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ABSTRACT

In order to satisfy increasing demand for better, smarter, more flexible land resource
information an alternative form of representation is proposed. That representation is
to be achieved through the coupling of Expert System methods and Geographic
Information Systems. Instead of representing resource information using entities
such as soil types, defined by rigid boundaries on a map, a more fluid presentation is
proposed. Individual resource attributes will be represented by surfaces that describe
their probability of occurrence, at a number of levels, across a landscape. Such
flexible representations, which are designed to better capture the mental models
behind their creation, are capable of being combined and synthesised to answer a

wide range of resource queries.

An investigation of methods of knowledge representation in a number of fields of
research, led to the belief that a Bayesian Network provides a representational
calculus that is appropriate to the “fuzzy” and imprecise conceptual models used in
resource assessment. The fundamental mathematical principles of such networks
have been tailored to provide a representation that is in tune with the intuitive

processes of a surveyor’s thinking,

Software has been written to demonstrate the method and tested on a variety of data
sets from Australia and overseas. These tests and demonstrations have used a range
of densities of knowledge and range of acuity in evidential data. In general the
results accord with the mental models used as drivers. A number of operational
facets of the method have been highlighted during these demonstrations and attention

has been given to a discussion of them.
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A NOTE ON TERMINOLOGY

Throughout this thesis frequent reference is made to Geographic (or Geographical)
Information Systems. The usual abbreviation of this is GIS. The author has
followed the example of Bonham-Carter (1994) in using the single abbreviation GIS

to describe both a single system and multiple, plural, systems.

In discussing Bayesian networks and their application to mapping, the statement is
made (Chapter 7 page 69) that the states of a variable, which is represented as a map,
are identical to the classes in a categorical map. Both terms are used in the text. In
general if the discussion is concerning the nature and accuracy of map data, the term
class will be used. If the discussion relates to probabilistic calculus, the term szate

will be used.

The majority of GIS analysis during this research was carried out using either
ARC/INFO or ArcView. It is unavoidable in discussions of geographic data analysis
that terminology specific to those systems has been used. Specifically, the term
coverage is used to refer to a vector data set whilst the term grid refers to a raster
data set. In addition the term workspace is used to refer to the computer directory in

which the data are stored,
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Chapter 1

INTRODUCTION

1.1 The need for natural resource assessment

In the latter half of the twentieth century, there has been an increasing awareness of
the fact that the resources of this planet are finite. Man’s assault on those resources
has increased with population growth, creating a greater demand for food and land
on which to grow food (FAQ,1999). Whilst the agrarian revolution, with the
production by selective breeding of high yielding and disease resistant strains as well
as the increasing use of pesticides, has increased grain production on a per hectare

basis, the demand for agricultural land continues.

In some environments, such as Australia, there is also a growing awareness that
conventional farming systems have an adverse impact on the soil resource on which
they depend. In reaction to this, there are moves to ensure that future agricultural
practices are truly sustainable. These two considerations, together with many others
such as the increased taking of potentially productive land on urban fringes, have
created a climate in which information about the basic soil resources of this and other

lands is much in demand.

In recent years, there has also been an increase in the availability of computer based
models to predict the growth of crops under a range of conditions. Whilst these
research tools have been under development, the agricultural engineering industry
has produced equipment which is capable of measuring crop yields and varying
agronomic inputs at a very fine spatial resolution. This has lead to the development
of an emerging discipline know as precision farming, the basic ideal of which is the

matching of agricultural inputs to the productive capacity of the land.

The effective use precision farming techniques, crop growth models and the like in
the planning and execution of a sustainable agricultural system requires good soil
information. Moreover, that soil information must be capable of furnishing
quantitative data about the state of such agronomically vital parameters as water

holding capacity and availability of nutrients.



From an environmental standpoint, there is a greater understanding of the effects of
over-application of agricultural chemicals. Tools are available to model the effects
of these chemicals and other poliutants in groundwater. These tools can benefit from

the input of spatial representations of variable soil properties.

1.2 The limitation of current mapping methods

Conventional choropleth soil maps do not furnish spatially distributed soil attribute
information either readily or accurately. In the past, limitations of representation
have meant that such maps delineate relatively broad seil types within which soil
attributes can vary considerably. Estimates of soil properties can be derived from
existing maps by assigning mean values to existing soil classes. The result is often
less than satisfactory since large, generally un-specified, variance within the map

units hinders interpretation.

Natural resource surveyors have always recognised the variability of fundamental
properties. In mapping a new area, they must delineate a set of boundaries between
map units. Before boundaries can be drawn in physical map space the map units
must be defined. This requires that the units be defined, in a multidimensional soil
attribute space. This problem is then compounded by the relative inflexibility of a
paper map and its associated memoir as a representation what is, in fact, a very rich

and diverse information stream.

In creating a paper map, surveyors build mental models which associate observable
features, such as relief features, soil colour, etc. with variation in less readily
observed soil properties. These ‘landscape models’, which represent the surveyor’s
knowledge, are recorded as sketches and field notes, as well as being stored as loose
concepts in the surveyor’s brain. If this knowledge can be in some way formalised, it
can be used to generate quantitative maps of soil properties. A suitable medium for
that may be through some form of knowledge representation operating within a

geographic information system framework.

1.3 Geographic Information Systems
The development of Geographic Information Systems (GIS) enables soil mapping to

break free from the constraints of paper maps and atlases. GIS provides a means



whereby raw data can be easily stored and synthesised into maps to suit particular
queries or requirements. Early applications of the philosophy, even before the
computer technology was mature enough to support such concepts, were to be found
in the area of land use planning - supporting critical decisions about the allocation of

natural resources {eg. McHarg, 1969).

However, whilst providing excellent repositories for data, GIS can, at worst, merely
become the digital equivalent of a grey and uninviting map cabinet. In order to truly
capitalise on their abilities to combine, synthesis and manipulate data, it is necessary
to imbue them with some degree of intelligence, or at least some means of
knowledge representation. If that is effected, such systems can become extremely
powerful tools in the service of those charged with mapping our increasingly strained

natural resources.

1.4 Representing knowledge

The sort of knowledge that a soil surveyor uses in map making involves a series of
inferential processes. These are generally of the kind that associate an outward
physical expression, such as a terrain attribute, with an understanding of the physical
parameters likely to pertain in that area. This knowledge combines an understanding
of the physical processes at work in the landscape with the fruits of experience and
detailed observation. It will often be reinforced and refined by additional
observations made in trial pits and shallow cores. For example, a suspicion held by a
surveyor that mottling is present in the B horizon at a particular location may be
based on their knowledge that this occurs in areas which have been subjected to
cycles of inundation and drying. A core at that location will confirm or refute the

presence of mottles.

The mental process involved is somewhat similar to that employed by a medical
practitioner in diagnosing a patient’s illness from presented symptoms. A doctor
draws upon knowledge of human anatomy, the ills that beset it, and experience
gained from the observation of similar cases in the past. Diagnoses are frequently

assisted and confirmed by pathological tests.



Medical science was one of the first fields of endeavour to make use of computer
‘expert systems’ to assist in the diagnostic process. A nurmber of methods were
developed to exploit the ability of computers to store data and diagnosis rules.
Systems were also devised which possess the ability to learn incrementally. All
these systems embody a form of knowledge representation that is a close parallel] to

that required by land resource assessment.

1.5 Expert and rule based systems

Expert systems are not unique to medical diagnosis and have been developed for use
in other fields such as financial management, production scheduling and geological
prospecting. A common theme of such systems is their use to provide decision
making assistance. “Does this child have a particular medical condition?” or
“Should this client buy BHP shares?” are questions which might be asked. Such
systems are generally non-spatial in their application. Even geological questions
such as  “Is this location prospective for gold?” are frequently treated by such

systemns as pertaining to isolated points rather than taken in their full spatial context.

Some of these systems assist in the “diagnosis” by means of a series of questions and
answers. The choice of question and the choice of line of reasoning are often
decided by the answer to preceding questions. Other systems are constructed to take

all available evidence on board at once.

Different situations require different system architectures. A system designed to
assist less well trained operatives by allowing them access to an ‘expert oracle’ will
clearly differ from one designed to allow a highly skilled professional to codify their

knowledge and decision making processes.

Two principle schemes of inference are generally found in such systems: Boolean
logic and probabilistic inference. Within the realm of probabilistic inference, there
are a number of representational calculi. These seek to represent knowledge and
uncertainty and to provide means by which these concepts can be combined and
reasoned judgements made. Interestingly, many of them have their ultimate origins

at the gaming table (Bellhouse, 1993).



1.6 Aims of this thesis

The research reported in this thesis is essentially an investigation of the means
whereby a GIS based method of knowledge representation and data combination may
be applied to natural resource mapping in general, and soil mapping in particular.
The mapping method and associated software that have been developed are known as
Expector, the choice of name reflecting the fact that it is used to map, in quantitative

form, a resource surveyor’s expectations.

The thesis commences with a detailed analysis of current methods of natural resource
mapping and the limitations imposed on the resulting maps by conventional means of

representation. An alternative form of representation is suggested.

There then follows a review of the mathematical representation of knowledge,
paying particular attention to the calculus of probability and belief. This leads to a
review of expert systems, particularly those that use a probabilistic representation of
knowledge, and an introduction to Causal Probabilistic Networks. Since the
implementation of any such method for natural resource mapping is to be through the
medium of a GIS, Chapter 5 is devoted to a discussion of that technology. Chapter 5
also includes a review of the efforts of other workers in establishing linkages

between expert systems and GIS.

The thesis then turns to a study of the potential for quantifying the soil mapping
process. This includes an examination of the form taken by the knowledge used in
that process. Current trends in the automation of that process are examined and the

influences of currently installed technology on system design are considered.

A description and definition of the functional stages of a quantitative soil mapping
process sets a ‘blueprint’ for a new method to be known as the Expector method.
The method is envisaged as comprising software for knowledge manipulation and
editing which can operate synergistically with GIS. Synergistic links can be enabled
by the development, within the framework of individual proprietary GIS, of data
preparation and combination tools. An outline definition of the structure of the
method discusses the reasoning behind the choice of programming language and

hardware components of the implementation.



The development of expert system algorithms for the Expector method required the
adaptation of the general principles of Causal Probabilistic Networks to suit the
particular need of soil mapping, especially to cope with uncertain evidence. The
discussion of this adaptation leads to a more detailed explanation of the tasks to be
performed within the co-operating GIS. There then follows a description of the
components and operation of the software. A copy of the Expector software and its
user documentation comprise Appendix B which is attached to this thesis as a CD-

ROM.

During the development of Expector, several experimental calculations were made
with datasets covering areas ranging from a few hectares to whole catchments. The
work on two sites, one at each end of this spatial scale, is reported in some detail and
includes a discussion of the accuracy of the resulting maps. This is put in context by
a discussion and examination of the accuracy of existing mapping products. Further
examples of the application of Expector in natural resource mapping are then
provided and are followed by an example of the use of the method to predict

agricultural yield as an aid to precision agriculture.

Both the developmental data processing and subsequent experience with the method
highlighted a number of potential operational problems. The majority of these can
be controlled by the exercise of caution by an informed user. The thesis concludes
with a discussion of some of these problems. Solutions to some are offered and areas

are indicated where further work may fruitfully be conducted.



Chapter 2

THE NATURAL RESOURCE MAPPING PROCESS

Traditional natural resource and soil mapping methods have reached a high level of
sophistication. They use both conceptual and statistical models to represent
landscapes. However, choropleth map representations impose some constraints on
the flexibility of the outputs of those models. Alternative forms of representation

may be better able to convey the rich information which the models embody.

2.1 The soil survey process

A soil surveyor producing a map using traditional methods follows well-established
procedures, developed and documented over the past fifty or more years (eg. Soil
Survey Staff, 1993; FAO, 1979; Dent and Young, 1981.) A typical survey begins
with an inspection of the area, although this may be preceded by reference to existing
sources of information. Unless the area is in a remote location that has never been
subject to human activity, maps and reports of topography, geology etc. will be
consulted. A satellite image will be consulted, at least as a guide to land use, as will

any available aerial photographs.

Viewing aerial photographs in stereo is a valuable aid to constructing a mental model
of the landscape. If the site is in a particularly remote area or in another country, this
mental model may quite possibly be "roughed out” from photographs before the
surveyor reaches the site. The development of that mental model draws not only on
the available information, but also on the surveyor’s prior experience and training.
There then follows a period of fieldwork in which the surveyor is constantly testing
and refining the mental model by field observation, adding additional information,

exceptions and qualifications as they appear.

Finally, a map begins to take shape, often using the aerial photographs as a base.
These are used partly to geo-reference points and lines, but also for the information
they contain about subtle landform changes and land textures. The surveyor’s mental
model is now in a mature state and includes many exceptions and special cases. In

traditional soil mapping, this complex multilevel model then has to be condensed



into a single-layer map, generally composed of polygons of supposedly homogenous
soil types.  This traditional cartographic representation has a considerable
constraining effect on the map. Often the greatest insights in the map are to be found
in the small text of the legend and in the accompanying memoir, rather than in the
cartographic product itself. It is only in this textual form that the surveyor’s

knowledge of the variability of the soil resource can be expressed.

2.2  Problems and models in natural resources mapping

Soil surveying is just one part of the broader field of natural resource mapping and
land evaluation. The process of mapping objects and phenomena in the natural
world requires a considerable amount of abstraction and generalisation. Natural
systems are extraordinarily complex at a number of levels. For example, they are

unstable over time.

The rate of change of attributes in natural systems varies from long term geological
and geomorphic processes such as isostasy - through cyclical effects due to seasons -
to short term chaotic effects caused by weather. There are many processes occurring
at any one time at any particular location in a landscape, and any one of them may
have some bearing on the physical attributes present. A map of any of these
attributes, whether represented as a traditional paper product or as a data layer in a
GIS can only be a "snapshot" of the condition of the attribute at a particular time. As
such, it is an abstraction, not only of reality, but of a particular reality from a

constantly changing spectrum.

Some attributes are more stable than others and some are more easily mapped than
others. There are interesting trade-offs between case of mapping and level of
abstraction and utility. For example, a map of the distribution of some large fauna
such as Western Red kangaroos in a pastoral area may be easily made with the aid of
aerial photography. Although only truly accurate for the time of acquisition of the
photography, it nevertheless gives a good indication of the likely distribution of
kangaroo under similar seasonal and climatic conditions, as well as an indication, by
scaling up, of population density on a more regional basis. A similarly easily
acquired map of tree cover and distribution would have greater temporal stability but

may be less accurate in terms of species identification.



The characteristics that are pertinent to evaluation of land for agricultural use vary
from relatively easily mapped attributes such as terrain features to more difficult
ones such as sub-surface pH. A natural resource surveyor uses models to link the
readily observed attributes to those that are more obscure. These models are either
concepiual in nature (Hewitt, 1993) or statistical (Gessler et al., 1995). Both types of
model represent an abstraction and simplification of the true relationship between the

perceptible and obscure attributes.

With both types of model it is desirable that the attributes to be mapped be semi-
permanent. That is to say, they should be attributes that have resulted from the
action of longer-term soil and landscape formation processes, rather than the
products of shorter-term land management effects. The natural processes involved
will have interactions. Whether it is possible to ever have complete knowledge of the
interactions between natural processes is debatable, but it may be possible to know
the state of a process at any one time, especially if it is in equilibrium. Models may,

therefore, be regarded as being only abstractions of knowledge.

In addition to conceptual and statistical models a third class of model is found in the
soil survey - those offered by geo-statistics. These methods, such as kriging, are in
the main designed as spatial predictors of values of attributes at un-known locations,
based upon the spatial distribution of values of that attribute at known locations.
They are generally used as interpolation methods and do not, therefore, fit the
general soil survey model of using readily observed features to infer less visible
characteristics. Recent developments of basic geo-statistics, such as co-kriging and
regression kriging, do exploit the relationship between spatially distributed variables

using techniques which have parallels in statistical models (Odeh et al, 1995).

2.2.1 Statistical models

By comparison with conceptual models, statistical models are both simpler to derive
and easier to represent mathematically. In the context of soil mapping, they will
generally have been developed by analysis of sample data. Whilst these data are not
necessarily from the area being mapped, they will at least be from a landscape where
similar geomorphic and pedo-genetic processes are believed to take place. Their

ability to describe relationships is, theoretically, limited by a number of factors.
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These may be explored by considering the statistical model as a polynomial equation
relating one attribute to another. Figure 2.1 shows a hypothetical linear fit through

an imaginary data set for two attributes.

In this figure, the relationship between the attributes is expressed by the solid line. If
we consider a case in which the points represent the entire universe of both the
predictor and predicted attribute, then the relationship between them could be
described exactly by whatever complex polynomial follows the dotted line. This
would be a true numerical representation of that inter-relationship. In reality, the
points shown will represent only a very small part of the entire universe of possible
points. In that case, even a line which fitted those points exactly will only be an

estimate, since the location in attribute space of all other points is unknown.
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Predictor

Figure 2.1 Regression mapping of a hypothetical attribute

It is, therefore, axiomatic that when predicting the value of one attribute from another
there will be unknown values in at least one of those attributes. In addition, there
will be error in the measurement of both the predictor and predicted attribute.
Pragmatically, the polynomial fitted through any data set is unlikely to be of high
order, although it may include trigonometric or logarithmic functions. These may be
generated by optimisation routines which search data for interrelationships, but in
practice are more likely to be determined by an analyst. The analyst may
superimpose some pre-conception — based on an expectation of the process that links

the predictor with the predicted attribute.
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The strength or otherwise of the prediction is then a function of:-
a) The degree to which the sample uvsed truly represents all possible
combinations of predictor and predicted.
b) The error inherent in the measurement of the sample.

¢) The degree to which the chosen polynomial fits the sample.

The description above is a considerable simplification of real situations. In reality, it
is very rare for two attributes to be linked in such a way as to exclude interactions
with other spatially varying attributes. A variety of methods exist to handle such
situations, and descriptions of a number of these may be found in Burrough (1986).
In essence, however, they all suffer to some degree from the limitations described

above.

2.2.2 Conceptual models

Conceptual models of landscape development are fuzzy’ and imprecise. They are
frequently informal and even when apparently formal often contain subtle modifiers
to accommodate local knowledge or special conditions. They are, however,
immensely useful to a skilled surveyor in mapping natural resource attributes. This
is in part due to their informal nature which allows exceptions and modifiers, and in
part due to the fact that they are processed and synthesised using natural language

and the human brain, rather than mathematics and a computer.

The processes used in traditional soil mapping are well represented by conceptual
models. Although they do not embody all possible knowledge, they do encapsulate
the surveyor’s belief in the way the landscape has developed and in the likelihood of
encountering certain attributes in certain combinations. Such models are rarely
crisply defined. In a review of the development of soil survey techniques since the
1960s, Burrough et al. (1997) discuss a continuum of models going from the double
crisp (crisp classes in attribute space linked to crisp classes in geographical space),

through crisp-continuous to double continuous.

In general, the model used by the surveyor will be more or less fuzzy, which suggests

intuitively that probability may be used to represent it mathematically.
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Unfortunately, the conventional output of this fuzzy conceptual model is generally a

choropleth map. This imposes some limitations on its subsequent interpretation.

2.3 The limitations of choropleth maps

Since soil variation is known to be effectively continuous, the hard boundaries in a
traditional soil map are more an imposition of the techniques used than of reality.
The nature of the theme mapped, usually soil type, is such that membership of a
particular soil type or class encompasses a range of physical and chemical properties.
Whilst occasional hard distinctions do occur, it is more usual for properties to grade
between points in the landscape. This fuzzy-ness in class membership is nicely
paralleled by the fuzzy-ness of most conceptual models of landscape development,

but is not represented by the hard boundaries between units on the map

This is not necessarily a limitation unless the map is used for purposes such as land
management at a detailed level. It then manifests itself by a failure to provide the
level of resolution required. There has been a loss of information, which can

obstruct unambiguous interpretation of the soil map.

We may take as an example of this ambiguity the selection of suitable areas to
establish a new crop type. The particular soil factors appreciated by the new crop
will be known from elsewhere and could be promulgated as a rather nebulous piece

of information such as a preference for "free draining slightly acid sands".

It would be possible to determine areas that fit this description by reference to a
traditional soil map. However, they would include areas which may be outside the
comfortable range of conditions for the crop, simply because the description of
requirements is broad, as are the descriptions of the soil classes in the traditional

map.

The new crop’s requirements could be defined with more precision by reference to
detailed threshold values for a range of soil attributes. The description "free draining
slightly acid sands" could be redefined in terms of at least three attributes. These are

moisture retention capability, pH and particle size. There will no doubt be others.
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Access to maps of these soil properties would, therefore, allow us to select not only
those areas that exactly matched the specifications, but also those where one or more
of the attributes was sub-optimal. In cases where that attribute was capable of
manipulation by management techniques, the range over which the new crop was

viable could be considerably increased.

2.4 Representing soil attributes

The methods of data storage and presentation offered to us by GIS enable a soil
attribute or other similar natural parameter to be represented as a continuous surface.
Such a map would be of considerable use, but would still suffer from the limitation
that it contains no statement about its precision. Indeed, it would invite an
assumption that it was a definitive statement. If this map results from the application
of a fuzzy conceptual model or of a statistical model with in-built and estimable

error, the use of a second surface as a map of precision is a possible solution.

Bouma (1989) suggests that a statement that a particular soil property has a particular
value, or lies within a particular range, may be of less use (from an environmental
and legislative perspective) than a statement of the probability that the value lies
within a particular range. However, a single statement of precision is not without its

drawbacks.

If we assign an absolute value to an attribute for a particular surface segment or
raster cell, together with a single value as an expectation of accuracy, we are still not
providing information about the distribution of the implied uncertainty. However, a
statement that there is a 75 percent chance that an atiribute exceeds a value of four,
but is less than five, can be accompanied by probabilities that it exceeds five and that
it is less than four. This is of more use to a decision-maker than the simple statement
that the attribute value is four, with a probability of 75 percent. The latter method

tells us nothing about the distribution of the variable in attribute space.
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Paradoxically, this suggests that even when working with soil properties rather than
with soil classes, it is maybe convenient to divide them into classes. This allows us
to assign a probability of membership to those classes. Our ideal map has now
migrated from one restricted by technology to polygons describing quasi-
homogenous soil types, to a multi-layer representation. Each layer will represent our
expectation of the occurrence of a particular class of one of several soil attributes.

Figure 2.2 illustrates the traditional and proposed concepts.

2,5 Summary

Soil mapping is a subset of the wider domain of natural resource mapping, both of
which can make effective use of statistical and conceptual models. Statistical models
have a number of limitations. Although conceptual models are also limited by virtue
of being abstractions, they have considerable flexibility and are intuitively appealing

to the surveyor.

The output from models has traditionally been limited by their representation as
choropleth paper maps. The use of GIS offers the opportunity to represent the
underlying soil information in novel ways. In addition to representing spatially
variable soil attributes, it is also possible to store information about the spatially
variable accuracy of that representation. It is suggested that the traditional
(choropleth) soil map be replaced by a multi-layer representation of the likelihood of

occurrence of particular soil attributes.

Conceptual models combine a number of competing ideas or threads of evidence to
produce a ‘most likely’ scenario. In order to capitalise on the power of computers
and GIS, some means is required of representing the knowledge embodied in this
process. The next chapter looks at some ways of mathematically representing

knowledge.
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Chapter 3

THE MATHEMATICAL REPRESENTATION OF KNOWLEDGE

Knowledge is a philosophical concept that is an inherent part of human decision
making processes. The internal representation of knowledge in the human brain is
somewhat informal, loosely defined and incorporates ‘fuzzy’ concepts such as belief,
expectation and an understanding of fairness and balance. In order to use digital
computers as decision-making aids in the natural resource mapping process, some
scheme is required by which such knowledge may be represented and manipulated

mathematically.

The field of research known as Artificial Intelligence (AI) aims to produce systems
which emulate the human brain. Expert or knowledge-based systems form a subset
of Al which endeavours to capture the reasoning behind decisions made by experts in
particular domains of knowledge. Related research on topics such as data mining
seeks to develop knowledge-like relationships from the analysis of large data sets.
These endeavours are all relevant to the use of knowledge in geographic data

analysis.

Knowledge representation schemes typically use either logic or probability (and the
related concept of belief) as representational frameworks. Either method is a

contender as a means of representing the natural resource mapping process.

This chapter provides first a review of Al in general, and then a discussion of some
of the different types of expert systems. It then briefly examines the use of logic in
knowledge based schemes. Since many knowledge based systems use probability for
knowledge or uncertainty representation, a discussion is provided on the origins of
probability theory and Bayes’ rule. A simple example, drawn from the literature,
illustrates the use of Bayes’ rule for updating. The chapter ends with a brief

discussion of Dempster-Shafer theory.
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3.1 Artificial Intelligence

3.1.1 The goals of Al

Artificial Intelligence (AI) is a branch of research that seeks to develop machines
which imitate as much as is possible of human mental activity. It has been argued
(Penrose, 1989) that this goal is impossible, since there are aspects of human
consciousness, particularly those to do with feelings, that cannot be replicated by a
machine. In other words, the machine can never be said to have true understanding.
However, from the point of view of applying artificial intelligence to the solution of

geographical problems, this may not be a limiting factor.

One particular branch of Al that is of relevance to geographic data analysis is that of
expert or knowledge-based systems. Bender (1996, p. 18) discusses the breadth of
scope of Al and suggests that it includes (as goals) systems which are capable of
reasoning, planning and learning. He then defines an expert system, for a particular
field, as exhibiting abilities in that field, accepting input about a particular problem,

and delivering advice and actions using domain specific knowledge.

In reviewing the first 25 years of Al research, Duda and Shortliffe (1983) cite two of
the goals of Al research as being the development of cognitive models of intelligent
behaviour and the development of computer programs to solve problems normally
thought to require human intelligence. They then define expert systems as “a class of
Al computer programs intended to act as consultants for decision making”. This and
Bender’s (1996) definition of expert systems indicate that their capabilities fall short
of full artificial intelligence.

The field of Al and knowledge based systems has a rich and developing literature,
much of which is beyond the scope of this thesis. Indeed, some developments have
occurred so recently as to have been contemporary with the research reported here
{e.g. Heckerman, 1997). This review is confined to methods and systems that have
an application in natural resources mappihg. An extensive review of mathematical
methods in Al is provided by Bender (1996) and numerous compilations of papers
such as those edited by Shafer and Pearl (1990) and Garcia and Chien (1992) cover
the field in great detail.
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3.1.2 Expert systems as consultants

Although Duda and Shortliffe (1983) suggested that none of the goals of Al had been
fully achieved, they expressed the opinion that some expert systems designed as
consultation programs may have reached performance levels similar to those of
human experts. These successes seem to have been achieved by extensive effort to

formalise and organise large amounts of knowledge.

In most cases, the knowledge base is described as being a substantial collection of
semi-organised, often subjective, information which may even be incomplete. Duda
and Shortliffe (1983) suggest that encoding this in a program renders that knowledge
explicit and, therefore, more uniformly applicable for decision making. They make
the interesting observation that it is easier to emulate ‘expert’ problem solving than
to devise programs to make common sense deductions or to learn speech and
language in the same way that a child does. This lack of “common sense” is
suggested by the authors as being one of the reasons why computer expert systems

fall short of human experts. They simply lack the necessary background and context.

Consultant expert systems have been developed in a number of fields. Writing
nearly two decades ago, Duda and Gaschnig (1981) listed 26 systems, all in a mature
state of development. These primarily cover the fields of medicine, engineering,
geology, chemistry and the design and analysis of electronics. More recent works
(e.g. Garcia and Chien, 1992) offer additional examples from fields as diverse as
computer configuration and satellite failure diagnosis. In many cases, problem-
solving strategies transcend discipline boundaries. This is also true of human

problem solving.

3.1.3 Types of expert systems

Expert systems themselves have many subdivisions. Bender (1996, p.19),
discussing expert system shells (tools for the construction of expert systems),
suggests the hierarchy of systems shown in Table 3.1. Those that have found their
way into natural resource evaluation typically fall into the “Reasoning” class of this

hierarchy.
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Class of system Sub-class Examples of methods

Reasoning Qualitative Logic
Production rules

Semantic nets

Quantitative Bayesian
Fuzzy logic
Hybrid Uses more than one method

Pattern classification || Rule extraction

Decision trees

Neural networks Hopfield-like

Feed forward

Table 3.1 A hierarchy for expert systems (after Bender (1996))

3.1.4 Knowledge bases and inference engines

Buchanan and Shortliffe (1987) describe expert systems as having two essential
components. Those are a Knowledge Base and an Inference Engine. The
Knowiedge Base is a collection of facts and associations about the relevant subject
area, often represented as a set of rules. The Inference Engine is an interpreter which
uses the knowledge base to solve the problem (Davis, 1987). It is within the
inference engine that such tasks as dealing with uncertainty and combination of

evidence are performed.

3.2 Logic as a knowledge representation mechanism

The use of logic to represent knowledge has an intuitive appeal and, in the case of
complete and all encompassing knowledge, may even be appropriate. Mathematical
logic is founded on the two concepts TRUE and FALSE and makes use of a number
of operators familiar to users of procedural programming langnages. These include
constructs such as IF.... THEN....ELSE, AND, OR, and NOT. Bender (1996, Ch. 3)

provides a good tutorial on the use of logic in AL

There are numerous examples of logic based expert systems. They cover a range of
fields as diverse as computer configuration (Barker and O'Connor, 1989) and land
evaluation (Rossiter, 1990). Such systems often involve the user in a question and

answer dialogue using the answers to navigate a decision tree. In this regard, they
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have been likened to the taxonomic keys used manually for tasks such as plant

identification (Bender, 1996).

A simple logical set of rules can both represent knowledge and provide an inference
engine for navigating those rules. Navigation may either take the form of a rigid
progress through the rules, as illustrated by a plant identification key, or use some
less exact construct such as certainty factors (Shortliffe, 1974). Such constructs
generally use probabilistic methods as a means of combining and manipulating

knowledge.

3.3 Probability as a knowledge representation mechanism

3.3.1 Origins of probability theory

There is a popular belief that probability theory originated from gambling and games
of chance. In a discussion of the role played by roguery in the history of probability,
Belihouse (1993) notes that the proof of that suggestion is often cited as the fact that
many of the early probability theorists (from the mid 17th century onwards) used
analysis of games of chance to formulate and describe their ideas. There is little to
suggest that a knowledge of probability was inherent in the design of games of
chance, many of which have been played since antiquity. A useful discussion on the
origins of probability in philosophical thinking is provided by Hacking (1975). He
traces the beginnings of modern probability from Pascal’s responses in the 1650s to
questions from a member of the French nobility concerning games of chance. Pascal
then continued to elaborate on the ideas of chance in his famous philosophical

“wager” on the existence (or otherwise) of God.

The development of probability can then be traced from these beginnings through to
modern concepts of epistemic probability which have to do with knowledge and
evidence. According to Hacking (1975), a numerical scale of probability was first
enunciated by Liebnitz in a 1665 paper. Liebnitz’s interest in such matters derived
from civil law which, according to Hacking (1975), shares with epistemic probability

the fact that it must distinguish between testimony and circumstance.

Further interesting developments chronicled by Hacking (1975) include the use of

the term “expectation” by Huygens, first published in a work of 1657. We are
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clearly advancing now towards concepts which we will need when considering the
combination of multiple threads of evidence. Pascal and Huygens also worked on
data combination. In his extensive work, Hacking (1975) goes on to discuss the
development, principally in Holland and the UK, of mortality statistics and annuity
tables. These introduce the concept of probability distributions that are central to the

use of probability as a means of representing knowledge.

3.3.2 Bernoulli and the first limit theorem

Although it is the work of Thomas Bayes (1763) (reprinted with commentary 1958)
on which the majority of reasoning used in modern probabilistic expert systems is
based, Bayes’ work drew on that of Bernoulli. In “Ars conjectandi”, published
posthumously in 1713, Bernoulli expounded what has been described as the first
limit theorem of probability. In addition, according to Hacking (1975), Bernoulli
was the last person before modern times to seriously discuss the concept that
probability may be non-additive. He put forward ideas such as the suggestion that
the probability of an event and of its converse may both exceed 0.5. These have re-
emerged more recently in the thinking of Dempster (1967) and Shafer (1976). In
addition, Bernoulli expanded on ideas of subjective probability which are at the heart

of some of today’s evidence combination methods.

Bernoulli’s limit theorem states that in a set of n trials, on a chance set-up, the
probability of achieving a ‘success’ (which has a prior probability of P), will tend to
P as the number of trials increases. This is sometimes described as the First Law of
Large Numbers (von Mises, 1964). From this basis, Bernoulli went on to introduce

the concept of conditional probability.

It was then left to Bayes to determine mathematical methods of working with
conditional probabilities. The contemporary reader can turn to more recent and
accessible texts such as Montgomery and Runger (1994, p. 78 et seq) for a definition
of the concept of conditional probability. They illustrate that the probability of an
event P(A) and the conditional probability P{A|B) (the probability of A given that B
has happened) are really the probabilitics of the same event, computed under two

different states of knowledge.
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3.3.3 Additive probabilities
Since Bernoulli’s time, there has been a convention that probabilities are additive,

and that the probability of an event and its converse sum to unity. That is:-

P(A)+P(A) =1 (3.1

By extension of this it can be assumed that, if there exists a set A of mutually

exclusive, and exhaustive events A;, As, to Ay, then :-
P(A) =Y"A (32)

This is sometimes referred to as the Law of Total Probability (Montgomery and
Runger, 1994).

3.3.4 Bayesian methods and conditional probability

The work of Bayes is fundamental to problems of inference. The problem that he set

out to solve is stated in his 1763 paper (Bayes, 1763; Bayes, 1958) as follows:-
“Given, the number of times in which an unknown event has happened and
failed. Reguired, the chance that the probability of its happening in a single

trial lies somewhere between any two degrees of probability™

Following this statement of problem are a number of definitions. According to
Hacking (1965), these are not necessarily the first such definitions but they do
describe the computational context of Bayes’ work. The most important of these
definitions is the following statement:-

“Events are independent when the happening of any one of them does neither

increase nor abate the probability of the rest.”

Other important points are that Bayes considers the word chance to equate with
probability, and defines the probability of any event as:-
“the ratio between the value at which an expectation depending on the
happening of the event ought to be computed, and the value of the thing

expected upon its happening.”
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In his analysis of Bayes’ work, Hacking (1965, p193) refers to this definition as
being that of a “fair bet”.

In his solution of the problem Bayes makes a number of propositions. One of those
is highly relevant to the combination of probabilities and is stated succinctly as a
corollary that:-
“if of two subsequent events the probability of the first be a/m and the
probability of the both together be p/n, then the probability of the second on

supposition that the first happens is p/a”

The proof of this is based on frequency counts and, if restated in modern notation,
gives us the now familiar definition of conditional probability. It can be seen that if

we write P(A) = a/n , P(B,A) = p/n and P(B|A) as p/a then :-

P(A,B)
P(A)

P(B|A)= (3.3)

Where P(A,B) is the joint probability of A and B together. This equation is now

generally referred to as Bayes’ rule (von Mises, 1964).

3.3.5 Twentieth century readings of Bayes’ work

To modern eyes, Bayes’ work makes hard reading and it is useful to turn to modern
interpretations for the complete story. Both von Mises (1964) and Hacking (1965)
provide discussions. Hacking (1965) is more accessible and uses Bayes’ own
example of balls thrown upon a perfectly level table. It is noted that, although Bayes
was the first to use this proof as a basis for statistical inference, he may not have
been the first to see it. According to Hacking, what Bayes demonstrated was that the
probability of event A happening, given events B and C, is proportional to the
product of the probability of B happening given A and C and the probability of A
happening given C. That is :-

P(A|BC)=P(B|AC).P(A | C) (3.4)
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This can be shown to hold in a number of cases, perhaps the most relevant being that
in which A, B and C are regarded as propositions and conditional probability is

regarded as the degree to which one proposition supports another.

Hacking (1965) puts this into context by suggesting that this be viewed as a case in
which A is a hypothesis, C is initial knowledge for assessing that hypothesis and B is
new data - for example an experimental result. We now read P(A[BC) as being the
posterior support for A (in light of the new experiment). Similarly P(A|C) is the
prior support for A, that is in the light of C, but before learning of B. P(B|AC) is the
support for the result B based on the hypothesis and our initial data C. In other
words, this is the likelihood of getting result B if hypothesis A is true. The
importance of this to problems involving the combination of geographical data is that

it offers a method of updating probabilities in the light of new evidence.

A more readily comprehensible exposition of Bayes’ theorem, together with an

example drawn from the geo-sciences, can be found in Davis (1986). Starting from

Equation 3.3 above we invert the definition of conditional probability to give:-

P(A,B)=P(B|A).P(A) (3.5)

Similarly we construct the relationship: -

P(B,A)=P(A |B).P(B). (3.6)

Since by definition:-

P(A,B)=P(B,A) (3.7

We can now write:-

P(B | A)P(A)=P(A | B)P(B) ‘ (3.8)

which can in turn be rewritten as:-
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P(B|A)=P(A | B)% (3.9)

This gives us a useful tool for inverting conditional probabilities. Under the
assumption that a mutually inclusive and exhaustive set of events B; exists, which are

conditionally related to A we can rewrite the total probability rule (Equation 3.2) as:-

P(A) = P(A,B1) + P(A,B2) +....... + P(A,B) (3.10)

Using this and the definition of conditional probability from Equation 3.4 we can

generalise Equation 3.9 as the most generally quoted version of Bayes’ theorem:-

P(A | B)P(B)
Y. P(A|B)P(B)

P(Bi|A) = (3.11)

3.3.6 A geological example of updating

Davis (1986) goes on to illustrate the use of Bayes’ theorem by considering a case in
which a previously unknown marine fossil species has been found in a stream bed at
a point below the confluence of two tributaries. The problem is to determine which
of the two basins will be more fruitful in the search for further remains. The area of
each stream basin 1s known and from these areas and their sum, the probability that
the fossil came from each can be calculated. Naturally the larger basin will have the
higher probability. Davis’ example calculated these as being 0.64 for the larger basin
B; and 0.36 for the smaller basin B,.

Further evidence is available in the form of a geological map, which indicates that 35
percent of the sediments in the larger basin are marine, whereas 80 percent of the
rocks in the smaller basin are marine. Assuming these two basins as being the only
sources of that fossil, this may be taken as the conditional probability that a fossil
from basin B, is marine {P(A|B,) = 0.35} and the conditional probability that a fossil
from basin B; is marine {P(A|B2) = 0.8}. Equation 3.11 therefore reduces to a two
case situation, in which the conditional probability of the fossil originating from

basin B;, P(B4]|A) is given by:-
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P(B1|A)= P(A | B)P(B1) (3.12)
P(A | B))P(B1) + P(A | B2)P(B2)

Solving this equation gives us a conditional probability of 0.44 that the fossil came
from the larger basin. An analogous computation gives a figure of 0.56 for the
probability of it having come from the smaller basin. This is in contrast to the
original hypothesis, which was based solely on the area of the basins and shows the

effect of updating that hypothesis in the light of new or additional evidence.

3.3.7 Bayesian networks

Most problems in real life are more complex than the simple examples given here.
Multipie pieces of evidence support or refute, intermediate pieces of evidence which
in their turn support or refute the final hypothesis. Bayesian methods enable us to
propagate probabilities though such complex networks. A further discussion of

Bayesian networks is provided in Chapter 4.

3.4 Probability and belief

Discussions on the origins of modern probability theory such as Hacking (1975) and
Bellhouse (1993) trace the terminology of probability through terms such as chance,
belief and expectation. We have seen that Bayes regarded probability as being the
same as chance and that Huygens introduced the term expectation. The term belief is
linguistically linked to expectation. All these terms have mathematical as well as
linguistic meanings and are less interchangeable in mathematics than they are in
language. An important distinction is that between probability and belief. This is of
particular relevance in systems that use subjective or user supplied probabilities. The
chief difference between probability and belief is that whilst probability is generally
regarded as operating in exclusive and exhaustive conditions, belief is not exclusive.
This, by removing the additive constraints imposed on probability, leads to a better
representation of ignorance and is exploited in a belief calculus know as Dempster-

Shafer theory.

3.4.1 Dempster-Shafer theory — belief and ignorance
Shafer (1976) gives an example of the representation of ignorance. If we consider

the possibility that life exists in the vicinity of a particular star, we can construct two
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possibilities, @, that life exists and ©, that it does not. Under the assumption that
they are the only two possibilities, we can equate their sum to unity. It is therefore
possible to mathematically describe the state of complete ignorance as to whether life
exists by assigning setting both @, and ©®; to 0.5. For a simple situation this is

adequate.

However, Shafer (1976) argues that, if we complicate the situation by introducing a
consideration of whether planets necessary to support life exist near that star, we now
have a set of possibilities with three members. They are {,, that life exists near the
star, (», that there are planets but no life, and 3, that there are no planets and hence
no life. Considering the relationship to the earlier situation it can be seen that ©;
equates to ; and that &, equates to {; + (3. Using Bayesian calculus will cause an

inconsistency.

Specifically, continuing to represent ignorance about the first situation as
@ = @, =05, is at odds with a statement of ignorance about the new situation
which states that {; + { + {3 = 1, since if the three possibilities { are equal, {; ={; =
{3 =0.3. It could be argued that this is a case more of the problem being incorrectly
specified than a serious computational problem, but it does raise the question of

whether the sum of ‘beliefs’ requires to be unity.

Dempster-Shafer theory, which incorporates Dempster’s Rule of Combinations, has
been developed as a calculus for combining belief functions under the assumption
that belief need not sum to unity. It is expounded in Shafer (1976) and many

subsequent texts including Bender (1996).

3.5 Summary

The subset of Artificial Intelligence research known as knowledge-based or expert
systems uses mathematical representations of knowledge. These two principal
knowledge representation schemes use logic and probability. Most probabilistic
schemes use Bayes’ rule or modifications thereof to manipulate and combine

representations of knowledge. Whilst other combination calculi exist, that of Bayes’
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i1s currently prevalent and its derivation has been covered extensively here.
Examples of expert systems using both logic and Bayesian networks are provided in

Chapter 4.
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Chapter 4

SOME EXAMPLES OF EXPERT SYSTEMS

The knowledge representation schemes based on logic and probability reviewed in
the previous chapter have been embodied in numerous expert systems. Some of
these are from the field of medical diagnosis; some are from geological prospecting
and land evaluation. Many more examples exist from a diverse range of activities
where attempts have been made to formalise and automate decision making. Since
this research is directed towards knowledge representations for natural resource
mapping, examples from the geosciences will be examined in some detail. However,
there are close parallels between decision strategies in land resource assessment and
in medical diagnosis. Agterberg (1989}, in discussing this similarity, notes that both
emerged at about the same time; the one with Agricola’s ‘De Re Metalica” of 1550
and the other with Paracelsus’ sixteenth century theory of similarity (reprinted in
Paracelsus (1967) ). Both disciplines require the reading of signhs which point with a
varying degree of certainty to, respectively, ‘pay-dirt’ or a successful and correct

diagnosis.

This chapter commences by looking at examples of expert systems that use logic,
with a specific example of some expert system software for land evaluation. It
continues with a look at some early probabilistic expert systems and reviews in detail

the PROSPECTOR mineral exploration system.

The development of general schemes of Bayesian networks is then considered and
the chapter concludes by discussing a medical diagnosis program which uses

Bayesian networks.

4.1 Knowledge based systems using logic

The use of fuzzy and probabilistic systems of knowledge representation has
somewhat overshadowed logical inference as an automated decision making strategy.
This is partly due to the fact that complex real world problems are not often definable

in ‘crisp’ logical decision trees.
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There are examples in the literature of several ‘toy’ systems. Duda and Gaschnig
(1981), in an article discussing the theory of expert systems, published code for a
system to identify a number of mammals from observed characteristics. In the field
of land evaluation, the Automated Land Evaluation System (ALES) (Rossiter, 1990;
1998} 1s a complex system for evaluating land characteristics by logical reasoning

through a decision tree constructed by an expert.

4.1.1 The Automated Land Evaluation System (ALES)

The Automated Land Evaluation System (Rossiter, 1990; 1998) is not itself an expert
system, but rather a system to enable users to build expert systems for the complex
task of land evaluation. Its author suggests that three classes of people will interact
with the system. Model builders will use it to construct land evaluation models,
model users will enter land attribute data and request evaluations, and finally end

users such as land use planners will take and use the printed results.

At the heart of a model built using ALES is 2 knowledge base schema. Each of these
contains a set of proposed land use types, a set of outputs and a set of land
characteristics. Within each land use type are land use requirements, each of which
has user supplied severities in terms of the corresponding land qualities. Inferential

knowledge is represented by decision trees.

This inferential knowledge includes the following:- ‘
a) Determination of land quality severity levels from land characteristics
b) Determination of physical suitability and crop yields from land quality
severity levels
c} Inference of land characteristics from other land characteristics
An exhaustive discussion of land characteristics, qualities, and their relationships is

provided by Rossiter (1996).

ALES takes input from the user in the form of a series of land characteristics for a
given site or map unit to populate its database. The user then requests an evaluation
of that site or map unit for one or several land use types. The result is provided in

the form of a report. Explanations are available of the path taken through the
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decision tree to arrive at the final evaluation. Recent developments include the

linking of ALES to the IDRISI Geographic Information System (Eastman, 1997).

4.2 Expert systems using probabilistic reasoning

An advantage of probability as a knowledge representation system is that it can
readily represent uncertainty. Conflicting and competing pieces of evidence are
effectively weighted so that the most probable are propagated towards the final
decision. Much of the early work in this field concentrated on the production of
sysiems to act as expert consultants - that is to embody the collected knowledge of
experts in a form which would make that knowledge readily available to those with
less skill and experience. Medical diagnosis is one of the knowledge domains in

which this approach has been explored.

42.1 MYCIN

Much of the early research on expert systems was carried out at Stanford University
in California. One of the best known products of that work is the medical diagnosis
system MYCIN (Shortliffe, 1974; Buchanan and Shortliffe, 1987). It has been
credited (Bender, 1996, p. 22) with being able to diagnose illness in its area of
competence as well as, or better, than most physicians. MYCIN is a rule based
expert system which allows for uncertainty. This means that the rules are not hard
and fast but are defined as being only true part of the time. The degrees to which

rules pertain are called certainty factors.

As a diagnostic system, MYCIN starts from evidence in the form of symptoms, test
results, etc. and proceeds towards the identification of causes. It is described by its
authors (Shortliffe and Buchanan, 1987) as using an approximation of Bayes’
theorem. The approximation is a device to handle the subjective nature of many of
the probabilities used and the inexactness with which some of the interactions can be
specified. However, Adams (1987) shows that the model used is largely equivalent

to probability theory under assumptions of conditional independence.

4.22 EMYCIN
The MYCIN team generalised their system to produce a tool for use by ‘knowledge

engineers’ in producing expert systems. This tool is known as Essential MYCIN or
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EMYCIN (van Melle et al., 1987). It has been applied to a number of problems such
as structural analysis and further medical diagnostic tasks (Bennet and Engelmore,
1987). GEOMYCIN (Davis and Nanninga, 1985) is an example of an expert system
constructed using EMYCIN. It was designed for environmental management and,

together with its linkages to a GIS, is discussed in Chapter 5.

4.3 The PROSPECTOR mineral exploration consultant

Like MYCIN, PROSPECTOR was a product of Stanford Research International
(SRI) which developed the software with the intention providing an expert consultant
on mineral exploration (Hart et al., 1978). The choice of probabilistic reasoning as
an “inference engine” is attributed to the fact that mineral prospecting is as much an
art as it is a science, and its current state does not permit the construction of rigorous
models. The decision rules in PROSPECTOR have been coded into a GIS
framework by Katz (1991); some of the following description of the system is drawn

from his work.

4.3.1 Interacting with PROSPECTOR

Transcripts of PROSPECTOR sessions reveal its use of a question and answer expert
dialogue in which the user answers questions about the existence of various kinds of
evidence. The user also needs to choose a mineralisation model and supply certainty
factors for each piece of evidence. Those certainty factors may range between a
value of 5 (indicating definite positive evidence) through 0 (indicating a lack of

opinion) to a value of -5 (indicating definite negative evidence).

PROSPECTOR incorporated a simple parser to decode the language of ‘volunteered’
information and assign an initial certainty to such information. For example, the
volunteered information ‘there are carbonates’ is credited an initial certainty of 4,
whereas the certainty of information that ‘there might be Sphalerite’ is initially
scored as only 2. The user has the option to update these estimates during the
consultation. The inference rules used and, therefore, the pattern of the dialogue, are

explicit to the mineralisation model.

The inference rules in PROSPECTOR have the following general form :-
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IF
Eiand E; and .... and En
THEN (to degree LS and LN )
H
Where E,...Ey are pieces of evidence and H is a hypothesis. In plain language, such
a rule means that the n pieces of evidence E suggest to some degree the hypothesis H

(Hart et al., 1978).

The PROSPECTOR user is required to supply, for each piece of evidence, two
additional parameters known as the sufficiency ratio {LS) and necessity ratio (LN).
These quantify the degree to which it is encouraging to find that piece of evidence
present and the degree to which it is discouraging to find it absent. The quantity LS
is analogous to that formally defined in statistics as the likelithood ratio (Hart et al.,
1978).

4.3.2 Updating in PROSPECTOR
For ease of computation, PROSPECTOR uses an odds formulation of Bayes' rule. If
the probability of some event A occurring is P(A) then the odds O(A) of it occurring

are given by:-

O(A) = P(A)

= 4.1
(1-P(A)) @1

Other definitions from Hart et al. (1978) are of the sufficiency ratio LS and necessity

ratio LN as:-
B P(E|H)
LS = PEID (E|H) (4.2)
_ P(E|ﬁ)
LS = P(Eﬁ) (4.3}

PROSPECTOR uses a chaining system which builds up through intermediate

‘evidence spaces” until the combined evidence supports a hypothesis. The graphical
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representation of such a structure is referred to as semantic net. Figure 4.1,
reproduced from the original PROSPECTOR documentation, illustrates part of one
such semantic net. PROSPECTOR uses Bayesian updating as one its means of
propagation up through this net, the other being Boolean logic. The prior
probabilities required for Bayesian updating have been supplied by the expert who

defined the rules.
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Figure 4.1 Part of a Prospector inference network (from Duda et al., 1978)
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In the case of an evidence space at the bottom of a chain, the user-supplied certainty
(on the scale of 5 to -5) is compared to that prior probability. The calculus of a
Bayesian update also requires the conditional probability of that evidence space
being true, given the user supplied certainty. This conditional probability is
indicated by P(E|E’) and is calculated from the certainty C and the Prior probability
P(E) in the following manner (Katz,1991):-

P(E|E*)

P(E) + %[ 1 - P(E)] forC>90 (4.4)

P(E|E’) = P(E) + gP(E) for C<0 (4.5)

For any one update within the network, we also have values for LS and LN supplied
by the user. The expert who built the network supplied the prior probability for the
next evidence space in the chain. The Bayesian update is intended to provide an

updated value for the probability P(H) of both the next evidence space being true,

and the associated probability P(H) of it not being true.

Prospector proceeds by using the odds formulation of Bayes’ Rule which Hart (1978)

defines as:-

O(H|E) = LS x OH) where evidence is present (4.6)
and

OH|E) = LN x OH) where evidence is absent 4.7)

The choice of Equation 4.6 or 4.7 is dependent on the value of the user-supplied
certainty of the evidence. This odds formulation is then converted back to a
probability which is regarded by Prospector as being P(H|E). What is required by
the user is P(H|E’). This is calculated from this value P(H|E) and the values of
P(E|E’) derived using Equation 4.4 or 4.5. The expression used, which is derived
from Bayes’ rule, depends again on whether the evidence is seen as being positive or

negative. In the case of positive evidence, the expression is:-
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PH|E) - P(H)

P(H|E’) = P(H) + o)

[P(E|E’) - P(E)] (4.8)

The expression for negative evidence is:-

P(H) - P(H|E)
P(E)

PH|E’) = PH|E’) + P(E|E’) (4.9)

The propagation of probabilities then proceeds to the next level in the chain.

4.3.3 Combining evidence in PROSPECTOR

When two or more evidence spaces converge into one, Prospector uses, depending
on the rules laid down by the expert, either a Boolean construct or likelihood ratios.
In the case of a Boolean construct, the rules in Table 4.1 are used to determine which

of several competing probabilities is propagated (Katz, 1991).

Boolean operator Rule

AND Use minimum probability

OR Use maximum probability

NOT Negate evidence 1 - probability
Table 4.1 Rules for updating using Boolean operators

(after Katz, 1991).

In the case of a Bayesian update using likelihoods, the following procedure is used
(Katz, 1991). For each contributing evidence space i, a value of P(H|E;) is
calculated using either Equations 4.4 and 4.8 in the case of positive evidence, or
Equations 4.5 and 4.9 for negative evidence. These are then converted to odds using
Equation 4.1. The likelihood ratio LE; is then calculated as the ratio between the
odds value O(H|E;’) and the original odds on the hypothesis O(H). That is :-

LE = QHIE)

4.1
O(H) (+10)
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These various values of LE; are then combined multiplicatively and used to update

the odds on the hypothesis using:-

OH|Ev,E2,.., Ex’) = OH) x LE: x LE2 X....x LEn 4.11)

This odds value is then converted back to a probability using the inverse of Equation

4.1.

4.3.4 Some inconsistencies in PROSPECTOR

In its original form, PROSPECTOR was coded with three principal mineralisation
models. Katz' (1991) emulation in a GIS used just one of the sets of rules in the
original version. Although PROSPECTOR was credited with the discovery of a
major molybdenum deposit in Washington State in the United States of America, it

does contain inconsistencies that render its use questionable.

Both Rhodes and Garside (1991} and Bonham-Carter (1994) examine the use of
conditional probability in such situations and point out that any one evidence space
in a PROSPECTOR network is overspecified. In particular, there is an inherent
inconsistency between user supplied values for LS and LN. Both can be calculated
from conditional probabilities and thence in turn from joint probabilities. It can be
shown that whilst PROSPECTOR constrains the values of LS and LN, they are in
fact related. PROSPECTOR ignores this relationship. A particular example of this
is that, in a correctly specified system, if LS = | then LN = 1. PROSPECTOR insists

that the two values never be equal.

4.4 Causal probabilistic (Bayesian) networks

Causal networks provide a graphical means of representing causal relationships
within a knowledge domain (Jensen, 1996). When Bayesian probability is used as a
means of propagating evidence through such a network, it is referred to as either a
Bayesian network or a Causal Probability Network (CPN). The use of Bayesian

networks in expert systems was pioneered by Pearl (1986).
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4.4.1 Causation in Bayesian networks

The concept of causation is important. In a general causal network, the hypothesis
causes the evidence. We can use this as basis for reasoning from hypothesis to
evidence. Such reasoning can be either certain or uncertain. However, with problem
solving, particularly in natural resource mapping, we are trying to reason from

presented evidence to hypothesis.

In order to do this we must invert the causation. Bayes’ rule (Equation 3.3) provides
a tool to do just that. Texts on Bayesian networks such as Jensen (1996) illustrate
this with examples that range from the trivial to the complex. To return to the marine
fossil problem of Davis (1986), discussed in Section 3.3.6, the marine sediments in
the two stream basins B; and B; are causal in the production of marine fossils A
found in the stream bed below the confluence. That causality can be expressed as a
conditional probability of finding a marine fossil given a particular percentage of
marine sediments. These conditional probabilities are expressed in the general form
P(A|B). The question Davis (1986) wishes to answer is that of which basin a fossil
came from. That is expressed by the conditional probability P(B|A), to determine

which requires the use of inversion.

When using such a system for natural resource mapping, it is important to understand
the relative directions of causation and reasoning. For example, if (when mapping
soils) we have evidence in the form of a gravel pit, we can reason that we are in a
gravely soil. The causation in this case is that gravel pits are caused by the presence
of gravely soil. The evidence is caused by the hypothesis and the reasoning is the
inverse of the causation, A converse case is presented by the reasoning that a low
position in the landscape, as expressed by a high wetness index, has led to moist
conditions conducive to the accumulation of organic matter. Here the hypothesis that
we have organic matter is caused by the evidence of high wetness index and the

causation and reasoning are aligned.

4.4.2 Bayesian networks defined
Jensen (1996, plB) describes a Bayesian network as containing the following

characteristics;-
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a) A set of variables and a set of directed edges between them;

b) A finite set of states exists for each variable;

¢) The variables and the edges form a directed acyclical graph. (Acyclical
means that there 1s no feedback);

d) For each variable A with ‘parents’ B; ..... B, there i1s a conditional

probability table P(A|B4,B;.....By).

4.4.3 Varables in Bayesian networks

In the context of Bayesian or Causal Probabilistic Networks, there are three types of
variable. These are hypothesis variables, evidence variables and mediating variables.
Each has a finite number of states. If evidence is available for any one of these
variables, it 1s said to be instantiated (Jensen, 1996). Examples of the three types of

variable can readily be found in the context of land evaluation or natural resource

mapping.

Hypothesis variables may be exemplified by soil properties which are typically
difficult or expensive to map such as, clay content, acidity or stoniness; each of
which can have a range of states. Typical states for clay content might be 0-5

percent, 5-10 percent, 10-20 percent and 20-100 percent.

Evidence variables may, in a land evaluation context, be properties which are
relatively cheap or easy to map. Examples would be topographic attributes such as
slope and aspect or remotely sensed spectral signatures. Again, examples of states

can be quoted. Aspect could have the four states North, South, East and West.

Mediating variables are introduced either to reflect the independence properties of
various pieces of evidence or to facilitate the allocation of conditional probabilities.
Jensen (1996) cautions against their use simply to produce a more refined model. An
example of a mediating variable in resource mapping might be 'favourable
topographic position’. Whilst such a variable may be synthesised probabilistically
from, say, slope and aspect, it may be more relevant to the causal logic of the model

to use a non-probabilistic construct such as a topographic index.
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4.4.4 Learning in Bayesian networks

A recent development in Bayesian networks research is that of model seeking and
data mining. This falls into the general category of learning, which Jensen (1996,
p. 53) defines as having two components in this context. One is the specification of
the model from available data; the other is the specification of conditional
probabilities within a model. The field of medical diagnosis provides examples of
model learning such as CHILD (Spiegelhalter et al., 1993). Heckerman (1997)
discusses data mining in general and the learning of probabilities from a Bayesian

network,

4.4.5 The CHILD program

CHILD is a an example of what its authors (Spiegelhalter et al,. 1993) describe as an
idiot Bayes™ model using directed acyclical graphs and Bayesian conditional
probability. The construction of the model is described as comprising three stages:
qualitative, probabilistic and quantitative. The qualitative stage considers general
relattonships within the model, the probabilistic stage defines joint distributions and
the quantitative stage involves the specification of conditional probability

distributions.

The CHILD model was intended to demonstrate the possibilities of expert systems
for medical diagnosis. The knowledge base component is for the identification of
congenital heart disease in babies. The propagation strategy used is Bayesian and the
model basically has two forms. One is as a subjective Bayesian network specified by
experts, the other is as a batch learned network specified by analysis of a large
database. It is reported (Jensen 1996, p. 60) that in tests both models performed at a
similar level to diagnosis by a physician, with the subjective network performing

slightly better than the batch learned network.

4.5 Summary

A number of expert systems have been constructed which use either logic or
probability as a means of representing knowledge. Many of these have been
designed for use in the field of medical diagnosis. There are interesting similarities

between medial diagnosis and the process of natural resource mapping, chiefly the
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need to elucidate information about hidden conditions from the examination of signs,

symptoms or surface expression.

The Automated Land Evaluation System (ALES) provides an example of a logic
based system, whilst probabilistic systems such as MYCIN and its derivatives have

their origins in medical diagnosis.

PROSPECTOR, a system designed as an expert mineral prospecting consultant, is a
example of a further development of probabilistic systems into the geo-sciences. A

detailed account has been given of the calculus behind PROSPECTOR as well as

comments on some of its shortcomings.

Bayesian networks, or Causal probabilistic networks (CPN), constitute a more
general class of probabilistic systems. The general principles of such networks have
been discussed and some comment provided on the direction of causation with
reference to resource mapping. Examples have also been drawn from the field of
natural resource assessment to illustrate the concept of variables in Bayesian
networks. The concept of CPNs has been further illustrated by a short discussion of

CHILD, a CPN designed for medical diagnosis purposes.

If use is to be made of expert system techniques in a quantified natural resource
assessment method, tools are required to handle the spatial component of resource
assessment. Spatial tools are provided by GIS. The next chapter diséusses the
fundamentals of GIS and cartographic modelling and looks at ways in which they

can be linked to knowledge processing systems.
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Chapter 5

CARTOGRAPHIC MODELLING, GEOGRAPHIC INFORMATION
SYSTEMS AND KNOWLEDGE

Cartographic modelling and data integration are concepts which are inherent,
although not always explicit, in the processes used by human interpreters when
addressing natural resource problems. Geographic Information Systems (GIS)
provide powerful tools to assist in that task. In order to capitalise fully on those
tools, a consideration of the role played by expert knowledge in those interpretations

is required. Also required is some means of representing that knowledge.

This chapter looks at the development of GIS and its various forms and data
processing paradigms. The use of GIS as a cartographic modelling tool in natural
resource assessment is then considered, along with the concept of data integration.
This is followed by a discussion of knowledge in the context of GIS and natural
resource mapping which suggests that probability provides a convenient vehicle for

the representation of such knowledge.

After a brief consideration of the probabilistic tools offered by one of the proprictary
GIS programs, the chapter concludes with some examples, drawn from the literature,

of interfaces between knowledge based or ‘expert’ systems and GIS.

5.1 Data representation in GIS

5.1.1 Data storage models

There are two principal geographic data storage models, raster and vector. These are
described in many standard GIS works, for example, see Bonham-Carter (1994).
Briefly, the raster data model stores each data layer, or theme, as an ordered
collection of cells. The co-ordinates of each cell are inferred from a knowledge of
the origin and dimensions of the raster and of the cell dimension. A vector model
considers the world to be made up of points, which may in turn form the vertices of
lines (arcs). These arcs may in their turn define polygons. Each of the point, line
and polygon entities may exist only as spatial data or may have multiple attributes

attached. A raster cell must have a value assigned to it, and may have additional
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attributes attached by means of look-up tables. The selection of a particular data
storage type is dependant on the nature of the problem and of the data sets to be used
(Goodchild, 1991). The raster data model is well suited to the representation of
surfaces. This is not confined to topographic surfaces, but also applies to surfaces of
spatially varying attributes and of probability. That ability, together with the ease of
integration of remotely sensed data products, render it highly appealing for natural

resource mapping.

5.1.2 Map Algebra and cartographic modelling

Central to the concept of GIS is the notion of being able to perform geographical
calculations or cartographic modelling. The ‘Map Algebra’ devised by Tomlin in the
1980’s (Tomlin, 1990) provides a framework for cartographic modelling which has
been embedded into the raster data handling modules of systems such as ARC/INFO
GRID (ESRI, 1997). Implicit in this algebra are local, zonal, incremental and focal
operators which act as functions on one or more data layers to create at least one new

data layer. Some of the more complex operators produce multiple layers as output.

5.2 The nature of GIS

The history of Geographic Information Systems as we know them today is
inextricably bound up with the history of computing systems. A typical definition of
a Geographic Information System is provided by Burrough (1986, p. 6), who defines
them as “a powerful set of tools for collecting, storing, retrieving at will,
transforming and displaying spatial data from the real world.” Today, such a system

is certain to be computer based.

The basic concepts of storing and analysing spatial data, particularly when
considering multiple data layers, was in use in such fields as geological exploration
and land use planning well before computers were commonplace. McHarg (1969)
provides a lavishly illustrated example of a land use planning study for the Potomac
river basin in the United States. This study considered multiple themes and was
carried out using mylar overlay. Matrix tables defined the inter-compatabilties of
various land uses, their natural determinants and their consequences. Such work

would now routinely be carried out using a GIS.
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Geographic information systems can be viewed in a number of ways. They can be
considered as a computer system, or as a series of analytical functions and processing
paradigms. A third view concentrates on the data stored and analysed by the system.

Others have drawn comparisons between GIS and decision support systems

5.2.1 The computer systems view of GIS

Antenucci et al. (1991) comment that GIS relies on the integration of three aspects of
computer technology, namely database management systems (DBMS), spatial
analysis tools and graphic display capabilities. Similarly, Maguire (1991) describes
GIS as a fusion of database management, computer-aided design, remote sensing and
computer cartography. His inclusion of remote sensing acknowledges the impetus
given to the concept and development of GIS by the ready availability of digital
raster scan satellite data which started with the US Landsat program in the 1970s.

5.2.2 Functional concepts in GIS

Bonham-Carter (1994), in discussing the application of GIS to problems in the geo-
sciences, suggests that GIS achieves its goal by performing one, or more, of a
number of basic activities on spatial data. He defines these activities as:

organisation, visualisation, query, combination, analysis and prediction.

In further analysing the nature of GIS, Maguire (1991) describes three views of GIS.
These are the map view (focusing on cartographic aspects), the database view and a

view which focuses on spatial analysis.

5.2.3  GIS processing paradigms

Maguire (1991) goes on to define three ‘designs’ for GIS, namely the file processing,
hybrid and extended designs. The latter type stores both geographical and attribute
data in a DBMS which also provides spatial analysis functions. This type of system

is poorly represented in today’s GIS marketplace.

Intergraph Corporation, a major company in the fields of Computer Aided Drafting
and Design, introduced their Topologically Integrated Geographic and Resource
Information System (TIGRIS) in the late 1980s as a venture into the extended type of

system (Herring, 1987). Unfortunately, it was not adopted by users and was
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discontinued by the vendor in favour of development of the Microstation GIS

Environment (MGE).

MGE belongs to the hybrid category of systems which also include the ESRI
ARC/INFO software (ESRI, 1997). Hybrid systems typically store geographical data
within the GIS, whilst holding attribute data in an external DBMS. Spatial data
processing is handled by the GIS, with the DBMS being responsible for attribute

query operations.

The file processing paradigm finds an embodiment in systems such as IDRISI
(Eastman, 1997) and the raster processing modules of hybrid systems such as
ARC/INFO and MGE. This is the simplest of the processing paradigms and holds

both geographic and attribute data in simple raster files.

5.2.4 GIS as a decision support system

In a review which examines the differences between Database management systems,
Computer aided drafting systems and GIS, (Cowen, 1988) discusses the concept of
GIS as a decision support system. He suggests that a GIS is “best defined as a
decision support system, involving the integration of spatially referenced data in a
problem solving environment”. This view is amplified by Jankowski (1995), who

describes the process of integrating GIS and multi-critera decision making methods.

5.3 GIS, the environment and natural resource assessment

Cartographic modelling is ideally suited as a tool for use in environmental and land-
use planning applications. Indeed, McHarg’s work in the late 1960s (McHarg,
1969), although carried out manually, must be considered to be an exercise in
cartographic modelling. Fedra (1993) claims that whilst both GIS and environmental
modelling are well established as methods and as fields of research, their integration
is in its infancy. This contrasts with the fact that one of the early texts used in the
teaching of Computer Cartography and GIS was that by Burrough (1986) which

approached the topic from a natural resource assessment point of view.

Natural resource assessment has always relied on cartography to assemble and

present its data. Those functions are today taken over by GIS. When the analytical
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power of GIS is brought to bear on the problem, the task of the resource assessor is
rendered more productive and access is granted to data streams which in the past

have been pootly represented.

In a description of the analytical capabilities of GIS, Berry (1993) identifies four
classes of primitive operations in map analysis. These are reclassification, overlay of
two or more maps, measurement of distance and connectivity and characterisation of
cartographic neighbourhoods. All of these operations lie at the heart of natural

resource assessment work, especially in an environmental management context.

5.4 Data integration in GIS

The ability to integrate data may be regarded as one of the chief benefits of the
adoption of GIS. A simple view of data integration is as a process of making
different data sets compatible with each other (Rhind et al., 1984). Flowerdew
(1991) considers four basic questions which need to be answered when data are
being integrated. These are: what type of data, to where do the data refer, to when do
the data refer and how accurate are the data. The effect of data accuracy in the
integration process is a theme of discussion in a number of papers collected by
Goodchild and Gopal (1989). Geographical data sets, which are an abstraction of the
real world, will contain both thematic and positional error. These errors need to be
handled effectively if the analytical power of GIS is to be harnessed in a meaningful

fashion.

Alternative views of the process exist. Some authors (eg. Moon, 1990; Bonham-
Carter, 1991) represent cartographic modelling itself as being the data integration
process. Bonham-Carter (1994) uses the term “‘data integration modelling” to
describe a process which predicts the occurrence of an attribute based on the spatial

coincidence of a number of pieces of evidence.

Common to these descriptions of the data integration process is the concept of
synthesising new information from existing data. The new information is intended to
be a ‘value added’ product which is more useful than its constituent data. This 1s an

analogue of the data combination process carried out by a human interpreter when
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considering multiple data themes. In the case of the human interpreter, the process

draws on expert knowledge.

5.5 Knowledge in the context of GIS

We can characterise the knowledge that needs to be represented in a GIS as
belonging to three categories. Firstly, there is knowledge about the spatial
relationships between entities stored in the system. This is often referred to as
topology. Secondly, there is knowledge about the composition of those entities - this
is thematic knowledge. Thirdly, there is knowledge about the relationships between
the entities that comprise our data and those entities that we wish to derive as the
result of data combination and analysis procedures. This thesis concentrates

principally on the third of these categories.

5.5.1 Spatial relationships

Topology is the branch of mathematics that deals with set theory. By analogy and
extension, it has been taken into the argot of GIS to describe the spatial relationship
between entities. Its particular characteristic, and that which ties it to the truly
mathematical branch of the science, is the fact that relationships between spatial
entities are preserved irrespective of any geometric transformations to which those

entities may be subjected.

Classical examples of topology include the knowledge’ embodied in a line as to the
identity of the polygons on either side of it or of the identity of the two nodes at its

terminations.

5.5.2 Thematic knowledge

This is perhaps the simplest and easiest of forms of knowledge to represent in a GIS.
It refers to the identity and characteristics of an entity. Examples of this are
attributes related to a linear feature such as a road. Its width, route class, surface
type, etc. may all be stored. Similarly, for area features, information about land-
cover type or the value of real estate lots may be stored as attributes of polygons or
grid cells. However, it must be remembered that not all such knowledge is absolute

and that a degree of uncertainty may exist.
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An example of uncertain knowledge is offered by a grid cell whose land cover type
has been determined as the result of classification of multi-spectral remotely sensed
data. That grid cell will have some degree of class membership attached to it by the
classifying algorithm. Some image processing systems store class membership data
in separate data layers, one for each class. Terms such as ‘typicality’ are used to
describe the degree of class membership. The handling of uncertain thematic data is

one of the topics explored in this thesis.

5.5.3 Knowledge of relationship

Spatial data is an abstraction and representation of the real world. It is also, of
necessity, a simplification. We may choose to map land-cover type, perhaps because
it is relatively easily done, rather than some more abstract attribute such as bird
habitat. We hope to be able to synthesise not only the bird habitat, but possibly other
attributes from our base land-cover data. The degree of success with which this can
be carried out depends two factors. The first is how well the necessary relationships
can be described and represented. The second is the degree to which the descriptions
of the base data actually relate to the habitat. Such relationships will rarely be direct
one to one links and will frequently require reference to other ‘base’ attributes. In this

example, those attributes may be topography or prevailing wind direction.

Continuing the habitat example, we may find that bird population fluctuations,
perhaps brought on by year to year climatic variation, will cause uncertainty as to
the extent of the preferred habitat. What is considered marginal under low
population pressure may seem prime habitat under higher population pressure. In
other words, an apparently well defined spatial relationship may vary through time.
Similar examples can be found in the field of human endeavour. Even in the field of
geology, where the situation may be regarded as being more static, there will be grey
areas. It is this uncertainty which allows, and indeed invites, the use of probabilistic
methods to represent knowledge about relationships. Some such methods have

already been discussed in Chapters 3 and 4.

5.6 Probabilistic tools in proprietary GIS
Few proprietary Geographic Information Systems contain implementations of expert

systems or probabilistic reasoning tools. However, most have a scripting langnage
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that enables such tools to be built by the user. One exception to this is IDRISI
(Eastman, 1997). IDRISI is a low cost raster GIS and contains implementations of
‘fuzzy logic’ and both Bayesian inference and Dempster-Shafer belief functions.
Although the procedure for using these is a little cumbersome, it can be enhanced

using IDRISI’s scripting language.

5.7 Integrating GIS and expert systems

Most developments in the field of expert systems and GIS integration have
concentrated on developing linkages between systems rather than in building new
systems afresh. One possible reason for this is the complexity and maturity of such

commercial GIS as ARC/INFO.

Burrough (1992) discusses the development of intelligent GIS, but makes no
suggestion of anything other than a linkage between the two technologies. More
recently, however, reporting as part of a US National Center for Geographic
Information and Analysis (NCGIA) research initiative on spatio-temporal reasoning
in GIS, Smyth (1998) envisages a modular system. Increases in interoperability of
computer applications through mediums such as Open Database Connectivity and
embeded controls, like those used by ESRI's Map Objects, have rendered this
modular approach more practical. Developments such as Open GIS (Crisp, 1998)

will further assist such ventures.

Numerous examples of linkages between GIS and expert systems are to be found in
the literature. Some of these have used expert systems to parameterise models in
GIS, whilst others have used spatial data layers as representations of knowledge.
The difference in approach is essentially in the extent to which knowledge and
expectations are spatially represented. In an indirect linkage, all knowledge is
represented outside the GIS as a system of rules. In the direct linkage paradigm,
knowledge can be represented spatially by thematic maps of uncertainty. There is a
general class of systems known as spatial deciston support systems (SDSS) to which
this latter group more properly belong. Jankowski (1995) discusses SDSS as one of

the ways in which multiple criteria decision analysis and GIS may be linked.
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Ferrier and Wadge (1997) describe four basic approaches to the task of integrating
(IS and expert systems. These are :-

a) Construction of a fully integrated expert GIS;

b) Enhancement of an expert system with GIS tools;

¢) Development of an interface between an GIS and an expert system;

d) Enhancement of the GIS with expert reasoning facilities.
The development of an interface is the method commonly chosen by workers in this
field. However there is a certain degree of hybridisation between the four basic

methods.

Two main linkage methods are commonly found in the literature. These are a link
between an expert system which has no spatial component and a GIS, and a more
closely integrated system in which the rules of the expert system take on a spatial

dimension.

5.8 Linkages with non-spatial expert systems

5.8.1 Geomycin

EMYCIN is a generic expert system shell derived from the medial diagnosis system
MYCIN (see Section 4.2.1) by removing all its rules (van Melle et al., 1987). The
name is derived from Empty MYCIN. Researchers in Australia used EMYCIN to
build a geographic problem solving tool which they termed GEOMYCIN (Davis and
Nanninga, 1985). GEOMYCIN is not a direct linkage between a GIS and an expert

system but rather uses the expert system to supply parameters for the GIS.

Davis and Nanninga (1985) report on a study, using GEOMYCIN, the objective of
which was the production of a system to predict fire damage in the Kakadu National
Park. A rules base was constructed which enabled values for parameters such as ‘fire
danger’ to be determined by consideration of several geographical and climatic input
values. In order to simplify the spatial application of the rules base a scheme,
referred to as geographical equivalence, was devised. This identified areas which,
although different, behaved the same way for the operation of particular rules. This
seems to have been necessitated by the relatively limited computer power available
at the time. The MYCIN engine being used had been designed for use in a question

and answer mode rather than drawing input from large geographical data sets.
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5.8.2 Logic based systems and GIS
The Automated Land Evaluation System (ALES) is a logic based decision tree
method (Rossiter, 1998). Although it does not itself have a spatial component, it has

been linked successfully to GIS for a variety of applications.

Van Lanen and Woperis (1992} report the use of a linkage between ALES and an
unspecified GIS to assess the suitability of land mapping units for the direct injection
of animal manure. GIS data on land use (derived from government statistical data)
and soil types in polygon format were synthesised into unique land mapping units.
ALES was used to handle the land characteristics and carry out the evaluation using
decision trees based on the user supplied knowledge base. The physical suitability
ratings thus derived were then passed back to the GIS for production of maps and

statistical tables.

5.9 Spatial expert system approaches

Spatial expert systems encapsulate more of the knowledge as layers within the GIS
rather than in the 'rules base’ of the previous examples. There are a number of
approaches to this, which differ chiefly in the degree to which knowledge is held in
the GIS or in accompanying tabular databases. A few examples from Australia and

overseas serve to illustrate some of these differing approaches.

5.9.1 Weights of evidence

The use of a weights of evidence method of data combination has been pioneered in
the geo-sciences by Bonham-Carter (1991, 1994). The method used is essentially a
simplified causal probabilistic network designed to use binary input data and is
designed for mineral potential mapping. The odds form of Bayes’ rule is used to
calculate posterior probabilities in a manner similar to that employed by
PROSPECTOR (see Section 4.3). The spatial dimension is added by presentation of
evidence as binary maps showing the favourability (or otherwise) of particular

attributes.

Each evidence layer is assigned a weight that can be directly derived from a
coincidence table. This coincidence table has been developed by analysis of known

occurrences of the mineral whose potential is being mapped and the attribute whose
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favourability for that mineralisation is being considered. Spatial data sets are

represented as raster (quad-tree) elements and manipulated using the SPANS GIS.

5.9.2 Mapping forest systems in New South Wales

A combination of expert system and GIS was used to map forest types in New South
Wales from classified Thematic Mapper data and digital elevation model parameters
(Skidmore, 1989). In this case, the geographical data were held in the SPIRAL GIS
and expert system calculations, using Bayes’ rule, were performed using custom
written software. Maps of a number of topographic variables such as slope, aspect

and topographic position were prepared for the 7.5km square study area.

Expert knowledge was derived by a variety of methods including a questionnaire of
foresters. This was used to develop conditional probability tables which relate
classes in the input maps to eucalypt species. The output from a non-parametric
classification of TM data was also used. The expert system based classification is
reported as performing better than a simple classification of the remotely sensed data

alone.

A related study (Skidmore et al., 1991) mapped forest soils directly from terrain
attributes for a 3km square study area. Again, conditional probabilities were
obtained from a panel of experts. Results were only evaluated quantitatively using a
small number of soil pits. However, the expert system correctly classified soils at 14
out of 21 pits. Visual comparison of the expert system map with a conventional map
revealed a number of points of agreement and of disagreement. The authors attribute

some of the disagreement to the vagueness of soil landscape descriptions.

5.9.3 Wildlife habitat mapping in Scotland

Aspinall (1992) describes the use of a Bayesian method to combine geographical
data sets when modelling the winter distribution of red deer in the Grampian region
of Scotland. A Bayesian method was chosen because it emuiates the way in which

habitat suitability might be assessed by a wildlife expert.

This study noted that the conditional independence assumption of Bayes is often not

met when using environmental data sets, and endeavoured to minimise the risk of
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violation by using the smallest number of datasets possible in the development of the
models. Presence/absence data from a red deer census and GIS data layers
representing environmental variables were used as inputs. Probability calculations,
using an inductive process, were based on coincidence tables developed from a
geographical subset of the available census data. The procedure was implemented

using in-house raster GIS software.

Data from another part of the same region were used to test model output. Red deer
presence in that area coincided with a predicted probability of 0.8 or greater at the
majority of test sites. However only about one third of a random selection of sites
with no recorded deer presence had low (<0.2) probability of red deer presence,
while more than half had probabilities in excess of 0.8. These sites had habitat that
was suitable for deer but fell outside the census area. This points to the value of such
methods for representing the state of knowledge about environmental variable such
as habitat distribution. The fact that the species is not recorded in an area does not

mean that the habitat is not suitable.

5.9.4 Desertification risk in burned Greek forests.

In work carried out concurrently with that described in this thesis, Stassopoulou et al.
(1998) investigated the use of Bayesian (causal probabilistic) networks in GIS. They
discuss the problems of using continuous and discrete data in the same model before
adopting the discrete method in their study. They also provide a useful discussion of

means of estimating the uncertainty in input data.

Their network contains a situation which, at first, seems to violate the need for
conditional independence of evidence. In the example given, they have two nodes on
different lines of reasoning which have a common parent. The authors claim that by
instantiating that parent, that is assigning it a fixed value, the apparent loop through
the data is effectively blocked and analysis can proceed. The values of the two child
nodes cannot influence each other through the parent since the parent value, being
part of the evidence data is not subject to change. This study uses a training data set
to establish joint and conditional probabilities rather than expert knowledge. Since
the study is essentially a proof of concept, no rigorous estimation of accuracy was

made.
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5.9.5 A spatial emulation of PROSPECTOR

The original PROSPECTOR expert system (Hart et al., 1978) was designed as a non-
spatial query session system. Its original authors added some graphical capability
through an interface to a simple image processing system capable of handling
128*128 pixel arrays. Katz (1991) emulated the system using the MAPS raster GIS.
Katz’s implementation required the user to provide individual maps for each of the
evidence spaces in the inference net. These individual maps each represent the
probability the proposition represented by any evidence space is ‘true,” given the

available evidence.

In order for this construct to work logically, evidence spaces must represent concepts
and propositions such as 'proximity to intrusive contact' or ‘having favourable Au
concentration'. Maps of these concepts need to be constructed from base geographic
data. Methods for such conversion include buffering, expert assignment and the use
of favourability functions (essentially non-linear buffering). Individual calculations

were carried out using map algebra from MAPS.

The PROSPECTOR model relies heavily on subjective probability as part of its
knowledge base and, as described in Section 4.3, can become poorly conditioned
under situations in which parameters are over specified. The MAPS implementation
was not immune to this, as there was no checking that the values provided by the
expert were logically coherent.  Using data extracted from the original
PROSPECTOR reports the MAPS, emuiation was able to reproduce the final output
for the Copper Island deposit study reported in Hart et al. (1978). An accuracy of 80
percent was claimed, although the MAPS emulation used only a subset of the

original evidence spaces.

5.10 Summary

Geographic information systems, although a relatively recent technology, draw on
the long established methods and concepts of cartographic modelling. There are a
number of ways in which a geographic information system may be regarded and
described. Central to all of them is a system for storing spatial data and a set of tools
for the analysis and display of that data. Such systems may also be used for the

integration of data sets to provide enhanced information products.
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Natural resource mapping and data interpretation have always used such tools as part
of the manual process of creating representations of natural phenomena. The concept
of expert knowledge is intrinsic to this process. In replicating and enhancing natural
resource assessment by the application of GIS, the nature of this knowledge and the

means by which it can be represented need to be considered.

Several examples have been provided of linkages between GIS and knowledge
representation and manipulation systems. Before applying a similar linkage to the
natural resource mapping process, it is worth reanalysing that mapping process in the
light of these examples. The next chapter discusses options that may be used to

quantify the process of soil mapping.
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Chapter 6

QUANTIFYING THE SOIL MAPPING PROCESS

Previous chapters have examined the natural resource mapping process, in particular
soil mapping. The conventional process involves the application of knowledge. A
number of methods for represented that kind of knowledge have been discussed.
Examples from the literature have illustrated ways in which analogous processes may
be automated and quantified by the use of knowledge representation techniques and
GIS. We now return to soil mapping and consider how it, in particular, may be

quantified and formalised.

It has previously been noted that the soil survey method makes effective use of
inexact concepts and that the cartographic representation of its current map output
could be improved to better represent the knowledge contained in the process. These
two observations can act as a guide to the construction of a quantified system that

retains both these characteristics.

6.1 General considerations
In general terms, the task of making a process quantitative needs to be considered
from three standpoints. These are:-
a) The amenability of the process to quantification;
b) The impact on those individuals and organisations who carry out the
process;

c} Software and hardware issues associated with implementation.

Naturally, there 1s some degree of overlap between these. For example, the degree of
change required by soil survey practitioners has an effect on the amenability to
change of the whole system. Similarly, the software and hardware resources already
in place in an organisation will influence the skills base and amenability to change of
those practitioners. This chapter considers first the organisational and theoretical
aspects of quantifying the method, and then examines some of the hardware and
software issues involved. It concludes by describing the overall concept for a

quantitative soil mapping method.
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6.2 Current trends in automation of soil mapping

In a major review of Agricultural Land Evaluation in Australia, Shields et al. (1996)
highlighted the need to move to a quantitative land evaluation process. A long term
goal of “.the formation of objective, integrated, land evaluation systems which
essentially consider productivity and resource conservation” was expressed (Shields
et al., 1996, p. 2). It was, however, recognised that such a situation will take time to
achieve. Among the primary attributes used in the land evaluation process are those
pertaining to the basic soil resource. A good first step in the overall quantification of

the process can be made by improving the mapping of soil attributes.

In Chapter 2, the process of soil survey was described as being the construction and
subsequent cartographic representation of a conceptual model. An alternative
method of representation, using surfaces to show the probability of occurrence of
individual soil attributes was also discussed. .Irrespective of the means of
cartographic representation, there are gains to be made from the development of a
means of quantitatively representing the knowledge used in the construction of those

conceptual models.

These gains come principaily from the increased flexibility of output that GIS gives
us the opportunity to exploit. Not only do we have the potential to produce maps of
fundamental soil attributes that can be combined as required, but we can also readily

ascribe certainties of occurrence to those attributes.

Within Australia, the task of mapping soil resources lies, typically, with State
Government agencies such as Departments of Agriculture. Other surveys, often at
higher spatial resolution, are carried out from time to time by private consultants.
These agencies and consultants now routinely use GIS as an aid to the cartographic

compilation of surveys.

A land resource assessment team will typically consist of at least one surveyor
assisted by technical staff. Those technical staff will be responsible for the
preparation and analysis of samples and for the cartographic compilation using GIS.
In some organisations, the surveyors may undertake part of the cartographic

compilation. In essence, the survey is carried out not by an individual, but by a
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multi-disciplinary team. Some degree of automation is currently found in two areas
of the process. These are, firstly, the development of databases holding site data
descriptions and the results of soil tests and secondly, the previously mentioned use

of GIS for cartographic compilation

6.3 Steps to a quantitative soil survey method

6.3.1 A description of the process

The process of soil survey, as described in Chapter 2, is represented schematically in
Figure 6.1. Not all of this process is amenable to being quantified or is capable of
being enhanced by the use of GIS. Some fundamental elements must remain
unchanged; these include the visual reconnaissance and field work components.
However, the process of building the conceptual model and map production can be
considerably enhanced. This enhancement involves a greater formality in the

recording of the knowledge component of the conceptual model.

The provision of a framework to formalise (and quantify) a conceptual model also
makes that model more transferable between areas and even between individual
surveyors. Whilst it is true that no two soil surveyors will ever have exactly the same
interpretation of a landscape, there will be a degree of commonality. By describing

the model in explicit numerical terms, it can be tested, verified and refined.

The handling of all data in a GIS from an early stage in the process, means that the
previous constraint of delineating quasi-homogenous map units can be removed. A
more flexible scheme can be devised which allows the representation of individual
resource attributes and their inherent continuous variation. These can then be
combined, as required, in answer to any particular query. In order to do this, a basic

change is required in the way the conceptual model is constructed.

Instead of being directed towards the homogenous units in the traditional model, the
surveyor’s conceptual thinking must now be directed towards individual attributes.
At first encounter, this may seem to the surveyor to be an extra imposition. In
practice, it will soon be seen that the models have always been directed towards
attributes. They have merely been constrained by the need to work within the

polygons of a traditional natural resource map. An additional advantage is that there
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should be greater consistency between surveyors in the mapping of attributes than
there is in the mapping of classes. This is because the grouping of those attributes
into classes, takes place in multi-attribute space and offers opportunities for different,

and often conflicting, boundary definitions in that space.

Study existing data Surveyor knowledge
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Add new information A Build
conceptual

model

Delineate "homogeneous™ 5
units an air-photo base
—.Y Write and '
Field checks publish
Memoir
r
Digitise boundaries
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X
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production

Figure 6.1 A schematic representation of the soil mapping process
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6.3.2  Quantifying the process

The transition to the use of quantitative information as input to the model imposes a
greater change on the surveyor. A prime example is the ability to use digital terrain
data rather than directly interpreting a stereo view of the landscape. The surveyor
has always known the relationships between, for example, slope and organic matter
accumulation. It is generally assumed that organic matter will accumulate more
readily in areas of low slope. Now, the opportunity is offered to quantify the
qualitative statements in that relationship expressed by the terms 'more readily’ and

Tow’.
There are two stages to this quantification. It is first necessary to determine
parameters that describe states such as low’. Once that is done, a mechanism is

required to develop and describe relationships between this information, or evidence,

and the attributes being mapped.

The development of such relationships will be assisted by the presence of datasets
from the fieldwork stage of the mapping process. If both the attributes to be mapped
and the quantitative variables being used to predict them are measured in the field,
we can readily develop coincidence tables. These are an expression of the joint
probability distribution of the attributes and the predicative information. Some
predicator variables, such as derived topographic indices, are difficult to measure in
the field. In these cases, a digital map of those predictors can be queried in order to

extract the values of that variable which occur at each of the fieldwork sample points.

6.4 Paradigms for a quantitative process

A re-examination of the traditional method shows it to be broken down into two
essential parts: model building and map production (Fig 6.1). The first takes place in
the mind of the surveyor, aided by sketches, tables etc. which are generally organised
in notebooks. The second stage, traditionally, takes place in a cartographic drawing
office, now generally aided by GIS. The process can therefore be described as
having a knowledge-intensive ‘expert system’ phase, followed by a more mechanical

representational phase.
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A major step in quantifying and formalising the process is to use the inherent power
of GIS to either replace or augment parts of the model building process. It is
therefore worth reconsidering the four methods suggested by Ferrier and Wadge
{1997) for the integration of expert systems and GIS. To recapitulate, those are:-

a) Construction of a fully integrated expert GIS;

b) Enhancement of an expert system with GIS tools;

c) Development of an interface between an GIS and an expert system;

d) Enhancement of the GIS with expert reasoning facilities.

The natural resource assessment community already uses GIS for cartographic
comptilation. Their investment, in both software and skills, may be somewhat
specific to existing proprietary systems. The complete development of a fully
integrated expert GIS seems unattractive, since it would erode the value of this

investment.

Methods b)’ and ‘c)’ both require an existing expert system. The analysis of expert
system methods carried out in preceding chapters tends to point to the use of a
system based on probability. Such systems generally have interfaces designed more
for use as a question and answer session rather than allowing the input of spatial
representations of knowledge. This requires the special characteristic of being able
to work with thematic maps as both input and output, which is not generally found in
expert system ‘shells’. Such a system would need to be simply interfaced to a GIS
and be reasonably intuitive, thereby enabling its use by land resource mapping

professionals rather than by computer scientists.

Considering this, the fourth paradigm seems the most attractive. It allows us to take
existing expert system methods and construct a system that is uniquely designed for
natural resource assessment. A number of functions of the overall system will
require the use of standard GIS tools such as geo-coding, classification of data and
map algebra. Rather than trying to duplicate these functions within the expert tool it

is best to rely on existing GIS packages to provide those services.
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Summarising the discussion of this and the preceding section, the soil mapping
process could be quantified and formalised using a system which:-
a) Uses probability to represent knowledge;
b) Is able to synthesise information from multiple disparate data sources;
¢) Is designed to map soil (or other resource) attributes rather than soil types;
d) Interfaces readily to GIS;

e) Provides an intuitive tool for soil surveyors;

The remainder of the work reported in this thesis covers the specification and

development of such a system.

6.5 Software and hardware considerations

As a prerequisite, a system to partially automate the soil survey process must provide
functional resources that accurately replicate the parts of the process being
automated. However, in order to ensure adoption, those automated processes must
be as compatible as possible with existing methods and skills bases. That means

essentially two things: user friendliness and compatibility with existing software.

If potential users follow the ‘user profile’ described in Section 6.2, they are likely to
include both land resource surveyors with a range of depth of experience and GIS
staff. The overall method and its user interface must be one with which they will
readily identify with little effort. It must, therefore, seem intuitively similar to
processes with which they are familiar. Additionally, in order to capitalise on
existing investments in software and training, it should be as compatible as possible

with the GIS software currently in use.

The choice of language in which any expert systemn tool is written and the platform
on which it is run will similarly be governed by the processing environments
currently in place amongst the intended user community. It is, therefore, worth
considering the systems commonly in use in Australia and the implications of that in

terms of platform and language selection.
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6.5.1 Common systems in use.

The Geographic Information System most widely used in Australia, at least by those
agencies whose mandate is to map natural resources, is ARC/INFO. ARC/INFO is
an extremely powerful suite of routines originally designed to run on workstations
under the Unix operating system. An earlier PC version of the software has been
abandoned in favour of a version of ARC/INFO for Windows NT. Also from the

same software company is a relatively new product, ArcView.

Although available for both PC and Unix platforms, ArcView’s main market share is
in the Windows based PC environment. The software is capable, with add on
modules, of processing in both raster and vector data and is almost, but not quite, as
powerful as its ARC/INFO ‘parent’. The two systems have many data structures in

common.

An increasing trend in organisations is towards the use of ArcView for day-to-day
work by specialists in various disciplines supported by a GIS ‘service group’ who
maintain corporate spatial databases using ARC/INFO. In such organisations, a local
network enables seamless sharing of data resources between the Unix and PC

systems.

Although less widely used, another major software suite found in natural resource
mapping is the Intergraph Microstation GIS Environment (MGE). Like ARC/INFO,
this system has its origins on Unix platforms, but its use under Windows NT is now

becoming more widespread.

6.5.2 Language

Most geographic information systems have an associated scripting language. These
languages vary in complexity, but are designed to enable, at a minimum, the
enhancement of the processing capabilities through the use of batch scripts. At the
other extreme, some of them provide complex functions that allow direct access to
the proprietary data formats of the GIS concerned. They typically have a facility to
extend the Graphical User Interface (GUI) of the host GIS.
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It would be possible to develop an expert system tool using the scripting capabilities
of any of the common systems described in Section 6.5.1. Choosing to do so would,
however, severely restrict the range of potential users. It is therefore desirable to
identify an alternative, neutral language. The choice is to some extent dependant on
the development platform to be used. In order to satisfy the user friendliness
requirement, a graphical interface is necessary. The development language chosen

must, therefore, be capable of easily constructing such an interface.

6.5.3 Linkages

As indicated above, a range of geographic information systems are in use by the soil
mapping community. In order to gain wide acceptance, the expert system tool must
be able to interact with a number of those systems. This militates against the design
of a tool that directly manipulates system proprietary data files, although some
strategy for such manipulation is necessary for two reasons. Data files will need to
be queried in order to ‘mine’ any knowledge inherent in the data. Similarly, standard

GIS tools such as map algebra need to be accessible.

One solution to this problem is to create, for each individual GIS, a simple set of
routines to customise the necessary functions. These routines can be written in the
native scripting language of the GIS and can communicate with the expert system
tool using a simple set of interchange files. If handled appropriately, such a strategy

would permit cross platform operations.

Given an appropriate network structure, it becomes possible to have an expert system
tool operating on one platform and exchanging data and commands with a GIS
operating on another platform. Modern network transfer protocols are capable of

handling any file format conversion that may be required.

6.5.4 Language and platform choice

A choice needs to be made between developing in a Unix or PC environment. Given
the network cross-platform capabilities described above, either is a potential
candidate. However, there is currently a move by the larger GIS vendors away from
Unix systems towards Windows NT platforms. This in itself suggests a 32 bit PC

environment as being the best, giving the ability to run under either Windows 95, 98,
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or NT. Other compelling arguments in favour of such an environment are the
ubiquity of machines running such systems and the increasing use of GIS packages

such as ArcView on laptop computers.

A number of languages are available for development in a 32 bit PC environment
which exhibit a range of capabilities. In practical terms, the choice comes down to
one of the Microsoft Visual products, either Visual Basic or Visual C4++. Each of
these is capable of providing an environment in which to develop software with
‘forms-driven’ graphical interfaces, thereby assisting with meeting the user-friendly
criterion. Being a truly ‘object-oriented’ language, Visual C++ could claim some
slight technical advantage over Visual Basic. However, Visual Basic has an object-
oriented style of syntax and is, more importantly, easier to use. Unlike earlier Basic
language interpreters, it allows the creation of executable files for distribution. This,
coupled with its relative ease of use, makes it the preferred choice of programming

language.

6.6 Functional stages of a quantitative process

Re-examining the graphical representation of the soil mapping process, shown in
Figure 6.1, an alternative diagram is proposed for a quantitative method. Figure 6.2
shows the process divided into three sections; model building, data processing and
map production. We can examine each of these in turn to see how they relate to the
original method. It should now be assumed that our intention is not to map the soils

of an area but to map attributes or properties of those soils.

6.6.1 Model building

The process of landscape familiarisation through fieldwork described in the previous
chapter is still required. At the same time as this is taking place, the surveyor must
be assessing the availability of digital data which describes landscape parameters and
other indicators. These may take several forms, including digital terrain models,

reconnaissance mapping, remotely sensed data and geo-referenced sample site data.

The model building process now includes the assembly of these data sets in GIS, as
well as the consideration of landscape development process. The conceptual model

can now be quantified and its inherent knowledge defined. This model will, to some
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extent, feed off the available data in a knowledge editing process. Some data sets
may be of variable or dubious quality, and the knowledge editing process needs to be

able to handle such circumstances.
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Figure 6.2 An alternative view of the soil mapping process

The various pieces of data used as evidence to predict the attribute of interest will
perform that prediction with different degrees of certainty. A representation of
knowledge about those different degrees, or weights, must form part of the model

building process.

6.6.2 Data combination and map production

Much data processing takes place as part of the model building process. This
develops a series of weighted relationships between our various input data and the
attribute being mapped. All that remains now is the combination of the individual

estimates of the attribute being mapped, based on individual relationships, into one



67

estimate for each location in space. This is the functional equivalent of surveyor’s
delineation of boundaries on a base map. As with that delineation, this will generally

be an iterative process.

A cartographic representation or map production step can follow the data
combination phase. This may produce an output similar to that discussed in Section

2.4 and illustrated in Figure 2.2,

6.7 Implementation

The process described in Section 6.5 involves the use of a custom written expert
system tool linked to a GIS. Figure 6.3 shows how the tasks may be partitioned
between the two pieces of software. To simplify the diagram, the iterative phase has
been removed. The majority of the model building is handled by the expert system,
with the GIS being responsible for data preparation and processing. Data collection
is shown as split between the two systems in recognition of the fact that some

existing data may already be digital, whilst other data will be collected by fieldwork.

There is a requirement for information interchange between the systems at two
points. These are between data preparation and knowledge definition, and between
the data weighting and data combination phases. The information that will be passed
through these links is not high volume spatial data, but summary data about that
spatial data. If the expert system tool is probabilistic in nature, that summary data

will take the form of tables of probabilities.

6.8 Summary

A procedure has been presented by which the soil mapping process may be
quantified and to some extent formalised. It involves the construction of expert
system tools to operate synergistically with a GIS. Following a consideration of
potential platforms and languages, Microsoft Visual Basic under a 32 bit PC
operating system 15 selected as the development environment which offers the
greatest flexibility for interfacing to 'host' GIS. Two-way communication between
expert system routines and a variety of GIS can be constructed in the native scripting
languages of those systems. The following chapters discuss in detail the design,

construction and operation of such expert systemn tools.
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Chapter 7

EXPERT SYSTEM ALGORITHMS FOR A QUANTITATIVE SOIL
MAPPING SYSTEM

The preceding chapter described a process of quantification and automation for soil
and natural resource mapping. It was suggested that this might be achieved using a
combination of an expert system and a GIS. The expert system will handle the model
building part of the process with the GIS being responsible ‘for data preparation and
combination. In Chapter 4, structures known as Bayesian networks or conditional
probability networks (CPN) were described. These networks provide a useful
mechanism for the manipulation of multiple evidence that either supports or
contradicts some proposition. This is essentially what is involved in the model
building and editing process which is described in the previous chapter. This chapter
describes algorithms for the application of Bayesian networks in soil mapping. A

software implementation of these algorithms will be described in Chapter 9.

7.1 A simple Bayesian network for soil mapping
Referring back to Section 4.4.2, we find a definitive description by Jensen (1996,
p. 18) of a Bayesian network as having the following characteristics:-

a) A set of variables and a set of directed edges between them;

b) A finite set of states exists for each variable;

¢) For each variable A with ‘parents” By ..... B, there is a conditional

probability table P(A|B1,Bz.....Bu);
d) The variables and the edges form a directed acyclical graph (ie there is no
feedback).

We can use this list of descriptive characteristics to examine the way in which a

Bayesian network could be constructed to assist a soil surveyor.

7.1.1 A set of variables and edges
A Bayesian network requires as its starting point a hypothesis. We shall take, as an
example, the presence of high levels of pisolitic gravel. For now we will ignore such

matters as a definition of 'high levels' and concentrate on the concept involved. This
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then is our hypothesis: ‘That pisolitic gravel exists at high levels.” In spatial terms,

we wish to produce a map showing areas where the hypothesis is true.

Using the traditional mapping method, a surveyor would map a homogenous unit,
perhaps named Gravelly Soils. This unit would contain all those areas for which
gravel content is high. The boundary of that soil unit would be drawn after
consideration of a number of factors such as position in the landscape, soil colour as
observed in air-photos, and fieldwork. From the standpoint of a Bayesian network
the various factors considered are regarded as evidence variables. The logical links

between them and the hypothesis are edges in the network.

A set of pieces of evidence and a hypothesis can be taken as providing the required

set of variables. We can therefore depict a simple network as follows (Figure 7.1)

Gravel content is high

e

Position in Colour on Evidence 3. Evidence N
landscape o Evidence3.|

Figure 7.1 A simple Bayesian network

7.1.2 A finite set of states

The hypothesis that high levels of organic matter exist represents only one state of a
variable. There will exist a contrary state, the absence of high organic matter
content. This set of two states is the minimum that can exist for any variable.
Similarly, the evidence variables will possess a minimum of two states and
frequently more. The number of states, however, will be finite. An evidence
variable that is continuous in nature can be rendered discrete by the definition of a set
of bounds in its attribute space. The states of a variable are analogous to the classes

in a digital map and both terms may be used in a discussion of the concepts.
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Some nicety in semantics is required when designing a network. The variable ‘High
gravel content” has two states: True or False. The assignment of a particular soil
sample to one of these states depends on the prescribed cut-off which defines 'high'
as well as the actual gravel content of the sample. It is suggestied above that there
must be a mutually exclusive state of ‘absence of high gravel content’. This is,
subject to suitable definition of the terms 'high' and 'low', exactly the same as in a

two state system of 'High gravel content' and Low gravel content’.

In practical cases this will almost certainly be extended to a multi-state variable
'Gravel content' with each state covering a range of, for example, 20 percent. This in
turn can be reduced, for any one of those states, to a two-state variable where that

state is either true or false.

Table 7.1 illustrates the point with some arbitrary state cut-offs. The variable named
‘High Grav’ has two states, labelled TRUE and FALSE, These correspond to the
states HIGH (>50 percent) and LOW(<50 percent) for a variable named ‘Grav.” The
same variable is also shown with five states. The last column shows a vartable called
‘Grav 20-40 percent’ which has only two states, even though the FALSE state is

disjoint in attribute space.

Variable name | High Grav Grav Grav Grav 20-40%
TRUE HIGH 80-100%
60-80% FALSE
States 40-60%
FALSE LOW 20-40% TRUE
0-20% FALSE
Table 7.1 Different representations of a variable

7.1.3 Existence of conditional probability table

A conditional probability table will only exist if there is some causal or logical
connection between the hypothesis and each piece of evidence. That restricts
admissible evidence to that which either has a causal process impact upon the
hypothesis state or is a manifestation of it. Merely statistical relationships based on

apparent mutual abundance should not be used.
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Such relationships may easily be postulated where none exist, frequently by
misguided analysis of data. History is littered with such fallacies; for example, the
long held belief that “foul swampy air” caused malaria. The real connection in this
case is a third variable, the mosquito that carries the disease and favours a habitat
that is “foul and swampy”. Analogous situations could be found in soil mapping.
Care must be exercised in the construction of networks, particularly when data alone

is used to derive them.

7.1.4 A directed acyclical graph

This property of a Bayesian network is almost always going to be satisfied in a
network designed for soil mapping, since feedback rarely, if ever, exists in that
context. Feedback can be illustrated by an example from ecology. A model for
determining population density of some species will consider (as evidence) habitat
factors such as availability of food resources, water, and preferred climatic
conditions. However, there is a degree of feedback in such a system. There is a two-
way link between food availability and population, which can cause populations to

peak and then decline as resources are overused.

In soil science there are examples of processes which effectively reach a steady state
and plateau. Processes of both physical and chemical weathering may achieve a state
of equilibrium, as long as conditions remain the same. The system is not closed and

there is no feedback,

7.2 Parameters for a simple network

To examine the parameters required for the operation of a Bayesian network, we can
reduce it to a single piece of evidence (E) supporting a hypothesis (H). We wish to
calculate the posterior (conditional) probability that the hypothesis is true in the light
of the evidence. We denote this posterior probability as P(H|E). We must also be
aware of the converse situation, that the hypothesis is false (!H). We can use Bayes’

rule (Equation 3.12) to calculate P(H|E) as follows:-

P(E | H)x P(H)
P(E | H)x P(H) + P(E |!H)x P('H)

P(H|E)= (7.1)
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For a plain language explanation, we can refer back to the gravel content example.
P(E[H) is the probability that some evidence exists, given that a location of interest
has high gravel content, and P(EJtH) the probability that some evidence exists, given
that the location does not have high gravel content. The ease with which this may be
determined depends, to some extent, on the nature of the evidence. As discussed in
Section 3.3.4, the definition of conditional probability, restated here in its general
form as Equation 7.2, may be used to relate conditional probability to joint
probability. This requires the specification, in this case, of a probability for the

variable B.

P(A,B)

P(B) (7.2)

P(A|B)=

In summary, in order to use a Bayesian updating calculus in a correctly specified
network, the following parameters are required:-

a) Prior probability of the hypothesis;

b) Prior probability of each piece of evidence;

c) Joint probability between evidence and hypothesis.

All of these refer to probability distributions, with each distribution having as many
members as there are states in the appropriate evidence or hypothesis. We must now
consider means by which such parameters may be estimated in the context of

resource assessment,

7.3 Methods of parameter estimation
There are essentially two ways in which parameters for a network can be derived.
One is by examination of sample data, the other is by expert assignment. Each of

these has potential problems.

7.3.1 Examination of sample data

If the sample size is very small, sample data may be unrepresentative. Even if the
sample size is large, there may be biases due to the spatial distribution of the
samples. In any event, the sample is likely to represent only a small fraction of the

total area being mapped. For soil surveys being conducted for publication at a scale
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of 1:100:000, a typical sampling density would be one point every square kilometre.
Each sample will be taken from an area of about ten metres square (100 m®). The
entire sample set, therefore, represents only 0.01 percent of the total area. This is
compounded by the fact that the survey is unlikely to be carried out on a regular grid

basis.

This is particularly relevant in the case of soil attributes whose occurrence is rare.
For example, high levels of organic matter are rare in landscapes such as Western
Australia, but not non-existent. It is quite possible that no sampling scheme of a
study area will produce any sample points that fall within an area having high
organic matter. The impact of sampling strategies on the setting of parameters is

discussed at greater length in Chapter 12.

7.3.2 [Expert assignment

Although expert assignment can also contain biases, its main drawback lies in its use
of inexact terminology. This is particularly true in the assignment of conditional
probability values. An expert will initially use natural language to estirnate the
degree of support that a particular piece of evidence provides for a hypothesis. The
natural language statements then need to be converted into numbers. It is relatively
easy to suggest a scale for quantification of statements ranging, for example, from
‘weak support’ through to ‘strong support.” PROSPECTOR, for example, did this

through the use of a certainty scale between -5 and + 5 (Figure 7.2},

The real problem relates to the constraints placed on probability values. Whilst it
may be simple to convert a 'strong support’ statement to a conditional probability
value of, say, 0.9, this value needs to be considered in relation to other parts of the
equation. Of particular importance is its relationship to the prior probabilities of the

evidence and hypothesis.
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Figure 7.2 The relationship between certainty and probability
in PROSPECTOR (After Katz, 1991)

Equation 7.2 shows the strict mathematical relationship between conditional and
joint probability. The joint probability is constrained by the individual probabilities
of the two variables. Figure 7.3 shows a Venn diagram for evidence E and
hypothesis H. The shaded area is the joint probability. It is obvious from this that
the joint probability cannot exceed the probability of E alone. In general terms for
any two variables A and B, the maximum value for P(A,B) is whichever is the lesser

of P(A) and P(B).

Failure to consider this relationship at all times was one of the principal reasons for
the problems of over-specification associated with systems such as PROSPECTOR
(Rhodes and Garside, 1991). The following sections offer some suggestions as to

how values may be arrived at for each of the required parameters.
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Figure 7.3 Venn diagram for evidence E and hypothesis H

7.4 Knowledge extraction and estimation of parameters.

The parameters in a Bayesian network can be regarded as expressions of knowledge
about the specific physical system being described. That knowledge may be
extracted either from data or from surveyor experience. Methods by which it may be
extracted will be covered in more detail in a subsequent section, together with a
description of software designed to assist that extraction. This section offers a brief
overview of the methods in general. Although the examples given here generally

refer to two state systems, they can be extended to more complex systems.

7.4.1 Prior probability of the hypothesis
The prior probability of the hypothesis is the probability distribution of the
hypothesis without consideration of any evidence. This distribution may be given

the symbol 2¢#). In a context such as soil mapping, the prior distribution will vary

spatially. However, in the absence of any evidence we can only assign values to it
on a coarse spatial scale. In other words, we can assign only regional, or even
global, general values. In the absence of any field work or ’ground truth’
information, it may be necessary to assign this on the basis of experience from other,
similar, areas. It is usual for fieldwork to be carried out, and that may be used to

provide an estimate of an appropriate value.
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A reasonable estimate of the values comprising P¢#/ can be obtained by examination
of the site survey data. Returning to the gravel content example, let us presume that
100 sample sites within the area have been visited and a measurement made of the
gravel content of the soil. We can further suppose that 27 of those sites had a gravel
content which, for the purposes of this exercise, can be regarded as high. This
provides a prior probability of 0.27 for high gravel content. This means that at any
point in the study area, in the absence of any other evidence, there is a probability of
(.27 that gravel content will be high, with a probability of 0.73 that it will not be

high. The capability of this for extension to a multi-state system is obvious.

An inherent problem in this method of estimation is that the sample data may be
skewed or biased (as discussed in Section 7.3.1). In cases where a bias is suspected,
there may be some merit in using expert opinion to override the sample-based

estimate.

7.4.2 Prior probability of the evidence

The prior probability of the evidence is also a probability distribution and may be
symbolised 2(£). It describes the prevalence of the evidence and is always
obtainable from data. It is most easily considered in a situation where the evidence is
binary. Here the evidence has only two states, present or absent. That is to say, we
are assuming some spatial distribution of evidence such that in parts of our area of
interest this evidence exists and, in all other parts, it does not. We can estimate the
values in 2(£) from the magnitudes of the areas in which the evidence is found, and
in which it is not. Again, this is capable of being extended to cover multi-state

variables

7.4.3 Joint or conditional probability
The distributions under consideration here are the probability of the evidence given

the hypothesis, 2(£|#/, or the probability of the hypothesis given the evidence,
Pt#|E). These can be related, using Bayes’ rule and previously derived parameters,
to the joint distribution of the hypothesis and evidence, 2(#.£/. It is possible for a

surveyor to make an estimate of conditional probability based on experience and
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observation. In that case, it is necessary to provide some mechanism to check the

consistency of such an estimate with prior probability estimates.

Similar checking is also required in the case of an estimate derived from data. If
working from data, the parameter estimated is most likely to be the joint probability.
One strategy for that estimation is to examine the data and count the number of times
each possible combination of evidence and hypothesis occur. For a two-state
hypothesis (True/False) and a two-state piece of evidence (Present/Absent) this
produces a simple matrix of joint probabilities. It is necessary to ensure that the

conditions referred to in Section 7.3.2 and illustrated in Figure 7.3 are fulfilled.

Unbiased sampling is critical to the success of such a method. In extreme cases a
skewed sample could lead to the supposition that there was no relationship between
one state of the evidence and either or both hypothesis states. Whilst this may in fact
be the case, a mechanism must be provided to enable this to be checked and for the

values to be overridden in the light of expert knowledge.

7.5 Uncertainty in evidence

Evidence data used in a Bayesian network is essentially operated on at the level of
some finite geographic element. The most convenient way to do this is to work with
the individual grid cells of a raster representation of a map. That map will have been
derived from one of a number of sources, such as classified remotely sensed data,
digital photogrametry, or digitised paper maps. Whatever the source, the raster
representation will contain some degree of error. There will be two main
components of this error, namely errors of classification and errors of location. For
the purposes of describing a mechanism to cope with these errors they can be
reduced to a combined ‘map purity’ parameter. Due to the nature of such error the
discussion now proceeds to describe the case of a piece of evidence having more
than two states. That is to say a grid cell whose probabilities we wish to manipulate
using a Bayesian network which comes from a map comprised of a number of

classes.
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7.5.1 Determining map purity

For any evidence map, a table may be constructed which relates map assigned values
to actual occurrences in the field. The values in this table may either be derived from
sample data or assigned by an expert. Any one entry in the table represents the
probability that if the map assigns a grid cell to one of these classes the class actually

occurs in the field. This may be referred to as a map purity table.

If field sample data are used, the process of estimation is analogous to that described
for the estimation of joint probabilities of evidence and hypothesis. In this case, the
digital representation of the evidence is examined at each point for which a sample

exists and the value, or class, on the map compared to that measured in the field.

Whatever the method of derivation, the result is a table having as many columns and
rows as there are states in the evidence. Each column will show the conditional
probability distribution that the evidence is in the state under consideration - given
the evidence represented by the data source. Table 7.2 shows sample conditional

probabilities for a three-class map.

Field | Map Class

Class 1 2 3
1 0.95 0.1 0.05
2 0.05 0.8 0.05
3 0.00 0.1 0.9

Table 7.2 Conditional probabilities for a three class map

Considering the case of a grid cell mapped as Class 2, this table indicates that at that
location in space there is an 80 percent chance that Class 2 actually occurs. Classes |
and 3 each have a 10 percent chance of occurring at such a location. The
distributions in such tables are not necessarily symmetrical and some cells may be
zero. The exact nature of the distribution depends on the data type. Data with its
origin in more continuous sources such as slope, aspect or elevation may have
symmetrical or even circular distributions. Data whose origin is categorical, a
geology map for example, will have a distribution governed by the degree of

confusion possible between the different states, or classes, of the data.
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7.5.2 Effect of map purity on evidence prior probability.

Since the Bayesian network contains a representation of the surveyor’s conceptual
model, the relationships portrayed by it will have been developed on a basis of true
observations. That is, with the assumption that input data are 100 percent accurate.
The model, therefore, assumes it ts working with the real evidence as it exists in the
field rather than with a map. The procedure described in Section 7.4.2 for
determining evidence prior probabilities by measurement of map areas produces a
probability distribution for the map evidence rather than for real field evidence. A
direct determination of prior probabilities from the occurrence of evidence states in
sample data is beset by problems of sampling bias, and a systematic measurement of
large samples is not practicable. A procedure for converting the map class estimate

of prior probability to a field class value is therefore required.

In the case of a multi-state piece of evidence, the prior probabilities represent a

probability distribution which we can refer to as 2(£/ for the real or field situation
and as 2(£'/ for the map data. The map purity values described above in Table 7.2
are then the conditional probability distribution 2(£|£°). The process of converting
the values in 2(£') generated by an area count on the map can be illustrated with

reference to a two class case where E has two states A and B.

From a cell count of the map we know the probabilities of occurrence P(A’) and

P(B’) of map classes A B respectively. From the map purity table we also know the

following:-
P(A]A?) Conditional probability that field class is A if map class is A
P(B|A?) Conditional probability that field class is B if map class is A
P(AB’) Conditional probability that field class is A if map class is B
P(B|B’) Conditional probability that field class is B if map class is B

We also know from the total probability rule that, under the assumption that A’ and

B’ are mutually exclusive and are exhaustive:-
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P(A) = P(AA’) + P(A,BY) (7.3)

The joint probabilities in Equation 7.3 can be calculated by inverting the definition of

conditional probability. That is:-
P(A,A%) = P(A|A") * P(A”) (7.4)
Hence Equation 7.3 expands to;

P(A) = P(A|]A”) * P(A”) + P(A|B’) * P(B’) (7.5)

A similar relationship can be derived to solve for P(B). P(A) and P(B) may differ
from the actual prior probabilities of those classes. Generalising this for more than

two classes we can derive:

P(E)= Y [P(E|E")*P(E")] (7.6)
<

This operation needs to be performed for each individual class within the evidence.

It is essentially a matrix operation that does not, at this stage, have a spatial context.

7.6 Updating the hypothesis based on map evidence

The action of taking the evidence proffered by a particular digital map and
converting it into a map of the spatial distribution of an updated hypothesis is a
spatial operation. It may, however, be regarded as the combination of a number of
essentially non-spatial operations on individual grid cells and may be illustrated by a
single grid cell. However, it is first necessary to remark on some constraints to the

relationship between evidence and hypothesis.

7.6.1 Joint probability distribution
The Venn diagram in Figure 7.3 is redrawn as Figure 7.4 to show a two-state
hypothesis H which is supported or refuted by a piece of evidence with two states E1

and E2. Under the total probability rule, E1 and E2 must be mutually exclusive and
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exhaustive. Similarly all the area outside the hypothesis H must be occupied by the

contradictory hypothesis !H.

If a joint probability table is used to describe the relationships between these
evidence states and the hypothesis (and its converse), then certain constraints apply.
The sum of the joint probabilities of any one evidence state and all the hypothesis
states must equal the probability of occurrence of that evidence state. Similarly, the
sum of the joint probabilities of any one-hypothesis state and all the evidence states
must equal the probability of occurrence of that hypothesis state. Due to the direct
relationship between joint and conditional probability, the same constraint applies to
a table, or distribution, of conditional probability. The only difference is that the

members of a conditional probability distribution must sum to unity.

(H|E;)

Figure 7.4 Venn diagram showing joint probability relationships

An example of a joint probability table is provided in Table 7.3. This is for the three-
state evidence previously described in the discussion of map purity. It may be noted
that the rows all sum to the prior probability P(H) of each hypothesis state and that

the columns sum to the probabilities P(E) of each of the evidence states.
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Hypothesis | P(H} Field Class
Class 1 2 3
1 0.67 0.135 0.33 0.205
2 0.33 0.25 0.02 0.06
Sum 1.00 0.385 0.35 0.265

Table 7. 3 Joint probability distribution for two-state hypothesis and
three-state evidence layer

7.6.2 The map as evidence

We can now consider what happens, on a cell by cell basis, as a map is taken as
evidence. A grid cell assigned to a state by the map has a number of associated
parameters. By virtue of its map class membership, it has a conditional probability
distribution of membership of all possible real, or field, classes such as that shown in
any column of Table 7.2. Each of those field classes, in turn, has a joint distribution
across all admissible states of the hypothesis. Such a distribution is exemplifed by
one of the columns of Table 7.3. In addition, we have a prior probability of
occurrence of that particular class on the map. In order to populate a table such as
Table 7.3, that must be converted to a prior probability for that class in the field. To
do this we use the procedure outlined in Section 7.5.2. and considered in more detail

below.

The map area denoted by that grid cell will also have a prior probability distribution
2(#} across all states of the hypothesis. The task of the Bayesian network, simplified

in this case to only one piece of evidence, is to update that probability distribution to

Pt#| g ), where £ indicates that we are using map evidence.

Using the defining relationship of conditional probability, we know that:-

P(H,E)
P(H|E) = PE) (7.7)

For any one grid cell, P(H|E) may be written long hand as :

P(Hypothesis = Class j | Field class is Class i)
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Since we are working from map data the quantity of interest is :-
P(Hypothesis = Class j | Map class is Class i )

The uncertainty in class membership has been quantified as a distribution describing
the probabilities of occurrence of the field classes at that location. By analogy with
Equation 7.6 and using the total probability rule, we can calculate the probability that
a particular hypothesis class exists at that location by summing the contributions
made to it by all of the possible field classes. That is the sum over the field classes

of:-

P(Hypothesis = j| Field class = i) * P( pixel is a member of field class i)
In this case, the second term in this expression is in fact :-

P(Pixel is in field class i | pixel has the value given in the map)

which is the Map purity value. We can therefore summarise as:-

P(H|E)=Y [P(H|E)*P(E|E’)] (7.8)

Equation 7.8, forms the central calculus of a Bayesian ‘expert system’ which may be
used to map probabilities of occurrence of some attribute (the hypothesis) based on a

number of pieces of uncertain evidence.

7.6.3 A graphical representation of the calculus

The tree diagram in Figure 7.5 shows an example of this calculus using the values in
Tables 7.2 and 7.3. In order to understand this diagram it is first necessary to
convert the joint probability distribution shown in Table 7.3 to a conditional
probability distribution. This is achieved by dividing though by the prior probability
of the appropriate evidence class (Equation 7.7). The results of this are shown in

Table 7.4.
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Hypothesis | P(H) Field Class
Class 1 2 3
1 0.67 0.35 0.94 0.77
2 0.33 0.65 0.06 0.23
Sum 1.00 1.00 1.00 1.00

Table 7. 4 Conditional probability distribution for two-state hypothesis and
three-state evidence layer.

Map taken as evidence

Cell is mapped as Class 2

P(E[E")
0.23 P(HIE)
0.0%5 0.0§:5 D.'{52 0.048 0077 0023
el S
S I
P(H,) = 0.86 P(H;) = 0.14 P(HIE)

Updated hypothesis probability

Figure 7.5 A graphical representation of the process of taking a map as evidence

The values shown in Figure 7.5 are representative of any grid cell in a digital map. If
we consider a cell which has been mapped as belonging to Class 2, then, using the
map purity figures in Table 7.2, it has a probability of 0.8 of truly belonging to that

class. There is a probability of 0.1 that it belongs to each of the other two classes.

If this cell truly belongs to Class 2 then, using the values in Table 7.4, the probability
of it of being assigned to hypothesis state I is 0.94. There is a concomitant

probability of 0.06 that it belongs to hypothesis state 2. However, the imprecision
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represented by the map purity table modifies these values to 0.752 and 0.048
respectively. Similarly, there are other measures of its probability of membership of
the two hypothesis classes derived from the probabilities that it really belongs to one
of the other two field classes. The overall probabilities of this grid cell belonging to

each hypothesis class are then found by summation of the contributions from each of

the ’streams’.

7.7 Summary

This chapter has described the means by which a Bayesian network can be harnessed
to provide the expert system component of a quantitative soil mapping system.
Algorithms and methods have been described for obtaining the parameters and
probability distributions necessary to populate a Bayesian net. The problems of
using inexact data have been discussed and a practical method of handling it
described. The process of taking a map as a piece of evidence has been described
with detailed discussion of the calculations performed for a particular grid cell. The
next chapter will discuss detailed algorithms for the GIS component of a soil

mapping system.
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Chapter 8

GIS INTERFACING AND DATA COMBINATION

The quantitative soil mapping system described in Chapter 6 has two components.
One is an expert system tool, based on Bayesian network algorithms which were
described in the preceding chapter. In addition, there are a number of tasks which
require manipulation of data in the spatial domain. Geographic information systems
may be harnessed to perform these operations, either directly or through the use of
their scripting languages. This chapter describes the algorithms and procedures
required to carry out these spatial tasks. A number of the GIS tasks use common
algorithms which are encoded as a standard part of most commercial GIS. It is not
intended to discuss those standard algorithms in detail. However, where a choice
exists between methods of performing the same task, a discussion is provided as to

which is most suitable.

The overall assemblage of expert system tool and GIS linkages that has resulted from
this work is called the Expector method. The name was chosen partly to
acknowledge the impetus provided to its development by the PROSPECTOR method
and partly because the system represents the expectations of the soil surveyor. The
system is described in detail in Chapter 9, but reference is made in this chapter to

some of its file formats in order to illustrate the linkage methods employed.

In Expector, some of the more advanced tasks are coded in both ARC/INFO and
ArcView as interface modules to the expert system. However, at the most basic
level, the general algorithms consist of a series of the ‘primitive’ operations which
are at the core of any GIS possessing map-algebra capabilities. They are, therefore,

capable of being implemented in almost any GIS.

By referring back to Figure 6.3 (p. 66), it can be seen that the major tasks to be
performed in a GIS are those of data preparation, combination and presentation. In
addition to these, this chapter covers tasks involved in the extraction of knowledge
from spatial data. The transfer of that knowledge between the GIS and the expert

system is also covered here. We begin with the preparation of spatial data.
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8.1 Data preparation - general considerations

The data to be used for soil mapping will essentially be of two types. There will be
site sample data and extensive map data covering the entire area of interest. The
extensive data could be in one of several forms. These include categorical data,
typically expressed as a choropleth map, and continuous data, represented either as a
raster or as a contour map in vector form. Each of these various data types needs to
be made ready for interface to the expert system tool. The first task is to ensure that

all the spatial data are in a common spatial reference system.

8.1.1 Geo-coding of site and map data

It is a pre-requisite for its use in a GIS that any data presented for analysis has a co-
ordinate reference. It is desirable that the work be conducted in a linear metric co-
ordinate framework. Appropriate grid systems, therefore, include projections such as
the Australian Map Grid (AMG) or Universal Transverse Mercator (UTM). The
necessity, or otherwise for transformation of data to this common reference
framework will depend on its provenance. Original data may have been collected in
one of these reference systems, some other metric or imperial grid system, or in

geographical co-ordinates (latitude and longitude).

Recently collected site data is likely to have been geo-coded using Global
Pbsitioning System (GPS) techniques. The data source needs to be checked to
ensure that the geodetic parameters (spheroid, datum, etc.) used in the GPS surveying
are in accord with those chosen for the overall analysis framework. If they are not,
then a data transformation needs to be undertaken. Most GIS have facilities for such

transformations.

If the site sample data 1s less recent, its co-ordinates may have been derived either by
traverse surveying or by the digitising of spot locations from aerial photography. In
these cases, reference should again be made to the original sources to check geodetic

and projection parameters, with transformations being performed as necessary.

In some extreme cases, site sample locations may be described in some form other
than a co-ordinate system. Although procedures such as the conversion of cadastral

lot descriptions to co-ordinates, and the use of ortho-photos to locate points from
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descriptions can be applied, the spatial accuracy of such data is likely to be
questionable. The use of the spatial properties of such data needs, therefore, to be

undertaken with care.

8.1.2 Co-registration of data

Extensive data sources include remotely sensed data, digital elevation models and
digitised paper maps. Remotely sensed data will generally have been geo-referenced
using the facilities provided by digital image processing software. Again it needs to
be checked to ensure that geodetic and projection parameters conform to those
chosen for the rest of the analysis. The same applies to digital elevation models.
Digitised paper maps and similar sources may have originally been generated in

geographical co-ordinates and may also require transformation.

The Expector system has been designed to use raster data. At an early stage of data
preparation, consideration needs to be given to the spatial resolution of the data.
Given that the data will have come from a variety of different sources, the Expector
has the capability to handling data of varying cell sizes. It must, however, be
recognised that in any data combination process the coarsest resolution data will
have a significant contribution to the result. Nevertheless, higher resolution data
which provides significant evidence will have the effect of ‘breaking up’ coarser,
more patchy data. Some of the operations required to prepare the data will involve

the adjustment of cell size by resampling.

Data should also be co-registered so that each raster has a common origin. It is also
advisable that, where multiple resolution data sets exist, there is a factorial
relationship between their cell sizes. For example, remotely sensed data are
frequently re-sampled, during rectification, to 25m pixels with their origin on an
even hundred in both easting and northing. It would be appropriate to rasterise a
coarser scale digital geology map at a resolution of 100m, again with an origin on the

even hundreds.

It is also necessary that all evidence data sets have the same spatial extent. Where

data are missing for part of the area, a 'no-data’ value, appropriate to the GIS being
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used, should be set. The software contains a mechanism for handling such missing

data areas (see Section 8.5.2).

8.2 Preparation and use of extensive evidence data

The expert system component described in the previous chapter requires categorical
raster data input. The data that a soil surveyor wishes to use may be available in a
number of alternative forms. These include vector polygon data, continuous raster
surfaces, surfaces represented as vector contours, and transect data from sources such
as airborne geophysical profiling instruments. All of these data forms require

conversion to categorical raster data.

8.2.1 Selection of calegories

Before converting any of this evidence data to a categorical raster format, the number
and size of those categories need to be defined. Each category represents one state of
the evidence. The number of states used for a piece of evidence, and the bounds
between them, may vary according to the hypothesis attribute. That is, one attribute
may be more sensitive to changes in state of a particular evidence variable than
another. For example whilst organic matter may only begin to accumulate on slopes
lower than, say 2 percent, ironstone nodule content may be sensitive to slope class

breaks at, say 1 percent, 3 percent, 5 percent, and 7 percent.

Care needs to be exercised in the choice of class breaks if an evidence layer is to be
used for multiple hypotheses in turn. Consideration also needs to be taken of the
number of states in the hypothesis variable. It may be more efficient to create, in the
example above, two evidence layers representing slope. One for use in the prediction
of organic matter content, with two states (0-2 percent and >2 percent). The other for
prediction of ironstone nodules, with 5 states (0-1 percent, 1-3 percent, 3-5 percent,

5-7 percent and >7 percent).

8.2.2 Preparing existing raster data

Some existing raster data, such as maps of landcover classes, will already be
categorical. Other data may be stored as a continuous raster representation of a
surface. Both types of datasets will require reclassification to conform to the states

determined for that variable. Reclassification is a common GIS task.
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For continuous data, a lookup table is constructed, often using an on-screen form.
The lookup table matches ranges of values in the continuous data to categorical
classes. Similarly, for data that is already categorical, the lookup table reassigns the
classes to those appropriate for the analysis. The principal difference is that, in the
case of continuous data, the classes will be formed from homogenous values,
whereas with categorical data, assignment is made on the basis of the meaning of the
class label rather than the absolute value. In both cases, it is good practice to save
the lookup table used for the transformation. It can prove useful both as a record of

the classification and as a template for further, similar, reclassifications.

8.2.3 Vector polygon data

The treatment of vector polygon data is similar to that of categorical raster data, since
some degree of reclassification using a lookup table may be required. An additional
step, for which most GIS provide standard tools, is the rasterisation itself. The
comments regarding transformation, cell size and co-registration discussed in Section

8.1.2 are particularly relevant here.

Commercial GIS generally offer a choice in the treatment of cells whose position
falls on the boundary between categories. Typical algorithms assign cell values to
one of the following categories:-

a) The category which occupies most of the grid cell,

b) The category in which the centre of the grid cell falls,

c) An area weighted mean of the possible categories.

When working with thematic categorical data, option ‘c’ is not appropriate since it
will introduce cells with spurious, possibly non-integer, values. Options ‘a’ and ‘b’
are both entirely suitable. It is up to the individual analyst to decide which best suits
the data. Consideration should be given to the scale of the original survey, the size of

the smallest polygons and the intended raster grid cell size.

8.2.4 Using other extensive data
Whilst there are a number of other data types which require conversion, the most

common will be data in the form of contour strings or linear profiles. Both have in
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common the fact that the data are better represented in one direction than in the

other.

As an example, profile lines from a geophysical profiling instrument, may be two
hundred metres or more apart, whilst the sampling rate along the lines may have
resulted in a data point every thirty metres or so. Most GIS will provide algorithms
for generating surfaces from point data. Simple interpolation methods that use
distance weighting are inappropriate for such data, due to the generally non-isotropic
nature of its spatial distribution. More sophisticated methods including spline
interpolators or geo-statistical techniques such as kriging, are more appropriate for

these data types. Davis (1986) provides guidance in the selection of techniques.

Vector contour data which has been digitised from map compilation sheets using a
line-following scanner has a particularly high sample rate along the lines and it may
be necessary to weed out some of the data points in the along contour direction prior
to using a spline interpolator. Similarly, point data that are to be used as evidence
will require conversion to a raster representation of a surface. The interpolation
method required will depend on the nature and spacing of the sample points, and
each case will require separate consideration. Davis (1986) and Burrough (1986)
provide discussions of various interpolation routines and their appropriateness to

particular circumstances.

8.2.5 Derivation of indices

During the model building phase within the expert system, some evidence variables
may be envisaged which are not direct categorisations of existing data. These may
include constructs such as compound topographic (wetness) index, indices of solar
irradiation, or other terrain-based attributes such as local relief. All of these require a
certain degree of processing within GIS. Once the indices have been calculated the

grid data sets should then be categorised appropriately.

8.3 Preparation and use of site sample data
As indicated in Chapter 7, site sample data will be used in three ways: firstly to
determine the prior probability distribution of the hypothesis (the attribute being

mapped), secondly as an aid to constructing joint probability distributions with the
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various evidence variables, and thirdly to determine the ‘purity’ of each of the
evidence variables. These are all ways in which knowledge is extracted from the

data.

8.3.1 Prior probability of the hypothesis

As described in Section 7.4.1, the prior probability distribution of the hypothesis may
be estimated from the number of occurrences of each hypothesis state present in the
site data. If the hypothesis attribute is a categorical variable, this presents no
problem, but continuous variables must be rendered discrete. This requires the
selection, by an expert, of the range of each state within the variable. Once this is
done, the prior probability distribution can be determined by ordering and counting
the data points which occur in each category. This task can either be performed
using the database manipulation functions of the GIS or in a separate database or
spreadsheet. The procedure is simplified if a data file is constructed which contains
only four columns. The record for each point should comprise an identifier, an

easting, a northing and the appropriate hypothesis state, expressed numerically.

Even if the site data is not spatially referenced, or if the accuracy of the referencing is
suspect, it can still be used to develop estimates of abundance for use as hypothesis
prior probabilities. This is possible because the estimation of the prior distribution is
aspatial and is generally a regional distribution that will be modified for each grid

cell as the evidence is considered.

8.3.2 Determining the joint probabilities

Where accurately spatially referenced site data are available, they may be used to
determine the coincidence between the hypothesis states and the evidence states, at
least as represented by that sample. This is done by querying each of the categorised
evidence layers at each sample point in turn. Most GIS have facilities for on-screen
query of individual cell values. In addition, such queries can usually be initiated by
entering co-ordinate pair values at the command line. Neither of these methods is

practicable for a reasonably sized sample data set.

The algorithm for this procedure, for any one evidence variable, proceeds as

follows:-
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* Open hypothesis data file (see Section 8.3.1.for format),

¢ Open an output file,

¢ Read arecord (identifier , co-ordinates and hypothesis state),

s Extracted the co-ordinate values from record,

¢ Query the GIS data layer to determine the evidence category at that point,

e (Create new record comprising point identifier, hypothesis state, evidence
state,

e Write record to output file,

¢ Read next record from input file,

¢ Repeat until all input data read,

¢  (Close files,

This procedure has been coded in the scripting languages of ARC/INFO and
ArcView as part of the Expector package. Although standard spreadsheet tools may
be used to examine the output and to calculate joint probabilities, the Expector

software provides tools for this as part of the knowledge editing process.

8.3.3 Prior probabilities of the evidence

This probability distribution is, essentially, a numerical expression of the histogram
of the evidence data classes. In some GIS, this histogram is stored as a table in an
associated database; in others, the information needs to be extracted from the raw
data. A procedure is, therefore, required to either report the values from the data
base table, to decode a listing of the histogram produced by the GIS, or to derive the
area counts directly from the raw data file. As part of the Expector software
package, procedures have been written to access the database tables associated with
ARC/INFO and ArcView grid data files and write the values to a separate file. The
algorithms necessary to decode other GIS-specific histogram files and data sets will

vary from system to system and are, therefore, not discussed in detail here.

8.4 Data and knowledge exchange
Referring again to Figure 6.3 (p. 66), there are two main points at which interchange

is required between the GIS and the expert system tool. These are the passing of
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knowledge from the GIS as part of the knowledge definition and editing stage and

the passing of data weights back to the GIS prior to a data combination stage.

8.4.1 Passing knowledge

The knowledge that is to be passed between the GIS and the expert system tool is in
the form of probability distributions. The prior probability distribution of the
hypothesis has been determined using the proceduré described in Section 8.3.1. This
is a one dimensional distribution with as many members as there are states in the
hypothesis. Since this has been determined outside the GIS, usually in a spreadsheet,
facilities have been provided for entering the values directly into the expert system

tool.

The joint probabilities of the hypothesis and evidence have been determined by the
method in Section 8.3.1 as a coincidence table. Table 8.1.a) is a direct extract from a
coincidence table and does not contain a header line. The first column is a numeric
identifier for the sample site, the second column is the hypothesis state at that point
and the third is the evidence state at that point. The Expector software reads this
table and converts it to an initial joint probability table which can then be edited as

required.

1,24
2,13
3,1,3 "Value","Count”
4,1,2 1,1186
5,1,2 2,23388
6,1,3 3,27104
4,13697
ryeepen 5,8842
217,24

a) b)

Table 8.1 Extracts from Expector data interchange files.

a) Coincidence table showing point ID, hypothesis state and evidence state
b) Evidence probability distribution
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The interchange file format has been deliberately constructed as a comma delimited
ASCII file in order to enable the easy construction of interfaces to GIS packages.
The evidence prior probability distributions are also passed to the Expector software
as comma delimited files, an example of which is shown in Table 8.1.b). The two
columas in this file refer to the unique values present in the evidence data set and a
count of the number of cells in each category. To enable their files to be read by the

expert system, interfaces to other GIS must use exactly the same format.

8.4.2 Passing weighted data back to the GIS
As described in Section 7.6, for each evidence layer the expert system tool first
produces an updated probability distribution for the hypothesis over the evidence

states. This distribution 2¢#| £}, is two dimensional. Table 8.2 shows an example

of such a distribution; again this is a direct extract from the expert system data file.

value,pheql,pheq?2
1, 77069, 22930

2, 65000, 34999

3, 49050, 50950

4, 16950, 83050

3, 2500, 97500

Table 8.2 Expector data file representing an
updated probability distribution

This is a distribution of a two-state hypothesis across a five-state evidence layer. The
first line in the file contains column labels and is followed by as many lines as there
are states in the evidence. Each of those lines comprises the category value for the
state then the values of P(H;|E;). For any hypothesis state j the distribution thus
reads down the column. The values in this file are probabilities and they should lie
between 0 and 1. Since some GIS have difficulty importing floating point data, they
have been scaled into the range 0 to 100,000. Although this may cause some
apparent loss of precision in the values, it is debatable whether changes in probability
values as small as 0.00001 are meaningful. In common with the files that transfer
knowledge into the expert system tool, a comma delimited ASCII structure has been

used for maximum portability.
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In order to more fully understand the values in Table 8.2, we may take this as being
an example of the joint distribution between a slope layer, categorised in to five
classes and a ‘high organic matter’ hypothesis with two states, present (pheql) and
absent (pheq2). The first line of the table then reads as a mathematical expression of
the belief that if the map assigns a pixel to the low slope category, then high organic
matter is more probable than low organic matter in the ratio 77:23. Other lines

reflect belief ratios for other slope classes.

8.5 Combining probabilities from several evidence layers

Once the individual updated values for the hypothesis probability distribution of each
of the evidence layers have been passed back to the GIS, it is necessary to combine
them into one distribution for the hypothesis. So far the expert system tool has
essentially operated a-spatially on the individual evidence classes. Since the class
boundaries in physical space differ between evidence layers, this combination needs
to be carried out on an individual cell by cell basis throughout the grids involved.
The process involved uses map algebra and the exact detail will vary according to the
implementation of map algebra in the particular GIS in use. The following describes
the mathematical basis behind the combination and is followed by a description of

the implementation of the algorithm in ARC/INFO.

8.5.1 General mathematical principles

We must consider the situation of a grid cell for which we have multiple evidence
streams supporting a particular hypothesis. For the sake of simplicity we will begin
by considering a two-state hypothesis H with states H; and Hj, and two streams of

evidence which we will call E; and E,.

E; and E; are map variables and the values of parameters in this discussion represent
the actual values pertaining at the particular grid cell based on that cell’s membership
of a particular class on each of the evidence maps. We have previously calculated, in
the expert system tool, values for the following parameters.
P(H,|E;) The probability of hypothesis state 1 given evidence layer 1
P(H,|E;) The probability of hypothesis state 1 given evidence layer 2
P(H;|E;) The probability of hypothesis state 2 given evidence layer |
P(H,|E;) The probability of hypothesis state 2 given evidence layer 2



98

From these we wish to calculate two pooled values. These are :-

P(Hy{E{ E3) The probability of hypothesis state 1 given both evidence layer 1
and evidence layer 2, and
P(H;|E E;) The probability of hypothesis state 2 given both evidence layer 1

and evidence layer 2.

We need only consider the calculation for one hypothesis state, since the other
proceeds analogously. The first part of the following derivation is after Cohen

(1985).

We know from Baye’s theorem (Equation 3.11) that for any one hypothesis state Hy

and the event of taking any one piece of evidence E:-

P(E | Hi). P(H1)

PH: |E)= 8.1
(H:|E) PEE) (8.1}
If H; and H; are mutually exclusive then we also know that:-
P{E) =P(H1,E) + P(H2,E) (8.2)

However, we also know, from the definition of conditional probability, (Equation

2.3) that:-

P(H,E) =P(E | H).P(H) (8.3)

So, from Equations 8.2 and 8.3:-

\

P(E)=P(E | Hy).P(H:) + P(E | H2) . P(Hz2) (8.4)

Substituting Equation 8.4 into Equation 8.1 gives :-
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P(E | Hy) . P(H))
P(E | Hi) . P(H)) + P(E | H2) . P(H>)

P(H: |E)= (8.5)

If we now replace the event of considering one evidence layer only with the event of
considering two evidence layers E1 and E2 then (under the assumption that the

evidence layers are independent) we can now rewrite Equation 8.5 as:-

P(Ey, E: | Hy) . P(H1)

8.6
P(E1, E:| Hi) . P(Hi) + P(E1, Ez2 | Hz) . P(H2) (8:0)

P(H1|E1,E2) =

Equation 8.6 can be generalised to provide a means of calculating the pooled
posterior probability for any member Hj of a suite of n hypothesis states given the

event of taking into consideration m evidence layers. That is:-

..... m j .P H
PCH; | Ery B i) = i | H). PE) 8.7)
ij1 P(Hj).P(E1,E-....En | Hj)
The solution for P(H;|EsEz....... Em) in Equation 8.7 does not quite suit our

purposes for two reasons. Firstly, it does not use the individual P(Hj|Ey) values
provided by the expert system tool and secondly, evaluation of the denominator
requires that we know the conditional probabilities of all possible combinations of
the states of the m evidence layers with all j states of the hypothesis. In a moderately

complex problem this rapidly becomes unattainable and will be dealt with first.

In order to proceed we need to assume that the individual evidence layers are
conditionally independent. Conditional independence and the operational
ramifications of this assumption are discussed at greater length in Chapter 12. This
assumption of evidence data layers as being conditional independence of data may be

stated, for two evidence layers, as (Cohen,1985):-

P(E1,E:| Hi) = P(E1| H) . P(E: | H) (8.8)
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Generalising this assumption for more than two cases we can now rewrite equation

8.7 as:-

P(Hy).[ [” P(E:| Hy)

X, o) TT7, P Hj)

P(H; | E1, E.......... En)= (8.9)

Equation 8.9 is the standard method used for updating of probabilities in Bayesian
networks Cohen, 1985, p. 30). It calls, however, for the derivation of estimates of
individual values of P(E[H). This is the probability that the evidence exists given
that the hypothesis is true. From the point of view of a soil surveyor, this is a less
intuitive value than the probability that the hypothesis is true given the fact that the
evidence exists. For that reason the expert system tool described in Chapter 7 was

designed to provide the latter value. However we know from Bayes’ rule that :-

P(E:| H)).P(Hj)
P(E)

P(H;|E)) = (8.10)

This allows two courses of action, We can calculate individual values of P(E;|Hj),
either in the expert system tool or as a first step calculation in GIS, or we can rewrite
Equation 8.9 in such a way as to use the P(H;|E;) values. The derivation now departs

from that of Cohen (1985) and other standard works.

Returning to the two evidence layer situation we restate Equation 8.6:-

P(Ey,E:| Hi) . P(H1)

P(H: |EyE2) =
P(Ey, E: | Hi) . P(H1) + P(E, Ez2 | H2) . P(H2)

(8.11)

Rewriting the numerator under the assumption of conditional independence

expressed in Equation 8.7 gives:-

P(E:| H1) .P(E: | H1). P(H1)
P(Ey,E: | Hi).P(H1) + P(E,Ez | H2) . P(Hz2)

P(H:|Es,Ez) = (8.12)
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[nverting Equation 8.10 then gives:-

P(H; | E). P(E)

P(Ei|H)j) = (8.13)
| P(Hy)
Substituting Equation 8.13 into the numerator of Equation 8.12 gives :-
{P (i, P 1|> :511;)) P(E) P(H: 1l> (E};)) P(Ez)}
P(H: | Ey,E2) = ! ! (8.14)
P(E,E:| Hi) . P(Hi) + P(E1,Ez | H2) . P(Hz2)
By analogy with Equation 8.13 :-
P(H; | Ey, Ez). P(E1, E2)
P(E,E:|H;) = (8.15)
| P(H;)
The denominator of Equation 8.14 can now be written as:-
P(HD). P(H1| E;, Ez). P(E1, Ez2) + P(HY). P(H:| E\,Ez2). P(Ey, Ez2) (8.16)
P(HY) P{H:)
Simplifying Equation 8.16 and collecting terms we now rewrite 8.14 as:-
P(H,).P(Ey). P(Ez){ P g?;{l ;3'). Pg;‘{l ?’)}
P(Hi|E1,E2) = - : (8.17)

P(E1,E2){P(H1 | E1,E2) + P(H: | E1, E2)}

However under the assumption of conditional independence:-

P(E1, E2) = P(E1).P(E1) (8.18)
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Equation 8.17 now simplifies to:-

P (HI).{ P(H:|E:) P(H: Ez)}
P(H:) P(H:)

8.19
{P(H, | E,,E2) + P(H: | Es,E2)} ¢

P(H:| Ey,E2) =

This can be generalised for multiple hypotheses and multiple evidence layers as:-

P(Hl)-HZl {%@}

P(H: | Ey, Ez,...Em) = —
Y P(H; | E1,Ez,..Em)

(8.20)

Equation 8.20 now gives us a means of combining the individual P(H|E) values

produced by the expert system tool.

8.5.2 ARC/INFO algorithm implementation

The combination of probabilities from several evidence layers has been implemented
as a routine in Arc Macro Language (AML) as part of the Expector ARC/INFO
interface. The algorithm assumes that there is available, for each evidence layer, a
table (like Table 8.2) which gives the probability of each hypothesis state for each
evidence state or class. The operation of the algorithm also requires a basic
parameter file that contains the prior probability distribution for the hypothesis and a

list of evidence layer to be used.

The algorithm starts by reading this parameter file and then, using the GIS native
database abilities, joins the appropriate probability table (like Table 8.3) to the
attribute table for each evidence layer. This has the effect of creating a virtual grid
dataset for each hypothesis-state/evidence-state combination.  Within each
hypothesis state, a loop is initiated which, using map algebra, creates a grid dataset
for each hypothesis state which is the product of the ratios of the individual evidence

grid cell P(HG}E;) values and P(H;).

Map algebra operates on a cell by cell basis and, where a no-data value is

encountered in one of the evidence layers, the value of P(H;) is substituted for
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P(HE;). This has the effect of giving the multiplier for that cell a value of one,
indicating that the evidence has no effect there. This is then multiplied by P(H;) to
give the numerator of the right hand side of Equation 8.20. The grids representing
these accumulated values are then summed in a loop which runs through each of the
hypothesis states and performs the normalisation which completes the evaluation of

Equation 8.20.

8.6 Data presentation

The result of the data combination process described in Section 8.5 is a number of
grid data sets, one for each state of the hypothesis. Each of these shows the spatial
distribution, as predicted by the evidence used, of the probability of occurrence of
that hypothesis state. These grids are floating point datasets with values lying
between 0 and 1. They may be presented to the user either as probability grids with a
suitable display scale or they may be used to derive a further grid that shows the

most probable hypothesis state.

8.6.1 Display of probability data

In order to cope with data scaling problems associated with the display of floating
point data in some GIS, the Expector software package provide tools to re-scale the
data into the range O to 100, thus expressing the probabilities as integer percentages.
A colour table distributed with the software package has 100 entries covering this

range to facilitate the display of probability data.

8.6.2 Derivation and display of most probable state maps

Conversion of the data to a most probable state map requires that the individual data
sets pertaining to each hypothesis state be queried on a cell by cell basis to determine
which has the highest value at each grid cell. Some GIS provide a standard function
to perform this operation (for example, the UPOS function in ARC/INFO). For other
systems, a tool needs to be constructed in the appropriate scripting language. The

algorithm is detailed here.
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¢ Create an ‘index grid’ of same extent and cell size as hypothesis grids,

* Setall index grid’ cells to 0,

» Create an ‘maximum grid’ of same extent and cell size as the index grid,

¢ Set all ‘'maximum grid’ cells to 0,

e Setacounterto 1,

e Compare probability grid for first hypothesis state with ‘maximum grid’,

» [If hypothesis state grid cell value is greater than ‘maximum grid’ value, set
index grid’ value to counter value and set ‘'maximum grid’ cell value to
hypothesis state grid value,

* Else leave index grid value unchanged,

¢ Increment counter and repeat previous two steps,

¢ When all hypothesis grids compared, save ‘index grid’ and delete

‘maximum grid’.

An implementation of this algorithm in Avenue, the scripting language of ArcView,
is incorporated in the Expector software package. As indicated above, in ARC/INFO

the procedure is accomplished by an in-built function.

8.7 Summary

A number of GIS processes are required to make spatial data usable in an expert
system tool and to combine the results of calculations carried out by that tool.
Processes common to the treatment of site sample data and extensive (map) data sets
include geo-coding and co-referencing. In addition, extensive data may require
reclassification. Following the definition of hypothesis states, site sample data may

also require reclassification.

Once prepared, the site sample data may be used in knowledge extraction processes.
The extracted knowledge includes the prior probability distribution of hypothesis
states as well as sample joint distributions between the hypothesis and the various
evidence variables. A number of procedures and file structures by which this
knowledge can be passed to the expert system tool have been discussed, as have

those for returning processed knowledge back to the GIS.
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The combination of individual evidence layers in GIS has been described, firstly in
its general mathematical principles and secondly as an algorithmic implementation.
Although the mathematical principals used are based on standard Bayesian network
calculus, they have been modified to use probability distributions that are more
mtuitively meaningful to a soil surveyor. Algorithms have also been presented for
the display of combined data, both as probability maps and as most probable state
maps. The next chapter gives a detailed description of the operation of the Expector

natural resource mapping software.
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Chapter 9

A DESCRIPTION OF THE EXPECTOR SOFTWARE

This chapter provides a discussion of the operation of the Expector software. It is
not intended as a reference manual for the user. That forms a separate document
which is contained on the Expector software distribution disk included with this

thesis.

9.1 Components of the software

The overall design of the Expector software, as discussed in Chapters 7 and §, has
resulted in two main software components. One is a standalone application that
performs the knowledge editing functions described in Chapter 7. The other is a GIS
specific component which handles the data preparation, interfacing, and data

combination tasks as described in Chapter 8.

The standalone software was written in Microsoft Visual Basic™ and provides a
forms type interface. The GIS specific software has been written in Avenue and
AML, the native scripting languages of ArcView and ARC/INFO. Simultaneously
with the development of this software, a complementary interface to the Intergraph
Microstation GIS Environment software has been written by others. This description

of the software covers the standalone component and the ArcView interface.

9.2 An overview of the Expector process
The process of quantitative natural resource assessment was discussed at length in
Chapter 6. Figure 9.1 shows a flowchart for the Expector implementation of that
process. The following stages are defined:-

a) Knowledge definition,

b) Data preparation,

c¢) Knowledge extraction,

d) Data weighting (Knowledge editing),

e¢) Data combination,

f) Map preparation (Data display).
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9.3 Knowledge definition

Knowledge definition is the process of defining the attribute to be mapped and
assembling the evidence to be used in that mapping. The Expector software provides
a schema editor that enables the problem to be set out in a graphical form. A

separate schema should be created for each mapping project.

Before a schema is created, the attribute to be mapped (the hypothesis) should be
defined and, where possible, fieldwork carried out to determine its likely probability
distribution within the area of interest. Fieldwork and sampling are discussed in
greater detail in Chapter 12. Similarly, evidence datasets relevant to the defined

~ hypothesis need to be identified. Again, this may require some data collection.

The schema editor is the ‘front page’ for Expector and is displayed whenever the
software is invoked. The software may be started either directly from MS Windows
or indirectly through the GIS interface. Figure 9.2 shows a completed schema editor

form.

The schema editor is divided into two parts; one dealing with the evidence and the
other with the hypothesis, or attribute being mapped. Each contains a number of data
entry fields, all of which must be completed. With the exception of the minimum
number of hypothesis states, there are no default values. In addition to the
interfacing provided in these two sections, some functions are supported by drop

down menus.

9.3.1 The hypothesis section

The hypothesis section contains a number of boxes for user input, a 'spin button'
control {a pair of increment - decrement arrows), and a bar graph display. The
upper-most box is used to enter the name of the attribute being mapped. It is
advisable that the name used be kept brief. It will be used as a basis for further file

names, and some host GIS have a limit on file name length.
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Figure 9.2 A completed schema
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The 'spin control’ is used to enter the number of hypothesis states. The minimum
number of hypothesis states is two. As the number of states is incremented, the form
will expand to accommodate them, up to a maximum of 18 states. This is, however,
an unusually large number for most natural resource attributes and a more typical

figure would be between four and six.

The remaining boxes are used to enter the upper bounds of each of the states and
their prior probabilities. Prior probabilities will be determined either from sample
data, using the method described in Section 8.3.1 or will be assigned on the basis of
expert knowledge. It is a prerequisite that the sum of the prior probabilities be one.
A bar graph display allows inspection of t.he distribution of these values and a sum

check box is provided.

The hypothesis section of the form displayed in Figure 9.2 is showing information
about a hypothesis named ‘surfclay’. The hypothesis has two states, the upper bound
values of 10 and 100 indicating ranges of 0-10 percent clay and 10-100 percent clay

respectively. Prior probabilities of 0.43 and 0.57 have been assigned to these states.

9.3.2 Evidence section

The evidence section contains two main features. The first, occupying the upper part
of the form, is a list box for the names of all evidence layers to be used. The second
is a tool for selecting individual evidence layers for use in the knowledge editing

Process.

Evidence names are added to the list by typing their name into the data entry field
above the box. Once a name is entered the ADD button becomes active. A mouse
click on this button then places the name onto the list of evidence layers. To remove
a name from the list, it must first be highlighted by dragging the cursor over it. This
activates the REMOVE button. Clicking on that button deletes the name from the
list. The names entered into these boxes should be the names of the raster datasets

forming the evidence layers.

The selection box and the group of three command buttons located at the bottom of

the evidence section are used to proceed to the knowledge editing stage. To ensure
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correct operation of the knowledge editing algorithms, this process must be
performed in a particular order. This is controlled by routines within the software
which monitor the progress of the evidence layers through the editing process and
selectively activate the command buttons. An evidence layer is selected for editing
by highlighting its name in the selection box and selecting the appropriate action
from the available command buttons. This procedure is discussed in greater detail in

Section 9.6.

The evidence section of the form displayed in Figure 9.2 indicates that three
evidence layers are being used in this analysis. These are named exp_cti, exp_geol

and exp_pot. The exp_cti data layer is selected for knowledge editing

9.3.3 Drop down menus

Access to file saving and opening functions is provided through the File menu. Once
the schema editor form has been filled in, it must be saved. As a fail-safe, the
software will not allow entry to the knowledge editing process until the schema has
been saved. A default extension of .exp i1s suggested for the schema file, which
should be stored in the same directory as the evidence data layers and other files that
Expector will use. It is important, for good data management, that a separate

directory be used for each hypothesis attribute.

Expector generates a number of files that are used in the knowledge editing and
transfer process. The Utilities menu provides access to a file management tool to
assist in the maintenance of this knowledge base. This management tool is discussed

in more detail in Section 9.10.

0.3.4 Editing an existing schema.
An existing schema may be loaded for editing by using the Open choice from the
File menu. Care needs to be exercised whilst editing existing schemas since there is

considerable co-dependency between many of the knowledge base files.

Evidence names may be added or subtracted without difficulty, but there are
restrictions on the manipulation of the hypothesis information. The number of states

of a hypothesis may not be changed. If such a change is necessary, a {resh schema
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should be created. If it is intended that any of the evidence data be used again for the
estimation of state values in a different hypothesis, then that schema should be
created in a different directory. Evidence data sets pertaining to that schema should
also be copied into that directory. This avoids the possibility of confusion between
either differently categorised dataset representing the same basic evidence data, or
between similarly named ancillary files containing different hypothesis - evidence

joint probability data,

Within an existing schema, the hypothesis prior probability distribution may be
changed. However, if prior probabilities are changed once the knowledge editing
phase has started, there will be a miss-match between the values in some of the files
in the knowledge base. If this situation occurs, an additional Refresh Priors button
will appear on the schema editor form. Clicking on this button will initiate a routine
to automatically adjust files, where possible, and to provide a waming of files that

require further editing by the user.

9.4 Data preparation

Once a schema has been defined, evidence layer datasets will need to be prepared for
knowledge extraction and combination. This data preparation takes place using a
GIS and there is a degree of preparation required for both evidence and hypothesis

data.

94.1 Preparation of evidence data layers

A general discussion of the data processing required at this stage is provided in
Section 8.2 and will not be repeated here. It suffices to say that a categorised raster
file must be prepared for each evidence layer and that all files should be co-
registered in a common co-ordinate reference system. Grid datasets should be saved
into the same directory or workspace as the Expector schema file and should be

named to correspond exactly with the evidence layer names in the schema.

9.4.2 Preparation of hypothesis data
A site data file of observations of the hypothesis (such as that discussed in

Section 8.3) should be prepared. This should be produced using a spreadsheet or text
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editor as a comma delimited ASCII file and stored in the same directory or

workspace as the schema file.

9.5 Knowledge extraction

Knowledge extraction is performed using interface routines specific to the host GIS.
For the purposes of this discussion it is assumed that the GIS being used is ArcView,
and that the reader is familiar with ArcView terminology. The Expector interface for
ArcView is accessed through a series of custom buttons on the ArcView desktop
(Figure 9.3). The leftmost two buttons in the interface are those associated with

knowledge extraction.

Figure 9.3 Control buttons for the ArcView interface

9.5.1 Determining evidence probability distributions

As described in Section 8.3.3, the prior probability distribution of the evidence layer
is essentially a histogram of the cell values in the evidence dataset. Clicking on the
V button in the interface starts a routine which directly accesses the database table
associated with an evidence layer and writes the values to an ASCII file. This button
is only active and useable if the active theme in the view is a grid dataset. A default
filename comprising the active grid datasets name with the extension .val is used.
This file 1s referred to as the Values file in subsequent discussion. Each evidence

layer in turn should be made the active theme and this process carried out.

9.5.2 Determining joint probability distributions

In cases where a site sample data file exists, a routine is used which queries grid
datasets at the locations of the sites and generates a cross-tabulation file. This
routine is accessed through the X button in the interface. Again, this button is only
active if the active theme is a grid dataset. The user is asked to select, using a file
dialogue box, the appropriate site file for the layer under consideration. In general,

there will only be one site file for a particular mapping project. A default filename,
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comprising the active grid datasets name with the extension .xtb is used. This file is
referred to as the Cross-tab file in subsequent discussion. Since this process also
requires that each evidence layer in turn should be made the active theme, it can be

carried out in tandem with the creation of the Values file.

At this stage, the user can use ArcView’'s Event Theme creation capabilities to
display the point data over the evidence layers. This will give an appreciation of any
bias which may be present in the sampling and which will have a bearing on the

validity of the figures stored in the Cross-tab file.

9.6 Knowledge editing

Once a schema has been defined and all evidence data prepared, the user can proceed
to build and edit the knowledge base. This involves building Map Purity and Joint
Probability tables for each evidence layer. The Values files and Cross-tab files

which have been created using the ‘host’ GIS may be used to seed this process.

As described in Section 7.5.2, Expector uses the Map Purity values to convert the
relative abundance of the evidence map classes to the prior probability distribution
for the corresponding field classes. It is, therefore, imperative that the Map Purity
table for any evidence layer be completed before its Joint Probability table. Expector
enforces this by denying access to the Joint Probs. button for each layer until the

Map Purity table is complete.

9.6.1 The role of the knowledge base

It 1s implicit in the design of Expector that expert knowledge be used as much as
possible to populate the knowledge base. This is due largely to the relatively small
size of sample data typically available. However, in cases where a particularly rich
dataset exists, a knowledge base derived from it may be used with little alteration.
Such a choice is left to the expert judgement of the individual user. In either case,
the operation of Expector has the effect of using the spatially dense evidence layers
to extend the relationships contained in the knowledge base across the landscape

being surveyed.
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9.6.2 Building the Map Purity table.

The Map Purity table building and editing routine for a particular evidence layer is
initiated by highlighting the name of that evidence layer in the selection box and
clicking on the Map Purity button (Figure 9.2). If no Map Purity file yet exists for
this evidence layer, the system will build one with a default set of purity values.
Choices are offered regarding the way class labels (stored in an associated file) and
prior probabilities are assigned. At this stage, the user is presented with a form

containing three command buttons (Figure 9.4).

Select a method for entering
Class labels and Prior Probailities

Figure 9.4 Choice box

The usual method of entering this information will be from the Values file created
during the data preparation phase. Choosing this option will lead to a file opening
dialogue, within which the Values file appropriate to the evidence layer is offered as
the default choice. If, as is likely, this file has been created by one of the supplied
GIS interfaces, the individual states or classes of the evidence will have numerical
identifiers. Since it is preferable to work with descriptive labels in the knowledge
editing tools, a further dialogue offers the choice of entering text names for each
class. Whether or not this option is exercised, the states continue to be represented

internally by the numeric class labels derived from the GIS.

In the unlikely event of the software being used with a GIS for which Values files
cannot be created, the user can choose to enter probabilities and labels manually.
The software provide a series of prompt boxes which request firstly the number of

classes in the evidence layer and then, for each class, a label and the probability of
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occurrence for that class. Classes will be given consecutive internal numbers,
although the user may enter non-numeric labels. The probabilities, which should be

derived from a cell count or histogram of the evidence layer, should sum to one.

Once the Prior Probability values and labels have been entered, the Map Purity
Editor form will be displayed. If a Map Purity table already exists for the relevant

evidence layer, the software proceeds directly to this point.

9.6.3 The Map Purity Editor

The Map Purity Editor is a graphical form that allows manipulation of the Map
Purity table for the selected evidence layer. To recapitulate, this table holds the
distributions that describe the conditional probability that each map class actually

represents that class in the field. This matter was covered in detail in Section 7.5.1.

The form contains (wo main functional areas. (Figure 9.5) On the right is a gnd
which displays Map Purity values as a matrix whose size is determined by the
number of classes in the input evidence layer. When the form initially appears, it
contains figures which assume that the map is 100 percent accurate in all classes.
This is reflected by the values of 1 on the diagonal and zeroes elsewhere. The

figures in this grid cannot be edited directly.

Each column in the grid represents the probability distribution of a map class over
the real field classes. The left-hand side of the form contains tools to edit individual
columns. The figures in the line above the white portion of the grid (labelled FREQ)
are the relative abundance of the various map classes. Rows and columns are
labelled with alphanumeric labels, if the user has supplied them, or else with class

numbers.

When the form is first displayed, the numerically first class is highlighted to indicate
that it is the class being edited, and its values are displayed in the boxes on the left of
the form. Any other class may be selected for editing by clicking on the relevant
column in the grid. Values in the editable area may be entered either by typing in the

box or by using the spin buttons. If the 'spin buttons’ are used, the size of the spin
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increment may be set to either 0.1, 0.05 or 0.01 by choosing the appropriate option

box.

As changes are made to the class purity values in these editing boxes, the probability
values are changed in the grid and new totals calculated. The conditional probability
distribution down each column must sum to one. Figure 9.5 shows a form for which
the editing is complete. The evidence layer shown here is named exp_cti and has

five states or classes. The first state ('upland’) is selected for editing.

Once the user is happy with the numbers in the matrix, a hard copy of the form may
be generated as a screen dump using the Print button. Alternatively, if the figures
are required in text form for entry into a report, they may be saved using the Print to

File option from the File Menu.

When editing or viewing the probabilities for a particular evidence layer is complete,
clicking on the Done button will offer an option to save the file and return the user to
the main screen. The file may also be saved using options from the File menu. A
default file name, based on the evidence layer name and the extension .pee, is
assigned. This name should be used to ensure correct operation of the software.
After saving the file, the user is returned to the main Schema Editor form.

(Figure 9.2).

9.6.4 Building the Joint Probability tables.
Once the Map Punty table for an evidence layer has been created, the user can create
a Joint Probability table. This process uses a similar form to the Map Purity Editor

and is accessed using the Joint Probs. button on the main form.

The first time a Joint Probability table for an evidence layer is accessed, the system
will build a new one. There is a choice of methods by which the initial values in that
table are assigned. A dialogue box (Figure 9.6) appears offering the option of either

entering values from a file or allowing the system to assign some estimated values.
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Select a method for entering
seed joint probabilities

Figure 9.6 Dialogue box for seed joint probabilities

In most cases, the user will choose to enter values from a file. The file used will be
the Cross-tab file created by the GIS interface, as described in Section 9.4. The file
is selected using a typical Windows file dialogue box. If the user chooses to estimate
values, the Joint Probability table will be populated by values calculated from the
prior probabilities of the field classes and of the hypothesis states. Whichever
method is chosen, the values in the table should be regarded as seed values only.

They will require editing.

If values from a Cross-tab file are used, two points need to be recognised. Firstly,
these initial values refer to the co-occurrence of evidence map classes and hypothesis
states. Secondly, these figures have been derived from a sample dataset which may
be biased. The Joint Probability table is intended to be a representation of the users
expert knowledge about the co-occurrence of field classes in the evidence with the
hypothesis states throughout the landscape, not just at the sample sites. For that
reason, the initial values should be regarded as being, at best, a guide to relative

magnitudes.

Using estimated values derived from the prior probabilities of the evidence classes
and the hypothesis states in an analysis would render that particular evidence layer
powerless. This is due to the fact that the effect of any one grid cell in an evidence
layer on changes in the probability distribution of the hypothesis states depends on
the ratio of its class conditional probability with the hypothesis prior probability.

(c.f. Equation 8.20). If the estimated values are used this ratio will become unity,
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causing the evidence layer to behave as if no data were present. However, in a
reconnaissance situation and in the total absence of any site data, the estimated

values at least provide some starting figures.

9.6.5 Editing the Joint Probability table

Once the seed joint probability information has been entered or if a joint probability
file already exists, the user is presented with the Joint Probability Editor form (Figure
9.7). This form is generally similar to the Map Purity Editor. It presents the joint
probability table in the form of a grid with row and column sums. As with the Map
Purity form, the grid is not directly editable and an interface is provided to it through
a series of edit boxes. Each column in the grid represents the probability distribution
of one field class of the evidence layer across the several states of the hypothesis and
should sum to the prior probability of that field class. The joint probabilities are

converted to percentage values for display in the edit boxes.

When the form is first displayed, the class with the lowest category value is
highlighted as being editable. To select any other class, the cursor is moved to the
relevant column in the grid, and the mouse is clicked. Values in the edit boxes may
be altered either by typing numbers in directly or by using the spin buttons. If using
the spin buttons, the increment may be set to either 10 percent or 1 percent by
choosing the appropriate option box. As changes are made to the percentage values
in these editing boxes, the probability values are changed in the grid and new totals

calculated. Column totals should all be 100 percent when editing is complete.

It is a requirement of the Bayesian network theory which underlies this software that
the rows in this table should sum to the prior probability distribution of the
hypothesis attribute and the columns should sum to the distribution of the evidence
variable. The degree by which the values differ from the simple product of these
distributions is a measure of the power of the individual evidence layer. The

determination of the prior distribution of the hypothesis is therefore critical.
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If an evidence layer has only a few classes for which a strong defining relationship
with the hypothesis attribute exists, there may be a further class which contains all
other possible values of the evidence layer. An example of this is an evidence layer
such as slope for which a relationship with the hypothesis is constant above a
particular value. For cases such as these a Default fill button is provided. Clicking
on this button performs the arithmetic of filling the selected column in the grid with

values which cause the sum along rows to tally with the hypothesis prior distribution.

Once the user is satisfied that the table is completed, a screen dump of the values
selected may be created using the Print button. Alternatively, if the figures are
required in text form for entry into a report, they may be saved using the Print to

File option from the File Menu.

In order to leave the Joint Probability form, the user should click on the Done button.
A file saving dialogue is initiated, and a default file name based on the evidence
layer name, with the extension .phe is assigned. The file may also be saved using the
pull down File menu. After saving the file, the user is returned to the main schema

editor form.

9.7 Building the probabilities for each evidence layer

Once the Map Purity and Joint Probabilities files for an evidence layer are created,
the user must create a file to pass these probabilities back to the GIS. This file
contains the posterior probability distributions for the hypothesis class across the
mapped evidence classes. There is one such file per evidence layer. The
mathematics behind this process are explained in Section 7.6 and illustrated by

Figure 7.5.

Generation of the file is initiated simply by clicking on the Build Layer
Probabilities button on the main form (Figure 9.2). The button will not be active
unless both Map Purity and Joint Probability files exist for the evidence layer
highlighted in the choice box. The user is responsible for ensuring currency of this
file after any editing changes to either of the input files. The layer probability file is
named by default using the evidence layer name and an extension of .phq. It is stored

in the same directory or workspace as the schema file.
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9.8 Data combination

Once all knowledge editing has been carried out and all Layer Probability files
created, the task of data combination can be performed. This process executes the
algorithm described in Section 8.5.2. and is carried out in the GIS. Using the
ArcView interface, access to this routine is provided by clicking the fourth button
from the left in Figure 9.3. For this button to be active, it is necessary that one of the
evidence layers is an active theme in the view. A file dialogue box appears from
which the user can choose the schema file that will drive the data combination

Process.

The process proceeds in the background following the steps of table linking,
multiplication and normalisation described in Section 8.5.2. On completion a
number of new grid datasets will have been created, one for each state of the
hypothesis. These are floating point datasets representing probability surfaces whose
values lie between zero and one. For each of them, a new view will be automatically
created in the ArcView project. In those views the appropriate probability surface is
displayed. The values are scaled into the range of zero to one hundred and a suitable

colour table attached.

9.9 Additional features of the GIS interface
Expector’s GIS interfaces provide additional capability for displaying probability
grids and the ability to launch the Expector standalone routines from the ArcView

desktop. Figure 9.8 again shows the buttons used.

Figure 9.8
Custom buttons in the Expector interface to ArcView

The V and X buttons are used to initiate the creation of Values files and Cross tab
Files respectively. The button with the Ex symbol is used to launch the Expector
software. The three rightmost buttons on the bar are used to access the display

utilities.
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The Pmax button is used to create a map of the most probable state of the hypothesis
attribute using the algorithm described in Section 8.6.2. Clicking this button presents
the user with a file dialogue box from which to chose the schema file pertaining to
the required hypothesis attribute. On completion of the calculation the resulting grid
dataset is displayed as a theme in the active view. The theme is given the name
INDEX and is displayed by default with a colour table having six entries. If there are
more than six states, it is the responsibility of the user to amend the colour table
accordingly. It is also the responsibility of the user to save the dataset, if so desired,

with a suitable filename.

The % button allows the display of any probability grids with a range of zero to one.
These may be the result of previous runs of the software which the user wishes to
display as a comparison with those generated by the most recent run. The grids are

scaled into the range zero to one hundred and the appropriate colour table is attached.

The rightmost button, with the four-square’ icon, enables simultaneous display, in
several views, of an individual evidence layer and its associated layer probabilities,
When clicked it activates a file dialogue from which the user should chose the layer
probability file (extension .phq) for the evidence layer of interest. New views are
then automatically created in the ArcView project, one for each state in the

hypothesis attribute and one for the raw evidence layer states.

In each view that relates to a hypothesis state, a surface is displayed which shows the
spatial distribution of the probability of that state, based solely on that one evidence
layer. The view containing the evidence layer values is provided for reference. This
display utility is particularly useful when examining unexpected results after data

combination.

9.10 File utilities

Expector produces a number of knowledge base files associated with each evidence
layer. It 1s inevitable that mistakes will be made during the course of an analysis
session or that changes of opinions will occur. This results in the need to remove

some of the knowledge base files,



125

To assist with maintenance of Map Purity and Joint Probabilities files, Expector
provides a file utility tool. This is accessed by selecting Manage Files under the
Utilities menu in the Expector schema builder and is only available if a schema is

loaded. This gives access to a graphical form such as that shown in Figure 9.9.

Remove ALL Files

Remove Jaint Probability File-

Remove Layer Probability File

Figure 9.9 The Expector file utilities tool

The selection box contains a list of the evidence layers in the loaded schema. Once
an evidence layer is selected, clicking on any of the three buttons will perform the
required deletions. Due to the sequential nature of operation in Expector (resulting
from the application of Map Purity values referred to in Section 9.6) if a Map Purity
file 1s deleted then its associated Label file and the Joint Probability file for that
evidence layer must also be deleted. For that reason, there is no option available to

remove only the Map Purity file.

9.11 Summary

The Expector software, comprising a standalone program with interfaces to GIS,
provides an integrated suite of tools to implement the quantitative natural resource
assessment method described in preceding chapters. The software provides user
friendly forms-type tools for creating and editing a knowledge base. Tools are
provided for performing a combination of the knowledge associated with individual
data layers. In addition, GIS specific display utilities for examining and presenting

the resulting map data layers are available, as are file management routines.
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Although knowledge should be provided by an expert user, facilities are provided to
seed the knowledge base with values derived from site sample data. If that site

sample data is relatively rich, then Expector allows its use with little modification.

The next two chapters describe some of the applications to which Expector has been

put during its development.
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Chapter 10

DEVELOPMENTAL APPLICATIONS OF THE
EXPECTOR METHOD

During the development of Expector, a number of test data sets were processed using
the various algorithms and their encoded routines. This was both a test of the various
interfaces and to ensure that the method was useable by land resource assessment
professionals. Expector is a knowledge-based method, and the accuracy of any result
will depend on the quality of the knowledge that forms part of the process. This
testing was not designed to specifically test the accuracy of maps produced using the
Expector method. However, some testing of output was performed to ensure that the
results were at least consonant with the thinking of those professionals who provided

the knowledge base.

10.1 Choice of test data sites

The choice of test data sites was governed largely by the availability of suitable data
sets and knowledge bases. It was envisaged that the principal use of Expector would
be in the mapping of individual soil properties rather than entities such as soil types.
A similar approach was taken by Moore et al. (1993), who used linear models to
relate terrain attributes to soil properties. Their trial site was at Sterling, Colorado, in
the United States of America. It was decided to use, with permission, their data as a
test set during development. Subsequently, a dataset for the East Yornaning
catchment in Western Australia was acquired and used. Both studies are reported

here.

10.2 Sterling, Colorado - inputs

10.2.1 Location and objectives

The Sterling site is located in north-eastern Colorado and is a long term study site for
crop management in dryland agriculture (Moore et al.,, 1993). Water is a major
determinant of growth and production; a characteristic which it shares with the
majority of the Western Australian wheatbelt. Data from the site have been used in
an example of the linear modelling of relationships between terrain attributes and soil

physical properties (Moore et al.,, 1993). The Sterling data was also used in an
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application of the PROSPECTOR method to the mapping of soil physical attributes
(Cook et al., 1996).

10.2.2 Evidence datasets

The site is relatively small, covering only 5.4 hectares sloping from south to north
with an overall elevation change of about 6 metres. The original survey team had
collected a rich data set for this small area comprising 231 sites on a regular 15.24m
(50 ft) grid At those locations, elevation, A horizon thickness, extractable
Phosphorous, organic matter content (OM), sand, silt, and clay content were
measured. Compound topographic index (Moore et al., 1991) had been calculated
from the elevations. The data were made available as a spreadsheet listing of sample

site co-ordinates and associated attributes.

An elevation surface was reconstructed from the point data using spline
interpolation. Similarly, a surface was generated from the wetness index values of
the original workers. Slope and aspect surfaces were calculated from the elevation
surface using the appropriate functions in ARC/INFO. The measured OM values

were converted to a surface, again using a spline interpolator.

Analysis of the original data indicated that there was a difference between soils
having OM concentrations greater and less than 1.6 percent. A schema was
constructed with a two class hypothesis attribute being the presence or absence of
OM in concentrations of > 1.6 percent. Evidence variables selected were wetness

index, slope angle and aspect.

Slope was classified into nine classes at 0.5 percent intervals from 0 to 4.5 percent;
aspect was classified into the eight cardinal directions; and wetness index into seven
equal classes between its maximum and minimum values. The schema is shown

graphically in Figure 10.1.
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10.2.3 Knowledge base

A subset of 75 points was randomly extracted from the point data set. The prior
probabilities of the hypothesis attribute (OM> 1.6 percent and its converse) were
determined by reference to the measured values of OM at these points. These
probabilities were 0.69 for Class 1 (OM<1.6 percent) and 0.31 for Class 2 (OM>1.6

percent).

The 75 points were classified according to their measured OM content and used to
determine relationships between the OM classes and classes of the evidence
variables. These relationships, expressed as Cross-tab files (c.f. Section 9.52), were
used to seed the joint probability tables. In the absence of any local expert
knowledge about the site, the values were only edited to ensure consistency with the
prior probabilities - essentially a scaling operation to compensate for over and under-

representation in the sampling.

Since this was essentially a proof of concept exercise, map purities were assumed to

be 100 percent for all maps.

10.3 Sterling Colorado results

The Expector software and its ArcView interface were used to combine the
individual evidence layer probability estimates into two surfaces representing the
probability of occurrence of each of the OM classes. From these, 2 map of most
probable OM class was developed. Figure 10.2 shows the two OM class probability

maps draped over the digital elevation model.

The 153 sites in the original point data set which had not been used in the knowledge
base were then classified into the OM classes and comparisons made at those points
with the most probable OM class, as predicted using Expector. A comparison of

those values is shown in Table 10.1.

The figures in Table 10.1 show that out of the 153 sites, organic matter class was
correctly predicted at 127 sites, an overall accuracy of 83 percent. For individual
classes 94 percent of Class 1 was correctly predicted whilst only 52 percent of

Class 2 were correct.
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Field Number of | Correctly Percentage
measurement sites allocated correct
Class] 111 105 94.5
Class2 42 22 52.3
Overall 153 127 83.0
Table 10.1 Observed and predicted OM classes at Sterling site.

Since the results for Class 2 (>1.6 percent OM) are worse than those for Class 1, that
class was investigated. The probability of membership of that class at each of the
test sample points was extracted from the Expector output map. Figure 10.3 shows a
plot of those probabilities against the actual organic matter content. From this it can
be seen that there is a general positive trend to the data. That is, the higher the
probability of finding organic matter greater than 1.6 percent, the higher the actual
OM value found in the field. There is, however, considerable overlap across the

critical threshold of 1.6 percent OM.

The question of differences in accuracy between classes is further discussed in

Section 10.7.
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Figure 10.3  Plot of probability of membership of class OM>1.6

versus OM content.
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10.4 East Yornaning, Western Australia

10.4.1 Site location and objective

The East Yornaning catchment is located in the south-west of Western Australia
(Figure 10.4). The catchment has an area of approximately 200km® and is
representative of the dissected lateritic landscape which occurs extensively within the

region (Mulcahy, 1973).

A summary of representative soils of the regiorr is given by McArthur (1991). Soil
materials include highly weathered residual material, ferricrete, re-worked sediments,
and freshly weathered regolith from granitic or doleritic outcrop. Soils over the area
have been mapped (McArthur et al., 1977) predominantly as kurosols (Isbell, 1996)
with tenosols on upper slopes and sodosols in the valley floors. The catchment has
also been used to test the ability of airborne gamma radiometry to map soil types

(Cook et al., 1996).

The objective of the Yornaning exercise was to test the knowledge based system by
producing a map of selected soil attributes. Readily available data layers, mainly
terrain attributes supported by the airborne gamma radiometry, were chosen as
inputs. The attributes chosen for consideration were soil surface texture, depth to
impermeable horizon, and gravel content in the top S0cm. The production of a map
of soil surface texture, expressed as percentage clay content, is reported here,
Available datasets for the catchment include a digital elevation model, air-photo

interpretation of rock outcrops, and 1:250,000 regional geological mapping.

10.4.2 Terrain attributes

A digital elevation model of the catchment with a horizontal resolution of 25m was
available. It had been generated from 1:25,000 colour photography using a
stereoplotter. A number of derived attributes were generated from this data set using
the standard tools in the ARC/INFO GRID module and some additional processing.

These included catchment position, surface curvature, slope and position in catena.
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Figure 10.4  Location of East Yornaning, Western Australia
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The catchment position dataset was created by dividing the elevation model surface
into a series of sub-catchments using the FLOWDIECTION and BASIN routines in
ARC/INFO. The surface hydrological network, obtained as a digital product from
Agriculture WA, was examined and manually coded with stream order according to
the Strahler (1952) classification. Each sub-catchment was then assigned a
‘catchment order’ equivalent to the order of stream running through it. In the East
Yornaning catchment the main creek is a fifth order stream. At the outflow of the

catchment this creek joins the Hotham River, a sixth order stream.

The surface curvature data set was generated initially using the CURVATURE
command in ARC/INFO GRID. The results of this process are two data layers; one
representing plan curvature, the other profile curvature. From these, a curvature
class layer was synthesised. Classes were generated by taking all four possible

combinations of positive and negative plan and profile curvatures.

Similarly, slope was calculated using the standard ARC/INFO algorithm and
classified into nine classes. Classes represented an increment of one percent of
slope, up to eight percent, with the last class containing all terrain with a slope in

excess of eight percent.

Position in catena, termed for the purpose of this analysis as ‘stream/ridge ratio’, was
calculated from the topographic surface and from line coverages describing the
positions of the stream and ridge lines. Positional information about the stream lines
was obtained from the surface hydrology coverage described above. Ridge lines
were digitised from stereo air photos and checked by on-screen comparison with

contours derived from the elevation model.

The PATHDISTANCE function in ARC/INFO was then used to create raster
representations of distance to nearest relevant stream and nearest ridge. When
distances to streams were assigned, the ridges were declared as barriers. That is,
cells were assigned a distance to the stream hydrologically closest to them rather,
than closest in simple surface distance terms. Similarly, the streams were used as
barriers in the process that assigned distance to ridge. Once these two datasets had

been created, a third, the ratio between them, was calculated. This was then divided
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into three classes representing areas near ridges, areas near streams and mid-slope

areas.

10.4.3 Other datasets
Other data set used in this work were geology, classified airborne gamma-

radiometrics and distance from rock outcrops.

The geological data set was digitised from the compilation sheets for 1:250,000
Geological Survey of Western Australia map of Sheet SIS0-3 Corrigin (Chin, 1986)
There are only seven lithological types in the catchment, although considerably more

occur in the area covered by the 1:250,000 map.

The classified airborne gamma-radiometric evidence layer was taken from a dataset
flown by World Geoscience Corporation which had been used to assess the utility of
such data for soil mapping (Cook et al., 1996). A multi-spectral classification of the
data into landscape types resulted in an evidence layer with four classes. The classes

represented in this data are granitic, sandplain, colluvial, and alluvial.

10.4.4 Development of schema for surface texture (clay content)

In consultation with a soil surveyor, an initial schema was developed based on ideas
borrowed from the PROSPECTOR method. This called for a number of intermediate
data layers such as ’favourabie landscape position’. Such concepts are difficult to
measure objectively. Since one of the overall aims of the developmént of the
Expector method was that it should be simple for a field surveyor to use, a simpler

construct was called for.

Discussions with soil surveyors suggested that ‘soft’ combined landscape parameters
such as ‘favourable landscape position' have a relationship to soil properties which
contains interactions between various components of that parameter. In a
probabilistic network, these interactions find expression in the process of data
combinatton. It was, therefore, decided to create a schema that described a direct
relationship between each of the seven evidence layers and the hypothesis. The

schema is shown graphically in Figure 10.5.
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The knowledge base for an Expector schema has four components. In this case, they
are the prior probabilities of the individual clay classes and the various evidence
classes, the map purity values, and the joint probabilities between evidence layer
classes and individual clay classes. The prior probabilities were supplied from the
available data, whilst the map purity and joint probability values were derived by

expert consultation.

10.4.5 Assigning prior probabilities

In consultation with soil surveyors, it was initially decided to use four classes of
surface texture as shown in the left-hand section of Table 10.2. The prior
probabilities of occurrence of these were taken from an analysis of 189 site
observations. On inspection of this dataset, it was found that only four of the sites
fell into the range 20 to 100 percent clay. Since, in practical agronomic terms, the
two lower clay content classes are the most important this last class was
amalgamated with the next lowest one. Table 10.2 shows the classes and prior

probabilities used in the analysis.

Initial classes Final classes
Range Prior Range Prior
(percent probability (percent probability
clay) clay)
Class 1 0-5 0.14 0-5 0.14
Class 2 5-10 0.51 5-10 0.51
Class 3 10- 20 0.33 10- 100 0.35
Class4 | 20-100 0.02

Table 10.2  Classes and Prior Probabilities for East Yornaining

Prior probabilities for individual data layer classes were determined using the

methods previously outlined from the data layers themselves.

10.4.6 Assigning map purities

The logic involved in setting map purities requires a consideration of both the
provenance of the data and of its nature. The following briefly describes the process,
for each of the data layers. The individual map purity values are listed in data panels

10.1 to 10.7 located in Appendix A.
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The catchment order dataset was regarded as being reasonably accurate, although
some ‘slippage’ across class boundaries was expected due to positional errors.

Misclassification errors of more than one class were not expected.

Similarly, the curvature data layer, being derived from the same elevation model,
was regarded as reasonably accurate. However, since curvature calculations take the
second derivative of the surface, they are sensitive to slight errors in the elevation
model. The curvature layer was, therefore, assessed as having an individual class

purity of 70 percent, with the error evenly distributed across the other classes.

The geology data layer, being taken from a map published at a scale of 1:250,000,
will have some inherent positional problems which need to be considered at the same
time as likely misclassifications. The explanatory notes accompanying the paper

copy of the map (Chin, 1986) proved invaluable here.

The granitic Age and Agv map units occur as a complex whilst Agm is lithologicaly
similar. Therefore a reasonable degree of confusion is to be expected amongst them.
The individual class purities for these three units were therefor set at 70 percent with

the relative misclassification reflecting the degree of complexing.

The two alluvial units (Cza,Qa) are described by Chin as being uncertain in places
and this, together with the potential positional uncertainty has resulted in each unit
being assigned a purity of only 65 percent. Similarly, the possibility for confusion
between Qa and the recent colluvium (Qc¢) as well as possibilities for confusion
between Qc and the lateritic unit Czl are reflected in the purities assigned to those
units. Due to its occurrence over areas of relict granite, the lateritic umit 1s allowed a

degree of confusion with the granitic units

No formal assessment of the classification accuracy of the radiometric data was
available, so classes were assigned an accuracy of 80 percent on the basis of expert

opinion. Misclassification error was uniformly distributed across all classes.
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The rock data layer was assumed for practical purposes to be accurate. The actual
positions of the rock outcrops were well mapped from ortho-photos and the buffering

error is expected to be negligible.

Being based on the elevation model, the slope map was regarded as being of high
accuracy. The values are, in fact, local averages based on a three by three cell
neighbourhood rather than point calculation.  Although such datasets inevitably
contain an error component (Dunn and Hickey, 1998), it was not quantified for these
data. Each class was, therefore, assumed to be 90 percent pure with the error
distributed symmetrically. The exceptions to this are at the ends of the distribution

where error is all assigned to the adjacent class.

Using similar logic a value of 90 percent was assigned to the stream/ridge distance
ratio map. This relatively high accuracy was based on its origins in the elevation
model and the extreme un-likelihood, in a three class system, of mis-classifying a

grid cell actually located near a ridge as being near a stream (or vice versa).

10.4.7 Assigning joint probabilities

Joint probability value tables were ‘seeded’ from the same dataset of site sample
points from which the prior probabilities were set. Due to evident bias in the
sampling, the numbers presented by the 'seeding' required considerable modification.
They did, however, provide an indication of proportions within classes that had been
over-sampled. Data panels 10.1 to 10.7, located in Appendix A, show the joint

probabilities used in this analysis.

As an indication of the process involved in the setting of these joint probabilities, a
potential logical conflict between probabilities is worthy of comment. The soil
surveyor consulted as an expert indicted that the sandy textured class, with clay
content less than 5 percent, would never occur on soils developed by weathering
processes over the granitic geology units. At the same time he suggested that, on and
near outcropping rock, the sandy texture would predominate. On the strength of the
first statement alone, the joint probability between the granitic units and the low clay
class would have been set at O percent. This would have prevented any other data

layer from supporting such a class at those locations. In order to accommodate the
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knowledge contained within the second statement, this joint probability was,
therefore, modified to reflect the proportion of the granitic area in which rock
outcrop occurs. These proportions were derived by cross tabulation in GIS of the

geology and rock data layers.

10.4.8 Test data sets

A test data set should be totally independent of input data. However, in this case the
site data set had only been used as a guide to setting the joint probabilities.
Extensive modification had been made to these values in the light of expert input.
This was considered to justify the use of the same sample points to test the accuracy
of the output. The 189 points had been classified into the appropriate clay classes in
order to set prior probabilities and were directly useable for comparison with the

'most probable class map’ derived from the analysis.

An additional potential test data set was available in the form of a soil map for the
project area. This had been compiled by the local farmers, led by an Agriculture WA
project officer. The individual classes in this map were then ranked into the
appropriate clay classes by the same expert soil surveyor who provide input to the
knowledge base. Unfortunately, a number of classes in this soil map were so broad

that they spanned two of the classes in the Expector analysis.

10.4.9 Qutput generation

On completion of the knowledge entry phase, the data combination algorithms in
ArcView version of Expector were run. This resulted in the production of three
maps, each one showing the probability of occurrence of one of the classes of surface
texture. These maps are shown in Figure 10.6. From these, a fourth map showing
the most probable class was generated using the Pmax function from the Arc View
interface to Expector. The most probable class map is shown in Figure 10.7. The
most probable class map was used as a basis for testing against both of the test

datasets described in Section 10.2.8.
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10.5 East Yornaning output maps - comparison to sample sites

10.5.1 Direct comparison at sample points

The class labels in the most probable class map for Yornaning were compared to the
actual measured clay content at the 189 sample points. This comparison was
performed using the same routines in the ArcView interface to Expector as had been
used for the generation of Cross-tab tables in the knowledge building stage. Table
10.3 is a confusion matrix for this comparison. Table 10.4 shows the number and
percentage of sites in each class, as measured in the field which are correctly

allocated by the most probable class map.

COL Expector
Field 1 2 3 Total
1 4 21 1 26
2 8 75 12 05
3 12 35 21 68
Total 24 131 33 189

Table 10.3  Confusion matrix for East Yornaning clay classes

Field Number of | Correctly Percentage
measurement sites allocated correct
Classl 26 4 15.4
Class2 95 75 78.9
Class3 68 20 29.4
Overall 189 99 52.4

Table 10.4  Allocation table for East Yornaning clay classes

Table 10.4 shows that, overall, just over 52 percent of the cells were correctly
allocated. The figure is considerably higher for Class 2, the most numerous class.
Since the field measurements were taken at points whose location was surveyed in
from aerial photographs, there is the possibility that some mis-location may have
taken place. This may mean that the misallocation error is due to spatial inaccuracy
rather than the inadequacy of the knowledge base. A neighbourhood approach to

testing is, therefore, worth investigation.
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10.5.2 Comparison in a local neighbourhood

An ArcView routine was written to extract the class number of all cells in a three cell
by three cell neighbourhood, centred on that cell in which each site measurement is
supposed to lie. Table 10.5 shows the results of that data extraction. From this it can
be seen that for more than 62 percent of the sites there was at least one correctly
allocated cell within the nine cell neighbourhood, that is within 50m. Slightly more

than 53 percent of sites had a majority of cells within the neighbourhood correctly

allocated.
Field Cells in nine cell neighbourhood which were
measurement correctly allocated
Class | Total One or more Two or more Five or more
sites Sites % Sites % Sites %
Classl [ 26 5 19.2 3 19.2 4 15.4
Class2 | 95 84 88.4 82 86.3 77 81.0
Class3 | 68 31 45.6 27 39.7 20 294
overall | 189 118 62.4 111 58.7 101 53.4
Table 10.5  Results of neighbourhood comparisons

10.5.3 Second most probable class

The most probable class map is essentially a device for presentation of the several (in
this case three) individual probability maps. The individual probability maps contain
information about the strength with which each cell is assigned to a particular class.
The relative rankings of these give some indication of the ability of the knowledge
base to partition the area between the classes. In some cases the second most
probable class may not rank far behind the most probable. In order to determine the

degree to which cells were misclassified by the method, an examination was made of

the second most probable class.

The three individual class probability grids were exported to ARC/INFO and an Arc
Macro Language (AML) routine written to generate a grid whose values
corresponded to the class having the *second chance’ probability. This grid was then

passed back to ArcView and values extracted from it indicating the second most
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probable class at each of the site sample locations. The results are summarised in

Table 10.6.

This shows that, overall, only about 30 percent of the sites which were incorrectly
allocated by the most probable class map were correctly allocated by the 'second
chance’ map. It is significant that most of these sites are in Class 2. Combining
these sites with those reported as correctly allocated in Table 10.3 gives an indication |
of those sites which were either correctly allocated or for which the correct class had

the second highest probability. These results are summarised in Table 10.7.

Field Sites initially Correctly allocated
measurement mis-aliocated Sites %
1 22 4 18.2
2 20 19 95.0
3 35 0 0.0
Total 77 23 29.8

Table 10.6  Sites correctly allocated by second chance’ map

Correct class probability
ranked first or second
Field Number | No. of sites | Percentage
measurement | of sites correct correct
Classi 26 3 30.3
Class2 95 94 98.9
Class3 68 20 204
overall 189 153 64.5

Table 10.7  Sites correctly allocated on first and second chance maps

Table 10.7 indicates that 64.5 percent of sites were either correctly allocated or had

the correct class ranked second. However, since we are dealing with only a three

class system this must be treated with some caution. There is a considerable
disparity between the allocation accuracy for Class 2 and that for the other two

classes. This will be further discussed in Section 10.7.
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10.5.4 Overall accuracy of Yornaning map

To summarise, comparison of the Yornaning output maps with the site sample data
suggests that soil surface texture has been correctly predicted at 52.4 percent of the
sample sites. At 64.5 percent of the sites the correct surface texture class has been
either correctly predicted or is the second most probable class. A relaxation to
include the presence of at least one correctly classified neighbouring grid cell give a
most probable class prediction accuracy of 63.5 percent. The innate variability of the
map can be measured, using the neighbourhood analysis capabilities of ArcView, as
the proportion of cells which have two or more classes in a nine cell neighbourhood.
For the ‘most probable class’ map, 37 percent of all cells exhibit that degree of

variability, indicating that the map units are far from homogenous.

Whilst an overall accuracy of 63.5 percent does not seem spectacular, it must be
taken in the context of the accuracy of soil maps in general. Grealish et al. (1994)
tested the ability of soil maps to represent various soil properties and, indeed, to
represent soil classes. The results of that study showed that, whilst soil maps can
predict soil order (Northcote, 1971) at a level of accuracy of around 65 percent, their
ability to predict lower levels of classification in the taxonomy of soils rapidly
decreases. Table 10.8 summarises the ability of the soil maps used in that study to

represent different levels of classification.

Classification level Example Accuracy of
prediction
1 Order D (Duplex soils) 67.5%
2 Sub-division Dr (Red clayey sub-soils) 52.5%
3 Section Drl (Crusting A horizon) 29.0%
4 Class Drl.1 ( No A2 horizon) 1%
5 Primary profile form | Drl.11 (Acid reaction trend) 1%

Table 10.8  Accuracy of prediction of soil maps
{ After Grealish et al. (1994)).

Grealish et al. (1994) also tested the ability of soil maps to represent individual soil
properties. Those tests were carried out using the method of relative variance
(Becket and Webster, 1971). On this basis, which calculates a score on a scale of 0

to [ (with 1 indicating perfect representation) soil properties fell within the range of
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0.1 to 0.32. That figure suggests that the best representation of soil properties by a

traditional soil map would be an accuracy of a little over 30 percent.

10.6 East Yornaning output maps - comparison with soil map

10.6.1 Testing the soil map

Given the reported low accuracy of soil mapping, the farm soil map was tested
against the reference site dataset in the same way as the Expector output map.
Again, a nine-cell neighbourhood around each sample site was analysed to reduce the
effect of short-range variation. Table 10.9 shows, for each of the sites, the class of
the farm soil map occurring at that location. A very large proportion of sites (152 out
of 189} fall either in unmapped areas or in the area where no distinction can be made
in the farm map between Classes 2 and 3. As described above, this is due to large

range of clay values which occurs in the soil types mapped as being present in these

grid cells.
Class on farm soil map
Field Not Class 1 | Class 2 | Class 3 | Mixed Total
measurement | mapped class

Class 1 1 0 4 0 21 26
Class 2 2 2 15 4 72 95
Class 3 2 3 4 5 54 67

Total 5 5 23 9 147 189
Table 10.9 Comparison between site samples and farm soil map

(all sites).

Table 10.10 examines in more detail the 37 sites where a useful comparison may be
made. Overall, some 58 percent of sites have a majority of cells in the
neighbourhood correctly allocated, whilst 54 percent show a correct allocation at the
point. These figures are generally similar to those for the Expector cutput map. It is,

therefore, of interest to compare the two maps.
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Field Correct allocation within nine cell
measurement neighbourhood
Class | Total At the centre Majority of neighbourhood
sites Sites % Sites %

Class 1 4 0 0.0 0 0.0
Class 2 21 15 714 15 75.0
Class 3 12 5 42.6 6 50.0

Total 37 20 54.1 21 58.3

Table 10.10  Comparison between site samples and farm soil map
for matched sites

10.6.2 Comparison of Expector map with East Yornaning soil map

The digital copy of the farmers soil map and the most probable class map were
compared using the ArcView Tabulate Areas’ function. This compares the two maps
on a cell by cell basis and produces tabular output that summarises the area
distribution of the categories of one map across the categories of the other as a cross-

correlation matrix.

Table 10.11 shows the cross correlation matrix between the farmers soil map and the
most probable class map. Of particular interest here are the large number of cells
(142677 out of 188765) which are either not mapped in the farm soil map or cannot

be adequately assigned to one of the Expector classes.

Farm map Expector class
Class Class 1 Class 2 Class 3 Sum
Not mapped 987 2676 1122 4785
Class 1 2228 6933 4139 13300
Class 2 768 16023 3180 19971
Class 3 1423 8000 3394 12817
Class 2 or 3 13188 95481 29223 137892
Total cells 188765

Table 10.11  Comparison of Expector map and farm soil map
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In general there seems to be little agreement between the two maps. However if we
consider only those cells for which an unambiguous statement is made by both maps

we have the situation as presented in Table 10.12.

Farm map Total Expector class Cells in agreement
Class cells Class 1 Class 2 Class 3 Cells %o
Class 1 13300 2228 6933 4139 2228 16.8%
Class 2 19971 768 16023 3180 16023 80.2%
Class 3 12817 1423 8000 3394 3394 26.5%
Overall 46088 4419 30956 10713 21645 47.0%

Table 10.12  Comparison of Expector map and farm soil map for matching classes

Table 10.11 suggests that the agreement between the two maps is best in Class 2 and

successively worse in Classes 3 and 1, respectively.

10.7 Summary

The results of two studies carried out during the development of the Expector method
have been presented, together with an inspection of their accuracies. The more
exhaustive of the two, at Yomnaning, has also investigated the accuracy of a
traditional soil map used as part of the validation process. This was performed by
comparing the traditional map to a site sample database as well as to the Expector

output.

In the Yornaning example, Expector has produced a clay class map which is of
comparable accuracy to one developed by traditional mapping. It did so using much
the same evidence and thought processes as were used in the development of the
traditional map, but applied those in a quantitative and formalised method. By virtue
of its quantitative nature, such an analysis is not only repeatable but also open to
improvement by the inclusion of additional data. In addition, there is scope for
refinement of the knowledge base in the light of the results of the first analysis. This
topic will be discussed further in Chapter 12. The next chapter details some other
applications of the Expector method which formed part of a demonstration of that

method to land resource mapping professionals.
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Chapter 11

FURTHER EXAMPLES OF THE EXPECTOR METHOD

As part of a programme to acquaint the natural resource mapping community of
Australia with Expector, a number of demonstration projects were undertaken.
These included the mapping of ’'modal soil types’ near Brookton in Western
Australia, surface clay content near Bundaberg in Queensland, and land capability
classes at Forth in Northern Tasmania. In all cases, the knowledge base was
provided by experts from the soil mapping agency of the state involved. These
experts have considerable experience of the areas being mapped and of the attributes
represented by that mapping. A report of those three case studies forms the first part
of this chapter. The chapter concludes with an example of the use of Expector to
predict agricultural yield potential. This is of benefit in the context of precision

agriculture when precise targeting of variable fertiliser rates is called for.

The first three of these case studies were carried out solely as demonstration projects,
often with minimal resources and were not intended to prove the accuracy of
Expector. Indeed, in none of the cases did available resources permit a formal
evaluation to be carried out. The intention was to demonstrate the method as a
means of ordering, quantifying and formalising the land mapping process. The
agricultural yield prediction example includes a more formal assessment of its

accuracy.

11.1 Brookton - Western Australia

The objective of this demonstration project was to show how attributes that can be
readily mapped by aerial photo interpretation can be combined with products from a
digital terrain model to predict the distribution of soils over an unmapped area. The
expert knowledge base was provided by field officers of Agriculture WA, the agency
responsible for soil mapping in Western Australia. The units to be mapped were soil
units similar to those in a traditional soil-landscape survey. This was a departure
from the intended principle use of the Expector method as a tool for mapping soil

attributes. This departure was necessitated by the fact that the conceptual landscape
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models developed by the field officers, and which form the knowledge base, were

directed towards mapping soil units.

I1.1.1 Site location

The trial area selected is about 30,000ha in area and is situated 20km. west of
Brookton in the Eastern Darling Range (Figll.1). The area comprises both ancient
lateritic plateau and dissected landscape. For each of these areas, a unique set of
rules can be developed which describes the spatial variability of the soils. The

demonstration project was run only for the old lateritic surface.

Bundaberg

Whyalkatchem

" Brookton

[1]
Ulverstone t;l

Figure 11.1  Location map for demonstration sites

11.1.2 Available datasets
Data sets considered by the experts for inclusion in the Expector demonstration
included digital elevation model derivatives, prior geological mapping, and a number

of features mapped from aerial photography.
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The base digital elevation model was created by interpolation from 5m contour data
supplied by the West Australian Department of Land Administration. These data
were taken from 1:50,000 survey maps. A spline interpolation routine was used to
resample the data onto a regular grid with a horizontal resolution of 25m. A section
of this grid corresponding to the study area was extracted from the larger data set.
Data layers representing a full set of terrain attributes including slope, plan curvature,
and profile curvature were generated using the TAPES-G software (Gallant and

Wilson, 1996).

Agriculture WA obtained colour aerial photography at a scale of 1:25,000 for use in
the routine mapping of the area. Their staff digitised a number of features from that
photography and delineated a boundary between the ‘old’ lateritic and new’ dissected
surfaces. In addition, data layers defining dolerite dykes, large areas of deep sand,
and granitic rock outcrops were digitised from the photography. All boundaries on
the aerial photographs were identified by field survey officers and drawn onto those
photographs. The photographs were then registered to Australian Map Grid (AMG)
using points that were referenced in the West Australian Department of Land
Administration digital cadastral data base. The boundaries were then digitised as

Intergraph Microstation design files.

These design files were imported into ARC/INFO and appropriate polygon
identifiers attached. These vector datasets were rasterised at 25m resolution and co-

registered with the previously discussed data.

11.1.3 Development of schema
The tield officers acting as experts in this demonstration could devote only a limited
amount of time to this project. It was, therefore, decided to develop a relatively

simple schema to link three principal soil types with three pieces of evidence.

Based on their knowledge of the area, they identified three modal soil types as
occurring with reasonable frequency in the old surface portion of the study area.
These are white sands, yellow sands and ironstone gravels. The model the field

officers have developed to predict the occurrence of these soil types is highly
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dependent on landscape. Figure 11.2 shows the landscape model used and Figure

11.3 schematically describes the model.

11.1.4 Selection and preparation of evidence

Three evidence data sets were chosen for this study. They were slope, topographic
position, and the presence of sand as mapped from air photos. All evidence layer
preparations were carried out in ARC/INFO, although the Expector analysis was
performed using the ArcView interface. At the grid dataset level, the two systems

are entirely compatible.

The landscape model developed by the field staff suggested that five classes were
appropriate for the slope evidence layer. The ranges of these classes are shown in

Figure 11.3.

The conceptual model relied in part on the concept of position in the landscape or
catena. In undulating terrain like this study area, compound topographic index
(wetness index) (Moore et al., 1991) provides a surrogate for this entity. A
compound topographic index data layer was generated from the slope map and

classified into three classes representing upland, mid-slope, and lower areas.

The sand evidence layer was a simple presence and absence map derived from the

polygons digitised from the 1:25,000 air-photos.

11.1.5 Prior probabilities and map purities
Initial counts of class abundance for each evidence layer were extracted using the
ArcView interface and used to assign class probabilities using the processes

described in Sections 9.5.1 and 9.6.2.

The experts assigned map purities to each of the chosen evidence data layers. The
map purity data is listed in full in data panels 11.1 to 11.3 in Appendix A. Those
layers derived from the digital elevation model were assumed to be 100 percent
correct. The sand layer was believed to contain some inaccuracies due to

misinterpretation of textures on the aerial photography.
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It was considered that the probability of areas of sand being correctly mapped was
relatively high, with a value of 0.96 being assigned. Since there might well exist
{within the larger area identified as not being sand) some small unmapped pockets of

sand, the non sand class was assigned a lower purity of 0.85.

11.1.6 Using site data in the knowledge base

A field data set comprising 67 sample sites throughout the study area had been
acquired by the field officers as part of their routine survey of the area. These sites
were classified on the basis of observations in field notes into the three modal soil
types. The proportion of each type occurring in the samples set was then used as the

prior probability for that ‘modal soil type’.

The Expector ArcView interface tools were used to extract Cross-Tab files using the
method described in Sections 9.5.2 and 9.6.4. These provided seed values to the
Expector Joint Probability Editor. The editing process reshaped the coincidence
tables to more truly reflect the soil surveyors” belief in the relationship between the
evidence data sets and the soil types. Since they had been personally involved in the
sampling, they had a good grasp of possible biases in the system. Joint probability

data are listed in full in data panels 11.1 to 11.3 in Appendix A.

The joint probabilities used for the slope layer express the strength of a number of
linkages in the conceptual model. For example, ironstone gravels have a high
probability of occurrence on slopes above 4 percent, whereas sands predominate on
lower slopes. Moving to very low slopes, white sands are believed to be

predominant.

Joint probabilities for the air-photo interpreted data layer express the belief in a very
close correspondence between the presence of sand in this data layer and the two

'sand’' soil classes.

Again, a few clear relationships are also seen in the joint probabilities between
topographic position (as expressed by compound topographic index) and the soil
classes. The field officers clearly believe that the ironstone gravels appear almost

exclusively high in the landscape, whilst the white sands appear almost exclusively
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low in the landscape. Reference to the graphical representation of the landscape
model in Figure 11.2 will confirm this. It should be noted that this Tule’ will

compete, in a probabilistic sense, with that which assigns white sands strongly to low

slope areas.

Areas of low slope that are low in the landscape, such as valley bottoms will tend to
be assigned as white sand, whereas areas of low slope higher in the landscape will
have white sand favoured due to slope but gravel favoured due to position in
landscape. This will combine to give a close tie between white sand and gravel. In
this case, the third factor (based on the air-photo interpretation) will act as a ‘tie

breaker’ since it provides, where present, very strong support for white sands.

11.1.7 Results

This case study was intended primarily for demonstration purposes and to familiarise
the land resource surveyors with the Expector method. Although no quantitative
measures of accuracy were taken the field staff involved believed that the resulting
maps were generally satisfactory. Qutput comprised maps of the probability of
occurrence of each of the three soil types and a map showing the most probable soil
type. Figure 11.4 shows the map of the most probable soil type for the southern half

of the study area.

11.2 Bundaberg - Queensland

A demonstration project was carried out in the Bundaberg region of Queensland
(Figure 11.1) with expert knowledge being provided by staff from the Queensiand
Department of Natural Resources (QDNR).

Bundaberg is in a sugar cane growing region and there is demand for land resource
information for local and regional planning at a semi-detailed scale of 1:50,000. The
land resource information is usually presented in terms of hazards or land qualities
which are a synthesis of several, more basic, resource attributes. One of those basic

attributes is surface clay content which was chosen as the demonstration attribute.
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11.2.1 Objective and location of study

Local staff were interested in assessing the usefulness of the Expector method to
spatially extend their conceptual knowledge. Conceptual knowledge had been
developed In an area where the geology, geomorphology and soils are well
understood and have been mapped. The study area has similar geology and soils, but

the soils and soil properties had not yet been mapped.

The trial area selected was approximately 30,000ha which forms part of the Childers
1:100,000 map sheet to the south-west of Bundaberg. The objective was to predict
the surface texture as membership of three broad groups. Those groups were
determined, with reference to local conditions, as being 0-20 percent, 20-35 percent,

and >35 percent clay, respectively.

11.2.2 Available data sets and schema development

A digital elevation model of the area had been generated by QDNR. From this, slope
and compound topographic (wetness) index layers were derived. A geology map
was also available in digital form. The slope map and wetness index maps were
divided into classes which accorded with the surveyors conceptual model of that

particular landscape. Figure 11.5 shows a schematic diagram of the model used.

Also available was a data set of 242 sample sites at which surface texture had been
measured. These were used to determine prior probabilities for the three texture
classes. Query tools in the Expector ArcView interface were used to generate cross-
tabulations between the evidence layer classes and the hypothesis classes. These
cross-tabulations were then edited using the Expector Joint Probability Editor to
remove bias and incorporate the surveyors knowledge. Figure 11.6 shows the

geology evidence layer overlain by the sample sites.

Map Purity and Joint Probability data are shown in full in data panels 11.4 to 11.6 in
Appendix A. The three input data layers together with the three probability maps
(one for each class of surface texture) are shown in Figure 11.7. As with the

previous study, a map showing the most probable class is included.
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Figure 11.6  Bundaberg: site data overlying geology
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11.2.3 Results

The Bundaberg demonstration project was put together rapidly in order to
demonstrate the concept of the Expector method. Discussion with field staff
suggested that the data chosen as evidence was less than optimal for separating out
the surface clay classes. An examination of the individual probability maps indicates
that they are very heavily controlled by geology. In most areas, a clear prediction of
surface texture has been made. However, in the area of Cretaceous deposits in the
eastern part of the study area, the first two texture classes have roughly equal
probability. This is described by field staff as being a difficult area to map, with both
textures occurring within that unit. This is reflected in the equal posterior
probabilities of the classes. An additional data layer is required as a ‘tie-breaker’ to
determine which of the two texture classes is prevalent at any particular location. At

the time of the demonstration, no suitable data sets were available.

11.3 Forth -Tasmania
A case study that looked at the use of Expector for land capability classification was
carried out in conjunction with personnel from the Tasmanian Department of

Primary Industry and Fisheries (DPIF), Launceston.

11.3.1 Location and objectives

In Tasmania, a classification method based on that used by the United States
Department of Agriculture (USDA) is used to map land capability. The
classification comprises seven classes, ranked in order of increasing degree of
limitation to use and in decreasing order with respect to versatility. Class 1 has
virtually no limitations to intensive cropping, while Class 7 is unsuitable for

agriculture.

At the time of the demonstration, DPIF personnel were engaged on the production of
a land capability map for the Forth 1:100,000 map sheet, near Ulverstone on the
north coast (Figure 11.1). This survey was to be conducted using conventional
methods (AP, fieldwork, etc.). The DPIF team were interested in the ability of the
Expector method to produce a reconnaissance map of land capability, rather than soil

attributes,
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11.3.2 Datasets and schema

Over the whole study area, the main limitations to land use are (in order of
importance): topography, climate and soils. Other limitations of importance in small
areas include flood risk and rock outcrops. Slope is seen as one of the key
topographic variables since it encompasses ease of cultivation as well as
susceptibility to mass movement, erosion risk, etc. A number of climatic factors
such as rainfall, frost risk and temperature are also important, as are soil related

variables like depth, waterlogging, wind erosion susceptibility, and fertility.

Slope, altitude, and geology were chosen from the readily available data sets.
Altitude acts as a surrogate for radiation and frost risk, whilst slope has a direct
bearing on the workability of the land. The geology of the area, which includes
Tertiary basalt, Permian sediments, Pre-Cambrian siltstone, and Quaternary
alluvium, has considerable influence on Land Capability. Many of the soils, in
particular those formed on Tertiary basalt, have good physical and chemical

properties and are highly suitable for agriculture.

11.3.3 Results

Figure 11.8 is a map of the most probable class for the study area. The DPIF staff
regarded the results as promising. It was, however, noted that a strong relationship
between basalt, slope, and land capability classes 1-3, was more dissipated than

expected.

The reason for this dissipation seems to be that the area was treated as a whole. The
surveyors’ mental models contain nuances of variable behaviour throughout the area
that were not represented in the probability assignments. The solution to this
problem lies either in partitioning the area into broad sections in which different rules
apply or in the addition of an extra layer, perhaps based on a geomorphic or

geological divide, for which a moderating set of joint probabilities is developed.

11.4 Agricultural yield prediction.
The Expector method lends itself to any situation in which spatial data layers are

combined to make a prediction about some other entity that occupies the same space.



166

BASS STRAIT

0 5
| R T ST
Kilometres

Land Capability

Class 1 Class 4
o= ] Clags 2 Clags 5
Class 3 Clags 6

Figure 11.8  Most probable class map for Forth, Tasmania



167

The only prerequisites are that there be some logical connection between the
predictive and predicted layers and that some body of knowledge exist which can

explain that connection.

The emerging field of Precision Agriculture is concerned with managing the
variability inherent in cropping systems. This variability is caused by many factors,
amongst which are spatial variation in the fundamental properties of the soil
resource. Precision agriculture deals with deficiencies in this resource by spatially
variable application of nutrients and other ameliorants. One strategy used in these
circumstances is to vary fertiliser in response to expected grain yield with, for

example, extra fertiliser concentrated on areas which are expected to yield well.

Expector was used in a study to determine likely grain yield in an 80ha wheat
paddock near Wyalkatchem, Western Australia (Figurell.l). This work was carried
out as part of ongoing research into Precision Agriculture by CSIRO Land and

Water.

11.4.1 Development of schema

A considerable number of things influence the likely yield from any particular area,
and these operate at different spatial scales. The overriding factor in rain-fed
agriculture such as that practised in Western Australia is climatic. Whilst rainfall
does not vary significantly across a paddock, the way in which the soil stores and
handles the available moisture does vary. Such variation is largely the result of soil

physical characteristics.

For the paddock in question, a map showing soil types had been prepared, using the
conventional mapping techniques of field observation and delineation of boundaries
on air photography. This map is considerably more detailed than those usually

available and identifies eight different soil types within the 80ha.

An intensive grid sampling campaign had resulted in the collection of soil physical
and chemical data at over 40 locations located on a nominal 100m grid. Sotl
sampling and analysis is relatively expensive, and it is questionable whether such

intensive sampling is economically viable for broadacre crop management. The soil
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map does offer a cheaper, though less specific, source of soil information. However,
in this particular paddock it was known that acidity was a major limitation to crop
growth. In the light of these considerations, a decision was taken to use the soil map
as an evidence layer representing soil physical properties in general and to

incorporate the pH data from soil tests as an additional layer.

Another good predictor of one season’s yield is the yield for the previous season. In
this case, crop yield data had been collected for the 1995 harvest using a grain yield
monitor and a map showing the spatial distribution of yield was available. The
intention was to predict the likely yield in the 1996 season using as evidence the soil
map, the pH data, and the prior seasons yield map. The attribute to be mapped was
defined as ‘yield in excess of 1.5 tonnes per hectare (tha™),” resulting in a two class
system comprising this class and its converse. The value of 1.5tha™" was based on the

approximate break-even grain yield for that farm.

11.4.2 Data classification and determination of prior probabilities.

The soil map is already categorised, with all classes being distinct and requiring no
amalgamation. The yield map was classified into six classes, five covering an
interval of 0. Stha each with the sixth class encompassing those few areas in which

yield exceeded 2.5tha’’.

A pH surface was interpolated from the point observations using the spline
interpolation function in ArcView. This surface, pH values for which ranged from

4.2 to 4.7, was then classified into five classes each covering a pH interval of 0.1.

Prior probabilities for each of the evidence classes were determined from the areas
occupied by each class using the methods previously described. Prior probabilities
for hypothesis attribute were set by an expert, after consideration of the previous

years yield figures, as a 35 percent probability of achieving better than 1.5tha™

11.4.3 Knowledge base - map purities
Map purities were determined by expert assessment. In the case of the surface

derived from pH observations, the quality of the data was considered to be high. All
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classes were assigned a purity of 90 percent with the misclassification error

distributed to numerically adjacent classes.

The purity of the soil grid was considered to be a little lower. An initial allocation of
80 percent accuracy with the misclassification error evenly distributed across all
other classes was adjusted to 79 percent, thereby allowing simple distribution of the

remaining 21 percent across the seven other classes.

Since it was measured with a grain yield monitor having a spatial resolution of the
same order as the grid used for the analysis, the previous years yield data was
considered to be 100 percent accurate. All the map purity values are shown in data

panels 11.7 to 11.9 in Appendix A.

11.4.4 Knowledge base - joint probabilities
The joint probability values were determined using the usual combination of seed
values extracted for the data, and expert opinion. The joint probabilities are

presented in data panels 11.7 tol1.9 in Appendix A.

For the pH layer, it is clear that the more acid the soil the greater the chance of a
depressed yield. Even the classes with a higher pH are still very acidic and for none

is there a significant chance of exceeding the expectations set by the priors.

In the case of the soil data layer, some soils, such as Class 4 (Shallow pale sand) are
not expected to cause any divergence from prior expectations. Others such as Class
6 (Deep sandy duplex) and Class 8 (Shallow loamy duplex) cause respectively a

decrease and increase in the chance of achieving a better than break-even yield.

The joint probability table for the yield layer shows some apparent contradictions
that would not have appeared if the exercise had been data driven. [t takes into
account the known fact that, overall, wheat yields in a paddock going into a second
consecutive year of wheat crop in a rotation show a decline. This is exemplified by
the suggestion that, whilst areas which failed to reach the break even point in the
previous year are expected to continue to make a loss, areas which just broke even

are shown as being more likely to make a loss in the second year. This argument
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assumes that no fertiliser is applied and is perfectly legitimate in a scenario that is

designed to aid the placement of such fertiliser.

11.4.5 Results

Figure 11.9 shows the input data layers, the probability surfaces for the two states of
the hypothesis, and a most probable class map. The subsequent growing season the
paddock was, for all practical purposes, treated to uniform application of fertiliser. It
is, therefore, possible to compare the results of the prediction with the actual crop in
the subsequent year. Table 11.1 shows the basic statistics for the actual yields within

the areas predicted as being high or low yielding.

Predicted Actual second year yield (tha'))
Class Min Max Mean SD
1(<1.5tha’) | 0.00 2.48 0.99 0.39
2 (<1.5tha”) | 0.29 2.55 1.22 0.38

Table 11.1 Yield statistics for predicted areas

Some separation between the two classes éan be seen in these figures. The
differences between the two means are of the same order as the difference between
the minima. The maxima, however, are very close. There was an overall depression
of yield across the paddock, due to factors that were not considered in the schema.
These factors included weeds and haying off” due to lack of moisture at the end of
the growing season. The overall result of these effects was that both the high’ and
low’ yielding areas suffered from depressed yield, with the mean of both being less

than 1.5tha™

11.5 Comparison of results and discussion

None of the studies reported here have been subjected to a rigorous formal
evaluation., However, in the case of the three demonstration studies, the land
resource assessment staff involved considered that the maps produced were a
reasonable representation of their mental models, at least within the limitations of the

data used. Some quantitative analysis is provided for the grain yield prediction
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example. That analysis highlighted the fact that the overall yield of the paddock was

depressed by factors which were not included in the model.

A number of operational considerations were highlighted during these
demonstrations. These include the question of sufficiency of the data used. In the
Bundaberg example, it was clear that an extra data layer was required as a 'tie
breaker’, whilst in the Tasmanian example there was a need to either partition the

landscape and create two models or to add an additional, mediating, layer.

11.6 Summary

Three examples have been presented of the application of Expector to natural
resource mapping and one of its use as a tool in the assessment of likely grain yield
for fertiliser recommendation purposes. Although most were not quantitatively
assessed, these examples give some insight into the processes involved in creating
Expector schemae and have highlighted some points for further investigation. The
next chapter discusses some of these points and other operational considerations that

came to light during the development of the Expector method.
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Chapter 12

THE IMPACT OF EXPECTOR ON THE SOIL MAPPING METHOD

The Expector method was developed to quantify and formalise the existing natural
resource mapping process. Several examples of applications of the method have
been provided in preceding chapters. The impact of introducing a quantitative
method may be examined from two standpoints. Firstly, how well does the method
achieve its original intentions and, secondly, what effect does its use have on the way
a resource survey is conducted. This chapter begins with a discussion of the effects
of adoption. It then examines how effectively the method has performed in those
examples and discusses some of the sources of error. The opportunity to eliminate
some of these errors by refinement of the knowledge base is also discussed. Since
some errors can be attributed to sampling bias, the differences between free and grid
sampling techniques are examined. The use of Bayesian networks imposes a
constraint of conditional independence on input data selection which is not present
with mental models. The chapter concludes with a discussion of conditional
independence and suggests some tests to determine the eligibility of input data

layers.

12.1 The effects of adoption
The adoption of a new method of surveying can have a number of effects. These
include the effect on model construction, fieldwork, outputs and the validation of that

output. These are discussed briefly here in reverse order and amplified later.

12.1.1 The effect on outputs

The outputs of the process are noticeably changed. Considering a soil survey
example, instead of a map representing soil classes, the primary output is in the form
of several GIS data layers showing the probability of occurrence of individual soil
attributes. This is more flexible than a hard-edged class map and can still be reduced
to a classified map if required. This may be either a most probable class map for the
attribute in question or a map synthesised in a GIS query from several attribute
probability maps. It is also possible to use Expector output in another Expector

analysis such as the agricultural yield potential example documented in Chapter 11.
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In essence, the output is more dynamic and fluid than a conventional printed map.
This greater flexibility has been achieved without sacrificing the ability to produce

the conventional product if required.

An important part of the traditional output is the memoir or report that accompanies
the map and which includes much information about the spatial vanability and
composition of individual map units. A set of output data GIS layers incorporates an
inherent description of that variability. The result of any query can still be backed up
by reference to the individual probability maps. In addition, the knowledge of
relationships used in the mapping process is also available in either map or tabular
form. For any given input evidence data layer a set of GIS *virtual data layers’ exists
showing the probability of occurrence of the mapped attribute based solely on that
piece of evidence. These, together with the files used in input data reclassification
and the schema files for each attribute mapped, provide readily accessible

documentation of the model building process.

12.1.2 Validation

The traditional map of soil types can be validated by visiting a number of sites and
comparing the mapped soil type with that observed on the ground. Knowing the
parameters that bound the soil class in attribute space, it is easy to determine whether
the material at a sample point is appropriately mapped. At a simple level a positive
or negative result can be recorded at each sample point and statistics prepared
showing the accuracy of the map in general. In practice, the closeness of
correspondence of the observed soil to that mapped will be noted and used as part of

an iterative process of map improvement.

Maps showing the probability of occurrence of either individual attributes or of soil
types are harder to validate. At the extremes of the distribution the case is simple. If
an attribute class is mapped as having a probability of 1 at any point then, if the map
is correct, we should find it there. The problem is more difficult if the probability of
occurrence is mapped as 0.8 or 0.4 or any other indefinite figure. It is reasonable to
suppose, however, that if we visit 2 number of points at which the probability is 0.8
we would expect to find the attribute more often than not. If sufficient samples were

taken we would expect the proportion of correct sample to approach 80 percent.
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Unfortunately validation schemes based on this principle require an enormous
sampling effort. It has been estimated that in order to validate the probability maps
for the Yornaning example, a minimum of 1000 sample sites would be required (Fox,
1996). Clearly this precludes the use of limited data sets such as those available for
the examples presented here. In addition, such a scheme would make a statement
about the accuracy of the map as a whole, but still leave open to question the

accuracy of a point where an attribute is, say, 80 percent probable, but is not found.

Alternative validation strategies are therefore required, and two have been used in the
examples presented in Chapter 10. One is generally useable, whereas the other can
only be used if the attribute being mapped is measured on a numerical scale, rather

than representing a presence - absence condition.

Since the attribute being mapped has been divided into classes, field observations
may be compared to a most probable class map. This essentially reduces the
validation process to the one described above for a traditional soil type map and has
been applied to the examples in Chapter 10. In the case of attributes with a
numerical scale such as clay content or organic matter, it also is possible to inspect
the relationship between the actual values of the attribute and the various
probabilities of class membership. This method was used in the validation of the
Sterling data (Figure 10.3). In that case a positive relationship was found between
the organic matter content at sample sites and the probability that organic matter

exceeded 1.6 percent.

12.1.3 Effect on model construction and fieldwork

The surveyor must make some subtle changes to both their conceptual model
construction and, to a lesser degree, their fieldwork. A conceptual model must be
developed for each attribute being mapped rather than for a broad association of
attributes such as soil type. To a large extent, this is what the surveyor traditionally
does, although representation as soil types forces them to compartmentalise the

models at an early stage of development.

Although the models developed using Expector are formally expressed in numerical

terms they are not inflexible. A surveyor using the traditional method will refine a
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mental model in response to additional information and validation of the map

product. A surveyor using Expector can perform a similar iterative process.

Except where the method is to be used purely for the production of reconnaissance
maps, fieldwork still forms an essential part of the model development. The
demonstration example from Tasmania reported in Chapter 11 was carried out
without any fieldwork by transferring the knowledge developed from work in an
adjacent area. It should, however, be noted that this practice is not without its

dangers.

The results from the Tasmanian example suggest that an additional evidence layer
may be needed to subdivide the study area. This raises the question of the
extendibility of models and of “model-drift”. A model may become inappropriale,
either as the result of crossing some geomorphic divide, or as a result of continuous
change such as a steady increase in altitude with distance from the sea. There is an
opportunity for further research into the recognition of the bounds of models, and

into means whereby they may be made adaptive.

Two alterations to field work practices are suggested by the experience reported in
the preceding two chapters. The first is to the design of sampling schemes and is
dealt with in more detail below; the other is to the nature of the data collected at
sample sites. Expector is capable of using input data layers of varying accuracy and
has a facility for developing tables of input map purity. If the data layers to be used
are defined prior to the fieldwork stage, then appropriate measurements can be made

at sample sites to assist with the determination of those map purity figures.

Perhaps the greatest effect on model building is the selection of evidence data sets.
Using a traditional mental model the surveyor is freed from the constraints of
conditional independence of evidence imposed by the use of Bayesian nets. The
enormous flexibility of mental models allows breaches of independence to be dealt
with in a informal way. A surveyor using Expector must keep the question of
conditional independence in mind when selecting data sets and may need to combine
some datasets into indices, as suggested in Section 8.2.5. A discussion of conditional

independence and suitable tests is provided later in this Chapter
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12.2 General discussion of results

The two developmental examples discussed in Chapter 10 were subject to more
rigorous testing of accuracy than the demonstration examples in Chapter 11. They
are re-examined here from the standpoints of overall accuracy, relative accuracy

between classes, and sources of error.

12.2.1 Absolute accuracy

At Sterling, the Expector maps generally provide a good representation of the
occurrence of the organic matter classes. The overall accuracy of prediction is high
(83 percent), although for the least well predicted class the accuracy drops to 52
percent. At East Yornaning, the most probable class map provides a poorer
representation of the actual clay class occurring on the ground. The overall
classification accuracy is slightly over 50 percent. Although low, this later figure can
be considered in the context of the accuracy of the traditional method. Ragg and
Henderson (1980) (cited in Dent and Young, 1981, p. 95) showed that, using the

current broadly defined soil series, map purity is usually only 50-60 percent.

12.2.2 Relative class accuracy

In both the Sterling and Yornaning examples, the relative accuracies of the classes
were in the same general ratio as their prior probabilities. In the ludicrous situation
of a complete absence of evidence data layers, Expector would produce class
probability maps with all cells set to the value of the class prior probability. This
means that a most probable class map for Sterling would show Class 1 throughout
and a similar map for Yornaning would show Class 2 throughout. This, although
patently wrong, would result in an apparently ‘correct’ classification of 72 percent at
Sterling and of 50 percent at Yornaning. In both these cases, however, only sites in
the predominant class would be correctly classified. All others would be wrong. The
Expector results presented here have improved upon that in making a number of
correct predictions for those classes that are, a priori, less probable. It is reasonable
to speculate that with additional, powerful, evidence layers this could be greatly

improved.



178

12.2.3 Sources of error

With a method such as Expector, lack of output precision may be accounted for in a
number of ways. It may be due to inaccuracy of input data, inadequacy of the input
data to describe the predicted attributes or to inaccuracy in the specification of

relationships between input and output layers (ie imperfect knowledge).

If we consider the examples from Chapter 10, there is a disparity between the
relatively high overall accuracy of the Sterling result (83 percent) and the less
conclusive figures from Yornaning (52 percent). This must be viewed in the light of
the differing densities of knowledge base. In the Sterling example, the knowledge
base was provided by a regular grid of 75 observations over an area of 5.4ha. - one
observation for every 720m”> At Yornaning, the dataset used to seed the knowledge
base was based on samples taken at an average density of one observation for each
690,000m?, but not on a regular grid The Yornaning knowledge base was, however,

augmented by the observations and experience of a soil surveyor.

This difference in density of the knowledge base also contributes to the input data
accuracy since it is used to determine the prior probability of the hypothesis classes.
Those for Sterling were based on a potentially more representative sample than those
for Yornaning. The specification of the relationships was also based on that rich

dataset.

The disparity in accuracy also suggests that the evidence layers used at Sterling were
better able to predict the mapped attribute than those used at Yornaning. Both the
choice of evidence and the way in which the interactions of that evidence are
considered will depend largely on the experience of the individuals involved. The
Expector method differs from that currently used by land resource professionals and,
in order to gain maximum benefit from it, they must develop experience in its

operation.

12.2.4 Opportunities for refinement of knowledge base
Some of the disparity in accuracy referred to above can be overcome by refinement
of the knowledge base. If a first pass run of the Expector method, using available

data, fails to produce a satisfactory map of the attribute required, then two principal
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options are open to the analyst. Either the relationships between the evidence and the
hypothesis attribute must be modified in the light of experience or new evidence data
(which has the ability to make the necessary discriminations) must be recruited. The

required course of action may be indicted by the output from the first pass.

On reviewing the results of an Expector run, the analyst may discover that the
probabilities they have set do not adequately express the model they believed they
were expressing. If that is the case, it is necessary to rethink the logic behind the
model. This may simply require the adjustment of joint probabilities in order to
change the weighting in favour of a particular attribute class or it may require a
redefinition of the model structure. This may involve the combining of data layers to
provide a composite layer, such as a terrain index, which better expresses the

fundamental relationships.

In its current form Expector records the rules relating evidence and hypothesis solely
as numerical tables of probability. It is the responsibility of the user to record the
reasoning behind the setting of those probabilities. It would be possible for future
versions of the software to incorporate a facility which recorded rules in plain

language.

It is possible to use Expector to carry out a preliminary combination phase.
However, this introduces problems associated with the setting of prior probabilities
for concepts which cannot readily be measured. It was precisely this difficulty which
lead to the adoption of the flat schema structure used by Expector. It is, therefore,
preferable to use other data combination methods to generate indices, which are then

used as input variables for Expector.

In the example from near Bundaberg, described in Chapter 11, there was a large area
for which the posterior probability of two classes was similar, both being just under
0.5. Clearly, the third class was not likely to occur in that area, but the evidence used
so far was unable to determine which of those two classes was predominant. In a
case such as this the analyst/surveyor must consider whether there is another

evidence data set which can act as a tie-breaker.
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12.3 Fieldwork and sampling strategies

The density and pattern of sampling used in a survey have a bearing on its accuracy,
both using the traditional method and using Expector. Given the number of ways in
which it can impact on the results of the survey, it is worth considering if
modification needs to be made to sampling techniques. With the traditional method,
the choice of sampling strategy depends on a number of factors. Among them are
considerations of the expected variability of the resource being mapped,
accessibility, and cost. Broadly speaking, two methods are used: grid survey and

free survey.

With grid survey, sampling proceeds on a regular Cartesian grid whose spacing may
be determined by the intended scale of publication of the map. Free survey allows
the collection of samples at points identified by the surveyor either in the field or
from air-photos. These are often in areas where there is some doubt or where a
particular boundary requires investigation. They may also be taken to establish the
characteristics of a particular distinctive zone. It is not uncommon for such sampling
to be carried out at a nominal spatial density similar to that used for grid sampling. It
is also common for sampling in free survey to run close to roads and other
accessways. This provides an economic benefit in that sampling proceeds faster and
also enables sample points to be readily located on base maps simply by measuring,
often with a vehicle trip counter, the distance along linear features. With the advent
of affordable lightweight differential GPS equipment, the second of these reasons is

now less important,

Whilst both free survey and grid sampling may ultimately gather the same number of
points in a study area, the different collection patterns have an effect on the utility of
the sampling within the Expector method. Sampling is used in Expector to seed joint

probability distributions and to set prior probabilities.

12.3.1 The effect on prior probabilities

The effect of sample bias on prior probabilities can be illustrated with reference to
the Yornaning example. We will consider a hypothetical attribute with three states
which we wish to map using Expector and assume that we have a completely

accurate map of its spatial distribution. This example has been synthesised from the
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geology map. This map, which in the normal course of events it would be
impossible to produce, purports to represent the true state of an attribute. Figure
12.1 a) shows the actual site sample used in a survey of this catchment. They take
toe form of nested transects along roads and tracks. The points are overlaid on a map
of this hypothetical land attribute with three classes. Figure 12.1 b) shows a regular

grid of points overlaid on the same map.

The actual sample points used in the survey are in a nested scheme along transects
which are governed by the road network in the area. There is, on average, one
sample point for every 0.69km®. The regular grid has been generated with a cell size
of 830m giving the same overall density of points. Table 12.1 shows the proportion
of each of the three classes, achieved by a direct cell count and from each of the two

sampling schemes.

Method of estimation
Class Direct | Transect | Regular
measure | samples | samples
1 0.299 0.212 0.316
2 0.477 0.651 0.449
3 0.224 0.132 0.235

Table 12.1 Prior probabilities for hypothetical land attribute

The direct cell count method would not be available if this truly were an attribute
being mapping with Expector, but is provided here as a measure of the 'true’ prior
probability. The best estimate is provided by regular grid sampling. Exactly the
same number of points are used in both schemes so laboratory analysis costs are
identical. As noted above, using modern positioning techniques the samples can be
located readily, however, some areas may not be readily accessible because they are
remote from the road network.

The surveyor must make a trade-off between

accuracy and economics.
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12.3.2 The effect on joint probability estimates

We now turn to sampling used to determining the joint probability distributions
between an attribute to be mapped and an evidence layers. In this case, there may be
a considerable number of small areas. Figure 12.2 shows a map that indicates all
nine possible combinations between an evidence layer (stream/ridge ratio) and our

hypothetical land attribute. Both sampling schemes have been overlaid.

Table 12.2 show the joint probabilities derived by direct cell count, estimation from
the linear transects and estimation from a regular grid. Once again the regular grid
approaches the true situation the closest, although it is still not absolutely correct. It
remains to the surveyor to use their skill and judgement to resolve any lingering bias.

Unfortunately, they may never know if they are completely right.

Land Stream- Method of estimation
attribute |[ridge Direct |Linear |Regular
class class measure |transect |grid

1 1 0.08 0.06 0.11

1 2 fo.28 0.42 0.32

1 3 f0.12 0.04 0.14

2 1 0.10 0.12 0.10

2 2 0.13 0.16 0.07

2 3 l0.04 0.03 0.04

3 1 lo.12 0.04 0.11

3 2 10.07 0.07 0.07

3 3 l0.06 0.05 0.04

Table 12.2  Joint probabilities for land attribute and stream/ridge ratio

Class combinations resulting in small areas which are less than the nominal area
assigned to each sample point are at risk of not being represented in a cross
tabulation based on a sampling scheme. This is particularly true if a class

combination has a number of small occurrences scattered throughout the map area.
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12.3.3 Sampling for validation

The following discussion applies not only to sampling for validation of a most
probable ¢lass map but also to sampling for determination of the purity of input data
layers. As a general principle, the sampling strategy should be arranged so that the
number of points reasonably represents the areal extent of each class. If the sampling
is designed to determine prior probabilities, and there is no prior knowledge of the
class boundaries of the attribute being mapped, a regular grid sample scheme would

be expected to give the best results.

In any sampling scheme, it is possible that small areas will be missed with the result
that some small classes may be under-represented. If the attribute to be mapped
approximates to a continnous surface, the effect of this will be less than if the

attribute contains a number of discontinuities.

12.4 Model construction - conditional independence

As noted above, the data layers used in an Expector model are subject to a
mathematical constraint on their independence that is not present with a mental
conceptual modet. In the derivation of the mathematical equations used in the
Expector method, an assumption is made that the individual data layers are
conditionally independent. This assumption allows a considerable degree of
simplification in the calculus. In practice, this assumption is at risk of being violated

and it is worth considering what may be done to minimise the effects.

12.4.1 The importance of conditional independence
The conditional independence assumption is used to simplify a complex joint
probability relationship into the product of a number of simpler relationships. The

assumption from Equation 8.8 is restated here for the case of two pieces of evidence.

P(E,E:| Hi) =P(E:| H). P(E: | H) (12.1)

In order to combine N data sets, values are required for P(Ej,Ez,....... ,En{H), - the
conditional distribution of all datasets taken together given the hypothesis. That is
the conditional probability for all possible combinations of evidence states for all

possible hypothesis states.
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The size of this distribution is a function of the number of evidence layer, the number
of states in the layers, and the number of hypothesis states. For most practical
purposes, this is a multi-dimensional distribution for which it is impossible to specify
all members. This is particularly the case where the probability distributions are

being specified on the basis of expert knowledge.

In a case with five evidence layers, each of only two states, and a hypothesis with
two states, the full distribution contains 480 terms which the user would have to
estimate. Even if guided by sample data this still becomes an onerous task. Under
the assumption of conditional independence this simplifies to five, separate, joint

distributions each of only four terms - an altogether more tractable situation.

12.4.2 Conditional independence in the context of Expector

A mapping professional using the method would do well to ensure that they are clear
within their own mind as to the relationships between the various evidence layers. It
is the submission of the author that violation of conditional independence in the true

sense is perhaps secondary to violation of an assumption of functional independence.

Two data sets may have a degree of dependence on each other but have markedly
different effects on the hypotheses attribute. For example two data layers, say slope
and wetness index, derived from the same digital elevation model may exhibit a
degree of dependence. However, if their relationship to the attribute being mapped is
for different causal reasons then there are logical grounds for the inclusion of both of
them in a schema. That would be the case if slope contribute the attribute due to
physical effects and wetness index due to a chemical effect. However, if both
contributed through a similar process, it would be better to omit one of them. In
other cases, it might be preferable to combine the two datasets, using non-
probabilistic methods, into a single dataset which is then independent of the others in

the analysis.

12.4.3 Tests for conditional independence
Whilst common-sense is a great aid to the analyst in determining to what extent the
data-sets are dependant, formal tests do exist. In essence, Expector uses either

continuous data which has been categorised or data which is by its very nature
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categorical. The degree of dependence between continuous datasets may be tested
using simple regression methods, whilst comparisons between categorical data can
be achieved in a number of ways. Bonham-Carter, (1994, p. 242) suggests methods
for pairwise comparison of datasets. These include chi-squared tests, entropy

measures, and the kappa index of agreement.

Of these three methods, the kappa index is the only one readily available in a
commercial desktop GIS, being implemented in IDRISI (Eastman, 1997). A
disadvantage of the kappa index is that it is only applicable where the two data sets
have the same number of classes. Chi-squared tests have the limitation that whilst
the test statistic has a value of zero when there is no association between the datasets,
it has a variable upper limit. Entropy measures have the advantage that the resulting
measure of dependence (the joint information uncertainty) has a lower limit of zero
and an upper limit of one. This renders them more accessible as a user-friendly test

for independence.

As part of the development work on Expector, an ArcView script was written which
calculates various entropy measures for pairs of categorical grid datasets. This tool
was used to calculate the joint information uncertainty of all pair-wise comparisons

of the data used in the Yornaning example. The results are presented in Table 12.3

Strdist Slope Rock Radiom Geol Curv Catpos
Strdist 1 0.17 0.02 0.02 0.11 0.01 0.02
Slope - 1 0.03 0.02 0.14 0.01 0.04
Rock - - 1 0.02 0.06 0.00 0.02
Radiom - - - | 0.04 0.00 0.01
Geol - - - - 1 0.01 0.09
Curv - - - - - 1 0.00
Catpos - - - - - - 1

Table 12.3  Joint information uncertainties for Yornaning data

According to this table, the only dataset pairs which exhibit any noticeable degree of
correlation are slope - stream distance and slope - geology. In the case of the
geology map, the valley bottoms and areas of uniform low slope are mapped as
alluvium. This will naturally cause a degree of correlation between the two maps.

Other geological units will be less tied to slope units.
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The case of the correlation between stream distance and slope is more complex. In a
landscape comprising a valley incised into a peneplain, it is reasonable to expect
there to be some degree of correlation between these two datsets. The areas near the
stream will be flat with slopes increasing as one moves away from the stream.
However, the interfluves also exhibit large areas with low slope. It was precisely for
this reason that the stream:ridge ratio dataset was added to the schema, effectively to
act as a tie-breaker. Under these circumstances, disregarding the slight correlation
between the two datasets would seem to be justified. Whilst the two data layers do
have a degree of statistical dependence, their logical effect on the attribute being

mapped is independent.

It should also be noted that simply because two spatial datasets occupy the same
physical space, there will inevitably be some slight correlation between them. The
data analyst or surveyor should carefully consider cases where statistical correlation
is found, some may be spurious, or be present simply because both the data layers are

related to a common attribute - the one being mapped.

12.5 Summary

The most noticeable effect of the adoption of the Expector method is a change in the
output of the Natural Resource Mapping process. A set of GIS data layers
representing probability of occurrence of individual soil properties is more flexible
and dynamic than a choropleth map. Although the validation of probability maps is
problematic, gains have been made in the ability to represent that state of knowledge

with no apparent loss of accuracy.

Adoption of the method requires some changes to both model construction and
fieldwork. These can generally be accomplished with little extra effort, although the
pattern of sampling may require alteration. Experimental work indicates that grid

sampling provides a better guide to the setting of probabilities.

An examination of the errors encountered in previous examples of the methods
output suggests that some of them are amenable to refinement of the knowledge base

used in the individual models. This can be accomplished either by adding additional
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evidence layers or by a sharpening of the relationships described by probability
tables.

The effect of the conditional independence constraint on model building has been
discussed and a practical test outlined which enable the degree of independence
between evidence data set to be determined. The application of that test to the data
used in the Yornaning experiment highlighted the need for the analyst to examine the

difference between statistical independence, and causal or logical independence.



190

Chapter 13

SUMMARY AND CONCLUSIONS

This thesis has described the development of a method by which knowledge,
particularly that pertaining to natural resource mapping, may be effectively
represented in a Geographic Information System framework. Software has been
written to demonstrate the concepts involved and has been tested on a number of
datasets. In general, the resulting maps present fundamental attributes more flexibly
than traditional methods and are a good representation of the mental models of the

experts whose knowledge they encapsulate.

13.1 The need for knowledge representation in GIS

There is an increasing demand for natural resource information, imposed by both an
increasing population and a growing awareness of the fragility of the natural resource
base. This demand is not so much for more information, but for better, ‘smarter,’

and more flexible information.

Traditional natural resource and soil mapping methods have reached a high level of
sophistication using conceptual and statistical models to represent complex
landscapes. Both types of models have drawbacks but conceptual models, although
limited by virtue of being abstractions, are both flexible and appealing to the natural
resource surveyor. They are capable of representing complex entities and

relationships over large areas and of incorporating sparse or uncertain data.

Unfortunately, information is lost when those models are represented as traditional
choropleth maps. Much of this lost information concerns fundamental soil attributes,
matters of interest to the plants that form the basis of the agricultural system. It is
suggested that a multi-layer representation of the likelihood of occurrence of
particular soil attributes may preserve that information. The use of GIS offers the
opportunity to represent spatially variable soil attributes in a flexible fashion. It is
suggested that linking a knowledge representation tool to a GIS provides an increase

in the utility of soil information.
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13.2 Expert systems, knowledge and GIS

Knowledge is represented in the human brain in informal, loosely defined, and
‘fuzzy” ways. In order to mimic this in a computer, a means is required to formalise
knowledge in a way that enables it to be manipulated mathematically. Expert
systems, a branch of Artificial Intelligence (Al), seek to capture the reasoning behind

decisions made by experts in particular domains of knowledge

Expert system methods typically use either logic or probability as representational
frameworks. Schemes using probability are more intuitively suited to representing
the kind of ‘imprecise’ and flexible knowledge inherent in conceptual models of
landscapes. Bayes’ rule, a method of probabilistic calculation defined some 240
years ago, has recently found favour as a means of manipulating and combining

representations of knowledge.

A number of expert systems which use probability as a means of knowledge
representation have been designed for use in the field of medical diagnosis. There
are parallels between medical diagnosis and natural resource mapping — both use

symptoms and surface expressions as evidence from which to draw inferences.

Not all such systems are in the field of medicine. PROSPECTOR, an expert mineral
prospecting consultant, was an early venture of such systems into mapping.
Unfortunately, there are a number of shortcomings in its representational calculus.
These may largely be overcome by adhering to the general principles of a class
probabilistic of systems known as Bayesian networks, or Causal Probabilistic
Networks (CPN). Again, there are examples of such systems in the field of medical

diagnosis and some have been examined and described in earlier chapters.

Whilst such tools may be useful for representing knowledge, a spatial component is
required in order to apply them to natural resources mapping. That is provided by
GIS which, as a general technology, draws on long established concepts of
cartographic modelling. Many of these have their roots in land resource assessment.
The technology of GIS is diverse, with a number of data representation schemes and

proprietary systems in existence. Central to all of them, however, is a system for
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storing, analysing and integrating spatial data; then displaying it as enhanced

information products.

13.3 Using knowledge and GIS to quantify soil mapping

An examination of the soil mapping method shows it to comprise two principal
- components; model building and data combination. It is suggested that it can be
quantified and formalised by combining an expert system and a GIS. A custom
written expert system tool can handle model building, with a GIS being responsible
for data preparation and combination. The basic structure of a causal probability
networks provide a mechanism to manipulate the multiple evidence threads that
either support or contradict propositions about the existence of particular attributes at
various levels or states. Algorithms and methods for obtaining the parameters and
probability distributions used by a CPN have been described and a practical method

of handling inexact data devised.

The process of taking a map as a piece of evidence begins to bring the expert system
to life as a mapping tool and requires that it have effective interfaces to GIS.
Through those interfaces, access is provided to tools for aggregating the evidence
provided by several inputs. The algorithm described for that process departs from
standard CPN calculus in that it uses input distributions, provided by the expert

system, which are intuitively more meaningful to a natural resource surveyor.

13.4 A software implementation

The expert system tool, named Expector, was written in Microsoft Visual Basic for
use under a 32 bit PC operating system. This language and operating system
combination was chosen after consideration of patterns of GIS usage within the
agencies charged with mapping the soils of Australia. Interfacing routines to GIS
have been constructed in the native scripting languages of those systems. The
systems covered here are ARC/INFO and ArcView. An interface to Microstation
GIS has been constructed by others. At the most basic level, the general algorithms
used for interfacing and data combination are assembled from ‘primitives’ which are
available in any GIS which possesses map-algebra capabilities. They are, therefore,

capable of being implemented in almost any GIS.
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Expector provides user-friendly forms-type tools for creating and editing a
knowledge base, and for the combination of the knowledge associated with
individual data layers. GIS specific display utilities are also available for examining

and presenting the outputs.

Expector may be regarded as an overall process that maps the probability of
occurrence of a number of states of some attribute, known as the hypothesis. The
mapping is based on evidence provided by extensive datasets covering the area of
interest. The knowledge used in the process may be drawn from site sample data,
from an expert or from a combination of both. Expector enables the knowledge base
to be seeded with values derived from site sample data. The expert can then edit or
even discard those values according to their opinion of the richness of the sample

data and of any bias in its derivation.

13.5 Applications and demonstrations of the method

Two studies were carried out during the development of the Expector method. One
(essentially as a proof of concept) used a rich sample dataset from Sterling, Colorado
to provide knowledge about a small area. Another, at East Yornaning, Western
Australia, used soil surveyor knowledge to produce a map of soil surface texture over
a moderately large catchment. The surveyor’s knowledge was assisted by a
relatively sparse sample dataset. The East Yornaning example achieved a level of
accuracy in its representation of soil texture equivalent to that of a traditional soil

map.

This was achieved using much the same evidence and thought processes as were
used in the development of the traditional map. However, since they were applied
using a quantitative and formalised method, the analysis is not only repeatable and
transferable, but is also readily open to improvement. That improvement can come

through refinement of the knowledge base in the light of the results.

Three projects were undertaken to demonstrate Expector to the natural resource
mapping community of Australia. These were at Brookton in Western Australia,
Bundaberg in Queensland, and at Forth in Northern Tasmania. The attributes

mapped were ‘modal soil type’, surface clay content, and land capability class
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respectively. It is interesting to note that, although Expector is designed to map
individual attributes, in two of these cases the mental models of the land resource

professionals recruited as experts led to traditional class based concepts.

Expector also has potential for use with other problems involving the combination of
diverse evidence streams. This was demonstrated by its use to predict agricultural
yield potential in the context of precision agriculture. Such information is required

for the precise targeting of fertiliser rates.

The three case studies in land resource assessment were not intended to prove the
accuracy of Expector but to demonstrate the method to potential users. In two cases
however, the demonstration highlighted interesting operational considerations that
could only have been addressed by the collection of additional data. Since there
were insufficient resources to allow this, no formal evaluation of the demonstrations
was carried out. A more formal assessment was made of agricultural yield prediction
example, which proved capable of distinguishing between high and low yielding
parts of a paddock. This analysis indicated the presence of unforeseen yield reducing

effects which had not formed part of the original knowledge base.

13.6 Operational considerations

In order to investigate the effect of different fieldwork sampling strategies on the
setting of probabilities, an experiment was conducted using data from East
Yornaning. The results of this suggested that a regular grid sampling scheme will
provide closer estimates of prior and joint probabilities than a transect scheme. It
was also noted that the setting of joint probabilities from sampling is particularly
difficult due to the relatively small size of joint areas. The use of knowledge to

overcome such deficiencies is one of the key features of Expector.

A major operational consideration of the use of Bayesian networks such as Expector,
is that they operate under an assumption that the input data layers are conditionally
independent. The data used at Yornaning were tested, using entropy measures, for
conditional independence and little dependence was found. The only cases where it
was present to any degree were readily explained by an examination of the

underlying causation. This serves to highlight the need for the analyst to have regard
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for the differences between statistical independence, and causal or logical

independence.

13.7 Conclusions

A method has been presented by which the knowledge inherent in natural resource
mapping may be represented in a GIS framework. It is designed primarily to provide
an output in the form of GIS data layers showing the probability of occurrence of
various states of selected attributes. The method is available in a user-friendly
software implementation for use on Personal Computers and capable of working in
conjunction with popular proprietary GIS. It uses a probabilistic (Bayesian) network
as its central calculus and is capable of handling data with inherent imprecision. It
uses a knowledge base and extensive datasets to spatially extend that knowledge
across the landscape. That knowledge base may be derived either from sampling or

from expert opinion.

In developmental tests, the method proved capable of matching the ability of a
traditional soil map to predict basic soil attributes. Subsequent demonstrations of the
method highlighted an interesting range of operational considerations. In essence,
these show that the method, being knowledge based, is only as good as the
knowledge used. That knowledge must be applied to select the correct input data,
and to correctly specify the relationships between those data and the attributes being

mapped.
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APPENDIX A
DATA USED IN DEMONSTRATIONS.



Conditional Probability Printout

13/02/99 11:22:42

Evidence catpos with 6 classes

Prior prohabilities

PE 1 PE 2 PE 3 PE 4 PE 5 PE 6
0.64 0.11 0.11 0.06 0.07 0.00

Conditional Probabkilities

First Seceond Third Fourth Fifth Sixth
0.900 0.050 0.G00 0.000 0.000 g.000
0.100 0.900 0.050 0.000 0.000 0.000
0.000 0.050 0.900 0.050 0.000 0.000
0.000 0.000 0.050 0.900 0.050 0.000
0.000 0.0Q0 0.000 0.050 0.900 0.000
0.000 0.000 0.000 0.000C G.010 1.000
Joint Probability Printout

13/02/9% 11:51:05

Evidence : catpos with 6 classes

Hypothesis : btxl with 3 classes

Prior probabilities
PH 1 PH 2 PH 3
0.14 0©.51 0.35

PE 1 PE 2 PE 3 PE 4 PE 5 PE 6
0.581 0.171 0.107 0.070 0.069 0.001

Joint Probabilities

First Second Third Fourth Fifth Sixth
0.070 0.031 0.019 0.012 0.010 0.000
0.326 0.063 0.049 0.035 0.029 0.000
0.186 0.077 ¢.039 0.023 {.030 0.000

Joint Probabilities as percent of Evidence

class 1 class 2 class 3 class 4 class 5 class 6

12% 18% 18% 17% 15% 14%
56% 37% 46% 50% 42% 51%
12% 45% 36% 33% 43% 35%

Data Panel 10.1 East Yornaning - Catchment position layer
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Conditional Probability Printeout
13/02/99 11:22:33

Evidence : curv with 4 classes
Prior prcbabilities

PE 1 PE 2 PE 2 PE 4

0.27 0.26 0.35 0.12

Conditional Probabilities

PL+/PR+ PL+/PR~ PL-/PR+ PL-/PR-
G.700 0.100 0.100 0.100
0.100 0.700 0.100 0.100
0.100 0.100 0.700 0.100
0.100 c.100 0.100 0.700
Joint Probability Printout

13/02/99 11:49:29

Evidence : curv with 4 classes
Hypothegis 1 btxl with 3 classes

Prior probabilities
PH 1 PH 2 PH 3
0.14 0.51 0.35

FE1 PE 2 PE 3 PE 4
0.261 0.256 0.308 0.175

Joint Probabilities

PL+/PR+ PL+/PR- PL-/PR+ PL-/PR~

0.029 G.049 0.046 0.014
0.136 0.100 0.176 0.101
0.097 0.108 0.casé 0.059

Joint Probabilities as percent of Evidence

class 1 class 2 class 3 class 4

11% 19% 15% 8%
52% 19% S57% 58%
37% 42% 28% 34%

Data Panel 10.2 East Yornaning - Curvature layer
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Conditional Probability Printout

13/02/99 11:31:18

Evidence : geol with 7 c¢lasses

Prior probabilities

PE 1 PE 2 PE 3 PE 4 PE 3 PE & PE 7
g.07T 0.02 0.21 0.00 0.11 0.48 0.11

Conditional Probabilities

age Agm Agv Cza czl Qa Qc
0.700 0.150 0.200 0.000 0.050 0.000 0.000
0.100 0.700 0.100 0.c00 0.050 0.000 0.000C
0.200 0.150 0.700 0.000 0.050 0.000 0.000
0.000 0.000 0.000 0.650C 0.000 0.200C 0.150
0.Go0 0.000 0.000 0.000 0.850 G.000 0.080
0.000 0.00¢C 0.000 0.35¢0 G.000 Gg.750 0.0060
0.000 0.000C 0.000 0.000 0.000 0.050 0.800
Joint Probability Printout

13/02/99 12:25:11

Evidence geol with 7 classes

Hypothesis : btxl with 3 classes

Prior probabilities
PH 1 PH 2 FH 3
0.14 0.51 0.35%

PE 1 PE 2 PE 3 PE 4 PE S PE 6 PE 7
0.G9% 0.048 0©.169 0.113 ©0.l1c2 0.357 0.11z2

Joint Probabilities

Age Agm Agv Cza Cczl Ra Qc

0.003 0.001 0.007 0.014 0.064 0.046 0.009
p0.055 0.023 0.061 0.059 0.0627 0.222 0.062
0.042 0.023 0.102 0.041 0.010 0.089 0.041

Joint Probabilities as percent of Evidence

class 1 class 2 class 3 class 4 class 5 class 6 class 7

3% 2% 4% 12% 63% 13% 8%
55% 49% 36% 52% 27% 62% 55%
42% 49% 60% 36% 10% 25% 37%

Data Panel 10.3 East Yornaning - Geology layer
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Conditional Prcbability Printout
13/02/99 11:33:11

Evidence : radiom with 4 classes
Prior probabilities

PE 1 PE 2 PE 3 PE 4

0.06 0.02 0.17 0.75

Cenditicnal Prokabilities

Granitic Sandplain Colluvial Alluvial

0.800 C.050 0.050 0.050
0.050 G.800 0.050 G.050
0.050 0.050 0.80O C.050
0.050 0.050 0.050 0.800
Joint Probability Printout

13/02/99 12:02:11

Evidence radiom with 4 classes

Hypothesis : btxl with 3 classes
Prior probabilities

PH'1 PH 2 PH 3

0.14 0.51 0.35

PE 1 PE 2 PE 3 PE 4
0.092 0.067 0.177 (€.613

Joint Probabilities

Granitic Sandplain Celluvial Alluvial

0.031 0.087 0.032 0.055
0.046 0.000 0.051 0.356
0.015 0.000 0.054 0.202

Joint Probabilities as percent of Evidence

class 1 class 2 class 3 class 4

34% 100% 18% 9%
50% % 29% 58%
16% % 53% 33%

Data Panel 10.4 East Yornaning - Radiometrics layer




208

Conditional Probability Printout
13/02/99 11:34:08

Evidence : rock with 5 classes
Prior probabilities

PE 1 PE 2 PE 3 PE 4 PE S
0.01 @0.02 0.03 0.04 0.89

Conditional Probabilities

Cn 0-50m 50-100m 100-150m >150m
1.000 0.000 0.000 0.000 0.000
0.000 1.000 0.000 0.900 0.000
0.000 0.000 1.000 0.000 0.000
¢.000 0.000 G.000 1.000 a.0600
0.000 0.000 0.000 ¢.000 1.000
Joint Probability Printout

13/02/99 12:05:17

Evidence : rock with 5 classes
Hypothesis : btxl with 3 classes

Prior probabilities
PH 1 PH 2 PH 3
0.14 (.51 0.35

PE 1 PE 2 PE 3 PE 4 PE 5
0.012 0.025 0.034 0.041 (.889

Joint Probabilities

on 0-50m 50-100m 100-150m >150m
0.012 0.016 0.011 g.c10 0.089
0.000 0.008 0.023 0.020 0.462
0.000 0.000 0.000 0.010 0.338

Joint Probabilities as percent of Evidence

class 1 class 2 class 3 class 4 class 5

100% 67% 33% 25% 10%
% 33% 67% 50% 52%
% % % 25% 38%

Data Panel 10.5 East Yornaning - Rock layer
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Conditional Probability Printout
13/02/99

Evidence

11:36:

slope

Prior probabilities

PE 1
0.12

PE 2

.20 0.

PE 3
22

00
with

PE
0.20

Conditional Probabilities

9 classes

4 PE S
0.11 0.06

1
=3

. 000
.0o0
.050
800
050
. 000
.000
.000
.000

O O 0O c O O O O O W

9 classes

3 classes

PE 5 PE 6
0.116 0.064

3-4
0.9020
0.107

0-1 i-2 2-3
0.5%00 0.050 0.0600
0.100 0.900 0.050
0.000 0.050 0.950
0.000 0.000 0.050
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.00¢C
c.000C 0.000 0.000
0.000 0.400 0.000
Joint Probability Printout
13/02/55% 12:30:30
Evidence slope with
Hypothesis btxl with
Prior probabilities
FH 1 PH 2 PH 3

0.14 0.51 0.35
PE 1 PE 2 PE 3 PE 4
0.119 0.201 0.225 ©0.155
Joint Probabilities

0-1 1-2 2-3
0.020 0.040 0.032
G.069 0.111 0.112
G6.030 0.050 0.085

0.068

PE 6
0.03

1
wu

.00
.Q00
.000
.050
.200
.050
.000
.0C0
.000

o o o o Qo O O o O

PE 7
0.033

4-5

0.019
0.043
0.063

Joint Probabilities as percent of Evidence

class
9

17%
58%
25%

1 «class

20%
55%
25%

2 class 3 class 4§
14% 10%
19% 55%
EE 35%

class &

2%
37%
54%

PE 7 PE 8 PE 9

0.02 0.04
5-6 6-7 7-8
0.000 0.000 0.000
0.000 0.4400 0.000
g.o00 0.000C G.000
g.ooo 0.000 0.000
0.050 0.000 0.000
0.%00 0.050 0.000
p.os0 0.900 0.050
0.000 0.050 0.900
0.000 0.000 0.050
PE 8 PE 9

0.022 0.033
5-6 6-7 7-8
0.009 0.000 0.000
0.022 0.022 0.011
0.033 0.011 0.011

class 6 class 7

14% % %
34% 67% 50%
52% 33% 50%

class 8

v
o

.000
.000
. 000
.000
.000
L0009
.000
.100
.900

o o o o o o o o O

>8

0.008
0.018
0.008

class

25%
50%
25%

Data Panel 10.6

East Yornaning - Slope layer
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Conditional Probability Printout
13702799 11:37:19

Evidence : strdist with 3 c¢lasses
Prior probabilities

PE 1 PE 2 PE 3

0.48 0.28 0.25

Conditional Probabilities

Lower Middle Upper

0.950 0.050 0.00C0

0.050 0.900 0.050

p.000 0.050 0.950

Joint Probabkility Printout

13/02/99 12:31:26

Evidence : strdist with 3 classes
Hypothesis : btxl with 3 classes

Prior probabilities
FH 1 PH 2 PH 3
.14 0.51 0.35

PE 1 PE 2 PE 3
0.468 0.285 G0.247

Joint Probabilities

Lower Middle Upper
0.019 0.031 0.089
0.248 0.154 0.109
0.201 0.100 0.049

Joint Probabilities as percent of Evidence

class 1 class 2 class 3

4% 11% 36%
53% 54% 44%
43% 5% 20%

Data Panel 10.7 East Yornaning - Stream/Ridge Distance layer
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Conditicnal Probability Printout

10/3/98 6:38:27 PM

Evidence : os_tpos with 3 classes
Prior probabilities

PE 1 PE 2 PE 3

0.53 0.36 0.11

Conditional Probabilities

one two three

1.000 0.000 0.000

0.000 1.000 0.000

0.000 0.000 1.000

Joint Probability Printout

10/3/98 6:38:39 M

Evidence : os_tpos with 3 classes
Hypothesis : so0il with 3 c¢lasses

Prior probabilities
PH 1 PH 2 PH 3 PH 4
0.56 0.277 0.16

PE 1 PE 2 PE 3
0.529 0.357 0.114
Joint Probabilities

one two three
0.478 0.082 0.001
0.048 0.218 0.010
0.005 0.054 0.102

Joint Probabilities as percent of Evidence

class 1 class 2 class 3

50% 23% 1%
9% 61% 9%
1% 15% 90%

Data panel 11.1 Brookton - Topographic position layer
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Conditional Probability Printout
10/3/98 6:37:24 PM

Evidence : os_hsc with 5 classes
Prior probabilities

PE 1 PE 2 PE 3 PE 4 PE 5
0.06 0.26 0.39 0.18 0.11

Conditicnal Probabilities

one two three four five
1.000 0.000 0.000 0.000 0.000
0.000 1.000 0.000 0.000 0.000
0.C00 0.000 1.000 0.000 0.000
0.G00 0.000 0.000 1.000 0.000
0.000 0.000 0.000 0.000 1.000

Joint Probability Printout

10/3/98 6:37:31 PM
Evidence : 0s_bsc with 5 classes
Hypothesis : soil with 3 classes

Prior probabilities
PH 1 PH 2 PH 3
0.56 0.277 0.16

PE 1 PE 2 PE 3 PE 4 PE 5
0.062 0.260 0.394 0.179 0.105

Joint Probabilities

one two three four five
0.009 0.036 0.240 0.172 0.102
0.001 0.154 0.118 0.004 0.001
0.051 0.070 0.035 0.004 0.001

Joint Probabilities as percent of Ewvidence

class 1 class 2 class 3 class 4 class 5

15% 14% 61% 26% 97%
1% 59% 30% 2% 1%
831% 27% 9% 2% 1%

Data panel 11.2 Brookton - Slope layer
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Conditional Probability Printout
10/3/98 5:52:46 PM

Evidence

Prior probabilities

PE 1
.92

PE 2
0.08

Conditiconal Probabilities

os_sand with 2 «¢lasses

one two
0.960 0.150
0.040 0.850
Joint Probability Printout
1073798 5:57:27 PM
Evidence os_sand with 2 classes
Hypothesis s0il with 4 classes
Prior probabilities
PH 1 PH 2 PH 3
0.56 0.277 0.1%6
PE 1 PE 2
0.893 0.1407
Joint Probabilities
one two
0.554 0.C005
0.268 0.011
0.071 0.091
Joint Prcobabilities as percent of Evidence
cilass 1 c¢lass 2
62% 5%
30% 10%
8% 85%

Data panel 11.3

Brookton - Sand API layer
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Conditicnal Probability Printout
14/03/99 16:50:53

Evidence : exp_cti with &5 classes
Prior probabilities

PE 1 PE 2 PE 3 PE 4 PE 5
0.25 0.27 0.29 0.16 0.03

Conditional Probabilities

lowest higher middle bigger bigest

0.950 4.100 0.000 G.000 0.000
0.050 0.800 0.050 0.000 0.000
0.000 g.080 0.800 0.100 0.000
0.000 0.020 0.150 0.9%00 0.030
0.000 0.0080 0.000 0.000 0.970

Joint Probability Printout

1/4/98 12:20:01 PM
Evidence : exp_cti with 5 classes
Hypothesis : s_tx with 3 classes

Prior probabilities
PH 1 PH 2 PH 3
0.5 0.26 0.14

PE 1 PE 2 PE 3 PE 4 PE 5
0.263 0.244 0.271 0.1%6 0.026

Joint Probabilities

lowest higher middle bigger bigest
0.189 0.125 0.165 D.110 0.015
0.053 0.059 0.081 0.063 0.008
0.021 0.061 0.024 0.024 0.003

Joint Probabilities as percent of Evidence

class 1 class 2 class 3 class 4 class 5

72% 51% 61% 56% 56%
20% 24% 30% 32% 12%
8% 25% 9% 12% 12%

Data panel 11.4 Bundaberg - CTI data layer
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Conditional Probability Printout

14/03/99 16:51:04

Evidence : exp_geol with 6 classes
Prior probabilities

PE 1 PE 2 PE 3 PE 4 PE 5 PE &
0.28 0.05 0.02 0.02 0.17 .47

Conditional Probabilities

cret Quat Trias Gran BAs TE

0.800 0.050 0.050 0.000 0.050 0.200
0.000 0.900 0.000 0.000 0.000 0.000
0.000 ¢.000 0.800 0.050 0.000 0.000
0.000 06.000 0.100 0.950 0.000 0.000
0.000 0.000 0.050 0.000 0.%00 0.000
0.260 0.050 0.000 0.000 0.050 0.800

Joint Prohability Printocut

1/4/98 12:30:29% PM
Evidence exp_geol with & classes
Hypothesis : s_tx with 3 c¢lasses

Prior probabilities
PH 1 PH 2 PH 3
0.6 0.26 0.14

PE 1 PE 2 PE 3 PE 4 PE 5 PE 6
0.326 0.048 0.016 0.018 0.152 0.439

Joint Probabilities

cret Quat Trias Gran BAs TE

0.150 0.035 0.003 0.018 ©.003 0.391
0.173 0.013 0.013 G.001 0.009 0.048
D.003 0.000 0.000 0.000 0.134 0.004

Joint Prcbhabilities as percent of Evidence

class 1 class 2 class 3 class 4 class & class 6
46% 72% 20% 97% 2% B9%
53% 28% 80% 1% 6% 11%
1% % % % 88% 1%

Data panel 11.5 Bundaberg - Geology data layer
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Conditional Probability Printout
14/03/99 16:51:15

Evidence : exp_slop with 5 classes
Prior probabilities

PE 1 PE 2 PE 3 PE 4 PE 5
0.30 0.38 G.1l6 0.10 0.06

Conditional Probabilities

0-3 1-3 3-5 5-8 >8
0.700 0.150 0.000 0.000 0.000
0.200 0.700 0.150 0.000 0.000
0.100 0.150 0.700 0.150 0.000
0.000 0.000 0.150 0.700 0.150
0.000 0.000 0.000 0.150 0.850
Joint Probability Printout

1/4/98 12:36:42 PM

Evidence exp_slop with 5 classes
Hypothesis : s_tx with 23 classes

Prior probabilities
FH 1 PH 2 PH 3
0.6 0.26 0.14

PE 1 PE 2 PE 3 PE 4 FE 5
0.266 0.349 0.216 0.102 0.067

Joint Prcbabilities

-3 1-3 3-5 5-8 =8

0.186 0.234 6.119 0.043 0.013
0.069 0.087 G.058 0.020 0.027
0.011 0.028 0.039 0.039 0.027

Joint Probabkilities as percent of Evidence

class 1 class 2 class 3 class 4 class 5

70% 67% 55% 42% 20%
26% 25% 27% 20% 40%
4% B% 18% 38% 40%

Data panel 11.6 Bundaberg - Slope data layer
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Conditional Probability Printout
16/02/99 18:08:50

Evidence : acid_g with 5 classes
Prior probabilities

PE 1 PE 2 PE 3 PE 4 PE 5
.00 0.09 0.26 0.45 0.21

Conditional Probabilities

4.2-4.3 4.3-4.4 4.4-4.5 4.5-4.6 4.6-4.7
0.900 0.050 0.000 G.0040 0.600
0.070 0.900 0.050 0.000 0.000
0.030 0.050 0.900 0.050 0.030
0.000 0.000 0.050 0.%00 0.070
0.000 g.000 0.000 0.050 0.900
Joint Preobability Printout

16/02/99 19:25:11

Evidence : acid_g with 5 classes

Hypothesis : hiyield with 2 <classes
Prior prcbabilities

PH 1 PH 2

p.65 0.35

PE1 PE 2 PE 3 PE 4 PE 5
0.005 0.093 0.263 0.429 0.209

Joint Probabilities
4.2-4.3 4.3-4.4 4.4-4.5 4.5-4.6 4.6-4.7

0.004 0.065 0.171 0.270 0.134
0.001 0.028 0.092 0.155 0.075

Joint Probabilities as percent of Evidence

class 1 «class 2 class 3 class 4 class 5
80% 70% 65% 63% 64%
20% 30% 35% 36% 6%

Data panel 11.7 Yield prediction data - pH layer
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Conditional Probability Printout

16/02/99
Evidence

18:08:27

soil_g with

Prior probabilities

PE 1 PE 2

0.38 0.

¢9

0.

PE 3 PE
02 0.0%

Conditional Probabilities

SGL

DYs

.790
.030
.030
.036G
.030
.030
.030
.030

o o o o o O O O

0.030
0.790
0.030
0.
0
o]
o]
o]

Q3¢

.030
.030
.030
.030

MYGS

.030
.030
.7%0
.030
.030
.030
.030
.030

oo o O 0 O o o O

Joint Probability Printout

16/02/99
Evidence

Hypothes

is

19:22:25
s0il_g with
hiyield with

Pricor probabilities

PH 1 PH

0.65 0.35

PE 1 PE

0.320 0.097

2

2

4
0

E 3 PE 4
042 D.099

Jeint Probabilities

DYS
0.224
0.096

SGL
0.088

0.

010

MYGS
0.042
0.0¢00

4

8 classes

PE 5

TE &

0.17 0.11 0.12

5pPS

.Q30
.030
.030
L7940
.030
.030
.030
.030

o o O o O O O O

8 classes

YSE

.030
.030
.030
L0390
.790
.030
.030
.030

O o O o o o o .

2 classes

PE 5 PE & PE 7
¢.158 0.112 0.121

SPS
G.064
(G.034

YSE
0.07%
0.079

Joint Probabilities as percent of Evidence

class 1
70%
30%

class 2 class 3
90% 100%
10% %

class 4
65%
35%

class 5
50%
50%

PE 7

0.03

DSD

030
.030
.D30
.030
.030
.790
L0390
.030

o o O O O O o o

PE 8
0.05L

DSD
0.100
0.012

class 6
89%
11%

PE

58D

.030
L0360
L0340
.030
.030
LC30
L7190
.030

o O o O o o O

SSD
0.048
0.073

class 7
40%
60%

SLD

.G30
.030
.030
-030
.030
.Q30
.030
.790

o o o o O O O O

SLD
0.001
0.050

class 8
2%
98%

Data panel 11.8

Yield prediction data - Soil layer
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Conditional Probability Printout

16/02/99
Evidence
Prior probabilities
PE 2 PE 3
0.

PE 1
0.0z

Conditional Probabilities

0-0.5
1.000
.000
.000
.000
.G00
-G00

o 0 O o o

Joint Probabllity Printout
16/02/99
Evidence
Hypothesis

Prior probabilities

PH 1
0.65

PE 1
0.025

Joint

0-0.5

0.023
0.001

Joint

class
95%
5%

15 0.42

0.5-1
.000
.000
.000
.G00
.coo0
.000

o O o a = oo

PH 2

0.35

PE 2 PE 3
0.148 (0.420

Probhabilikties

0.5-1
0.126
0.022

1

0.

[ = - =)

1
0
0

18:0%:07
y1ld5_g with

PE

0.29

-1.5
000
.000
.000
.000
.000
.000

19:28:06
yld5_g with
hiyield with 2 <cla

PE 4
0.288

-1.5
277
.143

6 clas

PE
0.10

.5-2
.000
. 000
.000
.60o
.000
.0o0

o o F O O O

6 «clas

PE 5
¢.096

1.5-2
0.164
0.124

ses

5 PE b

0.42
2-2.5
0.000
0.000
0.00¢
0.9000
1.000
0.000

ses

sses

PE 6

0.024
2-2.5
0.048
0.048

Probabilities as percent of Evidence

1

class 2
B85%
15%

class 3

6

6%

34%

class
57%
43%

4 class 5
50%
50%

»>2.5

.000
.000
.000
.000
.000
.000

= oo o o o O

»2.5
0.011
0.0112

class 6
45%
55%

Data panel 11.9

Yield prediction data - Prior yield layer
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APPENDIX B

DESCRIPTION OF CONTENTS OF CD-ROM.

The CD ROM appended to this thesis as Appendix B contains a copy of the Expector
software, in its ArcView interface version. The ArcView interface requires the use
of the Spatial Analyst extension to ArcView. Also on the disk are the manual for the
software, some supporting files, and data for a worked example. The worked
example is described in Section C of the manual. The manual is presented as an
Adobe® PDF document and the Adobe® Acrobat® reader software is also provided

on the disk.

The directory structure of the CD is as follows:-

v112_dist Expector software distribution kit,
support Additional files for the Expector software,
manual The Expector manual,

exp_av Expector ArcView interface.

Installation instructions are in the file cdinstall.rft which is on the root directory of

the CD.

In case of any questions concerning the material on the CD, please contact either of
the following:-
Robert Corner (Robert.Corner@ per.clw.csiro.au),

Dr. Robert Hickey (rhickey @ vesta.curtin.edu.au).

Note: The Appendix B CDRom has not been reproduced as part of the
Australian Digital Theses Project as some of the software contained in the
CDRom is unsuitable for conversion to PDF format.

(Co-ordinator, ADT Project (Retrospective}, Curtin University of Technology,
25.10.02)
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