent years, leaving only small remnants of the native vegetation (42, 

53).  

 

Figure 1.6 Soil from the Pinjarra Plain, located within the Swan Coastal Plain in Perth, Western 

Australia (from Middle (49)). 

1.3.1 Characteristics of the Swan Coastal Plain 

The capital city of Perth, in Western Australia, has a Mediterranean climate with hot, 

dry summers and mild, wet winters, with average maximum daily temperatures 

ranging from 19 – 31°C (41, 42, 44). The amount of rainfall each year averages around 

790 millimetres, with over 70% of that falling between the months of May and August 

(41, 44). The city also experiences frequent south to south-westerly coastal winds,  

with the occasional stronger south-westerly through north-westerly winds (42). The 

landscape exhibits distinct local patterns in the vegetation, related to distance from 

the ocean, degree of soil development, position in the topographical landscape, and 
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the fire history of the region (47). There are 26 different vegetation complexes within 

the Swan Coastal Plain, and these are home to over 300 bird and 50,000 invertebrate 

species, as well as abundant reptile, amphibia, and microfauna species (45). 

However, there are some variations in the density of these inhabitants due to the 

quality of the soils in particular regions. Populations of small to medium-sized 

mammals have unfortunately suffered significant declines associated with 

introduced carnivorous predator species and human activity, such as land clearing 

and controlled burns (45). Off the coast, marine seagrass provides shelter for many 

species of tropical fish (45). 

These conditions have given rise to soils that are extremely dry and nutrient-poor 

(52). Over time, chemical weathering has leached most of the primary minerals from 

the soils and concentrated the quartz, leaving almost pure quartz sand (>95%) with 

only thin iron oxide and residual mineral coatings (41, 52, 54). These coatings can 

include minerals such as kaolinite, microcline feldspar, gibbsite, goethite, mica 

(believed to be predominantly muscovite), hematite, vermiculite, anatase, calcite or 

aragonite, mixed with other forms of iron oxides, clays, magnesian calcites, and 

magnesian silicates (43, 52). The coastal Quindalup dunes rapidly accumulate organic 

carbon and nitrogen, allowing maximum quantities to be stored within the 

Spearwood dunes, before declining further inland (43, 55). Phosphorus levels within 

the soil exhibit a steady decline across the dunes as they increase in age, with some 

of the lowest quantities in the world apparent in the Bassendean dunes (41, 55). This 

has a negative influence on plant biomass and microbial populations, limiting the 

diversity of ecosystem processes that can occur within this region (41, 55). From a 

forensic standpoint, this also makes analysis of these soils challenging by reducing 

the organic fraction present. 

1.4 The forensic analysis of soils 

1.4.1 The forensic approach 

Soil is one of the most challenging forms of forensic trace evidence to sample, 

analyse, and interpret, due to its inherent heterogeneity (16, 24). Generally, soil 
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samples that are recovered from items or people of interest (also called questioned 

samples) are compared to reference samples obtained from known sources of origin, 

and a measure of similarity is provided between these samples (15, 56, 57). These 

conclusions however, are dependent on a number of factors, such as the precision 

of the methods used for analysis, the degree of variation existing within the soils 

from the location of interest, and how common the observed similarities/differences 

are in soils originating from other locations (57). While it is possible to exclude a soil 

sample as having originated from a specific location, it cannot be determined with 

absolute certainty that a soil has originated from a single source (56).  

Consideration must also be given to the representativeness of the samples provided; 

have specific portions of the sample been transferred or retained preferentially, 

under what conditions were they transferred, and how long ago did the transfer take 

place (4, 10, 14, 17, 38-40)? Reference soil samples should then be collected under 

comparable conditions, as close as possible to the crime scene, as soon as possible 

after the crime occurred, and at a similar depth to the soil exposed during the crime. 

For example, if the offender walked through a garden bed, then surface samples are 

appropriate, versus when dealing with a burial site, the layers below the surface 

should also be sampled (11, 17, 38, 56).  

Forensic soil samples can also be compared to reference soil databases to provide 

forensic intelligence, by directing investigators to specific areas of interest that share 

similar characteristics with the questioned soil or excluding other areas that show 

significant differences (37, 58, 59). However, this method is often limited in its 

potential by the disparity in size between the minute soil samples collected as trace 

evidence and much larger samples collected for regional soil surveys (17). 

Additionally, soil databases would need to be highly specific and constantly updated 

in order to stay accurate over time, and as such, show much greater potential for use 

on a regional scale, rather than local (37). 
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1.4.2 Methods utilised for forensic soil analysis 

Before the introduction of DNA evidence into courtrooms, soil samples were 

regularly obtained during criminal investigations and analysed using mainstream soil 

science methods, such as microscopic examination for particle size, shape, colour, 

texture, and general object identification, pH determination, and density gradient 

columns (4, 33, 34, 60, 61). However, the tests conducted were primarily physical 

and therefore could only assist with the general identification of soil type (12, 34). 

They also required a great deal of human judgement and interpretation, so were not 

entirely accepted by the courts as reliable methods for forensic soil examination (3). 

Newer techniques such as cathodoluminescence, thermoluminescence, and laser 

granulometry were experimented with briefly, but were regarded as novel methods 

and not routinely used for casework (61). The introduction of improved DNA 

evidence into courts caused a significant depreciation in the perceived forensic value 

of soil evidence, leading to it being largely overlooked (24, 61, 62). In recent years, it 

has been recognized that criminal investigations and subsequent court proceedings 

cannot stand on DNA evidence alone. This, and major improvement in scientific 

instrumentation and techniques, has encouraged the development of new 

approaches to forensic soil examination (38, 62, 63).  

The methods utilised by forensic soil analysts today have primarily been sourced 

from minerology and soil science research, and applied to soil evidence in a forensic 

context (20). Techniques which are easy-to-use, cost-effective, and non-destructive 

to the sample, have sensitive detection limits, and require small sample sizes are 

particularly valued due to the nature of the evidence encountered in forensic 

casework (8, 17, 24, 29, 54, 64). When utilising several techniques in combination, 

consideration should also be given to the logical order in which the sequence of 

methods should be carried out (17, 24). A simplified flow diagram of a typical soil 

examination protocol is illustrated in Figure 1.7 (46). Whilst not standardized, most 

forensic soil examiners would follow a similar process, with variations depending on 

instrument availability, characteristics of the soils native to the areas of focus, and 

the expertise of the analyst. Most analysts will begin with an overall examination of 

the bulk characteristics of the soil, such as colour, mineral composition, and a 
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stereomicroscopical examination before undertaking some form of separation for a 

more detailed examination of the appropriate fractions (17, 24, 56). Man-made 

artefacts may be separated and examined by other trace evidence examiners and 

intact plant material by botanists. Palynologists may also process appropriate 

fractions of soil for the examination of pollen grain populations.  

 

Figure 1.7 Flow diagram of a ‘typical’ forensic soil examination protocol (adapted from Pitts, Lewis, 

and Newland (46)). 

In the majority of forensic applications, the inorganic content within soil has 

generally been the focal point of analysis rather than the organic material, which has 

resulted in a wide range of instrumental techniques used for its analysis (1, 2, 4, 6, 

32). The inorganic component can provide information on the soil’s mineral content 

and underlying geology, as well as specific site characterisation through the presence 

of additives, such as builder’s sand (17). One advantage of analysing the inorganic 

fraction of soils is that it is generally stable for long periods of time, independent of 

sample storage conditions (17, 65, 66). Table 1.1 outlines some of the advantages 

and disadvantages associated with some of the most common methods, with further 

summaries of each technique detailed below, as well as in subsequent chapters.  
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Table 1.1 Methods commonly utilised for the inorganic analysis of forensic soil (from Pitts, Lewis, and 

Newland (46)). 

Method Advantages Disadvantages 

PLM • Non-destructive technique 

• Inexpensive 

• Relatively fast 

• Only qualitative information provided 

• Requires expertise 

XRD • Both qualitative and quantitative 

information provided 

• Non-destructive technique 

• Able to distinguish isomorphs with 

differing crystal lattices 

• Only semi-quantitative information 

• Sample size required may be larger than 

most forensic samples collected 

• Requires time-consuming sample 

preparation 

ICP-MS • Both qualitative and quantitative 

information provided 

• Low detection limits 

• Requires time-consuming sample 

preparation 

• Destructive 

• Cannot differentiate isomorphs 

SEM-EDX • Both qualitative and semi-

quantitative information provided 

• Imaging of samples 

• Non-destructive technique 

• Samples must be stable under vacuum 

• Detection limits limited to ~1% 

• Cannot distinguish isomorphs 

XRF • Semi-quantitative elemental 

analysis 

 

• Detection limits vary, with elements lighter 

than sodium difficult 

• Cannot distinguish isomorphs 

 

The organic compounds present in soil have been poorly studied in the context of 

Australian forensic applications (2, 6, 8, 17). This has presumably been due to the 

transient nature of organic soil characteristics, which are temporal and unstable 

when exposed to varying weather conditions or physical disturbances (20). 

Compounds that experience faster levels of decay are generally less useful for 

forensic comparison than stable inorganic compounds, as they can prove difficult to 

characterise and analyse quantitatively and are unable to provide a robust profile of 

the soil (17). While there are several established methods for organic soil analysis in 

areas of geochemistry and soil science research, they have only been explored very 

recently for forensic soil examination and are some of the first published in open 
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literature (6, 8, 9, 32, 57, 59). Some of these methods are outlined in Table 1.2 and 

further sections below. 

Table 1.2 Methods utilised for the organic analysis of forensic soil (from Pitts, Lewis, and Newland 

(46)). 

Method Advantages Disadvantages 

GC-MS • Method well established from 

agricultural sciences 

• Larger than typical forensic sample size 

required 

• Some compounds unstable at 

temperatures of column 

• Sample preparation may be arduous 

HPLC/UPLC • Heat-sensitive compounds able to 

be detected 

• Methods not well established 

OM • Non-destructive technique 

• Inexpensive 

• Only qualitative information provided 

• Open to human interpretation 

IRMS • Able to compare isotopic level 

variations 

• Destructive 

• Interpretation complicated and requires 

good databases 

 

1.4.2.1 Polarised light microscopy 

Polarized light microscopy (PLM) was one of the earliest techniques utilised to 

analyse minerals, including those in soils (32, 67). Mineralogists have been using PLM 

for over a century to identify minerals within a rock, using characteristics such as 

their birefringence, relative refractive index, and optical sign, and the same methods 

can be applied to forensic soil samples (68-70). Different materials will exhibit varying 

optical properties depending on their crystal lattice and the vibrational property of 

the light (horizontally and/or vertically polarized, or unpolarized). Isotropic materials, 

such as glass or garnet, allow light to pass directly through them with the same 

retardation, regardless of the direction the light travels (68). Anisotropic materials, 

such as quartz, have different retardation values relative to their crystal lattice, and 

hence will alter the light as it passes through at different orientations (68, 69). This 

can be utilised to determine the compositional nature of the sample being examined. 
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For example, in plane-polarized light microscopy, where only one polarizing filter is 

used, pleochroic grains will change colour as a sample is reoriented (usually by 

rotating the stage) (68, 69). In crossed-polarized light microscopy, two polarizing 

filters are set at 90° relative to each other, allowing the throughput of only those light 

rays affected by interference effects of anisotropic materials (68). When anisotropic 

materials are viewed with crossed-polars, variations in colour (known as interference 

colours) indicate differences in birefringence, which may be due to thickness and/or 

composition differences (68). An examiner can use their expertise, aids such as the 

Michel-Levy chart, and known mineral characteristics to infer an identification of the 

materials present within a sample. An illustration of this is shown in Figure 1.8. PLM 

is also used commonly within other areas of forensic science, identifying and 

comparing artefacts such as fibres and glass in the same way (68, 69).  

 

Figure 1.8 (a) Plane polarized light microscope image of a suspected metamorphic granulite; (b) cross-

polarized light microscope image of the same thin section, showing interference colours ranging from 

first order whites to higher order blues, pinks, greens and oranges (from Pitts, Lewis, and Newland 

(46)). Hypersthene, augite, labradorite, quartz and miscellaneous amphiboles were indicated in the 

sample (field of view is 1.1 mm). 

1.4.2.2 X-ray diffraction  

X-ray diffraction (XRD) is the most widely implemented technique, and one of the 

most effective, for the identification of minerals and crystalline substances within 

forensic soil samples (7, 54, 56, 71). XRD analysis can be performed on fine-ground 

bulk samples, or on separated fractions within the soil, such as the fine-grained, clay 

fraction (7, 71, 72). In XRD, X-rays are directed at a soil sample. These X-rays are 
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diffracted by the lattice of crystalline materials to produce a characteristic pattern 

that displays the intensity of X-rays collected at different angles of diffraction (7, 56). 

The angle of diffraction is determined by the lattice spacing of the layers of atoms, 

also known as the ‘d-spacing’ (7). Each mineral and/or crystalline component 

produces a characteristic X-ray diffraction pattern, and as differing soils contain 

varying minerals, these patterns are overlaid on top of each other to produce a 

summation pattern that is representative of the soil as a whole (7). This diffraction 

pattern can therefore be used to qualitatively identify the mineral components 

present within the soil. In 2018, Prandel et al. demonstrated how Rietveld refinement 

of XRD data was able to characterize minerals present in deferrified clays from Brazil 

(72). As this was performed in a forensic context, a reduced amount of sample was 

utilised. Discrimination of four different sites and two horizons was achieved through 

principal component analysis (PCA), indicating mineral variance in kaolinite, quartz, 

anatase, gibbsite, and muscovite. 

Additionally, XRD can be used to discriminate between mineral polymorphs, 

elements and their oxides, and mixtures of different crystalline substances (56, 71). 

The use of an internal or external standard can also allow for semi-quantitative 

analysis of the soil minerals (7, 71). In 2004, Ruffell and Wiltshire published a 

repeatability test comparing conventional XRD with quantitative XRD for determining 

the mineral composition of forensic soil samples within the context of a forensic 

investigation (7). An unknown soil collected from vehicle tyre treads was analysed 

and compared to 21 known samples collected from the greater Belfast area in 

Northern Ireland using PCA. Both XRD and quantitative XRD showed that the mineral 

proportions of the tyre tread sample matched only the correct location, however, 

quantitative XRD did fail to discriminate two locations that XRD showed were 

different. Hence, the authors suggested conjunctive use of both techniques to allow 

for maximum discrimination.  

XRD has also been used extensively within forensic casework to discriminate 

between questioned and known samples. In 2008, Petraco et al. published a case 

report detailing an investigation involving a deceased female who was found floating 

in the East River in Manhattan, USA (1). XRD was utilised to compare soil samples 
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collected from the riverbank and local beaches to soil retrieved from a water-stained 

shoe in the husband’s bedroom closet. Both the questioned and known specimens 

were shown to exhibit the same trace elemental composition, and confirmed to 

contain NaCl, and these results were presented as testimony at trial. Another case 

review was published by Melo et al. that utilised XRD for mineralogical analysis of 

soil samples involved in a murder case in Brazil (19). In 2018, a young female 

disappeared from Colombo after spending the night with the male suspect, and her 

body was later found 50 km away from the town. Soil samples were retrieved from 

the suspect’s vehicle and compared with surface soil samples collected from the 

body disposal site, as he claimed he had not left the Colombo town. The XRD data 

showed that the samples recovered from the suspect's vehicle could be excluded as 

having come from the areas examined in Colombo town and indicated an association 

between the body disposal site and the vehicle due to the presence of quartz and K-

feldspar within both samples.  

Finally, there are also documented occurrences where information generated with 

XRD was used to help guide forensic investigators to particular regions of interest. 

XRD analysis of soil evidence was used to help police locate the bodies of two missing 

women in South Australia (56). Crime scene investigators searched the vehicle of the 

main suspect and located a blood-stained shovel, bracelet, and boots that were 

caked with pink, powdery soil. Soil scientists from the Commonwealth Scientific and 

Industrial Research Organisation (CSIRO) were called in to analyse the soil adhering 

to these items, and XRD showed that the mineralogical composition of these soils 

was consistent with a mining area or quarry. The comprehensive data was compared 

against available Australian Soil Resource Information System (ASRIS) databases to 

determine regions that fit these criteria, and these areas were sampled and analysed 

to confirm an association. The indicated area was then monitored by investigators 

until the bodies were eventually uncovered through animal activity, resulting in a full 

confession from the suspect and conviction. 

Further research involving the use of XRD for forensic soil analysis is explored in 

Chapter 5. 
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1.4.2.3 Inductively coupled plasma mass spectrometry 

In more recent times, inductively coupled plasma mass spectrometry (ICP-MS) has 

become a well-established method for inorganic analysis in soil science and is now 

being utilised for the same purpose in forensics (27, 73). The technique can be 

employed for semi-quantitative estimation of the composition of the crystalline 

fraction of fine silt and clay (16). An acid-digested soil sample is nebulized into an 

inductively coupled plasma, where it is ionized, and then separated and quantified 

using a mass spectrometer (10). This method is capable of detecting elements from 

metals and mineral components present within the soil at concentrations down to 

parts per trillion (ppt) (16). However, the quantitative capabilities are often limited 

by incomplete silicate digestions, which generally require hazardous hydrofluoric 

acid for completion (11, 13, 73). The use of a laser ablation unit to introduce a small 

amount of solid sample directly (LA-ICP-MS) allows for solid samples to be analysed 

without the need for digestion, but detection limits are poorer, semi-quantitation 

requires matrix matched standards, and heterogeneity may cause issues (16, 73). 

1.4.2.4 Scanning electron microscopy with energy dispersive X-ray spectroscopy 

Another technique that is commonly utilised today in both mineralogy and forensic 

science is scanning electron microscopy (SEM) with energy dispersive X-ray 

spectroscopy (EDX) (17, 21, 62, 74). This method can provide detailed visual 

information on individual grains from soil samples, as well as bulk elemental 

composition information, allowing for inferred mineral identification and the 

characterization of native metals (24, 54, 71, 74). An illustration of this is shown in 

Figure 1.9. A high-energy beam of electrons is directed onto the soil sample for 

imaging using a SEM, which stimulates the emission of characteristic X-rays. The 

number of X-rays emitted from the sample and their associated energy can then be 

measured using an EDX. As the energies of the X-rays are characteristic of the 

electron orbitals within the emitting material, this allows the elemental composition 

of the soil sample to be qualitatively measured (17). If standards are available and 

samples are polished flat, quantitative compositions may also be determined (74). 

SEM-EDX only requires small quantities of soil, as these samples contain hundreds of 
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individual particles from which quantitative data can be obtained for comparison 

(71). However, this can sometimes be a disadvantage in forensics; when observing 

already biased samples microscopically, soils can show high levels of heterogeneity, 

which is hard to interpret in a broader sense to attain an overall picture of the bulk 

soil. More advanced electron techniques such as electron back-scattered diffraction 

(EBSD), quantitative evaluation of minerals by scanning electron microscopy 

(QEMSCAN), and microprobes have seen greater use in recent years, but are still 

specialized and not routine in their use (17). 

 

Figure 1.9 SEM image of soil particles showing the detailed textural information it may provide, along 

with chemical identification of the coatings of some grains determined by EDX (from Dawson and 

Hillier (17)). 

1.4.2.5 X-ray fluorescence spectroscopy 

An alternative to EDX is the use of X-ray fluorescence (XRF), which also utilises the 

emission of characteristic X-rays to determine bulk chemistry of a sample. Forensic 

scientists frequently use XRF for the elemental analysis of paints, liquids, and soil 
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samples (24, 62, 64). X-rays are directed at the soil sample and absorbed by inner 

shell electrons of the elements within the sample (13). This produces an excited ion, 

which spontaneously emits a characteristic X-ray fluorescence spectrum (13). XRF 

has better detection limits for transition metals than EDX, but still has issues with 

lighter elements below sodium and still relies on inferring mineral species from 

elemental data. Portable XRF systems have also recently been made available for 

field use, which are capable of detecting up to 25 elements simultaneously (13). 

1.4.2.6 Chromatography 

Gas chromatography (GC) is routinely used to identify wax esters and oils derived 

from plant matter from an agricultural science perspective (8, 13). Within soil 

samples, these hydrocarbons are extracted and then vaporized before interacting 

with the stationary phase that is coated on the walls of the GC column (13, 17, 71). 

This ideally causes each hydrocarbon to elute at a different time, and these times can 

be compared to known compounds for their identification, which in turn can indicate 

the types of plants that were present at the origin of the soil sample (8, 13, 17, 59, 

71). Another method that can be used for this is high performance liquid 

chromatography (HPLC) or the similar ultra-performance liquid chromatography 

(UPLC), which separates and identifies these hydrocarbons in a similar way as GC, but 

in their liquid form (9, 32, 59). Both methods benefit from the use of a sensitive mass 

spectrometry detector to allow for surer identifications based on fragmentation 

patterns (GC-MS/LC-MS) (13, 22, 71). 

1.4.2.7 Optical microscopy 

For the visual identification of pollens, palynologists generally employ the use of 

optical microscopy (OM), which forensic scientists can also utilise to their advantage 

(17). Pollen and spores can be so small in size that they are not able to be detected 

by the naked eye, and are very resistant to removal from adhered objects, making 

them ideal forms of trace evidence (8). By observing pre-prepared pollen grains 

under a microscope (Figure 1.10), distinguishing features such as grain size and 

shape, the sculpturing of the outer coating, and number and size of the pores or 



 26 

furrows can provide information that allows forensic scientists to identify the species 

of plants that were present at the origin of the soil sample (8, 15, 17). In cases where 

pollen grains are too small or difficult to see under a standard optical microscope, 

SEM can also be used.  

 

Figure 1.10 Photomicrograph of Nuphar water lily spore (from Bull, Parker, and Morgan (39)). 

1.4.2.8 Isotope-ratio mass spectrometry 

A technique that is commonly utilised today in geochemistry for samples with organic 

matter is isotope-ratio mass spectrometry (IRMS) (17). Compositional analysis of 

carbon isotopes within a soil sample can be undertaken to identify a soil’s 

contributing flora and fauna. Samples are ionised, and then accelerated so that the 

resulting ions are separated according to their mass-to-charge ratios. As soil organic 

carbon is generally derived from the remains and decomposition residues of plants 

growing in situ, IRMS can utilise mass spectrometric methods to measure the relative 

abundance of stable carbon isotopes within a forensic soil sample to provide 

information on the type of ecological environment from which the sample originated 

(8, 57, 71). Other isotopic ratios, for elements such as nitrogen, hydrogen, oxygen, 

strontium, and lead may also be utilised for comparison of soil samples (57). 
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1.4.3 Emerging techniques for forensic soil analysis 

In recent literature, additional methods for forensic soil analysis have been 

investigated, including microspectrophotometry for colour analysis (4, 15, 75), 

infrared and Raman spectroscopy for compositional analysis of soil samples (4, 33, 

40, 64, 76, 77), and laser-induced breakdown spectroscopy (LIBS) and ICP 

atomic/optical emission spectrometry (ICP-AES/OES) for semi-quantitative 

estimation of elemental composition (11, 16, 62, 65, 73). These techniques are 

considered useful in certain cases, especially as part of a standard questioned versus 

known comparison, however, are still considered to be in the developmental stage 

as limited substantive validation and reliability testing has been shown. Some of 

these additional techniques have been further expanded on below. 

1.4.3.1 Microspectrophotometry  

Forensic scientists routinely use microspectrophotometry (MSP) for colour analysis 

of many different forms of trace evidence, including paint, fibres, and inks (4, 71). 

While the use of MSP has been recently applied to forensic soil samples too, it has 

not yet become widely adopted (4, 15, 17, 75). Soil samples are mounted on glass or 

quartz slides and presented to the microspectrophotometer (consisting of a 

microscope combined with a spectrophotometer) for analysis. Areas within the 

sample can be magnified and focussed using the microscope, before illumination 

with a controlled light source. The spectrophotometer then separates the light into 

specific wavelengths, and measures the intensity of the transmission or reflection of 

this light by the soil sample (71). The preferred method of illumination is generally 

transmitted light, due to the effects of surface angles and sample thickness on 

reflected light, however, this is not always possible with soil samples (71). The result 

is a spectrum displayed across the ultra-violet, visible, and near-infrared regions of 

the electromagnetic spectrum – an objective measure of colour. This spectrum can 

be further converted into numerical chromaticity values according to a range of 

different colour systems, such as the L*a*b* colour space, which is defined in further 

detail in Chapter 3. 
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Woods et al. demonstrated the use of MSP for the discrimination of Australian 

forensic soil samples, and best results were achieved through conversion of the MSP 

spectra to L*a*b* chromaticity coordinates prior to chemometric analysis (4). By 

utilising both MSP spectra and L*a*b* values, the 29 soil specimens analysed could 

be classified into 21 different groups, and pairwise comparisons resulted in 98% 

discrimination of the soils. However, results were affected by intra-sample variation, 

as soils can exhibit many colours when analysed microspectrally that may not be 

representative of the overall bulk colour of the soil. Hence, this technique was 

recommended only as a screening step prior to further analyses. 

Further information involving the use of MSP and colour analysis for forensic soil 

examination is explored in Chapter 3. 

1.4.3.2 Raman spectroscopy 

Raman spectroscopy has been previously utilised in forensic science for the 

comparison of evidence, such as drugs (78, 79), paint (80, 81), and fibres (82, 83). 

Samples are irradiated with a monochromatic laser source, and electrons within the 

sample undergo excitations to virtual energy states (84, 85). As these electrons relax 

back down, they release energy characteristic of their vibrational modes (84, 85). 

Rayleigh scattering, where electrons are excited and relaxed to the ground state with 

no energy differential, is filtered out, while the Raman scattering, where electrons 

are relaxed to a different state than where they started, is dispersed onto a detector 

and recorded as a spectrum (84, 85). The Raman ‘shift’ may be either positive 

(Stokes) or negative (anti-Stokes), but generally it is the Stokes Raman scattering that 

is measured, as this is simpler to interpret and has a higher intensity (84, 85). This 

spectrum may then be used to infer information on the molecular structure within 

the sample. Novel methods such as surface-enhanced Raman spectroscopy (SERS) 

(surface-enhanced RS) and confocal Raman microscopy can also allow for enhanced 

signals and higher resolution imaging of trace materials (30, 84).  

A major factor to consider when utilising Raman spectroscopy to analyse materials 

in a forensic context, such as soil, is the production of undesirable fluorescence 



 29 

emission, which can mask signals within the spectra (84). This is one of the primary 

reasons that its application to forensic soils has been limited. In 2012, Edwards et al. 

published a study that demonstrated how Raman spectroscopy could be used to 

successfully discriminate between soil types based on both their mineralogy and the 

organic, water-soluble fractions of soils (77). This involved the development of 

oxidative preparation methods designed to remove part of the organic content of 

the soil in order to lessen the swamping effects of fluorescence. Due to the decreased 

fluorescence and improved signal-to-noise ratio, it was possible to observe some of 

the mineralogy present in the soil samples, which could potentially allow for their 

differentiation in a forensic context. 

Kammrath et al. also published a case study in 2017 utilising a novel technique that 

gathered detailed morphological information on soil particle size and distribution 

using automated particle imaging, before probing the molecular chemistry of specific 

particles of interest using Raman spectroscopy (29). By obtaining Raman spectra of 

individual soil grains, the humic content within the soil samples was avoided, and 

therefore the issue of undesirable fluorescence was not encountered. PCA was then 

performed on the particle count data to successfully discriminate between soil 

samples from different sites along a single road in Connecticut, USA, highlighting the 

sensitivity of the technique. 

Further information involving the use of Raman spectroscopy for forensic soil 

analysis is explored in Chapter 4. 

1.4.3.3 Infrared spectroscopy  

Infrared (IR) spectroscopy has been widely explored for the analysis of many 

different forms of forensic trace evidence, including automotive paints (86), 

explosives (87), makeup (88), and polymer-based identity cards (89). Despite its well-

known application for the analysis of minerals (90), application to forensic soil has 

been limited until recently, likely due to the advancements made in portable IR 

technology and chemometric methods (91). In IR spectroscopy, IR radiation is 

directed onto a sample, which exhibits unique combinations of bonds depending on 
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its composition (85, 92). This radiation can be absorbed by molecules within the 

sample, dependent on the transition energy of the vibrating, stretching, and bending 

of the bonds within those molecules (85, 91, 92). The resulting absorbance or 

transmittance is then detected by the spectrometer, and in the case of Fourier 

transform infrared (FTIR), undergoes transformation using a mathematical algorithm 

to produce a spectrum as a function of wavenumber (92). Hence, this spectrum can 

indicate the molecular structure of a sample, or be compared to other samples or 

standards to determine similarities or differences (91, 92). The most commonly 

applied IR methods are attenuated total reflectance Fourier transform infrared (ATR-

FTIR), which utilises a sampling accessory to reduce the need for complex sample 

preparation, and diffuse reflectance infrared Fourier transform spectroscopy 

(DRIFTS), which can be used on powder samples with limited or no sample 

preparation (30, 71, 93). However, IR spectra can be challenging to accurately 

interpret for complex mixtures like soil, due to the overlapping of bands 

characteristic of different molecules within the sample. 

The use of IR spectroscopy for forensic soil examination was initially applied for 

analysis of the organic content within soil. In 2000, Cox et al. demonstrated the use 

of a novel FTIR spectroscopic technique for discrimination of similarly coloured soils 

(33); this involved analysing the soil via FTIR, oxidatively pyrolyzing the sample so 

that all organics were degraded, reanalysing the sample, and then subtracting this 

FTIR spectrum from the original one that contained the organic material. This 

resultant spectrum therefore represented the organic portion of the sample, and 

could be used to increase the discrimination between soils that are inorganically 

similar.  

More recently, it has been used to characterise the entire soil sample, incorporating 

analysis of both the organic and inorganic components. In 2014, Woods et al. 

demonstrated that ATR-FTIR spectroscopy combined with PCA could successfully be 

used to discriminate between forensic soil samples from Canberra, Australia (4). The 

29 soil specimens analysed could be classified into 28 different groups, and pairwise 

comparisons resulted in 99.7% discrimination of soils. However, this technique was 

recommended as an initial screening step prior to more detailed analyses. Chauhan 
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et al. followed up this study in 2018 with further investigation into the effects of 

sample preparation prior to ATR-FTIR analysis, as well as the application of additional 

chemometric methods (discriminant analysis) to successfully predict a soil’s origin 

(76). Models produced were able to both discriminate and classify 100% of Indian 

soil samples based on their original location. It was also shown that sieving and 

heating of soil can affect the spectral features considerably, so should be avoided in 

forensic casework if possible.  

A study was then conducted by Xu et al. in 2020 that reinforced the conclusions made 

by Woods et al.; while ATR-FTIR combined with PCA was able to successfully 

discriminate between most soils, it was difficult to distinguish between some similar 

soils using ATR-FTIR data alone, so its use alongside other analysis methods is 

recommended (65). One such example of this was published in 2020 by Prandel et 

al., who demonstrated the use of PCA on combined ATR-FTIR and energy-dispersive 

X-ray fluorescence data (64). This methodology was able to characterise a small 

amount of the clay fraction of soil. However, only specific bands within the ATR-FTIR 

spectra were hand-picked for chemometric analysis. 

Further information involving the use of IR spectroscopy for forensic soil analysis is 

explored in Chapter 4. 

1.4.3.4 Microbiome analysis 

Another option to analyse the organic component of soil is to examine the 

microbiome. Only a small amount of analysis has been attempted and published in 

this field to date, and most has focused on the bacterial DNA/rNA present within 

soils, rather than the proteins (2, 3, 12, 18, 31, 40, 66). This method is based on the 

specific fingerprint of genetic material differing between strains of bacteria, which 

can be analysed to indicate which species of bacteria are present in the soil. However, 

soil DNA profiles can be considerably altered by many factors, including annual 

seasons, human activity, sample storage and handling, and the presence of human 

decomposition (17, 40, 66). Since this research is very recent, there are no widely 

accepted, standard methods in place for examination of the microbiome in forensic 
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soils as of yet (2, 35). This is an area that has the potential to provide a powerful 

means for discriminating soil samples with similar mineralogy or linking them to a 

common origin, and should be explored further (13, 34).  

1.5 Use of the quartz-recovered fine fraction 

Most of the methods that make use of bulk soils for analysis are impractical for soil 

samples commonly encountered in forensic casework, due to their limited size (3, 74, 

94). These methods are also not suitable for analysis of soils that have minimal 

variation in their bulk chemistry, like the quartz sands found on the Swan Coastal 

Plain (54, 94, 95). In many approaches to forensic soil analysis, several techniques 

are undertaken on separated fractions of soil, allowing further differentiation 

compared to the bulk chemistry (10, 54, 73, 74).  

The clay and fine silt fraction within soil samples has generally been the focal point 

of forensic analysis, rather than the sand fraction (20, 72, 96, 97). This is due to the 

smaller particle size, which aids in transferability and adherence to evidence and 

provides a higher number of particles for analysis from a much smaller sample (19, 

20, 94). The fine clay fraction also exhibits greater variability in secondary minerals, 

and as such, can be a better indicator of provenance than the other fractions which 

are primarily comprised of weathered material derived from the parent rock (10, 19, 

20, 94). In Swan Coastal Plain soils however, the clay and fine silt fraction is present 

in very limited amounts (1 – 5% of the soil mass) and is typically found as coatings on 

the sand grains, making analysis of this fraction more complicated (51, 94). Because 

of the difficulty in separating these clay coatings from the dominant sand fraction, 

most of the suggested methods that analyse the clay fraction are not able to be 

utilised for examination of Swan Coastal Plain soils, as they are designed for loose, 

separable clay fractions within the bulk soil.  

Sometimes the sand fraction is able to be forensically analysed if the clay fraction 

available is inadequate (54). Recently, Melo et al. investigated the use of particle size 

distribution, XRD, and SEM-EDX coupled with chemometric methods to characterise 

and discriminate between the sand fractions of subtropical soils (54). While this 
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research made use of the sand fraction, which is the predominant fraction in the dry, 

sandy soils found in Western Australia, their method was deemed unsuitable for 

effective discrimination. This study highlights the difficulties faced with these types 

of highly weathered soils that have a homogeneous, quartz sand fraction that cannot 

be used to differentiate between them. Traditional methods such as XRD are not 

appropriate for use with the sand fraction, and hence these sandy soils require more 

detailed examinations to be able to distinguish between different sources (54).  

For these reasons, Pitts and Clarke developed a novel method which allows for the 

differentiation of quartz dominated, minute, fractionated soil samples, like those 

that originate from the Swan Coastal Plain (94), and this has been used for forensic 

casework since the 1990s (97). This method, illustrated in Figure 1.11, involves 

extraction of the clay and fine silt coatings found on quartz grains (primary and 

secondary minerals <20 µm) termed the ‘quartz-recovered fine fraction’, which can 

then be further analysed and compared (94).  

 

Figure 1.11 Infographic based on method published by Pitts & Clarke (94): The forensic discrimination 

of quartz sands from the Swan Coastal Plain, Western Australia. 

Because this removes the quartz grains from the sample, reproducible XRD data that 

highlights mineral variation is able to be obtained from forensic-sized samples of 

sand (94). Although it has only been tested in combination with XRD and Raman 

spectroscopy so far, this technique has successfully been used within forensic 

casework and presented as evidence in court, as well as for proficiency testing within 
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the laboratory setting (94, 98). While this method was developed with soils from the 

Swan Coastal Plain in mind, it is also applicable to sandy soils from wider locations 

and potentially even different soil types from other geological environments that 

exhibit low levels of clay and organic matter and high quantities of quartz grains (94). 

Exploration of the quartz-recovered fine fraction from within sandy soils is therefore 

the focus of the work contained within this thesis, with an emphasis on the use of 

both established and emerging techniques combined with chemometric methods for 

the analysis of this data. 

1.6 Interpretation of results 

While there are many valuable techniques for analysing soils and identifying their 

components, challenges arise when applying these methods to forensic soil cases, 

which not only require robust analytical techniques but also a reliable measure of 

how similar a questioned sample is to a known source (17). As with all forensic 

evidence, forensic soil analysis requires further interpretation of data to make 

comparisons between questioned versus known samples and reach conclusions 

about a sample’s geographical origin.  

The interpretation of evidence has always been a significant issue within the wider 

forensic community (17), and translating whether an association between samples is 

actually probative is of primary concern. Accurate and reliable methods for evidence 

examination, interpretation, and communication of findings are essential for a justice 

system to be wholly effective, however, to date there is minimal scientific research 

that works to evaluate the significance of a forensic match once it has been achieved 

(26, 63, 99-101). This is a problem expressed commonly by other researchers such as 

Dr. Paul L. Kirk who, when referring to forensic fibre analysis, stated: 

“…it is possible to identify all types of textile fibre with exactness, 

through a variety of methods…. However, the probabilistic value of a 

fibre transfer between two sets of clothing, as in a crime, is still a matter 

of controversy, even though such transfers constitute one of the more 

valuable types of evidence.” - Kirk, P.L., Science, 1963, 140: 367-370. 
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This theme has arisen more often recently, as discussed in several reports over the 

last decade, such as the National Academies of Science’s (NAS) report on forensic 

science research (99), the House of Lords’ report on forensic science and the criminal 

justice system (101), and many peer-reviewed articles (102-105). 

Additionally, there is a constant requirement to ensure the scientific foundations 

behind the methods utilised for forensic analysis of evidence, to allow for objective 

analysis and interpretation based on statistically valid comparisons, rather than 

subjective comparisons (99-101, 106). Many forensic disciplines rely on visual 

comparison of chemical data, however, it is now recognised that examiners can be 

prone to cognitive biases that may affect their conclusions, such as prior expectations 

of results or knowledge of investigative details (105). Recently, the President's 

Council of Advisors on Science and Technology (PCAST) published a report 

recommending the urgent development of additional, more efficient techniques for 

objective forensic examination of the six most commonly encountered forms of trace 

evidence – fingermarks, DNA, hair, firearms, bitemarks, and footwear impressions 

(106). This recommendation could be applied to all forensic feature-comparison 

methods, including soil and geological evidence. 

One way of addressing this problem is by using a Bayesian approach, which is 

currently used in Australia, Europe, and New Zealand for the statistical interpretation 

of forensic evidence such as glass. The Bayesian approach describes the probability 

of the presented evidence being observed given two competing hypotheses (e.g., the 

defendant is guilty versus the defendant is not guilty), and prior knowledge of related 

factors, such as the rarity of certain features (100, 107, 108). In simple terms, Bayes’ 

theorem shows us the effect that the scientific evidence has on the odds that the 

defendant either did or did not commit the crime (26, 92, 108). This approach has 

limitations however, when applied to complex forms of trace evidence such as soil, 

that have unknown quantities, frequencies, and features (17). 
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1.6.1 Chemometrics 

Another approach that assists in a more objective and transparent interpretation of 

soil evidence is utilising multi-variate statistical methods, or chemometrics, to 

evaluate the relationships between samples (6, 10, 107). Data can be analysed using 

unsupervised techniques to establish patterns or correlations, or supervised 

techniques that require pre-established groupings (6, 10, 76). These methods can 

provide a statistical measure of similarity between samples in a way that is accepted 

by the scientific community (10), and have previously been used to successfully 

analyse chemical data and achieve source discrimination of other forms of forensic 

evidence, such as fibres, automotive paints, identity documents, and explosives (80, 

87, 89, 107). For these reasons, data arising from chemometric analysis has been 

accepted as forensic evidence presented in court (109). The statistical measures 

generated through chemometric analysis could even be further integrated within the 

standard Bayesian approach to produce an accurate, objective interpretation of the 

forensic evidence at hand. An overview of the techniques applied throughout this 

thesis is provided below. 

1.6.1.1 Principal component analysis 

Principal component analysis (PCA) is an unsupervised technique, in that it does not 

require predetermined groupings to process information (105). When PCA is used in 

conjunction with detailed chemical analysis methods, it can quickly simplify data and 

visualise its distribution to provide a quantitative measure of similarity between 

samples (4, 10, 13, 29, 76, 107). It works by linearly transforming multidimensional 

datasets into smaller numbers of orthogonal variables that represent most of the 

variation within the data, called principal components (PCs) (6, 10, 30, 65, 76). The 

number of PCs generated cannot be higher than the number of original variables, 

and the first PC will always represent the largest proportion of total variance, with 

each additional PC declining in its encapsulated variance (6, 65).  

This data can be projected into 2D or 3D space using the component scores, with the 

principal components as the axes, in order to visualise the clustering or separation 
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exhibited by samples based on their similarities (10, 30). The scores can also be 

exported into other chemometric techniques, such as linear discriminant analysis, 

rather than using the original multidimensional variables (30). In addition, 

examination of loadings plots can provide information on the chemical factors that 

allow for differentiation between samples (65, 105). PCA can prove especially useful 

when undertaking common ‘questioned versus known’ comparisons, to highlight 

subtle similarities or differences between samples that could not be detected 

through human interpretation of the data. 

1.6.1.2 Linear discriminant analysis 

Linear discriminant analysis (LDA) is a supervised, eigen-analysis technique that 

requires pre-established groupings in order to best discriminate between groups of 

samples (10, 105). It linearly combines the variable set to determine optimal 

canonical axes that minimise the variance within sample groups and maximise the 

variance between sample groups across a training set (6, 10, 76). The model then 

classifies these training set samples into the known groups, outputting a confusion 

matrix that summarises the correct and incorrect classifications and hence provides 

a classification accuracy percentage (105). The resulting data can then be used to 

predict groupings for unknown samples based on whether they share the same 

characteristics as the training set samples (10, 11, 38, 76, 107). Unfortunately, LDA 

does have one notable disadvantage in that it involves matrix inversion, meaning that 

the number of variables must be smaller than the number of samples involved, so it 

is usually carried out after data reduction methods such as PCA; if limited samples 

are available then not all of the PCs that account for variation within the data can be 

incorporated within the model, causing some variation to be lost (30, 105). 

There are several different methods that can be used to validate the predictive model 

for LDA, with the most common being the ‘leave one out’ and ‘independent test set’ 

methods. The ‘leave one out’ process involves removing one sample from the 

dataset, using all of the other samples to build the model, and then projecting the 

remaining sample back onto the model to classify its grouping (66). This is then 

repeated with each individual sample in the dataset, and the classification rates are 
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combined to provide an overall validation accuracy (66). The ’independent test set’ 

method involves the use of a completely independent dataset for validating the 

model, i.e., the samples that are predicted onto the model are never used to build 

the model, so it is only performed once. This is especially suited for questioned versus 

known comparisons, where the data from samples of known origin can be used to 

create the model, and unknown samples can be predicted onto the model to assess 

their grouping. For this reason, as well as the fact that ‘leave one out’ validation can 

greatly overestimate model performance (87, 105), ‘independent test set’ LDA has 

been the method utilised within this thesis. 

1.6.1.3 Discrimination of forensic soils in literature using chemometrics 

Many studies have utilised chemometric methods for interpretation of soil evidence 

(2, 4, 5, 7, 8, 20, 29, 54, 57, 64, 65, 72, 74). While PCA has been the most commonly 

applied method, many other types of analyses have been explored, including 

hierarchical cluster analysis (HCA), Bray-Curtis similarities, and partial least squares. 

In 2011, Jantzi and Almirall demonstrated the use of quantitative LIBS in combination 

with chemometric methods to successfully discriminate between bulk soil samples 

from Florida, USA, for forensic purposes (11). PCA was used to show clear grouping 

of samples based on location, and ‘leave one out’ LDA obtained a discrimination 

accuracy of 99.4%. This work was then expanded on by the original authors in 2014, 

where they investigated different sample preparation methods that would allow for 

success with smaller sample sizes when analysed using LIBS (16). These results were 

again subject to PCA and LDA and compared to those obtained through the use of 

LA-ICP-MS; all methods allowed for over 94% discrimination accuracy, showcasing 

the potential that both LIBS and LA-ICP-MS hold for discrimination of forensic soils 

when combined with chemometric analysis. 

Lee et al. performed chemometric methods such as multiple comparison (MC), PCA, 

LDA, and HCA on data obtained from thermally assisted hydrolysis and methylation 

(THM) of soil organic matter using pyrolysis GC-MS (PyGC-MS) (6). Analysis was 

conducted on 40 different soils, and these were shown to cluster into six groups 
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through chemometric analysis. The PCA loadings also identified 11 marker 

compounds within the soil organic matter that were responsible for the majority of 

variance within the dataset, and these could be related to each of the clusters 

formed; the clusters were differentiated by the presence of lignin, fatty acids, and 

urea within the organic fraction of soils. 

Reidy et al. conducted a mock crime scene scenario in which students were asked to 

conduct a comparative analysis between eight bulk soils from different sites within 

Mississippi, USA, using ICP-MS combined with PCA and LDA (10). While PCA allowed 

for clustering of the soils based on their overall region, it showed overlap between 

samples that were located approximately 3 kilometres apart, highlighting the 

comparable elemental profiles of soils derived from the same parent material despite 

occurring across wide-spread areas. LDA allowed for improved discrimination, 

showing clusters based on sites located as close as 50 metres apart, and correct 

classification of 100% of the unknown soil samples. The results suggested that 

elemental analysis of soil by ICP-MS can distinguish soils from different locations, 

however, success is dependent on an appropriate choice of chemometric 

interpretation. 

More recently, Chauhan et al. investigated the use of ATR-FTIR spectroscopy and 

chemometrics to characterize, differentiate, and classify both surface and sub-

surface soil samples collected from various regions across North-Western India (76). 

Sample preparation methods such as heating and sieving were shown to 

considerably affect the results, with some components in the soil experiencing 

degradation or removal through these processes. The use of PCA improved pairwise 

discrimination accuracy from 99.35% for surface samples and 97.38% for sub-surface 

samples, to 100% for both. Canonical discriminant function analysis (CDFA) was also 

used to classify soils to their original geographical regions, with 100% of samples 

achieving correct classification through ‘leave one out’ cross-validation. While ATR-

FTIR spectroscopy was shown to be successful for characterising and discriminating 

soil samples, results benefitted from further interpretation using chemometric 

methods. 
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1.6.1.4 Gaps in the literature 

While the use of chemometrics on soil evidence is prevalent within published 

literature, chemometric analysis has never been demonstrated on data obtained 

from methods analysing the quartz-recovered fine fraction within soils, so its 

suitability for use with different soil types, such as the dry quartz sands found within 

Western Australia, has not been shown. 

Additionally, most published studies have previously focused on a single approach 

for the analysis of samples, overlooking the detail that in standard forensic practice 

it is far more common to utilise multiple examination methods (6, 62). Soil analysis, 

like other areas of forensic analysis, is typically carried out in a sequence, utilising the 

least destructive methods first and gathering further information as the sequence 

progresses (15, 73). Soil contains many different features that can allow for its 

differentiation and not all of these can be detected by one singular method alone, 

and as such, benefits from a multidisciplinary forensic approach (8, 38, 62). It would 

therefore be more realistic to look at a suite of instrumental methods, particularly 

ones that are complementary in the information they provide, and experiment with 

combining them in a sequence (15, 17, 73). This would enhance the value of the soil 

evidence and allow for increased discrimination or association (4, 17, 62). The use of 

chemometrics should be demonstrated alongside each stage of the sequence, 

including visual examination, to highlight how it can provide investigators with 

supporting information.  

1.7 Aims and overview 

In this study, investigations explore the use of well-established spectroscopic 

techniques to further develop a multi-faceted approach for forensic analysis of the 

quartz-recovered fine fraction of soils. This data is used in combination with PCA and 

LDA to demonstrate how chemometrics can be utilised for the objective 

characterisation and differentiation of sandy soil samples for forensic purposes. This 

approach, demonstrated in Figure 1.12, can be used by forensic laboratories to help 

provide better evidence of association in a courtroom context.  
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This can be broken down into four overall aims of the project, which are: 

- Demonstrate the use of the quartz-recovered fine fraction for the forensic 

analysis of sandy soils with techniques utilised for the examination of other 

forms of forensic trace evidence, such as MSP, Raman spectroscopy, ATR-FTIR 

spectroscopy, and XRD.  

- Demonstrate how chemometrics can be used in combination with data obtained 

from analysis of the quartz-recovered fine fraction to objectively interpret soil 

evidence.  

- Develop a method that can be applied to sandy soils that combines multiple 

spectroscopic techniques in sequence, with chemometrics performed alongside 

each technique, to discriminate between soils for forensic purposes.  

- Test the capabilities of the developed method through the application of a 

blinded case simulation, in order to assess its suitability for use within the 

context of forensic casework. 

 

Figure 1.12 Flow diagram showing a summary of the overall methodology undertaken throughout this 

thesis. 

Chapter 2 begins with a discussion of the experimental considerations for collecting, 

preparing, and conducting analysis of soil samples from the Swan Coastal Plain in 

Perth, Western Australia. An overview of the method for isolation of the quartz-

recovered fine fraction is provided. Instrumental details and statistical methods used 

throughout subsequent chapters are also outlined. 

Chapters 3, 4, and 5 all follow a similar methodology, exploring the use of several 

analysis techniques in combination with chemometric methods to discriminate 

between sandy soils from different locations; Chapter 3 focuses on MSP, Chapter 4 
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focuses on vibrational spectroscopy (Raman and ATR-FTIR), and Chapter 5 focuses 

on XRD and the use of both older and newer instrumentation to assess the 

reproducibility of the method. MSP and ATR-FTIR spectroscopy have previously not 

been performed on the quartz-recovered fine fractions of soils. As such, this project 

aims to provide information on whether these techniques can be used for the 

forensic analysis of specifically sandy soils. Whilst Raman spectroscopy has been 

investigated, it was unsuccessful at obtaining chemical information from the quartz-

recovered fine fractions of soils (98), so alternate instrumental and experimental 

conditions are explored. The use of XRD on the quartz-recovered fine fractions has 

been demonstrated to successfully allow for mineral identification and 

differentiation (94, 98). This project therefore aims to expand on this work by 

reinforcing the reproducibility of the approach on new soil samples, interpreting the 

results using chemometrics, and evaluating the effects of different instrumentation 

on the results obtained. PCA is applied to data produced through all these methods 

of analysis to provide a quantitative measure of similarity between soil samples 

based on attributes such as their location, visual appearance, dune system, or land 

usage. LDA is then used to maximise the differentiation between soils from different 

locations and predict their most likely source of origin. The respective results of these 

chapters can be combined into a sequence to build on the information obtained and 

improve the overall discrimination of soils. 

Chapter 6 then uses the approach developed in Chapters 3 – 5 and applies it to a 

blinded case simulation. A simulated suspect recovered soil is provided and 

compared to four soil samples from known origins in an attempt to associate samples 

of common origin and examine the discrimination of samples from other locations. 

Visual inspection, MSP, ATR-FTIR, and XRD are all utilised in sequence to provide 

complementary information on the soil samples, and PCA and LDA are performed 

alongside each technique to interpret the data and increase the level of 

discrimination achieved. This case simulation was designed by an experienced 

forensic soil examiner to imitate a challenging casework scenario, with samples 

chosen that are very similar to each other, representative of the types of samples 

that may be collected as a part of difficult real forensic investigation. Hence, the case 
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simulation is the culmination of the previous chapters and highlights the application 

of this work to forensic soil analysis.  
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Chapter 2. Experimental Methods 

Portions of this chapter have been published, or submitted for publication, in the 

following articles: 

T. G. Newland, K. Pitts, and S. W. Lewis. "Multimodal spectroscopy with 

chemometrics for the forensic analysis of Western Australian sandy soils." Forensic 

Chemistry, 2022. 28: 100412. 

T. G. Newland, K. Pitts, and S. W. Lewis. "Multimodal spectroscopy with 

chemometrics: Application to simulated forensic soil casework." Forensic Chemistry, 

2023. 33: 100481. 

T. G. Newland, K. Pitts, and S. W. Lewis. "Negative result: Application of Raman 

spectroscopy to the forensic analysis of an arid, sandy, soil.” Forensic Science 

International: Reports, 2022. Submitted for publication.  
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2.1 Introduction 

This chapter summarises the experimental methods utilised throughout this study. 

Details of sample collection and storage, preparation of samples for analysis, and 

instrumental and chemometric methods are outlined, with any variations to the 

experimental conditions specified within the relevant chapter as required. 

2.2 Collection of soil samples 

Soil samples were collected from 23 locations across the Perth (Western Australia) 

metropolitan region (Figure 2.1), with the locations specifically chosen to allow for a 

selection of samples from differing dune and plant systems, as well as land usage. 

These locations were based on sites that had previously been sampled by 

ChemCentre in 1994 (36), and again in 2004 during a National Institute of Forensic 

Science (NIFS) funded project (97), as detailed in Bastian (110) and Pitts (98).  

Sampling was carried out with respect to the considerations suggested by Pye (61), 

by first gently clearing the area of large organic material such as leaf litter or mulch, 

placing a wooden frame (30 x 30 cm to replicate the size of a footprint) onto the 

sample surface, and then using a small shovel to collect approximately 30 mL of the 

first 0 – 5 cm in depth of soil from one corner of the grid into a clean plastic container 

(polypropylene urine container, Sarstedt). This process was repeated in the other 

three corners and the centre of the area (Figure 2.2), producing a total of five soil 

samples per location. The GPS coordinates of all locations were recorded, with 

information on the accompanying geology, botanical influences, and land usage 

surrounding the sites. All samples were initially stored in a -20°C freezer and then 

freeze-dried (John Morris Alpha 1-4 LDplus) within two weeks of collection to 

minimise degradation. 
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Figure 2.1 Map of the Perth metropolitan region in Western Australia, illustrating the 23 locations 

where the soil was sampled for this study. 
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Figure 2.2 The wooden frame used to mark out the areas for collection of the soil samples, illustrated 

in situ on the soil surface after clearing of the bulky organic material. The five points of sampling are 

annotated within the frame. 

2.3 Sample selection and identification 

2.3.1 Primary investigations (Chapters 3 – 5) 

Two soil samples, out of the five samples collected, were analysed from each of the 

23 locations, except for Location 0 (full details outlined in Table 2.1). Prior to sieving 

and quartz recovery, samples were visually examined to note their overall colour and 

texture. Figure 2.3 shows a visual representation of the soil colour for nine of the 

sample locations included within this study. It should be noted that the assigned 

visual appearances for each sample are intended as a broad colour descriptor to 

allow for general groupings of the soils. 

 

Figure 2.3 Soil samples obtained from nine of the different locations used throughout this study, 

illustrating the visual colour differences.  
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Table 2.1 The soil samples used in trials throughout this study, with their associated locations and visual descriptions. Two samples were analysed from each location, except 

for Location 0 (due to limited sample size). *Bushland is shortened to “bush” in annotated figures throughout this thesis. 

Soil Sample Location Suburb Dune System Visual Appearance Location Type GPS Coordinates 

0 0 Bassendean Pinjarra Plain Grey clay Park (riverside) (-31.9062577, 115.9609075) 

1a, 1b 1 Kings Park Spearwood Grey sand Bushland* (near park) (-31.9646960, 115.8357950) 

2a, 2b 2 Coolbinia Spearwood Brown sand and mulch Garden (manicured park) (-31.9138106, 115.8539786) 

3a, 3b 3 Bayswater Bassendean Grey sand Park (-31.9176633, 115.9184918) 

4a, 4b 4 Balga Spearwood Yellow sand Verge (-31.8549414, 115.8258240) 

5a, 5b 5 Edgewater Spearwood Yellow/brown sand Bushland* (-31.7741340, 115.7732363) 

6a, 6b 6 Murdoch University Spearwood Yellow/brown sand Garden (managed) (-32.0652384, 115.8391782) 

7a, 7b 7 Champion Lakes Pinjarra Plain Red sand Bushland* (-32.1059759, 116.0022922) 

8a, 8b 8 Yangebup Spearwood Grey sand Bushland* (-32.1238569, 115.8286284) 

9a, 9b 9 Banjup Bassendean Grey sand Bushland* (-32.1243506, 115.9056052) 

10a, 10b 10 Wangara Spearwood Grey sand Cleared land (industrial) (-31.7940448, 115.8425828) 

11a, 11b 11 Cottesloe Spearwood Yellow sand Verge (-31.9900814, 115.7595074) 

12a, 12b 12 Kings Park Spearwood Grey sand Bushland* (near park) (-31.9644730, 115.8360660) 

13a, 13b 13 Innaloo Spearwood Grey sand Park (-31.8919048, 115.7914945) 

14a, 14b 14 Kallaroo Spearwood Yellow/brown sand Bushland* (near park) (-31.7815572, 115.7537142) 

15a, 15b 15 Eglinton Quindalup Yellow/brown sand Dunes (-31.5854972, 115.6820036) 

16a, 16b 16 Beaconsfield Spearwood Yellow/brown sand Garden (manicured park) (-32.0687958, 115.7629386) 

17a, 17b 17 Bibra Lake Spearwood Yellow/brown sand Bushland* (-32.1183926, 115.7948083) 

18a, 18b 18 Baldivis Spearwood Light grey sand Bushland* (-32.2894756, 115.8276345) 

19a, 19b 19 Baldivis Spearwood Yellow/brown sand Bushland* (-32.2973788, 115.8055882) 
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20a, 20b 20 Oldbury Mixed (Spearwood/ Bassendean) Brown sand and mulch Bushland* (-32.2894151, 115.8885882) 

21a, 21b 21 Karnup Spearwood Brown sand and mulch Bushland* (-32.4299889, 115.7773041) 

22a, 22b 22 Karnup Spearwood Grey sand Bushland* (-32.4341762, 115.7991339) 

 

 

Table 2.2 The soil samples used in the blinded case simulation, with their associated known locations and visual descriptions. 

Soil Sample Location Suburb Dune System Appearance Location Type GPS Coordinates 

BS1a, BS1b Alibi Site 1 North Perth Spearwood Grey sand Manicured park (-31.9180244, 115.8460303) 

BS2a, BS2b Suspect Recovered Unknown Unknown Grey sand Unknown Unknown 

BS3a, BS3b Crime Scene Leederville Spearwood Grey sand Verge (-31.9318972, 115.8437659) 

BS4a, BS4b Alibi Site 2 Wembley Downs Spearwood Grey sand Verge / median strip (-31.9205267, 115.7781723) 

BS5a, BS5b Potential Site of Interest Hazelmere Pinjarra Plain Grey sand Bushland, near road construction (-31.9032140, 116.0074569) 
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2.3.2 Blinded case simulation (Chapter 6) 

Five soil samples were provided by a third-party (identifying information can be 

found in Contribution of Others on page viii), along with a brief outline of the known 

information of these samples (Table 2.2). These soils were visually examined to 

determine their bulk colour, and then two representative replicates per sample were 

isolated for further analysis. 

2.4 Preparation of the quartz-recovered fine fraction 

Preparation of the quartz-recovered fine fraction was undertaken using the method 

developed by Pitts and Clarke (94) for the isolation and recovery of the <20 μm 

fraction coating found on quartz grains, as per Figure 1.11. Soil samples were passed 

through a 2 mm sieve to remove any larger organic material and man-made 

remnants. Roughly 100 – 250 mg of quartz grains were hand-picked from each 

sample under a microscope, weighed accurately (Table 2.3), and transferred to liquid 

scintillation vials. Deionised water was added to each vial to a height of 

approximately 1.5 cm above grain level, and samples were placed in an ultrasonic 

bath for 10 minutes. One by one, samples were agitated and then settled for 30 

seconds before pouring the supernatant into new vials, to isolate suspended particles 

approximately <20 µm away from the larger grains. The liquids were centrifuged to 

concentrate the particulate fraction, and the supernatant was removed without 

disturbing the semi-solid layer below. The semi-solid material was re-suspended in 

the remaining liquid before being pipetted onto low background plates (single crystal 

silicon wafers, Philips Analytical) and allowed to air dry. The resulting films (with a 

typical areal concentration of approximately 1 mg cm-2) were analysed in situ (X-ray 

diffraction) and then scraped off and homogenised before being stored in folded 

aluminium foil for further analysis (microspectrophotometry, Raman spectroscopy, 

infrared spectroscopy). 
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Table 2.3 Masses of quartz grains picked from each sample that were used for preparation of the 

quartz-recovered fine fractions (to five decimal places). 

Location Sample A mass (g) Sample B mass (g) 

0 0.02145 - 

1 0.21977 0.18774 

2 0.14883 0.09920 

3 0.17774 0.20134 

4 0.26395 0.24397 

5 0.19749 0.20957 

6 0.16030 0.14176 

7 0.12463 0.10412 

8 0.17076 0.20962 

9 0.21250 0.27892 

10 0.13873 0.09064 

11 0.18929 0.16616 

12 0.14844 0.14188 

13 0.16547 0.13767 

14 0.23140 0.14964 

15 0.19847 0.16993 

16 0.15628 0.19480 

17 0.22524 0.17260 

18 0.18528 0.21326 

19 0.14521 0.14034 

20 0.14773 0.09416 

21 0.17075 0.12730 

22 0.15939 0.21092 

BS1 (Alibi Site 1) 0.09157 0.09274 

BS2 (Suspect Recovered) 0.22998 0.21437 

BS3 (Crime Scene) 0.23835 0.21038 

BS4 (Alibi Site 2) 0.21887 0.25656 

BS5 (Potential Site of Interest) 0.20846 0.28293 
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2.5 Instrumental methods 

2.5.1 Microspectrophotometry (MSP) 

The prepared quartz-recovered fine fractions were homogenised and mounted on 

new, pre-cleaned glass microscope slides (Superwhite, 1.1–1.2 x 76 x 26 mm, 

ProScitech) for analysis. Spectra were acquired from 310 – 800 nm using a CRAIC QDI 

2000 microspectrophotometer, calibrated using NIST traceable standards, operated 

in reflectance mode with 150x magnification. An auto-set optimisation, dark scan, 

and reference scan were obtained prior to each sample analysis. Ten replicate scans 

were taken over different areas of each sample to account for intra-sample variation. 

Average spectra were produced from the replicate spectra for each sample, using 

CRAIC LambdaFire Microspectroscopy software (version 1.2.82.1). The average 

spectra were converted to L*a*b* colour co-ordinates using CRAIC LambdaFire 

Microspectroscopy software (version 1.2.82.1) and the following parameters: CIE 

1931 2° Standard Observer over wavelength range 380 – 770 nm using D65 as the 

illuminant, corresponding to average daylight at a colour temperature of 6504 K. 

Data were exported as .csv files, or .txt files that were then converted to .xls files and 

collated within Microsoft Excel (Version 16.66). 

2.5.2 Raman spectroscopy 

The prepared quartz-recovered fine fractions were homogenised, mounted on glass 

slides (Superwhite glass microscope slides, 1.1–1.2 x 76 x 26 mm, ProScitech), and 

analysed using a WITec Confocal Raman-AFM (alpha300 RA) with a frequency-

doubled Nd:YAG laser at 532 nm. Scans of each sample were undertaken from -200 

– 3800 cm-1, with 10 accumulations and 5 seconds exposure time. The laser power 

was optimised for each sample, and the exposure time/accumulations per sample 

were experimented with to in order to give maximum signal output without 

overloading the detector or damaging the sample. Data acquisition and processing 

was performed using WITec Project FOUR software (version 4.1). Spectra were 

exported as .txt files, and then converted to .xls files and collated within Microsoft 

Excel (Version 16.66). In attempts to reduce fluorescence, baseline offset correction 



 53 

and linear baseline correction were performed using The Unscrambler® X 10.5 

(CAMO Software AS, Oslo, Norway). 

2.5.3 Attenuated total reflectance Fourier transform infrared (ATR-FTIR) 

spectroscopy 

The prepared quartz-recovered fine fractions were homogenised and analysed with 

constant applied pressure on a Thermo Scientific Nicolet iS50 FTIR spectrometer with 

a single-bounce diamond ATR crystal, using sufficient sample to cover the crystal. 

Spectra were recorded in absorbance mode over a range of 4000 – 400 cm-1, with 64 

accumulated scans at a spectral resolution of 4 cm-1. Three replicate scans were 

recorded for each sample to account for intra-sample variation. The crystal was 

cleaned between sample measurements using an ethanol-soaked tissue to remove 

contaminants and particulate matter. A background scan of the clean diamond 

crystal was acquired before each sample scan. Spectra were initially ATR-corrected 

for further chemometric analysis but ultimately resulted in unreliable data, as the 

refractive index of a natural heterogeneous material like soil cannot accurately be 

determined, so uncorrected spectra were utilised instead. Spectra were exported as 

.spa files. 

2.5.4 X-ray diffraction (XRD) 

2.5.4.1 ChemCentre  

Initially, XRD analysis of samples was carried out under ambient laboratory 

conditions using a Philips Analytical PW1820 automatic powder diffractometer (APD) 

with Bragg-Brentano para-focusing geometry and Co Kα radiation. Scanning, using a 

step size of 0.05° from 4 – 80° 2θ and a counting time of 12 seconds per step, was 

found to provide data of good quality from sample deposits. XRD patterns were zero-

offset corrected using the 5.91 Å reflection of the low background plate. These were 

exported as .rd files using HighScore software (Malvern PANalytical, Version 

4.9.0.27512), and then converted to .xls files using PowDLL Converter (Nikos 

Kourkoumelis, Version 2.97.0.0) and collated within Microsoft Excel (Version 16.66). 
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However, the instrument was upgraded halfway through analysis of the soil sample 

set, and the remaining samples were analysed on a Malvern PANalytical EMPYREAN 

III Diffractometer system equipped with a dCore-fitted Pixcel3D detector, 240 mm 

radius theta-theta goniometer, a Reflection-transmission spinner 3.0 sample stage, 

and an iCore-fitted Co generator with K-α1 1.78901 Å, K-α2 1.79290 Å and K-β iron 

filter. The samples were collected at an operating current of 30 mA and tension of 40 

kV at a range 4 – 80° 2θ, 0.039° step size and approximately 12 seconds per step, 

with an incident beam mask of 14 mm and automatic divergence slits. These settings 

were chosen to best replicate the settings used during analysis with the previous 

Phillips XRD instrumentation. The data was K-α2 stripped before interpretation. After 

data collection, the ‘new’ samples were data corrected to match the step size of the 

initial ‘old’ samples (0.05°) using HighScore software (Malvern PANalytical, Version 

4.9.0.27512). XRD patterns were exported as .xrdml files, and then converted to .xls 

files using PowDLL Converter (Nikos Kourkoumelis, Version 2.97.0.0) and collated 

within Microsoft Excel (Version 16.66). 

This entire dataset, including both old and new samples, was referred to as the 

“ChemCentre” XRD data throughout this thesis. 

2.5.4.2 Commonwealth Scientific and Industrial Research Organisation (CSIRO) 

Due to the mid-analysis upgrade in ChemCentre XRD instrumentation, samples were 

also analysed by CSIRO to provide a more consistent analysis source. This better 

allowed for variation to be attributed to different instrumentation use versus sample 

preparation of each batch. XRD analysis was carried out under ambient laboratory 

conditions using a Malvern PANalytical EMPYREAN II Diffractometer system 

equipped with a Pixcel3D detector, 240 mm radius theta-theta goniometer, a 

reflection-transmission spinner sample stage, and Co generator with K-α1 1.78901 Å, 

K-α2 1.7929 Å and K-β iron filter. The samples were collected at an operating current 

of 40 mA and tension of 40 kV at a range 5 – 80° 2θ, 0.053° step size and 

approximately 2 hour run, with an incident beam mask of 6.6 mm, automatic 

divergence slits, and no post-diffraction monochromator. XRD patterns were 

exported as .xrdml files, and then converted to .xls files using PowDLL Converter 



 55 

(Nikos Kourkoumelis, Version 2.97.0.0) and collated within Microsoft Excel (Version 

16.66). This dataset was referred to as the “CSIRO” XRD data throughout this thesis. 

2.6 Data analysis 

Chemometric analysis was conducted using The Unscrambler® X 10.5 (CAMO 

Software AS, Oslo, Norway). Data were imported directly from .xls, .csv, and .spa files. 

The regions associated with interference from the ATR diamond crystal (2350 – 

1950 cm-1) in ATR-FTIR trials and the low background plates (narrow regions centred 

on approximately 18.9°, 38.5°, and 59.3° 2θ) in XRD trials were excluded from 

chemometric analysis to prevent them from influencing the model (87-89, 98). Data 

were baseline offset corrected and unit vector normalised (except for L*a*b* values, 

which were left raw) to account for variations in compound concentrations and 

sample mass / thickness (80, 87, 89, 107). Other normalizations were explored (e.g., 

range normalization and area normalisation) but the performance of the model was 

not improved. 

2.6.1 Principal component analysis  

Data were mean-centred and subjected to principal component analysis (PCA) using 

the non-linear iterative partial least squares (NIPALS) algorithm. 2-dimensional and 

3-dimensional scores plots were generated using the scores from the relevant 

principal components (PCs) and used to visualise the sample distribution and identify 

any outliers prior to further analysis. Additionally, examination of the loadings plots 

was conducted to identify the chemical factors that allowed for differentiation 

between samples.  

2.6.2 Linear discriminant analysis  

The discriminant models generated in Chapters 3 – 5 of this study were validated 

using test set validation. Each dataset was divided into two sets of data; a calibration 

set, and a validation set. The calibration set was used to generate the discriminant 

model, using a linear method on baseline corrected and normalised PCA scores, with 

up to seven components utilised depending on the dataset. The validation set was 
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then used to simulate unknown samples, which were predicted onto the model to 

assess its performance. For XRD, ChemCentre data was truncated from 5–80° 2θ to 

match the CSIRO data, and the CSIRO data was corrected to match the step size of 

the ChemCentre XRD patterns (0.05°) using HighScore software (Malvern 

PANalytical, Version 4.9.0.27512). These were then combined to create one dataset 

for LDA. 

The discriminant models generated in Chapter 6 of this study were validated using 

an independent dataset consisting of samples derived from an unknown soil. The 

four known soils were used as the calibration set to generate the discriminant model, 

using a linear method on baseline corrected and normalised PCA scores, with up to 

six components utilised depending on the dataset. The validation set, consisting of 

the suspect recovered soil, was then projected onto the model to predict its likely 

source. 

2.7 Analysis sequence 

In this study, analysis methods were determined by focusing on non-destructive 

instrumental techniques that can be used to provide information on primarily the 

inorganic content of soils. This involved conducting a visual examination of the soil 

samples, analysis of the colour instrumentally using MSP, and chemical analysis using 

ATR-FTIR spectroscopy and XRD. This is the order in which a forensic examiner would 

generally already carry out the forensic analysis of soils (13, 24). While XRD is 

presented as the final step in our methodology, the sample preparation was carried 

out with XRD as the first step due to practicality. XRD involves analysis of the whole 

sample as a thin film whereas MSP and ATR-FTIR require a smaller fraction of the 

sample as a powder. In order to minimise degradation and maximise recovery of 

already small samples, the quartz-recovered fine fraction suspensions were pipetted 

straight onto individual clean low background plates for the XRD. These were left to 

dry overnight, resulting in thin solid films. These films were then removed from the 

low background plates and stored in aluminium foil for further analyses. 
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2.8 Preliminary considerations 

Due to the large number of samples used for analysis, data were collected over 

multiple different days, with every instrument appropriately calibrated before each 

session. It has been demonstrated that analytical precision is <0.1% for repeat 

spectrophotometry colour measurements made over a period of several minutes, 

compared to 4–5% for measurements made on the same soil samples over several 

days (111). In a casework scenario, it would therefore be optimal to analyse the 

known and questioned samples consecutively on the same day to minimise the 

effects of daily fluctuations in instrument performance. However, when numerous 

samples have been provided for analysis, this is not always possible. Therefore, it is 

important to note that the multiple calibrations of the instruments used may have 

resulted in variations to the spectra that could have impacted the results of the 

statistical analyses (107).  

Whilst similar masses of quartz grains were collected from each sample during the 

preparation of the fine fraction, the sample masses varied between approximately 

100 – 250 mg. Individual quartz grains in natural soil samples vary in size greatly, and 

so does the amount of fine fraction coating those grains (61). As a result, the final 

amount of fine fraction recovered from each sample was not consistent. Spectral 

data were baseline corrected and normalised to minimise any differences due to the 

thickness of sample being analysed (88, 107). To ensure representative sampling, two 

soil samples from each location were utilised for this study. To account for intra-

sample variation, multiple replicate scans were acquired from each sample; ten scans 

were taken for MSP, three scans were taken for ATR-FTIR, and for XRD the entire 

surface of the sample film was scanned. Average MSP spectra were also generated 

from the combined replicate scans for each sample to minimise the influence of any 

outliers.  
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Chapter 3. Analysis of the Quartz-Recovered Fine Fraction of 

Western Australian Soils using 

Microspectrophotometry Paired with 

Chemometrics 

Portions of this chapter have been published in the following article: 

T. G. Newland, K. Pitts, and S. W. Lewis. "Multimodal spectroscopy with 

chemometrics for the forensic analysis of Western Australian sandy soils." Forensic 

Chemistry, 2022. 28: 100412. 

  



 59 

3.1 Introduction 

In many areas of soil science analysis, soils are first characterised using general 

descriptors of structure, consistency, texture, and colour. Soil colour is an important 

tool for characterising soils, and can be extremely useful for differentiating between 

soil samples (75). Soils can range in colour from dark brown or grey, through to 

shades of red, yellow, and white. These differences in colour are the result of 

variations in the soil composition; quartz grains are generally coated in mixtures 

containing iron and aluminium oxides, organic matter, and clay, which can all affect 

the visual appearance of the soil (71). Iron oxides are generally responsible for the 

yellow, brown, and red coloured soils, with the individual shades dependant on 

temperature and humidity of the environment, as well as the age of the soils (53, 71). 

Soils in water environments generally appear lighter yellow or pale grey, as the iron 

oxide becomes hydrated and leaches into the water source (36, 53, 71). Darker 

brown or black shades of soil are generally associated with the presence of 

manganese or iron-manganese compounds, or can also indicate higher amounts of 

organic materials such as humus and decomposition products (71). Colour variations 

in soil samples can also be affected by sample treatment methods, such as drying, 

moistening, sieving, milling, or ashing (4, 15). Because of the significant variation in 

soil colour, colour measurements can be unreliable when used in isolation to 

characterise a soil sample. Several studies have noted completely different colour 

assessments for soils that originated very close together (1, 71), as well as very similar 

colour assessments for soils located kilometres apart (71). For this reason, colour 

determination of a sample should always be used alongside other methods of 

characterisation. 

Munsell colour values are routinely used by soil scientists for classifying soil, where 

the user visually matches a sample with colour chips (4, 71, 75). The system 

encompasses a three-dimensional colour space that ascertains colours based on 

their hue (general colour), chroma (intensity of colour), and value (lightness of 

colour) to assign descriptive labels consisting of letters and numbers (71, 75). These 

terms are expressed by a number and typically one or two capital letters to represent 



 60 

the hue, and then two more numbers to represent the chroma and value (e.g., 5YR 

4/4, which is highlighted in Figure 3.1) (75). The process of assigning a sample a 

Munsell colour value is not only subjective, but can be affected by variables such as 

lighting conditions, moisture content of the soil, the amount of sample assessed, 

sample prep, the accuracy of the colour printing, fading of colour charts over time, 

and visual discrepancies between interpreters (4, 17, 71, 75). Any of these small 

variations can cause considerable deviations in the resulting assigned colour value. A 

study by Post et al. reported that soil scientists assigned the same Munsell colour 

value for a sample only 52% of the time (112), illustrating the degree of subjectivity 

surrounding the method. It is also challenging when working with forensic samples 

to compare them against reference colours, as forensic samples are often 

fractionated and present only in trace quantities (4, 71). Petraco et al. noted that 

soils originating within only 15 inches of each other were observed to have very 

different Munsell colour values, despite having the same mineral composition (1). 

While the Munsell method of colour classification is useful, it should not be the only 

process utilised for colour determination of soil samples, and more precise methods 

of colour measurement should be explored (1, 75). 

The L*a*b* colour system (illustrated in Figure 3.2) is another method of measuring 

colour within three-dimensional space that relates to the human visual response 

(71). The Commission Internationale d’Éclairage (CIE), or International Commission 

on Illumination, introduced the CIE L*a*b* colour system in an attempt to 

standardise colour assessments relating to science, technology, and art (71, 113). 

This method produces three numerical values which are able to account for minimal 

variation between samples; L* is a measure of the lightness of a sample, a* 

encompasses the green-red components, and b* encompasses the blue-yellow 

components (71, 114). Whilst this method of classification is similar to Munsell, it has 

the potential to be more objective; a mathematical algorithm is used to convert a 

measured colour spectrum into chromaticity coordinates, bypassing the need for 

human judgement (71). It does however, require the use of a spectrophotometer to 

determine the colour of a sample, so forensic examination labs must be equipped 

with the appropriate instrumentation.  
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Figure 3.1 A page from a Munsell colour chart, depicting the differing chroma and value shades of 5YR 

(from “How to Read a Munsell Colour Chart” (115)). The example referenced in the text, 5YR 4/4, is 

highlighted. 

 

Figure 3.2 A 3D model of the CIELAB colour space, where L defines the lightness of a colour, a* defines 

the green to red axis, and b* the blue to yellow axis (from Yélamos et al. (113)). 

Microspectrophotometry (MSP) is a spectroscopic technique that has been 

established as an examination method for forensic trace evidence, as it provides an 
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objective and more precise measurement of the colour of a small sample compared 

to visual colour comparisons (4, 71). It is regularly used for the forensic analysis of 

fibres, paint chips, and inks (107, 116), and more recently has been investigated for 

colour determination and compositional analysis of soil samples (4, 64, 76). A notable 

advantage of using MSP is the significantly smaller sample size requirements (4). MSP 

can be performed on microgram quantities of soil, making it suitable for use with 

forensic trace samples. However, this can become a disadvantage when working with 

highly variable samples, where individual measurements are not representative of 

the bulk soil colour. While this method is considered useful in certain cases, 

especially as part of a standard questioned versus known comparison, MSP analysis 

for forensic soil examination is still considered to be in the developmental stage, due 

to limited substantive validation and reliability testing. It has also never been 

demonstrated on the quartz-recovered fine fraction isolated from soils. 

In this chapter, the use of MSP was explored for the forensic analysis of the quartz-

recovered fine fraction of soils from the Swan Coastal Plain in Perth, Western 

Australia. Principal component analysis (PCA) was performed on the resulting 

individual replicate MSP spectra and their average sample spectra, to assess whether 

soils could be distinguished based on their location, or other attributes of the soil 

(such as visual appearance, location type, or dune system). MSP spectra were also 

converted into L*a*b* chromaticity values for further PCA. Linear discriminant 

analysis (LDA) was then used to classify and predict replicate samples using the 

‘independent test set’ method, and the accuracy of each model was assessed.  

3.2 Experimental 

Soil samples were collected as outlined in Sections 2.2 and 2.3.1. The quartz-

recovered fine fractions were prepared from each of the soil samples, as described 

in Section 2.4. MSP spectra were collected from the extracted quartz fine fractions 

as described in Section 2.5.1. PCA and LDA were then conducted on the data as 

outlined in Section 2.6. 
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3.3 Results and discussion 

3.3.1 Chemometric analysis of soils using complete MSP spectra 

3.3.1.1 Principal component analysis 

MSP spectra were collected from the quartz-recovered fine fractions of 45 soil 

samples, outlined in Chapter 2: Table 2.1. Most of the spectra (Figure 3.3) appeared 

as relatively straight lines with different slope angles, encompassing reflectance from 

all wavelengths of light, but especially the yellow – red regions (>550 nm). This was 

mirrored by the visible colour of the soil samples, ranging from various shades of grey 

and brown, through to yellow and orange. Some samples, such as those from 

Location 7, displayed a distinctive steep increase in the reflectance of yellow – orange 

light (550 – 625 nm), characteristic of soils orange in colour. Whilst these more 

intensely coloured soils could be separated from the population based on visual 

examination of their spectra alone, others were too alike to confidently distinguish. 

PCA was therefore employed to identify and enhance any differences between them.  

 

Figure 3.3 Raw MSP reflectance spectra showing the variability in composition of a selection of soil 

samples collected from differing locations within the Swan Coastal Plain. 
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PCA performed on these spectra revealed that 99.0% of the total variance in the 

dataset could be described by the first three principal components (PCs), as 

illustrated in the scree plot (Figure 3.4). Three-dimensional score plots generated 

using these PCs (Figure 3.5) revealed that most of the soil samples formed clusters 

based on the location from which they were collected, however, there was also a 

great deal of overlap throughout most of these clusters. As anticipated, the samples 

that achieved the greatest separation from the rest of the population were the red 

sands from Location 7, as they had more obvious differences in their MSP spectra 

due to their distinctive colour. Whilst commonly referred to as “red” sands 

throughout this study, this term was only adopted due to its regular use in Australia, 

and it must be noted that the appearance of Location 7’s soil could easily be 

described as orange (thus reinforcing the issues of subjective descriptions of colour). 

Location 7 was the only location that was able to be entirely individualised from the 

rest of the population within the model. 

 

Figure 3.4 Scree plot depicting the cumulative variance in the MSP dataset retained by each PC. 
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Figure 3.5 3-dimensional PCA scores plot (shown from two perspectives) showing the variability of soil 

samples from different locations based on their corresponding MSP spectra. 

The factor loadings for the first three PCs (Figure 3.6) were studied to determine the 

regions in the MSP spectra that were associated with (and likely responsible for) the 

discrimination of samples along each component. The loadings plot for PC-1 showed 

a positive correlation with the reflectance of the purple/blue region of the visible 

light spectrum (<520 nm), and a negative correlation with the reflectance of 

orange/red light (>600 nm). Samples separated along this PC may therefore contain 

different proportions of yellow/orange/red components present in their soil. For 

example, all the red sands (Location 7) along with some yellow and brown sands 

(Locations 2, 6, 5 and 16) were positioned along PC-1 in a negative direction. This was 

due to their higher proportion of yellow, orange, or red components combined with 

the negative association of PC-1 with this spectral region; as well as the direct 

association of the negative region of PC-1 with orange/red light, the positive region 

of PC-1 was associated with purple/blue light, which indicates that the negative 

region was also associated with yellow/orange light due to the lack of purple/blue 

light being reflected (yellow/orange is opposite to purple/blue on the colour wheel).  

The loadings plot for PC-2 revealed a negative correlation with the reflectance of 

yellow/orange light (550 – 650 nm). The red soils from Location 7 were best 

separated from the rest of the population negatively along PC-2, with the yellow and 

yellow/brown coloured sands from Locations 16 and 11 following closely behind. PC-

3 displayed a negative correlation with the reflectance of blue/green light (450 – 550 
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nm), and a small positive association with the reflectance of yellow/orange light (575 

– 650 nm). Soils separated along this PC were therefore again being skewed based 

on the proportion of yellow/orange/red components they contain. The soils from 

Locations 21, 4, 5, and 12 (all coloured variations of brown and yellow) were best 

separated in a negative direction along PC-3, while the red soils from Location 7 were 

best separated from the rest of the population positively along PC-3. The spread of 

the samples along PC-3 was skewed towards the positive side, with most samples 

sitting along the neutral baseline, indicating that the general population of soils all 

contained varying degrees of yellow, orange, and red components.  

 

Figure 3.6 Factor loadings plot of PCs 1-3 for PCA of the soil MSP reflectance dataset. 

Interestingly, not far behind the Location 7 soils on PC-3 were soils from Locations 9 

and 13, which were both coloured grey. This may be due to variation within the non-

visible region of the spectra, which has been picked up on some of the loadings. For 

example, PC-3 showed influence from variation attributed to very low wavelengths 

of light, or the ultraviolet (UV) region. The glass slides used to mount samples for 

MSP absorb light in the UV region (117), indicating that some samples may not have 

been sufficiently thick to block this absorbance. The PCA model also displayed one 

replicate from sample 22b as an outlier to the rest of the dataset, located at the most 
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extreme negative points of PC’s 1 and 3. Using averaged MSP spectra to build the 

PCA model, rather than the entire replicate dataset, may assist in smoothing out the 

effects of the outlier and overcoming this anomaly, without completely removing it. 

In this instance, using the full MSP data for chemometric analysis highlighted the 

large degree of intra-variability within soil samples. 

Colour coding of the soil samples in the PCA model based on visually assigned 

groupings (outlined in Chapter 2: Table 2.1) rather than sampling location, displayed 

the clustering based on their overall colour, as expected (Figure 3.7). The red sands 

were clearly discriminated from the rest of the population, however, there was a 

great deal of overlap between the variations of yellow and brown sands, and the 

brown and grey coloured sands or clays. The brown sands were widely dispersed 

throughout the plot, overlapping with all clusters except the red sands. While the 

MSP spectra were very closely correlated with the visual appearance of the soils, they 

did account for more of the micro-heterogeneity in colour compared with visual 

examination. This may become a disadvantage when using complex statistical 

methods on the data, as reflectance spectra can be noisy and not reproducible (118). 

This may lead to greater uncertainty and more difficulty when attempting to 

differentiate between samples, and ultimately can result in the overlapping of 

samples or significant separation within a sample class. This issue has previously been 

encountered for soil samples of larger particle sizes (4). Unfortunately, even after 

isolation of the quartz-recovered fine fraction (<20 µm), this micro-heterogeneity still 

posed difficulties with MSP, indicating that the evident solution may be to use a 

macro-spectrophotometric approach instead.  

There was no additional structure uncovered within the dataset when visualising the 

PCA model grouped according to the dune system that the samples originated from 

nor the type of location that the soils were collected from (Figures 3.8 & 3.9), of 

which details are outlined in Chapter 2: Table 2.1. This indicates that the MSP spectra 

were most closely correlated with the colour and appearance of the soil, not the 

underlying minerology or environmental components of their surroundings. 
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Figure 3.7 3-dimensional PCA scores plot (shown from two perspectives) displaying the variability in 

the visual appearance of soil samples based on their corresponding MSP spectra. 

 

Figure 3.8 3-dimensional PCA scores plot (shown from two perspectives) displaying the variability of 

soil samples from differing dune systems based on their corresponding MSP spectra. 

 

Figure 3.9 3-dimensional PCA scores plot (shown from two perspectives) displaying the variability of 

soil samples from differing types of locations based on their corresponding MSP spectra. 
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3.3.1.2 Linear discriminant analysis 

The MSP data was then split into two datasets for LDA; nine out of the 10 replicates 

per sample were used to build the calibration model, and the remaining replicates 

were used as a validation set and projected onto the model to assess its 

performance. The validation set consisted of replicates that were not utilised within 

the calibration set, to ensure no overlap between models. Using the same replicates 

for the calibration and validation sets would lead to overestimation of the model’s 

performance, and unrealistic results (105). Although maximum visual separation was 

achieved in the PCA model by utilising only the first three PCs, using additional PC’s 

for LDA (up to seven) was found to improve discrimination between locations and 

increase the validation accuracy.  

LDA was performed on the MSP dataset, with each location treated as an individual 

class. This produced a single discriminant function that was used to predict the 

source of replicates from the calibration dataset (nine out of the 10 replicates per 

sample). This discriminant model returned a calibration accuracy of 61.7% (Table 

3.1). The two soils that were classified 100% correctly were those originating from 

Location 7, which was to be expected as they were the only location that achieved 

full discrimination within the PCA scores plot, and Location 17. There is some 

uncertainty surrounding the classification of Location 17 soils as there was almost no 

discrimination of these samples from other groups within the scores plot; it may be 

that their central position amongst the rest of the population density allowed them 

to be classified correctly by chance. This was supported by the discriminant values, 

which indicate the distance measured between a sample and the centroid of each 

class. A sample will be predicted as originating from the class with the best fit, i.e., 

the class that exhibits the lowest discriminant values (105). The discriminant values 

for Location 17’s replicates (Table 3.2) showed that they were not well separated 

from several other location classes, so classifications to this location should not be 

made with confidence. The large degree of overlap between the rest of the locations 

observed within the scores plot was responsible for the misidentification of the 

majority of the remaining soil samples. 
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Table 3.1 Number of correct vs incorrect location classifications for samples in the MSP calibration set 

using a 7-PC LDA model (percentages rounded to nearest whole number). 

Location Correct Incorrect % Correct 

0 7 2 78 

1 9 9 50 

2 14 4 78 

3 11 7 61 

4 15 3 83 

5 7 11 39 

6 10 8 56 

7 18 0 100 

8 14 4 78 

9 9 9 50 

10 10 8 56 

11 8 10 44 

12 13 5 72 

13 10 8 56 

14 0 18 0 

15 8 10 44 

16 16 2 89 

17 18 0 100 

18 6 12 33 

19 13 5 72 

20 9 9 50 

21 11 7 61 

22 14 4 78 

  % Total Correct 
   62 
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Table 3.2 Discriminant values of Location 17’s replicates from the MSP calibration dataset (rounded to three decimal places), with correct classifications shaded green. The 

last column demonstrates how far away the next closest classification was, as a percentage of the lowest discriminant value obtained. 
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Location 0 Location 1 Location 2 Location 3 Location 4 Location 5 Location 6 Location 7 Location 8 Location 9 Location 10 Location 11 Location 12 Location 13 Location 14 Location 15 Location 16 Location 17 Location 18 Location 19 Location 20 Location 21 Location 22 

17a (1) -13.915 -13.825 -20.323 -7.905 -10.514 -7.194 -12.471 -189.085 -19.974 -17.997 -8.422 -11.102 -10.962 -7.097 -5.573 -9.352 -37.696 -4.975 -10.280 -11.145 -7.157 -8.244 -15.597 17 12 

17a (2) -14.467 -20.242 -22.415 -8.273 -7.989 -7.369 -6.910 -177.429 -24.165 -21.918 -10.536 -7.737 -12.912 -8.864 -6.254 -13.291 -29.141 -4.547 -15.283 -8.850 -5.955 -8.194 -20.291 17 31 

17a (3) -10.750 -16.962 -19.288 -5.687 -8.268 -5.954 -7.354 -172.751 -21.935 -19.722 -8.695 -6.958 -11.637 -8.027 -5.611 -10.125 -28.705 -4.135 -13.506 -8.045 -4.765 -8.739 -19.565 17 15 

17a (4) -10.274 -13.646 -25.021 -7.440 -8.752 -7.806 -10.482 -151.297 -18.355 -16.892 -10.788 -6.184 -12.743 -9.261 -7.018 -9.682 -22.880 -4.693 -11.638 -9.341 -6.819 -8.693 -16.335 17 32 

17a (5) -12.059 -17.282 -22.226 -6.860 -9.087 -7.210 -7.919 -169.023 -22.034 -19.435 -9.908 -6.886 -12.980 -7.015 -5.439 -10.988 -27.374 -3.666 -13.692 -8.261 -5.881 -8.951 -19.470 17 48 

17a (6) -13.807 -17.868 -23.325 -8.591 -7.571 -6.236 -10.603 -178.924 -23.926 -23.221 -10.616 -8.488 -12.700 -9.844 -7.262 -12.070 -32.032 -4.207 -13.675 -12.320 -5.851 -8.473 -19.223 17 39 

17a (7) -13.122 -16.130 -22.163 -8.781 -6.065 -5.343 -9.714 -170.110 -21.079 -21.320 -9.354 -7.094 -12.080 -8.708 -6.362 -11.390 -29.554 -3.817 -12.930 -9.798 -5.567 -8.049 -18.312 17 40 

17a (8) -9.081 -15.769 -21.772 -7.436 -9.638 -6.837 -12.141 -151.016 -23.032 -22.693 -11.810 -7.257 -15.088 -12.697 -10.245 -10.618 -25.575 -6.482 -15.108 -13.216 -6.629 -13.094 -22.128 17 2 

17a (9) -14.462 -19.036 -23.771 -8.157 -8.966 -8.215 -7.886 -178.783 -22.513 -19.830 -10.376 -8.258 -12.394 -8.067 -5.653 -12.502 -29.723 -4.601 -14.065 -8.200 -6.566 -7.669 -18.687 17 23 

17b (1) -15.998 -24.273 -28.303 -11.000 -8.007 -8.952 -6.868 -156.988 -28.698 -26.879 -15.054 -5.797 -18.049 -10.580 -8.785 -17.255 -21.767 -4.197 -19.591 -11.541 -7.314 -10.960 -25.032 17 38 

17b (2) -11.581 -15.755 -22.031 -7.635 -5.850 -5.114 -8.816 -165.304 -20.424 -20.381 -9.062 -6.016 -11.710 -8.523 -5.997 -10.639 -27.131 -3.481 -12.777 -8.659 -4.934 -7.852 -18.265 17 42 

17b (3) -11.555 -20.308 -22.661 -8.683 -8.348 -7.167 -7.172 -144.655 -25.770 -24.590 -12.754 -4.759 -17.454 -9.976 -8.708 -13.959 -20.391 -4.631 -18.526 -10.096 -6.407 -13.185 -25.607 17 3 

17b (4) -17.834 -21.527 -32.173 -13.442 -8.586 -10.886 -9.214 -150.845 -23.880 -22.703 -15.240 -6.544 -17.778 -9.571 -8.250 -17.143 -21.139 -4.957 -17.476 -9.831 -9.711 -9.929 -21.287 17 32 

17b (5) -14.650 -20.914 -24.007 -10.608 -7.595 -7.951 -6.187 -149.021 -24.602 -23.358 -12.645 -5.146 -17.061 -8.616 -7.555 -15.386 -20.986 -4.395 -18.074 -8.501 -7.290 -11.353 -23.742 17 17 

17b (6) -16.197 -17.028 -27.411 -10.946 -9.803 -9.738 -9.798 -162.810 -20.314 -18.119 -11.806 -7.740 -14.859 -6.023 -5.579 -13.209 -26.405 -4.039 -13.421 -8.395 -8.940 -8.728 -17.646 17 38 

17b (7) -22.514 -23.055 -28.467 -14.117 -12.463 -11.667 -11.287 -191.308 -27.345 -24.286 -13.950 -12.190 -17.560 -6.324 -6.693 -17.591 -36.650 -5.087 -17.056 -12.337 -10.952 -10.584 -21.875 17 24 

17b (8) -19.148 -18.799 -25.393 -12.925 -9.138 -8.473 -12.417 -183.044 -24.315 -23.726 -12.087 -10.911 -15.023 -8.647 -7.607 -14.899 -35.542 -5.092 -14.374 -13.554 -9.030 -9.420 -19.115 17 49 

17b (9) -17.547 -18.711 -25.279 -12.110 -8.186 -8.221 -9.493 -168.091 -22.458 -21.685 -11.455 -8.015 -15.365 -6.608 -6.127 -14.624 -29.118 -4.031 -15.061 -9.284 -8.402 -9.489 -20.011 17 52 
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This LDA model was then used to predict the locations of 45 samples from the 

validation dataset (remaining one replicate per sample). Only 10 out of 45 samples, 

or 22.2%, had their location correctly predicted (Table 3.3). Soils from Locations 2, 7, 

and 22 were all classed 100% correctly. Whilst Location 7 also achieved 100% 

classification accuracy within the calibration model, Locations 2 and 22 still both 

achieved relatively high classification rates (78%) due to being situated at the 

outskirts of the population density in the scores plot. The other locations that 

achieved correct predictions for one of their validation samples (Locations 6, 9, 16, 

and 21) were also samples that were situated on the outskirts of the scores plot 

displaying minimal overlap with others, and as such, all achieved ³50% classification 

accuracy in the calibration model. It is therefore evident that samples do not 

necessarily need to be entirely discriminated within the PCA model to be predicted 

correctly by LDA, though it is desirable.  

While Location 17 achieved 100% classification accuracy in the calibration model, 

both of its validation samples were predicted incorrectly, as suspected. Sample 17b 

showed some variation between its calibration and validation spectra (Figure 3.10), 

particularly in the shorter wavelengths, however, sample 17a did not display the 

same differences, indicating that the issue was most likely due to the uncertainty 

within the calibration model. Interestingly, most of the misclassified samples were 

predicted as originating from Locations 2, 4, 6, 16, or 22, presumably due to their 

high classification accuracy and hence the model’s confidence in discriminating those 

groups more so than others. All the locations that were centrally situated in the 

scores plot had both samples predicted incorrectly, indicating that the LDA model 

was unable to discriminate between many of the locations that overlapped in areas 

of high density. Using averaged MSP spectra for future chemometric analysis, rather 

than the entire replicate dataset, may help to simplify the dataset and allow for more 

accurate predictions. 
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Table 3.3 Number of correct vs incorrect location predictions for samples in the MSP validation set 

using a 7-PC LDA model (percentages rounded to nearest whole number). 

Location Correct Incorrect Predicted % Correct 

0 0 1 4 0 

1 0 2 2 & 22 0 

2 2 0 - 100 

3 0 2 6 0 

4 0 2 6 & 16 0 

5 0 2 6 & 16 0 

6 1 1 2 50 

7 2 0 - 100 

8 0 2 22 0 

9 1 1 2 50 

10 0 2 2 & 6 0 

11 0 2 6 0 

12 0 2 21 & 22 0 

13 0 2 6 0 

14 0 2 6 & 22 0 

15 0 2 2 0 

16 1 1 7 50 

17 0 2 6 0 

18 0 2 2 & 22 0 

19 0 2 6 & 16 0 

20 0 2 6 0 

21 1 1 4 50 

22 2 0 - 100 

   % Total Correct 
    22 
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Figure 3.10 Raw calibration and validation MSP spectra obtained from Location 17’s soils (most similar 

calibration sample pictured). 

3.3.2 Chemometric analysis of soils using average MSP spectra 

3.3.2.1 Principal component analysis 

To minimise the heterogeneity observed within samples and obtain spectra that 

were more representative of the bulk soil colour by negating the influence of outliers, 

the MSP spectra previously collected from the quartz-recovered fine fractions of 45 

soil samples were averaged to obtain one average spectrum per sample. PCA 

performed on these average spectra revealed that 97.7% of the total variance in the 

dataset could be described by the first three PCs (Figure 3.11).  

 

Figure 3.11 Scree plot depicting the cumulative variance in the MSP average spectra dataset retained 

by each PC. 
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Three-dimensional score plots generated using these PCs (Figure 3.12) showed 

improved separation in contrast to the previous model which utilised all replicate 

spectra; samples from Locations 2, 7, 16, and 22 all achieved clustering and full 

separation from the rest of the population with no overlap, whilst most remaining 

samples achieved clustering with minimal overlap, but in limited proximity to the rest 

of the population. Samples from Locations 9, 13, 14, and 21 all displayed significant 

separation between their two corresponding samples, with one sample for each 

location grouped centrally with the rest of the population, and the other sample 

distanced considerably at the extremes of the plot. This indicated higher levels of 

variability in the soils from these locations. 

 

Figure 3.12 3-dimensional PCA scores plot (shown from two perspectives) showing the variability of 

soil samples from different locations based on their corresponding average MSP spectra. 

The factor loadings for the first three PCs (Figure 3.13) were studied to determine 

the regions in the MSP spectra that were associated with the discrimination of 

samples along each component. The loadings plot for PC-1 displayed a global 

minimum associated with reflectance of the orange region of the visible light 

spectrum (550 – 650 nm). As such, the samples located at the most negative points 

along PC-1 were all red, yellow, and yellow/brown sands, except for the outlier from 

Location 21 (brown sand and mulch). The loadings plot for PC-2 revealed a negative 

correlation with the reflectance of blue/green light (450 – 525 nm), and positive 

correlation with the reflectance of orange light (575 – 625 nm). The red soils from 

Location 7 were best separated from the rest of the population along PC-2, due to 
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their characteristic orange colour. The samples located in the most negative region 

of PC-2 tended to be the grey coloured sands due to their lack of orange components, 

except for the outlier from Location 21.  

 

Figure 3.13 Factor loadings plot of PCs 1-3 for PCA of the soil average MSP reflectance dataset. 

The loadings plot for PC-3 exhibited absorbance within the UV region, again 

indicating sample variation due to thickness of the soil sample. It also displayed a 

large degree of noise, so it was questionable as to whether PC-3 (responsible for just 

1.5% of the total variance) represented any systematic variation between samples, 

or simply noise in the dataset. The samples that were best differentiated in a positive 

direction along PC-3 were from the locations that experienced significant separation 

between their two samples: Locations 9, 13, 14, and 21. When the scores plot was 

replotted utilising only PC-1 and PC-2 (Figure 3.14), comparable separation was 

achieved to that from the 3D model, with the exception of Location 22; this location 

overlapped with Location 18 on the 2D model, but was entirely separated from the 

rest of the population on the 3D model. This indicated that while PC-3 did not 

significantly contribute to the individualisation of the locations, it did provide 

additional separation when utilised alongside PCs 1 and 2. The inclusion of too many 

PCs when visualising the dataset may result in undesirable modelling of variation 
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attributed to noise within the data, whereas using less than the required number of 

PCs can cause valuable information to be overlooked (105). 

 

Figure 3.14 2-dimensional PCA scores plot showing the variability of soil samples from different 

locations based on their corresponding average MSP spectra. Circle indicates Location 22 which, upon 

removal of PC-3, now overlaps with Location 18.  

Colour coding of the soil samples in the PCA model based on visually assigned 

groupings (outlined in Chapter 2: Table 2.1) better demonstrated the loose clustering 

based on their overall colour, and the large degree of overlap (Figure 3.15). This 

showed the red sands discriminated from the rest of the population, however, most 

of the other coloured groups were clumped together in the same region of the plot. 

There was no additional structure uncovered within the dataset when visualising the 

PCA model grouped according to the dune system that the samples originated from, 

nor the type of location that the soils were collected from (Figures 3.16 & 3.17). While 

the visible colour of the soils was the most discriminating factor within the MSP 

spectra, it was not the only feature contributing to the separation of these samples, 

as evident in Figure 3.15.  
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Figure 3.15 3-dimensional PCA scores plot (shown from two perspectives) displaying the variability in 

the visual appearance of soil samples based on their corresponding average MSP spectra. 

 

Figure 3.16 3-dimensional PCA scores plot (shown from two perspectives) displaying the variability of 

soil samples from differing dune systems based on their corresponding average MSP spectra. 

 

Figure 3.17 3-dimensional PCA scores plot (shown from two perspectives) displaying the variability of 

soil samples from differing types of locations based on their corresponding average MSP spectra. 
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3.3.2.2 Linear discriminant analysis 

Due to only having one average MSP spectrum per sample, or two average spectra 

for each location, this data was unable to be split into two datasets for LDA; if one 

spectrum per location was utilised for the validation set, there would only be one 

spectrum per location left to build the model, which is not enough to display trends 

in the data and generate precise discriminate functions for the model. Instead, two 

independent datasets were utilised; the average MSP spectra were used as the 

calibration set to build the LDA model (excluding Location 0 as it only had one 

average spectra), and the same validation set from the previous LDA model (one 

replicate spectrum per sample) was predicted onto the model to assess its 

performance. The limited number of calibration samples however, did affect the 

total number of PCs that could be utilised for LDA, allowing a maximum of only two 

PCs to be used to build the model.  

LDA was performed on the average MSP dataset with each location treated as an 

individual class, and the discriminant model returned a calibration accuracy of 54.6% 

(Table 3.4). This was slightly less than that obtained by the previous model (61.7%) 

which utilised all replicate spectra, rather than average spectra, however, the 

calibration accuracy of the previous model was proved to be overestimated in 

comparison to the validation accuracy. Of the six locations that were classified 

completely correctly, three of them (Locations 7, 16, and 22) had achieved full 

separation within the scores plot. Even though Location 2 was also entirely 

discriminated within the scores plot, only one of its samples was classified correctly, 

while the other was incorrectly classified as originating from Location 9. This is due 

to the large variation seen within Location 9 samples. The other three locations that 

were correctly classified (Locations 10, 15, and 17) were clustered appropriately in 

the scores plot, however, exhibited a fair amount of overlap with several other 

location clusters. This was supported by their discriminant values that showed that 

they were not well separated from other location classes within the LDA model 

(Table 3.5). Locations 9 and 14 both displayed significant intra-location separation 

within the scores plot, and as such, had their samples entirely misclassified within 

the LDA model. Location 18 exhibited minimal separation between its samples within 
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the scores plot but overlapped with several other clusters, while Location 3 samples 

were well-clustered together but in close proximity to several other samples; these 

locations also had both of their samples misclassified. 

Table 3.4 Number of correct vs incorrect location classifications for samples in the average MSP 

calibration set using a 2-PC LDA model (percentages rounded to nearest whole number). 

Location Correct Incorrect % Correct 

1 1 1 50 

2 1 1 50 

3 0 2 0 

4 1 1 50 

5 1 1 50 

6 1 1 50 

7 2 0 100 

8 1 1 50 

9 0 2 0 

10 2 0 100 

11 1 1 50 

12 1 1 50 

13 1 1 50 

14 0 2 0 

15 2 0 100 

16 2 0 100 

17 2 0 100 

18 0 2 0 

19 1 1 50 

20 1 1 50 

21 1 1 50 

22 2 0 100 

  % Total Correct 
   55 
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Table 3.5 Discriminant values of Location 10, 15, and 17’s samples from the average MSP calibration dataset (rounded to three decimal places), with correct classifications 

shaded green. The last column demonstrates how far away the next closest classification was, as a percentage of the lowest discriminant value obtained. 
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Location 1 Location 2 Location 3 Location 4 Location 5 Location 6 Location 7 Location 8 Location 9 Location 10 Location 11 Location 12 Location 13 Location 14 Location 15 Location 16 Location 17 Location 18 Location 19 Location 20 Location 21 Location 22 

10a -4.699 -7.405 -8.365 -7.272 -5.618 -14.390 -99.502 -6.292 -6.192 -3.275 -16.595 -3.593 -6.852 -4.902 -3.307 -44.172 -12.920 -3.647 -5.533 -7.923 -5.345 -5.184 10 1 

10b -4.392 -4.580 -9.102 -9.712 -6.927 -14.139 -99.067 -6.152 -4.225 -3.275 -17.807 -5.384 -6.033 -5.150 -3.741 -45.471 -14.176 -4.722 -5.072 -9.333 -7.925 -6.915 10 14 

15a -5.991 -8.822 -7.034 -5.698 -4.584 -12.722 -93.586 -7.927 -7.834 -3.722 -14.192 -3.659 -6.440 -4.390 -3.320 -39.920 -10.864 -4.204 -5.208 -6.450 -4.215 -5.921 15 10 

15b -5.790 -5.430 -6.631 -7.359 -5.100 -10.839 -88.952 -8.145 -5.687 -3.417 -13.771 -5.450 -4.565 -3.839 -3.320 -38.517 -10.704 -5.358 -3.849 -6.837 -6.321 -8.030 15 3 

17a -21.770 -18.545 -3.852 -5.287 -5.504 -3.942 -48.835 -27.039 -21.851 -13.312 -3.403 -15.112 -6.546 -6.671 -10.504 -13.941 -3.092 -17.741 -7.054 -3.988 -7.909 -22.799 17 10 

17b -21.921 -18.518 -3.872 -5.414 -5.590 -3.861 -48.400 -27.230 -21.906 -13.419 -3.373 -15.322 -6.522 -6.719 -10.608 -13.768 -3.092 -17.937 -7.065 -4.047 -8.082 -23.058 17 9 
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This model was then used to predict the locations of 44 samples from an independent 

dataset (one replicate MSP spectra per sample). 18 out of 44 samples, or 40.9%, had 

their location correctly predicted (Table 3.6). This was a significant improvement in 

comparison to the previous LDA model that utilised individual replicate spectra 

(22.2%). Most of the locations that had all their samples correctly predicted were 

those that achieved 100% classification accuracy in the calibration model (Locations 

7, 16, and 22). Discriminant values for Locations 7 and 16 showed that these groups 

were very well separated from all other classes (Table 3.7). However, Locations 4, 12, 

and 22, which also had both their validation samples correctly predicted, displayed 

very similar discriminant values to several other locations, so classifications to these 

groups should be treated with caution. As expected, Location 10, 15, and 17’s 

validation samples were all predicted incorrectly despite achieving 100% 

classification accuracy in the calibration model, due to small differences in the 

magnitude of their calibration discriminant values for several location classes. 

Overall, using MSP data for chemometric analysis, even when using average spectra, 

still highlighted the innate intra-variability within soil samples. This prevented 

visually similar soils that originated from different locations from being fully 

characterised and discriminated. 
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Table 3.6 Number of correct vs incorrect location predictions for samples in the average MSP validation 

set using a 2-PC LDA model (percentages rounded to nearest whole number). 

Location Correct Incorrect Predicted % Correct 

1 1 1 18 50 

2 1 1 9 50 

3 1 1 14 50 

4 2 0 - 100 

5 0 2 11 & 14 0 

6 1 1 13 50 

7 2 0 - 100 

8 1 1 18 50 

9 0 2 1 & 2 0 

10 0 2 1 & 21 0 

11 0 2 6 & 20 0 

12 2 0 - 100 

13 0 2 5 & 11 0 

14 0 2 13 & 15 0 

15 1 1 9 50 

16 2 0 - 100 

17 0 2 3 & 6 0 

18 0 2 10 & 22 0 

19 0 2 13 & 17 0 

20 1 1 3 50 

21 1 1 12 50 

22 2 0 - 100 

   % Total Correct 
    41 
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Table 3.7 Discriminant values of Location 4, 7, 12, 16, and 22’s samples from the average MSP validation dataset (rounded to three decimal places), with correct predictions 

shaded green. The last column demonstrates how far away the next closest prediction was, as a percentage of the lowest discriminant value obtained. 
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Location 1 Location 2 Location 3 Location 4 Location 5 Location 6 Location 7 Location 8 Location 9 Location 10 Location 11 Location 12 Location 13 Location 14 Location 15 Location 16 Location 17 Location 18 Location 19 Location 20 Location 21 Location 22 

4a -12.186 -14.181 -4.511 -3.181 -3.402 -8.511 -74.314 -15.415 -14.420 -7.095 -8.134 -6.594 -6.368 -4.508 -5.381 -27.389 -6.049 -8.509 -5.626 -3.772 -3.336 -11.188 4 5 

4b -27.270 -30.235 -8.534 -5.890 -8.557 -11.316 -59.550 -31.890 -31.252 -18.622 -7.630 -16.218 -14.481 -12.015 -15.029 -19.206 -6.974 -20.297 -14.037 -7.089 -7.861 -23.601 4 18 

7a -198.482 -170.495 -115.326 -128.849 -132.188 -94.369 -12.515 -215.702 -190.082 -168.683 -88.780 -179.501 -127.437 -136.680 -158.009 -46.019 -99.135 -188.473 -134.562 -118.920 -146.097 -206.180 7 268 

7b -118.158 -96.504 -57.600 -68.397 -69.822 -42.913 -3.260 -131.514 -111.312 -95.725 -40.138 -104.910 -65.367 -72.385 -88.012 -15.250 -46.963 -111.211 -70.557 -60.558 -80.867 -125.197 7 368 

12a -7.218 -14.510 -11.833 -7.814 -7.681 -20.086 -110.246 -8.117 -11.438 -6.154 -20.360 -3.534 -12.221 -8.379 -5.855 -49.821 -16.219 -4.387 -10.132 -10.284 -5.131 -4.497 12 24 

12b -5.142 -8.788 -8.520 -6.798 -5.546 -14.929 -100.276 -6.659 -7.244 -3.636 -16.614 -3.297 -7.555 -5.208 -3.523 -44.231 -12.909 -3.601 -6.097 -7.831 -4.801 -4.886 12 7 

16a -66.471 -55.678 -23.354 -28.159 -30.322 -16.222 -13.670 -76.111 -64.506 -49.793 -12.785 -53.751 -30.648 -33.464 -43.736 -3.259 -16.447 -59.251 -33.394 -24.327 -36.174 -68.608 16 292 

16b -52.294 -40.987 -16.149 -21.718 -22.376 -9.830 -18.428 -61.045 -49.288 -37.859 -8.432 -42.952 -20.913 -24.069 -32.976 -3.772 -11.186 -47.108 -23.455 -17.542 -28.576 -56.042 16 124 

22a -4.582 -11.761 -15.755 -12.214 -10.803 -24.941 -125.870 -4.600 -8.052 -5.633 -26.957 -3.834 -13.942 -10.267 -6.399 -61.093 -21.935 -3.501 -11.602 -14.509 -8.395 -3.105 22 13 

22b -4.473 -11.937 -17.502 -13.890 -12.235 -27.096 -131.312 -4.202 -7.925 -6.126 -29.455 -4.350 -15.219 -11.458 -7.160 -64.997 -24.160 -3.748 -12.757 -16.262 -9.710 -3.115 22 20 
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3.3.3 Chemometric analysis of soils using MSP generated L*a*b* values 

3.3.3.1 Principal component analysis 

In an attempt to improve objective discrimination between soils from different 

locations, the 1931 L*a*b* colour identification system was applied to the MSP 

spectral data and the resulting chromaticity values subjected to chemometric 

analysis. The MSP average spectra were converted into L*a*b* chromaticity values, 

where L* is a measure of the lightness, a* is a measure of the green-red components, 

and b* is a measure of the blue-yellow components (Table 3.8). PCA performed on 

these L*a*b* values (without baseline correction or normalisation) revealed that 

100% of the total variance in the dataset could be described by the first three PCs 

(Figure 3.18). 

 

Figure 3.18 Scree plot depicting the cumulative variance in the L*a*b* dataset retained by each PC. 

Three-dimensional score plots generated using these PCs (Figure 3.19) showed that 

most locations achieved clustering, however, there was overlap from nearby clusters. 

Some samples that achieved full discrimination from the rest of the population, for 

example Locations 2, 7, and 16, also exhibited a large degree of separation between 

their two samples, indicating significant differences in their L*a*b* values despite 

originating from the same location. The soils from Locations 2 and 16 were collected 

from gardens situated within manicured public parks, so were both easily accessible 
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and subject to a high degree of human interference. It is therefore logical to draw 

the conclusion that human interference may be contributing to the variation shown 

across a number of these sites. Location 7 soils were less subject to human activity 

as they were collected from dense bushland, indicating that insufficient sampling or 

natural variation within this soil may be the cause of its differentiation between 

samples.  

Table 3.8 The soil samples analysed with MSP and their associated L*a*b* values generated from their 

average MSP spectra (rounded to four decimal places). 

Soil sample L* value a* value b* value  Soil sample L* value a* value b* value 

0 64.2791 2.8065 10.8863  12a 56.7341 0.8510 6.4930 

1a 55.9059 1.1399 4.2602  12b 57.3398 1.4207 8.7911 

1b 56.2500 1.3886 5.8750  13a 67.6367 1.7562 7.9304 

2a 68.7063 6.2472 13.3930  13b 59.8091 2.0960 8.7805 

2b 56.8339 4.5389 11.1808  14a 56.2367 1.4892 9.1630 

3a 62.1019 2.5179 11.7694  14b 62.3351 1.7956 7.9813 

3b 56.3380 2.5417 9.5831  15a 63.9001 1.8910 8.9114 

4a 59.0213 2.0413 12.1935  15b 62.4857 1.7032 6.9949 

4b 60.0170 1.4232 10.5839  16a 64.9556 3.3651 17.8349 

5a 55.1989 2.2699 10.1966  16b 73.6729 4.8884 22.0461 

5b 62.4657 2.1919 11.2158  17a 73.5557 1.9415 11.7408 

6a 67.0394 4.1823 17.8365  17b 67.0131 1.8730 11.2222 

6b 67.4678 3.4417 15.3133  18a 52.5049 0.4836 5.3095 

7a 70.0773 7.1455 24.3205  18b 61.4045 1.0513 5.5890 

7b 69.3384 9.4518 31.4252  19a 53.3802 2.0136 8.6523 

8a 52.0707 1.0962 5.6762  19b 53.6458 2.4171 10.9857 

8b 45.7070 0.8797 4.1592  20a 63.7990 2.2876 12.3336 

9a 52.8953 1.3304 7.0526  20b 65.4104 2.6937 11.9284 

9b 51.8791 1.4722 4.1714  21a 56.4992 1.3755 9.1620 

10a 63.9778 1.6931 7.6101  21b 58.2570 -0.0501 7.0350 

10b 59.1573 2.3984 9.2895  22a 51.0447 0.3322 4.8069 

11a 65.6523 3.2408 15.1505  22b 54.8201 0.0600 4.4877 

11b 66.9372 2.2640 12.8585      
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Whilst the L*a*b* values should give similar results to those obtained with the 

average MSP spectra, only the visible region of the MSP spectra was utilised when 

calculating their associated L*a*b* values. The difference in separation therefore 

may be a result of eliminating noise or variation detected within the UV or infrared 

(IR) regions of the MSP spectra due to sample thickness. If this is the case, tighter 

clustering according to the visual appearance of the soil would be expected. 

 

Figure 3.19 3-dimensional PCA scores plot (shown from two perspectives) showing the variability of 

soil samples from different locations based on their corresponding L*a*b* values, derived from their 

average MSP spectra. 

To determine which values were associated with the discrimination of samples along 

each component, the factor loadings for the first three PCs were studied (Figure 

3.20). The loadings plot for PC-1 showed strong positive correlation with both L* and 

b* values. Location 7 soils were the most positive along PC-1, primarily due to their 

high b* values, which were associated with higher amounts of yellow within the 

sample. Location 16 soils were also positioned nearby, however, one sample was 

significantly more positive along PC-1 than the other, due to the variation seen in 

their L* and b* values. Samples from Locations 8, 9, and 22 (all grey coloured) were 

positioned at the most negative point on PC-1 due to their low L* and b* values, 

indicating that their soils were darker in colour and less yellow compared to the rest 

of the population. PC-2 revealed a positive correlation with L* values, and strong 

negative correlation with b* values. Location 7 soils were the most separated along 

PC-2 in a negative direction, due to their significantly higher b* values resulting from 
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their distinct colour. PC-3 exhibited a significant positive correlation with a* values. 

Soils from Location 2 (brown) were the most influenced by PC-3, followed by Location 

7 (red), due to elevated a* values from higher proportions of red within their 

samples. 

 

Figure 3.20 Factor loadings plot of PCs 1-3 for PCA of the soil L*a*b* values, generated from average 

MSP reflectance spectra. 

Colour coding of the PCA model based on visual appearance (outlined in Chapter 2: 

Table 2.1) illustrated the loose clustering based on overall colour, but still revealed 

the large degree of overlap that was seen in previous models (Figure 3.21). The red 

soils were again the only group entirely discriminated from the rest of the 

population. As expected, the positive region of PC-1 was mostly occupied by red, 

yellow, and yellow/brown soils due to their higher b* values, however, as the L* 

values also contributed to the variation across PC-1, some of these yellow based soils 

were positioned in the negative, representative of their darker shading. There was 

no additional structure uncovered in the model when visualising the soils grouped 

according to the dune system they originated from, nor the type of location they 

were collected from (Figures 3.22 & 3.23). 
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Figure 3.21 3-dimensional PCA scores plot (shown from two perspectives) displaying the variability in 

the visual appearance of soil samples based on their corresponding L*a*b* values determined from 

their average MSP spectra. 

 

Figure 3.22 3-dimensional PCA scores plot (shown from two perspectives) displaying the variability of 

soil samples from differing dune systems based on their corresponding L*a*b* values determined from 

their average MSP spectra. 

 

Figure 3.23 3-dimensional PCA scores plot (shown from two perspectives) displaying the variability of 

soil samples from differing types of locations based on their corresponding L*a*b* values determined 

from their average MSP spectra. 
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3.3.3.2 Linear discriminant analysis 

As previously outlined in Section 3.3.2.2, only one average MSP spectrum per sample 

was generated, and hence only one set of L*a*b* values per sample. For this reason, 

the L*a*b* values obtained from the average MSP spectra were used as the 

calibration set to build an LDA model (excluding Location 0), and the 10th replicate 

spectra (one per sample) from the full MSP dataset were converted into L*a*b* 

values (Table 3.9) and predicted onto the model to assess its performance. It is 

important to note that due to the limited number of calibration samples, a maximum 

of only two PCs could be utilised to build the model.  

LDA was performed on the average L*a*b* dataset, with each location treated as an 

individual class. This discriminant model returned a calibration accuracy of 47.7% 

(Table 3.10), which was lower than both the previous MSP models. All five locations 

that were classified 100% correctly (Locations 6, 7, 17, 19, and 20) were clustered 

based on their groupings within the scores plot and achieved separation from nearby 

locations. The locations that had just one of their samples classified correctly showed 

appropriate clustering with minimal overlap in the 3-PC scores plot, however, as the 

LDA model was only able to utilise two PCs, the separation attributed to PC-3 was 

lost. This caused a lot of these locations to subsequently overlap with each other, as 

demonstrated in Figure 3.24. Locations 3, 5, 10, and 14 all displayed separation 

between their individual samples within the scores plot and a high degree of overlap 

with other clusters, and hence had their samples entirely misclassified within the LDA 

model. Although Locations 2 and 12 did achieve some discrimination within the 3D 

scores plot, the removal of PC-3 and its attributed variation caused them to overlap 

with many other groups in the 2D scores plot, causing all their samples to be 

misclassified within the LDA model. This demonstrates how important it is to utilise 

an appropriate number of PCs when building the LDA calibration model, and in turn, 

ensure enough samples have been collected for analysis. Unfortunately, this is not 

always possible when conducting analysis of forensic trace evidence, as the number 

of collected samples may be limited. 
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Table 3.9 The soil sample replicates utilised for the LDA validation set and their associated L*a*b* 

values generated from their MSP spectra (rounded to four decimal places). 

Soil sample  
(10th replicate) 

L* value a* value b* value 
 Soil sample  

(10th replicate) 
L* value a* value b* value 

1a 59.1183 1.3574 4.3157  12a 57.8061 0.9632 6.5447 

1b 59.5282 0.9172 5.9220  12b 57.2317 1.7137 9.4209 

2a 69.7178 5.7035 11.5173  13a 69.5672 1.2959 6.7269 

2b 52.1190 5.4198 12.3133  13b 58.0038 1.3991 7.0395 

3a 57.2933 2.6324 10.6697  14a 56.4230 1.4673 9.0910 

3b 51.5144 2.4748 9.6603  14b 54.1626 1.8653 8.7516 

4a 58.4932 2.0310 12.1207  15a 62.3154 2.6227 10.6758 

4b 63.7901 0.2095 8.9203  15b 59.0960 1.8009 6.7086 

5a 56.1023 3.5198 14.1750  16a 68.6653 3.9915 21.4552 

5b 64.6478 1.3416 11.3023  16b 73.8167 6.2242 23.5438 

6a 65.1538 3.6523 14.9838  17a 70.8600 1.8541 12.9943 

6b 64.2896 4.1962 13.8927  17b 68.0675 2.2127 11.6651 

7a 66.3696 7.6883 20.7809  18a 52.2895 0.3844 4.7400 

7b 71.8725 9.9805 34.2156  18b 62.1228 1.2048 5.5036 

8a 54.9322 1.4039 6.1755  19a 53.6100 2.1700 9.7116 

8b 44.4803 1.2914 5.3426  19b 57.9618 2.2315 11.3623 

9a 53.3229 2.2343 9.0512  20a 60.7616 2.7242 12.2753 

9b 56.0878 1.7210 4.4668  20b 67.3697 3.0449 12.0730 

10a 68.3154 1.4674 9.2595  21a 57.6761 0.2649 7.0031 

10b 65.0541 1.7991 7.7829  21b 53.2545 -0.1012 5.7257 

11a 69.1661 3.3941 16.0846  22a 53.5115 0.3596 4.9407 

11b 65.3382 2.2883 13.2274      
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Table 3.10 Number of correct vs incorrect location classifications for samples in the L*a*b* calibration 

set using a 2-PC LDA model (percentages rounded to nearest whole number). 

Location Correct Incorrect Classified % Correct 

1 1 1 18 50 

2 0 2 4 & 11 0 

3 0 2 5 & 20 0 

4 1 1 3 50 

5 0 2 19 & 20 0 

6 2 0 - 100 

7 2 0 - 100 

8 1 1 9 50 

9 1 1 22 50 

10 0 2 14 & 15 0 

11 1 1 20 50 

12 0 2 18 & 21 0 

13 1 1 14 50 

14 0 2 15 & 21 0 

15 1 1 13 50 

16 1 1 6 50 

17 2 0 - 100 

18 1 1 9 50 

19 2 0 - 100 

20 2 0 - 100 

21 1 1 12 50 

22 1 1 1 50 

   % Total Correct 
    48 
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Figure 3.24 2-dimensional PCA scores plot showing the variability of soil samples from different 

locations based on their corresponding L*a*b* values, derived from their average MSP spectra. 

This model was then used to predict the locations of 44 independent samples based 

on their MSP generated L*a*b* values (one replicate per sample). 12 out of 44 

samples, or 27.3%, had their location correctly predicted (Table 3.11). This was a 

worse result than achieved by the average MSP model (40.9%), but minimal 

improvement compared to the original full MSP model (22.2%). Out of the three 

locations that attained 100% correct predictions, only Location 17 achieved 100% 

classification accuracy within the calibration model. All these locations however, 

were not very well separated based on their discriminant values (Table 3.12), and as 

such there was not a considerable amount of confidence surrounding these 

predictions.  

Additionally, all other locations with 100% calibration accuracy had £50% of their 

samples predicted correctly in the validation model, indicating possible discrepancies 

between the averaged and the unaveraged L*a*b* values. Comparing the calibration 

and validation values for Location 6 illustrated the minor differences across all three 

chromaticity coordinates (Figure 3.25). Whilst the L*a*b* values were generated 

from the average MSP spectra, the average MSP LDA model significantly 

outperformed this L*a*b* model. Both models were only able to utilise the first two 

PCs, however, this only appeared to negatively affect the L*a*b* model. PC-3 from 

the average MSP PCA represented a large amount of noise, and by excluding it when 
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constructing the LDA model, this improved discrimination based on variation in soil 

characteristics. However, when PC-3 from the L*a*b* PCA was excluded from its LDA 

model, this was at a disadvantage as it encompassed variation detected in the a* 

values, which was omitted. Therefore, the average MSP LDA model performed better 

and achieved a higher validation accuracy, even though improved separation within 

the scores plot was seen in the L*a*b* PCA model. 

Table 3.11 Number of correct vs incorrect location predictions for samples in the L*a*b* validation set 

using a 2-PC LDA model (percentages rounded to nearest whole number). 

Location Correct Incorrect Predicted % Correct 

1 0 2 18 0 

2 0 2 17 & 19 0 

3 0 2 5 & 19 0 

4 1 1 13 50 

5 0 2 2 & 20 0 

6 0 2 11 0 

7 1 1 16 50 

8 1 1 9 50 

9 0 2 1 & 19 0 

10 0 2 13 & 15 0 

11 1 1 6 50 

12 0 2 5 & 18 0 

13 0 2 12 & 15 0 

14 0 2 19 & 21 0 

15 0 2 3 & 12 0 

16 2 0 - 100 

17 2 0 - 100 

18 0 2 15 & 22 0 

19 1 1 4 50 

20 1 1 2 50 

21 0 2 9 & 12 0 

22 2 0 - 100 

   % Total Correct 
    27 
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Table 3.12 Discriminant values of Location 16, 17, and 22’s samples from the L*a*b* validation dataset (rounded to three decimal places), with correct predictions shaded 

green. The last column demonstrates how far away the next closest prediction was, as a percentage of the lowest discriminant value obtained. 
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Location 1 Location 2 Location 3 Location 4 Location 5 Location 6 Location 7 Location 8 Location 9 Location 10 Location 11 Location 12 Location 13 Location 14 Location 15 Location 16 Location 17 Location 18 Location 19 Location 20 Location 21 Location 22 

16a -45.367 -13.799 -21.353 -19.926 -21.673 -6.533 -11.924 -50.662 -44.437 -29.046 -11.780 -34.140 -29.674 -29.346 -31.369 -3.464 -20.713 -44.087 -27.115 -16.544 -32.839 -50.296 16 89 

16b -61.729 -22.755 -32.940 -31.128 -33.411 -11.759 -8.245 -69.225 -61.470 -41.500 -19.154 -48.591 -41.598 -42.452 -43.730 -5.865 -28.751 -60.052 -40.945 -25.664 -46.992 -68.041 16 41 

17a -16.763 -5.812 -8.032 -7.715 -8.359 -6.816 -46.765 -25.068 -19.377 -7.832 -4.370 -12.145 -6.980 -9.273 -7.700 -12.418 -3.404 -15.646 -14.026 -4.506 -11.513 -21.141 17 28 

17b -12.577 -4.934 -5.915 -5.768 -6.161 -7.670 -51.283 -19.606 -14.717 -5.503 -4.320 -8.771 -4.982 -6.558 -5.499 -14.509 -3.316 -11.667 -10.699 -3.669 -8.276 -16.231 17 11 

22a -3.325 -15.203 -9.119 -9.984 -8.937 -27.909 -94.356 -3.950 -3.336 -6.781 -19.009 -4.472 -7.849 -5.921 -7.198 -42.143 -16.784 -3.521 -7.562 -13.743 -4.768 -3.114 22 7 

22b -3.333 -16.563 -10.173 -11.111 -10.001 -29.764 -98.692 -4.358 -3.697 -7.197 -20.322 -4.942 -8.103 -6.477 -7.393 -44.584 -17.271 -3.519 -8.775 -14.758 -5.279 -3.159 22 6 
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Figure 3.25 Calibration (average values) and validation L*a*b* values obtained from Location 6’s soils. 

3.4 Conclusions 

This chapter explored the use of MSP and L*a*b* colour values in combination with 

chemometrics to differentiate between soil samples from different locations. This 

was the first demonstrated use of MSP on the quartz-recovered fine fraction of soils, 

and hence also the first use of chemometric methods to interpret MSP data obtained 

from this fine fraction. MSP analysis was conducted on the isolated quartz-recovered 

fine fractions of these soils, to allow for detection of the variation that could not be 

identified by analysis of the bulk material. PCA and LDA conducted on this data 

allowed for some discrimination between samples that produced visually similar MSP 

spectra.  

The use of the entire MSP dataset for PCA resulted in most of the soil samples 

forming clusters based on the location from which they were collected, however, 

there was also a great deal of overlap throughout most of these clusters. Location 7 

was the only class that was able to be entirely discriminated within the scores plots, 

due to its distinctive colour. Using the entire replicate MSP dataset for LDA caused 

the calibration accuracy to be greatly overestimated, with the validation dataset 

achieving a much lower accuracy. This model was able to correctly predict the 

locations of samples from Locations 7, 2, and 22, illustrating that it is possible to 

correctly classify groups that were not entirely discriminated within the PCA scores 

plot, however, the confidence surrounding these predictions was low.  



 97 

Utilising the average MSP spectra for PCA improved the separation achieved within 

the scores plot, allowing for the complete discrimination of Locations 2, 7, 16, and 

22. LDA conducted on this dataset showed a significant improvement in the 

validation accuracy, with the origin of samples from Locations 4, 7, 12, 16, and 22 all 

being predicted correctly. While some of these locations were well separated from 

the rest of the population, others were close to being assigned to incorrect classes, 

and the accuracy of those predictions should not be relied upon. 

Converting the MSP spectra into 1931 L*a*b* values before PCA resulted in most 

locations achieving clustering, but with minimal separation from other classes. This 

may have been due to the reduction in noise, or exclusion of variation detected 

within the UV or IR regions of the MSP spectra. While these results indicated 

potential for a higher classification accuracy within LDA, this was not the case, and 

the validation accuracy of the model was poor. The omission of PC-3 when 

conducting LDA meant that important variation was being lost, highlighting the 

importance of utilising a sufficient number of samples for chemometrics. It is 

believed that the inclusion of more PCs would have resulted in greater classification 

accuracy. 

Overall, utilising MSP data for chemometric analysis emphasised the large degree of 

intra-variability within soil samples, due to their naturally occurring environments. 

Whilst the dataset for this study was limited by the number of samples per location, 

the intention was to imitate sample size requirements from a forensic case work 

scenario as closely as possible. In these situations, there is usually minimal sample 

available for analysis. The MSP spectra, and resulting L*a*b* values, were most 

closely correlated to the colour and appearance of the soil, as expected. Therefore, 

the PCA and LDA models were able to discriminate between soils that were dissimilar 

in appearance but had a harder time differentiating between soils similar in colour. 

Additionally, reflectance spectra can often be noisy and not reproducible, and this 

was accentuated even more by performing complex statistical analysis on the data.  

It was also shown that human interference with the soil’s environment may be 

influencing the composition of the soil and should be explored further. Similarly, this 
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chapter highlighted the importance of sample preparation when using MSP for 

analysis, as samples that are not sufficiently thick will cause UV absorption that can 

interfere with the chemometric analysis; these results can be used to educate 

forensic examiners on how to account for these issues if encountered when analysing 

trace samples in casework. It is recommended that MSP analysis of soils be utilised 

for pairwise comparisons, or to quickly rule out samples that appear visually 

distinctive using a statistical measure of differentiation. To maximise the information 

obtained and decrease the uncertainty surrounding source determination, it should 

also be used in sequence with other analysis techniques, such as those explored in 

subsequent chapters of this thesis. 
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Chapter 4. Analysis of the Quartz-Recovered Fine Fraction of 

Western Australian Soils using Vibrational 

Spectroscopy Paired with Chemometrics 

Portions of this chapter have been published, or submitted for publication, in the 

following articles: 

T. G. Newland, K. Pitts, and S. W. Lewis. "Multimodal spectroscopy with 

chemometrics for the forensic analysis of Western Australian sandy soils." Forensic 

Chemistry, 2022. 28: 100412. 

T. G. Newland, K. Pitts, and S. W. Lewis. "Negative result: Application of Raman 

spectroscopy to the forensic analysis of an arid, sandy, soil.” Forensic Science 

International: Reports, 2022. Submitted for publication. 
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4.1 Introduction 

Soils submitted for forensic analysis are complex mixtures consisting of varying 

proportions of inorganic minerals, organic biological matter, living microbiomes, and 

other artificial materials (4). While many techniques can be utilised for their chemical 

characterisation, most focus on just one aspect of their composition. For example, X-

ray diffraction (XRD) and laser-induced breakdown spectroscopy (LIBS) are 

commonly used to detect the inorganic components within soil samples (7, 11, 62), 

while high-performance liquid chromatography (HPLC) and gas chromatography (GC) 

examine organic components (6, 32, 59). Vibrational spectroscopy is a field that can 

be utilised to characterise both inorganic and organic components within soil, as well 

as contaminants such as petroleum and pesticides, providing a more detailed 

examination of its contents (4, 17, 29, 77, 91, 119). Raman and infrared (IR) 

spectroscopy can provide qualitative and semi-quantitative analysis of the 

composition of soil samples. They also have the advantages of being non-destructive, 

rapid, relatively sensitive, and only requiring small amounts of sample, all of which 

are advantageous for the examination of forensic trace evidence (4, 29, 120). 

Raman spectroscopy has previously been investigated for its application to the 

analysis of other forms of forensic trace evidence, including drugs (78), fibres (82), 

and paints (80). However, its use for forensic soil analyses has been limited, for which 

there are two main reasons. The first is that Raman spectrometers tend to not be as 

widely available, and many forensic laboratories are not currently equipped with the 

appropriate instrumentation. The second is that Raman spectra of soils suffer from a 

large amount of fluorescence interference, usually caused by humus, that masks the 

characteristic peaks of the underlying soil components (77, 121-123). Therefore, it is 

important to consider alternative sample preparation methods that may help 

decrease sample fluorescence (77, 122). Generally, sample preparation methods 

with multiple steps are not preferred for forensic applications as they can further 

change the sample and potentially lead to contamination and loss of sample, which 

is commonly only present in trace amounts. Additionally, the sample preparation 
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may not be necessary or successful at reducing fluorescence in soils already low in 

organic material, such as those found on the Swan Coastal Plain in Western Australia. 

An alternative approach is the use of IR spectroscopy, which provides 

complementary information to Raman spectroscopy. Not only is it widely available, 

with many forensic laboratories already owning IR spectrometers, but it is also simple 

to use (87). Limited studies have been published that utilise IR spectroscopy to 

analyse forensic soil samples. Of these studies, most have also used chemometrics 

to interpret their results, allowing for discrimination between different soil types (4, 

64, 65, 76). Even with the limited applications presented in publications, the 

technique is still considered useful in certain cases, especially as part of a forensic 

questioned versus known comparison. However, all of these studies have involved 

very different soil types to those found in the dry, arid climate of Western Australia 

(4, 33, 64, 65, 76). The majority of them also analyse the bulk soil, which is impractical 

for Swan Coastal Plain soils, which are rich in quartz grains and have minimal 

variation in their bulk chemistry (54, 94). Spectroscopic analysis of the quartz-

recovered fine fraction of soils has never been demonstrated in the open literature 

but holds potential for revealing variations in soil samples that are limited in size and 

composition (94). 

In this chapter, Raman spectroscopy and attenuated total reflectance Fourier 

transform infrared (ATR-FTIR) spectroscopy were explored for the forensic analysis 

of the quartz-recovered fine fraction of soils from the Swan Coastal Plain in Perth, 

Western Australia. Principal component analysis (PCA) was performed on the 

baseline corrected and normalised ATR-FTIR absorbance spectra to assess whether 

soils could be distinguished based on their location or other attributes of the soil, 

such as visual appearance, dune system, or location type. Linear discriminant analysis 

(LDA) was then used to classify and predict replicate samples using the test set 

validation method, and the accuracy of the model was assessed. 
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4.2 Experimental 

Soil samples were collected as outlined in Sections 2.2 and 2.3.1. The quartz-

recovered fine fractions were prepared from each of the soil samples, as described 

in Section 2.4. Raman spectra were collected from the extracted quartz fine fractions 

as described in Section 2.5.2. ATR-FTIR spectra were collected from the extracted 

quartz fine fractions as described in Section 2.5.3. PCA and LDA were then conducted 

on the resulting data as outlined in Section 2.6. 

4.3 Results and discussion 

4.3.1 Analysis of soils using Raman spectroscopy 

Raman spectra were collected from the quartz-recovered fine fractions of Swan 

Coastal Plain soil samples (outlined in Chapter 2: Table 2.1), mounted on glass slides 

(Figure 4.1). These spectra all exhibited strong levels of fluorescence, which masked 

all peaks characteristic of the soil components. This is a common occurrence that has 

been encountered previously with Raman analysis of soil samples despite using a 

range of different excitation wavelengths and experimental conditions (77, 98, 121, 

122). A small sharp peak was visible above the fluorescence in Sample 5b (460 cm-1) 

indicating the possible presence of quartz within the fine fraction (30, 77), however, 

this peak was masked on all other samples. There was also a broad hump evident in 

Sample 4b (~1300 – 1600 cm-1) that may be due to the presence of carboxyl groups 

and humic substances within the sample (123, 124), but this could not be ascertained 

due to the imperceptible structure and breadth of the peak.  

Reduction of the fluorescence was attempted by experimenting with the laser 

intensity and integration time; however, this had no beneficial effect on the spectra 

(Figure 4.2). The data was also subjected to baseline correction methods, but this too 

was unsuccessful at eradicating the interference from fluorescence (Figure 4.3). 

Therefore, Raman spectroscopy was deemed unsuitable for analysis of the quartz-

recovered fine fraction of soils, and the spectra obtained were not utilised for any 

further chemometric analyses.  
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Figure 4.1 Raman spectra (unprocessed) of four different soil samples from the Swan Coastal Plain, illustrating the high degree of fluorescence that is masking potential 

characteristic peaks.
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Figure 4.2 The effects of laser intensity (high vs. low power) and integration time (in seconds) on 

Sample 0’s Raman spectra. 

 

Figure 4.3 The effects of baseline correction (baseline offset vs linear baseline) on Sample 4b and 5b’s 

Raman spectra, with visible peaks remaining unchanged and unable to be enhanced across all spectra. 

4.3.2 Analysis of soils using ATR-FTIR spectroscopy 

ATR-FTIR absorbance spectra were collected from the quartz-recovered fine 

fractions of 45 soil samples (outlined in Chapter 2: Table 2.1), a selection of which 

are illustrated in Figure 4.4. Despite these soils originating from different regions and 

dune systems within Perth, the majority of the spectra were indistinguishable from 

one another in terms of the main compounds that make up the soil samples. Peaks 
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were tentatively assigned based on reference spectra of common minerals and 

compounds known to be found within Swan Coastal Plain soils (Table 4.1). Most of 

the soil samples were dominated by quartz and kaolinite, with some variation seen 

in the peak heights located in the fingerprint region (400 – 1200 cm-1) as well as the 

peak heights and ratios of the characteristic kaolinite peaks at 3630/3695 cm-1. Other 

apparent minerals within the samples included gibbsite, goethite, and hematite, with 

some additional contribution from organics (humus and H2O/CO2), all present in 

varying intensities. Whilst some subtle differences could be perceived between 

sample spectra, identifying all possible variations manually would be a labour-

intensive process that involves careful human examination and judgement. 

Therefore, chemometric methods were applied to efficiently and objectively identify 

and maximise the differentiation between samples. 

 

Figure 4.4 Baseline corrected and normalised ATR-FTIR absorbance spectra showing the similarities in 

composition of a selection of soil samples collected from differing locations within the Swan Coastal 

Plain. Annotations were based off peak assignments outlined in Table 4.1. 
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Table 4.1 Common minerals found in Swan Coastal Plain soils and their associated IR peaks. 

Mineral/Compound IR Peaks (cm-1) 

Kaolinite2 3695, 3620, 1113, 1031, 1008, 912, 754, 698, 538, 470, 430 

Quartz2 1082, 790/778, 692, 459  

Hematite2 1179, 1117, 1084, 610, 548, 470 

Gibbsite2 3454 (broad), 1585, 1425, 975, 578 

Vermiculite3  3330 (broad), 1640, 944 (skewed), 815, 719  

Goethite2 3457 (broad), 3102, 1641, 1425, 900, 803, 664, 568, 461/426/402 

Microcline feldspar1 1129, 985, 768, 725 

Humic acid (sodium salt)3 3277 (broad), 2919/2850, 1563, 1380, 1090- (broad) 

Calcite2 1416, 874, 712 
1Thermo Fisher Scientific for Nicolet FTIR, “HR comprehensive Forensic FT-IR”. 
2Thermo Fisher Scientific, 2008, “HR Inorganics”. 
3SensIR technologies, 2001, “Common chemicals by Diamond ATR”. 

4.3.3 Principal component analysis 

4.3.3.1 Discrimination using location-based chemical data 

PCA performed on these spectra revealed that 95.8% of the total variance in the 

dataset could be described by the first five principal components (PCs), as illustrated 

in the scree plot (Figure 4.5).  

 

Figure 4.5 Scree plot depicting the cumulative variance in the ATR-FTIR dataset retained by each PC. 
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Three-dimensional score plots generated using the first three PCs (Figure 4.6) 

resulted in the discrimination of nine different locations from the rest of the 

population; Locations 0, 3, 8, 9, 10, 11, 15, 18, and 22 all achieved visual separation 

across PCs 1-3. The inclusion of PCs 4 and 5 allowed for further discrimination of 

Locations 2, 5, 12, 16, and 17, leaving an additional nine locations unable to be 

individualised. PC-6 did not allow for any further discrimination between samples, so 

was not incorporated into the visual model to avoid overfitting of the data. All 

samples exhibited varying degrees of intra-location separation, displaying clustering 

based on individual samples instead of overall location. Locations within which this 

was most prominent, e.g., 1, 8, 9, and 18, were all minimally accessible bushland sites 

with grey-coloured sands, indicating higher variability within these soils. 

 

Figure 4.6 3-dimensional PCA scores plots generated using the first five PCs, showing the variability of 

soil samples from different locations based on their corresponding ATR-FTIR spectra. 
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The factor loadings for the first five PCs were studied to determine the regions in the 

ATR-FTIR spectra that were associated with, and likely responsible for, the 

discrimination of samples along each component. Many of the peaks within the 

loadings, however, were distorted due to a high degree of interference and overlap 

between positive and negative correlations, making mineral identification 

challenging. Identification was attempted based on the known IR spectra of common 

minerals and compounds found within Swan Coastal Plain soils, found in Table 4.1. 

Minor variations in mineral content would be expected to create differences in the 

overall spectra, but it was difficult to completely identify from the loadings alone, so 

ATR-FTIR spectra obtained from representative samples situated at the extremes of 

each PC were also used to inform the mineral associations made using the loadings 

plots (Figure 4.7). 

Variation along PC-1 was attributed to negative correlations with kaolinite and 

quartz, and positive contributions from humus and/or calcite. Samples from Location 

15 were best separated in a positive direction along PC-1, therefore likely containing 

higher relative concentrations of humus or calcite, and lower concentrations of 

kaolinite and quartz. This was confirmed by inspection of spectra from Location 15 

and Location 20 (situated at the opposite negative end of PC-1); Location 20’s spectra 

were dominated by kaolinite and quartz, while Location 15’s spectra were lacking 

these peaks, instead containing other clay-type minerals and higher relative 

concentrations of calcite. Location 15 soils originated from the Quindalup dune 

system, nearest to the coast, which are known to contain lower concentrations of 

quartz (36, 94). Quindalup soils also commonly contain higher levels of calcite from 

the limestone bedrock and shell fragments from marine life (43, 47).  

PC-2 suggested a negative correlation with humus and/or calcite, and a positive 

correlation with quartz, with possible smaller contributions from gibbsite and 

goethite. Samples from Location 15 were again the best separated from the rest of 

the population due to negative scores along PC-2, confirming that they contained 

higher relative levels of calcite in their quartz-recovered fine fraction. Their low 

amounts of quartz and gibbsite were again expected due to their coastal positioning; 

Swan Coastal Plain soils tend to show a decrease in both quartz and gibbsite nearer 
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the coast (36, 94). Samples from Locations 8 and 9 were best separated in a positive 

direction along PC-2, due to relatively higher concentrations of quartz and 

gibbsite/goethite, which was confirmed by inspection of their spectra.  

PC-3 showed a negative correlation with kaolinite and humus/calcite, and positive 

correlation with quartz, as well as a smaller contribution from gibbsite. Samples from 

Location 0, followed by Location 7, were situated at the most negative point along 

PC-3, indicating that they may contain the highest levels of kaolinite and 

humus/calcite in their soil. This was reinforced by their spectra which were 

dominated by kaolinite peaks. These soils all originated from the Pinjarra Plain, which 

represents an accumulation of fluvial deposits, and hence these soils can contain 

relatively high concentrations of this mineral (43, 94). Samples from Locations 9, 18, 

and 22 were positioned positively along PC-3 due to containing relatively higher 

concentrations of quartz and gibbsite, as evident in their spectra. These soils were all 

grey-coloured and originated from bushland sites that were close to the border of 

the Spearwood / Bassendean dunes.  

While PC-4 and PC-5 were utilised to visualise the dataset, they together contributed 

to the separation of only five additional groups. PC-4 showed association with several 

different compounds, such as kaolinite, quartz, goethite, gibbsite, humus, and 

calcite, and hence exhibited a high degree of interference. The spectra for Locations 

5, 16, and 17 (locations that achieved discrimination through the inclusion of PC-4) 

were compared to the loadings plot to identify which compounds specifically were 

responsible for their separation (Figure 4.8). Location 5 samples appeared to be 

lacking in both humus and calcite compared to the other soils, while Location 16 soils 

showed lower concentrations of kaolinite and gibbsite, and higher concentrations of 

quartz.  

The loadings for PC-5 were also quite complicated, suggesting negative correlations 

with goethite, gibbsite, and hematite, as well as a smaller contribution from quartz, 

and positive correlations with carbon-based organics, goethite, and calcite. Soils 

from Locations 2 and 12 were able to be individualised by variation attributed to PC-

5; Location 2 soils contained higher concentrations of gibbsite and humus, while 
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Location 12 soils showed a high concentration of materials within the fingerprint 

region. Location 2 soils originated from a manicured garden bed within a public park, 

so the addition of organic mulch to the soil may be responsible for the higher 

amounts of humus present. While tentative assessments could be made regarding 

the identification of minerals contributing to the loadings, it is necessary to allow for 

the possibility that compounds other than the common minerals listed in Table 4.1 

were detected through ATR-FTIR analysis. In the subsequent chapter, XRD was used 

post-ATR-FTIR for cross-referencing of the minerals detected to confirm the above 

associations.
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Figure 4.7 Factor loadings plot of PCs 1-3 for PCA of the soil ATR-FTIR dataset, along with representative spectra obtained from samples situated at the extreme points of the 

scores plot. The main peaks of interest have been highlighted and annotated with their contributing compounds.
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Figure 4.8 Factor loadings plot of PCs 4-5 for PCA of the soil ATR-FTIR dataset, along with representative spectra obtained from samples that achieved discrimination within 

the scores plot based on the variation attributed to PCs 4 and 5. The main peaks responsible for the separation between samples have been highlighted and annotated with 

the contributing compounds. 
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4.3.3.2 Discrimination using feature-based data 

Improved separation was investigated by attempting to reveal greater structure in 

the ATR-FTIR data based on other attributes of the soil, such as their visual 

appearance. Further interpretation of chemical-based PCA data using features such 

as soil colour has previously not been demonstrated within the open literature. 

Colour coding of the soil samples in the PCA model based on visually assigned 

groupings (outlined in Chapter 2: Table 2.1) did display clustering, however, these 

clusters were widespread and overlapping with each other (Figure 4.9).  

 

Figure 4.9 3-dimensional PCA scores plot (shown from two perspectives) displaying the variability in 

the visual appearance of soil samples based on their corresponding ATR-FTIR spectra. 

The grey sands again showed the most variation, being spread extensively 

throughout the scores plot. The grey clays, red sands, and light grey sands were able 

to be discriminated from the rest of the population, however, this may be due to 

their smaller sample sizes. Significant overlap was observed in clusters of similar 

colours, for example, yellow, yellow/brown, brown, and red sands, as a lot of the 

variation across the PCs was potentially due to minerals responsible for the red and 

yellow hues of the soils, such as goethite, hematite, and kaolinite (often stained red 

brown from iron oxides (125)). The clustering and separation achieved within this 

model was comparable to that achieved by the PCA models built using 

microspectrophotometry (MSP) data in Chapter 3, indicating that the minerals 

seemingly responsible for most of the variance within the ATR-FTIR model are also 
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associated with the apparent colour of the soils. Whilst this method of interpretation 

was useful for visualising the dataset, it did not add further discrimination between 

soils similar in appearance. 

The PCA model was then grouped according to the dune system from which the soil 

sample originated, outlined in Chapter 2: Table 2.1 (Figure 4.10). Well-defined 

clusters were formed for each dune system, however, the soils from Spearwood, 

Mixed (Spearwood & Bassendean), and Pinjarra Plain were grouped in very close 

proximity to each other, overlapping across most of the PCs. The degree of clustering 

achieved indicates that ATR-FTIR analysis can detect compounds within the soil 

samples in quantitative ratios characteristic of their dune system. Therefore, ATR-

FTIR analysis could potentially provide forensic intelligence to investigators 

concerning specific regions where a soil sample may have originated. No additional 

structure in the dataset was visualised when grouping the soils according to the type 

of location they were collected from (Figure 4.11). 

 

Figure 4.10 3-dimensional PCA scores plot (shown from two perspectives) displaying the variability of 

soil samples from differing dune systems based on their corresponding ATR-FTIR spectra. 
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Figure 4.11 3-dimensional PCA scores plot (shown from two perspectives) displaying the variability of 

soil samples from differing types of locations based on their corresponding ATR-FTIR spectra. 

4.3.3.3 Repeated attempts at discrimination using location-based chemical data 

PCA was repeated on the soil ATR-FTIR data, this time omitting the locations that 

were previously able to be discriminated. PCA performed on only these nine 

locations revealed that 93.8% of the total variance in the dataset could be described 

by the first five PCs, as illustrated in the scree plot (Figure 4.12). 

 

Figure 4.12 Scree plot depicting the cumulative variance retained by each PC in the reduced-sample 

soil ATR-FTIR dataset. 
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Three-dimensional score plots generated using the first three PCs (Figure 4.13) 

resulted in the discrimination of the remaining nine locations. While some clusters 

were situated in close proximity to other locations, there was no overlap between 

them. However, all locations again exhibited separation between their individual 

samples, with two apparent clusters created by each sample’s replicates. The 

inclusion of PCs 4 and 5 when visualising the scores plot did not enhance the 

separation or clustering of any groups, and as a result, the variation attributed to 

these PCs was disregarded. 

 

Figure 4.13 3-dimensional PCA scores plot (shown from two perspectives) generated using the first 

three PCs, displaying the variability of a reduced number of soil samples from different locations based 

on their corresponding ATR-FTIR spectra. 

Most of the separation within the reduced-sample PCA model was due to variation 

within the peaks attributed to kaolinite and quartz, with differences in gibbsite 

concentration also apparent across the loadings from PCs 1-3 (Figure 4.14). PCs 1 & 

2 showed additional influence from peaks produced by organic components within 

the soil samples (mainly humus ~1400 cm-1), while PC-3 showed positive contribution 

from several peaks identified as goethite (670, 3100 cm-1) and hematite (615 cm-1). 

While the compounds attributed to variation within the reduced-sample PCA model 

are the same ones that accounted for the variation within the previous PCA model, 

subtle differences in their concentrations could be detected once the other samples 

were removed. Many of the original samples had more significant differences in their 

spectra that overshadowed the subtle variations seen amongst similar soils, thus, 
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dominating the loadings. These samples had to be removed from the dataset once 

separated to allow for detection of the more subtle variations shown between similar 

samples and utilisation of these differences for their discrimination. 

 

Figure 4.14 Factor loadings plot of PCs 1-3 for PCA of the reduced-sample soil ATR-FTIR dataset. 

4.3.4 Linear discriminant analysis 

LDA was used as a classification technique to predict the original locations of soil 

samples based on their chemical data. The ATR-FTIR data was split into two datasets 

for LDA; two of the three replicates per sample were used to build the calibration 

model, and the remaining one replicate per sample was used as a validation set and 

predicted onto the model to assess its performance. The validation set consisted of 

replicates that were not utilised within the calibration set to ensure no overlap 

between models and a realistic estimation of the model’s performance (105). 

Location 0 was excluded from LDA, due to its limited sample size (only one sample). 

LDA was performed on the ATR-FTIR dataset post-PCA, with each location treated as 

an individual class. This produced a single discriminant function that was used to 

classify replicates from the calibration dataset. 
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This discriminant model returned a calibration accuracy of 96.6% (Table 4.2). While 

five PCs were shown to achieve maximum separation between locations through 

PCA, it was only possible to utilise the first four PCs for LDA, due to the available 

number of samples per location; as LDA involves matrix inversion, the number of 

variables must be smaller than the number of samples involved (30, 105). As Location 

12 was only separated from the population across PC-5, these samples were no 

longer able to be fully discriminated, and as such, one of them was misclassified. Half 

of Location 6’s soils were also misclassified, which was to be expected as they 

overlapped with several other clusters in the comprehensive PCA scores plot due to 

some inter-sample separation and were unable to be discriminated without further 

manipulation.  

This LDA model was then used to predict the locations of 44 samples from the 

validation dataset. 41 samples, or 93.2%, had their location correctly predicted (Table 

4.3). This shows that the model was able to accurately identify some groups that 

overlapped within the scores plot, though the certainty of these predictions is 

unreliable. Location 6 and 12 had samples predicted incorrectly due to some of their 

replicates being misclassified within the calibration dataset. There were also clear 

similarities between soils from Locations 12 and 21, as both these groups had their 

samples incorrectly predicted as originating from each other. Apart from both being 

collected from dense bushland locations within the Spearwood dune system, no 

further commonalities between these groups could be identified. Despite the degree 

of overlap between Locations 1, 4, 6, 7, 13, 14, 19, 20, and 21 within the scores plot 

and the resulting requirement for further discrimination using an isolated PCA model, 

the confidence surrounding these predictions was moderate. The associated 

discriminant values (Table 4.4), measuring the distance between each sample and 

the centroid of each class, showed that approximately half of these samples were 

close to being predicted as originating from at least one other location, while the 

other half were well separated from all other location classes. The discriminant 

values could have potentially been improved by incorporating PC-5 into the analysis 

or utilising a larger number of samples within each class. 

  



 119 

Table 4.2 Number of correct vs incorrect location classifications for samples in the ATR-FTIR calibration 

set using a 4-PC LDA model (percentages rounded to nearest whole number). 

Location Correct Incorrect Classified % Correct 

1 4 0 - 100 

2 4 0 - 100 

3 4 0 - 100 

4 4 0 - 100 

5 4 0 - 100 

6 2 2 4 50 

7 4 0 - 100 

8 4 0 - 100 

9 4 0 - 100 

10 4 0 - 100 

11 4 0 - 100 

12 3 1 21 75 

13 4 0 - 100 

14 4 0 - 100 

15 4 0 - 100 

16 4 0 - 100 

17 4 0 - 100 

18 4 0 - 100 

19 4 0 - 100 

20 4 0 - 100 

21 4 0 - 100 

22 4 0 - 100 

   % Total Correct 
    97 
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Table 4.3 Number of correct vs incorrect location predictions for samples in the ATR-FTIR validation 

set using a 4-PC LDA model (percentages rounded to nearest whole number). 

Location Correct Incorrect Predicted % Correct 

1 2 0 - 100 

2 2 0 - 100 

3 2 0 - 100 

4 2 0 - 100 

5 2 0 - 100 

6 1 1 4 50 

7 2 0 - 100 

8 2 0 - 100 

9 2 0 - 100 

10 2 0 - 100 

11 2 0 - 100 

12 1 1 21 50 

13 2 0 - 100 

14 2 0 - 100 

15 2 0 - 100 

16 2 0 - 100 

17 2 0 - 100 

18 2 0 - 100 

19 2 0 - 100 

20 2 0 - 100 

21 1 1 12 50 

22 2 0 - 100 

   % Total Correct 
    93 
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Table 4.4 Discriminant values of replicates from the ATR-FTIR validation dataset (rounded to three decimal places), with correct predictions shaded green and incorrect 

predictions shaded red. The last column demonstrates how far away the next closest prediction was, as a percentage of the lowest discriminant value obtained. 
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Location 1 Location 2 Location 3 Location 4 Location 5 Location 6 Location 7 Location 8 Location 9 Location 10 Location 11 Location 12 Location 13 Location 14 Location 15 Location 16 Location 17 Location 18 Location 19 Location 20 Location 21 Location 22 

1a -4.475 -22.093 -5.212 -26.287 -13.373 -15.566 -54.611 -31.192 -148.690 -75.951 -64.881 -23.981 -29.176 -19.411 -622.493 -67.059 -39.664 -56.996 -48.640 -31.569 -29.007 -44.895 1 16 

1b -4.546 -16.833 -10.527 -33.021 -17.674 -14.268 -67.386 -24.845 -122.463 -63.739 -68.717 -20.027 -32.084 -19.022 -592.916 -66.681 -33.823 -34.985 -55.386 -34.388 -26.514 -31.748 1 132 

4a -36.558 -50.995 -33.550 -3.632 -8.393 -12.019 -7.681 -110.783 -282.884 -94.923 -18.218 -39.450 -6.674 -13.505 -702.339 -47.785 -38.831 -122.585 -21.093 -4.543 -34.844 -69.493 4 25 

4b -27.230 -40.506 -23.118 -3.353 -5.581 -9.648 -11.187 -92.246 -255.293 -89.444 -23.807 -30.148 -6.366 -11.830 -693.069 -45.665 -37.335 -107.103 -19.174 -5.056 -27.100 -58.907 4 51 

6a -27.037 -45.002 -27.352 -4.127 -5.612 -6.794 -13.191 -93.066 -254.962 -92.775 -25.000 -35.368 -8.136 -11.585 -700.096 -53.547 -37.633 -104.821 -27.062 -5.718 -33.256 -63.340 4 36 

6b -10.643 -27.020 -17.866 -21.207 -12.438 -6.057 -48.148 -44.941 -162.004 -84.896 -59.283 -22.131 -23.617 -18.308 -679.072 -70.034 -42.239 -48.043 -48.935 -21.721 -27.301 -37.612 6 76 

7a -64.570 -88.429 -59.634 -11.449 -22.681 -29.351 -4.208 -158.569 -364.198 -136.962 -23.974 -72.392 -19.634 -32.472 -785.371 -71.604 -65.822 -179.459 -34.902 -15.130 -64.821 -113.482 7 172 

7b -64.520 -73.096 -54.388 -10.711 -22.747 -30.964 -4.162 -154.816 -349.692 -115.778 -16.847 -55.927 -13.133 -28.445 -741.934 -48.647 -55.565 -167.449 -18.199 -10.753 -46.710 -91.232 7 157 

13a -36.561 -35.074 -29.819 -7.554 -11.088 -15.955 -14.733 -104.435 -259.152 -66.522 -12.788 -25.283 -3.429 -9.520 -628.052 -25.363 -24.751 -107.196 -9.219 -4.438 -19.386 -47.408 13 29 

13b -24.990 -30.173 -20.593 -5.669 -5.699 -10.413 -16.499 -86.633 -236.989 -63.889 -16.384 -23.802 -3.668 -5.491 -617.795 -30.658 -21.563 -96.514 -14.100 -4.986 -19.970 -47.102 13 36 

14a -28.679 -22.517 -22.636 -13.994 -12.060 -17.732 -28.023 -85.577 -220.928 -41.479 -14.798 -19.497 -5.983 -5.078 -544.880 -17.542 -11.088 -88.943 -11.544 -10.258 -14.672 -36.234 14 18 

14b -15.477 -26.800 -16.096 -13.119 -6.616 -10.009 -31.615 -66.239 -201.595 -54.946 -26.467 -27.621 -11.472 -4.490 -572.209 -40.820 -16.566 -81.101 -29.450 -14.222 -26.736 -48.622 14 47 

19a -38.605 -31.711 -26.519 -12.495 -14.965 -24.917 -19.518 -103.680 -256.951 -57.262 -13.666 -24.617 -6.247 -11.499 -585.869 -17.334 -22.205 -114.151 -5.071 -10.159 -17.483 -47.633 19 23 

19b -55.722 -33.328 -38.824 -27.052 -31.207 -41.593 -34.334 -117.837 -261.021 -56.044 -23.255 -23.435 -15.332 -24.463 -575.452 -11.684 -30.554 -117.261 -4.132 -20.562 -14.754 -40.286 19 183 

20a -39.487 -49.939 -35.853 -4.336 -9.970 -13.151 -8.022 -114.470 -284.709 -92.136 -16.541 -37.341 -5.825 -13.862 -698.533 -43.624 -37.872 -121.652 -18.307 -3.761 -32.146 -65.502 20 15 

20b -32.029 -33.572 -27.159 -6.307 -9.212 -11.809 -15.351 -96.198 -248.122 -73.395 -18.605 -22.497 -3.948 -10.281 -656.630 -31.842 -29.308 -97.796 -12.357 -3.640 -18.245 -44.250 20 8 

21a -26.128 -9.291 -17.038 -27.663 -22.098 -26.225 -50.162 -62.236 -171.582 -41.241 -40.467 -5.114 -16.955 -16.570 -550.199 -20.190 -22.533 -60.134 -15.476 -22.280 -3.297 -14.228 21 55 

21b -23.509 -7.222 -16.814 -33.859 -25.837 -27.004 -61.264 -50.686 -148.251 -45.666 -53.894 -3.213 -23.474 -21.506 -563.260 -29.527 -28.823 -45.258 -24.437 -28.223 -3.792 -9.031 12 18 
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4.4 Conclusions 

This chapter explored the use of Raman and ATR-FTIR spectroscopy for analysing the 

quartz-recovered fine fraction of Swan Coastal Plain soils, which has previously not 

been demonstrated in the open literature. The quartz-recovered fine fraction was 

used to allow for the detection of subtle variations in composition that could not 

otherwise be identified due to the quartz-dominated nature of the bulk material. This 

data was analysed using chemometric methods in an attempt to differentiate 

between soil samples from different locations. Whilst Raman analysis was 

unsuccessful, PCA and LDA conducted on ATR-FTIR data allowed for full 

discrimination of all samples, including those that produced visually similar spectra. 

Raman spectroscopy has previously been demonstrated for the analysis of soils, 

however, in these reports, extensive sample preparation was required for success 

due to excessive fluorescence (77, 122). These studies were also conducted on soil 

types that were not comparable to the sandy soils found in Perth. Unfortunately, 

Raman analysis of the quartz-recovered fine fraction of sandy soils showed high 

levels of fluorescence, which masked all potential characterisation data captured 

within the spectra. No improvement was seen through further investigation with 

experimental conditions or corrections to the data. As a result, Raman spectroscopy 

was considered unsuitable for the analysis of the quartz-recovered fine fraction of 

soils. 

The use of PCA on ATR-FTIR spectroscopic data resulted in the discrimination of all 

soils based on the locations from which they originated. Factor loadings showed that 

variation was seen within the mineral content of the soil, as well as the organic 

components. The initial PCA model showed appropriate clustering of locations, with 

more than half of the dataset able to be entirely separated from the rest of the 

population. The remaining indistinguishable cluster was extracted and again 

analysed by PCA without the separated samples, and all these overlapping locations 

were then able to be entirely discriminated. Both models did however, display some 

significant separation within location groups, with many samples clustering based on 
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individual samples rather than overall locations, indicating potential issues with 

sampling or a high level of variation within the soil across several sites.  

LDA post-PCA was successful, achieving high classification and validation accuracy 

(96.6% vs. 93.2%). The model was able to correctly predict soils from locations that 

were overlapping within the initial PCA scores plot, though some were close to being 

assigned to incorrect classes; hence, there was not a high level of confidence 

surrounding their classification. The inclusion of additional PCs when conducting LDA 

may account for more of the variation between soils and result in higher-confidence 

predictions. 

Overall, chemometric analysis of ATR-FTIR data was successful in discriminating 

between soils from different locations and predicting the locations of similar 

samples. The ATR-FTIR spectra indicated the presence of both mineralogical and 

organic components within the soil, and these showed correlation with the 

appearance of the soil and the dune system from which the soil originated. This 

meant that unlike the MSP methods demonstrated in Chapter 3, the ATR-FTIR PCA 

and LDA models were able to discriminate between soils that were similar in 

appearance. This is built upon in Chapter 5 with the exploration of XRD to see if 

further discrimination can be achieved through the use of additional methods post-

ATR-FTIR analysis. 

ATR-FTIR shows great promise for efficient discrimination of visually similar sandy 

soils and can be used in sequence with other techniques to separate soils that were 

previously unable to be individualised. This method can easily be incorporated into 

forensic casework to provide further discrimination between similar samples in an 

objective manner, with the conclusions reinforced by a scientific measure of 

similarity that can be presented as evidence in court. It was apparent that sampling 

methods may have influenced the variability of the soil and should be explored 

further. This technique could potentially also be developed for use as a predictive 

screening tool that could provide forensic intelligence throughout the investigative 

process, allowing detectives to focus on areas of interest. However, this would 

require more in-depth validation testing and expansion of the sample population. 
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Whilst the dataset for this study was intended to imitate a forensic casework scenario 

as closely as possible with limitations on sample size, this study should be expanded 

to include a more complex range of soils and a greater number of samples analysed 

per site. 
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Chapter 5. Analysis of the Quartz-Recovered Fine Fraction of 

Western Australian Soils using X-Ray Diffraction 

Paired with Chemometrics 

Portions of this chapter have been published in the following article: 

T. G. Newland, K. Pitts, and S. W. Lewis. "Multimodal spectroscopy with 

chemometrics for the forensic analysis of Western Australian sandy soils." Forensic 

Chemistry, 2022. 28: 100412. 
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5.1 Introduction 

Whilst Chapter 4 demonstrated effective discrimination of soils using attenuated 

total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, it was 

challenging to confidently ascertain from the complicated, overlapping loadings 

which components within the soils were responsible for their discrimination. 

Additionally, there were several samples that were not well-separated from the rest 

of the population in first pass principal component analysis (PCA) models, and as 

such, were not able to have their location predicted correctly using linear 

discriminant analysis (LDA). The use of another reputable technique in sequence with 

ATR-FTIR could improve the confidence of the results, confirm the associations made, 

and potentially even provide additional discrimination of some soils, using 

complementary information to that already obtained through previous analysis. 

X-ray diffraction (XRD) is commonly applied as a non-destructive method that can 

provide both qualitative and semi-quantitative information on the inorganic material 

present within soil samples (7, 24, 54, 72). It is also a sensitive technique with small 

sample size requirements; it can successfully analyse milligram quantities of soil, 

making it suitable for analysis of forensic trace evidence (7, 24, 72). There are several 

studies published that make use of XRD for forensic analysis of soils, though most of 

these were conducted on different soil types to those found in the Swan Coastal Plain 

(5, 7, 19, 20, 56, 72). More recently, Melo et al. investigated the characterisation of 

the sand fraction of subtropical soils using XRD and chemometrics, however, their 

method was deemed unsuitable for effective discrimination between these types of 

dry, sandy soils (54). A method for comparison of the quartz-recovered fine fraction 

was developed by Pitts and Clarke, which allowed for differentiation of minute and 

fractionated forensic samples using XRD (94). This method was shown to be suitable 

for soils such as those found in Perth, where the soil texture is dominated by quartz 

sand (94). However, it lacked any chemometric interpretation of results, relying 

solely on discrimination by database comparisons and visual examination of the XRD 

patterns.  
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While many studies have demonstrated methods for forensic soil analysis, fewer 

reports have explored the reproducibility of their technique (57, 73, 126, 127). 

Reproducibility is considered one of the most important aspects that should be 

assessed when validating a method for operational use, as outlined in the National 

Association of Testing Authorities – Technical Note 17 (128). Adhering to validated 

standards in a forensic setting improves the quality and reliability of the results 

obtained, and is therefore a crucial component to forensic evidence analysis (66, 

129). Validation and verification of a technique is also necessary for resulting 

evidence to be considered admissible when being presented in court (129). In 2020, 

Pitts and Clarke demonstrated the reproducibility of the XRD data obtained through 

use of the quartz-recovered fine fraction by repeated analysis of a single soil sample 

and replicate analysis of eight sub-samples from the same bulk soil (94). However, 

their study only made use of a single XRD instrument, as is the case in most literature, 

so the effects of instrumental variation on method reproducibility were not able to 

be evaluated. There are many instrumental factors related to XRDs that can impact 

the results obtained, including instrument sensitivity and stability, optical alignment, 

and specific programme or software limitations (94). Forensic examiners would 

therefore encounter these issues when criminal investigations outlast the lifetime of 

the XRD used for analysis, such as in lengthy cold-cases, or when equipment is 

upgraded partway through an active investigation. It is also recognised that these 

diffractometers are expensive capital items, and some forensic laboratories may only 

have access to older instrumentation. In these instances, would it be viable to use 

the same method across multiple instruments that have different capabilities, and 

directly compare this data? 

In this chapter, XRD combined with chemometrics was explored for the forensic 

analysis of the quartz-recovered fine fraction of soils from the Swan Coastal Plain in 

Perth, Western Australia. The methodology carried out is an advancement on the 

work of Pitts and Clarke by utilising their developed XRD method on a new set of soil 

samples, and with the addition of chemometric methods applied to the data. 

Chemometric analysis can not only allow for objective interpretation of the 

information collected, but can also increase the efficiency of the interpretation when 
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conducting analysis of many samples within a large dataset simultaneously. Data was 

collected using three different XRD instruments and compared to assess any 

variation attributed to instrument performance, hence providing a measure of the 

reproducibility of the method. PCA was performed on each XRD dataset to assess 

whether soils could be distinguished based on their location, or other attributes of 

the soil (such as dune system, visual appearance, or location type). LDA was then 

used on the combined datasets to classify and predict replicate samples using the 

independent test set method, and the accuracy of the model was assessed. 

This chapter also expands on published literature even further by applying the above 

chemometric methods to the full XRD patterns. In published analyses of XRD 

datasets, generally peak picking or profile fitting occurs first, and the data generated 

from this is then utilised for multivariate analysis (19, 20, 72, 94). This study however, 

made use of the whole XRD pattern for chemometric analysis (minus the reflections 

associated with the low background plates) in the same way that 

microspectrophotometric (MSP) and ATR-FTIR spectra are used in their entirety. 

There are several advantages to doing this; use of the whole patterns can allow subtle 

variation that is undetectable by the human eye to be captured, it decreases the 

subjectivity surrounding the analysis by removing the need for human interpretation 

prior to statistical interpretation, and it is both faster and less complicated for the 

examiner when faced with large numbers of samples.  

5.2 Experimental 

Soil samples were collected as outlined in Sections 2.2 and 2.3.1. The quartz-

recovered fine fractions were prepared from each of the soil samples, as described 

in Section 2.4. XRD patterns were collected from the quartz-recovered fine fractions 

as described in Section 2.5.4. PCA and LDA were then conducted on the resulting data 

as outlined in Section 2.6. 
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5.3 Results and discussion 

5.3.1 Analysis of soils using XRD 

XRD patterns were collected from the quartz-recovered fine fractions of 45 Swan 

Coastal Plain soil samples (outlined in Chapter 2: Table 2.1) using three different XRD 

instruments; at ChemCentre, half of the soil samples were analysed using a 1992 

Philips Analytical PW1820 and the other half were analysed using a 2019 Malvern 

PANalytical EMPYREAN III with its settings adjusted to match those of the Phillips 

instrument as closely as possible, and at the Commonwealth Scientific and Industrial 

Research Organisation (CSIRO), the entire soil collection was analysed again using a 

Malvern PANalytical EMPYREAN II operating at more modern capabilities (full details 

can be found in Section 2.5.4). Though the upgrade in ChemCentre equipment 

midway through analysis was unintentional, this presented a unique opportunity to 

assess the reproducibility of the method across older and newer instrumentation. 

The two modern diffractometers were of similar quality and capability, however, 

because the ChemCentre instrument analysis set-up was intended to replicate the 

older diffractometer to create a uniform ChemCentre dataset, it was expected that 

the CSIRO instrument would provide the best quality data. This study was therefore 

not intended to provide a direct comparison of instrumental capabilities between 

ChemCentre and CSIRO, but rather to demonstrate the degree of variation produced 

through analysis using different instrumentation. A selection of XRD patterns 

obtained from ChemCentre analysis has been illustrated in Figure 5.1, and from 

CSIRO analysis displayed in Figure 5.2, to demonstrate the variation in minerals 

observed across the collection of soil samples. 

Assignments were based on reference patterns of minerals known to be found within 

Swan Coastal Plain soils (Table 5.1) (36, 94, 98). Due to the degree of overlap 

occurring in the reflections of some minerals, the most intense reflection for each 

mineral was used to identify whether it may be present within the soil samples, and 

1 – 2 secondary reflections were then used to confirm its presence. Reflections that 

showed contribution from multiple different sources, e.g., quartz and microcline at 

approximately 24°, were generally not assigned to a specific mineral unless the 
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dominant sources could be confirmed, as in this instance. The presence of six 

dominant minerals were detected within these XRD patterns – quartz, kaolinite, 

microcline feldspar, goethite, gibbsite, and calcite. Most of the variation seen 

between samples was within the intensities or presence/absence of these 

reflections. For example, Sample 3a (from the Bassendean dunes) contained 

significantly higher concentrations of gibbsite in comparison to other samples, while 

Sample 7a (from the Pinjarra Plain) contained higher concentrations of goethite. 

Sample 15a was dominated by calcite, containing much lower relative concentrations 

of every other mineral, while Sample 11a was dominated by kaolinite and quartz, and 

Sample 19a by quartz and microcline feldspar.  

Closer visual inspection of the patterns also indicated much smaller contributions 

likely from chloritised vermiculite (7.2°, 36.4°), mica (10.3°), anatase (29.5°), 

aragonite (30.5° – left shoulder of quartz reflection, 38.7°, 53.8°), and magnesian 

calcite (34.7° – right shoulder of calcite reflection) in some samples. Though due to 

the size of these in comparison to the level of noise and the general lack of secondary 

reflections present, these were difficult to accurately characterise, and so their 

presence was only inferred due to the likely occurrence of these minerals in Swan 

Coastal Plain soils (36, 94, 98), not confirmed. These smaller mineral reflections were 

easier visualised within the CSIRO patterns, primarily due to the improved signal to 

noise ratio. These were the only visible differences between ChemCentre and CSIRO 

patterns; all characteristic reflections of the dominant minerals and their intensities 

were comparable between the sources of analysis.  

Interestingly, samples that were analysed using the older ChemCentre 

instrumentation (Samples 3a and 7a) exhibited less noise than those analysed using 

the newer ChemCentre XRD (Samples 11a, 15a, and 19a). This was likely due to the 

interpolation that occurred when replicating the previous set-up on the newer 

instrumentation, lowering the quality of the data obtained. This difference was noted 

for future PCA analysis to assess if any separation was displayed between ‘old’ and 

‘new’ batches based on noise. Identifying all possible variations within the XRD 

patterns by hand would be a labour-intensive process involving careful human 
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examination and judgement. For this reason, chemometric interpretation is 

preferred and was applied to efficiently and objectively identify and maximise the 

differentiation between samples. 

 

Figure 5.1 Baseline corrected and normalised XRD patterns obtained from ChemCentre, showing the 

variability in composition of a selection of soil samples collected from differing locations within the 

Swan Coastal Plain. Annotations were based off assignments outlined in Table 5.1. 

 

Figure 5.2 Baseline corrected and normalised XRD patterns obtained from CSIRO, showing the 

variability in composition of a selection of soil samples collected from differing locations within the 

Swan Coastal Plain. Annotations were based off assignments outlined in Table 5.1. 
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Table 5.1 Common minerals found in Swan Coastal Plain soils, and their most intense identifying XRD 

reflections1 (rounded to one decimal place) that were used as a guide to identify minerals within the 

XRD patterns. 

Co Radiation 2θ (°) d-Spacing (Å) ICDD Reference Code 

Vermiculite 7.2 14.3 00-060-0341 

Clinochlore  7.2 14.2 01-080-1119 

Muscovite Mica 10.3 10.0 01-073-9865 

Kaolinite 14.3 7.2 00-058-2005 

Clinochlore  14.4 7.1 01-080-1119 

Bohmite 16.8 6.1 00-021-1307 

Gibbsite 21.3 4.8 00-033-0018 

Clinochlore  21.7 4.7 01-080-1119 

Muscovite Mica 23.2 4.4 01-073-9865 

Gibbsite 23.6 4.4 00-033-0018 

Quartz 24.3 4.2 00-046-1045 

Microcline Feldspar 24.5 4.2 00-019-0932 

Goethite 24.8 4.2 04-013-6663 

Kaolinite 28.9 3.6 00-058-2005 

Anatase 29.5 3.5 01-085-5943 

Aragonite 30.5 3.4 00-041-1475 

Quartz 31.0 3.3 00-046-1045 

Microcline Feldspar 31.5 3.3 00-019-0932 

Microcline Feldspar 32.0 3.2 00-019-0932 

Bohmite 32.8 3.2 00-021-1307 

Calcite 34.3 3.0 00-066-0867 

Magnesian-Calcite 34.7 3.0 01-086-2336 

Vermiculite 36.4 2.9 00-060-0341 

Aragonite 38.7 2.7 00-041-1475 

Muscovite Mica 41.0 2.6 01-073-9865 

Goethite 43.2 2.4 04-013-6663 

Calcite 46.1 2.3 00-066-0867 

Aragonite 53.8 2.0 00-041-1475 

Calcite 55.8 1.9 00-066-0867 

Calcite 57.0 1.9 00-066-0867 
1ICDD (2022), PDF-4 Minerals 2022, version number: 4.2211. 
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5.3.2 Principal component analysis 

In a similar approach to that carried out in Chapters 3 and 4, PCA was applied to the 

XRD data to assess whether soils could be differentiated based on their location, or 

any other attributes of the soil. In this chapter, it was also utilised as a tool to detect 

and explore any variation evident between patterns collected using different XRD 

instrumentation. 

5.3.2.1 Discrimination using location-based ChemCentre data 

PCA performed on the ChemCentre XRD patterns revealed that 85.1% of the total 

variance in the dataset could be described by the first five principal components 

(PCs), as illustrated in the scree plot (Figure 5.3). However, upon visualisation of the 

influence of PC-5 on the scores plots, it did not improve the discrimination of soils, 

and hence the first four PCs (accounting for 78.6% of the variance) were utilised for 

the PCA model.  

 

Figure 5.3 Scree plot depicting the cumulative variance in the ChemCentre XRD dataset retained by 

each PC. 

Three-dimensional score plots generated using these PCs (Figure 5.4) resulted in 

most of the soils clustering based on the locations from which they were collected, 

however, samples from Locations 19 and 21 were shown to overlap with Locations 2 

and 12 along PCs 1-3. Locations 1, 2, 6, 9, and 11 all showed significant intra-site 
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variability, with samples from the same location separating within the model. Three 

of these sites were subject to a high degree of human interference, being both easily 

accessible and highly managed e.g., a garden bed within a public park or roadside 

verge. It is therefore logical to draw the conclusion that human interference could 

have contributed to the variation shown across a number of these sites. The other 

two sites were dense bushland that produced grey sands, indicating higher inherent 

variability in these soils; previous chapters have demonstrated the same trends in 

grey bushland sands.  

 

Figure 5.4 3-dimensional PCA scores plots generated using the first four PCs, showing the variability of 

soil samples from different locations based on their corresponding ChemCentre XRD patterns. 

In contrast to the ATR-FTIR model produced in Section 4.3.3, XRD achieved improved 

discrimination of the samples from Locations 4, 7, 13, 14, and 20. Modelling based 

on ATR-FTIR spectra had these clusters overlapping in initial trials, whereas using the 
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XRD data allowed for enhanced separation of nearly all these groups, with all intra-

site samples still clustered closely. The XRD model also managed to reduce the intra-

location separation seen in the ATR-FTIR model between samples originating from 

Locations 8 and 18. Chemometric analysis of the full XRD pattern shows strong 

promise for discriminating soils that cannot be entirely individualised through PCA of 

the ATR-FTIR data alone. The inclusion of PC-4 when visualising the scores plot 

allowed for the discrimination of Locations 6, 9, and 21 (Figure 5.4), leaving only 

Locations 1, 2, and 19 unable to be individualised within the XRD model. As Locations 

1 and 19 were difficult to differentiate across both ATR-FTIR and XRD models, the 

variability within these bushland soils was emphasised. Despite these challenges, all 

three of these locations were able to be differentiated by PCA using ATR-FTIR data, 

highlighting the importance of using several complementary techniques within a 

sequence to achieve maximum differentiation between samples. 

The factor loadings for the first four PCs were studied to determine the reflections in 

the XRD patterns that were associated with the discrimination of samples along each 

component (Figure 5.5). There was some uncertainty stemming from identification 

based on the XRD pattern alone as some reflections were difficult to resolve, for 

example kaolinite and halloysite, however, the presence of halloysite is questionable 

in sandy soils considering it is typically derived from igneous rock (130-132). Hence, 

using the full pattern with PCA to capture all the information present was valuable, 

so that complete identification was not essential. It was also noted that mica, 

aragonite, and magnesian calcite were detected within the loadings despite being 

difficult to visualise within the XRD patterns, illustrating the advantage that 

chemometric interpretation has over human interpretation, as it can easily identify 

subtle variation in minerals that visual examination cannot. In this instance, these 

minerals did not significantly contribute to the separation between samples, but may 

be of assistance as the dataset grows to include more Quindalup soils. 

The loadings plot for PC-1 exhibited an overall positive correlation with microcline 

feldspar and quartz, and a negative correlation with calcite. Samples from location 

15 were best separated along PC-1 in a negative direction, and therefore were 

assumed to have higher concentrations of calcite and lower concentrations of 



 136 

microcline feldspar and quartz in their soil compared to other samples. This was 

confirmed by examining the original, pre-processed XRD patterns. Location 15 soils 

originated from the Quindalup dune system, nearest to the coast (as illustrated in 

Chapter 1: Figure 1.2), which is known to contain higher concentrations of calcite and 

lower relative quartz levels, due to the presence of marine-life and limestone (36, 

94). 

The loadings plot for PC-2 appeared to be positively influenced by kaolinite, with 

possible smaller contribution from goethite and gibbsite, and negatively influenced 

by calcite, microcline feldspar, and quartz. Location 15 soils were once again the most 

negative along PC-2, primarily due to their significantly higher concentrations of 

calcite relative to other samples. Samples from Locations 0 and 7 were positioned at 

the positive end of PC-2, as they contained higher amounts of kaolinite, goethite, 

and/or gibbsite. These soils all originated from the Pinjarra Plain which represents an 

accumulation of fluvial deposits, and hence these soils can contain relatively high 

concentrations of these minerals (43, 94). 

The loadings plot for PC-3 was positively correlated with quartz and microcline 

feldspar, and negatively correlated with calcite, microcline feldspar, quartz, and 

kaolinite. Quartz and microcline feldspar were correlated with both positive and 

negative loadings across PC-3, so the original XRD patterns were assessed to see 

whether z-offset corrections were needed between the two different instruments 

used; this was not required, so the split reflections were presumed to be due to a 

potential normalisation issue, and as such, their influence on the loadings data was 

negated. Due to this, the separation achieved between samples along PC-3 was not 

significant, with samples from locations 8, 7, and 15 positioned most negatively 

presumably due to their higher relative concentrations of calcite and/or kaolinite.  

The loadings plot for PC-4 exhibited positive association with quartz, and gibbsite to 

a lesser degree, and negative association with microcline feldspar and kaolinite. 

Location 9 was best separated along PC-4 in a positive direction, followed by Location 

3, signifying higher relative amounts of quartz and/or gibbsite within these soils. 

These samples were the only ones that originated from the Bassendean dune system, 
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which has previously been shown to be dominated by quartz and gibbsite in 

comparison to the more westerly systems (36, 94). 

 

Figure 5.5 Factor loadings plot of PCs 1-4 for PCA of the ChemCentre XRD dataset, with the main 

reflections of interest highlighted and annotated with their contributing compounds. 

The inclusion of samples from additional non-metropolitan sites could help to 

increase separation. For example, aluminium substitution for iron within goethite will 

shift the positioning of goethite reflections, potentially allowing for greater 

differentiation between soils containing variably substituted goethite (50, 94, 133). 

This could also assist with determining the sample’s original location, as Swan Coastal 

Plain soils generally experience more substitution by aluminium compared with the 

iron-rich soils located further inland (98, 134). The same phenomenon could also be 

applied to other minerals such as kaolinite and vermiculite (chloritized or not), where 

numerous substitutions are possible. Hence using the full XRD pattern, which 

captures any shifts away from ‘standard’ reflection positions, is recommended. 

5.3.2.2 Discrimination using feature-based ChemCentre data 

As XRD specifically identifies the minerology of the soil samples, the PCA model was 

re-visualised (Figure 5.6) to present the samples grouped according to the dune 
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system within the Swan Coastal Plain from which they originated (outlined in Chapter 

2: Table 2.1). Visual discrimination of the four dune systems was achieved, despite 

the spread of the samples within each cluster, confirming that the variation in 

mineral composition detectable by XRD was associated with the soils’ original dune 

system. Soils from the Pinjarra Plain, located further inland than the other systems, 

were shown to contain higher relative levels of kaolinite in comparison to other 

samples. Bassendean soils were indicated to contain higher relative concentrations 

of quartz, as demonstrated in previous studies (94). Samples collected from the 

Spearwood dunes were also consistent with this previous study, containing higher 

levels of microcline feldspar and mica than their easterly counterparts (94). 

Quindalup soils contained higher levels of calcite, due to their westerly coastal 

positioning (36, 94). These trends allowed the dune systems to cluster and be 

discriminated from one another within the scores plot. 

 

Figure 5.6 3-dimensional PCA scores plot (shown from two perspectives) displaying the variability of 

soil samples from differing dune systems based on their corresponding ChemCentre XRD patterns. 

When samples were grouped according to the ChemCentre instrumentation that was 

used for their analysis, the model did exhibit broad clustering based on these two 

‘old’ and ‘new’ batches (Figure 5.7). This may be coincidental, as most of the variation 

across the loadings was clearly due to differences in mineral content, however, it is 

also possible that the variation in signal-to-noise ratio was unintentionally 

encapsulated within the loadings, and was therefore influencing the model. 
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Figure 5.7 3-dimensional PCA scores plot (shown from two perspectives) displaying the variability of 

soil samples analysed with different XRD instrumentation, based on their corresponding ChemCentre 

XRD patterns. 

Improved separation was again investigated by grouping the samples based on other 

attributes of the soil, such as their visual appearance (outlined in Chapter 2: Table 

2.1). This resulted in poorly formed clusters that significantly overlapped with other 

classes (Figure 5.8). The only group that was able to be discriminated from the rest 

of the population was the red-coloured soils, however, these were still situated in 

close proximity to other samples. The presence of some distinctively coloured 

minerals such as goethite and kaolinite (often stained red brown from iron oxides 

(125)) are evidently shaping the model, however, there are other compounds 

influencing the PCs that are likely not associated with the overall colour of the soils. 

The use of visual colour to group samples within the model did not give increased 

discrimination over grouping based on locations. It is likely that while the appearance 

of the soil is linked to the mineralogy, the minerals responsible for colour are present 

at low levels and hence not significant in the XRD patterns seen. This is especially 

true for the iron oxides, with a hint of iron making soils coloured. It is expected that 

there would also be small amounts of organic material present within samples which, 

even if small, would contribute to the colour of the soils without being identified by 
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XRD. No additional structure in the dataset was visualised when grouping the soils 

according to the type of location that they were collected from (Figure 5.9).  

 

Figure 5.8 3-dimensional PCA scores plot (shown from two perspectives) displaying the variability in 

the visual appearance of soil samples based on their corresponding ChemCentre XRD patterns. 

 

Figure 5.9 3-dimensional PCA scores plot (shown from two perspectives) displaying the variability of 

soil samples from differing types of locations based on their corresponding ChemCentre XRD patterns. 

5.3.2.3 Discrimination using CSIRO data 

PCA performed on the CSIRO XRD patterns revealed that 85.2% of the total variance 

in the dataset could be described by the first four PCs, as illustrated in the scree plot 

(Figure 5.10). Three-dimensional score plots generated using the first three PCs 

(Figure 5.11) resulted in a similar degree of clustering compared to the ChemCentre 
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model. Samples from Locations 19 and 21 showed improved discrimination, no 

longer overlapping with other clusters across PCs 1-3. Inspection of both the 

ChemCentre and CSIRO XRD patterns for Location 19 (Figure 5.12) revealed the key 

difference between them to be the signal-to-noise ratio, which was enhanced in the 

modern CSIRO patterns and hence allowed for improved detection of some 

additional subtle mineral reflections, such as gibbsite at 21.3°.  

 

Figure 5.10 Scree plot depicting the cumulative variance in the CSIRO XRD dataset retained by each 

PC. 

However, in addition to Locations 1, 2, 6, 9, and 11, Location 4 also showed significant 

intra-site variability between its samples. Further examination of these XRD patterns 

(Figure 5.12) revealed that the CSIRO pattern for Sample 4b was missing the basal 

kaolinite reflection at 14.3°. While this reflection has been shown to be affected by 

the thermal collapse of kaolinite, this generally occurs after heating, and these 

samples were stored and analysed at room temperature (135). The absent kaolinite 

reflection also appears to be associated with lower reflection intensities across the 

entire XRD pattern. It is therefore more likely to be due to an alteration effect of the 

sample, such as drying or ageing, or the other sample deposits being too thin and 

increasing preferred orientation of the secondary clay minerals, causing 

enhancement of basal peak intensities within the 4a and ChemCentre 4b samples 
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(94, 136). However, this could not be confirmed without further repeated analysis of 

the sample. 

 

Figure 5.11 3-dimensional PCA scores plots generated using the first four PCs, showing the variability 

of soil samples from different locations based on their corresponding CSIRO XRD patterns. 

The inclusion of PC-4 when visualising the scores plot allowed for the further 

discrimination of Locations 6 and 9 (Figure 5.11), this time leaving Locations 1, 2, 4, 

and 11 unable to be individualised within the model. So while the ChemCentre model 

was able to discriminate Location 4 and 11 soils and the CSIRO model was not, the 

CSIRO model was able to discriminate Location 19 soils unlike the ChemCentre 

model. The variation seen across samples from Locations 4 and 19 was tentatively 

attributed to alteration / orientation effects and signal-to-noise ratio, as outlined 

above, however, the differences in Location 11’s patterns (Figure 5.12) appeared to 

be due to sampling variation between duplicate samples, or inherent variation within 
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the soil from this site. Overall, the only soils that were unable to be discriminated 

within any XRD models were those from Locations 1 and 2. As previously stated, 

these locations were both discriminated within the ATR-FTIR models presented in 

Chapter 4, reinforcing the enhanced capabilities of the method when performed 

within an analysis sequence, rather than in isolation. 

 

Figure 5.12 XRD patterns obtained from soil samples from Locations 4, 11, and 19, illustrating both 

the variation in patterns between different instrumentation, and between duplicate samples. 

The loadings plot for the CSIRO model was largely the same as that from the 

ChemCentre model, with a few variations in reflection intensities (Figure 5.13); PC-1 

showed a slight reduction in the degree of negative influence attributed to calcite, 

PC-2 showed less contribution from goethite and a reduction in influence attributed 
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to kaolinite, quartz, and microcline, and PC-4 showed an increase in influence 

attributed to kaolinite with a simultaneous decrease in influence from microcline. 

PC-3 was flipped in comparison to the ChemCentre loadings, and quartz and 

microcline no longer displayed any normalisation errors, leaving positive 

contributions from calcite, kaolinite, and quartz, and negative contributions from 

microcline feldspar.  

 

Figure 5.13 Factor loadings plot of PCs 1-4 for PCA of the CSIRO XRD dataset, with the main reflections 

of interest highlighted and annotated with their contributing compounds.  

The CSIRO loadings also detected variation in some of the minerals seen in lower 

concentrations within the soil samples due to its increased sensitivity, e.g., mica, 

which were not encapsulated by the ChemCentre loadings. However, the influence 

attributed to these minerals was again not significant. The variations seen between 

the loadings plots were substantial enough to alter the discrimination of samples 

along PC-3, but most samples were situated in comparable positions on PCs 1, 2, and 

4 relative to the ChemCentre model. For example, Location 15 was still the most 

separated along PCs 1 and 2, with Location 0 located on the extreme opposite side 

of PC-2, and Location 9 was again the most separated along PC-4. This highlights the 
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reproducibility of the method, despite utilising multiple XRD instruments with 

differing capabilities. 

5.3.3 Linear discriminant analysis 

LDA was used as a classification technique to predict the original locations of soil 

samples based on their chemical data. The XRD data from both ChemCentre and 

CSIRO were combined to produce one dataset for use with LDA. This was done to 

ensure an appropriate number of samples within each location class, and hence 

increase the reliability of the model. To do this, CSIRO XRD patterns were adjusted 

for their step size post-analysis to match the 0.05° step size of the ChemCentre XRD 

patterns, and ChemCentre XRD patterns were truncated from 5–80° 2θ to match the 

range of the CSIRO patterns (details of how this was done can be found in Section 

2.6.2).  

The full dataset was then split into two for PCA-LDA; three out of the four replicates 

per location were used to build the calibration model, and the remaining one 

replicate was used as a validation set and predicted onto the model to assess its 

performance. The validation set consisted of replicates that were not utilised within 

the calibration set, to ensure no overlap between models and a more realistic 

estimation of the model’s performance. LDA was conducted twice; firstly, using all of 

the ChemCentre patterns and one replicate from each of CSIRO’s samples as the 

calibration set, and the remaining CSIRO patterns as the validation set, and then 

swapping the data so that all of the CSIRO patterns and one replicate from each of 

ChemCentre’s samples were used as the calibration set, and the remaining 

ChemCentre patterns were the validation set. Location 0 was excluded from LDA, due 

to its limited sample size (only two replicates total). While up to four PCs allowed 

maximum separation between locations through PCA, it was only possible to utilise 

the first two PCs for LDA, due to the available number of samples per location. 

5.3.3.1 Predicting CSIRO’s validation samples onto the XRD LDA model 

LDA was performed on the combined XRD dataset post-PCA, with each location 

treated as an individual class. This discriminant model returned a calibration accuracy 
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of 65.1% (Table 5.2). The majority of the locations misclassified were those that 

either were unable to be separated within the PCA scores plots, or only discriminated 

via PCs 3 or above. The combination of the ChemCentre and CSIRO datasets meant 

that the LDA model had increased uncertainty compared to the PCA models, as it not 

only encapsulated variation based on sample minerology and sample preparation, 

but also variation due to instrumental analysis. 

Table 5.2 Number of correct vs incorrect location classifications for samples in the first combined XRD 

calibration set using a 2-PC LDA model (percentages rounded to nearest whole number). 

Location Correct Incorrect Classified % Correct 

1 0 3 2, 5, 6 0 

2 1 2 1 & 19 33 

3 2 1 20 67 

4 3 0 - 100 

5 3 0 - 100 

6 3 0 - 100 

7 2 1 20 67 

8 2 1 18 67 

9 1 2 2 & 12 33 

10 3 0 - 100 

11 1 2 17 & 20 33 

12 1 2 1 & 2 33 

13 2 1 11 67 

14 3 0 - 100 

15 3 0 - 100 

16 3 0 - 100 

17 3 0 - 100 

18 2 1 22 67 

19 1 2 2 & 13 33 

20 0 3 3 & 7 0 

21 2 1 9 67 

22 2 1 18 67 

   % Total Correct 
    65 
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This LDA model was then used to predict the locations of 22 CSIRO replicates from 

the validation dataset. Eight samples, or 36.4%, had their location correctly predicted 

(Table 5.3). Despite Locations 8, 13, and 22 being misclassified within the calibration 

set, they all achieved 100% validation accuracy, though the confidence surrounding 

several of these predictions was low; the associated discriminant values (Table 5.4), 

indicating the distance between the sample and the centroid of each class, showed 

that the majority of samples were close to being predicted as originating from at least 

one other location. Most of the samples that exhibited 100% calibration accuracy 

also achieved the same validation accuracy, except for Locations 4, 5, and 6, due in 

part to the significant intra-site variation. As expected, all of the samples that were 

unable to be discriminated within the scores plots of either XRD model (Locations 1, 

2, 4, 11, and 19) had their locations predicted incorrectly. The level of separation 

between classes, and hence the resulting discriminant values, could have potentially 

been improved by incorporating further PCs into the analysis, or utilising a larger 

number of replicates within each class so that separate LDA models could be created 

for ChemCentre versus CSIRO patterns. 
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Table 5.3 Number of correct vs incorrect location predictions for samples in the CSIRO validation set 

using a 2-PC LDA model (percentages rounded to nearest whole number). 

Location Correct Incorrect Predicted % Correct 

1 0 1 6 0 

2 0 1 1 0 

3 0 1 7 0 

4 0 1 11 0 

5 0 1 4 0 

6 0 1 8 0 

7 0 1 20 0 

8 1 0 - 100 

9 0 1 22 0 

10 1 0 - 100 

11 0 1 17 0 

12 0 1 9 0 

13 1 0 - 100 

14 1 0 - 100 

15 1 0 - 100 

16 1 0 - 100 

17 1 0 - 100 

18 0 1 8 0 

19 0 1 13 0 

20 0 1 4 0 

21 0 1 18 0 

22 1 0 - 100 

   % Total Correct 
    36 
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Table 5.4 Discriminant values of replicates from the CSIRO XRD validation dataset (rounded to three decimal places), with correct predictions shaded green and incorrect 

predictions shaded red. The last column demonstrates how far away the next closest prediction was, as a percentage of the lowest discriminant value obtained. 
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Location 1 Location 2 Location 3 Location 4 Location 5 Location 6 Location 7 Location 8 Location 9 Location 10 Location 11 Location 12 Location 13 Location 14 Location 15 Location 16 Location 17 Location 18 Location 19 Location 20 Location 21 Location 22 

1b -12.525 -19.617 -38.846 -29.549 -17.495 -3.934 -44.298 -4.452 -17.779 -128.864 -51.071 -14.050 -40.315 -17.352 -249.575 -44.528 -71.732 -7.614 -28.453 -39.857 -14.620 -9.296 6 13 

2b -4.618 -8.853 -19.126 -12.242 -6.008 -4.783 -21.875 -10.072 -8.704 -122.304 -31.740 -6.712 -22.873 -14.023 -239.365 -36.802 -57.553 -6.768 -15.048 -19.877 -8.118 -6.232 1 4 

3b -12.485 -8.800 -3.667 -5.211 -9.163 -30.455 -3.567 -40.876 -10.850 -100.888 -9.613 -13.059 -6.676 -22.449 -197.573 -29.611 -35.057 -24.548 -7.556 -3.600 -14.479 -20.167 7 1 

4b -26.032 -16.935 -10.275 -19.192 -24.397 -49.924 -12.896 -56.183 -18.157 -63.327 -4.510 -22.582 -6.215 -24.866 -136.517 -18.267 -15.827 -35.651 -10.591 -9.606 -21.890 -30.806 11 38 

5b -6.526 -6.400 -6.353 -3.820 -4.386 -17.828 -6.349 -27.452 -7.902 -114.046 -16.524 -8.418 -10.870 -18.523 -221.637 -33.159 -44.865 -16.007 -8.416 -6.613 -10.194 -12.947 4 15 

6b -16.675 -24.227 -46.383 -36.964 -23.032 -5.645 -53.037 -4.128 -21.732 -127.660 -57.361 -17.616 -46.400 -18.865 -247.376 -46.236 -74.902 -9.106 -33.484 -47.429 -17.701 -11.503 8 37 

7b -21.720 -14.740 -6.478 -12.159 -18.297 -44.886 -6.643 -54.586 -16.816 -86.181 -6.790 -20.601 -6.609 -27.649 -170.678 -26.998 -26.913 -34.538 -10.300 -6.001 -21.177 -29.384 20 10 

8b -16.657 -23.702 -46.059 -37.382 -23.343 -5.928 -53.200 -3.742 -21.050 -121.765 -55.723 -17.101 -45.203 -17.381 -238.967 -43.388 -71.436 -8.509 -32.502 -47.058 -16.924 -10.937 8 58 

9b -4.795 -7.103 -19.459 -15.614 -8.124 -5.161 -24.866 -6.812 -6.032 -95.778 -26.149 -4.551 -19.010 -6.974 -201.980 -24.205 -43.031 -3.398 -11.603 -20.055 -4.686 -3.279 22 4 

10b -111.171 -93.816 -104.814 -128.304 -122.575 -129.838 -123.472 -113.089 -88.837 -4.005 -66.823 -94.788 -76.475 -67.891 -21.448 -34.590 -26.438 -96.644 -80.228 -103.460 -86.622 -95.670 10 436 

11b -40.140 -28.889 -32.589 -46.247 -44.891 -58.538 -42.907 -54.025 -27.088 -20.787 -14.382 -31.351 -18.380 -20.784 -73.797 -5.651 -3.580 -37.588 -20.848 -31.829 -27.516 -35.056 17 58 

12b -4.648 -4.578 -10.827 -9.376 -5.965 -11.578 -13.884 -15.848 -4.432 -90.678 -15.948 -4.516 -10.710 -8.672 -191.669 -21.158 -34.668 -7.713 -6.566 -11.027 -4.778 -6.195 9 2 

13b -15.349 -9.382 -8.016 -13.513 -15.229 -32.835 -11.052 -37.668 -9.893 -66.440 -5.213 -12.796 -4.612 -14.890 -148.254 -14.505 -17.763 -21.852 -5.864 -7.610 -12.192 -18.381 13 13 

14b -7.549 -6.908 -18.067 -18.227 -11.685 -11.474 -24.465 -11.092 -5.431 -71.413 -18.356 -5.265 -13.814 -4.039 -164.922 -13.663 -27.963 -5.181 -8.512 -18.271 -4.241 -4.768 14 5 

15b -179.852 -154.624 -158.285 -191.524 -190.822 -210.594 -178.595 -192.235 -149.821 -16.608 -107.674 -159.275 -123.642 -127.025 -5.626 -75.726 -54.780 -167.023 -133.759 -156.155 -149.349 -164.092 15 195 

16b -27.659 -19.575 -26.133 -35.926 -32.653 -41.373 -35.330 -37.483 -17.662 -30.468 -12.658 -20.633 -14.233 -12.141 -94.637 -3.964 -6.845 -24.503 -14.303 -25.598 -17.400 -22.799 16 73 

17b -38.432 -26.917 -26.202 -39.560 -41.094 -60.309 -33.718 -59.120 -26.090 -30.401 -10.180 -30.960 -14.323 -23.884 -86.262 -9.046 -5.072 -40.179 -18.373 -25.286 -27.834 -36.685 17 78 

18b -9.099 -13.228 -30.132 -24.634 -14.231 -4.829 -36.124 -4.293 -11.295 -102.303 -36.951 -8.934 -28.692 -9.687 -211.577 -29.706 -52.096 -4.368 -19.208 -30.783 -8.645 -5.465 8 2 

19b -10.720 -6.424 -5.968 -9.253 -10.295 -26.051 -8.475 -31.814 -7.089 -76.211 -6.515 -9.254 -4.485 -13.158 -164.885 -16.933 -22.786 -17.530 -4.511 -5.764 -9.224 -14.296 13 1 

20b -9.613 -7.485 -4.321 -4.045 -6.684 -24.858 -4.076 -35.135 -9.353 -107.166 -12.263 -10.854 -8.136 -20.777 -208.844 -31.254 -39.343 -20.807 -7.646 -4.386 -12.473 -16.950 4 1 

21b -8.034 -11.612 -27.458 -22.545 -12.837 -4.984 -33.289 -4.800 -9.832 -99.196 -33.830 -7.754 -25.976 -8.649 -207.062 -27.598 -48.938 -3.978 -17.084 -28.059 -7.471 -4.807 18 21 

22b -5.398 -7.367 -19.315 -15.987 -8.842 -6.514 -24.114 -8.013 -6.224 -93.168 -24.887 -5.071 -18.203 -7.094 -197.661 -23.090 -41.079 -4.141 -11.309 -19.741 -4.955 -4.013 22 3 
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5.3.3.2 Predicting ChemCentre’s validation samples onto the XRD LDA model 

LDA was again performed on the combined XRD dataset post-PCA, with each location 

treated as an individual class. This discriminant model returned a calibration accuracy 

of 59.1% (Table 5.5). While Locations 8, 13, and 19 all achieved 100% classification 

accuracy, they did not exhibit the same classification accuracy in the previous LDA 

model, indicating that these samples were better discriminated from the rest of the 

population by the CSIRO data; the previous model utilised more ChemCentre data 

within the calibration set, whereas this model utilised more CSIRO data. Locations 8 

and 13 were both also predicted correctly within the previous CSIRO validation set, 

reinforcing this. Comparing their XRD patterns in Figure 5.14, no observable 

differences could be identified from the use of the two instruments other than the 

improved sensitivity and signal-to-noise ratio obtained by the modern CSIRO XRD. In 

contrast, Locations 4 and 6 both achieved 100% classification accuracy in the 

previous model, but did not exhibit the same results within this model, indicating 

that these locations were better discriminated by the ChemCentre data. For Location 

4, this was due to the absent basal kaolinite reflection in the CSIRO pattern, as 

outlined in Section 5.3.2.3. However, Location 6 showed greater disparity between 

reflection intensities of quartz and microcline feldspar in the CSIRO patterns 

compared to the ChemCentre patterns (Figure 5.14). Once again, the majority of the 

locations misclassified were those that either were unable to be separated within the 

PCA scores plots, or only discriminated by PCs 3 or above. 
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Table 5.5 Number of correct vs incorrect location classifications for samples in the second combined 

XRD calibration set using a 2-PC LDA model (percentages rounded to nearest whole number). 

Location Correct Incorrect Classified % Correct 

1 0 3 2, 5, 6 0 

2 0 3 1, 12, 19 0 

3 2 1 7 67 

4 0 3 5 & 13 0 

5 3 0 - 100 

6 2 1 8 67 

7 2 1 3 67 

8 3 0 - 100 

9 1 2 19 & 22 33 

10 3 0 - 100 

11 0 3 7, 13, 17 0 

12 2 1 9 67 

13 3 0 - 100 

14 3 0 - 100 

15 3 0 - 100 

16 3 0 - 100 

17 3 0 - 100 

18 2 1 22 67 

19 3 0 - 100 

20 0 3 3, 4, 7 0 

21 0 3 9, 12, 18 0 

22 1 2 18 & 21 33 

   % Total Correct 
    59 
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Figure 5.14 XRD patterns obtained from soil samples from Locations 6, 8, and 13, illustrating both the 

variation in patterns between different instrumentation, and between duplicate samples. 

This LDA model was then used to predict the locations of 22 ChemCentre samples 

from the validation dataset. Nine samples, or 40.9%, had their location correctly 

predicted (Table 5.6). Despite Locations 2, 3, and 6 showing misclassifications within 

the calibration set, they all achieved 100% validation accuracy, though the 

confidence surrounding these predictions was very low; the associated discriminant 

values (Table 5.7) showed that they were close to being predicted as originating from 

at least one other location. Most of the samples that exhibited 100% calibration 

accuracy also achieved the same validation accuracy, except for Locations 8, 13, and 

19, suggesting noteworthy variation between the different XRD patterns associated 

with these samples. Despite unsuccessful discrimination within both scores plots and 
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all calibration samples being misclassified, the validation sample for Location 2 had 

its origin predicted correctly; this was presumably by chance, as the discriminant 

values indicated that the centroids of several other locations were also situated very 

closely (within 4%). All of the remaining samples that were unable to be 

discriminated within the scores plots of either XRD model again had their locations 

predicted incorrectly. 

Table 5.6 Number of correct vs incorrect location predictions for samples in the ChemCentre validation 

set using a 2-PC LDA model (percentages rounded to nearest whole number). 

Location Correct Incorrect Predicted % Correct 

1 0 1 6 0 

2 1 0 - 100 

3 1 0 - 100 

4 0 1 3 0 

5 1 0 - 100 

6 1 0 - 100 

7 0 1 3 0 

8 0 1 18 0 

9 0 1 21 0 

10 1 0 - 100 

11 0 1 17 0 

12 0 1 9 0 

13 0 1 19 0 

14 1 0 - 100 

15 1 0 - 100 

16 1 0 - 100 

17 1 0 - 100 

18 0 1 21 0 

19 0 1 13 0 

20 0 1 3 0 

21 0 1 9 0 

22 0 1 9 0 

   % Total Correct 
    41 
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Table 5.7 Discriminant values of replicates from the ChemCentre XRD validation dataset (rounded to three decimal places), with correct predictions shaded green and incorrect 

predictions shaded red. The last column demonstrates how far away the next closest prediction was, as a percentage of the lowest discriminant value obtained. 
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Location 1 Location 2 Location 3 Location 4 Location 5 Location 6 Location 7 Location 8 Location 9 Location 10 Location 11 Location 12 Location 13 Location 14 Location 15 Location 16 Location 17 Location 18 Location 19 Location 20 Location 21 Location 22 

1b -6.147 -8.042 -20.786 -18.202 -10.078 -3.254 -24.660 -4.513 -7.420 -81.038 -25.565 -7.026 -21.471 -8.364 -148.488 -22.773 -36.133 -3.940 -13.680 -20.285 -6.038 -4.719 6 21 

2b -3.772 -3.532 -7.800 -6.801 -4.178 -8.157 -10.365 -13.384 -3.665 -75.360 -12.881 -4.163 -9.326 -7.926 -137.397 -17.601 -24.913 -7.272 -5.437 -7.617 -4.747 -5.323 2 4 

3b -7.997 -6.109 -3.995 -4.134 -5.792 -17.872 -5.415 -25.990 -6.781 -75.939 -8.958 -7.894 -5.896 -13.310 -133.491 -19.139 -21.791 -15.660 -5.053 -4.033 -9.634 -11.667 3 1 

4b -7.570 -6.139 -4.099 -4.311 -4.979 -17.188 -6.059 -25.986 -7.121 -85.749 -11.824 -8.098 -7.388 -15.130 -147.033 -23.311 -26.869 -15.806 -5.796 -4.170 -10.095 -11.819 3 2 

5b -4.659 -4.216 -5.860 -5.397 -3.542 -11.086 -8.468 -18.260 -4.914 -85.697 -13.842 -5.488 -8.983 -11.695 -149.848 -22.256 -28.563 -10.504 -5.594 -5.799 -6.840 -7.699 5 19 

6b -7.840 -10.174 -24.749 -21.780 -12.554 -3.378 -28.793 -3.720 -9.373 -82.785 -29.260 -8.738 -25.083 -9.458 -151.175 -24.725 -39.328 -4.308 -16.515 -24.165 -7.396 -5.685 6 10 

7b -10.527 -8.371 -3.413 -3.975 -6.726 -22.612 -4.481 -32.667 -9.617 -86.975 -10.955 -10.618 -6.497 -18.445 -146.223 -24.783 -26.168 -20.425 -6.400 -3.531 -13.155 -15.536 3 3 

8b -5.691 -6.702 -18.168 -15.579 -9.632 -4.122 -20.862 -4.980 -5.788 -66.465 -19.219 -5.504 -16.838 -5.060 -128.210 -15.620 -26.898 -3.334 -10.664 -17.626 -4.401 -3.751 18 13 

9b -4.165 -4.146 -11.375 -9.645 -6.306 -6.228 -13.595 -9.168 -3.636 -64.390 -12.913 -3.873 -10.741 -4.800 -123.813 -13.267 -21.627 -4.809 -6.407 -11.014 -3.580 -3.850 21 2 

10b -64.988 -59.595 -65.895 -63.125 -71.640 -70.096 -61.317 -64.965 -55.459 -4.418 -34.721 -57.022 -48.464 -38.944 -19.810 -19.559 -17.127 -58.638 -53.110 -65.086 -53.715 -57.641 10 288 

11b -26.327 -22.316 -24.395 -22.946 -28.897 -33.983 -22.225 -34.845 -20.320 -21.213 -8.867 -21.677 -15.294 -13.957 -54.513 -5.155 -4.504 -26.370 -17.854 -23.960 -20.667 -23.899 17 14 

12b -4.543 -3.715 -7.041 -6.122 -4.893 -9.888 -8.976 -14.967 -3.679 -67.485 -9.896 -4.341 -7.472 -7.052 -125.937 -14.317 -20.258 -8.136 -4.612 -6.857 -4.881 -5.904 9 1 

13b -8.564 -6.264 -5.086 -4.860 -7.367 -17.912 -5.727 -24.497 -6.385 -61.551 -5.827 -7.502 -4.667 -10.209 -114.183 -13.069 -15.091 -14.577 -4.502 -5.017 -8.666 -10.926 19 4 

14b -6.132 -5.457 -12.297 -10.549 -8.640 -8.781 -13.830 -11.006 -4.580 -53.303 -10.367 -5.050 -9.979 -4.013 -107.815 -9.350 -16.356 -6.278 -6.717 -11.912 -4.485 -5.214 14 12 

15b -125.303 -116.783 -119.596 -116.845 -132.653 -134.371 -111.332 -127.088 -111.334 -10.269 -74.041 -113.657 -94.850 -88.107 -4.300 -54.680 -45.272 -117.804 -104.929 -118.673 -109.599 -115.819 15 139 

16b -18.944 -16.048 -20.569 -18.802 -22.052 -24.288 -19.470 -24.846 -14.194 -26.564 -8.170 -15.205 -12.921 -8.665 -65.670 -3.910 -5.997 -18.116 -13.509 -20.095 -14.052 -16.402 16 53 

17b -26.238 -21.898 -22.105 -20.970 -27.899 -35.427 -19.668 -37.355 -20.170 -23.423 -7.423 -21.591 -13.469 -14.909 -56.635 -5.721 -3.976 -27.638 -16.714 -21.731 -21.013 -24.572 17 44 

18b -4.236 -4.479 -12.542 -10.710 -6.672 -5.568 -15.053 -8.228 -3.933 -66.174 -14.454 -4.128 -12.106 -5.028 -126.623 -14.292 -23.373 -4.462 -7.267 -12.169 -3.714 -3.760 21 1 

19b -9.994 -7.344 -5.469 -5.320 -8.675 -20.014 -5.749 -26.629 -7.401 -58.566 -5.101 -8.616 -4.514 -10.862 -109.261 -12.388 -13.563 -16.198 -4.970 -5.406 -9.800 -12.334 13 10 

20b -8.146 -6.125 -3.820 -3.917 -5.946 -18.212 -4.968 -26.242 -6.752 -73.789 -8.149 -7.824 -5.307 -12.954 -130.428 -18.149 -20.464 -15.719 -4.742 -3.839 -9.544 -11.680 3 0 

21b -4.299 -4.083 -10.673 -9.087 -6.206 -6.932 -12.825 -10.132 -3.605 -63.578 -12.066 -3.964 -10.074 -4.954 -122.335 -12.919 -20.772 -5.373 -6.065 -10.344 -3.769 -4.204 9 5 

22b -4.282 -4.238 -11.339 -9.702 -6.358 -6.463 -13.705 -9.518 -3.747 -64.925 -13.052 -4.090 -10.923 -5.111 -124.422 -13.639 -21.961 -5.132 -6.578 -11.006 -3.829 -4.118 9 2 
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5.3.4 Reproducibility of data 

Not only does this study highlight the value gained from interpretation of soil 

evidence and the applicability of the method, but it also showcases how instrument 

capabilities can affect the results obtained. Despite the modern capabilities of the 

XRD instrument at CSIRO, both ChemCentre and CSIRO models showed similar results 

when the data was analysed using PCA; the loadings were primarily influenced by the 

same reflections, and the resulting scores plots showed most samples obtained an 

equivalent degree of discrimination between the two models. CSIRO XRD patterns 

were less affected by noise and allowed for the detection of some additional minerals 

that could not be visualised within the ChemCentre patterns, due to the increased 

sensitivity associated with more modern instrumentation. However, these were 

present in such low quantities within the soil that their presence could not be 

confirmed, and their detection did not considerably alter the discrimination between 

samples. This demonstrates that the PCA methods utilised throughout this chapter 

are reproducible and robust, making them suitable for forensic casework.  

For LDA, combining the ChemCentre and CSIRO data into a singular dataset produced 

sub-optimal results, due to the encapsulated variation attributed to sensitivity and 

noise. If a situation arose in forensic casework in which samples were analysed over 

multiple different instruments, it would be impractical to subject this collective data 

to predictive chemometric methods such as LDA without first gaining a proper 

understanding of the instrumental variation. Different diffractometers will show 

inevitable variations in their diffraction intensity data due to instrument stability, 

optical alignment, and the in-built procedures for data correction (94). For best 

results, it is therefore important that proficiency testing, validation, and casework 

are all carried out using the same instrumentation. Sometimes situations will occur 

in which equipment unavoidably changes over the course of a single investigation; 

this study has shown that this data is still valuable for questioned versus known 

comparisons if the examiner has a strong understanding of what differences will 

occur, so that they can be accounted for appropriately. By comprehending how to 

best interpret these differences and optimise the equipment available, these 
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methods can be suitable for use in forensic laboratories that may be faced with 

outdated instrumentation. 

5.4 Conclusions 

This chapter explored the use of XRD combined with chemometrics for analysing the 

quartz-recovered fine fraction of Swan Coastal Plain soils, which has never before 

been demonstrated in the open literature. The use of the quartz-recovered fine 

fraction has been developed to allow for detection of the subtle variations in 

minerals that could not otherwise be identified, due to the minimal amounts of clay 

and fine silt in quartz-dominated soils. PCA and LDA conducted on the entire XRD 

patterns allowed for discrimination of most samples, including those that produced 

visually similar patterns. The use of XRD on soils post-ATR-FTIR analysis provided 

additional discrimination of some samples, confirmed the associations made, and 

aided in improving the confidence of the results. 

The use of the collective ChemCentre XRD patterns for PCA, which were produced 

using ‘older’ instrumentation settings, resulted in the discrimination of most of the 

soils based on the locations from which they originated. Some sites however, showed 

significant intra-site variability, though this was potentially due to anthropogenic 

influence. Factor loadings showed that the variation observed within the mineral 

content of the soil appeared to correlate with the soil’s original dune system, and 

hence visual discrimination of the four dune systems was achieved. There also 

appeared to be some grouping within the ChemCentre model based on batches of 

samples that were analysed with ‘old’ versus ‘new’ instrumentation, highlighting the 

degree of instrumental variation due to the interpolation of data. However, the 

effect of this on the overall discrimination of samples was minimal. 

The use of the ‘newer’ CSIRO XRD patterns for PCA resulted in a similar degree of 

clustering compared to the ChemCentre model. Due to the considerable similarities 

between loadings, the discrimination between soils was comparable between both 

models, with most samples situated in equivalent positions within the scores plots. 

The CSIRO instrumentation appeared to be more sensitive when operated at modern 
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capabilities, with improved signal-to-noise ratios allowing for the detection of some 

minerals seen in lower concentrations within the soil samples, e.g., mica. However, 

this did not improve the overall differentiation of soils, highlighting that the degree 

of discrimination achieved was still attainable using outdated instrumentation. It was 

therefore demonstrated that this method is both reproducible across different 

instrumentation, and robust in its results achieved, making it well-suited for use 

within forensic casework. 

Using the combined XRD dataset for LDA post-PCA caused overestimation of the 

calibration accuracies (65.1%, 59.1%), with the validation accuracies lower than 

expected (36.4%, 40.9%). Most of the samples that were misclassified were unable 

to be discriminated within the scores plots of either XRD model. In addition, the 

majority of the correctly predicted samples exhibited low discriminant values across 

several classes, indicating that the confidence surrounding their separation was low. 

The LDA results could have potentially been improved by utilising a larger number of 

replicates within each class. The combined ChemCentre and CSIRO LDA models had 

increased uncertainty compared to the individual PCA models, as they encapsulated 

a substantial amount of variation due to instrumental analysis. This is an issue that 

could be encountered in forensic casework; to avoid this, analysis of both questioned 

and known samples should ideally be conducted using the same instrumentation 

when using this data for predictive interpretation.  

Overall, utilising entire XRD patterns for chemometric analysis was successful at 

discriminating between most soils from different locations. Despite issues predicting 

the locations of these samples due to instrumental variation, this did not pose a 

major problem because the differentiation of these locations was already 

demonstrated through the use of other techniques in previous chapters. While XRD 

can be effective as a stand-alone method for analysis of the quartz-recovered fine 

fractions, it can only discriminate soils based on their mineral or crystalline 

components, unlike ATR-FTIR, and hence it is recommended to be used in sequence 

with other techniques to maximise the information obtained. XRD also achieved 

improved discrimination of some samples that were shown to overlap within the 
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ATR-FTIR PCA model produced in Chapter 4, and reduced the intra-site separation 

seen between others, demonstrating how these methods can be used in sequence 

with each other to provide complementary information. Therefore, chemometric 

analysis of the full XRD pattern shows strong promise for sequentially discriminating 

soils that cannot be entirely individualised through PCA of the ATR-FTIR data alone, 

with the conclusions reinforced by a scientific measure of similarity that can be 

presented as evidence in court. This technique would ideally be applied by forensic 

practitioners at the end of the sequence, to gain additional discrimination on soil 

samples that could not be differentiated using MSP or ATR-FTIR and to improve the 

confidence surrounding the previously obtained results. The XRD patterns produced 

through analysis also showed correlation with the dune system that the soil 

originated from, indicating that this technique could be further developed to provide 

intelligence to forensic investigators that can direct them to regions of interest during 

active criminal investigations. 

Additionally, this thesis offers preliminary data towards validation of the XRD 

method, by demonstrating its ability to provide consistent information within a 

forensic investigation despite the use of multiple instruments. Within each XRD 

model, the majority of soils achieved comparable levels of discrimination due to very 

similar loadings, regardless of the capabilities of the instrumentation used. While this 

chapter also demonstrated that it is possible to utilise different diffractometers for 

chemometric analysis, the results are contingent on a strong understanding by the 

examiner of what variation will occur, so it can be accounted for and interpreted 

appropriately. For example, standard questioned versus known comparisons using 

PCA appeared to be mostly unaffected by the instrumental variation, with the 

different sensitivities and levels of noise having minimal effects on the overall 

discrimination of data. However, this was not the case for LDA, which required 

further examination of the discriminant values to assess the confidence in the model, 

and hence would need human interpretation of the data by the forensic examiner 

post analysis. Further research is required to explore other factors that may influence 

the results, such as sample collection or storage, in order to advance towards full 

validation of the method. 
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Chapter 6. Application of Developed Analytical Sequence 

Incorporating Chemometrics to a Forensic Case 

Simulation 

Portions of this chapter have been published in the following article: 

T. G. Newland, K. Pitts, and S. W. Lewis. "Multimodal spectroscopy with 

chemometrics: Application to simulated forensic soil casework." Forensic Chemistry, 

2023. 33: 100481. 
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6.1 Introduction 

In Chapters 3 to 5, a sequence was developed and proposed for the forensic analysis 

and interpretation of sandy soil evidence. This sequence utilised several 

spectroscopic techniques in combination with chemometric methods to allow for the 

discrimination of soils from the Swan Coastal Plain based on their individual 

locations. Sequenced analysis can be especially useful for soils such as these, where 

the bulk samples are relatively similar and analysis techniques are limited due to their 

lack of clay and organic matter (15, 17, 73). It was shown that each technique allowed 

for the enhanced discrimination of different soils through the analysis of 

complementary characteristics within the sample, and hence outcomes were 

improved by performing them sequentially and interpreting the resulting data as a 

whole. Additionally, the use of a sequence allowed for more accurate identification 

of the chemical components responsible for the variance between soils, and 

improved the overall confidence surrounding the results by confirming them 

numerous times. However, in order to best assess the suitability of the sequence for 

use within forensic casework, it should be further tested through application to a 

case simulation. 

Forensic casework generally involves the comparison of a questioned soil sample, 

recovered from an item or suspect, to known soil samples, collected from locations 

such as the crime scene or alibi sites (20, 29, 65, 76). These soils are examined 

physically and chemically to collect information to allow for an association or an 

exclusion to be made. With naturally occurring forms of trace evidence like soil, 

comparisons are complicated by issues such as non-representative sampling (the soil 

has already been unintentionally sampled by the item or suspect, likely retaining only 

portions of the bulk material), sample preparation and storage, limitations on sample 

size, and the ability of available analytical methods to detect key variation within the 

sample (10, 38). Therefore, it is important to ensure that appropriate methods are 

selected, and that these have been well-tested and verified before application to 

forensic casework. 
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Case simulations are especially useful for evaluating the capabilities of developed 

methods and showcasing how they can be integrated within forensic casework. 

Limited case studies for verification of proposed methods for forensic soil analysis 

have been documented within the literature, and these arguably should be more 

prevalent. In 2011, Reidy et al. ran a successful mock crime scene scenario in 

Mississippi, USA, in which students were asked to blindly conduct comparative 

principal component analysis (PCA) and discriminant analysis of soils based on 

elemental distribution fingerprints determined from inductively coupled plasma-

mass spectrometry (ICP-MS) (10). All students were able to correctly classify their 

unknown suspect sample to its source, hence verifying the capabilities of the 

method. Additionally, the case simulation allowed for identification of the likely 

complications encountered within forensic casework; relatively wide areas of soil 

may have comparable elemental profiles if the soil type and source material are 

similar, and PCA alone may not be the best tool for data discrimination. Therefore, 

the results could be further improved by incorporating additional chemometric 

methods, as well as data obtained from analysis techniques that characterise other 

aspects of the soil.  

In South Australia, Young et al. demonstrated the utility of chemometrics combined 

with high throughput eukaryote DNA sequencing (HTS) and mid-infrared (MIR) 

spectroscopy to discriminate between different soil sites in a crime scene setting, 

and were able to link an unknown soil to a particular reference location (66). This 

case simulation showed that HTS was both effective and robust to environmental 

variation, transfer and storage effects, and spatial variation. The results obtained 

through HTS also complemented the MIR spectroscopy soil profiling, once again 

suggesting the value of utilising several techniques within a sequence. Finally, Woods 

et al. reported a blind trial that demonstrated the use of microspectrophotometry 

(MSP), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-

FTIR), X-ray fluorescence spectroscopy (XRF), scanning electron microscopy coupled 

with energy dispersive X-ray spectroscopy (SEM-EDX), and laser induced breakdown 

spectroscopy (LIBS) (38). This analysis sequence was combined with PCA and linear 

discriminant analysis (LDA) for the effective discrimination and classification of 
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unknown Australian soil samples against a reference database. Individually, each of 

the instrumental techniques demonstrated relatively high discrimination of the soils 

analysed, however, when combined they resulted in full discrimination of the soil set. 

Case simulations have also been utilised across other areas of forensic research, such 

as document examination, showcasing the value that these methods hold for analysis 

of forensic evidence. In 2019, Sauzier et al. demonstrated the power of video spectral 

comparator (VSC) spectroscopy with chemometrics for comparing visually similar 

ballpoint inks on paper documents (137). This blinded case simulation verified the 

suggested approach through comparison against traditional visual examination, and 

provided quantitative data to support expert opinions. Additionally, it demonstrated 

the challenges that may be faced during application of this method to forensic 

casework, by revealing that some inks with very similar optical properties may not 

be distinguishable through colour alone. Recommendations were also made to 

reduce the effects of background substrate and ageing on the results.  

Not only are case simulations extremely important for research, they are also a part 

of the accreditation and validation processes dedicated to quality assurance (128, 

138). In Australia, forensic laboratories are accredited through the National 

Association of Testing Authorities (NATA). Every year, a proficiency test is conducted 

in the form of a blinded case simulation, as part of the requirements for accreditation 

(138); this ‘case’ is analysed and reported as a ‘real’ case would be by each 

laboratory, and then the conclusions are assessed by NATA to evaluate their 

competency and detect any issues associated with methodology or evidence 

interpretation. These proficiency tests are crucial for evaluating whether current 

forensic methodologies are appropriate, reliable, and reproducible, and that the 

scientists can perform them accurately. 

In this chapter, the sequence developed in Chapters 3 to 5 was verified through 

application to a blinded case simulation. MSP, ATR-FTIR spectroscopy, and X-ray 

diffraction (XRD) were conducted on the quartz-recovered fine fraction of soils 

collected from locations within the Swan Coastal Plain in Perth, Western Australia, 

as per the previous chapters. PCA was performed on each dataset to assess any 
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similarities or differences between a questioned soil and four known soils. LDA was 

then performed to predict the most likely source of the unknown soil sample. These 

results were then interpreted as a whole, to determine if an association could be 

made between the questioned soil and any of the known soils. 

6.2 Experimental 

6.2.1 Sample selection 

A case simulation was generated by a third-party, who is an experienced forensic soil 

examiner with many years of forensic casework expertise, to allow for the blind 

analysis of five soil samples using the methods developed in previous chapters. The 

five soils utilised for this study were collected by the third-party as outlined in 

Sections 2.2 and 2.3.2. The soils selected originated from areas that shared many 

similarities, such as soil colour, dune system, and type of locations, in order to make 

the simulation challenging enough to test the full capabilities of the developed 

method. The brief provided along with the soil samples stated:  

“A suspect has come to the attention of police, and a sample of soil has been 

recovered. The investigators wish to know if the soil corresponds to one of four 

potential locations, which you have been provided samples from; the crime scene, 

a potential secondary site, and two possible alibi sites. The investigators want the 

soil recovered from the suspect compared with the four collected control samples, 

using the methods you have developed, to see what can be determined.”  

Information regarding the origin of the four known samples was communicated prior 

to analysis, however, all details surrounding the suspect recovered soil were not 

disclosed until after the spectroscopic and chemometric analyses had been 

completed and results were presented.  

6.2.2 Sample analysis 

Duplicate samples were obtained from each soil. The quartz-recovered fine fractions 

were prepared from each of the soil duplicates, as described in Section 2.4. 

Spectroscopic analysis was conducted on the extracted quartz fine fractions of each 
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of the sample duplicates using MSP, ATR-FTIR spectroscopy, and XRD, as described 

in Section 2.5. All ChemCentre XRD patterns were obtained using the newer 

instrument – Malvern PANalytical EMPYREAN III Diffractometer. Chemometric 

analysis was then conducted on the resulting data as outlined in Section 2.6.  

While the different methods of analysis were conducted on the soils across multiple 

days, all analysis using each technique was conducted within one session; for 

example, all of the MSP analysis was conducted consecutively, with the instrument 

calibrated once at the beginning of the session. This was done to minimise the effects 

of daily fluctuations in the instrument performance, and to replicate the most 

accurate representation of a casework scenario (comparing questioned versus 

known samples).   

6.3 Results and discussion 

On receipt of the case simulation soils, forensic analysis was carried out according to 

the developed sequence, as outlined in Figure 6.1 and previously described in 

Sections 6.1 and 6.2 above. First, an overall visual examination of the soils was carried 

out, before the quartz-recovered fine fractions were isolated from each sample and 

analysed using the three spectroscopic techniques explored in previous chapters; 

MSP, ATR-FTIR spectroscopy, and XRD. PCA was conducted on the resulting data to 

identify any variation between samples and maximise their differentiation, and then 

LDA was conducted to predict the source of the suspect recovered soil. The following 

sections discuss the results generated at each stage of the sequence. 

 

Figure 6.1 Flow diagram outlining the overall analysis sequence, previously developed throughout 

Chapters 3 to 5, that was applied to soil samples within the blinded case simulation. 

The source of the suspect recovered soil was subsequently revealed to have 

originated from the crime scene site (Table 6.1). This information was unknown 

throughout the analysis and interpretation of the samples, however, is presented 
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quartz fine 

fraction
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Conclusions
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upfront in this chapter to allow for comprehensive comparison and interpretation of 

the results. 

Table 6.1 The soils utilised for the blinded case simulation, with their associated information. Details 

regarding the suspect recovered soil were kept confidential until all analyses were completed, and 

results were presented. 

Location Visual Appearance Suburb Dune System Location Type 

Alibi Site 1 Grey sand (heavy 
organic matter) 

North Perth Spearwood Manicured park 

Suspect Recovered 
(Crime Scene) 

Grey sand Leederville Spearwood Verge 

Crime Scene Grey sand Leederville Spearwood Verge 

Alibi Site 2 Grey sand Wembley Downs Spearwood Verge / median strip 

Potential Site of 
Interest 

Grey sand Hazelmere Pinjarra Plain Bushland (near road 
construction) 

 

6.3.1 Visual examination of soil samples 

The provided soil samples were first examined visually to note differences in 

appearance. Visual descriptions of each soil provided are outlined in Table 6.2. The 

suspect recovered soil was visually the most similar to the crime scene sample; both 

contained similar ratios of sand/quartz to organic matter, with rocks and seed pods 

found within both samples. The crime scene sample also contained a road-marking 

bead, indicative of its roadside location (verge), while the suspect recovered sample 

contained a glass fragment, possibly also due to originating from a roadside location 

(vehicular accident) or damage to property (i.e., at the crime scene). In a real-life 

investigation, this glass shard would likely have been compared to other glass 

samples collected from the crime scene, however, as this was a case simulation with 

a focus on soil, no further analysis on the glass was conducted.  
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Table 6.2 Visual descriptions and photographs of the soil samples provided for analysis within the 

blinded case simulation. 

Sample Photograph Description 

Alibi Site 1 

 

Grey sand dispersed through abundant dark brown 

organic matter, lots of brown mulch/bark, sticks and 

leaves present, minimal quartz throughout soil 

Crime Scene 

 

Grey sand with moderate amount of brown mulch, 

small white and grey rocks present (tentatively 

identified as limestone) as well as some small brown-

orange leaves/seed pods and a few white 

roots/strands, spherical road-marking bead 

Alibi Site 2 

 

Grey sand with minimal brown mulch, very low on 

organics, dominated by sand and quartz 

Potential Site 

of Interest 

 

Grey sand with small sticks and dried organic matter, 

light brown leaves present as well as several long 

strands of grass or plant stems/roots 

Suspect 

Recovered 

(Unknown) 

 

Grey sand with moderate amount of brown mulch, 

small white and grey rocks present (tentatively 

identified as limestone) as well as some small brown-

orange leaves/seed pods and a few white 

roots/strands, shard of glass 

 

  



 167 

While the appearance of the questioned sample was most comparable to the crime 

scene sample, it still shared similarities with most of the other soils, and therefore 

could not confidently be attributed to an individual source above the three, nor 

conclusively above others outside of the four presented. The only soil that was 

visually different to the suspect recovered sample was the soil from alibi site 1, due 

to the increased level of organic matter present and sparse amount of quartz grains; 

it was considered unlikely that these two soils originated from the same location. 

While the variation could be the product of non-representative sampling, this was 

noted as a potential difference. 

6.3.2 Microspectrophotometric analysis of soil samples 

MSP spectra were collected from the quartz-recovered fine fractions of the supplied 

soils (Figure 6.2), as outlined in Section 2.5. As expected, the soils had minimal 

distinctive features that separated them from the other sites. Both alibi site 1 and 

alibi site 2 soils had more distinctive curves in comparison to the relatively straight 

spectra obtained from the other locations, with exponential slopes that indicated 

higher proportions of orange-red components, however, this difference was 

undetectable by visual examination. The visually linear spectra were indicative of the 

similar shades of grey exhibited by all the soils. While alibi site 1 was noticeably 

different in appearance, due to its higher concentration of dark brown organic 

matter, most of this was removed during preparation, and hence the quartz-

recovered fine fraction was not representative of this. Colour determination 

methods therefore may be more accurate when applied to the bulk soil sample, as 

previously demonstrated in Chapter 3, however, this is generally not possible when 

working with partially-representative, recovered forensic samples. The spectrum of 

the suspect recovered soil was most aligned with that of the crime scene soil, but still 

showed a strong likeness with the other samples. Chemometric methods were 

subsequently employed to identify and enhance any subtle differences within the 

spectra as described below. 
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Figure 6.2 Baseline corrected and normalised MSP reflectance spectra showing the variability in 

composition of the soil samples collected from differing locations representative of a blinded case 

simulation. 

6.3.2.1 Principal component analysis utilising entire MSP spectra 

As per the method applied in Section 3.3.1, PCA was conducted on the entire MSP 

replicate spectra to maximise any variation between samples; 99.1% of the total 

variance in the dataset could be described by the first four principal components 

(PCs) (Appendix 6.1). Three-dimensional score plots generated using these PCs 

(Figure 6.3) showed wide-spread, loosely defined clusters based on the source of the 

soil. Samples from the potential site of interest were the best separated from the rest 

of the population, however, they still exhibited minimal overlap with other clusters. 

Samples from the suspect recovered soil were spread out considerably, overlapping 

with all the other soils. Whilst different colour regions within the spectra were 

associated with positive and negative loadings across the principal components 

(Figure 6.4), the comparable grey colourings of all the soils meant that the variation 

detected within these regions was not significant enough to allow for their 

discrimination. There was also a substantial amount of noise encapsulated within the 

loadings, which contributed to the separation seen and interfered with the results. 
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Based on the level of overlap observed within the scores plot, the suspect recovered 

soil was unable to be differentiated from or associated with any of the known sites. 

 

Figure 6.3 3-dimensional PCA scores plots generated using the first four PCs, showing the variability of 

soil samples from different locations within the blinded case simulation, based on their corresponding 

MSP spectra. 

 

Figure 6.4 Factor loadings plot of PCs 1-4 for PCA of the blinded case simulation MSP reflectance 

dataset. 
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6.3.2.2 Principal component analysis utilising average MSP spectra 

As per Section 3.3.2, the MSP spectra collected from the quartz-recovered fine 

fractions of the five supplied soils were averaged to obtain two average spectra per 

soil. PCA performed on these average spectra revealed that 99.7% of the total 

variance in the dataset could be described by the first four PCs (Appendix 6.2). Three-

dimensional score plots using these PCs (Figure 6.5) showed improved separation 

between soils compared to the previous full MSP model. Samples from the potential 

site of interest were tightly clustered and well-separated from all other soils, 

indicating significant differences between this soil and the suspect recovered, and 

therefore they were unlikely to have originated from the same location. Samples 

from alibi site 1, although displaying significant separation between intra-site 

samples along PC-3, did not exhibit any overlap with other sites. However, they could 

not be confidently discriminated from the rest of the population due to their close 

proximity to several other soils. The samples from the crime scene and alibi site 2 

also experienced significant intra-site separation, causing these groups to overlap 

with one another.  

The loadings for PCs 1-3 were comparable to those for the previous full MSP model 

and hence were unable to provide any further association between samples (Figure 

6.6); the only difference was that the influence of PC-2 was reversed i.e., shorter 

wavelengths of light were associated with negative influence (previously positive) 

and longer wavelengths were associated with positive influence (previously 

negative). The detection of noise was again a significant issue, substantially 

contributing to the loadings across PCs 2-4 more so than in the previous model. The 

suspect recovered samples were not clustered together along PCs 1 or 3, nor were 

they situated nearby any of the other soils, so were not able to be associated with a 

known sample. The inclusion of PC-4 allowed for improvement in the clustering and 

discrimination of all of the known soil groups, however, the suspect recovered 

samples still showed significant intra-site separation along PC-1. 
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Figure 6.5 3-dimensional PCA scores plots generated using the first four PCs, showing the variability of 

soil samples from different locations within the blinded case simulation, based on their corresponding 

average MSP spectra. 

 

Figure 6.6 Factor loadings plot of PCs 1-4 for PCA of the blinded case simulation average MSP 

reflectance dataset. 

  



 172 

6.3.2.3 Principal component analysis utilising L*a*b* colourimetric values 

As per Section 3.3.3, the average MSP spectra collected above were converted into 

L*a*b* chromaticity values (Appendix 6.3), where L* is a measure of the lightness, 

a* is a measure of the green-red components, and b* is a measure of the blue-yellow 

components. PCA performed on these L*a*b* values (without baseline correction or 

normalisation) revealed that 100% of the total variance in the dataset could be 

described by the first three PCs (Appendix 6.4). Three-dimensional score plots using 

these PCs (Figure 6.7) revealed clustering and discrimination of the samples from 

alibi site 2 and the potential site of interest respectively, indicating that these sites 

were not associated with the suspect recovered soil.  

Samples from the remaining known sites however, showed significant intra-site 

separation within the model on at least one PC; for example, one crime scene sample 

was situated at the extreme positive end of PC-1 whereas the other was at the 

extreme negative. The loadings across PC-1 were largely influenced by variation in 

the lightness of the soil (Figure 6.8), and hence the separation between samples was 

due to the large difference observed in the L* values obtained. The suspect recovered 

samples were also separated from each other across PCs 3 and 2, due to variation in 

their red-green and blue-yellow components; sample ‘a’ had higher a* and b* values 

causing it to be positioned at a more positive position along both axes than the ‘b’ 

sample. The substantially different values highlight the high level of variation within 

these soils, even from samples that we know have originated from the same location. 

This can lead to challenging questioned versus known comparisons; are the 

differences seen caused by natural variation within the site or do they indicate 

meaningful variation caused by their origin? Due to the excessive separation 

between the two suspect recovered samples, this soil again did not show clustering 

with any of the known samples, preventing it from being associated with a single 

source. 
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Figure 6.7 3-dimensional PCA scores plots generated using the first three PCs, showing the variability 

of soil samples from different locations within the blinded case simulation, based on their 

corresponding L*a*b* chromaticity values. 

 

Figure 6.8 Factor loadings plot of PCs 1-3 for PCA of the blinded case simulation L*a*b* chromaticity 

values dataset. 
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6.3.2.4 Linear discriminant analysis 

LDA was performed on the entire MSP dataset with each location treated as an 

individual class, returning a calibration accuracy of 76.2% (Appendix 6.5). Samples 

from the crime scene and potential site of interest had the highest percentage of 

correct classifications, most likely due to the tighter clustering (and hence less 

variation) seen within these groups. Because of the high degree of overlap between 

groups in the scores plot, none of the soils achieved a 100% classification accuracy.  

This LDA model was then used to predict the source of the suspect recovered soil 

samples. 65% of sample spectra were predicted as originating from the crime scene, 

and the other 35% were predicted as alibi site 1 (Table 6.3). The discriminant values 

(Appendix 6.6) for a significant number of these predictions indicated that they were 

close to being associated with several other locations, so the confidence surrounding 

these results was low. The increased classification accuracy of the crime scene 

samples within the LDA model meant that the predictions attributing the suspect 

recovered samples to the crime scene were, in general, slightly better separated than 

those that attributed the samples to alibi site 1 (average of + 64% vs + 25%). This, 

along with the greater number of predictions, indicated that the suspect recovered 

samples more than likely originated from the crime scene rather than alibi site 1, 

however, this could not be determined with confidence. 

Table 6.3 Predictions for samples in the MSP blinded case simulation validation set using a 4-PC LDA 

model. 

Predicted Location Suspect Recovered Samples 

Alibi Site 1 7 

Crime Scene 13 

Alibi Site 2 0 

Potential Site of Interest 0 

 

LDA was then performed on the average MSP dataset, returning a calibration 

accuracy of 100% (Appendix 6.7). Despite the spread of samples within the scores 
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plot, and the resulting lack of discrimination between soils, all samples were correctly 

classified to their original source. This LDA model was then used to predict the source 

of the suspect recovered soil samples. 50% of the samples were predicted as 

originating from alibi site 1, and the other 50% were predicted as the crime scene 

(Table 6.4). The discriminant values (Appendix 6.8) indicated that while the alibi site 

1 prediction was of high confidence (+ 327%), the crime scene predicted sample was 

also very close to the centroid of the alibi site 2 soils, and therefore demonstrated 

low confidence (+ 4%). While this implied that the suspect recovered soil more than 

likely originated from alibi site 1, the limited sample size meant that these results 

may not have been accurately representative; sample heterogeneity was 

demonstrated to cause issues in Chapter 3, and it is likely that repeated MSP analysis 

of this soil sample would lead to different results. 

Table 6.4 Predictions for samples in the average MSP blinded case simulation validation set using a 2-

PC LDA model. 

Predicted Location Suspect Recovered Samples 

Alibi Site 1 1 

Crime Scene 1 

Alibi Site 2 0 

Potential Site of Interest 0 

 

Finally, LDA was performed on the L*a*b* values, returning a calibration accuracy of 

50.0% (Appendix 6.9). Alibi site 2 exhibited correct classification of all samples, most 

likely due to its tighter clustering (and hence less variation) seen within the scores 

plot. Despite being well clustered, the potential site of interest also only had one 

sample classified correctly, with the other attributed to the crime scene; while these 

groups were positioned relatively far apart, the potential site of interest soils were 

situated in the centre of the spread of the crime scene samples.  

When this LDA model was used to predict the source of the suspect recovered 

samples, 100% of sample spectra were predicted as originating from the crime scene 

(Table 6.5). However, the discriminant values (Appendix 6.10) indicated that the 
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confidence surrounding these predictions was relatively low, with most of the other 

sites achieving similar values. Interestingly, while alibi site 2 showed the best 

separation from suspect recovered sample ‘a’, it was the closest site to sample ‘b’, 

highlighting the large degree of variability within these soils from the same location.  

Table 6.5 Predictions for samples in the L*a*b* chromaticity values blinded case simulation validation 

set using a 2-PC LDA model. 

Predicted Location Suspect Recovered Samples 

Alibi Site 1 0 

Crime Scene 2 

Alibi Site 2 0 

Potential Site of Interest 0 

 

6.3.2.5 Summary of results 

Overall, chemometric interpretation of MSP data highlighted the degree of 

microscopic colour variation within soils from the same site. As was demonstrated in 

Chapter 3, MSP is most valuable for the discrimination of highly coloured soils. 

However, all of the case simulation soils were a similar grey colour and hence, MSP 

was not expected to be particularly useful for their discrimination. The use of entire 

MSP spectra for PCA was unable to suggest any associations or discriminations 

between soils due to the high degree of sample heterogeneity and noise, as was 

encountered in Section 3.3.1. The use of average spectra improved the 

discrimination seen within the model, allowing the potential site of interest soil to be 

excluded as the origin of the suspect recovered soil. The conversion of these spectra 

to L*a*b* values increased the discrimination even further, allowing for both the 

potential site of interest and alibi site 2 soils to be excluded. While the improvements 

demonstrated through the use of average MSP spectra aligned with the outcomes in 

Chapter 3, the L*a*b* results were unexpected. 

MSP analysis combined with predictive LDA produced a total accuracy of 72%; 

predictions utilising full MSP spectra resulted in 65% correct, average MSP spectra 
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resulted in 50% correct, and L*a*b* values generated from average MSP spectra 

resulted in 100% correct. The results obtained by the full MSP spectra and L*a*b* 

values were unexpected, as they both exhibited much lower accuracies within the 

LDA models produced in Chapter 3. However, the confidence surrounding most of 

these predictions was relatively low in comparison to that obtained through the use 

of other techniques, so it is questionable whether these results would actually be 

consistently reproducible within casework. As all of the incorrectly predicted suspect 

recovered samples across all MSP LDA models were attributed to alibi site 1, which 

was previously indicated to be different through visual examination of the soil, these 

predictions could be cautiously overlooked. So while the use of MSP methods and 

chemometrics could not suggest an association between the suspect recovered soil 

and any of the known soils, they did allow for two exclusions to be made. Therefore, 

they are still worth applying to pairwise soil comparisons, as was suggested in 

Chapter 3.  

6.3.3 Infrared spectroscopic analysis of soil samples 

ATR-FTIR absorbance spectra were collected from the quartz-recovered fine 

fractions of the five supplied soils (Figure 6.9), as outlined in Section 2.5. These 

spectra exhibited many similarities, with minor variation only seen in the level of 

absorbance measured. All samples contained comparable levels of kaolinite, quartz, 

and H2O/CO2 organics. The two alibi sites exhibited higher concentrations of gibbsite, 

goethite, and humus in comparison to other samples, whilst the crime scene, 

potential site of interest, and suspect recovered soils displayed equally lower 

concentrations of these compounds. The spectrum of the suspect recovered soil was 

again most aligned with that of the crime scene soil, particularly evident within the 

gibbsite and goethite peaks at approximately 3450 and 3510 cm-1. However, the 

suspect recovered samples still shared noteworthy similarities with the other spectra, 

and hence chemometric methods were applied to objectively identify and maximise 

the differentiation between samples. 
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Figure 6.9 Baseline corrected and normalised ATR-FTIR absorbance spectra showing the variability in 

composition of the soil samples collected from differing locations representative of a blinded case 

simulation. Annotations were based off peak assignments outlined in Chapter 4 - Table 4.1. 

6.3.3.1 Principal component analysis 

Following the method demonstrated in Section 4.3.2, PCA performed on these ATR-

FTIR spectra revealed that 95.0% of the total variance in the dataset could be 

described by the first three PCs (Appendix 6.11). Three-dimensional score plots 

generated using these PCs (Figure 6.10) resulted in well-defined clustering for the 

suspect recovered soil, but significant intra-site separation based on individual 

samples for the soils from the four known sites. The largest of this was exhibited by 

the crime scene samples; the two samples were substantially separated across PCs 

1-3. Comparing the loadings plot (Figure 6.11) with representative ATR-FTIR spectra 

from these samples (Appendix 6.12), their positioning was influenced based on the 

difference in height of the kaolinite and quartz peaks within the fingerprint region 

(~400–550/910/1080 cm-1), as well as the gibbsite/goethite/humus peaks (1350–

1700/3200-3600 cm-1). For example, sample ‘b’ was situated more positively than 

sample ‘a’ along PC-1 due to smaller kaolinite and quartz peaks (400 – 550 cm-1) and 

larger gibbsite/goethite/humus peaks (all), and more negatively along PC-2 again due 
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to smaller quartz peaks (all) and larger kaolinite peaks (910/1080 cm-1). The 

replicates from sample ‘b’ of alibi site 2 were clustered nearby to those from sample 

‘a’ from the potential site of interest, and examination of their spectra showed that 

these soils were very similar in composition (Appendix 6.12); the only visual 

differences were in peak heights attributed to goethite (3450 cm-1), gibbsite (3520 

cm-1), hematite (610 cm-1), and one kaolinite peak (910 cm-1). 

 

Figure 6.10 3-dimensional PCA scores plots generated using the first six PCs, showing the variability of 

soil samples from different locations within the blinded case simulation, based on their corresponding 

ATR-FTIR spectra. 

Samples from alibi site 1 were well-separated from all other soils, indicating that they 

were unlikely to have originated from the same location as the suspect recovered 

soil. Despite the intra-site separation within the known soils, the only overlap 

exhibited across PCs 1-3 within the scores plot was between the suspect recovered 

samples and those from the crime scene, indicating apparent similarities between 
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these soils. No matter which combination of PCs were used to visualise the model, 

the suspect recovered samples were consistently clustered closest to one of the crime 

scene samples (sample ‘a’), highlighting the likeness of these groups.  

The loadings appeared to focus more on the variation in peak height to separate 

spectra, especially of the larger peaks within the fingerprint region. However, the 

presence or absence of minerals indicated by smaller peaks, such as the goethite and 

gibbsite peaks at 3450/3520 cm-1, could have perhaps been more indicative of the 

origin of the soil. The inadvertent variation in peak heights was the primary reason 

that intra-site samples appeared separated within the plot. This was likely due to 

disparities in the amount of soil on the ATR crystal, as visual inspection of the raw, 

unprocessed spectra revealed differences in overall absorbance (Appendix 6.13). 

Based entirely on the PCA results, the suspect recovered sample most closely 

resembled the crime scene sample. 

 

Figure 6.11 Factor loadings plot of PCs 1-3 for PCA of the blinded case simulation ATR-FTIR absorbance 

dataset, with the main peaks of interest highlighted and annotated with their contributing compounds. 

Annotations were based off peak assignments outlined in Chapter 4 - Table 4.1. 
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6.3.3.2 Linear discriminant analysis 

LDA was performed on the ATR-FTIR dataset with each location treated as an 

individual class, returning a calibration accuracy of 100% (Appendix 6.14). Utilising 

six PCs for LDA was found to maximise discrimination between locations and increase 

the validation accuracy. Despite the large degree of intra-site sample separation 

exhibited within the scores plot, all replicates were correctly classified to their 

source.  

This LDA model was then used to predict the source of the suspect recovered soil 

samples. 100% of sample replicates were predicted as originating from the crime 

scene (Table 6.6). The discriminant values (Appendix 6.15) showed a large degree of 

separation from the other sites, and hence the confidence surrounding these 

predictions was high. All six suspect recovered replicates also showed very similar 

discriminant values for each site; for each replicate, the crime scene soils were 

predicted as the most similar, followed by alibi site 2 soils, then alibi site 1 soils, and 

lastly soils from the potential site of interest. This pattern observed highlighted the 

increased precision within these results compared to previous models using MSP. 

Table 6.6 Predictions for samples in the ATR-FTIR blinded case simulation validation set using a 6-PC 

LDA model. 

Predicted Location Suspect Recovered Samples 

Alibi Site 1 0 

Crime Scene 6 

Alibi Site 2 0 

Potential Site of Interest 0 

 

6.3.3.3 Summary of results 

Overall, chemometric interpretation of ATR-FTIR data was very successful for 

discriminating visually similar soils from different sites, as was expected based on the 

results of Chapter 4. The use of ATR-FTIR spectra for PCA allowed for the exclusion 

of alibi site 1 as the source of the suspect recovered soil, and an association was 
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revealed between the suspect recovered soil and the crime scene soil. The model did 

exhibit clustering of the soils based on their individual sub-samples rather than the 

overall site from which they originated, indicating some variation attributed to 

sample preparation. This was also evident across the models produced in Chapter 4. 

Despite this, discrimination of all known soils was achieved.  

ATR-FTIR analysis combined with predictive LDA produced a total accuracy of 100%, 

with a high level of confidence in these predictions. All of the suspect recovered 

replicates also exhibited very similar discriminant values for each site, highlighting 

the increased precision compared to previous MSP models. This outcome correlated 

with the results of Chapter 4, which showcased the high accuracy of ATR-FTIR when 

used for predictive chemometric methods. Therefore, the use of ATR-FTIR post MSP 

analysis allowed for enhanced discrimination between visually similar soils, by 

further excluding alibi site 2 soils and indicating an association between the suspect 

recovered and crime scene soils, and helped to increase the confidence surrounding 

the previous exclusions made by MSP by reinforcing them.  

6.3.4 X-ray diffractive analysis of soil samples 

As outlined in Section 2.5, XRD patterns were collected from the quartz-recovered 

fine fractions of the five supplied soils using two different XRD instruments; first, 

analysis was done by the modern ChemCentre instrumentation with its settings 

adjusted to best replicate the previous older instrumentation utilised in Chapter 5 

(Figure 6.12), followed by analysis of the same samples on the same low background 

plates by the Commonwealth Scientific and Industrial Research Organisation (CSIRO) 

instrumentation operating at modern capabilities (Figure 6.13). Six dominant 

minerals were detected within these patterns – mica, kaolinite, microcline feldspar, 

gibbsite, quartz, and calcite. The intensities or presence/absence of these reflections 

accounted for the majority of the variance observed between samples. Closer visual 

inspection of the patterns also revealed possible smaller contributions from 

chloritised vermiculite/clinochlore (7.2°), bohmite (16.8°, 32.8°), goethite (24.8°, 

43.2°), anatase (29.5°), and aragonite (30.5° – left shoulder of quartz reflection, 

38.7°, 53.8°) in some samples, though due to the size of these reflections in 
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comparison to the level of noise, these were difficult to accurately confirm in the 

ChemCentre patterns. These smaller mineral reflections were easier to visualise 

within the CSIRO patterns, primarily due to the improved signal to noise ratio. These 

were the only visible differences between ChemCentre and CSIRO patterns; all 

mineral reflections and their relative intensities were comparable between the two 

sources of analysis.  

Patterns from both of the alibi sites were dominated by quartz, microcline, and 

kaolinite, with a noticeable lack of calcite in comparison to the other known sites. 

The only visual difference between these soils was an increased amount of gibbsite 

in alibi site 2’s XRD pattern. The soil from the potential site of interest was arguably 

the most different from the others, containing much larger amounts of mica and 

kaolinite. XRD patterns from the crime scene and the suspect recovered soils were 

visually very similar, both containing higher amounts of gibbsite and calcite than 

other samples. The presence of limestone was previously indicated within these 

samples through the visual identification of small, white rocks in Section 6.3.1, which 

likely accounts for this added calcite. The only visual difference between these soils’ 

patterns was the presence of a small vermiculite/clinochlore reflection in the 

ChemCentre crime scene pattern (7.2°), and a small goethite reflection in the 

ChemCentre suspect recovered pattern (24.8°). However, these differences were not 

apparent in the CSIRO patterns. Based on visual examination of the XRD patterns 

alone, the suspect recovered soil was most comparable to the crime scene soil, 

indicating that they may have originated from the same location. 
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Figure 6.12 Baseline corrected and normalised XRD patterns obtained from ChemCentre, showing the 

variability in composition of a selection of soil samples collected from differing locations representative 

of a blinded case simulation. Annotations were based off reflection assignments outlined in Chapter 5 

- Table 5.1. 

 

Figure 6.13 Baseline corrected and normalised XRD patterns obtained from CSIRO, showing the 

variability in composition of a selection of soil samples collected from differing locations representative 

of a blinded case simulation. Annotations were based off reflection assignments outlined in Chapter 5 

- Table 5.1. 
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6.3.4.1 Principal component analysis utilising ChemCentre XRD patterns 

Following the method applied in Section 5.3, PCA performed on the ChemCentre XRD 

patterns revealed that 92.8% of the total variance in the dataset could be described 

by the first five PCs (Appendix 6.16). Three-dimensional score plots generated using 

these PCs (Figure 6.14) showed clear discrimination of all of the known soil sites. The 

loadings (Figure 6.15) were largely influenced by variation in microcline feldspar and 

quartz, with contribution also evident from kaolinite and gibbsite. While mica and 

calcite were also detected within the loadings, their influence was minimal. There 

was some intra-site separation evident within the crime scene and alibi site 1 soils, 

however, this was not significant enough to affect the clustering of these groups or 

cause them to overlap with others. The largest degree of intra-site variation was 

again seen within the crime scene samples, which were most significantly separated 

along PC-3. Comparing the loadings plot with XRD patterns from these samples 

(Appendix 6.17), their positioning along PC-3 was influenced based on the height of 

the quartz (31.0°), microcline (32.0°), and kaolinite (28.9°) reflections.  

The potential site of interest soils were consistently the best separated from all other 

sites, presumably due to the substantial differences in underlying mineralogy 

associated with the original dune system; all of the known soils came from the 

Spearwood dune system, except for the potential site of interest which came from 

the Pinjarra Plain. The loadings also showed that increasing amounts of noise were 

detected with each additional PC, indicating that a portion of the separation across 

PCs 3 and above may have been due to this and hence unreliable. Despite this, the 

suspect recovered samples were clustered closely and overlapping with the crime 

scene samples in the scores plot, indicating that these likely originated from the same 

location. No matter which combination of PCs were used to visualise the model, the 

suspect recovered samples were consistently clustered closest to the crime scene 

samples. 



 186 

 

Figure 6.14 3-dimensional PCA scores plots generated using the first four PCs, showing the variability 

of soil samples from different locations within the blinded case simulation, based on their 

corresponding ChemCentre XRD patterns. 

 

Figure 6.15 Factor loadings plot of PCs 1-4 for PCA of the blinded case simulation ChemCentre XRD 

dataset, with the main reflections of interest highlighted and annotated with their contributing 

compounds. Annotations were based off reflection assignments outlined in Chapter 5 - Table 5.1. 
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6.3.4.2 Principal component analysis utilising CSIRO XRD patterns 

PCA performed on the CSIRO XRD patterns revealed that 96.9% of the total variance 

in the dataset could be described by the first five PCs (Appendix 6.18). Three-

dimensional score plots generated using these PCs (Figure 6.16) showed clear 

discrimination of all of the known soil sites, albeit some intra-site sample separation 

for the soils from the four known sites. The loadings (Figure 6.17) showed influence 

mainly from microcline feldspar and quartz, with contribution also evident from 

kaolinite, gibbsite, and mica. While calcite was also detected within the loadings, its 

influence was again minimal. In contrast to the ChemCentre XRD model, these CSIRO 

XRD loadings did not encapsulate any detection of noise, exhibiting relatively smooth 

spectra. However, as these were the same minerals detected within the ChemCentre 

loadings, the CSIRO model exhibited an equivalent degree of clustering and 

differentiation between soils, with just increased separation between clusters due to 

the improved sensitivity of the instrumentation. The suspect recovered samples were 

again consistently clustered closely with the crime scene samples in the scores plot, 

irrespective of which PCs were used to visualise the model. Once more, this 

suggested that the suspect recovered soils likely originated from the crime scene. 

 

Figure 6.16 3-dimensional PCA scores plots generated using the first four PCs, showing the variability 

of soil samples from different locations within the blinded case simulation, based on their 

corresponding CSIRO XRD patterns. 
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Figure 6.17 Factor loadings plot of PCs 1-4 for PCA of the blinded case simulation CSIRO XRD dataset, 

with the main reflections of interest highlighted and annotated with their contributing compounds. 

Annotations were based off reflection assignments outlined in Chapter 5 - Table 5.1. 

6.3.4.3 Linear discriminant analysis 

LDA was performed on the ChemCentre XRD dataset with each location treated as 

an individual class, returning a calibration accuracy of 100% (Appendix 6.19). Due to 

the limited sample size, a maximum of only two PCs could be utilised to build the 

model. This was a disadvantage as a substantial amount of the variation (22.5%) was 

captured within PCs 3 and above, as evident in the scree plot. Conversely, this did 

allow for the majority of the variation attributed to noise to be disregarded. When 

reduced to a 2-PC model (Appendix 6.20), there was a slight decrease in the degree 

of separation between known samples, however, this model still allowed for the 

discrimination of all of the known soils. Despite the intra-site separation exhibited by 

the crime scene and alibi site 1 samples, all replicates were correctly classified to their 

source, due to their clear discrimination.  

This LDA model was then used to predict the source of the suspect recovered soil 

samples. 50% of sample spectra were predicted as originating from alibi site 1, and 
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the other 50% were predicted as the crime scene (Table 6.7). The discriminant values 

(Appendix 6.21) indicated that while the crime scene prediction was of moderately 

high confidence (+109%), the alibi site 1 predicted sample was very close to the 

centroid of the alibi site 2 soils (+10%). While this implied that the suspect recovered 

soil more than likely originated from the crime scene, the limited sample size meant 

that these results may not have been accurately representative.  

Table 6.7 Predictions for samples in the ChemCentre XRD blinded case simulation validation set using 

a 2-PC LDA model. 

Predicted Location Suspect Recovered Samples 

Alibi Site 1 1 

Crime Scene 1 

Alibi Site 2 0 

Potential Site of Interest 0 

 

LDA was then performed on the CSIRO XRD dataset, returning a calibration accuracy 

of 100% (Appendix 6.22). As seen in the ChemCentre LDA model, there was a slight 

decrease in the degree of separation between known samples when reduced to a 2-

PC model (Appendix 6.23), and the intra-site separation within the alibi site 1 soil was 

made more prominent. Despite this, the 2D model still allowed for the discrimination 

of all of the known soils, and hence, all replicates were correctly classified to their 

source.  

When this LDA model was used to predict the source of the suspect recovered soil 

samples, 100% of sample spectra were predicted as originating from the crime scene 

(Table 6.8). The discriminant values (Appendix 6.24) showed an adequate degree of 

separation from the other sites, and hence the confidence surrounding these 

predictions was moderately high. Both suspect recovered samples also showed 

similar discriminant values for each site; the crime scene soils were predicted as the 

most similar, followed by alibi site 1 soils, then alibi site 2 soils, and lastly soils from 

the potential site of interest. This pattern observed highlighted the increased 

precision within these results compared to the previous ChemCentre XRD model, 
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which showed substantially different discriminant values between samples for the 

three most similar sites. 

Table 6.8 Predictions for samples in the CSIRO XRD blinded case simulation validation set using a 2-PC 

LDA model. 

Predicted Location Suspect Recovered Samples 

Alibi Site 1 0 

Crime Scene 2 

Alibi Site 2 0 

Potential Site of Interest 0 

 

6.3.4.4 Summary of results 

Overall, the use of XRD and chemometrics was demonstrated to be valuable for the 

discrimination of soils in forensic casework, particularly when utilised in a sequence 

with other spectroscopic techniques. PCA using both simulated ‘older’ ChemCentre 

data and ‘newer’ CSIRO data allowed for the association between the suspect 

recovered soil and the crime scene soil to be confirmed, with discrimination of all 

other sites. The CSIRO model exhibited an enhanced level of separation between 

sites due to the improved sensitivity and signal-to-noise ratio of the modern 

instrumentation, as demonstrated in Chapter 5. This reinforced the notion that the 

same conclusions can be inferred from results produced through the use of both 

outdated and modern instrumentation. 

XRD analysis combined with predictive LDA produced a total accuracy of 75%; 

simulated ‘older’ ChemCentre instrumentation resulted in 50% correct, while 

modern CSIRO instrumentation achieved 100% correct. Additionally, the confidence 

surrounding the correct predictions using XRD was relatively high in comparison to 

the predictions that were incorrect, increasing the confidence in the correct results. 

These models displayed improved accuracies in comparison to the LDA model 

presented in Chapter 5, in which ChemCentre and CSIRO data were combined into 

one dataset for LDA. By keeping the two datasets separate for this case simulation, 
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each model no longer encapsulated variation attributed to instrumental analysis, 

which improved the results. Both suspect recovered samples within the CSIRO model 

also showed similar discriminant values for each site, highlighting the increased 

precision compared to the simulated ‘older’ ChemCentre model. It was previously 

demonstrated in Chapter 5 that predictive LDA was more affected by the instrument 

capabilities than unsupervised methods of analysis, and this was reflected in these 

results too, highlighting the advantage that more advanced instrumentation offers. 

In this case simulation however, LDA was performed alongside PCA and the results 

were interpreted together with those obtained through the use of other techniques, 

so the LDA data was primarily used to confirm previous associations rather than 

introduce new information. For use within forensic casework, XRD was shown to 

perform well when utilised as the final step of an analysis sequence; it was able to 

confirm the exclusions and associations previously indicated through MSP and ATR-

FTIR, therefore providing an increased level of confidence surrounding the results. 

6.3.5 Comparison of results with true source 

As previously indicated, the suspect recovered soil was revealed to have originated 

from the crime scene site post-analysis and interpretation. Therefore, the sequence 

utilised within this case simulation was able to correctly predict the source of the 

suspect recovered soil from analysis of its quartz-recovered fine fraction. 

Additionally, due to the discrimination of different known soils at each successive 

stage, 100% of samples were able to be differentiated from the suspect recovered 

and crime scene soils by the end of the sequence. While the results achieved by each 

individual technique correlate with those obtained in previous chapters, i.e., ATR-

FTIR methods were most accurate, followed by XRD, and lastly MSP, the LDA 

accuracies achieved within this blinded case simulation were consistently higher 

across all techniques. Whilst this is generally the case when utilising smaller sample 

populations, the level of similarity between these samples was much higher than in 

previous chapters, which was expected to increase the difficulty of their 

discrimination. 
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Therefore, this sequence has been shown to be particularly useful in forensic 

casework for differentiating soils that are similar in appearance, but contain subtle 

differences in composition based on their location. It has illustrated the value in full 

compositional analysis of soils, by utilising several methods in combination to ensure 

all forms of variation across the samples can be accurately identified and exploited 

for their discrimination. Additionally, this allowed for the overall effects of sample 

preparation, instrumental variation, and anthropogenic influences to be better 

recognised and minimised accordingly. The integration of chemometric analysis 

within the sequence also provided strong numerical support to back up the 

conclusions reached; in some instances, chemical analysis without chemometrics 

suggested the same results, but these were able to be reinforced using a 

documented statistical backing. This could assist with presentation of this evidence 

in court by providing a quantitative basis for decision-making, and addressing the 

concerns of subjectivity often highlighted in feature comparison disciplines. This 

approach could be readily integrated into existing analysis workflows. To reinforce 

confidence in the conclusions even further, forensic practitioners can combine this 

sequence with other techniques that collect data on the soils in question, such as 

ICP-MS for elemental analysis, detection of heavy minerals, or pollen / microbiome 

analysis methods, or results from analysis of other forms of trace evidence found 

within the samples, such as glass. 

6.4 Conclusions 

In this chapter, the use of multiple spectroscopic techniques with chemometrics 

combined into a sequence successfully proved an association between samples in a 

blinded case simulation. MSP, ATR-FTIR spectroscopy, and XRD were used to 

characterise the quartz-recovered fine fraction of Swan Coastal Plain soils. Applying 

chemometric methods (PCA and LDA) to data obtained from analysis of the quartz-

recovered fine fraction was successful at discriminating between soils from different 

known locations, and predicting the source of an unknown sample. This not only 

highlighted the value of the technique for application to sandy forensic soils, but also 
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the strength of chemometrics for objectively identifying associations where only 

subtle differences occur.  

Overall, the use of ATR-FTIR spectra for chemometrics was the most successful 

method, due to the high prediction accuracy and high confidence of the results. 

Presumably, this is due to the ability of IR techniques to detect both inorganic and 

organic compounds within the soil samples, allowing for the representation of a 

higher proportion of variation between samples. If forensic experts are limited by 

time restrictions, ATR-FTIR is suggested for the efficient comparison of soil samples. 

However, if possible, it is recommended to utilise all available methods within a 

sequence (including visual examination), in order to increase the knowledge gained 

and heighten the confidence in results. From this study, it is clear that different 

methods gave varied results, but when taken holistically, these results provided 

complementary information. For example, the soil from alibi site 1 could visually be 

discriminated from the suspect recovered soil, however, all further incorrect LDA 

predictions were assigned as alibi site 1, indicating that they were likely to be 

incorrect. Therefore, this study not only highlighted that the value of the method was 

increased through use of the whole sequence, but also that performing 

chemometrics alongside each of these steps allowed for greater confidence in the 

end result. 

Additional points of differentiation could be utilised to enhance the discrimination of 

soil by conducting LDA based on other attributes of the known sites, such as the 

original dune system or type of location, however, in this instance these were 

consistent between most sites. This was intentional for two reasons; to test the full 

capabilities of the developed method for discriminating between soils that are very 

similar, and to imitate as closely as possible the likely types of samples provided in a 

real forensic examination. It was also indicated that all techniques within the 

sequence were able to detect variation across the soils that was related to different 

features of the locations involved. For example, MSP was able to discriminate soils 

based on colour, and both ATR-FTIR and XRD analysis could detect compounds within 

the soil samples in quantitative ratios that were characteristic of their dune system. 
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While this suggests potential for application of this method to a database matching 

approach, it is understood that the quartz-recovered fine fraction cannot provide the 

required amount of holistic information on the soil samples for this to be 

implemented with confidence. Hence, this sequence is more appropriate for the 

differentiation of samples, and is primarily intended to be incorporated within 

standard questioned versus known comparisons. In this instance, it is important to 

ensure the results generated through chemometric analyses are verified and further 

interpreted by the forensic examiner, to ensure that they are supported by the 

numerical data and not just suggested due to ‘best fit’. The number of replicates used 

within this study was also limited due to sample size restrictions commonly 

encountered in casework; the inclusion of additional replicates would be expected 

to increase the accuracy and precision of results. 
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Chapter 7. Conclusions and Future Work 

Portions of this chapter have been published in the following articles: 

T. G. Newland, K. Pitts, and S. W. Lewis. "Multimodal spectroscopy with 

chemometrics for the forensic analysis of Western Australian sandy soils." Forensic 

Chemistry, 2022. 28: 100412. 

T. G. Newland, K. Pitts, and S. W. Lewis. "Multimodal spectroscopy with 

chemometrics: Application to simulated forensic soil casework." Forensic Chemistry, 

2023. 33: 100481.  
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7.1 Conclusions 

The aim of this thesis was to develop a multi-faceted approach to the analysis of the 

quartz-recovered fine fraction of soils that utilises chemometrics to demonstrate 

objective characterisation and differentiation of arid, sandy soil samples for forensic 

purposes. Analysis of these soils is especially challenging due to their very low levels 

of clay and organic matter, which is further compounded by the trace quantities of 

soil commonly encountered in forensic casework. Common soil analysis techniques 

are unable to be utilised with these quartz-dominated soils, and novel methods 

focused on the detection of organics within the sample do not allow for their 

discrimination (94). The majority of the variation within these sandy soils is contained 

within the clay fine fraction, typically found as thin coatings on the surfaces of the 

quartz grains (94). This fraction is estimated to make up only 1 – 5% of the soil mass, 

and when encountered in trace quantities as forensic evidence, translates to sample 

sizes of approximately 1 – 2 mg (94). It is therefore important to have reliable, 

validated methods for the isolation and analysis of this quartz-recovered fine 

fraction, as well as for the interpretation and communication of the results 

generated. This will ensure these types of soils can be used as a form of forensic 

evidence, and the value of this evidence is not overlooked.  

A method for isolation of the quartz-recovered fine fraction was previously 

developed by Pitts and Clarke (94) and applied to soil samples throughout this thesis, 

which is an expansion of this earlier work. The chemical characteristics of the soils 

were measured using a variety of spectroscopic techniques and the collected data 

was analysed using chemometric approaches, which allowed for interpretation of the 

variation and subsequent discrimination between them. The multi-variate statistical 

methods explored in this study not only provide a more objective interpretation of 

the examination of forensic soils, of which the significance has been highlighted 

many times within the forensic community, but also offer a statistical foundation to 

determine the limits of performance (99, 101). On the basis of this, an analytical 

sequence combining spectroscopy and chemometrics was developed for application 

to forensic casework and this was subsequently tested by undertaking a blinded case 
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simulation. Additionally, by utilising a particularly challenging set of samples, detailed 

data has been collected on forensic soil as a form of forensic trace evidence in 

Western Australia, underpinning the interpretation of findings that might come from 

future analysis (23). In a broader forensic context, these methods developed are 

applicable to other national and international jurisdictions that experience arid, 

sandy soils, or soils where the bulk material is dominated by quartz. 

7.1.1 Investigations into spectroscopic techniques in combination with 

chemometrics 

Chapters 3 to 5 investigated the chemical characterisation and discrimination of a 

selection of sandy soils from the Swan Coastal Plain in Perth, Western Australia. 

Samples were collected from a range of differing location types, and dune and plant 

systems, representative of the whole plain. The quartz-recovered fine fractions were 

extracted from these soils and analysed using several complementary spectroscopic 

techniques, in combination with chemometric methods. 

Chapter 3 demonstrated the use of microspectrophotometry (MSP) for the analysis 

of the quartz-recovered fine fraction of soils, which had previously never been 

explored. When combined with chemometric interpretation however, this technique 

provided minimal discrimination between soil samples from different locations, as 

the noise within the reflectance spectra was accentuated by the complex statistical 

analyses. Soils that were distinctly coloured were able to be differentiated from the 

rest of the population with confidence, but only a few soils that were visually similar 

achieved the same result; MSP spectra essentially provided a more precise and 

objective determination of the colour of the soil sample. However, this colour was 

not always representative of the bulk colour of the soil and was affected by 

inconsistency in the thickness of the samples. Therefore, the increased precision 

became a disadvantage when paired with the high degree of variability that exists 

within soil, producing chemometric models that were only sometimes able to 

differentiate soils based on their original locations. When MSP spectra were 

converted to L* a* b* colorimetric values, detailed information was lost and the 

method was unable to provide any beneficial separation over visual examination of 
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the soil, so is not favourable as an interpretation method in this instance. 

Nevertheless, MSP analysis combined with chemometrics is still valuable for forensic 

pairwise comparisons to detect subtle differences in colour not visible to the naked 

eye, and to quickly rule out samples that are highly coloured and appear visually 

distinctive using a statistical measure of differentiation. 

In Chapter 4, vibrational spectroscopy was utilised for analysis of the quartz-

recovered fine fraction obtained from soil samples. Raman spectroscopy has recently 

been applied to soil data, however, showed poor results due to strong levels of 

fluorescence that swamped the spectra (77, 121-123). This thesis aimed to expand 

on that work by utilising the quartz-recovered fine fraction of soils and different 

instrumental conditions in an attempt to reduce fluorescence and improve results. 

Raman spectroscopy was unsuccessful at providing any chemical information on the 

samples due to aforementioned fluorescence and attempts at background correction 

showed no beneficial effect on the spectra, so no further studies were carried out 

using this technique.  

Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy has 

never before been applied to the quartz-recovered fine fraction of sandy soils. ATR-

FTIR spectroscopy successfully detected many inorganic and organic components 

within the soils that allowed for their differentiation. Chemometric methods applied 

to this data resulted in the discrimination of all soil samples based on their original 

locations, and the classification of nearly all samples (93%) to their correct locations. 

All soils did show varying degrees of intra-location separation based on individual 

samples rather than overall location, indicating potential variation due to sampling, 

however, this was generally not significant enough to alter the discrimination 

achieved. It was also apparent that the compounds responsible for variance within 

the ATR-FTIR chemometric models were associated with the visual colour of the soils. 

The combined use of ATR-FTIR with chemometrics was the best performing method 

for detecting the subtle variation within quartz-recovered fine fractions and showed 

great potential for differentiating visually similar sandy soils based on their locations. 
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Chapter 5 demonstrated the use of combined X-ray diffraction (XRD) and 

chemometrics for the analysis of the quartz-recovered fine fraction of soils, and also 

incorporated a reproducibility study of results obtained through analysis conducted 

on three different XRD instruments. Previous work by Pitts and Clarke demonstrated 

the successful use of XRD on quartz-recovered fine fractions of soil, however, this 

only made use of selective percentage intensities and lacked any chemometric 

interpretation of results (94). Whilst there are several other published studies that 

do use XRD soil data with chemometrics, these did not utilise the quartz-recovered 

fine fraction and also involved ‘peak picking’ or profile fitting prior to multivariate 

analysis (19, 20, 72). This thesis made use of the whole XRD pattern for chemometric 

analysis, to capture any minor variations in mineral content or shifts away from the 

‘standard’ reflection positions.  

Results showed the discrimination of most soil samples based on their locations, 

however, some sites showed significant intra-site variability potentially due to 

anthropogenic influence. Predictive models generated were not accurate at 

classifying soils to their original locations despite the degree of discrimination 

achieved, due to limitations on the number of samples available to build these 

models. The variation detected in the mineral content of the soil correlated with the 

dune systems that these samples originated from, which may indicate potential for 

development as a predictive screening tool that could allow detectives to focus on 

areas of interest. Most importantly, the XRD models were able to better discriminate 

different soils to those that were easily discriminated using the ATR-FTIR model, 

demonstrating how the soil examination process would benefit from a multi-model 

approach.  

The reproducibility study made use of multiple XRD instruments to analyse the same 

collection of soil samples; a three decades-old instrument, a newer instrument 

operating at more modern capabilities, and another modern instrument with 

settings adjusted to closely mimic those used on the older instrumentation. It is 

recognised that these diffractometers are expensive capital items, and some forensic 

laboratories may only have access to older instrumentation. Results showed 
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variations in the quality of data collected that did affect the results, however, all 

instrumentation achieved similar overall discrimination of soils and predictive 

accuracies. This highlighted the robustness of the methods used. Ideally, the analysis 

of all samples should be conducted using the same instrumentation where possible 

for best results, however, it is possible to use multiple different instruments if the 

variations in quality are accounted for when interpreting the results. 

The approach developed provides good evidence that selected spectroscopic 

methods, utilised in combination, and with chemometrics performed alongside each 

stage of the sequence, can maximise the differentiation observed by forensic 

practitioners when examining soil samples (Figure 7.1). In addition, examination of 

loadings plots provided key information on the chemical characteristics that allowed 

for the differentiation between samples. Sequenced analysis can be especially useful 

when samples are relatively similar and available instrumentation is limited, as 

different techniques can inform in complementary ways when paired with 

chemometric analysis. In this thesis, using several non-destructive techniques in 

sequence allowed for more accurate identification of minerals, and enhanced 

discrimination of soils from similar locations. Chemometrics performed on MSP data 

initially discriminated distinctly coloured soils from the rest of the population. ATR-

FTIR spectroscopy with chemometrics allowed for the discrimination and 

classification of the majority of the remaining soils. Finally, chemometrics performed 

on XRD data was able to confirm the mineral associations made through the ATR-

FTIR loadings and enhance the discrimination of some samples that were not well-

separated within the previous ATR-FTIR model. These methods each provided 

information that built on knowledge obtained from the previous technique. Taken in 

isolation, each analysis method provided only part of the entire picture. The ATR-

FTIR and XRD methods also provided additional forensic intelligence on the visual 

appearances and dune systems associated with the soil samples being analysed, 

which could prove especially useful for soil provenancing.  
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Figure 7.1 Analytical sequence for examination of the quartz-recovered fine fraction of sandy forensic 

soil samples from the Swan Coastal Plain in Perth, Western Australia, with the information obtained 

through analysis at each stage. 

7.1.2 Application to blinded case simulation and forensic casework 

Chapter 6 applied the proposed analytical sequence developed in the previous 

chapters to a blinded case simulation to evaluate its capabilities and showcase its 

suitability for use within the context of forensic casework. This simulation was 

generated by a third-party for objectivity and was designed to be challenging by 

utilising five soils that were very similar, imitating as closely as possible the likely 

types of samples provided in a real forensic examination. All of the soils provided 

were similar in colour, with only small differences in their bulk appearance, and most 

were collected from locations that were situated close by to each other (within the 

same dune system) and subject to the same external factors (location type and 

usage). The aim was to determine any associations for a suspect recovered sample 

by either associating it with or excluding it from any or all of the four known locations, 

represented by their own reference soil samples; alibi site 1, alibi site 2, crime scene, 

or potential site of interest. The source of the suspect recovered soil was the crime 

scene site, however, this was unknown to this author until all analysis and 

interpretation had been completed.  

MSP

• Discriminated 
coloured soils.

• Useful for pairwise 
comparisons of 
similarly coloured 
soils.

• Sample heterogeneity 
and micro-
heterogeneity can 
cause variability.

ATR-FTIR

• Indicates many 
organics / inorganics 
commonly present in 
soils.

• Discriminated most 
soils based on location 
using PCA and LDA.

• Provided additional 
separation with 
samples that failed to 
achieve discrimination 
using MSP.

XRD

• Represents 
minerology present 
within soils.

• Discriminated soils 
based on dune system 
using PCA, and some 
based on locations 
using PCA and LDA.

• Provided additional 
separation with 
samples that failed to 
achieve discrimination 
using ATR-FTIR.
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The results supported the conclusions made in previous chapters; different analysis 

methods gave varied results, but when taken holistically, these results provided 

complementary information that was able to be used collectively to discriminate 

between the known soils and identify the source of the suspect recovered soil with 

greater confidence (Figure 7.2). The use of MSP with chemometric methods was able 

to discriminate the potential site of interest and alibi site 2 soils from the rest of the 

population, tentatively excluding these sites as origins for the suspect recovered soil. 

Chemometric methods performed on ATR-FTIR data showed a strong association 

between the suspect recovered soil and the crime scene soil, confirmed the 

exclusions made by MSP, and also discriminated alibi site 1 from both of these sites. 

Finally, the use of XRD and chemometrics confirmed all these results by again 

showing an association between the suspect recovered soil and the crime scene soil 

and discriminating all other soils from these sites. Using multi-variate statistical 

methods to interpret the data collected by each analysis technique was beneficial for 

providing an objective, statistical measure of the similarities and/or variation 

between samples. 

This approach can be readily incorporated into forensic casework to provide 

discrimination between similar soil samples in an objective manner, with the 

conclusions reinforced by a scientific measure of similarity that can be presented as 

weighting for evidence in court. While this method does show some potential for use 

within a database matching approach, it is primarily intended to be incorporated 

within standard questioned versus known comparisons. This is because the quartz-

recovered fine fraction cannot provide the holistic information on the soil samples 

that would be required to construct a database, and hence is more appropriate for 

differentiation between samples. However, it was indicated that both ATR-FTIR and 

XRD analysis can detect compounds within the soil samples in quantitative ratios that 

are characteristic of their dune system, and therefore could potentially provide 

information to forensic investigators concerning general regions that a soil sample 

may have originated from. Caution should surround this approach as soils are a 

constantly changing form of evidence, so their use for forensic intelligence is always 

going to be challenging. It is important to therefore understand the limitations to this 
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prior to use and communicate these appropriately when reporting the findings to 

end users of the information. 

 

Figure 7.2 Flowchart illustrating how each stage of analysis within the sequence allowed for an 

association of exclusion to be made between the suspect recovered soil and the reference soils in the 

blind case simulation in Chapter 6. 

7.2 Future work 

There is a need for further research in this space to reinforce the proposition that soil 

analysis can provide extremely useful information in the context of a forensic 

investigation, even when soil samples are sandy, minute, and fractionated. Whilst 

the dataset for this study was limited by the number of samples per location, the 

intention was to imitate sample size requirements from a forensic case work scenario 

as closely as possible. In these situations, there is usually minimal sample available 

for analysis. However, validation of this approach should be explored further by 

utilising a larger sample population and a more complex range of soils. Investigations 

should also be expanded into sub-surface soil samples, to assess the suitability of the 

technique for processing burial sites; sub-surface samples were initially collected 
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along with the surface samples used throughout this study but have not been utilised 

for this purpose as of yet. The database matching capabilities of the approach could 

also be explored by combining the method development and case simulation 

datasets into one singular chemometric model, to assess how well the approach can 

provide an association within a more complex dataset. Finally, consideration should 

be given as to how to effectively present these results in court. As previously shown 

with other forms of forensic evidence, e.g., fibres, this chemometric approach is 

suitable for use with other statistical interpretation methods, such as Bayesian 

interpretation (100, 107, 108). Future research should examine how chemometric 

methods can be integrated within these other statistical frameworks, in order to gain 

acceptance in the legal system. 

7.3 Summary 

In summary, this thesis demonstrates the value that arid, sandy soils hold as a form 

of trace evidence that can be utilised as a part of forensic investigations. Examination 

of the quartz-recovered fine fraction of Perth soils has demonstrated that 

chemometrics can be used successfully in combination with spectroscopic 

techniques to objectively discriminate between these challenging soils. Unlike other 

forms of forensic trace evidence, soil is in a constant state of change all around the 

world and therefore requires many different approaches for its analysis dependent 

on the type of soil present. With so many distinctly different soils found 

internationally, and many of these showcasing extreme characteristics, it is 

important to make sure that a range of relevant, validated methods are available for 

selection of an approach that is most appropriate for the soil type encountered (54). 

This thesis provides a reliable method for obtaining as much discriminatory 

information as possible out of dry, quartz-dominated soils. This research could assist 

in allowing the introduction of soil analysis back into forensic laboratories and 

improve the capability of those already undertaking it, and enhance its reputation in 

the courts as a reliable form of trace evidence (38, 62). The results generated may 

also allow soil evidence to be utilised in the midst of criminal investigations to provide 
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investigative information to police, rather than just as a reconstructive tool in court, 

assisting them in locating burial sites or other geological areas of interest. 
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Appendices 

 

Appendix 6.1 Scree plot depicting the cumulative variance retained by each PC in the blinded case 

simulation full MSP dataset. 

 

 

Appendix 6.2 Scree plot depicting the cumulative variance retained by each PC in the blinded case 

simulation average MSP dataset. 
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Appendix 6.3 The blinded case simulation soil samples analysed with MSP and their associated L*a*b* 

chromaticity values generated from their average MSP spectra (to five decimal places). 

Soil sample L* value a* value b* value 

BS1a – Alibi Site 1 68.06082 6.27448 15.24703 

BS1b – Alibi Site 1 70.07555 4.70414 11.43255 

BS2a – Suspect Recovered 69.62115 6.17024 12.29732 

BS2b – Suspect Recovered 70.36893 3.56538 10.55008 

BS3a – Crime Scene 73.62930 5.42913 14.10167 

BS3b – Crime Scene 65.01199 4.69434 12.01520 

BS4a – Alibi Site 2 64.14069 4.66415 11.07226 

BS4b – Alibi Site 2 64.34891 3.82982 10.51401 

BS5a – Potential Site of Interest 69.04498 4.45102 14.52991 

BS5b – Potential Site of Interest 69.32379 4.60865 13.45431 

 

 

 

 

Appendix 6.4 Scree plot depicting the cumulative variance retained by each PC in the blinded case 

simulation L*a*b* chromaticity dataset. 
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Appendix 6.5 Number of correct vs incorrect classifications for samples in the MSP blinded case 

simulation calibration set using a 4-PC LDA model (percentages rounded to nearest whole number). 

Location Correct Incorrect Classified % Correct 

Alibi Site 1 14 6 Alibi Site 2 70 

Crime Scene 19 1 Alibi Site 1 95 

Alibi Site 2 10 10 Alibi Site 1 (8), Crime Scene (1), 
Potential Site of Interest (1) 

50 

Potential Site of Interest 18 2 Crime Scene 90 

   % Total Correct 
    76 
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Appendix 6.6 Discriminant values of the suspect recovered soil’s replicates from the MSP blinded case 

simulation validation dataset (rounded to three decimal places), with predictions shaded green. The 

last column demonstrates how far away the next closest prediction was, as a percentage of the lowest 

discriminant value obtained.  
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Alibi Site 1 Crime Scene Alibi Site 2 Potential Site 
of Interest 

Sample A (1) -7.017 -2.315 -5.334 -4.217 Crime Scene 82 

Sample A (2) -5.335 -1.619 -4.987 -5.883 Crime Scene 208 

Sample A (3) -4.607 -13.932 -7.240 -21.674 Alibi Site 1 57 

Sample A (4) -7.255 -2.015 -6.532 -5.492 Crime Scene 173 

Sample A (5) -1.745 -3.658 -2.006 -8.249 Alibi Site 1 15 

Sample A (6) -1.835 -3.777 -2.494 -8.948 Alibi Site 1 36 

Sample A (7) -5.619 -14.090 -8.666 -22.538 Alibi Site 1 54 

Sample A (8) -4.689 -3.951 -5.097 -10.542 Crime Scene 19 

Sample A (9) -6.012 -5.144 -7.378 -12.840 Crime Scene 17 

Sample A (10) -6.801 -4.632 -6.568 -7.973 Crime Scene 42 

Sample B (1) -6.144 -3.576 -5.499 -8.263 Crime Scene 54 

Sample B (2) -11.059 -9.540 -12.772 -20.484 Crime Scene 16 

Sample B (3) -8.194 -9.894 -8.794 -17.731 Alibi Site 1 7 

Sample B (4) -5.144 -2.534 -4.419 -5.369 Crime Scene 74 

Sample B (5) -5.961 -5.246 -5.267 -9.683 Crime Scene 85 

Sample B (6) -5.999 -7.823 -6.150 -14.066 Alibi Site 1 3 

Sample B (7) -10.283 -8.244 -10.409 -15.825 Crime Scene 25 

Sample B (8) -12.026 -13.210 -12.542 -21.645 Alibi Site 1 4 

Sample B (9) -6.887 -4.419 -5.374 -7.091 Crime Scene 22 

Sample B (10) -5.136 -3.119 -3.792 -5.524 Crime Scene 22 
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Appendix 6.7 Number of correct vs incorrect classifications for samples in the average MSP blinded 

case simulation calibration set using a 2-PC LDA model (percentages rounded to nearest whole 

number). 

Location Correct Incorrect Classified % Correct 

Alibi Site 1 2 0 - 100 

Crime Scene 2 0 - 100 

Alibi Site 2 2 0 - 100 

Potential Site of Interest 2 0 - 100 

   % Total Correct 
    100 

 

Appendix 6.8 Discriminant values of the suspect recovered soil’s replicates from the average MSP 

blinded case simulation validation dataset (rounded to three decimal places), with predictions shaded 

green. The last column demonstrates how far away the next closest prediction was, as a percentage 

of the lowest discriminant value obtained. 
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Alibi Site 1 Crime Scene Alibi Site 2 Potential Site 
of Interest 

Sample A -1.390 -14.907 -5.940 -69.089 Alibi Site 1 327 

Sample B -11.089 -5.196 -5.422 -39.479 Crime Scene 4 

 

Appendix 6.9 Number of correct vs incorrect classifications for samples in the L*a*b* chromaticity 

values blinded case simulation calibration set using a 2-PC LDA model (percentages rounded to nearest 

whole number). 

Location Correct Incorrect Classified % Correct 

Alibi Site 1 0 2 Crime Scene & 
Potential Site of Interest 

0 

Crime Scene 1 1 Alibi Site 2 50 

Alibi Site 2 2 0 - 100 

Potential Site of Interest 1 1 Crime Scene 50 

   % Total Correct 
    50 
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Appendix 6.10 Discriminant values of the suspect recovered soil’s replicates from the L*a*b* blinded 

case simulation validation dataset (rounded to three decimal places), with predictions shaded green. 

The last column demonstrates how far away the next closest prediction was, as a percentage of the 

lowest discriminant value obtained. 
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Alibi Site 1 Crime Scene Alibi Site 2 Potential Site 
of Interest 

Sample A -1.531 -1.421 -3.172 -1.632 Crime Scene 8 

Sample B -3.606 -3.067 -3.588 -3.977 Crime Scene 17 

 

 

 

 

Appendix 6.11 Scree plot depicting the cumulative variance retained by each PC in the blinded case 

simulation ATR-FTIR dataset. 
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Appendix 6.12 Representative ATR-FTIR spectra obtained from the crime scene soil samples (top), 

illustrating the variation in spectra from different samples, and from alibi site 2 and the potential site 

of interest (bottom), illustrating the similarities between these samples. 
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Appendix 6.13 Raw, unprocessed ATR-FTIR spectra obtained from the crime scene soil samples (top) 

and alibi site 2 samples (bottom), illustrating the variation in overall absorbance of different samples 

potentially due to amount of sample on the ATR crystal. 
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Appendix 6.14 Number of correct vs incorrect classifications for samples in the ATR-FTIR blinded case 

simulation calibration set using a 6-PC LDA model (percentages rounded to nearest whole number). 

Location Correct Incorrect Classified % Correct 

Alibi Site 1 6 0 - 100 

Crime Scene 6 0 - 100 

Alibi Site 2 6 0 - 100 

Potential Site of Interest 6 0 - 100 

   % Total Correct 
    100 

 

 

 

Appendix 6.15 Discriminant values of the suspect recovered soil’s replicates from the ATR-FTIR blinded 

case simulation validation dataset (rounded to three decimal places), with predictions shaded green. 

The last column demonstrates how far away the next closest prediction was, as a percentage of the 

lowest discriminant value obtained. 
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Alibi Site 1 Crime Scene Alibi Site 2 Potential Site 
of Interest 

Sample A (1) -2157.343 -9.947 -1267.209 -3360.959 Crime Scene 12640 

Sample A (2) -2386.464 -13.185 -1156.206 -3050.883 Crime Scene 8669 

Sample A (3) -1977.601 -38.556 -891.365 -2851.056 Crime Scene 2212 

Sample B (1) -1838.478 -116.671 -640.415 -2465.914 Crime Scene 449 

Sample B (2) -1864.081 -124.767 -615.409 -2408.985 Crime Scene 393 

Sample B (3) -1931.865 -102.943 -657.131 -2436.571 Crime Scene 538 
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Appendix 6.16 Scree plot depicting the cumulative variance retained by each PC in the blinded case 

simulation ChemCentre XRD dataset. 

 

 

 

Appendix 6.17 ChemCentre XRD patterns obtained from the crime scene soil samples, illustrating the 

variation in patterns from duplicate samples. 
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Appendix 6.18 Scree plot depicting the cumulative variance retained by each PC in the blinded case 

simulation CSIRO XRD dataset. 

 

 

 

Appendix 6.19 Number of correct vs incorrect classifications for samples in the ChemCentre XRD 

blinded case simulation calibration set using a 2-PC LDA model (percentages rounded to nearest whole 

number). 

Location Correct Incorrect Classified % Correct 

Alibi Site 1 2 0 - 100 

Crime Scene 2 0 - 100 

Alibi Site 2 2 0 - 100 

Potential Site of Interest 2 0 - 100 

   % Total Correct 
    100 
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Appendix 6.20 2-dimensional PCA scores plots generated using the first two PCs, showing the 

variability of soil samples from different locations within the blinded case simulation, based on their 

corresponding ChemCentre XRD patterns. 

 

 

Appendix 6.21 Discriminant values of the suspect recovered soil’s replicates from the ChemCentre XRD 

blinded case simulation validation dataset (rounded to three decimal places), with predictions shaded 

green. The last column demonstrates how far away the next closest prediction was, as a percentage 

of the lowest discriminant value obtained. 
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of Interest 

Sample A -12.094 -2.664 -5.567 -16.060 Crime Scene 109 

Sample B -5.646 -8.283 -6.233 -25.655 Alibi Site 1 10 
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Appendix 6.22 Number of correct vs incorrect classifications for samples in the CSIRO XRD blinded case 

simulation calibration set using a 2-PC LDA model (percentages rounded to nearest whole number). 

Location Correct Incorrect Classified % Correct 

Alibi Site 1 2 0 - 100 

Crime Scene 2 0 - 100 

Alibi Site 2 2 0 - 100 

Potential Site of Interest 2 0 - 100 

   % Total Correct 
    100 

 

 

 

 

Appendix 6.23 2-dimensional PCA scores plots generated using the first two PCs, showing the 

variability of soil samples from different locations within the blinded case simulation, based on their 

corresponding CSIRO XRD patterns.  
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Appendix 6.24 Discriminant values of the suspect recovered soil’s replicates from the CSIRO XRD 

blinded case simulation validation dataset (rounded to three decimal places), with predictions shaded 

green. The last column demonstrates how far away the next closest prediction was, as a percentage 

of the lowest discriminant value obtained. 
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Alibi Site 1 Crime Scene Alibi Site 2 Potential Site 
of Interest 

Sample A -7.915 -4.979 -17.977 -57.079 Crime Scene 59 

Sample B -7.660 -2.167 -12.526 -44.927 Crime Scene 254 
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